text
stringlengths
0
3.06M
meta
stringlengths
57
121
[GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : TopologicalSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : TopologicalGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : EquicontinuousAt (FunLike.coe ∘ F) 1 ⊢ Equicontinuous (FunLike.coe ∘ F) [PROOFSTEP] rw [equicontinuous_iff_continuous] [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : TopologicalSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : TopologicalGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : EquicontinuousAt (FunLike.coe ∘ F) 1 ⊢ Continuous (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) [PROOFSTEP] rw [equicontinuousAt_iff_continuousAt] at hf [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : TopologicalSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : TopologicalGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 ⊢ Continuous (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) [PROOFSTEP] let φ : G →* (ι →ᵤ M) := { toFun := swap ((↑) ∘ F) map_one' := by dsimp [UniformFun]; ext; exact map_one _ map_mul' := fun a b => by dsimp [UniformFun]; ext; exact map_mul _ _ _ } [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : TopologicalSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : TopologicalGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 ⊢ swap (FunLike.coe ∘ F) 1 = 1 [PROOFSTEP] dsimp [UniformFun] [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : TopologicalSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : TopologicalGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 ⊢ swap (FunLike.coe ∘ F) 1 = 1 [PROOFSTEP] ext [GOAL] case h ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : TopologicalSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : TopologicalGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 x✝ : ι ⊢ swap (FunLike.coe ∘ F) 1 x✝ = OfNat.ofNat 1 x✝ [PROOFSTEP] exact map_one _ [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : TopologicalSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : TopologicalGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 a b : G ⊢ OneHom.toFun { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) } (a * b) = OneHom.toFun { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) } a * OneHom.toFun { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) } b [PROOFSTEP] dsimp [UniformFun] [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : TopologicalSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : TopologicalGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 a b : G ⊢ swap (FunLike.coe ∘ F) (a * b) = swap (FunLike.coe ∘ F) a * swap (FunLike.coe ∘ F) b [PROOFSTEP] ext [GOAL] case h ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : TopologicalSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : TopologicalGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 a b : G x✝ : ι ⊢ swap (FunLike.coe ∘ F) (a * b) x✝ = (swap (FunLike.coe ∘ F) a * swap (FunLike.coe ∘ F) b) x✝ [PROOFSTEP] exact map_mul _ _ _ [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : TopologicalSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : TopologicalGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 φ : G →* ι →ᵤ M := { toOneHom := { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) }, map_mul' := (_ : ∀ (a b : G), OneHom.toFun { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) } (a * b) = OneHom.toFun { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) } a * OneHom.toFun { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) } b) } ⊢ Continuous (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) [PROOFSTEP] exact continuous_of_continuousAt_one φ hf [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : UniformSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : UniformGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : EquicontinuousAt (FunLike.coe ∘ F) 1 ⊢ UniformEquicontinuous (FunLike.coe ∘ F) [PROOFSTEP] rw [uniformEquicontinuous_iff_uniformContinuous] [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : UniformSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : UniformGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : EquicontinuousAt (FunLike.coe ∘ F) 1 ⊢ UniformContinuous (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) [PROOFSTEP] rw [equicontinuousAt_iff_continuousAt] at hf [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : UniformSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : UniformGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 ⊢ UniformContinuous (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) [PROOFSTEP] let φ : G →* (ι →ᵤ M) := { toFun := swap ((↑) ∘ F) map_one' := by dsimp [UniformFun]; ext; exact map_one _ map_mul' := fun a b => by dsimp [UniformFun]; ext; exact map_mul _ _ _ } [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : UniformSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : UniformGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 ⊢ swap (FunLike.coe ∘ F) 1 = 1 [PROOFSTEP] dsimp [UniformFun] [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : UniformSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : UniformGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 ⊢ swap (FunLike.coe ∘ F) 1 = 1 [PROOFSTEP] ext [GOAL] case h ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : UniformSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : UniformGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 x✝ : ι ⊢ swap (FunLike.coe ∘ F) 1 x✝ = OfNat.ofNat 1 x✝ [PROOFSTEP] exact map_one _ [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : UniformSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : UniformGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 a b : G ⊢ OneHom.toFun { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) } (a * b) = OneHom.toFun { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) } a * OneHom.toFun { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) } b [PROOFSTEP] dsimp [UniformFun] [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : UniformSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : UniformGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 a b : G ⊢ swap (FunLike.coe ∘ F) (a * b) = swap (FunLike.coe ∘ F) a * swap (FunLike.coe ∘ F) b [PROOFSTEP] ext [GOAL] case h ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : UniformSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : UniformGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 a b : G x✝ : ι ⊢ swap (FunLike.coe ∘ F) (a * b) x✝ = (swap (FunLike.coe ∘ F) a * swap (FunLike.coe ∘ F) b) x✝ [PROOFSTEP] exact map_mul _ _ _ [GOAL] ι : Type u_1 G : Type u_2 M : Type u_3 hom : Type u_4 inst✝⁶ : UniformSpace G inst✝⁵ : UniformSpace M inst✝⁴ : Group G inst✝³ : Group M inst✝² : UniformGroup G inst✝¹ : UniformGroup M inst✝ : MonoidHomClass hom G M F : ι → hom hf : ContinuousAt (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) 1 φ : G →* ι →ᵤ M := { toOneHom := { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) }, map_mul' := (_ : ∀ (a b : G), OneHom.toFun { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) } (a * b) = OneHom.toFun { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) } a * OneHom.toFun { toFun := swap (FunLike.coe ∘ F), map_one' := (_ : swap (FunLike.coe ∘ F) 1 = 1) } b) } ⊢ UniformContinuous (↑UniformFun.ofFun ∘ swap (FunLike.coe ∘ F)) [PROOFSTEP] exact uniformContinuous_of_continuousAt_one φ hf
{"mathlib_filename": "Mathlib.Topology.Algebra.Equicontinuity", "llama_tokens": 4738}
[GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G U✝ V : OpenSubgroup G g : G inst✝ : ContinuousMul G U : OpenSubgroup G ⊢ IsClosed ↑U [PROOFSTEP] apply isOpen_compl_iff.1 [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G U✝ V : OpenSubgroup G g : G inst✝ : ContinuousMul G U : OpenSubgroup G ⊢ IsOpen (↑U)ᶜ [PROOFSTEP] refine' isOpen_iff_forall_mem_open.2 fun x hx => ⟨(fun y => y * x⁻¹) ⁻¹' U, _, _, _⟩ [GOAL] case refine'_1 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G U✝ V : OpenSubgroup G g : G inst✝ : ContinuousMul G U : OpenSubgroup G x : G hx : x ∈ (↑U)ᶜ ⊢ (fun y => y * x⁻¹) ⁻¹' ↑U ⊆ (↑U)ᶜ [PROOFSTEP] refine' fun u hux hu => hx _ [GOAL] case refine'_1 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G U✝ V : OpenSubgroup G g : G inst✝ : ContinuousMul G U : OpenSubgroup G x : G hx : x ∈ (↑U)ᶜ u : G hux : u ∈ (fun y => y * x⁻¹) ⁻¹' ↑U hu : u ∈ ↑U ⊢ x ∈ ↑U [PROOFSTEP] simp only [Set.mem_preimage, SetLike.mem_coe] at hux hu ⊢ [GOAL] case refine'_1 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G U✝ V : OpenSubgroup G g : G inst✝ : ContinuousMul G U : OpenSubgroup G x : G hx : x ∈ (↑U)ᶜ u : G hux : u * x⁻¹ ∈ U hu : u ∈ U ⊢ x ∈ U [PROOFSTEP] convert U.mul_mem (U.inv_mem hux) hu [GOAL] case a G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G U✝ V : OpenSubgroup G g : G inst✝ : ContinuousMul G U : OpenSubgroup G x : G hx : x ∈ (↑U)ᶜ u : G hux : u * x⁻¹ ∈ U hu : u ∈ U ⊢ x ∈ U ↔ (u * x⁻¹)⁻¹ * u ∈ ↑U [PROOFSTEP] simp [GOAL] case refine'_2 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G U✝ V : OpenSubgroup G g : G inst✝ : ContinuousMul G U : OpenSubgroup G x : G hx : x ∈ (↑U)ᶜ ⊢ IsOpen ((fun y => y * x⁻¹) ⁻¹' ↑U) [PROOFSTEP] exact U.isOpen.preimage (continuous_mul_right _) [GOAL] case refine'_3 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G U✝ V : OpenSubgroup G g : G inst✝ : ContinuousMul G U : OpenSubgroup G x : G hx : x ∈ (↑U)ᶜ ⊢ x ∈ (fun y => y * x⁻¹) ⁻¹' ↑U [PROOFSTEP] simp [one_mem] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : ContinuousMul G H : Subgroup G g : G hg : ↑H ∈ 𝓝 g ⊢ IsOpen ↑H [PROOFSTEP] refine' isOpen_iff_mem_nhds.2 fun x hx => _ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : ContinuousMul G H : Subgroup G g : G hg : ↑H ∈ 𝓝 g x : G hx : x ∈ ↑H ⊢ ↑H ∈ 𝓝 x [PROOFSTEP] have hg' : g ∈ H := SetLike.mem_coe.1 (mem_of_mem_nhds hg) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : ContinuousMul G H : Subgroup G g : G hg : ↑H ∈ 𝓝 g x : G hx : x ∈ ↑H hg' : g ∈ H ⊢ ↑H ∈ 𝓝 x [PROOFSTEP] have : Filter.Tendsto (fun y => y * (x⁻¹ * g)) (𝓝 x) (𝓝 g) := (continuous_id.mul continuous_const).tendsto' _ _ (mul_inv_cancel_left _ _) [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : ContinuousMul G H : Subgroup G g : G hg : ↑H ∈ 𝓝 g x : G hx : x ∈ ↑H hg' : g ∈ H this : Filter.Tendsto (fun y => y * (x⁻¹ * g)) (𝓝 x) (𝓝 g) ⊢ ↑H ∈ 𝓝 x [PROOFSTEP] simpa only [SetLike.mem_coe, Filter.mem_map', H.mul_mem_cancel_right (H.mul_mem (H.inv_mem hx) hg')] using this hg
{"mathlib_filename": "Mathlib.Topology.Algebra.OpenSubgroup", "llama_tokens": 1656}
[GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : Ring R inst✝¹ : Module R E inst✝ : Module R F f : E →ᵃ[R] F ⊢ Continuous ↑f ↔ Continuous ↑f.linear [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : Ring R inst✝¹ : Module R E inst✝ : Module R F f : E →ᵃ[R] F ⊢ Continuous ↑f → Continuous ↑f.linear [PROOFSTEP] intro hc [GOAL] case mp R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : Ring R inst✝¹ : Module R E inst✝ : Module R F f : E →ᵃ[R] F hc : Continuous ↑f ⊢ Continuous ↑f.linear [PROOFSTEP] rw [decomp' f] [GOAL] case mp R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : Ring R inst✝¹ : Module R E inst✝ : Module R F f : E →ᵃ[R] F hc : Continuous ↑f ⊢ Continuous (↑f - fun x => ↑f 0) [PROOFSTEP] exact hc.sub continuous_const [GOAL] case mpr R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : Ring R inst✝¹ : Module R E inst✝ : Module R F f : E →ᵃ[R] F ⊢ Continuous ↑f.linear → Continuous ↑f [PROOFSTEP] intro hc [GOAL] case mpr R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : Ring R inst✝¹ : Module R E inst✝ : Module R F f : E →ᵃ[R] F hc : Continuous ↑f.linear ⊢ Continuous ↑f [PROOFSTEP] rw [decomp f] [GOAL] case mpr R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : Ring R inst✝¹ : Module R E inst✝ : Module R F f : E →ᵃ[R] F hc : Continuous ↑f.linear ⊢ Continuous (↑f.linear + fun x => ↑f 0) [PROOFSTEP] exact hc.add continuous_const [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : CommRing R inst✝¹ : Module R F inst✝ : ContinuousConstSMul R F x : F t : R ⊢ Continuous ↑(homothety x t) [PROOFSTEP] suffices ⇑(homothety x t) = fun y => t • (y - x) + x by rw [this] exact ((continuous_id.sub continuous_const).const_smul _).add continuous_const [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : CommRing R inst✝¹ : Module R F inst✝ : ContinuousConstSMul R F x : F t : R this : ↑(homothety x t) = fun y => t • (y - x) + x ⊢ Continuous ↑(homothety x t) [PROOFSTEP] rw [this] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : CommRing R inst✝¹ : Module R F inst✝ : ContinuousConstSMul R F x : F t : R this : ↑(homothety x t) = fun y => t • (y - x) + x ⊢ Continuous fun y => t • (y - x) + x [PROOFSTEP] exact ((continuous_id.sub continuous_const).const_smul _).add continuous_const [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : CommRing R inst✝¹ : Module R F inst✝ : ContinuousConstSMul R F x : F t : R ⊢ ↑(homothety x t) = fun y => t • (y - x) + x [PROOFSTEP] ext y [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : CommRing R inst✝¹ : Module R F inst✝ : ContinuousConstSMul R F x : F t : R y : F ⊢ ↑(homothety x t) y = t • (y - x) + x [PROOFSTEP] simp [homothety_apply] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : Field R inst✝¹ : Module R F inst✝ : ContinuousConstSMul R F x : F t : R ht : t ≠ 0 ⊢ IsOpenMap ↑(homothety x t) [PROOFSTEP] apply IsOpenMap.of_inverse (homothety_continuous x t⁻¹) [GOAL] case l_inv R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : Field R inst✝¹ : Module R F inst✝ : ContinuousConstSMul R F x : F t : R ht : t ≠ 0 ⊢ Function.LeftInverse ↑(homothety x t) ↑(homothety x t⁻¹) [PROOFSTEP] intro e [GOAL] case r_inv R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : Field R inst✝¹ : Module R F inst✝ : ContinuousConstSMul R F x : F t : R ht : t ≠ 0 ⊢ Function.RightInverse ↑(homothety x t) ↑(homothety x t⁻¹) [PROOFSTEP] intro e [GOAL] case l_inv R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : Field R inst✝¹ : Module R F inst✝ : ContinuousConstSMul R F x : F t : R ht : t ≠ 0 e : F ⊢ ↑(homothety x t) (↑(homothety x t⁻¹) e) = e [PROOFSTEP] simp [← AffineMap.comp_apply, ← homothety_mul, ht] [GOAL] case r_inv R : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : AddCommGroup E inst✝⁶ : TopologicalSpace E inst✝⁵ : AddCommGroup F inst✝⁴ : TopologicalSpace F inst✝³ : TopologicalAddGroup F inst✝² : Field R inst✝¹ : Module R F inst✝ : ContinuousConstSMul R F x : F t : R ht : t ≠ 0 e : F ⊢ ↑(homothety x t⁻¹) (↑(homothety x t) e) = e [PROOFSTEP] simp [← AffineMap.comp_apply, ← homothety_mul, ht]
{"mathlib_filename": "Mathlib.Topology.Algebra.Affine", "llama_tokens": 2942}
[GOAL] M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r ⊢ ∃ m, m * m = m [PROOFSTEP] let S : Set (Set M) := {N | IsClosed N ∧ N.Nonempty ∧ ∀ (m) (_ : m ∈ N) (m') (_ : m' ∈ N), m * m' ∈ N} [GOAL] M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} ⊢ ∃ m, m * m = m [PROOFSTEP] obtain ⟨N, ⟨N_closed, ⟨m, hm⟩, N_mul⟩, N_minimal⟩ : ∃ N ∈ S, ∀ N' ∈ S, N' ⊆ N → N' = N [GOAL] M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} ⊢ ∃ N, N ∈ S ∧ ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N case intro.intro.intro.intro.intro M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N ⊢ ∃ m, m * m = m [PROOFSTEP] rotate_left -- Porting note: restore to `rsuffices` [GOAL] case intro.intro.intro.intro.intro M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N ⊢ ∃ m, m * m = m [PROOFSTEP] use m [GOAL] case h M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N ⊢ m * m = m [PROOFSTEP] have scaling_eq_self : (· * m) '' N = N := by apply N_minimal · refine' ⟨(continuous_mul_left m).isClosedMap _ N_closed, ⟨_, ⟨m, hm, rfl⟩⟩, _⟩ rintro _ ⟨m'', hm'', rfl⟩ _ ⟨m', hm', rfl⟩ refine' ⟨m'' * m * m', N_mul _ (N_mul _ hm'' _ hm) _ hm', mul_assoc _ _ _⟩ · rintro _ ⟨m', hm', rfl⟩ exact N_mul _ hm' _ hm [GOAL] M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N ⊢ (fun x => x * m) '' N = N [PROOFSTEP] apply N_minimal [GOAL] case a M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N ⊢ (fun x => x * m) '' N ∈ S [PROOFSTEP] refine' ⟨(continuous_mul_left m).isClosedMap _ N_closed, ⟨_, ⟨m, hm, rfl⟩⟩, _⟩ [GOAL] case a M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N ⊢ ∀ (m_1 : M), m_1 ∈ (fun x => x * m) '' N → ∀ (m' : M), m' ∈ (fun x => x * m) '' N → m_1 * m' ∈ (fun x => x * m) '' N [PROOFSTEP] rintro _ ⟨m'', hm'', rfl⟩ _ ⟨m', hm', rfl⟩ [GOAL] case a.intro.intro.intro.intro M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N m'' : M hm'' : m'' ∈ N m' : M hm' : m' ∈ N ⊢ (fun x => x * m) m'' * (fun x => x * m) m' ∈ (fun x => x * m) '' N [PROOFSTEP] refine' ⟨m'' * m * m', N_mul _ (N_mul _ hm'' _ hm) _ hm', mul_assoc _ _ _⟩ [GOAL] case a M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N ⊢ (fun x => x * m) '' N ⊆ N [PROOFSTEP] rintro _ ⟨m', hm', rfl⟩ [GOAL] case a.intro.intro M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N m' : M hm' : m' ∈ N ⊢ (fun x => x * m) m' ∈ N [PROOFSTEP] exact N_mul _ hm' _ hm [GOAL] case h M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N scaling_eq_self : (fun x => x * m) '' N = N ⊢ m * m = m [PROOFSTEP] have absorbing_eq_self : N ∩ {m' | m' * m = m} = N := by apply N_minimal · refine' ⟨N_closed.inter ((T1Space.t1 m).preimage (continuous_mul_left m)), _, _⟩ · rwa [← scaling_eq_self] at hm · rintro m'' ⟨mem'', eq'' : _ = m⟩ m' ⟨mem', eq' : _ = m⟩ refine' ⟨N_mul _ mem'' _ mem', _⟩ rw [Set.mem_setOf_eq, mul_assoc, eq', eq''] apply Set.inter_subset_left [GOAL] M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N scaling_eq_self : (fun x => x * m) '' N = N ⊢ N ∩ {m' | m' * m = m} = N [PROOFSTEP] apply N_minimal [GOAL] case a M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N scaling_eq_self : (fun x => x * m) '' N = N ⊢ N ∩ {m' | m' * m = m} ∈ S [PROOFSTEP] refine' ⟨N_closed.inter ((T1Space.t1 m).preimage (continuous_mul_left m)), _, _⟩ [GOAL] case a.refine'_1 M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N scaling_eq_self : (fun x => x * m) '' N = N ⊢ Set.Nonempty (N ∩ {m' | m' * m = m}) [PROOFSTEP] rwa [← scaling_eq_self] at hm [GOAL] case a.refine'_2 M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N scaling_eq_self : (fun x => x * m) '' N = N ⊢ ∀ (m_1 : M), m_1 ∈ N ∩ {m' | m' * m = m} → ∀ (m' : M), m' ∈ N ∩ {m' | m' * m = m} → m_1 * m' ∈ N ∩ {m' | m' * m = m} [PROOFSTEP] rintro m'' ⟨mem'', eq'' : _ = m⟩ m' ⟨mem', eq' : _ = m⟩ [GOAL] case a.refine'_2.intro.intro M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N scaling_eq_self : (fun x => x * m) '' N = N m'' : M mem'' : m'' ∈ N eq'' : m'' * m = m m' : M mem' : m' ∈ N eq' : m' * m = m ⊢ m'' * m' ∈ N ∩ {m' | m' * m = m} [PROOFSTEP] refine' ⟨N_mul _ mem'' _ mem', _⟩ [GOAL] case a.refine'_2.intro.intro M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N scaling_eq_self : (fun x => x * m) '' N = N m'' : M mem'' : m'' ∈ N eq'' : m'' * m = m m' : M mem' : m' ∈ N eq' : m' * m = m ⊢ m'' * m' ∈ {m' | m' * m = m} [PROOFSTEP] rw [Set.mem_setOf_eq, mul_assoc, eq', eq''] [GOAL] case a M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N scaling_eq_self : (fun x => x * m) '' N = N ⊢ N ∩ {m' | m' * m = m} ⊆ N [PROOFSTEP] apply Set.inter_subset_left [GOAL] case h M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N scaling_eq_self : (fun x => x * m) '' N = N absorbing_eq_self : N ∩ {m' | m' * m = m} = N ⊢ m * m = m [PROOFSTEP] rw [← absorbing_eq_self] at hm [GOAL] case h M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} N : Set M N_minimal : ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N N_closed : IsClosed N N_mul : ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N m : M hm : m ∈ N ∩ {m' | m' * m = m} scaling_eq_self : (fun x => x * m) '' N = N absorbing_eq_self : N ∩ {m' | m' * m = m} = N ⊢ m * m = m [PROOFSTEP] exact hm.2 [GOAL] M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} ⊢ ∃ N, N ∈ S ∧ ∀ (N' : Set M), N' ∈ S → N' ⊆ N → N' = N [PROOFSTEP] refine' zorn_superset _ fun c hcs hc => _ [GOAL] M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} c : Set (Set M) hcs : c ⊆ S hc : IsChain (fun x x_1 => x ⊆ x_1) c ⊢ ∃ lb, lb ∈ S ∧ ∀ (s : Set M), s ∈ c → lb ⊆ s [PROOFSTEP] refine' ⟨⋂₀ c, ⟨isClosed_sInter fun t ht => (hcs ht).1, _, fun m hm m' hm' => _⟩, fun s hs => Set.sInter_subset_of_mem hs⟩ [GOAL] case refine'_1 M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} c : Set (Set M) hcs : c ⊆ S hc : IsChain (fun x x_1 => x ⊆ x_1) c ⊢ Set.Nonempty (⋂₀ c) [PROOFSTEP] obtain rfl | hcnemp := c.eq_empty_or_nonempty [GOAL] case refine'_1.inl M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} hcs : ∅ ⊆ S hc : IsChain (fun x x_1 => x ⊆ x_1) ∅ ⊢ Set.Nonempty (⋂₀ ∅) [PROOFSTEP] rw [Set.sInter_empty] [GOAL] case refine'_1.inl M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} hcs : ∅ ⊆ S hc : IsChain (fun x x_1 => x ⊆ x_1) ∅ ⊢ Set.Nonempty Set.univ [PROOFSTEP] apply Set.univ_nonempty [GOAL] case refine'_1.inr M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} c : Set (Set M) hcs : c ⊆ S hc : IsChain (fun x x_1 => x ⊆ x_1) c hcnemp : Set.Nonempty c ⊢ Set.Nonempty (⋂₀ c) [PROOFSTEP] convert @IsCompact.nonempty_iInter_of_directed_nonempty_compact_closed _ _ _ hcnemp.coe_sort ((↑) : c → Set M) ?_ ?_ ?_ ?_ [GOAL] case h.e'_2 M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} c : Set (Set M) hcs : c ⊆ S hc : IsChain (fun x x_1 => x ⊆ x_1) c hcnemp : Set.Nonempty c ⊢ ⋂₀ c = ⋂ (i : ↑c), ↑i [PROOFSTEP] exact Set.sInter_eq_iInter [GOAL] case refine'_1.inr.convert_1 M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} c : Set (Set M) hcs : c ⊆ S hc : IsChain (fun x x_1 => x ⊆ x_1) c hcnemp : Set.Nonempty c ⊢ Directed (fun x x_1 => x ⊇ x_1) Subtype.val [PROOFSTEP] refine' DirectedOn.directed_val (IsChain.directedOn hc.symm) [GOAL] case refine'_1.inr.convert_2 M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} c : Set (Set M) hcs : c ⊆ S hc : IsChain (fun x x_1 => x ⊆ x_1) c hcnemp : Set.Nonempty c ⊢ ∀ (i : ↑c), Set.Nonempty ↑i case refine'_1.inr.convert_3 M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} c : Set (Set M) hcs : c ⊆ S hc : IsChain (fun x x_1 => x ⊆ x_1) c hcnemp : Set.Nonempty c ⊢ ∀ (i : ↑c), IsCompact ↑i case refine'_1.inr.convert_4 M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} c : Set (Set M) hcs : c ⊆ S hc : IsChain (fun x x_1 => x ⊆ x_1) c hcnemp : Set.Nonempty c ⊢ ∀ (i : ↑c), IsClosed ↑i [PROOFSTEP] exacts [fun i => (hcs i.prop).2.1, fun i => (hcs i.prop).1.isCompact, fun i => (hcs i.prop).1] [GOAL] case refine'_2 M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} c : Set (Set M) hcs : c ⊆ S hc : IsChain (fun x x_1 => x ⊆ x_1) c m : M hm : m ∈ ⋂₀ c m' : M hm' : m' ∈ ⋂₀ c ⊢ m * m' ∈ ⋂₀ c [PROOFSTEP] rw [Set.mem_sInter] [GOAL] case refine'_2 M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ Set.Nonempty N ∧ ∀ (m : M), m ∈ N → ∀ (m' : M), m' ∈ N → m * m' ∈ N} c : Set (Set M) hcs : c ⊆ S hc : IsChain (fun x x_1 => x ⊆ x_1) c m : M hm : m ∈ ⋂₀ c m' : M hm' : m' ∈ ⋂₀ c ⊢ ∀ (t : Set M), t ∈ c → m * m' ∈ t [PROOFSTEP] exact fun t ht => (hcs ht).2.2 m (Set.mem_sInter.mp hm t ht) m' (Set.mem_sInter.mp hm' t ht) [GOAL] M : Type u_1 inst✝² : Semigroup M inst✝¹ : TopologicalSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r s : Set M snemp : Set.Nonempty s s_compact : IsCompact s s_add : ∀ (x : M), x ∈ s → ∀ (y : M), y ∈ s → x * y ∈ s ⊢ ∃ m, m ∈ s ∧ m * m = m [PROOFSTEP] let M' := { m // m ∈ s } [GOAL] M : Type u_1 inst✝² : Semigroup M inst✝¹ : TopologicalSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r s : Set M snemp : Set.Nonempty s s_compact : IsCompact s s_add : ∀ (x : M), x ∈ s → ∀ (y : M), y ∈ s → x * y ∈ s M' : Type u_1 := { m // m ∈ s } ⊢ ∃ m, m ∈ s ∧ m * m = m [PROOFSTEP] letI : Semigroup M' := { mul := fun p q => ⟨p.1 * q.1, s_add _ p.2 _ q.2⟩ mul_assoc := fun p q r => Subtype.eq (mul_assoc _ _ _) } [GOAL] M : Type u_1 inst✝² : Semigroup M inst✝¹ : TopologicalSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r s : Set M snemp : Set.Nonempty s s_compact : IsCompact s s_add : ∀ (x : M), x ∈ s → ∀ (y : M), y ∈ s → x * y ∈ s M' : Type u_1 := { m // m ∈ s } this : Semigroup M' := Semigroup.mk (_ : ∀ (p q r : M'), p * q * r = p * (q * r)) ⊢ ∃ m, m ∈ s ∧ m * m = m [PROOFSTEP] haveI : CompactSpace M' := isCompact_iff_compactSpace.mp s_compact [GOAL] M : Type u_1 inst✝² : Semigroup M inst✝¹ : TopologicalSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r s : Set M snemp : Set.Nonempty s s_compact : IsCompact s s_add : ∀ (x : M), x ∈ s → ∀ (y : M), y ∈ s → x * y ∈ s M' : Type u_1 := { m // m ∈ s } this✝ : Semigroup M' := Semigroup.mk (_ : ∀ (p q r : M'), p * q * r = p * (q * r)) this : CompactSpace M' ⊢ ∃ m, m ∈ s ∧ m * m = m [PROOFSTEP] haveI : Nonempty M' := nonempty_subtype.mpr snemp [GOAL] M : Type u_1 inst✝² : Semigroup M inst✝¹ : TopologicalSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r s : Set M snemp : Set.Nonempty s s_compact : IsCompact s s_add : ∀ (x : M), x ∈ s → ∀ (y : M), y ∈ s → x * y ∈ s M' : Type u_1 := { m // m ∈ s } this✝¹ : Semigroup M' := Semigroup.mk (_ : ∀ (p q r : M'), p * q * r = p * (q * r)) this✝ : CompactSpace M' this : Nonempty M' ⊢ ∃ m, m ∈ s ∧ m * m = m [PROOFSTEP] have : ∀ p : M', Continuous (· * p) := fun p => ((continuous_mul_left p.1).comp continuous_subtype_val).subtype_mk _ [GOAL] M : Type u_1 inst✝² : Semigroup M inst✝¹ : TopologicalSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r s : Set M snemp : Set.Nonempty s s_compact : IsCompact s s_add : ∀ (x : M), x ∈ s → ∀ (y : M), y ∈ s → x * y ∈ s M' : Type u_1 := { m // m ∈ s } this✝² : Semigroup M' := Semigroup.mk (_ : ∀ (p q r : M'), p * q * r = p * (q * r)) this✝¹ : CompactSpace M' this✝ : Nonempty M' this : ∀ (p : M'), Continuous fun x => x * p ⊢ ∃ m, m ∈ s ∧ m * m = m [PROOFSTEP] obtain ⟨⟨m, hm⟩, idem⟩ := exists_idempotent_of_compact_t2_of_continuous_mul_left this [GOAL] case intro.mk M : Type u_1 inst✝² : Semigroup M inst✝¹ : TopologicalSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r s : Set M snemp : Set.Nonempty s s_compact : IsCompact s s_add : ∀ (x : M), x ∈ s → ∀ (y : M), y ∈ s → x * y ∈ s M' : Type u_1 := { m // m ∈ s } this✝² : Semigroup M' := Semigroup.mk (_ : ∀ (p q r : M'), p * q * r = p * (q * r)) this✝¹ : CompactSpace M' this✝ : Nonempty M' this : ∀ (p : M'), Continuous fun x => x * p m : M hm : m ∈ s idem : { val := m, property := hm } * { val := m, property := hm } = { val := m, property := hm } ⊢ ∃ m, m ∈ s ∧ m * m = m [PROOFSTEP] exact ⟨m, hm, Subtype.ext_iff.mp idem⟩
{"mathlib_filename": "Mathlib.Topology.Algebra.Semigroup", "llama_tokens": 11855}
[GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G ⊢ Cauchy F ↔ NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] letI := B.uniformSpace [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this : UniformSpace G := AddGroupFilterBasis.uniformSpace B ⊢ Cauchy F ↔ NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] haveI := B.uniformAddGroup [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this : UniformAddGroup G ⊢ Cauchy F ↔ NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] suffices F ×ˢ F ≤ uniformity G ↔ ∀ U ∈ B, ∃ M ∈ F, ∀ (x) (_ : x ∈ M) (y) (_ : y ∈ M), y - x ∈ U by constructor <;> rintro ⟨h', h⟩ <;> refine' ⟨h', _⟩ <;> [rwa [← this]; rwa [this]] [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U ⊢ Cauchy F ↔ NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] constructor <;> rintro ⟨h', h⟩ <;> refine' ⟨h', _⟩ <;> [rwa [← this]; rwa [this]] [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U ⊢ Cauchy F ↔ NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] constructor [GOAL] case mp G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U ⊢ Cauchy F → NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] rintro ⟨h', h⟩ [GOAL] case mpr G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U ⊢ (NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U) → Cauchy F [PROOFSTEP] rintro ⟨h', h⟩ [GOAL] case mp.intro G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U h' : NeBot F h : F ×ˢ F ≤ uniformity G ⊢ NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] refine' ⟨h', _⟩ [GOAL] case mpr.intro G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U h' : NeBot F h : ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U ⊢ Cauchy F [PROOFSTEP] refine' ⟨h', _⟩ [GOAL] case mp.intro G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U h' : NeBot F h : F ×ˢ F ≤ uniformity G ⊢ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] rwa [← this] [GOAL] case mpr.intro G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U h' : NeBot F h : ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U ⊢ F ×ˢ F ≤ uniformity G [PROOFSTEP] rwa [this] [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this : UniformAddGroup G ⊢ F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] rw [uniformity_eq_comap_nhds_zero G, ← map_le_iff_le_comap] [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this : UniformAddGroup G ⊢ map (fun x => x.snd - x.fst) (F ×ˢ F) ≤ nhds 0 ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] change Tendsto _ _ _ ↔ _ [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this : UniformAddGroup G ⊢ Tendsto (fun x => x.snd - x.fst) (F ×ˢ F) (nhds 0) ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] simp [(basis_sets F).prod_self.tendsto_iff B.nhds_zero_hasBasis, @forall_swap (_ ∈ _) G]
{"mathlib_filename": "Mathlib.Topology.Algebra.UniformFilterBasis", "llama_tokens": 2868}
[GOAL] R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁵ : UniformSpace X inst✝⁴ : UniformSpace Y inst✝³ : SMul M X inst✝² : SMul Mᵐᵒᵖ X inst✝¹ : IsCentralScalar M X inst✝ : UniformContinuousConstSMul M X c : M ⊢ UniformContinuous ((fun x x_1 => x • x_1) (MulOpposite.op c)) [PROOFSTEP] dsimp only [GOAL] R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁵ : UniformSpace X inst✝⁴ : UniformSpace Y inst✝³ : SMul M X inst✝² : SMul Mᵐᵒᵖ X inst✝¹ : IsCentralScalar M X inst✝ : UniformContinuousConstSMul M X c : M ⊢ UniformContinuous fun x => MulOpposite.op c • x [PROOFSTEP] simp_rw [op_smul_eq_smul] [GOAL] R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁵ : UniformSpace X inst✝⁴ : UniformSpace Y inst✝³ : SMul M X inst✝² : SMul Mᵐᵒᵖ X inst✝¹ : IsCentralScalar M X inst✝ : UniformContinuousConstSMul M X c : M ⊢ UniformContinuous fun x => c • x [PROOFSTEP] exact uniformContinuous_const_smul c [GOAL] R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁷ : UniformSpace X inst✝⁶ : UniformSpace Y inst✝⁵ : SMul M X inst✝⁴ : SMul N X inst✝³ : SMul M N inst✝² : UniformContinuousConstSMul M X inst✝¹ : UniformContinuousConstSMul N X inst✝ : IsScalarTower M N X m : M n : N x : Completion X ⊢ (m • n) • x = m • n • x [PROOFSTEP] have : _ = (_ : Completion X → Completion X) := map_comp (uniformContinuous_const_smul m) (uniformContinuous_const_smul n) [GOAL] R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁷ : UniformSpace X inst✝⁶ : UniformSpace Y inst✝⁵ : SMul M X inst✝⁴ : SMul N X inst✝³ : SMul M N inst✝² : UniformContinuousConstSMul M X inst✝¹ : UniformContinuousConstSMul N X inst✝ : IsScalarTower M N X m : M n : N x : Completion X this : Completion.map ((fun x x_1 => x • x_1) m) ∘ Completion.map ((fun x x_1 => x • x_1) n) = Completion.map ((fun x x_1 => x • x_1) m ∘ (fun x x_1 => x • x_1) n) ⊢ (m • n) • x = m • n • x [PROOFSTEP] refine' Eq.trans _ (congr_fun this.symm x) [GOAL] R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁷ : UniformSpace X inst✝⁶ : UniformSpace Y inst✝⁵ : SMul M X inst✝⁴ : SMul N X inst✝³ : SMul M N inst✝² : UniformContinuousConstSMul M X inst✝¹ : UniformContinuousConstSMul N X inst✝ : IsScalarTower M N X m : M n : N x : Completion X this : Completion.map ((fun x x_1 => x • x_1) m) ∘ Completion.map ((fun x x_1 => x • x_1) n) = Completion.map ((fun x x_1 => x • x_1) m ∘ (fun x x_1 => x • x_1) n) ⊢ (m • n) • x = Completion.map ((fun x x_1 => x • x_1) m ∘ (fun x x_1 => x • x_1) n) x [PROOFSTEP] exact congr_arg (fun f => Completion.map f x) (funext (smul_assoc _ _)) [GOAL] R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X ⊢ m • n • x = n • m • x [PROOFSTEP] have hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x := rfl [GOAL] R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x ⊢ m • n • x = n • m • x [PROOFSTEP] have hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x := rfl [GOAL] R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ m • n • x = n • m • x [PROOFSTEP] rw [hmn, hnm, map_comp, map_comp] [GOAL] R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ Completion.map (SMul.smul m ∘ SMul.smul n) x = Completion.map (SMul.smul n ∘ SMul.smul m) x case hg R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ UniformContinuous (SMul.smul n) case hf R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ UniformContinuous (SMul.smul m) case hg R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ UniformContinuous (SMul.smul m) case hf R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ UniformContinuous (SMul.smul n) [PROOFSTEP] exact congr_arg (fun f => Completion.map f x) (funext (smul_comm _ _)) [GOAL] case hg R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ UniformContinuous (SMul.smul n) case hf R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ UniformContinuous (SMul.smul m) case hg R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ UniformContinuous (SMul.smul m) case hf R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ UniformContinuous (SMul.smul n) [PROOFSTEP] repeat' exact uniformContinuous_const_smul _ [GOAL] case hg R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ UniformContinuous (SMul.smul n) [PROOFSTEP] exact uniformContinuous_const_smul _ [GOAL] case hf R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ UniformContinuous (SMul.smul m) [PROOFSTEP] exact uniformContinuous_const_smul _ [GOAL] case hg R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ UniformContinuous (SMul.smul m) [PROOFSTEP] exact uniformContinuous_const_smul _ [GOAL] case hf R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁶ : UniformSpace X inst✝⁵ : UniformSpace Y inst✝⁴ : SMul M X inst✝³ : SMul N X inst✝² : SMulCommClass M N X inst✝¹ : UniformContinuousConstSMul M X inst✝ : UniformContinuousConstSMul N X m : M n : N x : Completion X hmn : m • n • x = (Completion.map (SMul.smul m) ∘ Completion.map (SMul.smul n)) x hnm : n • m • x = (Completion.map (SMul.smul n) ∘ Completion.map (SMul.smul m)) x ⊢ UniformContinuous (SMul.smul n) [PROOFSTEP] exact uniformContinuous_const_smul _ [GOAL] R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁴ : UniformSpace X inst✝³ : UniformSpace Y inst✝² : Monoid M inst✝¹ : MulAction M X inst✝ : UniformContinuousConstSMul M X a : X ⊢ 1 • ↑X a = ↑X a [PROOFSTEP] rw [← coe_smul, one_smul] [GOAL] R : Type u M : Type v N : Type w X : Type x Y : Type y inst✝⁴ : UniformSpace X inst✝³ : UniformSpace Y inst✝² : Monoid M inst✝¹ : MulAction M X inst✝ : UniformContinuousConstSMul M X x y : M a : X ⊢ (x * y) • ↑X a = x • y • ↑X a [PROOFSTEP] simp only [← coe_smul, mul_smul]
{"mathlib_filename": "Mathlib.Topology.Algebra.UniformMulAction", "llama_tokens": 5303}
[GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ 1 = 2 * 0 + 1 + 2 * 0 [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ 2 * 0 + 1 + 2 * 0 ≤ 2 * diam univ + 1 + 2 * diam univ [PROOFSTEP] gcongr [GOAL] case h₁.bc.h X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ 0 ≤ diam univ [PROOFSTEP] positivity [GOAL] case h₂.h X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ 0 ≤ diam univ [PROOFSTEP] positivity [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ diam univ = diam (range inl ∪ range inr) [PROOFSTEP] rw [range_inl_union_range_inr] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ diam (range inl) + dist (inl default) (inr default) + diam (range inr) = diam univ + (dist default default + 1 + dist default default) + diam univ [PROOFSTEP] rw [isometry_inl.diam_range, isometry_inr.diam_range] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ diam univ + dist (inl default) (inr default) + diam univ = diam univ + (dist default default + 1 + dist default default) + diam univ X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Type ?u.18344 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Dist ?m.19041 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Inhabited ?m.19041 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Inhabited ?m.19041 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Type ?u.19756 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Dist ?m.20453 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Inhabited ?m.20453 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Inhabited ?m.20453 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Type ?u.18344 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Dist ?m.19041 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Inhabited ?m.19041 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Inhabited ?m.19041 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Type ?u.19756 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Dist ?m.20453 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Inhabited ?m.20453 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Inhabited ?m.20453 [PROOFSTEP] rfl [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ diam univ + (dist default default + 1 + dist default default) + diam univ = 1 * diam univ + 1 + 1 * diam univ [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ 1 * diam univ + 1 + 1 * diam univ ≤ 2 * diam univ + 1 + 2 * diam univ [PROOFSTEP] gcongr [GOAL] case h₁.bc.h X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ 1 ≤ 2 [PROOFSTEP] norm_num [GOAL] case h₂.h X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ 1 ≤ 2 [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ 0 ≤ f (x, y) [PROOFSTEP] have : 0 ≤ 2 * f (x, y) := calc 0 = f (x, x) := (candidates_refl fA).symm _ ≤ f (x, y) + f (y, x) := (candidates_triangle fA) _ = f (x, y) + f (x, y) := by rw [candidates_symm fA] _ = 2 * f (x, y) := by ring [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ f (x, y) + f (y, x) = f (x, y) + f (x, y) [PROOFSTEP] rw [candidates_symm fA] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ f (x, y) + f (x, y) = 2 * f (x, y) [PROOFSTEP] ring [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y this : 0 ≤ 2 * f (x, y) ⊢ 0 ≤ f (x, y) [PROOFSTEP] linarith [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x y : X ⊢ dist x y = dist (inl x) (inl y) [PROOFSTEP] rw [@Sum.dist_eq X Y] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x y : X ⊢ dist x y = Sum.dist (inl x) (inl y) [PROOFSTEP] rfl [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x y : X ⊢ dist (inl x) (inl y) = 1 * dist (inl x) (inl y) [PROOFSTEP] ring [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x y : X ⊢ 1 * dist (inl x) (inl y) ≤ ↑(GromovHausdorff.maxVar X Y) * dist (inl x) (inl y) [PROOFSTEP] gcongr [GOAL] case h X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x y : X ⊢ 1 ≤ ↑(GromovHausdorff.maxVar X Y) [PROOFSTEP] exact one_le_maxVar X Y [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x : X y : Y ⊢ ↑(GromovHausdorff.maxVar X Y) = ↑(GromovHausdorff.maxVar X Y) * 1 [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x : X y : Y ⊢ ↑(GromovHausdorff.maxVar X Y) * 1 ≤ ↑(GromovHausdorff.maxVar X Y) * dist (inl x) (inr y) [PROOFSTEP] gcongr [GOAL] case h X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x : X y : Y ⊢ 1 ≤ dist (inl x) (inr y) [PROOFSTEP] apply Sum.one_le_dist_inl_inr [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x : Y y : X ⊢ ↑(GromovHausdorff.maxVar X Y) = ↑(GromovHausdorff.maxVar X Y) * 1 [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x : Y y : X ⊢ ↑(GromovHausdorff.maxVar X Y) * 1 ≤ ↑(GromovHausdorff.maxVar X Y) * dist (inl x) (inr y) [PROOFSTEP] gcongr [GOAL] case h X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x : Y y : X ⊢ 1 ≤ dist (inl x) (inr y) [PROOFSTEP] apply Sum.one_le_dist_inl_inr [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x y : Y ⊢ dist x y = dist (inr x) (inr y) [PROOFSTEP] rw [@Sum.dist_eq X Y] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x y : Y ⊢ dist x y = Sum.dist (inr x) (inr y) [PROOFSTEP] rfl [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x y : Y ⊢ dist (inr x) (inr y) = 1 * dist (inr x) (inr y) [PROOFSTEP] ring [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x y : Y ⊢ 1 * dist (inr x) (inr y) ≤ ↑(GromovHausdorff.maxVar X Y) * dist (inr x) (inr y) [PROOFSTEP] gcongr [GOAL] case h X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y fA : f ∈ candidates X Y x y : Y ⊢ 1 ≤ ↑(GromovHausdorff.maxVar X Y) [PROOFSTEP] exact one_le_maxVar X Y [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ f (x, y) - f (z, t) ≤ f (x, t) + f (t, y) - f (z, t) [PROOFSTEP] gcongr [GOAL] case h X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ f (x, y) ≤ f (x, t) + f (t, y) [PROOFSTEP] exact candidates_triangle fA [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ f (x, t) + f (t, y) - f (z, t) ≤ f (x, z) + f (z, t) + f (t, y) - f (z, t) [PROOFSTEP] gcongr [GOAL] case h.bc X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ f (x, t) ≤ f (x, z) + f (z, t) [PROOFSTEP] exact candidates_triangle fA [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ f (x, z) + f (z, t) + f (t, y) - f (z, t) = f (x, z) + f (t, y) [PROOFSTEP] simp [sub_eq_add_neg, add_assoc] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ f (x, z) + f (t, y) ≤ ↑(GromovHausdorff.maxVar X Y) * dist x z + ↑(GromovHausdorff.maxVar X Y) * dist t y [PROOFSTEP] gcongr [GOAL] case h₁ X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ f (x, z) ≤ ↑(GromovHausdorff.maxVar X Y) * dist x z [PROOFSTEP] apply candidates_dist_bound fA [GOAL] case h₂ X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ f (t, y) ≤ ↑(GromovHausdorff.maxVar X Y) * dist t y [PROOFSTEP] apply candidates_dist_bound fA [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ ↑(GromovHausdorff.maxVar X Y) * dist x z + ↑(GromovHausdorff.maxVar X Y) * dist t y ≤ ↑(GromovHausdorff.maxVar X Y) * max (dist x z) (dist t y) + ↑(GromovHausdorff.maxVar X Y) * max (dist x z) (dist t y) [PROOFSTEP] gcongr [GOAL] case h₁.h X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ dist x z ≤ max (dist x z) (dist t y) [PROOFSTEP] apply le_max_left [GOAL] case h₂.h X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ dist t y ≤ max (dist x z) (dist t y) [PROOFSTEP] apply le_max_right [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ ↑(GromovHausdorff.maxVar X Y) * max (dist x z) (dist t y) + ↑(GromovHausdorff.maxVar X Y) * max (dist x z) (dist t y) = 2 * ↑(GromovHausdorff.maxVar X Y) * max (dist x z) (dist y t) [PROOFSTEP] rw [dist_comm t y] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ ↑(GromovHausdorff.maxVar X Y) * max (dist x z) (dist y t) + ↑(GromovHausdorff.maxVar X Y) * max (dist x z) (dist y t) = 2 * ↑(GromovHausdorff.maxVar X Y) * max (dist x z) (dist y t) [PROOFSTEP] ring [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ 2 * ↑(GromovHausdorff.maxVar X Y) * max (dist x z) (dist y t) = 2 * ↑(GromovHausdorff.maxVar X Y) * dist (x, y) (z, t) [PROOFSTEP] rfl [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ LipschitzWith (2 * GromovHausdorff.maxVar X Y) f [PROOFSTEP] apply LipschitzWith.of_dist_le_mul [GOAL] case a X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y fA : f ∈ candidates X Y ⊢ ∀ (x y : (X ⊕ Y) × (X ⊕ Y)), dist (f x) (f y) ≤ ↑(2 * GromovHausdorff.maxVar X Y) * dist x y [PROOFSTEP] rintro ⟨x, y⟩ ⟨z, t⟩ [GOAL] case a.mk.mk X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z✝ t✝ : X ⊕ Y fA : f ∈ candidates X Y x y z t : X ⊕ Y ⊢ dist (f (x, y)) (f (z, t)) ≤ ↑(2 * GromovHausdorff.maxVar X Y) * dist (x, y) (z, t) [PROOFSTEP] rw [Real.dist_eq, abs_sub_le_iff] [GOAL] case a.mk.mk X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z✝ t✝ : X ⊕ Y fA : f ∈ candidates X Y x y z t : X ⊕ Y ⊢ f (x, y) - f (z, t) ≤ ↑(2 * GromovHausdorff.maxVar X Y) * dist (x, y) (z, t) ∧ f (z, t) - f (x, y) ≤ ↑(2 * GromovHausdorff.maxVar X Y) * dist (x, y) (z, t) [PROOFSTEP] use candidates_lipschitz_aux fA [GOAL] case right X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z✝ t✝ : X ⊕ Y fA : f ∈ candidates X Y x y z t : X ⊕ Y ⊢ f (z, t) - f (x, y) ≤ ↑(2 * GromovHausdorff.maxVar X Y) * dist (x, y) (z, t) [PROOFSTEP] rw [dist_comm] [GOAL] case right X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z✝ t✝ : X ⊕ Y fA : f ∈ candidates X Y x y z t : X ⊕ Y ⊢ f (z, t) - f (x, y) ≤ ↑(2 * GromovHausdorff.maxVar X Y) * dist (z, t) (x, y) [PROOFSTEP] exact candidates_lipschitz_aux fA [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ (fun p => dist p.fst p.snd) ∈ candidates X Y [PROOFSTEP] simp_rw [candidates, Set.mem_setOf_eq, dist_comm, dist_triangle, dist_self, maxVar_bound, forall_const, and_true] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ (∀ (x y : X), dist (inl x) (inl y) = dist x y) ∧ ∀ (x y : Y), dist (inr x) (inr y) = dist x y [PROOFSTEP] exact ⟨fun x y => rfl, fun x y => rfl⟩ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ IsClosed (GromovHausdorff.candidatesB X Y) [PROOFSTEP] have I1 : ∀ x y, IsClosed {f : Cb X Y | f (inl x, inl y) = dist x y} := fun x y => isClosed_eq continuous_eval_const continuous_const [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} ⊢ IsClosed (GromovHausdorff.candidatesB X Y) [PROOFSTEP] have I2 : ∀ x y, IsClosed {f : Cb X Y | f (inr x, inr y) = dist x y} := fun x y => isClosed_eq continuous_eval_const continuous_const [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} ⊢ IsClosed (GromovHausdorff.candidatesB X Y) [PROOFSTEP] have I3 : ∀ x y, IsClosed {f : Cb X Y | f (x, y) = f (y, x)} := fun x y => isClosed_eq continuous_eval_const continuous_eval_const [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} ⊢ IsClosed (GromovHausdorff.candidatesB X Y) [PROOFSTEP] have I4 : ∀ x y z, IsClosed {f : Cb X Y | f (x, z) ≤ f (x, y) + f (y, z)} := fun x y z => isClosed_le continuous_eval_const (continuous_eval_const.add continuous_eval_const) [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} ⊢ IsClosed (GromovHausdorff.candidatesB X Y) [PROOFSTEP] have I5 : ∀ x, IsClosed {f : Cb X Y | f (x, x) = 0} := fun x => isClosed_eq continuous_eval_const continuous_const [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} ⊢ IsClosed (GromovHausdorff.candidatesB X Y) [PROOFSTEP] have I6 : ∀ x y, IsClosed {f : Cb X Y | f (x, y) ≤ maxVar X Y} := fun x y => isClosed_le continuous_eval_const continuous_const [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (GromovHausdorff.candidatesB X Y) [PROOFSTEP] have : candidatesB X Y = (((((⋂ (x) (y), {f : Cb X Y | f (@inl X Y x, @inl X Y y) = dist x y}) ∩ ⋂ (x) (y), {f : Cb X Y | f (@inr X Y x, @inr X Y y) = dist x y}) ∩ ⋂ (x) (y), {f : Cb X Y | f (x, y) = f (y, x)}) ∩ ⋂ (x) (y) (z), {f : Cb X Y | f (x, z) ≤ f (x, y) + f (y, z)}) ∩ ⋂ x, {f : Cb X Y | f (x, x) = 0}) ∩ ⋂ (x) (y), {f : Cb X Y | f (x, y) ≤ maxVar X Y} := by ext simp only [candidatesB, candidates, mem_inter_iff, mem_iInter, mem_setOf_eq] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] ext [GOAL] case h X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ : GromovHausdorff.Cb X Y ⊢ x✝ ∈ GromovHausdorff.candidatesB X Y ↔ x✝ ∈ (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] simp only [candidatesB, candidates, mem_inter_iff, mem_iInter, mem_setOf_eq] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (GromovHausdorff.candidatesB X Y) [PROOFSTEP] rw [this] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed ((((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] repeat' first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed ((((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed ((((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed ((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed ((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed ((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed ((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X), IsClosed (⋂ (y : X), {f | ↑f (inl i, inl y) = dist i y}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X), IsClosed (⋂ (y : X), {f | ↑f (inl i, inl y) = dist i y}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X), IsClosed (⋂ (y : X), {f | ↑f (inl i, inl y) = dist i y}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X), IsClosed (⋂ (y : X), {f | ↑f (inl i, inl y) = dist i y}) [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X), IsClosed (⋂ (y : X), {f | ↑f (inl i, inl y) = dist i y}) [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X), IsClosed (⋂ (y : X), {f | ↑f (inl i, inl y) = dist i y}) [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X), IsClosed (⋂ (y : X), {f | ↑f (inl i, inl y) = dist i y}) [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X), IsClosed (⋂ (y : X), {f | ↑f (inl i, inl y) = dist i y}) [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X), IsClosed (⋂ (y : X), {f | ↑f (inl i, inl y) = dist i y}) [PROOFSTEP] apply I6 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X), IsClosed (⋂ (y : X), {f | ↑f (inl i, inl y) = dist i y}) [PROOFSTEP] intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊢ IsClosed (⋂ (y : X), {f | ↑f (inl x, inl y) = dist x y}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊢ IsClosed (⋂ (y : X), {f | ↑f (inl x, inl y) = dist x y}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊢ IsClosed (⋂ (y : X), {f | ↑f (inl x, inl y) = dist x y}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊢ ∀ (i : X), IsClosed {f | ↑f (inl x, inl i) = dist x i} [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊢ ∀ (i : X), IsClosed {f | ↑f (inl x, inl i) = dist x i} [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊢ ∀ (i : X), IsClosed {f | ↑f (inl x, inl i) = dist x i} [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊢ ∀ (i : X), IsClosed {f | ↑f (inl x, inl i) = dist x i} [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊢ ∀ (i : X), IsClosed {f | ↑f (inl x, inl i) = dist x i} [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊢ ∀ (i : X), IsClosed {f | ↑f (inl x, inl i) = dist x i} [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊢ ∀ (i : X), IsClosed {f | ↑f (inl x, inl i) = dist x i} [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊢ ∀ (i : X), IsClosed {f | ↑f (inl x, inl i) = dist x i} [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊢ ∀ (i : X), IsClosed {f | ↑f (inl x, inl i) = dist x i} [PROOFSTEP] apply I6 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊢ ∀ (i : X), IsClosed {f | ↑f (inl x, inl i) = dist x i} [PROOFSTEP] intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊢ IsClosed {f | ↑f (inl x✝, inl x) = dist x✝ x} [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊢ IsClosed {f | ↑f (inl x✝, inl x) = dist x✝ x} [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊢ IsClosed {f | ↑f (inl x✝, inl x) = dist x✝ x} [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊢ IsClosed {f | ↑f (inl x✝, inl x) = dist x✝ x} [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : Y), IsClosed (⋂ (y : Y), {f | ↑f (inr i, inr y) = dist i y}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : Y), IsClosed (⋂ (y : Y), {f | ↑f (inr i, inr y) = dist i y}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : Y), IsClosed (⋂ (y : Y), {f | ↑f (inr i, inr y) = dist i y}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : Y), IsClosed (⋂ (y : Y), {f | ↑f (inr i, inr y) = dist i y}) [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : Y), IsClosed (⋂ (y : Y), {f | ↑f (inr i, inr y) = dist i y}) [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : Y), IsClosed (⋂ (y : Y), {f | ↑f (inr i, inr y) = dist i y}) [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : Y), IsClosed (⋂ (y : Y), {f | ↑f (inr i, inr y) = dist i y}) [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : Y), IsClosed (⋂ (y : Y), {f | ↑f (inr i, inr y) = dist i y}) [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : Y), IsClosed (⋂ (y : Y), {f | ↑f (inr i, inr y) = dist i y}) [PROOFSTEP] apply I6 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : Y), IsClosed (⋂ (y : Y), {f | ↑f (inr i, inr y) = dist i y}) [PROOFSTEP] intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : Y ⊢ IsClosed (⋂ (y : Y), {f | ↑f (inr x, inr y) = dist x y}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : Y ⊢ IsClosed (⋂ (y : Y), {f | ↑f (inr x, inr y) = dist x y}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : Y ⊢ IsClosed (⋂ (y : Y), {f | ↑f (inr x, inr y) = dist x y}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : Y ⊢ ∀ (i : Y), IsClosed {f | ↑f (inr x, inr i) = dist x i} [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : Y ⊢ ∀ (i : Y), IsClosed {f | ↑f (inr x, inr i) = dist x i} [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : Y ⊢ ∀ (i : Y), IsClosed {f | ↑f (inr x, inr i) = dist x i} [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : Y ⊢ ∀ (i : Y), IsClosed {f | ↑f (inr x, inr i) = dist x i} [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : Y ⊢ ∀ (i : Y), IsClosed {f | ↑f (inr x, inr i) = dist x i} [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : Y ⊢ ∀ (i : Y), IsClosed {f | ↑f (inr x, inr i) = dist x i} [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : Y ⊢ ∀ (i : Y), IsClosed {f | ↑f (inr x, inr i) = dist x i} [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : Y ⊢ ∀ (i : Y), IsClosed {f | ↑f (inr x, inr i) = dist x i} [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : Y ⊢ ∀ (i : Y), IsClosed {f | ↑f (inr x, inr i) = dist x i} [PROOFSTEP] apply I6 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : Y ⊢ ∀ (i : Y), IsClosed {f | ↑f (inr x, inr i) = dist x i} [PROOFSTEP] intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : Y ⊢ IsClosed {f | ↑f (inr x✝, inr x) = dist x✝ x} [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : Y ⊢ IsClosed {f | ↑f (inr x✝, inr x) = dist x✝ x} [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : Y ⊢ IsClosed {f | ↑f (inr x✝, inr x) = dist x✝ x} [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : Y ⊢ IsClosed {f | ↑f (inr x✝, inr x) = dist x✝ x} [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : Y ⊢ IsClosed {f | ↑f (inr x✝, inr x) = dist x✝ x} [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) = ↑f (y, i)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) = ↑f (y, i)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) = ↑f (y, i)}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) = ↑f (y, i)}) [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) = ↑f (y, i)}) [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) = ↑f (y, i)}) [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) = ↑f (y, i)}) [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) = ↑f (y, i)}) [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) = ↑f (y, i)}) [PROOFSTEP] apply I6 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) = ↑f (y, i)}) [PROOFSTEP] intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) = ↑f (i, x)} [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) = ↑f (i, x)} [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) = ↑f (i, x)} [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) = ↑f (i, x)} [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) = ↑f (i, x)} [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) = ↑f (i, x)} [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) = ↑f (i, x)} [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) = ↑f (i, x)} [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) = ↑f (i, x)} [PROOFSTEP] apply I6 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) = ↑f (i, x)} [PROOFSTEP] intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) = ↑f (x, x✝)} [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) = ↑f (x, x✝)} [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) = ↑f (x, x✝)} [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) = ↑f (x, x✝)} [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) = ↑f (x, x✝)} [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) = ↑f (x, x✝)} [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (i, z) ≤ ↑f (i, y) + ↑f (y, z)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (i, z) ≤ ↑f (i, y) + ↑f (y, z)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (i, z) ≤ ↑f (i, y) + ↑f (y, z)}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (i, z) ≤ ↑f (i, y) + ↑f (y, z)}) [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (i, z) ≤ ↑f (i, y) + ↑f (y, z)}) [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (i, z) ≤ ↑f (i, y) + ↑f (y, z)}) [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (i, z) ≤ ↑f (i, y) + ↑f (y, z)}) [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (i, z) ≤ ↑f (i, y) + ↑f (y, z)}) [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (i, z) ≤ ↑f (i, y) + ↑f (y, z)}) [PROOFSTEP] apply I6 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (i, z) ≤ ↑f (i, y) + ↑f (y, z)}) [PROOFSTEP] intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed (⋂ (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed (⋂ (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed (⋂ (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, i) + ↑f (i, z)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, i) + ↑f (i, z)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, i) + ↑f (i, z)}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, i) + ↑f (i, z)}) [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, i) + ↑f (i, z)}) [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, i) + ↑f (i, z)}) [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, i) + ↑f (i, z)}) [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, i) + ↑f (i, z)}) [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, i) + ↑f (i, z)}) [PROOFSTEP] apply I6 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, i) + ↑f (i, z)}) [PROOFSTEP] intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed (⋂ (z : X ⊕ Y), {f | ↑f (x✝, z) ≤ ↑f (x✝, x) + ↑f (x, z)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed (⋂ (z : X ⊕ Y), {f | ↑f (x✝, z) ≤ ↑f (x✝, x) + ↑f (x, z)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed (⋂ (z : X ⊕ Y), {f | ↑f (x✝, z) ≤ ↑f (x✝, x) + ↑f (x, z)}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x✝, i) ≤ ↑f (x✝, x) + ↑f (x, i)} [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x✝, i) ≤ ↑f (x✝, x) + ↑f (x, i)} [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x✝, i) ≤ ↑f (x✝, x) + ↑f (x, i)} [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x✝, i) ≤ ↑f (x✝, x) + ↑f (x, i)} [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x✝, i) ≤ ↑f (x✝, x) + ↑f (x, i)} [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x✝, i) ≤ ↑f (x✝, x) + ↑f (x, i)} [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x✝, i) ≤ ↑f (x✝, x) + ↑f (x, i)} [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x✝, i) ≤ ↑f (x✝, x) + ↑f (x, i)} [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x✝, i) ≤ ↑f (x✝, x) + ↑f (x, i)} [PROOFSTEP] apply I6 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x✝, i) ≤ ↑f (x✝, x) + ↑f (x, i)} [PROOFSTEP] intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝² y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝¹ x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝¹, x) ≤ ↑f (x✝¹, x✝) + ↑f (x✝, x)} [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝² y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝¹ x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝¹, x) ≤ ↑f (x✝¹, x✝) + ↑f (x✝, x)} [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝² y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝¹ x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝¹, x) ≤ ↑f (x✝¹, x✝) + ↑f (x✝, x)} [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝² y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝¹ x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝¹, x) ≤ ↑f (x✝¹, x✝) + ↑f (x✝, x)} [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝² y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝¹ x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝¹, x) ≤ ↑f (x✝¹, x✝) + ↑f (x✝, x)} [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝² y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝¹ x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝¹, x) ≤ ↑f (x✝¹, x✝) + ↑f (x✝, x)} [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝² y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝¹ x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝¹, x) ≤ ↑f (x✝¹, x✝) + ↑f (x✝, x)} [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (i, i) = 0} [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (i, i) = 0} [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (i, i) = 0} [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (i, i) = 0} [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (i, i) = 0} [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (i, i) = 0} [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (i, i) = 0} [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (i, i) = 0} [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (i, i) = 0} [PROOFSTEP] apply I6 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (i, i) = 0} [PROOFSTEP] intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed {f | ↑f (x, x) = 0} [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed {f | ↑f (x, x) = 0} [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed {f | ↑f (x, x) = 0} [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed {f | ↑f (x, x) = 0} [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed {f | ↑f (x, x) = 0} [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed {f | ↑f (x, x) = 0} [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed {f | ↑f (x, x) = 0} [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed {f | ↑f (x, x) = 0} [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ IsClosed (⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] apply I6 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} ⊢ ∀ (i : X ⊕ Y), IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (i, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ IsClosed (⋂ (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)}) [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply I6 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x : X ⊕ Y ⊢ ∀ (i : X ⊕ Y), IsClosed {f | ↑f (x, i) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] first | apply IsClosed.inter _ _ | apply isClosed_iInter _ | apply I1 _ _ | apply I2 _ _ | apply I3 _ _ | apply I4 _ _ _ | apply I5 _ | apply I6 _ _ | intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply IsClosed.inter _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply isClosed_iInter _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply I1 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply I2 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply I3 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply I4 _ _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply I5 _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝¹ y z t : X ⊕ Y I1 : ∀ (x y : X), IsClosed {f | ↑f (inl x, inl y) = dist x y} I2 : ∀ (x y : Y), IsClosed {f | ↑f (inr x, inr y) = dist x y} I3 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) = ↑f (y, x)} I4 : ∀ (x y z : X ⊕ Y), IsClosed {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)} I5 : ∀ (x : X ⊕ Y), IsClosed {f | ↑f (x, x) = 0} I6 : ∀ (x y : X ⊕ Y), IsClosed {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} this : GromovHausdorff.candidatesB X Y = (((((⋂ (x : X) (y : X), {f | ↑f (inl x, inl y) = dist x y}) ∩ ⋂ (x : Y) (y : Y), {f | ↑f (inr x, inr y) = dist x y}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) = ↑f (y, x)}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y) (z : X ⊕ Y), {f | ↑f (x, z) ≤ ↑f (x, y) + ↑f (y, z)}) ∩ ⋂ (x : X ⊕ Y), {f | ↑f (x, x) = 0}) ∩ ⋂ (x : X ⊕ Y) (y : X ⊕ Y), {f | ↑f (x, y) ≤ ↑(GromovHausdorff.maxVar X Y)} x✝ x : X ⊕ Y ⊢ IsClosed {f | ↑f (x✝, x) ≤ ↑(GromovHausdorff.maxVar X Y)} [PROOFSTEP] apply I6 _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ IsCompact (GromovHausdorff.candidatesB X Y) [PROOFSTEP] refine' arzela_ascoli₂ (Icc 0 (maxVar X Y) : Set ℝ) isCompact_Icc (candidatesB X Y) closed_candidatesB _ _ [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ ∀ (f : (X ⊕ Y) × (X ⊕ Y) →ᵇ ℝ) (x : (X ⊕ Y) × (X ⊕ Y)), f ∈ GromovHausdorff.candidatesB X Y → ↑f x ∈ Icc 0 ↑(GromovHausdorff.maxVar X Y) [PROOFSTEP] rintro f ⟨x1, x2⟩ hf [GOAL] case refine'_1.mk X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f : (X ⊕ Y) × (X ⊕ Y) →ᵇ ℝ x1 x2 : X ⊕ Y hf : f ∈ GromovHausdorff.candidatesB X Y ⊢ ↑f (x1, x2) ∈ Icc 0 ↑(GromovHausdorff.maxVar X Y) [PROOFSTEP] simp only [Set.mem_Icc] [GOAL] case refine'_1.mk X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f : (X ⊕ Y) × (X ⊕ Y) →ᵇ ℝ x1 x2 : X ⊕ Y hf : f ∈ GromovHausdorff.candidatesB X Y ⊢ 0 ≤ ↑f (x1, x2) ∧ ↑f (x1, x2) ≤ ↑(GromovHausdorff.maxVar X Y) [PROOFSTEP] exact ⟨candidates_nonneg hf, candidates_le_maxVar hf⟩ [GOAL] case refine'_2 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Equicontinuous fun x => ↑↑x [PROOFSTEP] refine' equicontinuous_of_continuity_modulus (fun t => 2 * maxVar X Y * t) _ _ _ [GOAL] case refine'_2.refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ Tendsto (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (𝓝 0) (𝓝 0) [PROOFSTEP] have : Tendsto (fun t : ℝ => 2 * (maxVar X Y : ℝ) * t) (𝓝 0) (𝓝 (2 * maxVar X Y * 0)) := tendsto_const_nhds.mul tendsto_id [GOAL] case refine'_2.refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y this : Tendsto (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (𝓝 0) (𝓝 (2 * ↑(GromovHausdorff.maxVar X Y) * 0)) ⊢ Tendsto (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (𝓝 0) (𝓝 0) [PROOFSTEP] simpa using this [GOAL] case refine'_2.refine'_2 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ ∀ (x y : (X ⊕ Y) × (X ⊕ Y)) (i : ↑(GromovHausdorff.candidatesB X Y)), dist (↑↑i x) (↑↑i y) ≤ (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (dist x y) [PROOFSTEP] rintro x y ⟨f, hf⟩ [GOAL] case refine'_2.refine'_2.mk X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y x y : (X ⊕ Y) × (X ⊕ Y) f : (X ⊕ Y) × (X ⊕ Y) →ᵇ ℝ hf : f ∈ GromovHausdorff.candidatesB X Y ⊢ dist (↑↑{ val := f, property := hf } x) (↑↑{ val := f, property := hf } y) ≤ (fun t => 2 * ↑(GromovHausdorff.maxVar X Y) * t) (dist x y) [PROOFSTEP] exact (candidates_lipschitz hf).dist_le_mul _ _ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f : GromovHausdorff.Cb X Y C : ℝ ⊢ BddAbove (range fun x => ⨅ (y : Y), ↑f (inl x, inr y) + C) [PROOFSTEP] rcases(Real.bounded_iff_bddBelow_bddAbove.1 f.bounded_range).2 with ⟨Cf, hCf⟩ [GOAL] case intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f : GromovHausdorff.Cb X Y C Cf : ℝ hCf : Cf ∈ upperBounds (range ↑f) ⊢ BddAbove (range fun x => ⨅ (y : Y), ↑f (inl x, inr y) + C) [PROOFSTEP] refine' ⟨Cf + C, forall_range_iff.2 fun x => _⟩ [GOAL] case intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y f : GromovHausdorff.Cb X Y C Cf : ℝ hCf : Cf ∈ upperBounds (range ↑f) x : X ⊢ ⨅ (y : Y), ↑f (inl x, inr y) + C ≤ Cf + C [PROOFSTEP] calc ⨅ y, f (inl x, inr y) + C ≤ f (inl x, inr default) + C := ciInf_le (HD_below_aux1 C) default _ ≤ Cf + C := add_le_add ((fun x => hCf (mem_range_self x)) _) le_rfl [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f : GromovHausdorff.Cb X Y C : ℝ ⊢ BddAbove (range fun y => ⨅ (x : X), ↑f (inl x, inr y) + C) [PROOFSTEP] rcases(Real.bounded_iff_bddBelow_bddAbove.1 f.bounded_range).2 with ⟨Cf, hCf⟩ [GOAL] case intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f : GromovHausdorff.Cb X Y C Cf : ℝ hCf : Cf ∈ upperBounds (range ↑f) ⊢ BddAbove (range fun y => ⨅ (x : X), ↑f (inl x, inr y) + C) [PROOFSTEP] refine' ⟨Cf + C, forall_range_iff.2 fun y => _⟩ [GOAL] case intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y✝ z t : X ⊕ Y f : GromovHausdorff.Cb X Y C Cf : ℝ hCf : Cf ∈ upperBounds (range ↑f) y : Y ⊢ ⨅ (x : X), ↑f (inl x, inr y) + C ≤ Cf + C [PROOFSTEP] calc ⨅ x, f (inl x, inr y) + C ≤ f (inl default, inr y) + C := ciInf_le (HD_below_aux2 C) default _ ≤ Cf + C := add_le_add ((fun x => hCf (mem_range_self x)) _) le_rfl [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y ⊢ HD (candidatesBDist X Y) ≤ diam univ + 1 + diam univ [PROOFSTEP] refine' max_le (ciSup_le fun x => _) (ciSup_le fun y => _) [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y x : X ⊢ ⨅ (y : Y), ↑(candidatesBDist X Y) (inl x, inr y) ≤ diam univ + 1 + diam univ [PROOFSTEP] have A : ⨅ y, candidatesBDist X Y (inl x, inr y) ≤ candidatesBDist X Y (inl x, inr default) := ciInf_le (by simpa using HD_below_aux1 0) default [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y x : X ⊢ BddBelow (range fun y => ↑(candidatesBDist X Y) (inl x, inr y)) [PROOFSTEP] simpa using HD_below_aux1 0 [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y x : X A : ⨅ (y : Y), ↑(candidatesBDist X Y) (inl x, inr y) ≤ ↑(candidatesBDist X Y) (inl x, inr default) ⊢ ⨅ (y : Y), ↑(candidatesBDist X Y) (inl x, inr y) ≤ diam univ + 1 + diam univ [PROOFSTEP] have B : dist (inl x) (inr default) ≤ diam (univ : Set X) + 1 + diam (univ : Set Y) := calc dist (inl x) (inr (default : Y)) = dist x (default : X) + 1 + dist default default := rfl _ ≤ diam (univ : Set X) + 1 + diam (univ : Set Y) := by gcongr <;> exact dist_le_diam_of_mem bounded_of_compactSpace (mem_univ _) (mem_univ _) [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y x : X A : ⨅ (y : Y), ↑(candidatesBDist X Y) (inl x, inr y) ≤ ↑(candidatesBDist X Y) (inl x, inr default) ⊢ dist x default + 1 + dist default default ≤ diam univ + 1 + diam univ [PROOFSTEP] gcongr [GOAL] case h₁.bc X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y x : X A : ⨅ (y : Y), ↑(candidatesBDist X Y) (inl x, inr y) ≤ ↑(candidatesBDist X Y) (inl x, inr default) ⊢ dist x default ≤ diam univ [PROOFSTEP] exact dist_le_diam_of_mem bounded_of_compactSpace (mem_univ _) (mem_univ _) [GOAL] case h₂ X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y x : X A : ⨅ (y : Y), ↑(candidatesBDist X Y) (inl x, inr y) ≤ ↑(candidatesBDist X Y) (inl x, inr default) ⊢ dist default default ≤ diam univ [PROOFSTEP] exact dist_le_diam_of_mem bounded_of_compactSpace (mem_univ _) (mem_univ _) [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y x : X A : ⨅ (y : Y), ↑(candidatesBDist X Y) (inl x, inr y) ≤ ↑(candidatesBDist X Y) (inl x, inr default) B : dist (inl x) (inr default) ≤ diam univ + 1 + diam univ ⊢ ⨅ (y : Y), ↑(candidatesBDist X Y) (inl x, inr y) ≤ diam univ + 1 + diam univ [PROOFSTEP] exact le_trans A B [GOAL] case refine'_2 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y✝ z t : X ⊕ Y y : Y ⊢ ⨅ (x : X), ↑(candidatesBDist X Y) (inl x, inr y) ≤ diam univ + 1 + diam univ [PROOFSTEP] have A : ⨅ x, candidatesBDist X Y (inl x, inr y) ≤ candidatesBDist X Y (inl default, inr y) := ciInf_le (by simpa using HD_below_aux2 0) default [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y✝ z t : X ⊕ Y y : Y ⊢ BddBelow (range fun x => ↑(candidatesBDist X Y) (inl x, inr y)) [PROOFSTEP] simpa using HD_below_aux2 0 [GOAL] case refine'_2 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y✝ z t : X ⊕ Y y : Y A : ⨅ (x : X), ↑(candidatesBDist X Y) (inl x, inr y) ≤ ↑(candidatesBDist X Y) (inl default, inr y) ⊢ ⨅ (x : X), ↑(candidatesBDist X Y) (inl x, inr y) ≤ diam univ + 1 + diam univ [PROOFSTEP] have B : dist (inl default) (inr y) ≤ diam (univ : Set X) + 1 + diam (univ : Set Y) := calc dist (inl (default : X)) (inr y) = dist default default + 1 + dist default y := rfl _ ≤ diam (univ : Set X) + 1 + diam (univ : Set Y) := by gcongr <;> exact dist_le_diam_of_mem bounded_of_compactSpace (mem_univ _) (mem_univ _) [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y✝ z t : X ⊕ Y y : Y A : ⨅ (x : X), ↑(candidatesBDist X Y) (inl x, inr y) ≤ ↑(candidatesBDist X Y) (inl default, inr y) ⊢ dist default default + 1 + dist default y ≤ diam univ + 1 + diam univ [PROOFSTEP] gcongr [GOAL] case h₁.bc X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y✝ z t : X ⊕ Y y : Y A : ⨅ (x : X), ↑(candidatesBDist X Y) (inl x, inr y) ≤ ↑(candidatesBDist X Y) (inl default, inr y) ⊢ dist default default ≤ diam univ [PROOFSTEP] exact dist_le_diam_of_mem bounded_of_compactSpace (mem_univ _) (mem_univ _) [GOAL] case h₂ X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y✝ z t : X ⊕ Y y : Y A : ⨅ (x : X), ↑(candidatesBDist X Y) (inl x, inr y) ≤ ↑(candidatesBDist X Y) (inl default, inr y) ⊢ dist default y ≤ diam univ [PROOFSTEP] exact dist_le_diam_of_mem bounded_of_compactSpace (mem_univ _) (mem_univ _) [GOAL] case refine'_2 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.ProdSpaceFun X Y x y✝ z t : X ⊕ Y y : Y A : ⨅ (x : X), ↑(candidatesBDist X Y) (inl x, inr y) ≤ ↑(candidatesBDist X Y) (inl default, inr y) B : dist (inl default) (inr y) ≤ diam univ + 1 + diam univ ⊢ ⨅ (x : X), ↑(candidatesBDist X Y) (inl x, inr y) ≤ diam univ + 1 + diam univ [PROOFSTEP] exact le_trans A B [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y ⊢ ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ (⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] rcases(Real.bounded_iff_bddBelow_bddAbove.1 g.bounded_range).1 with ⟨cg, hcg⟩ [GOAL] case intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) ⊢ ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ (⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] have Hcg : ∀ x, cg ≤ g x := fun x => hcg (mem_range_self x) [GOAL] case intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x ⊢ ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ (⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] rcases(Real.bounded_iff_bddBelow_bddAbove.1 f.bounded_range).1 with ⟨cf, hcf⟩ [GOAL] case intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) ⊢ ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ (⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] have Hcf : ∀ x, cf ≤ f x := fun x => hcf (mem_range_self x) -- prove the inequality but with `dist f g` inside, by using inequalities comparing -- iSup to iSup and iInf to iInf [GOAL] case intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x ⊢ ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ (⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] have Z : (⨆ x, ⨅ y, f (inl x, inr y)) ≤ ⨆ x, ⨅ y, g (inl x, inr y) + dist f g := ciSup_mono (HD_bound_aux1 _ (dist f g)) fun x => ciInf_mono ⟨cf, forall_range_iff.2 fun i => Hcf _⟩ fun y => coe_le_coe_add_dist [GOAL] case intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y) + dist f g ⊢ ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ (⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] have E1 : ∀ x, (⨅ y, g (inl x, inr y)) + dist f g = ⨅ y, g (inl x, inr y) + dist f g := by intro x refine' Monotone.map_ciInf_of_continuousAt (continuousAt_id.add continuousAt_const) _ _ · intro x y hx simpa · show BddBelow (range fun y : Y => g (inl x, inr y)) exact ⟨cg, forall_range_iff.2 fun i => Hcg _⟩ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y) + dist f g ⊢ ∀ (x : X), (⨅ (y : Y), ↑g (inl x, inr y)) + dist f g = ⨅ (y : Y), ↑g (inl x, inr y) + dist f g [PROOFSTEP] intro x [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y) + dist f g x : X ⊢ (⨅ (y : Y), ↑g (inl x, inr y)) + dist f g = ⨅ (y : Y), ↑g (inl x, inr y) + dist f g [PROOFSTEP] refine' Monotone.map_ciInf_of_continuousAt (continuousAt_id.add continuousAt_const) _ _ [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y) + dist f g x : X ⊢ Monotone fun x => id x + dist f g [PROOFSTEP] intro x y hx [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x✝¹ y✝ z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y) + dist f g x✝ : X x y : ℝ hx : x ≤ y ⊢ (fun x => id x + dist f g) x ≤ (fun x => id x + dist f g) y [PROOFSTEP] simpa [GOAL] case refine'_2 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y) + dist f g x : X ⊢ BddBelow (range fun y => ↑g (inl x, inr y)) [PROOFSTEP] show BddBelow (range fun y : Y => g (inl x, inr y)) [GOAL] case refine'_2 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x✝ y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y) + dist f g x : X ⊢ BddBelow (range fun y => ↑g (inl x, inr y)) [PROOFSTEP] exact ⟨cg, forall_range_iff.2 fun i => Hcg _⟩ [GOAL] case intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y) + dist f g E1 : ∀ (x : X), (⨅ (y : Y), ↑g (inl x, inr y)) + dist f g = ⨅ (y : Y), ↑g (inl x, inr y) + dist f g ⊢ ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ (⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] have E2 : (⨆ x, ⨅ y, g (inl x, inr y)) + dist f g = ⨆ x, (⨅ y, g (inl x, inr y)) + dist f g := by refine' Monotone.map_ciSup_of_continuousAt (continuousAt_id.add continuousAt_const) _ _ · intro x y hx simpa · simpa using HD_bound_aux1 _ 0 -- deduce the result from the above two steps [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y) + dist f g E1 : ∀ (x : X), (⨅ (y : Y), ↑g (inl x, inr y)) + dist f g = ⨅ (y : Y), ↑g (inl x, inr y) + dist f g ⊢ (⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y)) + dist f g = ⨆ (x : X), (⨅ (y : Y), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] refine' Monotone.map_ciSup_of_continuousAt (continuousAt_id.add continuousAt_const) _ _ [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y) + dist f g E1 : ∀ (x : X), (⨅ (y : Y), ↑g (inl x, inr y)) + dist f g = ⨅ (y : Y), ↑g (inl x, inr y) + dist f g ⊢ Monotone fun x => id x + dist f g [PROOFSTEP] intro x y hx [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y) + dist f g E1 : ∀ (x : X), (⨅ (y : Y), ↑g (inl x, inr y)) + dist f g = ⨅ (y : Y), ↑g (inl x, inr y) + dist f g x y : ℝ hx : x ≤ y ⊢ (fun x => id x + dist f g) x ≤ (fun x => id x + dist f g) y [PROOFSTEP] simpa [GOAL] case refine'_2 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y) + dist f g E1 : ∀ (x : X), (⨅ (y : Y), ↑g (inl x, inr y)) + dist f g = ⨅ (y : Y), ↑g (inl x, inr y) + dist f g ⊢ BddAbove (range fun x => ⨅ (y : Y), ↑g (inl x, inr y)) [PROOFSTEP] simpa using HD_bound_aux1 _ 0 -- deduce the result from the above two steps [GOAL] case intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y) + dist f g E1 : ∀ (x : X), (⨅ (y : Y), ↑g (inl x, inr y)) + dist f g = ⨅ (y : Y), ↑g (inl x, inr y) + dist f g E2 : (⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y)) + dist f g = ⨆ (x : X), (⨅ (y : Y), ↑g (inl x, inr y)) + dist f g ⊢ ⨆ (x : X), ⨅ (y : Y), ↑f (inl x, inr y) ≤ (⨆ (x : X), ⨅ (y : Y), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] simpa [E2, E1, Function.comp] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y ⊢ ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ (⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] rcases(Real.bounded_iff_bddBelow_bddAbove.1 g.bounded_range).1 with ⟨cg, hcg⟩ [GOAL] case intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) ⊢ ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ (⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] have Hcg : ∀ x, cg ≤ g x := fun x => hcg (mem_range_self x) [GOAL] case intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x ⊢ ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ (⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] rcases(Real.bounded_iff_bddBelow_bddAbove.1 f.bounded_range).1 with ⟨cf, hcf⟩ [GOAL] case intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) ⊢ ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ (⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] have Hcf : ∀ x, cf ≤ f x := fun x => hcf (mem_range_self x) -- prove the inequality but with `dist f g` inside, by using inequalities comparing -- iSup to iSup and iInf to iInf [GOAL] case intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x ⊢ ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ (⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] have Z : (⨆ y, ⨅ x, f (inl x, inr y)) ≤ ⨆ y, ⨅ x, g (inl x, inr y) + dist f g := ciSup_mono (HD_bound_aux2 _ (dist f g)) fun y => ciInf_mono ⟨cf, forall_range_iff.2 fun i => Hcf _⟩ fun y => coe_le_coe_add_dist [GOAL] case intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ ⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y) + dist f g ⊢ ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ (⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] have E1 : ∀ y, (⨅ x, g (inl x, inr y)) + dist f g = ⨅ x, g (inl x, inr y) + dist f g := by intro y refine' Monotone.map_ciInf_of_continuousAt (continuousAt_id.add continuousAt_const) _ _ · intro x y hx simpa · show BddBelow (range fun x : X => g (inl x, inr y)) exact ⟨cg, forall_range_iff.2 fun i => Hcg _⟩ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ ⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y) + dist f g ⊢ ∀ (y : Y), (⨅ (x : X), ↑g (inl x, inr y)) + dist f g = ⨅ (x : X), ↑g (inl x, inr y) + dist f g [PROOFSTEP] intro y [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y✝ z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ ⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y) + dist f g y : Y ⊢ (⨅ (x : X), ↑g (inl x, inr y)) + dist f g = ⨅ (x : X), ↑g (inl x, inr y) + dist f g [PROOFSTEP] refine' Monotone.map_ciInf_of_continuousAt (continuousAt_id.add continuousAt_const) _ _ [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y✝ z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ ⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y) + dist f g y : Y ⊢ Monotone fun x => id x + dist f g [PROOFSTEP] intro x y hx [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x✝ y✝¹ z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ ⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y) + dist f g y✝ : Y x y : ℝ hx : x ≤ y ⊢ (fun x => id x + dist f g) x ≤ (fun x => id x + dist f g) y [PROOFSTEP] simpa [GOAL] case refine'_2 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y✝ z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ ⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y) + dist f g y : Y ⊢ BddBelow (range fun x => ↑g (inl x, inr y)) [PROOFSTEP] show BddBelow (range fun x : X => g (inl x, inr y)) [GOAL] case refine'_2 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y✝ z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ ⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y) + dist f g y : Y ⊢ BddBelow (range fun x => ↑g (inl x, inr y)) [PROOFSTEP] exact ⟨cg, forall_range_iff.2 fun i => Hcg _⟩ [GOAL] case intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ ⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y) + dist f g E1 : ∀ (y : Y), (⨅ (x : X), ↑g (inl x, inr y)) + dist f g = ⨅ (x : X), ↑g (inl x, inr y) + dist f g ⊢ ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ (⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] have E2 : (⨆ y, ⨅ x, g (inl x, inr y)) + dist f g = ⨆ y, (⨅ x, g (inl x, inr y)) + dist f g := by refine' Monotone.map_ciSup_of_continuousAt (continuousAt_id.add continuousAt_const) _ _ · intro x y hx simpa · simpa using HD_bound_aux2 _ 0 -- deduce the result from the above two steps [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ ⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y) + dist f g E1 : ∀ (y : Y), (⨅ (x : X), ↑g (inl x, inr y)) + dist f g = ⨅ (x : X), ↑g (inl x, inr y) + dist f g ⊢ (⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y)) + dist f g = ⨆ (y : Y), (⨅ (x : X), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] refine' Monotone.map_ciSup_of_continuousAt (continuousAt_id.add continuousAt_const) _ _ [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ ⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y) + dist f g E1 : ∀ (y : Y), (⨅ (x : X), ↑g (inl x, inr y)) + dist f g = ⨅ (x : X), ↑g (inl x, inr y) + dist f g ⊢ Monotone fun x => id x + dist f g [PROOFSTEP] intro x y hx [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x✝ y✝ z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ ⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y) + dist f g E1 : ∀ (y : Y), (⨅ (x : X), ↑g (inl x, inr y)) + dist f g = ⨅ (x : X), ↑g (inl x, inr y) + dist f g x y : ℝ hx : x ≤ y ⊢ (fun x => id x + dist f g) x ≤ (fun x => id x + dist f g) y [PROOFSTEP] simpa [GOAL] case refine'_2 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ ⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y) + dist f g E1 : ∀ (y : Y), (⨅ (x : X), ↑g (inl x, inr y)) + dist f g = ⨅ (x : X), ↑g (inl x, inr y) + dist f g ⊢ BddAbove (range fun y => ⨅ (x : X), ↑g (inl x, inr y)) [PROOFSTEP] simpa using HD_bound_aux2 _ 0 -- deduce the result from the above two steps [GOAL] case intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f✝ : GromovHausdorff.ProdSpaceFun X Y x y z t : X ⊕ Y f g : GromovHausdorff.Cb X Y cg : ℝ hcg : cg ∈ lowerBounds (range ↑g) Hcg : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cg ≤ ↑g x cf : ℝ hcf : cf ∈ lowerBounds (range ↑f) Hcf : ∀ (x : (X ⊕ Y) × (X ⊕ Y)), cf ≤ ↑f x Z : ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ ⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y) + dist f g E1 : ∀ (y : Y), (⨅ (x : X), ↑g (inl x, inr y)) + dist f g = ⨅ (x : X), ↑g (inl x, inr y) + dist f g E2 : (⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y)) + dist f g = ⨆ (y : Y), (⨅ (x : X), ↑g (inl x, inr y)) + dist f g ⊢ ⨆ (y : Y), ⨅ (x : X), ↑f (inl x, inr y) ≤ (⨆ (y : Y), ⨅ (x : X), ↑g (inl x, inr y)) + dist f g [PROOFSTEP] simpa [E2, E1] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ GromovHausdorff.optimalGHDist X Y ∈ GromovHausdorff.candidatesB X Y [PROOFSTEP] cases Classical.choose_spec (exists_minimizer X Y) [GOAL] case intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y left✝ : choose (_ : ∃ f, f ∈ GromovHausdorff.candidatesB X Y ∧ ∀ (g : GromovHausdorff.Cb X Y), g ∈ GromovHausdorff.candidatesB X Y → HD f ≤ HD g) ∈ GromovHausdorff.candidatesB X Y right✝ : ∀ (g : GromovHausdorff.Cb X Y), g ∈ GromovHausdorff.candidatesB X Y → HD (choose (_ : ∃ f, f ∈ GromovHausdorff.candidatesB X Y ∧ ∀ (g : GromovHausdorff.Cb X Y), g ∈ GromovHausdorff.candidatesB X Y → HD f ≤ HD g)) ≤ HD g ⊢ GromovHausdorff.optimalGHDist X Y ∈ GromovHausdorff.candidatesB X Y [PROOFSTEP] assumption [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y x y : X ⊕ Y ⊢ (fun x y => ↑{ val := ↑(GromovHausdorff.optimalGHDist X Y) (x, y), property := (_ : 0 ≤ ↑(GromovHausdorff.optimalGHDist X Y) (x, y)) }) x y = ENNReal.ofReal (dist x y) [PROOFSTEP] simp only [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y x y : X ⊕ Y ⊢ ↑{ val := ↑(GromovHausdorff.optimalGHDist X Y) (x, y), property := (_ : 0 ≤ ↑(GromovHausdorff.optimalGHDist X Y) (x, y)) } = ENNReal.ofReal (↑(GromovHausdorff.optimalGHDist X Y) (x, y)) [PROOFSTEP] congr [GOAL] case e_a.e_val X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y x y : X ⊕ Y ⊢ ↑(GromovHausdorff.optimalGHDist X Y) (x, y) = max (↑(GromovHausdorff.optimalGHDist X Y) (x, y)) 0 [PROOFSTEP] simp only [max, left_eq_sup] [GOAL] case e_a.e_val X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y x y : X ⊕ Y ⊢ 0 ≤ ↑(GromovHausdorff.optimalGHDist X Y) (x, y) [PROOFSTEP] exact candidates_nonneg (optimalGHDist_mem_candidatesB X Y) [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ MetricSpace (OptimalGHCoupling X Y) [PROOFSTEP] unfold OptimalGHCoupling [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ MetricSpace (UniformSpace.SeparationQuotient (X ⊕ Y)) [PROOFSTEP] infer_instance [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ IsCompact univ [PROOFSTEP] rw [← range_quotient_mk'] [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ IsCompact (range Quotient.mk') [PROOFSTEP] exact isCompact_range (continuous_sum_dom.2 ⟨(isometry_optimalGHInjl X Y).continuous, (isometry_optimalGHInjr X Y).continuous⟩) [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD f [PROOFSTEP] refine' le_trans (le_of_forall_le_of_dense fun r hr => _) (HD_optimalGHDist_le X Y f h) [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ r [PROOFSTEP] have A : ∀ x ∈ range (optimalGHInjl X Y), ∃ y ∈ range (optimalGHInjr X Y), dist x y ≤ r := by rintro _ ⟨z, rfl⟩ have I1 : (⨆ x, ⨅ y, optimalGHDist X Y (inl x, inr y)) < r := lt_of_le_of_lt (le_max_left _ _) hr have I2 : ⨅ y, optimalGHDist X Y (inl z, inr y) ≤ ⨆ x, ⨅ y, optimalGHDist X Y (inl x, inr y) := le_csSup (by simpa using HD_bound_aux1 _ 0) (mem_range_self _) have I : ⨅ y, optimalGHDist X Y (inl z, inr y) < r := lt_of_le_of_lt I2 I1 rcases exists_lt_of_csInf_lt (range_nonempty _) I with ⟨r', ⟨z', rfl⟩, hr'⟩ exact ⟨optimalGHInjr X Y z', mem_range_self _, le_of_lt hr'⟩ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r ⊢ ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjl X Y) → ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist x y ≤ r [PROOFSTEP] rintro _ ⟨z, rfl⟩ [GOAL] case intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r z : X ⊢ ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist (optimalGHInjl X Y z) y ≤ r [PROOFSTEP] have I1 : (⨆ x, ⨅ y, optimalGHDist X Y (inl x, inr y)) < r := lt_of_le_of_lt (le_max_left _ _) hr [GOAL] case intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r z : X I1 : ⨆ (x : X), ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) < r ⊢ ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist (optimalGHInjl X Y z) y ≤ r [PROOFSTEP] have I2 : ⨅ y, optimalGHDist X Y (inl z, inr y) ≤ ⨆ x, ⨅ y, optimalGHDist X Y (inl x, inr y) := le_csSup (by simpa using HD_bound_aux1 _ 0) (mem_range_self _) [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r z : X I1 : ⨆ (x : X), ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) < r ⊢ BddAbove (range fun x => ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y)) [PROOFSTEP] simpa using HD_bound_aux1 _ 0 [GOAL] case intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r z : X I1 : ⨆ (x : X), ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) < r I2 : ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl z, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) ⊢ ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist (optimalGHInjl X Y z) y ≤ r [PROOFSTEP] have I : ⨅ y, optimalGHDist X Y (inl z, inr y) < r := lt_of_le_of_lt I2 I1 [GOAL] case intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r z : X I1 : ⨆ (x : X), ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) < r I2 : ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl z, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) I : ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl z, inr y) < r ⊢ ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist (optimalGHInjl X Y z) y ≤ r [PROOFSTEP] rcases exists_lt_of_csInf_lt (range_nonempty _) I with ⟨r', ⟨z', rfl⟩, hr'⟩ [GOAL] case intro.intro.intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r z : X I1 : ⨆ (x : X), ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) < r I2 : ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl z, inr y) ≤ ⨆ (x : X), ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) I : ⨅ (y : Y), ↑(GromovHausdorff.optimalGHDist X Y) (inl z, inr y) < r z' : Y hr' : (fun y => ↑(GromovHausdorff.optimalGHDist X Y) (inl z, inr y)) z' < r ⊢ ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist (optimalGHInjl X Y z) y ≤ r [PROOFSTEP] exact ⟨optimalGHInjr X Y z', mem_range_self _, le_of_lt hr'⟩ [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r A : ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjl X Y) → ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist x y ≤ r ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ r [PROOFSTEP] refine' hausdorffDist_le_of_mem_dist _ A _ [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r A : ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjl X Y) → ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist x y ≤ r ⊢ 0 ≤ r [PROOFSTEP] inhabit X [GOAL] case refine'_1 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r A : ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjl X Y) → ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist x y ≤ r inhabited_h : Inhabited X ⊢ 0 ≤ r [PROOFSTEP] rcases A _ (mem_range_self default) with ⟨y, -, hy⟩ [GOAL] case refine'_1.intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r A : ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjl X Y) → ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist x y ≤ r inhabited_h : Inhabited X y : OptimalGHCoupling X Y hy : dist (optimalGHInjl X Y default) y ≤ r ⊢ 0 ≤ r [PROOFSTEP] exact le_trans dist_nonneg hy [GOAL] case refine'_2 X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r A : ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjl X Y) → ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist x y ≤ r ⊢ ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjr X Y) → ∃ y, y ∈ range (optimalGHInjl X Y) ∧ dist x y ≤ r [PROOFSTEP] rintro _ ⟨z, rfl⟩ [GOAL] case refine'_2.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r A : ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjl X Y) → ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist x y ≤ r z : Y ⊢ ∃ y, y ∈ range (optimalGHInjl X Y) ∧ dist (optimalGHInjr X Y z) y ≤ r [PROOFSTEP] have I1 : (⨆ y, ⨅ x, optimalGHDist X Y (inl x, inr y)) < r := lt_of_le_of_lt (le_max_right _ _) hr [GOAL] case refine'_2.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r A : ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjl X Y) → ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist x y ≤ r z : Y I1 : ⨆ (y : Y), ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) < r ⊢ ∃ y, y ∈ range (optimalGHInjl X Y) ∧ dist (optimalGHInjr X Y z) y ≤ r [PROOFSTEP] have I2 : ⨅ x, optimalGHDist X Y (inl x, inr z) ≤ ⨆ y, ⨅ x, optimalGHDist X Y (inl x, inr y) := le_csSup (by simpa using HD_bound_aux2 _ 0) (mem_range_self _) [GOAL] X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r A : ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjl X Y) → ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist x y ≤ r z : Y I1 : ⨆ (y : Y), ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) < r ⊢ BddAbove (range fun y => ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y)) [PROOFSTEP] simpa using HD_bound_aux2 _ 0 [GOAL] case refine'_2.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r A : ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjl X Y) → ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist x y ≤ r z : Y I1 : ⨆ (y : Y), ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) < r I2 : ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr z) ≤ ⨆ (y : Y), ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) ⊢ ∃ y, y ∈ range (optimalGHInjl X Y) ∧ dist (optimalGHInjr X Y z) y ≤ r [PROOFSTEP] have I : ⨅ x, optimalGHDist X Y (inl x, inr z) < r := lt_of_le_of_lt I2 I1 [GOAL] case refine'_2.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r A : ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjl X Y) → ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist x y ≤ r z : Y I1 : ⨆ (y : Y), ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) < r I2 : ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr z) ≤ ⨆ (y : Y), ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) I : ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr z) < r ⊢ ∃ y, y ∈ range (optimalGHInjl X Y) ∧ dist (optimalGHInjr X Y z) y ≤ r [PROOFSTEP] rcases exists_lt_of_csInf_lt (range_nonempty _) I with ⟨r', ⟨z', rfl⟩, hr'⟩ [GOAL] case refine'_2.intro.intro.intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r A : ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjl X Y) → ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist x y ≤ r z : Y I1 : ⨆ (y : Y), ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) < r I2 : ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr z) ≤ ⨆ (y : Y), ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) I : ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr z) < r z' : X hr' : (fun x => ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr z)) z' < r ⊢ ∃ y, y ∈ range (optimalGHInjl X Y) ∧ dist (optimalGHInjr X Y z) y ≤ r [PROOFSTEP] refine' ⟨optimalGHInjl X Y z', mem_range_self _, le_of_lt _⟩ [GOAL] case refine'_2.intro.intro.intro.intro X : Type u Y : Type v inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y f : GromovHausdorff.Cb X Y h : f ∈ GromovHausdorff.candidatesB X Y r : ℝ hr : HD (GromovHausdorff.optimalGHDist X Y) < r A : ∀ (x : OptimalGHCoupling X Y), x ∈ range (optimalGHInjl X Y) → ∃ y, y ∈ range (optimalGHInjr X Y) ∧ dist x y ≤ r z : Y I1 : ⨆ (y : Y), ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) < r I2 : ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr z) ≤ ⨆ (y : Y), ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr y) I : ⨅ (x : X), ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr z) < r z' : X hr' : (fun x => ↑(GromovHausdorff.optimalGHDist X Y) (inl x, inr z)) z' < r ⊢ dist (optimalGHInjr X Y z) (optimalGHInjl X Y z') < r [PROOFSTEP] rwa [dist_comm]
{"mathlib_filename": "Mathlib.Topology.MetricSpace.GromovHausdorffRealized", "llama_tokens": 189961}
[GOAL] α : Type u_1 G : Type u_2 ι : Type u_3 inst✝² : Group G 𝔖 : Set (Set α) inst✝¹ : UniformSpace G inst✝ : UniformGroup G p : ι → Prop b : ι → Set G h : HasBasis (𝓝 1) p b ⊢ HasBasis (𝓝 1) p fun i => {f | ∀ (x : α), f x ∈ b i} [PROOFSTEP] have := h.comap fun p : G × G => p.2 / p.1 [GOAL] α : Type u_1 G : Type u_2 ι : Type u_3 inst✝² : Group G 𝔖 : Set (Set α) inst✝¹ : UniformSpace G inst✝ : UniformGroup G p : ι → Prop b : ι → Set G h : HasBasis (𝓝 1) p b this : HasBasis (comap (fun p => p.snd / p.fst) (𝓝 1)) p fun i => (fun p => p.snd / p.fst) ⁻¹' b i ⊢ HasBasis (𝓝 1) p fun i => {f | ∀ (x : α), f x ∈ b i} [PROOFSTEP] rw [← uniformity_eq_comap_nhds_one] at this [GOAL] α : Type u_1 G : Type u_2 ι : Type u_3 inst✝² : Group G 𝔖 : Set (Set α) inst✝¹ : UniformSpace G inst✝ : UniformGroup G p : ι → Prop b : ι → Set G h : HasBasis (𝓝 1) p b this : HasBasis (uniformity G) p fun i => (fun p => p.snd / p.fst) ⁻¹' b i ⊢ HasBasis (𝓝 1) p fun i => {f | ∀ (x : α), f x ∈ b i} [PROOFSTEP] convert UniformFun.hasBasis_nhds_of_basis α _ (1 : α →ᵤ G) this [GOAL] case h.e'_5.h.h.e'_2.h.a α : Type u_1 G : Type u_2 ι : Type u_3 inst✝² : Group G 𝔖 : Set (Set α) inst✝¹ : UniformSpace G inst✝ : UniformGroup G p : ι → Prop b : ι → Set G h : HasBasis (𝓝 1) p b this : HasBasis (uniformity G) p fun i => (fun p => p.snd / p.fst) ⁻¹' b i x✝¹ : ι x✝ : α →ᵤ G ⊢ (∀ (x : α), x✝ x ∈ b x✝¹) ↔ (1, x✝) ∈ UniformFun.gen α G ((fun p => p.snd / p.fst) ⁻¹' b x✝¹) [PROOFSTEP] simp [UniformFun.gen] [GOAL] α : Type u_1 G : Type u_2 ι : Type u_3 inst✝² : Group G 𝔖✝ : Set (Set α) inst✝¹ : UniformSpace G inst✝ : UniformGroup G 𝔖 : Set (Set α) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 p : ι → Prop b : ι → Set G h : HasBasis (𝓝 1) p b ⊢ HasBasis (𝓝 1) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : α), x ∈ Si.fst → f x ∈ b Si.snd} [PROOFSTEP] have := h.comap fun p : G × G => p.1 / p.2 [GOAL] α : Type u_1 G : Type u_2 ι : Type u_3 inst✝² : Group G 𝔖✝ : Set (Set α) inst✝¹ : UniformSpace G inst✝ : UniformGroup G 𝔖 : Set (Set α) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 p : ι → Prop b : ι → Set G h : HasBasis (𝓝 1) p b this : HasBasis (comap (fun p => p.fst / p.snd) (𝓝 1)) p fun i => (fun p => p.fst / p.snd) ⁻¹' b i ⊢ HasBasis (𝓝 1) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : α), x ∈ Si.fst → f x ∈ b Si.snd} [PROOFSTEP] rw [← uniformity_eq_comap_nhds_one_swapped] at this [GOAL] α : Type u_1 G : Type u_2 ι : Type u_3 inst✝² : Group G 𝔖✝ : Set (Set α) inst✝¹ : UniformSpace G inst✝ : UniformGroup G 𝔖 : Set (Set α) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 p : ι → Prop b : ι → Set G h : HasBasis (𝓝 1) p b this : HasBasis (uniformity G) p fun i => (fun p => p.fst / p.snd) ⁻¹' b i ⊢ HasBasis (𝓝 1) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : α), x ∈ Si.fst → f x ∈ b Si.snd} [PROOFSTEP] convert UniformOnFun.hasBasis_nhds_of_basis α _ 𝔖 (1 : α →ᵤ[𝔖] G) h𝔖₁ h𝔖₂ this [GOAL] case h.e'_5.h.h.e'_2.h.a α : Type u_1 G : Type u_2 ι : Type u_3 inst✝² : Group G 𝔖✝ : Set (Set α) inst✝¹ : UniformSpace G inst✝ : UniformGroup G 𝔖 : Set (Set α) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 p : ι → Prop b : ι → Set G h : HasBasis (𝓝 1) p b this : HasBasis (uniformity G) p fun i => (fun p => p.fst / p.snd) ⁻¹' b i x✝¹ : Set α × ι x✝ : α →ᵤ[𝔖] G ⊢ (∀ (x : α), x ∈ x✝¹.fst → x✝ x ∈ b x✝¹.snd) ↔ (x✝, 1) ∈ UniformOnFun.gen 𝔖 x✝¹.fst ((fun p => p.fst / p.snd) ⁻¹' b x✝¹.snd) [PROOFSTEP] simp [UniformOnFun.gen] [GOAL] 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) ⊢ ContinuousSMul 𝕜 H [PROOFSTEP] have : TopologicalAddGroup H := by rw [hφ.induced] exact topologicalAddGroup_induced φ [GOAL] 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) ⊢ TopologicalAddGroup H [PROOFSTEP] rw [hφ.induced] [GOAL] 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) ⊢ TopologicalAddGroup H [PROOFSTEP] exact topologicalAddGroup_induced φ [GOAL] 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this : TopologicalAddGroup H ⊢ ContinuousSMul 𝕜 H [PROOFSTEP] have : (𝓝 0 : Filter H).HasBasis _ _ := by rw [hφ.induced, nhds_induced, map_zero] exact (UniformOnFun.hasBasis_nhds_zero 𝔖 h𝔖₁ h𝔖₂).comap φ [GOAL] 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this : TopologicalAddGroup H ⊢ HasBasis (𝓝 0) ?m.88528 ?m.88529 [PROOFSTEP] rw [hφ.induced, nhds_induced, map_zero] [GOAL] 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this : TopologicalAddGroup H ⊢ HasBasis (comap (↑φ) (𝓝 0)) ?m.88528 ?m.88529 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this : TopologicalAddGroup H ⊢ Sort ?u.88519 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this : TopologicalAddGroup H ⊢ ?m.88527 → Prop 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this : TopologicalAddGroup H ⊢ ?m.88527 → Set H 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this : TopologicalAddGroup H ⊢ Sort ?u.88519 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this : TopologicalAddGroup H ⊢ ?m.88527 → Prop 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this : TopologicalAddGroup H ⊢ ?m.88527 → Set H 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this : TopologicalAddGroup H ⊢ Sort ?u.88519 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this : TopologicalAddGroup H ⊢ ?m.88527 → Prop 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this : TopologicalAddGroup H ⊢ ?m.88527 → Set H [PROOFSTEP] exact (UniformOnFun.hasBasis_nhds_zero 𝔖 h𝔖₁ h𝔖₂).comap φ [GOAL] 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} ⊢ ContinuousSMul 𝕜 H [PROOFSTEP] refine' ContinuousSMul.of_basis_zero this _ _ _ [GOAL] case refine'_1 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} ⊢ ∀ {i : Set α × Set E}, i.fst ∈ 𝔖 ∧ i.snd ∈ 𝓝 0 → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • ↑φ ⁻¹' {f | ∀ (x : α), x ∈ j.fst → f x ∈ j.snd} ⊆ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} [PROOFSTEP] rintro ⟨S, V⟩ ⟨hS, hV⟩ [GOAL] case refine'_1.mk.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 ⊢ ∃ V_1, V_1 ∈ 𝓝 0 ∧ ∃ j x, V_1 • ↑φ ⁻¹' {f | ∀ (x : α), x ∈ j.fst → f x ∈ j.snd} ⊆ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd} [PROOFSTEP] have : Tendsto (fun kx : 𝕜 × E => kx.1 • kx.2) (𝓝 (0, 0)) (𝓝 <| (0 : 𝕜) • (0 : E)) := continuous_smul.tendsto (0 : 𝕜 × E) [GOAL] case refine'_1.mk.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝¹ : TopologicalAddGroup H this✝ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 this : Tendsto (fun kx => kx.fst • kx.snd) (𝓝 (0, 0)) (𝓝 (0 • 0)) ⊢ ∃ V_1, V_1 ∈ 𝓝 0 ∧ ∃ j x, V_1 • ↑φ ⁻¹' {f | ∀ (x : α), x ∈ j.fst → f x ∈ j.snd} ⊆ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd} [PROOFSTEP] rw [zero_smul, nhds_prod_eq] at this [GOAL] case refine'_1.mk.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝¹ : TopologicalAddGroup H this✝ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 this : Tendsto (fun kx => kx.fst • kx.snd) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) ⊢ ∃ V_1, V_1 ∈ 𝓝 0 ∧ ∃ j x, V_1 • ↑φ ⁻¹' {f | ∀ (x : α), x ∈ j.fst → f x ∈ j.snd} ⊆ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd} [PROOFSTEP] have := this hV [GOAL] case refine'_1.mk.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝² : TopologicalAddGroup H this✝¹ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 this✝ : Tendsto (fun kx => kx.fst • kx.snd) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) this : (S, V).snd ∈ map (fun kx => kx.fst • kx.snd) (𝓝 0 ×ˢ 𝓝 0) ⊢ ∃ V_1, V_1 ∈ 𝓝 0 ∧ ∃ j x, V_1 • ↑φ ⁻¹' {f | ∀ (x : α), x ∈ j.fst → f x ∈ j.snd} ⊆ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd} [PROOFSTEP] rw [mem_map, mem_prod_iff] at this [GOAL] case refine'_1.mk.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝² : TopologicalAddGroup H this✝¹ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 this✝ : Tendsto (fun kx => kx.fst • kx.snd) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) this : ∃ t₁, t₁ ∈ 𝓝 0 ∧ ∃ t₂, t₂ ∈ 𝓝 0 ∧ t₁ ×ˢ t₂ ⊆ (fun kx => kx.fst • kx.snd) ⁻¹' (S, V).snd ⊢ ∃ V_1, V_1 ∈ 𝓝 0 ∧ ∃ j x, V_1 • ↑φ ⁻¹' {f | ∀ (x : α), x ∈ j.fst → f x ∈ j.snd} ⊆ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd} [PROOFSTEP] rcases this with ⟨U, hU, W, hW, hUW⟩ [GOAL] case refine'_1.mk.intro.intro.intro.intro.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝¹ : TopologicalAddGroup H this✝ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 this : Tendsto (fun kx => kx.fst • kx.snd) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) U : Set 𝕜 hU : U ∈ 𝓝 0 W : Set E hW : W ∈ 𝓝 0 hUW : U ×ˢ W ⊆ (fun kx => kx.fst • kx.snd) ⁻¹' (S, V).snd ⊢ ∃ V_1, V_1 ∈ 𝓝 0 ∧ ∃ j x, V_1 • ↑φ ⁻¹' {f | ∀ (x : α), x ∈ j.fst → f x ∈ j.snd} ⊆ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd} [PROOFSTEP] refine' ⟨U, hU, ⟨S, W⟩, ⟨hS, hW⟩, _⟩ [GOAL] case refine'_1.mk.intro.intro.intro.intro.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝¹ : TopologicalAddGroup H this✝ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 this : Tendsto (fun kx => kx.fst • kx.snd) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) U : Set 𝕜 hU : U ∈ 𝓝 0 W : Set E hW : W ∈ 𝓝 0 hUW : U ×ˢ W ⊆ (fun kx => kx.fst • kx.snd) ⁻¹' (S, V).snd ⊢ U • ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, W).fst → f x ∈ (S, W).snd} ⊆ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd} [PROOFSTEP] rw [Set.smul_subset_iff] [GOAL] case refine'_1.mk.intro.intro.intro.intro.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝¹ : TopologicalAddGroup H this✝ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 this : Tendsto (fun kx => kx.fst • kx.snd) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) U : Set 𝕜 hU : U ∈ 𝓝 0 W : Set E hW : W ∈ 𝓝 0 hUW : U ×ˢ W ⊆ (fun kx => kx.fst • kx.snd) ⁻¹' (S, V).snd ⊢ ∀ (a : 𝕜), a ∈ U → ∀ (b : H), b ∈ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, W).fst → f x ∈ (S, W).snd} → a • b ∈ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd} [PROOFSTEP] intro a ha u hu x hx [GOAL] case refine'_1.mk.intro.intro.intro.intro.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝¹ : TopologicalAddGroup H this✝ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 this : Tendsto (fun kx => kx.fst • kx.snd) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) U : Set 𝕜 hU : U ∈ 𝓝 0 W : Set E hW : W ∈ 𝓝 0 hUW : U ×ˢ W ⊆ (fun kx => kx.fst • kx.snd) ⁻¹' (S, V).snd a : 𝕜 ha : a ∈ U u : H hu : u ∈ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, W).fst → f x ∈ (S, W).snd} x : α hx : x ∈ (S, V).fst ⊢ ↑φ (a • u) x ∈ (S, V).snd [PROOFSTEP] rw [SMulHomClass.map_smul] [GOAL] case refine'_1.mk.intro.intro.intro.intro.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝¹ : TopologicalAddGroup H this✝ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 this : Tendsto (fun kx => kx.fst • kx.snd) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) U : Set 𝕜 hU : U ∈ 𝓝 0 W : Set E hW : W ∈ 𝓝 0 hUW : U ×ˢ W ⊆ (fun kx => kx.fst • kx.snd) ⁻¹' (S, V).snd a : 𝕜 ha : a ∈ U u : H hu : u ∈ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, W).fst → f x ∈ (S, W).snd} x : α hx : x ∈ (S, V).fst ⊢ (a • ↑φ u) x ∈ (S, V).snd [PROOFSTEP] exact hUW (⟨ha, hu x hx⟩ : (a, φ u x) ∈ U ×ˢ W) [GOAL] case refine'_2 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} ⊢ ∀ (x₀ : 𝕜) {i : Set α × Set E}, i.fst ∈ 𝔖 ∧ i.snd ∈ 𝓝 0 → ∃ j x, ↑φ ⁻¹' {f | ∀ (x : α), x ∈ j.fst → f x ∈ j.snd} ⊆ (fun x => x₀ • x) ⁻¹' (↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd}) [PROOFSTEP] rintro a ⟨S, V⟩ ⟨hS, hV⟩ [GOAL] case refine'_2.mk.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} a : 𝕜 S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 ⊢ ∃ j x, ↑φ ⁻¹' {f | ∀ (x : α), x ∈ j.fst → f x ∈ j.snd} ⊆ (fun x => a • x) ⁻¹' (↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd}) [PROOFSTEP] have : Tendsto (fun x : E => a • x) (𝓝 0) (𝓝 <| a • (0 : E)) := tendsto_id.const_smul a [GOAL] case refine'_2.mk.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝¹ : TopologicalAddGroup H this✝ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} a : 𝕜 S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 this : Tendsto (fun x => a • x) (𝓝 0) (𝓝 (a • 0)) ⊢ ∃ j x, ↑φ ⁻¹' {f | ∀ (x : α), x ∈ j.fst → f x ∈ j.snd} ⊆ (fun x => a • x) ⁻¹' (↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd}) [PROOFSTEP] rw [smul_zero] at this [GOAL] case refine'_2.mk.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝¹ : TopologicalAddGroup H this✝ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} a : 𝕜 S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 this : Tendsto (fun x => a • x) (𝓝 0) (𝓝 0) ⊢ ∃ j x, ↑φ ⁻¹' {f | ∀ (x : α), x ∈ j.fst → f x ∈ j.snd} ⊆ (fun x => a • x) ⁻¹' (↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd}) [PROOFSTEP] refine' ⟨⟨S, (a • ·) ⁻¹' V⟩, ⟨hS, this hV⟩, fun f hf x hx => _⟩ [GOAL] case refine'_2.mk.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝¹ : TopologicalAddGroup H this✝ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} a : 𝕜 S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 this : Tendsto (fun x => a • x) (𝓝 0) (𝓝 0) f : H hf : f ∈ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, (fun x => a • x) ⁻¹' V).fst → f x ∈ (S, (fun x => a • x) ⁻¹' V).snd} x : α hx : x ∈ (S, V).fst ⊢ ↑φ ((fun x => a • x) f) x ∈ (S, V).snd [PROOFSTEP] rw [SMulHomClass.map_smul] [GOAL] case refine'_2.mk.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝¹ : TopologicalAddGroup H this✝ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} a : 𝕜 S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 this : Tendsto (fun x => a • x) (𝓝 0) (𝓝 0) f : H hf : f ∈ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, (fun x => a • x) ⁻¹' V).fst → f x ∈ (S, (fun x => a • x) ⁻¹' V).snd} x : α hx : x ∈ (S, V).fst ⊢ (a • ↑φ f) x ∈ (S, V).snd [PROOFSTEP] exact hf x hx [GOAL] case refine'_3 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} ⊢ ∀ (m₀ : H) {i : Set α × Set E}, i.fst ∈ 𝔖 ∧ i.snd ∈ 𝓝 0 → ∀ᶠ (x : 𝕜) in 𝓝 0, x • m₀ ∈ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} [PROOFSTEP] rintro u ⟨S, V⟩ ⟨hS, hV⟩ [GOAL] case refine'_3.mk.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 ⊢ ∀ᶠ (x : 𝕜) in 𝓝 0, x • u ∈ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd} [PROOFSTEP] rcases h u S hS hV with ⟨r, hrpos, hr⟩ [GOAL] case refine'_3.mk.intro.intro.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 r : ℝ hrpos : 0 < r hr : ∀ (a : 𝕜), r ≤ ‖a‖ → ↑φ u '' S ⊆ a • (S, V).snd ⊢ ∀ᶠ (x : 𝕜) in 𝓝 0, x • u ∈ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd} [PROOFSTEP] rw [Metric.eventually_nhds_iff_ball] [GOAL] case refine'_3.mk.intro.intro.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 r : ℝ hrpos : 0 < r hr : ∀ (a : 𝕜), r ≤ ‖a‖ → ↑φ u '' S ⊆ a • (S, V).snd ⊢ ∃ ε, ε > 0 ∧ ∀ (y : 𝕜), y ∈ Metric.ball 0 ε → y • u ∈ ↑φ ⁻¹' {f | ∀ (x : α), x ∈ (S, V).fst → f x ∈ (S, V).snd} [PROOFSTEP] refine' ⟨r⁻¹, inv_pos.mpr hrpos, fun a ha x hx => _⟩ [GOAL] case refine'_3.mk.intro.intro.intro 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 r : ℝ hrpos : 0 < r hr : ∀ (a : 𝕜), r ≤ ‖a‖ → ↑φ u '' S ⊆ a • (S, V).snd a : 𝕜 ha : a ∈ Metric.ball 0 r⁻¹ x : α hx : x ∈ (S, V).fst ⊢ ↑φ (a • u) x ∈ (S, V).snd [PROOFSTEP] by_cases ha0 : a = 0 [GOAL] case pos 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 r : ℝ hrpos : 0 < r hr : ∀ (a : 𝕜), r ≤ ‖a‖ → ↑φ u '' S ⊆ a • (S, V).snd a : 𝕜 ha : a ∈ Metric.ball 0 r⁻¹ x : α hx : x ∈ (S, V).fst ha0 : a = 0 ⊢ ↑φ (a • u) x ∈ (S, V).snd [PROOFSTEP] rw [ha0] [GOAL] case pos 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 r : ℝ hrpos : 0 < r hr : ∀ (a : 𝕜), r ≤ ‖a‖ → ↑φ u '' S ⊆ a • (S, V).snd a : 𝕜 ha : a ∈ Metric.ball 0 r⁻¹ x : α hx : x ∈ (S, V).fst ha0 : a = 0 ⊢ ↑φ (0 • u) x ∈ (S, V).snd [PROOFSTEP] simpa using mem_of_mem_nhds hV [GOAL] case neg 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 r : ℝ hrpos : 0 < r hr : ∀ (a : 𝕜), r ≤ ‖a‖ → ↑φ u '' S ⊆ a • (S, V).snd a : 𝕜 ha : a ∈ Metric.ball 0 r⁻¹ x : α hx : x ∈ (S, V).fst ha0 : ¬a = 0 ⊢ ↑φ (a • u) x ∈ (S, V).snd [PROOFSTEP] rw [mem_ball_zero_iff] at ha [GOAL] case neg 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 r : ℝ hrpos : 0 < r hr : ∀ (a : 𝕜), r ≤ ‖a‖ → ↑φ u '' S ⊆ a • (S, V).snd a : 𝕜 ha : ‖a‖ < r⁻¹ x : α hx : x ∈ (S, V).fst ha0 : ¬a = 0 ⊢ ↑φ (a • u) x ∈ (S, V).snd [PROOFSTEP] rw [SMulHomClass.map_smul, Pi.smul_apply] [GOAL] case neg 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 r : ℝ hrpos : 0 < r hr : ∀ (a : 𝕜), r ≤ ‖a‖ → ↑φ u '' S ⊆ a • (S, V).snd a : 𝕜 ha : ‖a‖ < r⁻¹ x : α hx : x ∈ (S, V).fst ha0 : ¬a = 0 ⊢ a • ↑φ u x ∈ (S, V).snd [PROOFSTEP] have : φ u x ∈ a⁻¹ • V := by have ha0 : 0 < ‖a‖ := norm_pos_iff.mpr ha0 refine' (hr a⁻¹ _) (Set.mem_image_of_mem (φ u) hx) rw [norm_inv, le_inv hrpos ha0] exact ha.le [GOAL] 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 r : ℝ hrpos : 0 < r hr : ∀ (a : 𝕜), r ≤ ‖a‖ → ↑φ u '' S ⊆ a • (S, V).snd a : 𝕜 ha : ‖a‖ < r⁻¹ x : α hx : x ∈ (S, V).fst ha0 : ¬a = 0 ⊢ ↑φ u x ∈ a⁻¹ • V [PROOFSTEP] have ha0 : 0 < ‖a‖ := norm_pos_iff.mpr ha0 [GOAL] 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 r : ℝ hrpos : 0 < r hr : ∀ (a : 𝕜), r ≤ ‖a‖ → ↑φ u '' S ⊆ a • (S, V).snd a : 𝕜 ha : ‖a‖ < r⁻¹ x : α hx : x ∈ (S, V).fst ha0✝ : ¬a = 0 ha0 : 0 < ‖a‖ ⊢ ↑φ u x ∈ a⁻¹ • V [PROOFSTEP] refine' (hr a⁻¹ _) (Set.mem_image_of_mem (φ u) hx) [GOAL] 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 r : ℝ hrpos : 0 < r hr : ∀ (a : 𝕜), r ≤ ‖a‖ → ↑φ u '' S ⊆ a • (S, V).snd a : 𝕜 ha : ‖a‖ < r⁻¹ x : α hx : x ∈ (S, V).fst ha0✝ : ¬a = 0 ha0 : 0 < ‖a‖ ⊢ r ≤ ‖a⁻¹‖ [PROOFSTEP] rw [norm_inv, le_inv hrpos ha0] [GOAL] 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝ : TopologicalAddGroup H this : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 r : ℝ hrpos : 0 < r hr : ∀ (a : 𝕜), r ≤ ‖a‖ → ↑φ u '' S ⊆ a • (S, V).snd a : 𝕜 ha : ‖a‖ < r⁻¹ x : α hx : x ∈ (S, V).fst ha0✝ : ¬a = 0 ha0 : 0 < ‖a‖ ⊢ ‖a‖ ≤ r⁻¹ [PROOFSTEP] exact ha.le [GOAL] case neg 𝕜 : Type u_1 α : Type u_2 E : Type u_3 H : Type u_4 hom : Type u_5 inst✝⁹ : NormedField 𝕜 inst✝⁸ : AddCommGroup H inst✝⁷ : Module 𝕜 H inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜 E inst✝⁴ : TopologicalSpace H inst✝³ : UniformSpace E inst✝² : UniformAddGroup E inst✝¹ : ContinuousSMul 𝕜 E 𝔖 : Set (Set α) inst✝ : LinearMapClass hom 𝕜 H (α →ᵤ[𝔖] E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 φ : hom hφ : Inducing ↑φ h : ∀ (u : H) (s : Set α), s ∈ 𝔖 → Bornology.IsVonNBounded 𝕜 (↑φ u '' s) this✝¹ : TopologicalAddGroup H this✝ : HasBasis (𝓝 0) (fun SV => SV.fst ∈ 𝔖 ∧ SV.snd ∈ 𝓝 0) fun i => ↑φ ⁻¹' {f | ∀ (x : α), x ∈ i.fst → f x ∈ i.snd} u : H S : Set α V : Set E hS : (S, V).fst ∈ 𝔖 hV : (S, V).snd ∈ 𝓝 0 r : ℝ hrpos : 0 < r hr : ∀ (a : 𝕜), r ≤ ‖a‖ → ↑φ u '' S ⊆ a • (S, V).snd a : 𝕜 ha : ‖a‖ < r⁻¹ x : α hx : x ∈ (S, V).fst ha0 : ¬a = 0 this : ↑φ u x ∈ a⁻¹ • V ⊢ a • ↑φ u x ∈ (S, V).snd [PROOFSTEP] rwa [Set.mem_inv_smul_set_iff₀ ha0] at this
{"mathlib_filename": "Mathlib.Topology.Algebra.UniformConvergence", "llama_tokens": 26293}
[GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : PartialOrder α inst✝ : TopologicalSpace β a : α f : α → β ⊢ ContinuousWithinAt f (Ioi a) a ↔ ContinuousWithinAt f (Ici a) a [PROOFSTEP] simp only [← Ici_diff_left, continuousWithinAt_diff_self] [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : TopologicalSpace β a : α ⊢ 𝓝[Iic a] a ⊔ 𝓝[Ici a] a = 𝓝 a [PROOFSTEP] rw [← nhdsWithin_union, Iic_union_Ici, nhdsWithin_univ] [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : TopologicalSpace β a : α ⊢ 𝓝[Iio a] a ⊔ 𝓝[Ici a] a = 𝓝 a [PROOFSTEP] rw [← nhdsWithin_union, Iio_union_Ici, nhdsWithin_univ] [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : TopologicalSpace β a : α ⊢ 𝓝[Iic a] a ⊔ 𝓝[Ioi a] a = 𝓝 a [PROOFSTEP] rw [← nhdsWithin_union, Iic_union_Ioi, nhdsWithin_univ] [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : TopologicalSpace β a : α ⊢ 𝓝[Iio a] a ⊔ 𝓝[Ioi a] a = 𝓝[{a}ᶜ] a [PROOFSTEP] rw [← nhdsWithin_union, Iio_union_Ioi] [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : TopologicalSpace β a : α f : α → β ⊢ ContinuousAt f a ↔ ContinuousWithinAt f (Iic a) a ∧ ContinuousWithinAt f (Ici a) a [PROOFSTEP] simp only [ContinuousWithinAt, ContinuousAt, ← tendsto_sup, nhds_left_sup_nhds_right] [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : TopologicalSpace β a : α f : α → β ⊢ ContinuousAt f a ↔ ContinuousWithinAt f (Iio a) a ∧ ContinuousWithinAt f (Ioi a) a [PROOFSTEP] rw [continuousWithinAt_Ioi_iff_Ici, continuousWithinAt_Iio_iff_Iic, continuousAt_iff_continuous_left_right]
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.LeftRight", "llama_tokens": 880}
[GOAL] G : Type u_1 inst✝ : CommGroup G sets : Set (Set G) nonempty : Set.Nonempty sets inter_sets : ∀ (x y : Set G), x ∈ sets → y ∈ sets → ∃ z, z ∈ sets ∧ z ⊆ x ∩ y one : ∀ (U : Set G), U ∈ sets → 1 ∈ U mul : ∀ (U : Set G), U ∈ sets → ∃ V, V ∈ sets ∧ V * V ⊆ U inv : ∀ (U : Set G), U ∈ sets → ∃ V, V ∈ sets ∧ V ⊆ (fun x => x⁻¹) ⁻¹' U x : G U : Set G U_in : U ∈ { sets := sets, nonempty := nonempty, inter_sets := (_ : ∀ {x y : Set G}, x ∈ sets → y ∈ sets → ∃ z, z ∈ sets ∧ z ⊆ x ∩ y) }.sets ⊢ U ⊆ (fun x_1 => x * x_1 * x⁻¹) ⁻¹' U [PROOFSTEP] simp only [mul_inv_cancel_comm, preimage_id'] [GOAL] G : Type u_1 inst✝ : CommGroup G sets : Set (Set G) nonempty : Set.Nonempty sets inter_sets : ∀ (x y : Set G), x ∈ sets → y ∈ sets → ∃ z, z ∈ sets ∧ z ⊆ x ∩ y one : ∀ (U : Set G), U ∈ sets → 1 ∈ U mul : ∀ (U : Set G), U ∈ sets → ∃ V, V ∈ sets ∧ V * V ⊆ U inv : ∀ (U : Set G), U ∈ sets → ∃ V, V ∈ sets ∧ V ⊆ (fun x => x⁻¹) ⁻¹' U x : G U : Set G U_in : U ∈ { sets := sets, nonempty := nonempty, inter_sets := (_ : ∀ {x y : Set G}, x ∈ sets → y ∈ sets → ∃ z, z ∈ sets ∧ z ⊆ x ∩ y) }.sets ⊢ U ⊆ U [PROOFSTEP] rfl [GOAL] G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ GroupFilterBasis G [PROOFSTEP] refine' { sets := {{1}} nonempty := singleton_nonempty _ .. } [GOAL] case refine'_1 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ {x y : Set G}, x ∈ {{1}} → y ∈ {{1}} → ∃ z, z ∈ {{1}} ∧ z ⊆ x ∩ y case refine'_2 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ {U : Set G}, U ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := ?refine'_1 }.sets → 1 ∈ U case refine'_3 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ {U : Set G}, U ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := ?refine'_1 }.sets → ∃ V, V ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := ?refine'_1 }.sets ∧ V * V ⊆ U case refine'_4 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ {U : Set G}, U ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := ?refine'_1 }.sets → ∃ V, V ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := ?refine'_1 }.sets ∧ V ⊆ (fun x => x⁻¹) ⁻¹' U case refine'_5 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ (x₀ : G) {U : Set G}, U ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := ?refine'_1 }.sets → ∃ V, V ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := ?refine'_1 }.sets ∧ V ⊆ (fun x => x₀ * x * x₀⁻¹) ⁻¹' U [PROOFSTEP] all_goals simp only [exists_prop, mem_singleton_iff] [GOAL] case refine'_1 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ {x y : Set G}, x ∈ {{1}} → y ∈ {{1}} → ∃ z, z ∈ {{1}} ∧ z ⊆ x ∩ y [PROOFSTEP] simp only [exists_prop, mem_singleton_iff] [GOAL] case refine'_2 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ {U : Set G}, U ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := (_ : ∀ {x y : Set G}, x ∈ {{1}} → y ∈ {{1}} → ∃ z, z ∈ {{1}} ∧ z ⊆ x ∩ y) }.sets → 1 ∈ U [PROOFSTEP] simp only [exists_prop, mem_singleton_iff] [GOAL] case refine'_3 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ {U : Set G}, U ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := (_ : ∀ {x y : Set G}, x ∈ {{1}} → y ∈ {{1}} → ∃ z, z ∈ {{1}} ∧ z ⊆ x ∩ y) }.sets → ∃ V, V ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := (_ : ∀ {x y : Set G}, x ∈ {{1}} → y ∈ {{1}} → ∃ z, z ∈ {{1}} ∧ z ⊆ x ∩ y) }.sets ∧ V * V ⊆ U [PROOFSTEP] simp only [exists_prop, mem_singleton_iff] [GOAL] case refine'_4 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ {U : Set G}, U ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := (_ : ∀ {x y : Set G}, x ∈ {{1}} → y ∈ {{1}} → ∃ z, z ∈ {{1}} ∧ z ⊆ x ∩ y) }.sets → ∃ V, V ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := (_ : ∀ {x y : Set G}, x ∈ {{1}} → y ∈ {{1}} → ∃ z, z ∈ {{1}} ∧ z ⊆ x ∩ y) }.sets ∧ V ⊆ (fun x => x⁻¹) ⁻¹' U [PROOFSTEP] simp only [exists_prop, mem_singleton_iff] [GOAL] case refine'_5 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ (x₀ : G) {U : Set G}, U ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := (_ : ∀ {x y : Set G}, x ∈ {{1}} → y ∈ {{1}} → ∃ z, z ∈ {{1}} ∧ z ⊆ x ∩ y) }.sets → ∃ V, V ∈ { sets := {{1}}, nonempty := (_ : Set.Nonempty {{1}}), inter_sets := (_ : ∀ {x y : Set G}, x ∈ {{1}} → y ∈ {{1}} → ∃ z, z ∈ {{1}} ∧ z ⊆ x ∩ y) }.sets ∧ V ⊆ (fun x => x₀ * x * x₀⁻¹) ⁻¹' U [PROOFSTEP] simp only [exists_prop, mem_singleton_iff] [GOAL] case refine'_1 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ {x y : Set G}, x = {1} → y = {1} → ∃ z, z = {1} ∧ z ⊆ x ∩ y [PROOFSTEP] rintro - - rfl rfl [GOAL] case refine'_1 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∃ z, z = {1} ∧ z ⊆ {1} ∩ {1} [PROOFSTEP] use{1} [GOAL] case h G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ {1} = {1} ∧ {1} ⊆ {1} ∩ {1} [PROOFSTEP] simp [GOAL] case refine'_2 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ {U : Set G}, U = {1} → 1 ∈ U [PROOFSTEP] simp [GOAL] case refine'_3 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ {U : Set G}, U = {1} → ∃ V, V = {1} ∧ V * V ⊆ U [PROOFSTEP] rintro - rfl [GOAL] case refine'_3 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∃ V, V = {1} ∧ V * V ⊆ {1} [PROOFSTEP] use{1} [GOAL] case h G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ {1} = {1} ∧ {1} * {1} ⊆ {1} [PROOFSTEP] simp [GOAL] case refine'_4 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ {U : Set G}, U = {1} → ∃ V, V = {1} ∧ V ⊆ (fun x => x⁻¹) ⁻¹' U [PROOFSTEP] rintro - rfl [GOAL] case refine'_4 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∃ V, V = {1} ∧ V ⊆ (fun x => x⁻¹) ⁻¹' {1} [PROOFSTEP] use{1} [GOAL] case h G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ {1} = {1} ∧ {1} ⊆ (fun x => x⁻¹) ⁻¹' {1} [PROOFSTEP] simp [GOAL] case refine'_5 G : Type u inst✝ : Group G B : GroupFilterBasis G ⊢ ∀ (x₀ : G) {U : Set G}, U = {1} → ∃ V, V = {1} ∧ V ⊆ (fun x => x₀ * x * x₀⁻¹) ⁻¹' U [PROOFSTEP] rintro x₀ - rfl [GOAL] case refine'_5 G : Type u inst✝ : Group G B : GroupFilterBasis G x₀ : G ⊢ ∃ V, V = {1} ∧ V ⊆ (fun x => x₀ * x * x₀⁻¹) ⁻¹' {1} [PROOFSTEP] use{1} [GOAL] case h G : Type u inst✝ : Group G B : GroupFilterBasis G x₀ : G ⊢ {1} = {1} ∧ {1} ⊆ (fun x => x₀ * x * x₀⁻¹) ⁻¹' {1} [PROOFSTEP] simp [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G ⊢ N B 1 = FilterBasis.filter toFilterBasis [PROOFSTEP] simp only [N, one_mul, map_id'] [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ : G ⊢ 𝓝 x₀ = N B x₀ [PROOFSTEP] rw [TopologicalSpace.nhds_mkOfNhds] [GOAL] case h₀ G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ : G ⊢ pure ≤ N B [PROOFSTEP] intro x U U_in [GOAL] case h₀ G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U : Set G U_in : U ∈ N B x ⊢ U ∈ pure x [PROOFSTEP] rw [(B.hasBasis x).mem_iff] at U_in [GOAL] case h₀ G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U : Set G U_in : ∃ i, i ∈ B ∧ (fun y => x * y) '' i ⊆ U ⊢ U ∈ pure x [PROOFSTEP] rcases U_in with ⟨V, V_in, H⟩ [GOAL] case h₀.intro.intro G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B H : (fun y => x * y) '' V ⊆ U ⊢ U ∈ pure x [PROOFSTEP] simpa [mem_pure] using H (mem_image_of_mem _ (GroupFilterBasis.one V_in)) [GOAL] case h₁ G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ : G ⊢ ∀ (a : G) (s : Set G), s ∈ N B a → ∃ t, t ∈ N B a ∧ t ⊆ s ∧ ∀ (a' : G), a' ∈ t → s ∈ N B a' [PROOFSTEP] intro x U U_in [GOAL] case h₁ G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U : Set G U_in : U ∈ N B x ⊢ ∃ t, t ∈ N B x ∧ t ⊆ U ∧ ∀ (a' : G), a' ∈ t → U ∈ N B a' [PROOFSTEP] rw [(B.hasBasis x).mem_iff] at U_in [GOAL] case h₁ G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U : Set G U_in : ∃ i, i ∈ B ∧ (fun y => x * y) '' i ⊆ U ⊢ ∃ t, t ∈ N B x ∧ t ⊆ U ∧ ∀ (a' : G), a' ∈ t → U ∈ N B a' [PROOFSTEP] rcases U_in with ⟨V, V_in, H⟩ [GOAL] case h₁.intro.intro G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B H : (fun y => x * y) '' V ⊆ U ⊢ ∃ t, t ∈ N B x ∧ t ⊆ U ∧ ∀ (a' : G), a' ∈ t → U ∈ N B a' [PROOFSTEP] rcases GroupFilterBasis.mul V_in with ⟨W, W_in, hW⟩ [GOAL] case h₁.intro.intro.intro.intro G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B H : (fun y => x * y) '' V ⊆ U W : Set G W_in : W ∈ B hW : W * W ⊆ V ⊢ ∃ t, t ∈ N B x ∧ t ⊆ U ∧ ∀ (a' : G), a' ∈ t → U ∈ N B a' [PROOFSTEP] use(fun y ↦ x * y) '' W, image_mem_map (FilterBasis.mem_filter_of_mem _ W_in) [GOAL] case right G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B H : (fun y => x * y) '' V ⊆ U W : Set G W_in : W ∈ B hW : W * W ⊆ V ⊢ (fun y => x * y) '' W ⊆ U ∧ ∀ (a' : G), a' ∈ (fun y => x * y) '' W → U ∈ N B a' [PROOFSTEP] constructor [GOAL] case right.left G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B H : (fun y => x * y) '' V ⊆ U W : Set G W_in : W ∈ B hW : W * W ⊆ V ⊢ (fun y => x * y) '' W ⊆ U [PROOFSTEP] rw [image_subset_iff] at H ⊢ [GOAL] case right.left G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B H : V ⊆ (fun y => x * y) ⁻¹' U W : Set G W_in : W ∈ B hW : W * W ⊆ V ⊢ W ⊆ (fun y => x * y) ⁻¹' U [PROOFSTEP] exact ((B.prod_subset_self W_in).trans hW).trans H [GOAL] case right.right G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B H : (fun y => x * y) '' V ⊆ U W : Set G W_in : W ∈ B hW : W * W ⊆ V ⊢ ∀ (a' : G), a' ∈ (fun y => x * y) '' W → U ∈ N B a' [PROOFSTEP] rintro y ⟨t, tW, rfl⟩ [GOAL] case right.right.intro.intro G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B H : (fun y => x * y) '' V ⊆ U W : Set G W_in : W ∈ B hW : W * W ⊆ V t : G tW : t ∈ W ⊢ U ∈ N B ((fun y => x * y) t) [PROOFSTEP] rw [(B.hasBasis _).mem_iff] [GOAL] case right.right.intro.intro G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B H : (fun y => x * y) '' V ⊆ U W : Set G W_in : W ∈ B hW : W * W ⊆ V t : G tW : t ∈ W ⊢ ∃ i, i ∈ B ∧ (fun y => (fun y => x * y) t * y) '' i ⊆ U [PROOFSTEP] use W, W_in [GOAL] case right G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B H : (fun y => x * y) '' V ⊆ U W : Set G W_in : W ∈ B hW : W * W ⊆ V t : G tW : t ∈ W ⊢ (fun y => (fun y => x * y) t * y) '' W ⊆ U [PROOFSTEP] apply Subset.trans _ H [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B H : (fun y => x * y) '' V ⊆ U W : Set G W_in : W ∈ B hW : W * W ⊆ V t : G tW : t ∈ W ⊢ (fun y => (fun y => x * y) t * y) '' W ⊆ (fun y => x * y) '' V [PROOFSTEP] clear H [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B W : Set G W_in : W ∈ B hW : W * W ⊆ V t : G tW : t ∈ W ⊢ (fun y => (fun y => x * y) t * y) '' W ⊆ (fun y => x * y) '' V [PROOFSTEP] rintro z ⟨w, wW, rfl⟩ [GOAL] case intro.intro G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B W : Set G W_in : W ∈ B hW : W * W ⊆ V t : G tW : t ∈ W w : G wW : w ∈ W ⊢ (fun y => (fun y => x * y) t * y) w ∈ (fun y => x * y) '' V [PROOFSTEP] exact ⟨t * w, hW (mul_mem_mul tW wW), by simp [mul_assoc]⟩ [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ x : G U V : Set G V_in : V ∈ B W : Set G W_in : W ∈ B hW : W * W ⊆ V t : G tW : t ∈ W w : G wW : w ∈ W ⊢ (fun y => x * y) (t * w) = (fun y => (fun y => x * y) t * y) w [PROOFSTEP] simp [mul_assoc] [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G ⊢ 𝓝 1 = FilterBasis.filter toFilterBasis [PROOFSTEP] rw [B.nhds_eq] [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G ⊢ N B 1 = FilterBasis.filter toFilterBasis [PROOFSTEP] simp only [N, one_mul] [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G ⊢ map (fun y => y) (FilterBasis.filter toFilterBasis) = FilterBasis.filter toFilterBasis [PROOFSTEP] exact map_id [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ : G ⊢ HasBasis (𝓝 x₀) (fun V => V ∈ B) fun V => (fun y => x₀ * y) '' V [PROOFSTEP] rw [B.nhds_eq] [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G x₀ : G ⊢ HasBasis (N B x₀) (fun V => V ∈ B) fun V => (fun y => x₀ * y) '' V [PROOFSTEP] apply B.hasBasis [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G ⊢ HasBasis (𝓝 1) (fun V => V ∈ B) id [PROOFSTEP] rw [B.nhds_one_eq] [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G ⊢ HasBasis (FilterBasis.filter toFilterBasis) (fun V => V ∈ B) id [PROOFSTEP] exact B.toFilterBasis.hasBasis [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G U : Set G hU : U ∈ B ⊢ U ∈ 𝓝 1 [PROOFSTEP] rw [B.nhds_one_hasBasis.mem_iff] [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G U : Set G hU : U ∈ B ⊢ ∃ i, i ∈ B ∧ id i ⊆ U [PROOFSTEP] exact ⟨U, hU, rfl.subset⟩ [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G ⊢ TopologicalGroup G [PROOFSTEP] letI := B.topology [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B ⊢ TopologicalGroup G [PROOFSTEP] have basis := B.nhds_one_hasBasis [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id ⊢ TopologicalGroup G [PROOFSTEP] have basis' := basis.prod basis [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd ⊢ TopologicalGroup G [PROOFSTEP] refine' TopologicalGroup.of_nhds_one _ _ _ _ [GOAL] case refine'_1 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd ⊢ Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) [PROOFSTEP] rw [basis'.tendsto_iff basis] [GOAL] case refine'_1 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd ⊢ ∀ (ib : Set G), ib ∈ B → ∃ ia, (ia.fst ∈ B ∧ ia.snd ∈ B) ∧ ∀ (x : G × G), x ∈ id ia.fst ×ˢ id ia.snd → uncurry (fun x x_1 => x * x_1) x ∈ id ib [PROOFSTEP] suffices ∀ U ∈ B, ∃ V W, (V ∈ B ∧ W ∈ B) ∧ ∀ a b, a ∈ V → b ∈ W → a * b ∈ U by simpa [GOAL] G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this✝ : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd this : ∀ (U : Set G), U ∈ B → ∃ V W, (V ∈ B ∧ W ∈ B) ∧ ∀ (a b : G), a ∈ V → b ∈ W → a * b ∈ U ⊢ ∀ (ib : Set G), ib ∈ B → ∃ ia, (ia.fst ∈ B ∧ ia.snd ∈ B) ∧ ∀ (x : G × G), x ∈ id ia.fst ×ˢ id ia.snd → uncurry (fun x x_1 => x * x_1) x ∈ id ib [PROOFSTEP] simpa [GOAL] case refine'_1 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd ⊢ ∀ (U : Set G), U ∈ B → ∃ V W, (V ∈ B ∧ W ∈ B) ∧ ∀ (a b : G), a ∈ V → b ∈ W → a * b ∈ U [PROOFSTEP] intro U U_in [GOAL] case refine'_1 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd U : Set G U_in : U ∈ B ⊢ ∃ V W, (V ∈ B ∧ W ∈ B) ∧ ∀ (a b : G), a ∈ V → b ∈ W → a * b ∈ U [PROOFSTEP] rcases mul U_in with ⟨V, V_in, hV⟩ [GOAL] case refine'_1.intro.intro G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd U : Set G U_in : U ∈ B V : Set G V_in : V ∈ B hV : V * V ⊆ U ⊢ ∃ V W, (V ∈ B ∧ W ∈ B) ∧ ∀ (a b : G), a ∈ V → b ∈ W → a * b ∈ U [PROOFSTEP] refine' ⟨V, V, ⟨V_in, V_in⟩, _⟩ [GOAL] case refine'_1.intro.intro G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd U : Set G U_in : U ∈ B V : Set G V_in : V ∈ B hV : V * V ⊆ U ⊢ ∀ (a b : G), a ∈ V → b ∈ V → a * b ∈ U [PROOFSTEP] intro a b a_in b_in [GOAL] case refine'_1.intro.intro G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd U : Set G U_in : U ∈ B V : Set G V_in : V ∈ B hV : V * V ⊆ U a b : G a_in : a ∈ V b_in : b ∈ V ⊢ a * b ∈ U [PROOFSTEP] exact hV ⟨a, b, a_in, b_in, rfl⟩ [GOAL] case refine'_2 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd ⊢ Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) [PROOFSTEP] rw [basis.tendsto_iff basis] [GOAL] case refine'_2 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd ⊢ ∀ (ib : Set G), ib ∈ B → ∃ ia, ia ∈ B ∧ ∀ (x : G), x ∈ id ia → x⁻¹ ∈ id ib [PROOFSTEP] intro U U_in [GOAL] case refine'_2 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd U : Set G U_in : U ∈ B ⊢ ∃ ia, ia ∈ B ∧ ∀ (x : G), x ∈ id ia → x⁻¹ ∈ id U [PROOFSTEP] simpa using inv U_in [GOAL] case refine'_3 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd ⊢ ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) [PROOFSTEP] intro x₀ [GOAL] case refine'_3 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd x₀ : G ⊢ 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) [PROOFSTEP] rw [nhds_eq, nhds_one_eq] [GOAL] case refine'_3 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd x₀ : G ⊢ N B x₀ = map (fun x => x₀ * x) (FilterBasis.filter toFilterBasis) [PROOFSTEP] rfl [GOAL] case refine'_4 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd ⊢ ∀ (x₀ : G), Tendsto (fun x => x₀ * x * x₀⁻¹) (𝓝 1) (𝓝 1) [PROOFSTEP] intro x₀ [GOAL] case refine'_4 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd x₀ : G ⊢ Tendsto (fun x => x₀ * x * x₀⁻¹) (𝓝 1) (𝓝 1) [PROOFSTEP] rw [basis.tendsto_iff basis] [GOAL] case refine'_4 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd x₀ : G ⊢ ∀ (ib : Set G), ib ∈ B → ∃ ia, ia ∈ B ∧ ∀ (x : G), x ∈ id ia → x₀ * x * x₀⁻¹ ∈ id ib [PROOFSTEP] intro U U_in [GOAL] case refine'_4 G : Type u inst✝ : Group G B✝ B : GroupFilterBasis G this : TopologicalSpace G := topology B basis : HasBasis (𝓝 1) (fun V => V ∈ B) id basis' : HasBasis (𝓝 1 ×ˢ 𝓝 1) (fun i => i.fst ∈ B ∧ i.snd ∈ B) fun i => id i.fst ×ˢ id i.snd x₀ : G U : Set G U_in : U ∈ B ⊢ ∃ ia, ia ∈ B ∧ ∀ (x : G), x ∈ id ia → x₀ * x * x₀⁻¹ ∈ id U [PROOFSTEP] exact conj x₀ U_in [GOAL] R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R ⊢ TopologicalRing R [PROOFSTEP] let B' := B.toAddGroupFilterBasis [GOAL] R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis ⊢ TopologicalRing R [PROOFSTEP] letI := B'.topology [GOAL] R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this : TopologicalSpace R := AddGroupFilterBasis.topology B' ⊢ TopologicalRing R [PROOFSTEP] have basis := B'.nhds_zero_hasBasis [GOAL] R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id ⊢ TopologicalRing R [PROOFSTEP] have basis' := basis.prod basis [GOAL] R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd ⊢ TopologicalRing R [PROOFSTEP] haveI := B'.isTopologicalAddGroup [GOAL] R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R ⊢ TopologicalRing R [PROOFSTEP] apply TopologicalRing.of_addGroup_of_nhds_zero [GOAL] case hmul R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R ⊢ Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) [PROOFSTEP] rw [basis'.tendsto_iff basis] [GOAL] case hmul R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R ⊢ ∀ (ib : Set R), ib ∈ B' → ∃ ia, (ia.fst ∈ B' ∧ ia.snd ∈ B') ∧ ∀ (x : R × R), x ∈ id ia.fst ×ˢ id ia.snd → uncurry (fun x x_1 => x * x_1) x ∈ id ib [PROOFSTEP] suffices ∀ U ∈ B', ∃ V W, (V ∈ B' ∧ W ∈ B') ∧ ∀ a b, a ∈ V → b ∈ W → a * b ∈ U by simpa [GOAL] R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝¹ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this✝ : TopologicalAddGroup R this : ∀ (U : Set R), U ∈ B' → ∃ V W, (V ∈ B' ∧ W ∈ B') ∧ ∀ (a b : R), a ∈ V → b ∈ W → a * b ∈ U ⊢ ∀ (ib : Set R), ib ∈ B' → ∃ ia, (ia.fst ∈ B' ∧ ia.snd ∈ B') ∧ ∀ (x : R × R), x ∈ id ia.fst ×ˢ id ia.snd → uncurry (fun x x_1 => x * x_1) x ∈ id ib [PROOFSTEP] simpa [GOAL] case hmul R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R ⊢ ∀ (U : Set R), U ∈ B' → ∃ V W, (V ∈ B' ∧ W ∈ B') ∧ ∀ (a b : R), a ∈ V → b ∈ W → a * b ∈ U [PROOFSTEP] intro U U_in [GOAL] case hmul R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R U : Set R U_in : U ∈ B' ⊢ ∃ V W, (V ∈ B' ∧ W ∈ B') ∧ ∀ (a b : R), a ∈ V → b ∈ W → a * b ∈ U [PROOFSTEP] rcases B.mul U_in with ⟨V, V_in, hV⟩ [GOAL] case hmul.intro.intro R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R U : Set R U_in : U ∈ B' V : Set R V_in : V ∈ B hV : V * V ⊆ U ⊢ ∃ V W, (V ∈ B' ∧ W ∈ B') ∧ ∀ (a b : R), a ∈ V → b ∈ W → a * b ∈ U [PROOFSTEP] refine' ⟨V, V, ⟨V_in, V_in⟩, _⟩ [GOAL] case hmul.intro.intro R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R U : Set R U_in : U ∈ B' V : Set R V_in : V ∈ B hV : V * V ⊆ U ⊢ ∀ (a b : R), a ∈ V → b ∈ V → a * b ∈ U [PROOFSTEP] intro a b a_in b_in [GOAL] case hmul.intro.intro R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R U : Set R U_in : U ∈ B' V : Set R V_in : V ∈ B hV : V * V ⊆ U a b : R a_in : a ∈ V b_in : b ∈ V ⊢ a * b ∈ U [PROOFSTEP] exact hV ⟨a, b, a_in, b_in, rfl⟩ [GOAL] case hmul_left R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R ⊢ ∀ (x₀ : R), Tendsto (fun x => x₀ * x) (𝓝 0) (𝓝 0) [PROOFSTEP] intro x₀ [GOAL] case hmul_left R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R x₀ : R ⊢ Tendsto (fun x => x₀ * x) (𝓝 0) (𝓝 0) [PROOFSTEP] rw [basis.tendsto_iff basis] [GOAL] case hmul_left R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R x₀ : R ⊢ ∀ (ib : Set R), ib ∈ B' → ∃ ia, ia ∈ B' ∧ ∀ (x : R), x ∈ id ia → x₀ * x ∈ id ib [PROOFSTEP] intro U [GOAL] case hmul_left R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R x₀ : R U : Set R ⊢ U ∈ B' → ∃ ia, ia ∈ B' ∧ ∀ (x : R), x ∈ id ia → x₀ * x ∈ id U [PROOFSTEP] simpa using B.mul_left x₀ [GOAL] case hmul_right R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R ⊢ ∀ (x₀ : R), Tendsto (fun x => x * x₀) (𝓝 0) (𝓝 0) [PROOFSTEP] intro x₀ [GOAL] case hmul_right R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R x₀ : R ⊢ Tendsto (fun x => x * x₀) (𝓝 0) (𝓝 0) [PROOFSTEP] rw [basis.tendsto_iff basis] [GOAL] case hmul_right R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R x₀ : R ⊢ ∀ (ib : Set R), ib ∈ B' → ∃ ia, ia ∈ B' ∧ ∀ (x : R), x ∈ id ia → x * x₀ ∈ id ib [PROOFSTEP] intro U [GOAL] case hmul_right R✝ : Type u inst✝¹ : Ring R✝ B✝ : RingFilterBasis R✝ R : Type u inst✝ : Ring R B : RingFilterBasis R B' : AddGroupFilterBasis R := toAddGroupFilterBasis this✝ : TopologicalSpace R := AddGroupFilterBasis.topology B' basis : HasBasis (𝓝 0) (fun V => V ∈ B') id basis' : HasBasis (𝓝 0 ×ˢ 𝓝 0) (fun i => i.fst ∈ B' ∧ i.snd ∈ B') fun i => id i.fst ×ˢ id i.snd this : TopologicalAddGroup R x₀ : R U : Set R ⊢ U ∈ B' → ∃ ia, ia ∈ B' ∧ ∀ (x : R), x ∈ id ia → x * x₀ ∈ id U [PROOFSTEP] simpa using B.mul_right x₀ [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : DiscreteTopology R src✝ : AddGroupFilterBasis M := let_fun this := default; this ⊢ ∀ {U : Set M}, U ∈ AddGroupFilterBasis.toFilterBasis.sets → ∃ V, V ∈ 𝓝 0 ∧ ∃ W, W ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V • W ⊆ U [PROOFSTEP] rintro U (rfl : U ∈ {{(0 : M)}}) [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : DiscreteTopology R src✝ : AddGroupFilterBasis M := let_fun this := default; this ⊢ ∃ V, V ∈ 𝓝 0 ∧ ∃ W, W ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V • W ⊆ {0} [PROOFSTEP] use univ, univ_mem, {0}, rfl [GOAL] case right R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : DiscreteTopology R src✝ : AddGroupFilterBasis M := let_fun this := default; this ⊢ univ • {0} ⊆ {0} [PROOFSTEP] rintro a ⟨x, m, -, rfl, rfl⟩ [GOAL] case right.intro.intro.intro.intro R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : DiscreteTopology R src✝ : AddGroupFilterBasis M := let_fun this := default; this x : R ⊢ (fun x x_1 => x • x_1) x 0 ∈ {0} [PROOFSTEP] simp only [smul_zero, mem_singleton_iff] [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : DiscreteTopology R src✝ : AddGroupFilterBasis M := let_fun this := default; this ⊢ ∀ (x₀ : R) {U : Set M}, U ∈ AddGroupFilterBasis.toFilterBasis.sets → ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V ⊆ (fun x => x₀ • x) ⁻¹' U [PROOFSTEP] rintro x₀ U (h : U ∈ {{(0 : M)}}) [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : DiscreteTopology R src✝ : AddGroupFilterBasis M := let_fun this := default; this x₀ : R U : Set M h : U ∈ {{0}} ⊢ ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V ⊆ (fun x => x₀ • x) ⁻¹' U [PROOFSTEP] rw [mem_singleton_iff] at h [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : DiscreteTopology R src✝ : AddGroupFilterBasis M := let_fun this := default; this x₀ : R U : Set M h : U = {0} ⊢ ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V ⊆ (fun x => x₀ • x) ⁻¹' U [PROOFSTEP] use{0}, rfl [GOAL] case right R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : DiscreteTopology R src✝ : AddGroupFilterBasis M := let_fun this := default; this x₀ : R U : Set M h : U = {0} ⊢ {0} ⊆ (fun x => x₀ • x) ⁻¹' U [PROOFSTEP] simp [h] [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : DiscreteTopology R src✝ : AddGroupFilterBasis M := let_fun this := default; this ⊢ ∀ (m₀ : M) {U : Set M}, U ∈ AddGroupFilterBasis.toFilterBasis.sets → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ U [PROOFSTEP] rintro m₀ U (h : U ∈ (0 : Set (Set M))) [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : DiscreteTopology R src✝ : AddGroupFilterBasis M := let_fun this := default; this m₀ : M U : Set M h : U ∈ 0 ⊢ ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ U [PROOFSTEP] rw [Set.mem_zero] at h [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : DiscreteTopology R src✝ : AddGroupFilterBasis M := let_fun this := default; this m₀ : M U : Set M h : U = 0 ⊢ ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ U [PROOFSTEP] simp [h, nhds_discrete] [GOAL] R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i ⊢ ContinuousSMul R M [PROOFSTEP] apply ContinuousSMul.of_nhds_zero [GOAL] case hmul R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i ⊢ Tendsto (fun p => p.fst • p.snd) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) [PROOFSTEP] rw [h.tendsto_right_iff] [GOAL] case hmul R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i ⊢ ∀ (i : ι), p i → ∀ᶠ (x : R × M) in 𝓝 0 ×ˢ 𝓝 0, x.fst • x.snd ∈ b i [PROOFSTEP] intro i hi [GOAL] case hmul R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i i : ι hi : p i ⊢ ∀ᶠ (x : R × M) in 𝓝 0 ×ˢ 𝓝 0, x.fst • x.snd ∈ b i [PROOFSTEP] rcases hsmul hi with ⟨V, V_in, j, hj, hVj⟩ [GOAL] case hmul.intro.intro.intro.intro R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i i : ι hi : p i V : Set R V_in : V ∈ 𝓝 0 j : ι hj : p j hVj : V • b j ⊆ b i ⊢ ∀ᶠ (x : R × M) in 𝓝 0 ×ˢ 𝓝 0, x.fst • x.snd ∈ b i [PROOFSTEP] apply mem_of_superset (prod_mem_prod V_in <| h.mem_of_mem hj) [GOAL] case hmul.intro.intro.intro.intro R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i i : ι hi : p i V : Set R V_in : V ∈ 𝓝 0 j : ι hj : p j hVj : V • b j ⊆ b i ⊢ V ×ˢ b j ⊆ {x | (fun x => x.fst • x.snd ∈ b i) x} [PROOFSTEP] rintro ⟨v, w⟩ ⟨v_in : v ∈ V, w_in : w ∈ b j⟩ [GOAL] case hmul.intro.intro.intro.intro.mk.intro R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i i : ι hi : p i V : Set R V_in : V ∈ 𝓝 0 j : ι hj : p j hVj : V • b j ⊆ b i v : R w : M v_in : v ∈ V w_in : w ∈ b j ⊢ (v, w) ∈ {x | (fun x => x.fst • x.snd ∈ b i) x} [PROOFSTEP] exact hVj (Set.smul_mem_smul v_in w_in) [GOAL] case hmulleft R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i ⊢ ∀ (m : M), Tendsto (fun a => a • m) (𝓝 0) (𝓝 0) [PROOFSTEP] intro m₀ [GOAL] case hmulleft R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i m₀ : M ⊢ Tendsto (fun a => a • m₀) (𝓝 0) (𝓝 0) [PROOFSTEP] rw [h.tendsto_right_iff] [GOAL] case hmulleft R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i m₀ : M ⊢ ∀ (i : ι), p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i [PROOFSTEP] intro i hi [GOAL] case hmulleft R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i m₀ : M i : ι hi : p i ⊢ ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i [PROOFSTEP] exact hsmul_right m₀ hi [GOAL] case hmulright R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i ⊢ ∀ (a : R), Tendsto (fun m => a • m) (𝓝 0) (𝓝 0) [PROOFSTEP] intro x₀ [GOAL] case hmulright R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i x₀ : R ⊢ Tendsto (fun m => x₀ • m) (𝓝 0) (𝓝 0) [PROOFSTEP] rw [h.tendsto_right_iff] [GOAL] case hmulright R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i x₀ : R ⊢ ∀ (i : ι), p i → ∀ᶠ (x : M) in 𝓝 0, x₀ • x ∈ b i [PROOFSTEP] intro i hi [GOAL] case hmulright R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i x₀ : R i : ι hi : p i ⊢ ∀ᶠ (x : M) in 𝓝 0, x₀ • x ∈ b i [PROOFSTEP] rcases hsmul_left x₀ hi with ⟨j, hj, hji⟩ [GOAL] case hmulright.intro.intro R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M B : ModuleFilterBasis R M ι : Type u_3 inst✝² : TopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : TopologicalAddGroup M p : ι → Prop b : ι → Set M h : HasBasis (𝓝 0) p b hsmul : ∀ {i : ι}, p i → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j x, b j ⊆ (fun x => x₀ • x) ⁻¹' b i hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i x₀ : R i : ι hi : p i j : ι hj : p j hji : b j ⊆ (fun x => x₀ • x) ⁻¹' b i ⊢ ∀ᶠ (x : M) in 𝓝 0, x₀ • x ∈ b i [PROOFSTEP] exact mem_of_superset (h.mem_of_mem hj) hji [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : TopologicalRing R ⊢ ContinuousSMul R M [PROOFSTEP] let B' := B.toAddGroupFilterBasis [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : TopologicalRing R B' : AddGroupFilterBasis M := B.toAddGroupFilterBasis ⊢ ContinuousSMul R M [PROOFSTEP] let _ := B'.topology [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : TopologicalRing R B' : AddGroupFilterBasis M := B.toAddGroupFilterBasis x✝ : TopologicalSpace M := AddGroupFilterBasis.topology B' ⊢ ContinuousSMul R M [PROOFSTEP] have _ := B'.isTopologicalAddGroup [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : TopologicalRing R B' : AddGroupFilterBasis M := B.toAddGroupFilterBasis x✝¹ : TopologicalSpace M := AddGroupFilterBasis.topology B' x✝ : TopologicalAddGroup M ⊢ ContinuousSMul R M [PROOFSTEP] exact ContinuousSMul.of_basis_zero B'.nhds_zero_hasBasis (fun {_} => by simpa using B.smul) (by simpa using B.smul_left) B.smul_right [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : TopologicalRing R B' : AddGroupFilterBasis M := B.toAddGroupFilterBasis x✝² : TopologicalSpace M := AddGroupFilterBasis.topology B' x✝¹ : TopologicalAddGroup M x✝ : Set M ⊢ x✝ ∈ B' → ∃ V, V ∈ 𝓝 0 ∧ ∃ j x, V • id j ⊆ id x✝ [PROOFSTEP] simpa using B.smul [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : TopologicalSpace R inst✝² : AddCommGroup M inst✝¹ : Module R M B : ModuleFilterBasis R M inst✝ : TopologicalRing R B' : AddGroupFilterBasis M := B.toAddGroupFilterBasis x✝¹ : TopologicalSpace M := AddGroupFilterBasis.topology B' x✝ : TopologicalAddGroup M ⊢ ∀ (x₀ : R) {i : Set M}, i ∈ B' → ∃ j x, id j ⊆ (fun x => x₀ • x) ⁻¹' id i [PROOFSTEP] simpa using B.smul_left [GOAL] R✝ : Type u_1 M✝ : Type u_2 inst✝⁶ : CommRing R✝ inst✝⁵ : TopologicalSpace R✝ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R✝ M✝ B : ModuleFilterBasis R✝ M✝ R : Type u_3 M : Type u_4 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M BR : RingFilterBasis R BM : AddGroupFilterBasis M smul : ∀ {U : Set M}, U ∈ BM → ∃ V, V ∈ BR ∧ ∃ W, W ∈ BM ∧ V • W ⊆ U smul_left : ∀ (x₀ : R) {U : Set M}, U ∈ BM → ∃ V, V ∈ BM ∧ V ⊆ (fun x => x₀ • x) ⁻¹' U smul_right : ∀ (m₀ : M) {U : Set M}, U ∈ BM → ∃ V, V ∈ BR ∧ V ⊆ (fun x => x • m₀) ⁻¹' U x✝ : TopologicalSpace R := RingFilterBasis.topology BR ⊢ ∀ {U : Set M}, U ∈ AddGroupFilterBasis.toFilterBasis.sets → ∃ V, V ∈ 𝓝 0 ∧ ∃ W, W ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V • W ⊆ U [PROOFSTEP] intro U U_in [GOAL] R✝ : Type u_1 M✝ : Type u_2 inst✝⁶ : CommRing R✝ inst✝⁵ : TopologicalSpace R✝ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R✝ M✝ B : ModuleFilterBasis R✝ M✝ R : Type u_3 M : Type u_4 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M BR : RingFilterBasis R BM : AddGroupFilterBasis M smul : ∀ {U : Set M}, U ∈ BM → ∃ V, V ∈ BR ∧ ∃ W, W ∈ BM ∧ V • W ⊆ U smul_left : ∀ (x₀ : R) {U : Set M}, U ∈ BM → ∃ V, V ∈ BM ∧ V ⊆ (fun x => x₀ • x) ⁻¹' U smul_right : ∀ (m₀ : M) {U : Set M}, U ∈ BM → ∃ V, V ∈ BR ∧ V ⊆ (fun x => x • m₀) ⁻¹' U x✝ : TopologicalSpace R := RingFilterBasis.topology BR U : Set M U_in : U ∈ AddGroupFilterBasis.toFilterBasis.sets ⊢ ∃ V, V ∈ 𝓝 0 ∧ ∃ W, W ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V • W ⊆ U [PROOFSTEP] rcases smul U_in with ⟨V, V_in, W, W_in, H⟩ [GOAL] case intro.intro.intro.intro R✝ : Type u_1 M✝ : Type u_2 inst✝⁶ : CommRing R✝ inst✝⁵ : TopologicalSpace R✝ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R✝ M✝ B : ModuleFilterBasis R✝ M✝ R : Type u_3 M : Type u_4 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M BR : RingFilterBasis R BM : AddGroupFilterBasis M smul : ∀ {U : Set M}, U ∈ BM → ∃ V, V ∈ BR ∧ ∃ W, W ∈ BM ∧ V • W ⊆ U smul_left : ∀ (x₀ : R) {U : Set M}, U ∈ BM → ∃ V, V ∈ BM ∧ V ⊆ (fun x => x₀ • x) ⁻¹' U smul_right : ∀ (m₀ : M) {U : Set M}, U ∈ BM → ∃ V, V ∈ BR ∧ V ⊆ (fun x => x • m₀) ⁻¹' U x✝ : TopologicalSpace R := RingFilterBasis.topology BR U : Set M U_in : U ∈ AddGroupFilterBasis.toFilterBasis.sets V : Set R V_in : V ∈ BR W : Set M W_in : W ∈ BM H : V • W ⊆ U ⊢ ∃ V, V ∈ 𝓝 0 ∧ ∃ W, W ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V • W ⊆ U [PROOFSTEP] exact ⟨V, BR.toAddGroupFilterBasis.mem_nhds_zero V_in, W, W_in, H⟩ [GOAL] R✝ : Type u_1 M✝ : Type u_2 inst✝⁶ : CommRing R✝ inst✝⁵ : TopologicalSpace R✝ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R✝ M✝ B : ModuleFilterBasis R✝ M✝ R : Type u_3 M : Type u_4 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M BR : RingFilterBasis R BM : AddGroupFilterBasis M smul : ∀ {U : Set M}, U ∈ BM → ∃ V, V ∈ BR ∧ ∃ W, W ∈ BM ∧ V • W ⊆ U smul_left : ∀ (x₀ : R) {U : Set M}, U ∈ BM → ∃ V, V ∈ BM ∧ V ⊆ (fun x => x₀ • x) ⁻¹' U smul_right : ∀ (m₀ : M) {U : Set M}, U ∈ BM → ∃ V, V ∈ BR ∧ V ⊆ (fun x => x • m₀) ⁻¹' U x✝ : TopologicalSpace R := RingFilterBasis.topology BR ⊢ ∀ (m₀ : M) {U : Set M}, U ∈ AddGroupFilterBasis.toFilterBasis.sets → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ U [PROOFSTEP] intro m₀ U U_in [GOAL] R✝ : Type u_1 M✝ : Type u_2 inst✝⁶ : CommRing R✝ inst✝⁵ : TopologicalSpace R✝ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R✝ M✝ B : ModuleFilterBasis R✝ M✝ R : Type u_3 M : Type u_4 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M BR : RingFilterBasis R BM : AddGroupFilterBasis M smul : ∀ {U : Set M}, U ∈ BM → ∃ V, V ∈ BR ∧ ∃ W, W ∈ BM ∧ V • W ⊆ U smul_left : ∀ (x₀ : R) {U : Set M}, U ∈ BM → ∃ V, V ∈ BM ∧ V ⊆ (fun x => x₀ • x) ⁻¹' U smul_right : ∀ (m₀ : M) {U : Set M}, U ∈ BM → ∃ V, V ∈ BR ∧ V ⊆ (fun x => x • m₀) ⁻¹' U x✝ : TopologicalSpace R := RingFilterBasis.topology BR m₀ : M U : Set M U_in : U ∈ AddGroupFilterBasis.toFilterBasis.sets ⊢ ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ U [PROOFSTEP] rcases smul_right m₀ U_in with ⟨V, V_in, H⟩ [GOAL] case intro.intro R✝ : Type u_1 M✝ : Type u_2 inst✝⁶ : CommRing R✝ inst✝⁵ : TopologicalSpace R✝ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R✝ M✝ B : ModuleFilterBasis R✝ M✝ R : Type u_3 M : Type u_4 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M BR : RingFilterBasis R BM : AddGroupFilterBasis M smul : ∀ {U : Set M}, U ∈ BM → ∃ V, V ∈ BR ∧ ∃ W, W ∈ BM ∧ V • W ⊆ U smul_left : ∀ (x₀ : R) {U : Set M}, U ∈ BM → ∃ V, V ∈ BM ∧ V ⊆ (fun x => x₀ • x) ⁻¹' U smul_right : ∀ (m₀ : M) {U : Set M}, U ∈ BM → ∃ V, V ∈ BR ∧ V ⊆ (fun x => x • m₀) ⁻¹' U x✝ : TopologicalSpace R := RingFilterBasis.topology BR m₀ : M U : Set M U_in : U ∈ AddGroupFilterBasis.toFilterBasis.sets V : Set R V_in : V ∈ BR H : V ⊆ (fun x => x • m₀) ⁻¹' U ⊢ ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ U [PROOFSTEP] exact mem_of_superset (BR.toAddGroupFilterBasis.mem_nhds_zero V_in) H
{"mathlib_filename": "Mathlib.Topology.Algebra.FilterBasis", "llama_tokens": 27225}
[GOAL] F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹⁰ : Monoid A inst✝⁹ : Monoid B inst✝⁸ : Monoid C inst✝⁷ : Monoid D inst✝⁶ : CommGroup E inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace C inst✝² : TopologicalSpace D inst✝¹ : TopologicalSpace E inst✝ : TopologicalGroup E f g : ContinuousMonoidHom A B h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f [GOAL] case mk.mk.mk F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹⁰ : Monoid A inst✝⁹ : Monoid B inst✝⁸ : Monoid C inst✝⁷ : Monoid D inst✝⁶ : CommGroup E inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace C inst✝² : TopologicalSpace D inst✝¹ : TopologicalSpace E inst✝ : TopologicalGroup E g : ContinuousMonoidHom A B toFun✝ : A → B map_one'✝ : toFun✝ 1 = 1 map_mul'✝ : ∀ (x y : A), OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } (x * y) = OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } x * OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } y continuous_toFun✝ : Continuous (↑{ toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }).toFun h : (fun f => f.toFun) { toMonoidHom := { toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }, continuous_toFun := continuous_toFun✝ } = (fun f => f.toFun) g ⊢ { toMonoidHom := { toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }, continuous_toFun := continuous_toFun✝ } = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk.mk.mk F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹⁰ : Monoid A inst✝⁹ : Monoid B inst✝⁸ : Monoid C inst✝⁷ : Monoid D inst✝⁶ : CommGroup E inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace C inst✝² : TopologicalSpace D inst✝¹ : TopologicalSpace E inst✝ : TopologicalGroup E toFun✝¹ : A → B map_one'✝¹ : toFun✝¹ 1 = 1 map_mul'✝¹ : ∀ (x y : A), OneHom.toFun { toFun := toFun✝¹, map_one' := map_one'✝¹ } (x * y) = OneHom.toFun { toFun := toFun✝¹, map_one' := map_one'✝¹ } x * OneHom.toFun { toFun := toFun✝¹, map_one' := map_one'✝¹ } y continuous_toFun✝¹ : Continuous (↑{ toOneHom := { toFun := toFun✝¹, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }).toFun toFun✝ : A → B map_one'✝ : toFun✝ 1 = 1 map_mul'✝ : ∀ (x y : A), OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } (x * y) = OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } x * OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } y continuous_toFun✝ : Continuous (↑{ toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }).toFun h : (fun f => f.toFun) { toMonoidHom := { toOneHom := { toFun := toFun✝¹, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }, continuous_toFun := continuous_toFun✝¹ } = (fun f => f.toFun) { toMonoidHom := { toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }, continuous_toFun := continuous_toFun✝ } ⊢ { toMonoidHom := { toOneHom := { toFun := toFun✝¹, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }, continuous_toFun := continuous_toFun✝¹ } = { toMonoidHom := { toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }, continuous_toFun := continuous_toFun✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹⁰ : Monoid A inst✝⁹ : Monoid B inst✝⁸ : Monoid C inst✝⁷ : Monoid D inst✝⁶ : CommGroup E inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace C inst✝² : TopologicalSpace D inst✝¹ : TopologicalSpace E inst✝ : TopologicalGroup E f g : ContinuousMonoidHom A B h : toContinuousMap f = toContinuousMap g ⊢ ∀ (x : A), ↑f x = ↑g x [PROOFSTEP] convert FunLike.ext_iff.1 h [GOAL] F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B ⊢ IsOpen (Set.range toContinuousMap)ᶜ [PROOFSTEP] suffices Set.range (toContinuousMap : ContinuousMonoidHom A B → C(A, B)) = ({f | f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x) (y) (U) (V) (W) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | f '' { x } ⊆ U} ∩ {f | f '' { y } ⊆ V} ∩ {f | f '' {x * y} ⊆ W} : Set C(A, B))ᶜ by rw [this, compl_compl] refine' (ContinuousMap.isOpen_gen isCompact_singleton isOpen_compl_singleton).union _ repeat' apply isOpen_iUnion; intro repeat' apply IsOpen.inter all_goals apply ContinuousMap.isOpen_gen isCompact_singleton; assumption [GOAL] F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ ⊢ IsOpen (Set.range toContinuousMap)ᶜ [PROOFSTEP] rw [this, compl_compl] [GOAL] F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ ⊢ IsOpen ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W}) [PROOFSTEP] refine' (ContinuousMap.isOpen_gen isCompact_singleton isOpen_compl_singleton).union _ [GOAL] F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ ⊢ IsOpen (⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W}) [PROOFSTEP] repeat' apply isOpen_iUnion; intro [GOAL] F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ ⊢ IsOpen (⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W}) [PROOFSTEP] apply isOpen_iUnion [GOAL] case h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ ⊢ ∀ (i : A), IsOpen (⋃ (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {i} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {i * y} ⊆ W}) [PROOFSTEP] intro [GOAL] case h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝ : A ⊢ IsOpen (⋃ (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {i✝} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {i✝ * y} ⊆ W}) [PROOFSTEP] apply isOpen_iUnion [GOAL] case h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝ : A ⊢ ∀ (i : A), IsOpen (⋃ (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {i✝} ⊆ U} ∩ {f | ↑f '' {i} ⊆ V} ∩ {f | ↑f '' {i✝ * i} ⊆ W}) [PROOFSTEP] intro [GOAL] case h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝¹ i✝ : A ⊢ IsOpen (⋃ (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {i✝¹} ⊆ U} ∩ {f | ↑f '' {i✝} ⊆ V} ∩ {f | ↑f '' {i✝¹ * i✝} ⊆ W}) [PROOFSTEP] apply isOpen_iUnion [GOAL] case h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝¹ i✝ : A ⊢ ∀ (i : Set B), IsOpen (⋃ (V : Set B) (W : Set B) (_ : IsOpen i) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (i * V) W), {f | ↑f '' {i✝¹} ⊆ i} ∩ {f | ↑f '' {i✝} ⊆ V} ∩ {f | ↑f '' {i✝¹ * i✝} ⊆ W}) [PROOFSTEP] intro [GOAL] case h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝² i✝¹ : A i✝ : Set B ⊢ IsOpen (⋃ (V : Set B) (W : Set B) (_ : IsOpen i✝) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (i✝ * V) W), {f | ↑f '' {i✝²} ⊆ i✝} ∩ {f | ↑f '' {i✝¹} ⊆ V} ∩ {f | ↑f '' {i✝² * i✝¹} ⊆ W}) [PROOFSTEP] apply isOpen_iUnion [GOAL] case h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝² i✝¹ : A i✝ : Set B ⊢ ∀ (i : Set B), IsOpen (⋃ (W : Set B) (_ : IsOpen i✝) (_ : IsOpen i) (_ : IsOpen W) (_ : Disjoint (i✝ * i) W), {f | ↑f '' {i✝²} ⊆ i✝} ∩ {f | ↑f '' {i✝¹} ⊆ i} ∩ {f | ↑f '' {i✝² * i✝¹} ⊆ W}) [PROOFSTEP] intro [GOAL] case h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝³ i✝² : A i✝¹ i✝ : Set B ⊢ IsOpen (⋃ (W : Set B) (_ : IsOpen i✝¹) (_ : IsOpen i✝) (_ : IsOpen W) (_ : Disjoint (i✝¹ * i✝) W), {f | ↑f '' {i✝³} ⊆ i✝¹} ∩ {f | ↑f '' {i✝²} ⊆ i✝} ∩ {f | ↑f '' {i✝³ * i✝²} ⊆ W}) [PROOFSTEP] apply isOpen_iUnion [GOAL] case h.h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝³ i✝² : A i✝¹ i✝ : Set B ⊢ ∀ (i : Set B), IsOpen (⋃ (_ : IsOpen i✝¹) (_ : IsOpen i✝) (_ : IsOpen i) (_ : Disjoint (i✝¹ * i✝) i), {f | ↑f '' {i✝³} ⊆ i✝¹} ∩ {f | ↑f '' {i✝²} ⊆ i✝} ∩ {f | ↑f '' {i✝³ * i✝²} ⊆ i}) [PROOFSTEP] intro [GOAL] case h.h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁴ i✝³ : A i✝² i✝¹ i✝ : Set B ⊢ IsOpen (⋃ (_ : IsOpen i✝²) (_ : IsOpen i✝¹) (_ : IsOpen i✝) (_ : Disjoint (i✝² * i✝¹) i✝), {f | ↑f '' {i✝⁴} ⊆ i✝²} ∩ {f | ↑f '' {i✝³} ⊆ i✝¹} ∩ {f | ↑f '' {i✝⁴ * i✝³} ⊆ i✝}) [PROOFSTEP] apply isOpen_iUnion [GOAL] case h.h.h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁴ i✝³ : A i✝² i✝¹ i✝ : Set B ⊢ IsOpen i✝² → IsOpen (⋃ (_ : IsOpen i✝¹) (_ : IsOpen i✝) (_ : Disjoint (i✝² * i✝¹) i✝), {f | ↑f '' {i✝⁴} ⊆ i✝²} ∩ {f | ↑f '' {i✝³} ⊆ i✝¹} ∩ {f | ↑f '' {i✝⁴ * i✝³} ⊆ i✝}) [PROOFSTEP] intro [GOAL] case h.h.h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁵ i✝⁴ : A i✝³ i✝² i✝¹ : Set B i✝ : IsOpen i✝³ ⊢ IsOpen (⋃ (_ : IsOpen i✝²) (_ : IsOpen i✝¹) (_ : Disjoint (i✝³ * i✝²) i✝¹), {f | ↑f '' {i✝⁵} ⊆ i✝³} ∩ {f | ↑f '' {i✝⁴} ⊆ i✝²} ∩ {f | ↑f '' {i✝⁵ * i✝⁴} ⊆ i✝¹}) [PROOFSTEP] apply isOpen_iUnion [GOAL] case h.h.h.h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁵ i✝⁴ : A i✝³ i✝² i✝¹ : Set B i✝ : IsOpen i✝³ ⊢ IsOpen i✝² → IsOpen (⋃ (_ : IsOpen i✝¹) (_ : Disjoint (i✝³ * i✝²) i✝¹), {f | ↑f '' {i✝⁵} ⊆ i✝³} ∩ {f | ↑f '' {i✝⁴} ⊆ i✝²} ∩ {f | ↑f '' {i✝⁵ * i✝⁴} ⊆ i✝¹}) [PROOFSTEP] intro [GOAL] case h.h.h.h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁶ i✝⁵ : A i✝⁴ i✝³ i✝² : Set B i✝¹ : IsOpen i✝⁴ i✝ : IsOpen i✝³ ⊢ IsOpen (⋃ (_ : IsOpen i✝²) (_ : Disjoint (i✝⁴ * i✝³) i✝²), {f | ↑f '' {i✝⁶} ⊆ i✝⁴} ∩ {f | ↑f '' {i✝⁵} ⊆ i✝³} ∩ {f | ↑f '' {i✝⁶ * i✝⁵} ⊆ i✝²}) [PROOFSTEP] apply isOpen_iUnion [GOAL] case h.h.h.h.h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁶ i✝⁵ : A i✝⁴ i✝³ i✝² : Set B i✝¹ : IsOpen i✝⁴ i✝ : IsOpen i✝³ ⊢ IsOpen i✝² → IsOpen (⋃ (_ : Disjoint (i✝⁴ * i✝³) i✝²), {f | ↑f '' {i✝⁶} ⊆ i✝⁴} ∩ {f | ↑f '' {i✝⁵} ⊆ i✝³} ∩ {f | ↑f '' {i✝⁶ * i✝⁵} ⊆ i✝²}) [PROOFSTEP] intro [GOAL] case h.h.h.h.h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁷ i✝⁶ : A i✝⁵ i✝⁴ i✝³ : Set B i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : IsOpen i✝³ ⊢ IsOpen (⋃ (_ : Disjoint (i✝⁵ * i✝⁴) i✝³), {f | ↑f '' {i✝⁷} ⊆ i✝⁵} ∩ {f | ↑f '' {i✝⁶} ⊆ i✝⁴} ∩ {f | ↑f '' {i✝⁷ * i✝⁶} ⊆ i✝³}) [PROOFSTEP] apply isOpen_iUnion [GOAL] case h.h.h.h.h.h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁷ i✝⁶ : A i✝⁵ i✝⁴ i✝³ : Set B i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : IsOpen i✝³ ⊢ Disjoint (i✝⁵ * i✝⁴) i✝³ → IsOpen ({f | ↑f '' {i✝⁷} ⊆ i✝⁵} ∩ {f | ↑f '' {i✝⁶} ⊆ i✝⁴} ∩ {f | ↑f '' {i✝⁷ * i✝⁶} ⊆ i✝³}) [PROOFSTEP] intro [GOAL] case h.h.h.h.h.h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen ({f | ↑f '' {i✝⁸} ⊆ i✝⁶} ∩ {f | ↑f '' {i✝⁷} ⊆ i✝⁵} ∩ {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴}) [PROOFSTEP] apply isOpen_iUnion [GOAL] case h.h.h.h.h.h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen ({f | ↑f '' {i✝⁸} ⊆ i✝⁶} ∩ {f | ↑f '' {i✝⁷} ⊆ i✝⁵} ∩ {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴}) [PROOFSTEP] repeat' apply IsOpen.inter [GOAL] case h.h.h.h.h.h.h.h.h F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen ({f | ↑f '' {i✝⁸} ⊆ i✝⁶} ∩ {f | ↑f '' {i✝⁷} ⊆ i✝⁵} ∩ {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴}) [PROOFSTEP] apply IsOpen.inter [GOAL] case h.h.h.h.h.h.h.h.h.h₁ F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen ({f | ↑f '' {i✝⁸} ⊆ i✝⁶} ∩ {f | ↑f '' {i✝⁷} ⊆ i✝⁵}) [PROOFSTEP] apply IsOpen.inter [GOAL] case h.h.h.h.h.h.h.h.h.h₁.h₁ F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen {f | ↑f '' {i✝⁸} ⊆ i✝⁶} [PROOFSTEP] apply IsOpen.inter [GOAL] case h.h.h.h.h.h.h.h.h.h₁.h₂ F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen {f | ↑f '' {i✝⁷} ⊆ i✝⁵} [PROOFSTEP] apply IsOpen.inter [GOAL] case h.h.h.h.h.h.h.h.h.h₂ F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴} [PROOFSTEP] apply IsOpen.inter [GOAL] case h.h.h.h.h.h.h.h.h.h₁.h₁ F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen {f | ↑f '' {i✝⁸} ⊆ i✝⁶} case h.h.h.h.h.h.h.h.h.h₁.h₂ F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen {f | ↑f '' {i✝⁷} ⊆ i✝⁵} case h.h.h.h.h.h.h.h.h.h₂ F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴} [PROOFSTEP] all_goals apply ContinuousMap.isOpen_gen isCompact_singleton; assumption [GOAL] case h.h.h.h.h.h.h.h.h.h₁.h₁ F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen {f | ↑f '' {i✝⁸} ⊆ i✝⁶} [PROOFSTEP] apply ContinuousMap.isOpen_gen isCompact_singleton [GOAL] case h.h.h.h.h.h.h.h.h.h₁.h₁ F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen i✝⁶ [PROOFSTEP] assumption [GOAL] case h.h.h.h.h.h.h.h.h.h₁.h₂ F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen {f | ↑f '' {i✝⁷} ⊆ i✝⁵} [PROOFSTEP] apply ContinuousMap.isOpen_gen isCompact_singleton [GOAL] case h.h.h.h.h.h.h.h.h.h₁.h₂ F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen i✝⁵ [PROOFSTEP] assumption [GOAL] case h.h.h.h.h.h.h.h.h.h₂ F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴} [PROOFSTEP] apply ContinuousMap.isOpen_gen isCompact_singleton [GOAL] case h.h.h.h.h.h.h.h.h.h₂ F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B this : Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ i✝⁸ i✝⁷ : A i✝⁶ i✝⁵ i✝⁴ : Set B i✝³ : IsOpen i✝⁶ i✝² : IsOpen i✝⁵ i✝¹ : IsOpen i✝⁴ i✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴ ⊢ IsOpen i✝⁴ [PROOFSTEP] assumption [GOAL] F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B ⊢ Set.range toContinuousMap = ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪ ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ : Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ [PROOFSTEP] simp_rw [Set.compl_union, Set.compl_iUnion, Set.image_singleton, Set.singleton_subset_iff, Set.ext_iff, Set.mem_inter_iff, Set.mem_iInter, Set.mem_compl_iff] [GOAL] F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B ⊢ ∀ (x : C(A, B)), x ∈ Set.range toContinuousMap ↔ ¬x ∈ {f | ¬↑f 1 ∈ {1}} ∧ ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B), IsOpen i_2 → IsOpen i_3 → IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬x ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4} [PROOFSTEP] refine' fun f => ⟨_, _⟩ [GOAL] case refine'_1 F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B f : C(A, B) ⊢ f ∈ Set.range toContinuousMap → ¬f ∈ {f | ¬↑f 1 ∈ {1}} ∧ ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B), IsOpen i_2 → IsOpen i_3 → IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4} [PROOFSTEP] rintro ⟨f, rfl⟩ [GOAL] case refine'_1.intro F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B f : ContinuousMonoidHom A B ⊢ ¬toContinuousMap f ∈ {f | ¬↑f 1 ∈ {1}} ∧ ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B), IsOpen i_2 → IsOpen i_3 → IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬toContinuousMap f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4} [PROOFSTEP] exact ⟨fun h => h (map_one f), fun x y U V W _hU _hV _hW h ⟨⟨hfU, hfV⟩, hfW⟩ => h.le_bot ⟨Set.mul_mem_mul hfU hfV, (congr_arg (· ∈ W) (map_mul f x y)).mp hfW⟩⟩ [GOAL] case refine'_2 F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B f : C(A, B) ⊢ (¬f ∈ {f | ¬↑f 1 ∈ {1}} ∧ ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B), IsOpen i_2 → IsOpen i_3 → IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}) → f ∈ Set.range toContinuousMap [PROOFSTEP] rintro ⟨hf1, hf2⟩ [GOAL] case refine'_2.intro F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B f : C(A, B) hf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}} hf2 : ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B), IsOpen i_2 → IsOpen i_3 → IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4} ⊢ f ∈ Set.range toContinuousMap [PROOFSTEP] suffices ∀ x y, f (x * y) = f x * f y by refine' ⟨({ f with map_one' := of_not_not hf1 map_mul' := this } : ContinuousMonoidHom A B), ContinuousMap.ext fun _ => rfl⟩ [GOAL] F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B f : C(A, B) hf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}} hf2 : ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B), IsOpen i_2 → IsOpen i_3 → IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4} this : ∀ (x y : A), ↑f (x * y) = ↑f x * ↑f y ⊢ f ∈ Set.range toContinuousMap [PROOFSTEP] refine' ⟨({ f with map_one' := of_not_not hf1 map_mul' := this } : ContinuousMonoidHom A B), ContinuousMap.ext fun _ => rfl⟩ [GOAL] case refine'_2.intro F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B f : C(A, B) hf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}} hf2 : ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B), IsOpen i_2 → IsOpen i_3 → IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4} ⊢ ∀ (x y : A), ↑f (x * y) = ↑f x * ↑f y [PROOFSTEP] intro x y [GOAL] case refine'_2.intro F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B f : C(A, B) hf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}} hf2 : ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B), IsOpen i_2 → IsOpen i_3 → IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4} x y : A ⊢ ↑f (x * y) = ↑f x * ↑f y [PROOFSTEP] contrapose! hf2 [GOAL] case refine'_2.intro F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B f : C(A, B) hf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}} x y : A hf2 : ↑f (x * y) ≠ ↑f x * ↑f y ⊢ ∃ i i_1 i_2 i_3 i_4, IsOpen i_2 ∧ IsOpen i_3 ∧ IsOpen i_4 ∧ Disjoint (i_2 * i_3) i_4 ∧ f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4} [PROOFSTEP] obtain ⟨UV, W, hUV, hW, hfUV, hfW, h⟩ := t2_separation hf2.symm [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B f : C(A, B) hf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}} x y : A hf2 : ↑f (x * y) ≠ ↑f x * ↑f y UV W : Set B hUV : IsOpen UV hW : IsOpen W hfUV : ↑f x * ↑f y ∈ UV hfW : ↑f (x * y) ∈ W h : Disjoint UV W ⊢ ∃ i i_1 i_2 i_3 i_4, IsOpen i_2 ∧ IsOpen i_3 ∧ IsOpen i_4 ∧ Disjoint (i_2 * i_3) i_4 ∧ f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4} [PROOFSTEP] have hB := @continuous_mul B _ _ _ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B f : C(A, B) hf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}} x y : A hf2 : ↑f (x * y) ≠ ↑f x * ↑f y UV W : Set B hUV : IsOpen UV hW : IsOpen W hfUV : ↑f x * ↑f y ∈ UV hfW : ↑f (x * y) ∈ W h : Disjoint UV W hB : Continuous fun p => p.fst * p.snd ⊢ ∃ i i_1 i_2 i_3 i_4, IsOpen i_2 ∧ IsOpen i_3 ∧ IsOpen i_4 ∧ Disjoint (i_2 * i_3) i_4 ∧ f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4} [PROOFSTEP] obtain ⟨U, V, hU, hV, hfU, hfV, h'⟩ := isOpen_prod_iff.mp (hUV.preimage hB) (f x) (f y) hfUV [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B f : C(A, B) hf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}} x y : A hf2 : ↑f (x * y) ≠ ↑f x * ↑f y UV W : Set B hUV : IsOpen UV hW : IsOpen W hfUV : ↑f x * ↑f y ∈ UV hfW : ↑f (x * y) ∈ W h : Disjoint UV W hB : Continuous fun p => p.fst * p.snd U V : Set B hU : IsOpen U hV : IsOpen V hfU : ↑f x ∈ U hfV : ↑f y ∈ V h' : U ×ˢ V ⊆ (fun p => p.fst * p.snd) ⁻¹' UV ⊢ ∃ i i_1 i_2 i_3 i_4, IsOpen i_2 ∧ IsOpen i_3 ∧ IsOpen i_4 ∧ Disjoint (i_2 * i_3) i_4 ∧ f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4} [PROOFSTEP] refine' ⟨x, y, U, V, W, hU, hV, hW, h.mono_left _, ⟨hfU, hfV⟩, hfW⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B f : C(A, B) hf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}} x y : A hf2 : ↑f (x * y) ≠ ↑f x * ↑f y UV W : Set B hUV : IsOpen UV hW : IsOpen W hfUV : ↑f x * ↑f y ∈ UV hfW : ↑f (x * y) ∈ W h : Disjoint UV W hB : Continuous fun p => p.fst * p.snd U V : Set B hU : IsOpen U hV : IsOpen V hfU : ↑f x ∈ U hfV : ↑f y ∈ V h' : U ×ˢ V ⊆ (fun p => p.fst * p.snd) ⁻¹' UV ⊢ U * V ≤ UV [PROOFSTEP] rintro _ ⟨x, y, hx : (x, y).1 ∈ U, hy : (x, y).2 ∈ V, rfl⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro F : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 E : Type u_6 inst✝¹² : Monoid A inst✝¹¹ : Monoid B inst✝¹⁰ : Monoid C inst✝⁹ : Monoid D inst✝⁸ : CommGroup E inst✝⁷ : TopologicalSpace A inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace C inst✝⁴ : TopologicalSpace D inst✝³ : TopologicalSpace E inst✝² : TopologicalGroup E inst✝¹ : ContinuousMul B inst✝ : T2Space B f : C(A, B) hf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}} x✝ y✝ : A hf2 : ↑f (x✝ * y✝) ≠ ↑f x✝ * ↑f y✝ UV W : Set B hUV : IsOpen UV hW : IsOpen W hfUV : ↑f x✝ * ↑f y✝ ∈ UV hfW : ↑f (x✝ * y✝) ∈ W h : Disjoint UV W hB : Continuous fun p => p.fst * p.snd U V : Set B hU : IsOpen U hV : IsOpen V hfU : ↑f x✝ ∈ U hfV : ↑f y✝ ∈ V h' : U ×ˢ V ⊆ (fun p => p.fst * p.snd) ⁻¹' UV x y : B hx : (x, y).fst ∈ U hy : (x, y).snd ∈ V ⊢ (fun x x_1 => x * x_1) x y ∈ UV [PROOFSTEP] exact h' ⟨hx, hy⟩
{"mathlib_filename": "Mathlib.Topology.Algebra.ContinuousMonoidHom", "llama_tokens": 28119}
[GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁴ : UniformSpace α inst✝³ : MonoidWithZero M inst✝² : Zero α inst✝¹ : MulActionWithZero M α inst✝ : UniformContinuousConstSMul M α src✝ : MulAction M (Completion α) := inferInstance r : M ⊢ r • 0 = 0 [PROOFSTEP] rw [← coe_zero, ← coe_smul, MulActionWithZero.smul_zero r] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁴ : UniformSpace α inst✝³ : MonoidWithZero M inst✝² : Zero α inst✝¹ : MulActionWithZero M α inst✝ : UniformContinuousConstSMul M α src✝ : MulAction M (Completion α) := inferInstance a : α ⊢ 0 • ↑α a = 0 [PROOFSTEP] rw [← coe_smul, zero_smul, coe_zero] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddGroup α inst✝ : UniformAddGroup α src✝¹ : Zero (Completion α) := inferInstance src✝ : Add (Completion α) := inferInstance a✝ b✝ c✝ : Completion α a b c : α ⊢ ↑α a + ↑α b + ↑α c = ↑α a + (↑α b + ↑α c) [PROOFSTEP] repeat' rw_mod_cast [add_assoc] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddGroup α inst✝ : UniformAddGroup α src✝¹ : Zero (Completion α) := inferInstance src✝ : Add (Completion α) := inferInstance a✝ b✝ c✝ : Completion α a b c : α ⊢ ↑α a + ↑α b + ↑α c = ↑α a + (↑α b + ↑α c) [PROOFSTEP] rw_mod_cast [add_assoc] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddGroup α inst✝ : UniformAddGroup α src✝¹ : Zero (Completion α) := inferInstance src✝ : Add (Completion α) := inferInstance a✝ : Completion α a : α ⊢ 0 + ↑α a = ↑α a [PROOFSTEP] rw [← coe_zero, ← coe_add, zero_add] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddGroup α inst✝ : UniformAddGroup α src✝¹ : Zero (Completion α) := inferInstance src✝ : Add (Completion α) := inferInstance a✝ : Completion α a : α ⊢ ↑α a + 0 = ↑α a [PROOFSTEP] rw [← coe_zero, ← coe_add, add_zero] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddGroup α inst✝ : UniformAddGroup α src✝¹ : Zero (Completion α) := inferInstance src✝ : Add (Completion α) := inferInstance a✝ : Completion α a : α ⊢ 0 • ↑α a = 0 [PROOFSTEP] rw [← coe_smul, ← coe_zero, zero_smul] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddGroup α inst✝ : UniformAddGroup α src✝¹ : Zero (Completion α) := inferInstance src✝ : Add (Completion α) := inferInstance n : ℕ a✝ : Completion α a : α ⊢ (n + 1) • ↑α a = ↑α a + n • ↑α a [PROOFSTEP] rw [← coe_smul, succ_nsmul, coe_add, coe_smul] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddGroup α inst✝ : UniformAddGroup α src✝² : AddMonoid (Completion α) := inferInstance src✝¹ : Neg (Completion α) := inferInstance src✝ : Sub (Completion α) := inferInstance a✝ b✝ : Completion α a b : α ⊢ ↑α a - ↑α b = ↑α a + -↑α b [PROOFSTEP] exact_mod_cast congr_arg ((↑) : α → Completion α) (sub_eq_add_neg a b) [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddGroup α inst✝ : UniformAddGroup α src✝² : AddMonoid (Completion α) := inferInstance src✝¹ : Neg (Completion α) := inferInstance src✝ : Sub (Completion α) := inferInstance a✝ : Completion α a : α ⊢ 0 • ↑α a = 0 [PROOFSTEP] rw [← coe_smul, ← coe_zero, zero_smul] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddGroup α inst✝ : UniformAddGroup α src✝² : AddMonoid (Completion α) := inferInstance src✝¹ : Neg (Completion α) := inferInstance src✝ : Sub (Completion α) := inferInstance n : ℕ a✝ : Completion α a : α ⊢ Int.ofNat (Nat.succ n) • ↑α a = ↑α a + (fun x x_1 => x • x_1) (Int.ofNat n) (↑α a) [PROOFSTEP] rw [← coe_smul, show Int.ofNat n.succ • a = a + Int.ofNat n • a from SubNegMonoid.zsmul_succ' n a, coe_add, coe_smul] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddGroup α inst✝ : UniformAddGroup α src✝² : AddMonoid (Completion α) := inferInstance src✝¹ : Neg (Completion α) := inferInstance src✝ : Sub (Completion α) := inferInstance n : ℕ a✝ : Completion α a : α ⊢ Int.negSucc n • ↑α a = -(fun x x_1 => x • x_1) (↑(Nat.succ n)) (↑α a) [PROOFSTEP] rw [← coe_smul, show (Int.negSucc n) • a = -((n.succ : ℤ) • a) from SubNegMonoid.zsmul_neg' n a, coe_neg, coe_smul] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddGroup α inst✝ : UniformAddGroup α src✝ : SubNegMonoid (Completion α) := inferInstance a✝ : Completion α a : α ⊢ -↑α a + ↑α a = 0 [PROOFSTEP] rw_mod_cast [add_left_neg] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddGroup α inst✝ : UniformAddGroup α src✝ : SubNegMonoid (Completion α) := inferInstance a✝ : Completion α a : α ⊢ ↑α 0 = 0 [PROOFSTEP] rfl [GOAL] M✝ : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁵ : UniformSpace α inst✝⁴ : AddGroup α inst✝³ : UniformAddGroup α M : Type ?u.31551 inst✝² : Monoid M inst✝¹ : DistribMulAction M α inst✝ : UniformContinuousConstSMul M α src✝ : MulAction M (Completion α) := inferInstance r : M ⊢ r • 0 = 0 [PROOFSTEP] rw [← coe_zero, ← coe_smul, smul_zero r] [GOAL] M✝ : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁵ : UniformSpace α inst✝⁴ : AddGroup α inst✝³ : UniformAddGroup α M : Type ?u.31551 inst✝² : Monoid M inst✝¹ : DistribMulAction M α inst✝ : UniformContinuousConstSMul M α src✝ : MulAction M (Completion α) := inferInstance r : M x y : Completion α a b : α ⊢ r • (↑α a + ↑α b) = r • ↑α a + r • ↑α b [PROOFSTEP] simp only [← coe_add, ← coe_smul, smul_add] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddCommGroup α inst✝ : UniformAddGroup α src✝ : AddGroup (Completion α) := inferInstance a b : Completion α x y : α ⊢ ↑α x + ↑α y = ↑α y + ↑α x [PROOFSTEP] change (x : Completion α) + ↑y = ↑y + ↑x [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝² : UniformSpace α inst✝¹ : AddCommGroup α inst✝ : UniformAddGroup α src✝ : AddGroup (Completion α) := inferInstance a b : Completion α x y : α ⊢ ↑α x + ↑α y = ↑α y + ↑α x [PROOFSTEP] rw [← coe_add, ← coe_add, add_comm] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁵ : UniformSpace α inst✝⁴ : AddCommGroup α inst✝³ : UniformAddGroup α inst✝² : Semiring R inst✝¹ : Module R α inst✝ : UniformContinuousConstSMul R α src✝¹ : DistribMulAction R (Completion α) := inferInstance src✝ : MulActionWithZero R (Completion α) := inferInstance a b : R x : α ⊢ (a + b) • ↑α x = a • ↑α x + b • ↑α x [PROOFSTEP] rw [← coe_smul, add_smul, coe_add, coe_smul, coe_smul] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁷ : UniformSpace α inst✝⁶ : AddGroup α inst✝⁵ : UniformAddGroup α inst✝⁴ : UniformSpace β inst✝³ : AddGroup β inst✝² : UniformAddGroup β inst✝¹ : CompleteSpace β inst✝ : SeparatedSpace β f : α →+ β hf✝ : Continuous ↑f hf : UniformContinuous ↑f ⊢ Completion.extension (↑f) 0 = 0 [PROOFSTEP] rw [← coe_zero, extension_coe hf, f.map_zero] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁷ : UniformSpace α inst✝⁶ : AddGroup α inst✝⁵ : UniformAddGroup α inst✝⁴ : UniformSpace β inst✝³ : AddGroup β inst✝² : UniformAddGroup β inst✝¹ : CompleteSpace β inst✝ : SeparatedSpace β f : α →+ β hf✝ : Continuous ↑f hf : UniformContinuous ↑f a✝ b✝ : Completion α a b : α ⊢ Completion.extension (↑f) (↑α a + ↑α b) = Completion.extension (↑f) (↑α a) + Completion.extension (↑f) (↑α b) [PROOFSTEP] rw_mod_cast [extension_coe hf, extension_coe hf, extension_coe hf, f.map_add] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁵ : UniformSpace α inst✝⁴ : AddGroup α inst✝³ : UniformAddGroup α inst✝² : UniformSpace β inst✝¹ : AddGroup β inst✝ : UniformAddGroup β ⊢ completion 0 (_ : Continuous fun x => AddZeroClass.toZero.1) = 0 [PROOFSTEP] ext x [GOAL] case h M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁵ : UniformSpace α inst✝⁴ : AddGroup α inst✝³ : UniformAddGroup α inst✝² : UniformSpace β inst✝¹ : AddGroup β inst✝ : UniformAddGroup β x : Completion α ⊢ ↑(completion 0 (_ : Continuous fun x => AddZeroClass.toZero.1)) x = ↑0 x [PROOFSTEP] refine Completion.induction_on x ?_ ?_ [GOAL] case h.refine_1 M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁵ : UniformSpace α inst✝⁴ : AddGroup α inst✝³ : UniformAddGroup α inst✝² : UniformSpace β inst✝¹ : AddGroup β inst✝ : UniformAddGroup β x : Completion α ⊢ IsClosed {a | ↑(completion 0 (_ : Continuous fun x => AddZeroClass.toZero.1)) a = ↑0 a} [PROOFSTEP] apply isClosed_eq (AddMonoidHom.continuous_completion (0 : α →+ β) continuous_const) [GOAL] case h.refine_1 M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁵ : UniformSpace α inst✝⁴ : AddGroup α inst✝³ : UniformAddGroup α inst✝² : UniformSpace β inst✝¹ : AddGroup β inst✝ : UniformAddGroup β x : Completion α ⊢ Continuous fun x => ↑0 x [PROOFSTEP] simp [continuous_const] [GOAL] case h.refine_2 M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁵ : UniformSpace α inst✝⁴ : AddGroup α inst✝³ : UniformAddGroup α inst✝² : UniformSpace β inst✝¹ : AddGroup β inst✝ : UniformAddGroup β x : Completion α ⊢ ∀ (a : α), ↑(completion 0 (_ : Continuous fun x => AddZeroClass.toZero.1)) (↑α a) = ↑0 (↑α a) [PROOFSTEP] intro a [GOAL] case h.refine_2 M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁵ : UniformSpace α inst✝⁴ : AddGroup α inst✝³ : UniformAddGroup α inst✝² : UniformSpace β inst✝¹ : AddGroup β inst✝ : UniformAddGroup β x : Completion α a : α ⊢ ↑(completion 0 (_ : Continuous fun x => AddZeroClass.toZero.1)) (↑α a) = ↑0 (↑α a) [PROOFSTEP] simp [(0 : α →+ β).completion_coe continuous_const, coe_zero] [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁸ : UniformSpace α inst✝⁷ : AddGroup α inst✝⁶ : UniformAddGroup α inst✝⁵ : UniformSpace β inst✝⁴ : AddGroup β inst✝³ : UniformAddGroup β γ : Type u_5 inst✝² : AddCommGroup γ inst✝¹ : UniformSpace γ inst✝ : UniformAddGroup γ f g : α →+ γ hf : Continuous ↑f hg : Continuous ↑g ⊢ completion (f + g) (_ : Continuous fun x => ↑f x + ↑g x) = completion f hf + completion g hg [PROOFSTEP] have hfg := hf.add hg [GOAL] M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁸ : UniformSpace α inst✝⁷ : AddGroup α inst✝⁶ : UniformAddGroup α inst✝⁵ : UniformSpace β inst✝⁴ : AddGroup β inst✝³ : UniformAddGroup β γ : Type u_5 inst✝² : AddCommGroup γ inst✝¹ : UniformSpace γ inst✝ : UniformAddGroup γ f g : α →+ γ hf : Continuous ↑f hg : Continuous ↑g hfg : Continuous fun x => ↑f x + ↑g x ⊢ completion (f + g) (_ : Continuous fun x => ↑f x + ↑g x) = completion f hf + completion g hg [PROOFSTEP] ext x [GOAL] case h M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁸ : UniformSpace α inst✝⁷ : AddGroup α inst✝⁶ : UniformAddGroup α inst✝⁵ : UniformSpace β inst✝⁴ : AddGroup β inst✝³ : UniformAddGroup β γ : Type u_5 inst✝² : AddCommGroup γ inst✝¹ : UniformSpace γ inst✝ : UniformAddGroup γ f g : α →+ γ hf : Continuous ↑f hg : Continuous ↑g hfg : Continuous fun x => ↑f x + ↑g x x : Completion α ⊢ ↑(completion (f + g) (_ : Continuous fun x => ↑f x + ↑g x)) x = ↑(completion f hf + completion g hg) x [PROOFSTEP] refine Completion.induction_on x ?_ ?_ [GOAL] case h.refine_1 M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁸ : UniformSpace α inst✝⁷ : AddGroup α inst✝⁶ : UniformAddGroup α inst✝⁵ : UniformSpace β inst✝⁴ : AddGroup β inst✝³ : UniformAddGroup β γ : Type u_5 inst✝² : AddCommGroup γ inst✝¹ : UniformSpace γ inst✝ : UniformAddGroup γ f g : α →+ γ hf : Continuous ↑f hg : Continuous ↑g hfg : Continuous fun x => ↑f x + ↑g x x : Completion α ⊢ IsClosed {a | ↑(completion (f + g) (_ : Continuous fun x => ↑f x + ↑g x)) a = ↑(completion f hf + completion g hg) a} [PROOFSTEP] exact isClosed_eq ((f + g).continuous_completion hfg) ((f.continuous_completion hf).add (g.continuous_completion hg)) [GOAL] case h.refine_2 M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁸ : UniformSpace α inst✝⁷ : AddGroup α inst✝⁶ : UniformAddGroup α inst✝⁵ : UniformSpace β inst✝⁴ : AddGroup β inst✝³ : UniformAddGroup β γ : Type u_5 inst✝² : AddCommGroup γ inst✝¹ : UniformSpace γ inst✝ : UniformAddGroup γ f g : α →+ γ hf : Continuous ↑f hg : Continuous ↑g hfg : Continuous fun x => ↑f x + ↑g x x : Completion α ⊢ ∀ (a : α), ↑(completion (f + g) (_ : Continuous fun x => ↑f x + ↑g x)) (↑α a) = ↑(completion f hf + completion g hg) (↑α a) [PROOFSTEP] intro a [GOAL] case h.refine_2 M : Type u_1 R : Type u_2 α : Type u_3 β : Type u_4 inst✝⁸ : UniformSpace α inst✝⁷ : AddGroup α inst✝⁶ : UniformAddGroup α inst✝⁵ : UniformSpace β inst✝⁴ : AddGroup β inst✝³ : UniformAddGroup β γ : Type u_5 inst✝² : AddCommGroup γ inst✝¹ : UniformSpace γ inst✝ : UniformAddGroup γ f g : α →+ γ hf : Continuous ↑f hg : Continuous ↑g hfg : Continuous fun x => ↑f x + ↑g x x : Completion α a : α ⊢ ↑(completion (f + g) (_ : Continuous fun x => ↑f x + ↑g x)) (↑α a) = ↑(completion f hf + completion g hg) (↑α a) [PROOFSTEP] simp [(f + g).completion_coe hfg, coe_add, f.completion_coe hf, g.completion_coe hg]
{"mathlib_filename": "Mathlib.Topology.Algebra.GroupCompletion", "llama_tokens": 6356}
[GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α la lb : β hab : a ≠ b hf : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) hb : Tendsto f (𝓝[Iio b] b) (𝓝 lb) ⊢ ContinuousOn (extendFrom (Ioo a b) f) (Icc a b) [PROOFSTEP] apply continuousOn_extendFrom [GOAL] case hB α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α la lb : β hab : a ≠ b hf : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) hb : Tendsto f (𝓝[Iio b] b) (𝓝 lb) ⊢ Icc a b ⊆ closure (Ioo a b) [PROOFSTEP] rw [closure_Ioo hab] [GOAL] case hf α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α la lb : β hab : a ≠ b hf : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) hb : Tendsto f (𝓝[Iio b] b) (𝓝 lb) ⊢ ∀ (x : α), x ∈ Icc a b → ∃ y, Tendsto f (𝓝[Ioo a b] x) (𝓝 y) [PROOFSTEP] intro x x_in [GOAL] case hf α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α la lb : β hab : a ≠ b hf : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) hb : Tendsto f (𝓝[Iio b] b) (𝓝 lb) x : α x_in : x ∈ Icc a b ⊢ ∃ y, Tendsto f (𝓝[Ioo a b] x) (𝓝 y) [PROOFSTEP] rcases eq_endpoints_or_mem_Ioo_of_mem_Icc x_in with (rfl | rfl | h) [GOAL] case hf.inl α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β b : α la lb : β hb : Tendsto f (𝓝[Iio b] b) (𝓝 lb) x : α hab : x ≠ b hf : ContinuousOn f (Ioo x b) ha : Tendsto f (𝓝[Ioi x] x) (𝓝 la) x_in : x ∈ Icc x b ⊢ ∃ y, Tendsto f (𝓝[Ioo x b] x) (𝓝 y) [PROOFSTEP] exact ⟨la, ha.mono_left <| nhdsWithin_mono _ Ioo_subset_Ioi_self⟩ [GOAL] case hf.inr.inl α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a : α la lb : β ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) x : α hab : a ≠ x hf : ContinuousOn f (Ioo a x) hb : Tendsto f (𝓝[Iio x] x) (𝓝 lb) x_in : x ∈ Icc a x ⊢ ∃ y, Tendsto f (𝓝[Ioo a x] x) (𝓝 y) [PROOFSTEP] exact ⟨lb, hb.mono_left <| nhdsWithin_mono _ Ioo_subset_Iio_self⟩ [GOAL] case hf.inr.inr α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α la lb : β hab : a ≠ b hf : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) hb : Tendsto f (𝓝[Iio b] b) (𝓝 lb) x : α x_in : x ∈ Icc a b h : x ∈ Ioo a b ⊢ ∃ y, Tendsto f (𝓝[Ioo a b] x) (𝓝 y) [PROOFSTEP] exact ⟨f x, hf x h⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : T2Space β f : α → β a b : α la : β hab : a < b ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) ⊢ extendFrom (Ioo a b) f a = la [PROOFSTEP] apply extendFrom_eq [GOAL] case hx α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : T2Space β f : α → β a b : α la : β hab : a < b ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) ⊢ a ∈ closure (Ioo a b) [PROOFSTEP] rw [closure_Ioo hab.ne] [GOAL] case hx α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : T2Space β f : α → β a b : α la : β hab : a < b ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) ⊢ a ∈ Icc a b [PROOFSTEP] simp only [le_of_lt hab, left_mem_Icc, right_mem_Icc] [GOAL] case hf α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : T2Space β f : α → β a b : α la : β hab : a < b ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) ⊢ Tendsto f (𝓝[Ioo a b] a) (𝓝 la) [PROOFSTEP] simpa [hab] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : T2Space β f : α → β a b : α lb : β hab : a < b hb : Tendsto f (𝓝[Iio b] b) (𝓝 lb) ⊢ extendFrom (Ioo a b) f b = lb [PROOFSTEP] apply extendFrom_eq [GOAL] case hx α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : T2Space β f : α → β a b : α lb : β hab : a < b hb : Tendsto f (𝓝[Iio b] b) (𝓝 lb) ⊢ b ∈ closure (Ioo a b) [PROOFSTEP] rw [closure_Ioo hab.ne] [GOAL] case hx α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : T2Space β f : α → β a b : α lb : β hab : a < b hb : Tendsto f (𝓝[Iio b] b) (𝓝 lb) ⊢ b ∈ Icc a b [PROOFSTEP] simp only [le_of_lt hab, left_mem_Icc, right_mem_Icc] [GOAL] case hf α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : T2Space β f : α → β a b : α lb : β hab : a < b hb : Tendsto f (𝓝[Iio b] b) (𝓝 lb) ⊢ Tendsto f (𝓝[Ioo a b] b) (𝓝 lb) [PROOFSTEP] simpa [hab] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α la : β hab : a < b hf : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) ⊢ ContinuousOn (extendFrom (Ioo a b) f) (Ico a b) [PROOFSTEP] apply continuousOn_extendFrom [GOAL] case hB α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α la : β hab : a < b hf : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) ⊢ Ico a b ⊆ closure (Ioo a b) [PROOFSTEP] rw [closure_Ioo hab.ne] [GOAL] case hB α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α la : β hab : a < b hf : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) ⊢ Ico a b ⊆ Icc a b [PROOFSTEP] exact Ico_subset_Icc_self [GOAL] case hf α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α la : β hab : a < b hf : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) ⊢ ∀ (x : α), x ∈ Ico a b → ∃ y, Tendsto f (𝓝[Ioo a b] x) (𝓝 y) [PROOFSTEP] intro x x_in [GOAL] case hf α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α la : β hab : a < b hf : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) x : α x_in : x ∈ Ico a b ⊢ ∃ y, Tendsto f (𝓝[Ioo a b] x) (𝓝 y) [PROOFSTEP] rcases eq_left_or_mem_Ioo_of_mem_Ico x_in with (rfl | h) [GOAL] case hf.inl α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β b : α la : β x : α hab : x < b hf : ContinuousOn f (Ioo x b) ha : Tendsto f (𝓝[Ioi x] x) (𝓝 la) x_in : x ∈ Ico x b ⊢ ∃ y, Tendsto f (𝓝[Ioo x b] x) (𝓝 y) [PROOFSTEP] use la [GOAL] case h α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β b : α la : β x : α hab : x < b hf : ContinuousOn f (Ioo x b) ha : Tendsto f (𝓝[Ioi x] x) (𝓝 la) x_in : x ∈ Ico x b ⊢ Tendsto f (𝓝[Ioo x b] x) (𝓝 la) [PROOFSTEP] simpa [hab] [GOAL] case hf.inr α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α la : β hab : a < b hf : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 la) x : α x_in : x ∈ Ico a b h : x ∈ Ioo a b ⊢ ∃ y, Tendsto f (𝓝[Ioo a b] x) (𝓝 y) [PROOFSTEP] exact ⟨f x, hf x h⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α lb : β hab : a < b hf : ContinuousOn f (Ioo a b) hb : Tendsto f (𝓝[Iio b] b) (𝓝 lb) ⊢ ContinuousOn (extendFrom (Ioo a b) f) (Ioc a b) [PROOFSTEP] have := @continuousOn_Ico_extendFrom_Ioo αᵒᵈ _ _ _ _ _ _ _ f _ _ lb hab [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α lb : β hab : a < b hf : ContinuousOn f (Ioo a b) hb : Tendsto f (𝓝[Iio b] b) (𝓝 lb) this : ContinuousOn f (Ioo b a) → Tendsto f (𝓝[Ioi b] b) (𝓝 lb) → ContinuousOn (extendFrom (Ioo b a) f) (Ico b a) ⊢ ContinuousOn (extendFrom (Ioo a b) f) (Ioc a b) [PROOFSTEP] erw [dual_Ico, dual_Ioi, dual_Ioo] at this [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : DenselyOrdered α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : RegularSpace β f : α → β a b : α lb : β hab : a < b hf : ContinuousOn f (Ioo a b) hb : Tendsto f (𝓝[Iio b] b) (𝓝 lb) this : ContinuousOn f (↑OrderDual.ofDual ⁻¹' Ioo a b) → Tendsto f (𝓝[↑OrderDual.ofDual ⁻¹' Iio b] b) (𝓝 lb) → ContinuousOn (extendFrom (↑OrderDual.ofDual ⁻¹' Ioo a b) f) (↑OrderDual.ofDual ⁻¹' Ioc a b) ⊢ ContinuousOn (extendFrom (Ioo a b) f) (Ioc a b) [PROOFSTEP] exact this hf hb
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.ExtendFrom", "llama_tokens": 5323}
[GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝² : DivInvMonoid G₀ inst✝¹ : TopologicalSpace G₀ inst✝ : ContinuousMul G₀ f : α → G₀ s : Set α l : Filter α x : G₀ hf : Tendsto f l (𝓝 x) y : G₀ ⊢ Tendsto (fun a => f a / y) l (𝓝 (x / y)) [PROOFSTEP] simpa only [div_eq_mul_inv] using hf.mul tendsto_const_nhds [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝³ : DivInvMonoid G₀ inst✝² : TopologicalSpace G₀ inst✝¹ : ContinuousMul G₀ f : α → G₀ s : Set α l : Filter α inst✝ : TopologicalSpace α hf : ContinuousOn f s y : G₀ ⊢ ContinuousOn (fun x => f x / y) s [PROOFSTEP] simpa only [div_eq_mul_inv] using hf.mul continuousOn_const [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝³ : DivInvMonoid G₀ inst✝² : TopologicalSpace G₀ inst✝¹ : ContinuousMul G₀ f : α → G₀ s : Set α l : Filter α inst✝ : TopologicalSpace α hf : Continuous f y : G₀ ⊢ Continuous fun x => f x / y [PROOFSTEP] simpa only [div_eq_mul_inv] using hf.mul continuous_const [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝³ : GroupWithZero G₀ inst✝² : TopologicalSpace G₀ inst✝¹ : HasContinuousInv₀ G₀ inst✝ : ContinuousMul G₀ f g : α → G₀ l : Filter α a b : G₀ hf : Tendsto f l (𝓝 a) hg : Tendsto g l (𝓝 b) hy : b ≠ 0 ⊢ Tendsto (f / g) l (𝓝 (a / b)) [PROOFSTEP] simpa only [div_eq_mul_inv] using hf.mul (hg.inv₀ hy) [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝⁴ : GroupWithZero G₀ inst✝³ : TopologicalSpace G₀ inst✝² : HasContinuousInv₀ G₀ inst✝¹ : ContinuousMul G₀ f✝ g✝ : α → G₀ inst✝ : T1Space G₀ f g : α → G₀ l : Filter α x y : G₀ hg : Tendsto g l (𝓝 y) hy : y ≠ 0 ⊢ Tendsto (fun n => f n * g n) l (𝓝 (x * y)) ↔ Tendsto f l (𝓝 x) [PROOFSTEP] refine' ⟨fun hfg => _, fun hf => hf.mul hg⟩ [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝⁴ : GroupWithZero G₀ inst✝³ : TopologicalSpace G₀ inst✝² : HasContinuousInv₀ G₀ inst✝¹ : ContinuousMul G₀ f✝ g✝ : α → G₀ inst✝ : T1Space G₀ f g : α → G₀ l : Filter α x y : G₀ hg : Tendsto g l (𝓝 y) hy : y ≠ 0 hfg : Tendsto (fun n => f n * g n) l (𝓝 (x * y)) ⊢ Tendsto f l (𝓝 x) [PROOFSTEP] rw [← mul_div_cancel x hy] [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝⁴ : GroupWithZero G₀ inst✝³ : TopologicalSpace G₀ inst✝² : HasContinuousInv₀ G₀ inst✝¹ : ContinuousMul G₀ f✝ g✝ : α → G₀ inst✝ : T1Space G₀ f g : α → G₀ l : Filter α x y : G₀ hg : Tendsto g l (𝓝 y) hy : y ≠ 0 hfg : Tendsto (fun n => f n * g n) l (𝓝 (x * y)) ⊢ Tendsto f l (𝓝 (x * y / y)) [PROOFSTEP] refine' Tendsto.congr' _ (hfg.div hg hy) [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝⁴ : GroupWithZero G₀ inst✝³ : TopologicalSpace G₀ inst✝² : HasContinuousInv₀ G₀ inst✝¹ : ContinuousMul G₀ f✝ g✝ : α → G₀ inst✝ : T1Space G₀ f g : α → G₀ l : Filter α x y : G₀ hg : Tendsto g l (𝓝 y) hy : y ≠ 0 hfg : Tendsto (fun n => f n * g n) l (𝓝 (x * y)) ⊢ (fun n => f n * g n) / g =ᶠ[l] f [PROOFSTEP] refine' (hg.eventually_ne hy).mono fun n hn => mul_div_cancel _ hn [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝⁵ : GroupWithZero G₀ inst✝⁴ : TopologicalSpace G₀ inst✝³ : HasContinuousInv₀ G₀ inst✝² : ContinuousMul G₀ f g : α → G₀ inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β s : Set α a : α hf : Continuous f hg : Continuous g h₀ : ∀ (x : α), g x ≠ 0 ⊢ Continuous (f / g) [PROOFSTEP] simpa only [div_eq_mul_inv] using hf.mul (hg.inv₀ h₀) [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝⁵ : GroupWithZero G₀ inst✝⁴ : TopologicalSpace G₀ inst✝³ : HasContinuousInv₀ G₀ inst✝² : ContinuousMul G₀ f✝ g✝ : α → G₀ inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β s : Set α a : α f g : α → G₀ h : α → G₀ → β hf : ContinuousAt f a hg : ContinuousAt g a hh : g a ≠ 0 → ContinuousAt (↿h) (a, f a / g a) h2h : g a = 0 → Tendsto (↿h) (𝓝 a ×ˢ ⊤) (𝓝 (h a 0)) ⊢ ContinuousAt (fun x => h x (f x / g x)) a [PROOFSTEP] show ContinuousAt (↿h ∘ fun x => (x, f x / g x)) a [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝⁵ : GroupWithZero G₀ inst✝⁴ : TopologicalSpace G₀ inst✝³ : HasContinuousInv₀ G₀ inst✝² : ContinuousMul G₀ f✝ g✝ : α → G₀ inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β s : Set α a : α f g : α → G₀ h : α → G₀ → β hf : ContinuousAt f a hg : ContinuousAt g a hh : g a ≠ 0 → ContinuousAt (↿h) (a, f a / g a) h2h : g a = 0 → Tendsto (↿h) (𝓝 a ×ˢ ⊤) (𝓝 (h a 0)) ⊢ ContinuousAt (↿h ∘ fun x => (x, f x / g x)) a [PROOFSTEP] by_cases hga : g a = 0 [GOAL] case pos α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝⁵ : GroupWithZero G₀ inst✝⁴ : TopologicalSpace G₀ inst✝³ : HasContinuousInv₀ G₀ inst✝² : ContinuousMul G₀ f✝ g✝ : α → G₀ inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β s : Set α a : α f g : α → G₀ h : α → G₀ → β hf : ContinuousAt f a hg : ContinuousAt g a hh : g a ≠ 0 → ContinuousAt (↿h) (a, f a / g a) h2h : g a = 0 → Tendsto (↿h) (𝓝 a ×ˢ ⊤) (𝓝 (h a 0)) hga : g a = 0 ⊢ ContinuousAt (↿h ∘ fun x => (x, f x / g x)) a [PROOFSTEP] rw [ContinuousAt] [GOAL] case pos α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝⁵ : GroupWithZero G₀ inst✝⁴ : TopologicalSpace G₀ inst✝³ : HasContinuousInv₀ G₀ inst✝² : ContinuousMul G₀ f✝ g✝ : α → G₀ inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β s : Set α a : α f g : α → G₀ h : α → G₀ → β hf : ContinuousAt f a hg : ContinuousAt g a hh : g a ≠ 0 → ContinuousAt (↿h) (a, f a / g a) h2h : g a = 0 → Tendsto (↿h) (𝓝 a ×ˢ ⊤) (𝓝 (h a 0)) hga : g a = 0 ⊢ Tendsto (↿h ∘ fun x => (x, f x / g x)) (𝓝 a) (𝓝 ((↿h ∘ fun x => (x, f x / g x)) a)) [PROOFSTEP] simp_rw [comp_apply, hga, div_zero] [GOAL] case pos α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝⁵ : GroupWithZero G₀ inst✝⁴ : TopologicalSpace G₀ inst✝³ : HasContinuousInv₀ G₀ inst✝² : ContinuousMul G₀ f✝ g✝ : α → G₀ inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β s : Set α a : α f g : α → G₀ h : α → G₀ → β hf : ContinuousAt f a hg : ContinuousAt g a hh : g a ≠ 0 → ContinuousAt (↿h) (a, f a / g a) h2h : g a = 0 → Tendsto (↿h) (𝓝 a ×ˢ ⊤) (𝓝 (h a 0)) hga : g a = 0 ⊢ Tendsto (↿h ∘ fun x => (x, f x / g x)) (𝓝 a) (𝓝 ((↿h) (a, 0))) [PROOFSTEP] exact (h2h hga).comp (continuousAt_id.prod_mk tendsto_top) [GOAL] case neg α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝⁵ : GroupWithZero G₀ inst✝⁴ : TopologicalSpace G₀ inst✝³ : HasContinuousInv₀ G₀ inst✝² : ContinuousMul G₀ f✝ g✝ : α → G₀ inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β s : Set α a : α f g : α → G₀ h : α → G₀ → β hf : ContinuousAt f a hg : ContinuousAt g a hh : g a ≠ 0 → ContinuousAt (↿h) (a, f a / g a) h2h : g a = 0 → Tendsto (↿h) (𝓝 a ×ˢ ⊤) (𝓝 (h a 0)) hga : ¬g a = 0 ⊢ ContinuousAt (↿h ∘ fun x => (x, f x / g x)) a [PROOFSTEP] exact ContinuousAt.comp (hh hga) (continuousAt_id.prod (hf.div hg hga)) [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝² : TopologicalSpace G₀ inst✝¹ : GroupWithZero G₀ inst✝ : ContinuousMul G₀ a : G₀ ha : a ≠ 0 ⊢ map (fun x => a * x) (𝓝 1) = 𝓝 a [PROOFSTEP] rw [map_mul_left_nhds₀ ha, mul_one] [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝² : TopologicalSpace G₀ inst✝¹ : GroupWithZero G₀ inst✝ : ContinuousMul G₀ a : G₀ ha : a ≠ 0 ⊢ map (fun x => x * a) (𝓝 1) = 𝓝 a [PROOFSTEP] rw [map_mul_right_nhds₀ ha, one_mul] [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝² : TopologicalSpace G₀ inst✝¹ : GroupWithZero G₀ inst✝ : ContinuousMul G₀ a : G₀ ha : a ≠ 0 ⊢ 𝓝 (↑(Homeomorph.symm (Homeomorph.symm (Homeomorph.mulRight₀ a ha))) 1) = 𝓝 a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝² : TopologicalSpace G₀ inst✝¹ : GroupWithZero G₀ inst✝ : ContinuousMul G₀ a : G₀ h : Tendsto Inv.inv (𝓝 1) (𝓝 1) x : G₀ hx : x ≠ 0 ⊢ ContinuousAt Inv.inv x [PROOFSTEP] have hx' := inv_ne_zero hx [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝² : TopologicalSpace G₀ inst✝¹ : GroupWithZero G₀ inst✝ : ContinuousMul G₀ a : G₀ h : Tendsto Inv.inv (𝓝 1) (𝓝 1) x : G₀ hx : x ≠ 0 hx' : x⁻¹ ≠ 0 ⊢ ContinuousAt Inv.inv x [PROOFSTEP] rw [ContinuousAt, ← map_mul_left_nhds_one₀ hx, ← nhds_translation_mul_inv₀ hx', tendsto_map'_iff, tendsto_comap_iff] [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝² : TopologicalSpace G₀ inst✝¹ : GroupWithZero G₀ inst✝ : ContinuousMul G₀ a : G₀ h : Tendsto Inv.inv (𝓝 1) (𝓝 1) x : G₀ hx : x ≠ 0 hx' : x⁻¹ ≠ 0 ⊢ Tendsto ((fun x_1 => x_1 * x⁻¹⁻¹) ∘ Inv.inv ∘ fun x_1 => x * x_1) (𝓝 1) (𝓝 1) [PROOFSTEP] simpa only [(· ∘ ·), mul_inv_rev, mul_inv_cancel_right₀ hx'] [GOAL] α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝³ : GroupWithZero G₀ inst✝² : TopologicalSpace G₀ inst✝¹ : HasContinuousInv₀ G₀ inst✝ : ContinuousMul G₀ x : G₀ m : ℤ h : x ≠ 0 ∨ 0 ≤ m ⊢ ContinuousAt (fun x => x ^ m) x [PROOFSTEP] cases' m with m m [GOAL] case ofNat α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝³ : GroupWithZero G₀ inst✝² : TopologicalSpace G₀ inst✝¹ : HasContinuousInv₀ G₀ inst✝ : ContinuousMul G₀ x : G₀ m : ℕ h : x ≠ 0 ∨ 0 ≤ Int.ofNat m ⊢ ContinuousAt (fun x => x ^ Int.ofNat m) x [PROOFSTEP] simpa only [Int.ofNat_eq_coe, zpow_coe_nat] using continuousAt_pow x m [GOAL] case negSucc α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝³ : GroupWithZero G₀ inst✝² : TopologicalSpace G₀ inst✝¹ : HasContinuousInv₀ G₀ inst✝ : ContinuousMul G₀ x : G₀ m : ℕ h : x ≠ 0 ∨ 0 ≤ Int.negSucc m ⊢ ContinuousAt (fun x => x ^ Int.negSucc m) x [PROOFSTEP] simp only [zpow_negSucc] [GOAL] case negSucc α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝³ : GroupWithZero G₀ inst✝² : TopologicalSpace G₀ inst✝¹ : HasContinuousInv₀ G₀ inst✝ : ContinuousMul G₀ x : G₀ m : ℕ h : x ≠ 0 ∨ 0 ≤ Int.negSucc m ⊢ ContinuousAt (fun x => (x ^ (m + 1))⁻¹) x [PROOFSTEP] have hx : x ≠ 0 := h.resolve_right (Int.negSucc_lt_zero m).not_le [GOAL] case negSucc α : Type u_1 β : Type u_2 G₀ : Type u_3 inst✝³ : GroupWithZero G₀ inst✝² : TopologicalSpace G₀ inst✝¹ : HasContinuousInv₀ G₀ inst✝ : ContinuousMul G₀ x : G₀ m : ℕ h : x ≠ 0 ∨ 0 ≤ Int.negSucc m hx : x ≠ 0 ⊢ ContinuousAt (fun x => (x ^ (m + 1))⁻¹) x [PROOFSTEP] exact (continuousAt_pow x (m + 1)).inv₀ (pow_ne_zero _ hx)
{"mathlib_filename": "Mathlib.Topology.Algebra.GroupWithZero", "llama_tokens": 5164}
[GOAL] G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G hS : ∀ (ε : G), ε > 0 → ∃ g, g ∈ S ∧ g ∈ Ioo 0 ε ⊢ Dense ↑S [PROOFSTEP] cases subsingleton_or_nontrivial G [GOAL] case inl G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G hS : ∀ (ε : G), ε > 0 → ∃ g, g ∈ S ∧ g ∈ Ioo 0 ε h✝ : Subsingleton G ⊢ Dense ↑S [PROOFSTEP] refine fun x => _root_.subset_closure ?_ [GOAL] case inl G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G hS : ∀ (ε : G), ε > 0 → ∃ g, g ∈ S ∧ g ∈ Ioo 0 ε h✝ : Subsingleton G x : G ⊢ x ∈ ↑S [PROOFSTEP] rw [Subsingleton.elim x 0] [GOAL] case inl G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G hS : ∀ (ε : G), ε > 0 → ∃ g, g ∈ S ∧ g ∈ Ioo 0 ε h✝ : Subsingleton G x : G ⊢ 0 ∈ ↑S [PROOFSTEP] exact zero_mem S [GOAL] case inr G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G hS : ∀ (ε : G), ε > 0 → ∃ g, g ∈ S ∧ g ∈ Ioo 0 ε h✝ : Nontrivial G ⊢ Dense ↑S [PROOFSTEP] refine dense_of_exists_between fun a b hlt => ?_ [GOAL] case inr G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G hS : ∀ (ε : G), ε > 0 → ∃ g, g ∈ S ∧ g ∈ Ioo 0 ε h✝ : Nontrivial G a b : G hlt : a < b ⊢ ∃ c, c ∈ ↑S ∧ a < c ∧ c < b [PROOFSTEP] rcases hS (b - a) (sub_pos.2 hlt) with ⟨g, hgS, hg0, hg⟩ [GOAL] case inr.intro.intro.intro G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G hS : ∀ (ε : G), ε > 0 → ∃ g, g ∈ S ∧ g ∈ Ioo 0 ε h✝ : Nontrivial G a b : G hlt : a < b g : G hgS : g ∈ S hg0 : 0 < g hg : g < b - a ⊢ ∃ c, c ∈ ↑S ∧ a < c ∧ c < b [PROOFSTEP] rcases(existsUnique_add_zsmul_mem_Ioc hg0 0 a).exists with ⟨m, hm⟩ [GOAL] case inr.intro.intro.intro.intro G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G hS : ∀ (ε : G), ε > 0 → ∃ g, g ∈ S ∧ g ∈ Ioo 0 ε h✝ : Nontrivial G a b : G hlt : a < b g : G hgS : g ∈ S hg0 : 0 < g hg : g < b - a m : ℤ hm : 0 + m • g ∈ Ioc a (a + g) ⊢ ∃ c, c ∈ ↑S ∧ a < c ∧ c < b [PROOFSTEP] rw [zero_add] at hm [GOAL] case inr.intro.intro.intro.intro G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G hS : ∀ (ε : G), ε > 0 → ∃ g, g ∈ S ∧ g ∈ Ioo 0 ε h✝ : Nontrivial G a b : G hlt : a < b g : G hgS : g ∈ S hg0 : 0 < g hg : g < b - a m : ℤ hm : m • g ∈ Ioc a (a + g) ⊢ ∃ c, c ∈ ↑S ∧ a < c ∧ c < b [PROOFSTEP] refine ⟨m • g, zsmul_mem hgS _, hm.1, hm.2.trans_lt ?_⟩ [GOAL] case inr.intro.intro.intro.intro G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G hS : ∀ (ε : G), ε > 0 → ∃ g, g ∈ S ∧ g ∈ Ioo 0 ε h✝ : Nontrivial G a b : G hlt : a < b g : G hgS : g ∈ S hg0 : 0 < g hg : g < b - a m : ℤ hm : m • g ∈ Ioc a (a + g) ⊢ a + g < b [PROOFSTEP] rwa [lt_sub_iff_add_lt'] at hg [GOAL] G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G hbot : S ≠ ⊥ H : ¬∃ a, IsLeast {g | g ∈ S ∧ 0 < g} a ⊢ Dense ↑S [PROOFSTEP] refine S.dense_of_not_isolated_zero fun ε ε0 => ?_ [GOAL] G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G hbot : S ≠ ⊥ H : ¬∃ a, IsLeast {g | g ∈ S ∧ 0 < g} a ε : G ε0 : ε > 0 ⊢ ∃ g, g ∈ S ∧ g ∈ Ioo 0 ε [PROOFSTEP] contrapose! H [GOAL] G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G hbot : S ≠ ⊥ ε : G ε0 : ε > 0 H : ∀ (g : G), g ∈ S → ¬g ∈ Ioo 0 ε ⊢ ∃ a, IsLeast {g | g ∈ S ∧ 0 < g} a [PROOFSTEP] exact exists_isLeast_pos hbot ε0 (disjoint_left.2 H) [GOAL] G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G ⊢ Dense ↑S ∨ ∃ a, S = closure {a} [PROOFSTEP] refine (em _).imp (dense_of_not_isolated_zero S) fun h => ?_ [GOAL] G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G h : ¬∀ (ε : G), ε > 0 → ∃ g, g ∈ S ∧ g ∈ Ioo 0 ε ⊢ ∃ a, S = closure {a} [PROOFSTEP] push_neg at h [GOAL] G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G h : ∃ ε, ε > 0 ∧ ∀ (g : G), g ∈ S → ¬g ∈ Ioo 0 ε ⊢ ∃ a, S = closure {a} [PROOFSTEP] rcases h with ⟨ε, ε0, hε⟩ [GOAL] case intro.intro G : Type u_1 inst✝³ : LinearOrderedAddCommGroup G inst✝² : TopologicalSpace G inst✝¹ : OrderTopology G inst✝ : Archimedean G S : AddSubgroup G ε : G ε0 : ε > 0 hε : ∀ (g : G), g ∈ S → ¬g ∈ Ioo 0 ε ⊢ ∃ a, S = closure {a} [PROOFSTEP] exact cyclic_of_isolated_zero ε0 (disjoint_left.2 hε)
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.Archimedean", "llama_tokens": 2834}
[GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : OrderedCommGroup α inst✝ : ContinuousConstSMul α α s : Set α h : IsUpperSet s x y : α hxy : x ≤ y hx : x ∈ closure s ⊢ y ∈ closure ((y / x) • s) [PROOFSTEP] rw [closure_smul] [GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : OrderedCommGroup α inst✝ : ContinuousConstSMul α α s : Set α h : IsUpperSet s x y : α hxy : x ≤ y hx : x ∈ closure s ⊢ y ∈ (y / x) • closure s [PROOFSTEP] exact ⟨x, hx, div_mul_cancel' _ _⟩ [GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : OrderedCommGroup α inst✝ : ContinuousConstSMul α α s : Set α h : IsLowerSet s x y : α hxy : y ≤ x hx : x ∈ closure s ⊢ y ∈ closure ((y / x) • s) [PROOFSTEP] rw [closure_smul] [GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : OrderedCommGroup α inst✝ : ContinuousConstSMul α α s : Set α h : IsLowerSet s x y : α hxy : y ≤ x hx : x ∈ closure s ⊢ y ∈ (y / x) • closure s [PROOFSTEP] exact ⟨x, hx, div_mul_cancel' _ _⟩ [GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : OrderedCommGroup α inst✝ : ContinuousConstSMul α α s : Set α hs : IsOpen s ⊢ IsOpen ↑(upperClosure s) [PROOFSTEP] rw [← mul_one s, ← mul_upperClosure] [GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : OrderedCommGroup α inst✝ : ContinuousConstSMul α α s : Set α hs : IsOpen s ⊢ IsOpen (s * ↑(upperClosure 1)) [PROOFSTEP] exact hs.mul_right [GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : OrderedCommGroup α inst✝ : ContinuousConstSMul α α s : Set α hs : IsOpen s ⊢ IsOpen ↑(lowerClosure s) [PROOFSTEP] rw [← mul_one s, ← mul_lowerClosure] [GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : OrderedCommGroup α inst✝ : ContinuousConstSMul α α s : Set α hs : IsOpen s ⊢ IsOpen (s * ↑(lowerClosure 1)) [PROOFSTEP] exact hs.mul_right [GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : HasUpperLowerClosure α s : Set α h : IsUpperSet s ⊢ IsUpperSet (interior s) [PROOFSTEP] rw [← isLowerSet_compl, ← closure_compl] [GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : HasUpperLowerClosure α s : Set α h : IsUpperSet s ⊢ IsLowerSet (closure sᶜ) [PROOFSTEP] exact h.compl.closure [GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : HasUpperLowerClosure α s : Set α h : OrdConnected s ⊢ OrdConnected (interior s) [PROOFSTEP] rw [← h.upperClosure_inter_lowerClosure, interior_inter] [GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : HasUpperLowerClosure α s : Set α h : OrdConnected s ⊢ OrdConnected (interior ↑(upperClosure s) ∩ interior ↑(lowerClosure s)) [PROOFSTEP] exact (upperClosure s).upper.interior.ordConnected.inter (lowerClosure s).lower.interior.ordConnected
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.UpperLower", "llama_tokens": 1255}
[GOAL] X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : Preorder Y inst✝ : OrderClosedTopology Y f g : X → Y s : Set X a : X h : IsLocalMaxOn f s a hc : ContinuousOn f (closure s) ⊢ IsLocalMaxOn f (closure s) a [PROOFSTEP] rcases mem_nhdsWithin.1 h with ⟨U, Uo, aU, hU⟩ [GOAL] case intro.intro.intro X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : Preorder Y inst✝ : OrderClosedTopology Y f g : X → Y s : Set X a : X h : IsLocalMaxOn f s a hc : ContinuousOn f (closure s) U : Set X Uo : IsOpen U aU : a ∈ U hU : U ∩ s ⊆ {x | (fun x => f x ≤ f a) x} ⊢ IsLocalMaxOn f (closure s) a [PROOFSTEP] refine' mem_nhdsWithin.2 ⟨U, Uo, aU, _⟩ [GOAL] case intro.intro.intro X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : Preorder Y inst✝ : OrderClosedTopology Y f g : X → Y s : Set X a : X h : IsLocalMaxOn f s a hc : ContinuousOn f (closure s) U : Set X Uo : IsOpen U aU : a ∈ U hU : U ∩ s ⊆ {x | (fun x => f x ≤ f a) x} ⊢ U ∩ closure s ⊆ {x | (fun x => f x ≤ f a) x} [PROOFSTEP] rintro x ⟨hxU, hxs⟩ [GOAL] case intro.intro.intro.intro X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : Preorder Y inst✝ : OrderClosedTopology Y f g : X → Y s : Set X a : X h : IsLocalMaxOn f s a hc : ContinuousOn f (closure s) U : Set X Uo : IsOpen U aU : a ∈ U hU : U ∩ s ⊆ {x | (fun x => f x ≤ f a) x} x : X hxU : x ∈ U hxs : x ∈ closure s ⊢ x ∈ {x | (fun x => f x ≤ f a) x} [PROOFSTEP] refine' ContinuousWithinAt.closure_le _ _ continuousWithinAt_const hU [GOAL] case intro.intro.intro.intro.refine'_1 X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : Preorder Y inst✝ : OrderClosedTopology Y f g : X → Y s : Set X a : X h : IsLocalMaxOn f s a hc : ContinuousOn f (closure s) U : Set X Uo : IsOpen U aU : a ∈ U hU : U ∩ s ⊆ {x | (fun x => f x ≤ f a) x} x : X hxU : x ∈ U hxs : x ∈ closure s ⊢ x ∈ closure (U ∩ s) [PROOFSTEP] rwa [mem_closure_iff_nhdsWithin_neBot, nhdsWithin_inter_of_mem, ← mem_closure_iff_nhdsWithin_neBot] [GOAL] case intro.intro.intro.intro.refine'_1 X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : Preorder Y inst✝ : OrderClosedTopology Y f g : X → Y s : Set X a : X h : IsLocalMaxOn f s a hc : ContinuousOn f (closure s) U : Set X Uo : IsOpen U aU : a ∈ U hU : U ∩ s ⊆ {x | (fun x => f x ≤ f a) x} x : X hxU : x ∈ U hxs : x ∈ closure s ⊢ U ∈ 𝓝[s] x [PROOFSTEP] exact nhdsWithin_le_nhds (Uo.mem_nhds hxU) [GOAL] case intro.intro.intro.intro.refine'_2 X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : Preorder Y inst✝ : OrderClosedTopology Y f g : X → Y s : Set X a : X h : IsLocalMaxOn f s a hc : ContinuousOn f (closure s) U : Set X Uo : IsOpen U aU : a ∈ U hU : U ∩ s ⊆ {x | (fun x => f x ≤ f a) x} x : X hxU : x ∈ U hxs : x ∈ closure s ⊢ ContinuousWithinAt f (U ∩ s) x [PROOFSTEP] exact (hc _ hxs).mono ((inter_subset_right _ _).trans subset_closure)
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.ExtrClosure", "llama_tokens": 1493}
[GOAL] R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} ⊢ TopologicalRing R [PROOFSTEP] have h0 : ∀ f : R → R, ∀ c ≥ (0 : 𝕜), (∀ x, norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) [GOAL] case h0 R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} ⊢ ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) [PROOFSTEP] refine fun f c c0 hf ↦ (nhds_basis.tendsto_iff nhds_basis).2 fun ε ε0 ↦ ?_ [GOAL] case h0 R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} f : R → R c : 𝕜 c0 : c ≥ 0 hf : ∀ (x : R), norm (f x) ≤ c * norm x ε : 𝕜 ε0 : 0 < ε ⊢ ∃ ia, 0 < ia ∧ ∀ (x : R), x ∈ {x | norm x < ia} → f x ∈ {x | norm x < ε} [PROOFSTEP] rcases exists_pos_mul_lt ε0 c with ⟨δ, δ0, hδ⟩ [GOAL] case h0.intro.intro R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} f : R → R c : 𝕜 c0 : c ≥ 0 hf : ∀ (x : R), norm (f x) ≤ c * norm x ε : 𝕜 ε0 : 0 < ε δ : 𝕜 δ0 : 0 < δ hδ : c * δ < ε ⊢ ∃ ia, 0 < ia ∧ ∀ (x : R), x ∈ {x | norm x < ia} → f x ∈ {x | norm x < ε} [PROOFSTEP] refine ⟨δ, δ0, fun x hx ↦ (hf _).trans_lt ?_⟩ [GOAL] case h0.intro.intro R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} f : R → R c : 𝕜 c0 : c ≥ 0 hf : ∀ (x : R), norm (f x) ≤ c * norm x ε : 𝕜 ε0 : 0 < ε δ : 𝕜 δ0 : 0 < δ hδ : c * δ < ε x : R hx : x ∈ {x | norm x < δ} ⊢ c * norm x < ε [PROOFSTEP] exact (mul_le_mul_of_nonneg_left (le_of_lt hx) c0).trans_lt hδ [GOAL] R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ⊢ TopologicalRing R [PROOFSTEP] apply TopologicalRing.of_addGroup_of_nhds_zero [GOAL] case hmul R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ⊢ Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) case hmul_left R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ⊢ ∀ (x₀ : R), Tendsto (fun x => x₀ * x) (𝓝 0) (𝓝 0) case hmul_right R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ⊢ ∀ (x₀ : R), Tendsto (fun x => x * x₀) (𝓝 0) (𝓝 0) [PROOFSTEP] case hmul => refine ((nhds_basis.prod nhds_basis).tendsto_iff nhds_basis).2 fun ε ε0 ↦ ?_ refine ⟨(1, ε), ⟨one_pos, ε0⟩, fun (x, y) ⟨hx, hy⟩ => ?_⟩ simp only [sub_zero] at * calc norm (x * y) ≤ norm x * norm y := norm_mul_le _ _ _ < ε := mul_lt_of_le_one_of_lt_of_nonneg hx.le hy (norm_nonneg _) [GOAL] R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ⊢ Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) [PROOFSTEP] case hmul => refine ((nhds_basis.prod nhds_basis).tendsto_iff nhds_basis).2 fun ε ε0 ↦ ?_ refine ⟨(1, ε), ⟨one_pos, ε0⟩, fun (x, y) ⟨hx, hy⟩ => ?_⟩ simp only [sub_zero] at * calc norm (x * y) ≤ norm x * norm y := norm_mul_le _ _ _ < ε := mul_lt_of_le_one_of_lt_of_nonneg hx.le hy (norm_nonneg _) [GOAL] R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ⊢ Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) [PROOFSTEP] refine ((nhds_basis.prod nhds_basis).tendsto_iff nhds_basis).2 fun ε ε0 ↦ ?_ [GOAL] R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ε : 𝕜 ε0 : 0 < ε ⊢ ∃ ia, (0 < ia.fst ∧ 0 < ia.snd) ∧ ∀ (x : R × R), x ∈ {x | norm x < ia.fst} ×ˢ {x | norm x < ia.snd} → uncurry (fun x x_1 => x * x_1) x ∈ {x | norm x < ε} [PROOFSTEP] refine ⟨(1, ε), ⟨one_pos, ε0⟩, fun (x, y) ⟨hx, hy⟩ => ?_⟩ [GOAL] R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ε : 𝕜 ε0 : 0 < ε x✝¹ : R × R x y : R x✝ : (x, y) ∈ {x | norm x < (1, ε).fst} ×ˢ {x | norm x < (1, ε).snd} hx : (x, y).fst ∈ {x | norm x < (1, ε).fst} hy : (x, y).snd ∈ {x | norm x < (1, ε).snd} ⊢ uncurry (fun x x_1 => x * x_1) (x, y) ∈ {x | norm x < ε} [PROOFSTEP] simp only [sub_zero] at * [GOAL] R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ε : 𝕜 ε0 : 0 < ε x✝¹ : R × R x y : R x✝ : (x, y) ∈ {x | norm x < 1} ×ˢ {x | norm x < ε} hx : x ∈ {x | norm x < 1} hy : y ∈ {x | norm x < ε} ⊢ uncurry (fun x x_1 => x * x_1) (x, y) ∈ {x | norm x < ε} [PROOFSTEP] calc norm (x * y) ≤ norm x * norm y := norm_mul_le _ _ _ < ε := mul_lt_of_le_one_of_lt_of_nonneg hx.le hy (norm_nonneg _) [GOAL] case hmul_left R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ⊢ ∀ (x₀ : R), Tendsto (fun x => x₀ * x) (𝓝 0) (𝓝 0) case hmul_right R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ⊢ ∀ (x₀ : R), Tendsto (fun x => x * x₀) (𝓝 0) (𝓝 0) [PROOFSTEP] case hmul_left => exact fun x => h0 _ (norm x) (norm_nonneg _) (norm_mul_le x) [GOAL] R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ⊢ ∀ (x₀ : R), Tendsto (fun x => x₀ * x) (𝓝 0) (𝓝 0) [PROOFSTEP] case hmul_left => exact fun x => h0 _ (norm x) (norm_nonneg _) (norm_mul_le x) [GOAL] R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ⊢ ∀ (x₀ : R), Tendsto (fun x => x₀ * x) (𝓝 0) (𝓝 0) [PROOFSTEP] exact fun x => h0 _ (norm x) (norm_nonneg _) (norm_mul_le x) [GOAL] case hmul_right R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ⊢ ∀ (x₀ : R), Tendsto (fun x => x * x₀) (𝓝 0) (𝓝 0) [PROOFSTEP] case hmul_right => exact fun y => h0 (· * y) (norm y) (norm_nonneg y) fun x => (norm_mul_le x y).trans_eq (mul_comm _ _) [GOAL] R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ⊢ ∀ (x₀ : R), Tendsto (fun x => x * x₀) (𝓝 0) (𝓝 0) [PROOFSTEP] case hmul_right => exact fun y => h0 (· * y) (norm y) (norm_nonneg y) fun x => (norm_mul_le x y).trans_eq (mul_comm _ _) [GOAL] R : Type u_1 𝕜 : Type u_2 inst✝³ : NonUnitalNonAssocRing R inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R norm : R → 𝕜 norm_nonneg : ∀ (x : R), 0 ≤ norm x norm_mul_le : ∀ (x y : R), norm (x * y) ≤ norm x * norm y nhds_basis : HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | norm x < ε} h0 : ∀ (f : R → R) (c : 𝕜), c ≥ 0 → (∀ (x : R), norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) ⊢ ∀ (x₀ : R), Tendsto (fun x => x * x₀) (𝓝 0) (𝓝 0) [PROOFSTEP] exact fun y => h0 (· * y) (norm y) (norm_nonneg y) fun x => (norm_mul_le x y).trans_eq (mul_comm _ _) [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 ⊢ HasBasis (𝓝 0) (fun x => 0 < x) fun ε => {x | |x| < ε} [PROOFSTEP] simpa using nhds_basis_abs_sub_lt (0 : 𝕜) [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 C : 𝕜 hC : 0 < C hf : Tendsto f l atTop hg : Tendsto g l (𝓝 C) ⊢ Tendsto (fun x => f x * g x) l atTop [PROOFSTEP] refine' tendsto_atTop_mono' _ _ (hf.atTop_mul_const (half_pos hC)) [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 C : 𝕜 hC : 0 < C hf : Tendsto f l atTop hg : Tendsto g l (𝓝 C) ⊢ (fun x => f x * (C / 2)) ≤ᶠ[l] fun x => f x * g x [PROOFSTEP] filter_upwards [hg.eventually (lt_mem_nhds (half_lt_self hC)), hf.eventually_ge_atTop 0] with x hg hf using mul_le_mul_of_nonneg_left hg.le hf [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 C : 𝕜 hC : 0 < C hf : Tendsto f l (𝓝 C) hg : Tendsto g l atTop ⊢ Tendsto (fun x => f x * g x) l atTop [PROOFSTEP] simpa only [mul_comm] using hg.atTop_mul hC hf [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 C : 𝕜 hC : C < 0 hf : Tendsto f l atTop hg : Tendsto g l (𝓝 C) ⊢ Tendsto (fun x => f x * g x) l atBot [PROOFSTEP] have := hf.atTop_mul (neg_pos.2 hC) hg.neg [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 C : 𝕜 hC : C < 0 hf : Tendsto f l atTop hg : Tendsto g l (𝓝 C) this : Tendsto (fun x => f x * -g x) l atTop ⊢ Tendsto (fun x => f x * g x) l atBot [PROOFSTEP] simpa only [(· ∘ ·), neg_mul_eq_mul_neg, neg_neg] using tendsto_neg_atTop_atBot.comp this [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 C : 𝕜 hC : C < 0 hf : Tendsto f l (𝓝 C) hg : Tendsto g l atTop ⊢ Tendsto (fun x => f x * g x) l atBot [PROOFSTEP] simpa only [mul_comm] using hg.atTop_mul_neg hC hf [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 C : 𝕜 hC : 0 < C hf : Tendsto f l atBot hg : Tendsto g l (𝓝 C) ⊢ Tendsto (fun x => f x * g x) l atBot [PROOFSTEP] have := (tendsto_neg_atBot_atTop.comp hf).atTop_mul hC hg [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 C : 𝕜 hC : 0 < C hf : Tendsto f l atBot hg : Tendsto g l (𝓝 C) this : Tendsto (fun x => (Neg.neg ∘ f) x * g x) l atTop ⊢ Tendsto (fun x => f x * g x) l atBot [PROOFSTEP] simpa [(· ∘ ·)] using tendsto_neg_atTop_atBot.comp this [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 C : 𝕜 hC : C < 0 hf : Tendsto f l atBot hg : Tendsto g l (𝓝 C) ⊢ Tendsto (fun x => f x * g x) l atTop [PROOFSTEP] have := (tendsto_neg_atBot_atTop.comp hf).atTop_mul_neg hC hg [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 C : 𝕜 hC : C < 0 hf : Tendsto f l atBot hg : Tendsto g l (𝓝 C) this : Tendsto (fun x => (Neg.neg ∘ f) x * g x) l atBot ⊢ Tendsto (fun x => f x * g x) l atTop [PROOFSTEP] simpa [(· ∘ ·)] using tendsto_neg_atBot_atTop.comp this [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 C : 𝕜 hC : 0 < C hf : Tendsto f l (𝓝 C) hg : Tendsto g l atBot ⊢ Tendsto (fun x => f x * g x) l atBot [PROOFSTEP] simpa only [mul_comm] using hg.atBot_mul hC hf [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 C : 𝕜 hC : C < 0 hf : Tendsto f l (𝓝 C) hg : Tendsto g l atBot ⊢ Tendsto (fun x => f x * g x) l atTop [PROOFSTEP] simpa only [mul_comm] using hg.atBot_mul_neg hC hf [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 ⊢ Tendsto (fun x => x⁻¹) (𝓝[Ioi 0] 0) atTop [PROOFSTEP] refine' (atTop_basis' 1).tendsto_right_iff.2 fun b hb => _ [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 b : 𝕜 hb : 1 ≤ b ⊢ ∀ᶠ (x : 𝕜) in 𝓝[Ioi 0] 0, x⁻¹ ∈ Ici b [PROOFSTEP] have hb' : 0 < b := by positivity [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 b : 𝕜 hb : 1 ≤ b ⊢ 0 < b [PROOFSTEP] positivity [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 b : 𝕜 hb : 1 ≤ b hb' : 0 < b ⊢ ∀ᶠ (x : 𝕜) in 𝓝[Ioi 0] 0, x⁻¹ ∈ Ici b [PROOFSTEP] filter_upwards [Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, inv_pos.2 hb'⟩] with x hx using (le_inv hx.1 hb').1 hx.2 [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 ⊢ Tendsto (fun r => r⁻¹) atTop (𝓝[Ioi 0] 0) [PROOFSTEP] refine (atTop_basis.tendsto_iff ⟨fun s => mem_nhdsWithin_Ioi_iff_exists_Ioc_subset⟩).2 ?_ [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 ⊢ ∀ (ib : 𝕜), ib ∈ Ioi 0 → ∃ ia, True ∧ ∀ (x : 𝕜), x ∈ Ici ia → x⁻¹ ∈ Ioc 0 ib [PROOFSTEP] refine fun b hb => ⟨b⁻¹, trivial, fun x hx => ?_⟩ [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 b : 𝕜 hb : b ∈ Ioi 0 x : 𝕜 hx : x ∈ Ici b⁻¹ ⊢ x⁻¹ ∈ Ioc 0 b [PROOFSTEP] have : 0 < x := lt_of_lt_of_le (inv_pos.2 hb) hx [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 b : 𝕜 hb : b ∈ Ioi 0 x : 𝕜 hx : x ∈ Ici b⁻¹ this : 0 < x ⊢ x⁻¹ ∈ Ioc 0 b [PROOFSTEP] exact ⟨inv_pos.2 this, (inv_le this hb).2 hx⟩ [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 a : 𝕜 h : Tendsto f l (𝓝 a) hg : Tendsto g l atTop ⊢ Tendsto (fun x => f x / g x) l (𝓝 0) [PROOFSTEP] simp only [div_eq_mul_inv] [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 a : 𝕜 h : Tendsto f l (𝓝 a) hg : Tendsto g l atTop ⊢ Tendsto (fun x => f x * (g x)⁻¹) l (𝓝 0) [PROOFSTEP] exact mul_zero a ▸ h.mul (tendsto_inv_atTop_zero.comp hg) [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℕ hn : n ≠ 0 ⊢ Tendsto (fun x => x ^ (-↑n)) atTop (𝓝 0) [PROOFSTEP] simpa only [zpow_neg, zpow_ofNat] using (@tendsto_pow_atTop 𝕜 _ _ hn).inv_tendsto_atTop [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℤ hn : n < 0 ⊢ Tendsto (fun x => x ^ n) atTop (𝓝 0) [PROOFSTEP] lift -n to ℕ using le_of_lt (neg_pos.mpr hn) with N h [GOAL] case intro 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℤ hn : n < 0 N : ℕ h : ↑N = -n ⊢ Tendsto (fun x => x ^ n) atTop (𝓝 0) [PROOFSTEP] rw [← neg_pos, ← h, Nat.cast_pos] at hn [GOAL] case intro 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℤ N : ℕ hn : 0 < N h : ↑N = -n ⊢ Tendsto (fun x => x ^ n) atTop (𝓝 0) [PROOFSTEP] simpa only [h, neg_neg] using tendsto_pow_neg_atTop hn.ne' [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℕ c d : 𝕜 ⊢ Tendsto (fun x => c * x ^ n) atTop (𝓝 d) ↔ (c = 0 ∨ n = 0) ∧ c = d [PROOFSTEP] rcases eq_or_ne n 0 with (rfl | hn) [GOAL] case inl 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 c d : 𝕜 ⊢ Tendsto (fun x => c * x ^ 0) atTop (𝓝 d) ↔ (c = 0 ∨ 0 = 0) ∧ c = d [PROOFSTEP] simp [tendsto_const_nhds_iff] [GOAL] case inr 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℕ c d : 𝕜 hn : n ≠ 0 ⊢ Tendsto (fun x => c * x ^ n) atTop (𝓝 d) ↔ (c = 0 ∨ n = 0) ∧ c = d [PROOFSTEP] rcases lt_trichotomy c 0 with (hc | rfl | hc) [GOAL] case inr.inl 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℕ c d : 𝕜 hn : n ≠ 0 hc : c < 0 ⊢ Tendsto (fun x => c * x ^ n) atTop (𝓝 d) ↔ (c = 0 ∨ n = 0) ∧ c = d [PROOFSTEP] have := tendsto_const_mul_pow_atBot_iff.2 ⟨hn, hc⟩ [GOAL] case inr.inl 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℕ c d : 𝕜 hn : n ≠ 0 hc : c < 0 this : Tendsto (fun x => c * x ^ n) atTop atBot ⊢ Tendsto (fun x => c * x ^ n) atTop (𝓝 d) ↔ (c = 0 ∨ n = 0) ∧ c = d [PROOFSTEP] simp [not_tendsto_nhds_of_tendsto_atBot this, hc.ne, hn] [GOAL] case inr.inr.inl 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℕ d : 𝕜 hn : n ≠ 0 ⊢ Tendsto (fun x => 0 * x ^ n) atTop (𝓝 d) ↔ (0 = 0 ∨ n = 0) ∧ 0 = d [PROOFSTEP] simp [tendsto_const_nhds_iff] [GOAL] case inr.inr.inr 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℕ c d : 𝕜 hn : n ≠ 0 hc : 0 < c ⊢ Tendsto (fun x => c * x ^ n) atTop (𝓝 d) ↔ (c = 0 ∨ n = 0) ∧ c = d [PROOFSTEP] have := tendsto_const_mul_pow_atTop_iff.2 ⟨hn, hc⟩ [GOAL] case inr.inr.inr 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℕ c d : 𝕜 hn : n ≠ 0 hc : 0 < c this : Tendsto (fun x => c * x ^ n) atTop atTop ⊢ Tendsto (fun x => c * x ^ n) atTop (𝓝 d) ↔ (c = 0 ∨ n = 0) ∧ c = d [PROOFSTEP] simp [not_tendsto_nhds_of_tendsto_atTop this, hc.ne', hn] [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℕ c d : 𝕜 hc : c ≠ 0 ⊢ Tendsto (fun x => c * x ^ n) atTop (𝓝 d) ↔ n = 0 ∧ c = d [PROOFSTEP] simp [tendsto_const_mul_pow_nhds_iff', hc] [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℤ c d : 𝕜 hc : c ≠ 0 ⊢ Tendsto (fun x => c * x ^ n) atTop (𝓝 d) ↔ n = 0 ∧ c = d ∨ n < 0 ∧ d = 0 [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℤ c d : 𝕜 hc : c ≠ 0 h : Tendsto (fun x => c * x ^ n) atTop (𝓝 d) ⊢ n = 0 ∧ c = d ∨ n < 0 ∧ d = 0 [PROOFSTEP] cases n with -- porting note: Lean 3 proof used `by_cases`, then `lift` but `lift` failed | ofNat n => left simpa [tendsto_const_mul_pow_nhds_iff hc] using h | negSucc n => have hn := Int.negSucc_lt_zero n exact Or.inr ⟨hn, tendsto_nhds_unique h (tendsto_const_mul_zpow_atTop_zero hn)⟩ [GOAL] case refine'_1 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℤ c d : 𝕜 hc : c ≠ 0 h : Tendsto (fun x => c * x ^ n) atTop (𝓝 d) ⊢ n = 0 ∧ c = d ∨ n < 0 ∧ d = 0 [PROOFSTEP] cases n with -- porting note: Lean 3 proof used `by_cases`, then `lift` but `lift` failed | ofNat n => left simpa [tendsto_const_mul_pow_nhds_iff hc] using h | negSucc n => have hn := Int.negSucc_lt_zero n exact Or.inr ⟨hn, tendsto_nhds_unique h (tendsto_const_mul_zpow_atTop_zero hn)⟩ [GOAL] case refine'_1.ofNat 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 c d : 𝕜 hc : c ≠ 0 n : ℕ h : Tendsto (fun x => c * x ^ Int.ofNat n) atTop (𝓝 d) ⊢ Int.ofNat n = 0 ∧ c = d ∨ Int.ofNat n < 0 ∧ d = 0 [PROOFSTEP] | ofNat n => left simpa [tendsto_const_mul_pow_nhds_iff hc] using h [GOAL] case refine'_1.ofNat 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 c d : 𝕜 hc : c ≠ 0 n : ℕ h : Tendsto (fun x => c * x ^ Int.ofNat n) atTop (𝓝 d) ⊢ Int.ofNat n = 0 ∧ c = d ∨ Int.ofNat n < 0 ∧ d = 0 [PROOFSTEP] left [GOAL] case refine'_1.ofNat.h 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 c d : 𝕜 hc : c ≠ 0 n : ℕ h : Tendsto (fun x => c * x ^ Int.ofNat n) atTop (𝓝 d) ⊢ Int.ofNat n = 0 ∧ c = d [PROOFSTEP] simpa [tendsto_const_mul_pow_nhds_iff hc] using h [GOAL] case refine'_1.negSucc 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 c d : 𝕜 hc : c ≠ 0 n : ℕ h : Tendsto (fun x => c * x ^ Int.negSucc n) atTop (𝓝 d) ⊢ Int.negSucc n = 0 ∧ c = d ∨ Int.negSucc n < 0 ∧ d = 0 [PROOFSTEP] | negSucc n => have hn := Int.negSucc_lt_zero n exact Or.inr ⟨hn, tendsto_nhds_unique h (tendsto_const_mul_zpow_atTop_zero hn)⟩ [GOAL] case refine'_1.negSucc 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 c d : 𝕜 hc : c ≠ 0 n : ℕ h : Tendsto (fun x => c * x ^ Int.negSucc n) atTop (𝓝 d) ⊢ Int.negSucc n = 0 ∧ c = d ∨ Int.negSucc n < 0 ∧ d = 0 [PROOFSTEP] have hn := Int.negSucc_lt_zero n [GOAL] case refine'_1.negSucc 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 c d : 𝕜 hc : c ≠ 0 n : ℕ h : Tendsto (fun x => c * x ^ Int.negSucc n) atTop (𝓝 d) hn : Int.negSucc n < 0 ⊢ Int.negSucc n = 0 ∧ c = d ∨ Int.negSucc n < 0 ∧ d = 0 [PROOFSTEP] exact Or.inr ⟨hn, tendsto_nhds_unique h (tendsto_const_mul_zpow_atTop_zero hn)⟩ [GOAL] case refine'_2 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℤ c d : 𝕜 hc : c ≠ 0 h : n = 0 ∧ c = d ∨ n < 0 ∧ d = 0 ⊢ Tendsto (fun x => c * x ^ n) atTop (𝓝 d) [PROOFSTEP] cases' h with h h [GOAL] case refine'_2.inl 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℤ c d : 𝕜 hc : c ≠ 0 h : n = 0 ∧ c = d ⊢ Tendsto (fun x => c * x ^ n) atTop (𝓝 d) [PROOFSTEP] simp only [h.left, h.right, zpow_zero, mul_one] [GOAL] case refine'_2.inl 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℤ c d : 𝕜 hc : c ≠ 0 h : n = 0 ∧ c = d ⊢ Tendsto (fun x => d) atTop (𝓝 d) [PROOFSTEP] exact tendsto_const_nhds [GOAL] case refine'_2.inr 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 n : ℤ c d : 𝕜 hc : c ≠ 0 h : n < 0 ∧ d = 0 ⊢ Tendsto (fun x => c * x ^ n) atTop (𝓝 d) [PROOFSTEP] exact h.2.symm ▸ tendsto_const_mul_zpow_atTop_zero h.1 [GOAL] 𝕜✝ : Type u_1 α : Type u_2 inst✝⁶ : LinearOrderedField 𝕜✝ inst✝⁵ : TopologicalSpace 𝕜✝ inst✝⁴ : OrderTopology 𝕜✝ l : Filter α f g : α → 𝕜✝ 𝕜 : Type ?u.49426 inst✝³ : LinearOrderedSemifield 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 inst✝ : ContinuousMul 𝕜 ⊢ (∀ (a' : 𝕜), a' < 1 → ∀ᶠ (b : 𝕜) in 𝓝 1, a' < b⁻¹) ∧ ∀ (a' : 𝕜), a' > 1 → ∀ᶠ (b : 𝕜) in 𝓝 1, b⁻¹ < a' [PROOFSTEP] refine ⟨fun x hx => ?_, fun x hx => ?_⟩ [GOAL] case refine_1 𝕜✝ : Type u_1 α : Type u_2 inst✝⁶ : LinearOrderedField 𝕜✝ inst✝⁵ : TopologicalSpace 𝕜✝ inst✝⁴ : OrderTopology 𝕜✝ l : Filter α f g : α → 𝕜✝ 𝕜 : Type ?u.49426 inst✝³ : LinearOrderedSemifield 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 inst✝ : ContinuousMul 𝕜 x : 𝕜 hx : x < 1 ⊢ ∀ᶠ (b : 𝕜) in 𝓝 1, x < b⁻¹ [PROOFSTEP] obtain ⟨x', h₀, hxx', h₁⟩ : ∃ x', 0 < x' ∧ x ≤ x' ∧ x' < 1 := ⟨max x (1 / 2), one_half_pos.trans_le (le_max_right _ _), le_max_left _ _, max_lt hx one_half_lt_one⟩ [GOAL] case refine_1.intro.intro.intro 𝕜✝ : Type u_1 α : Type u_2 inst✝⁶ : LinearOrderedField 𝕜✝ inst✝⁵ : TopologicalSpace 𝕜✝ inst✝⁴ : OrderTopology 𝕜✝ l : Filter α f g : α → 𝕜✝ 𝕜 : Type ?u.49426 inst✝³ : LinearOrderedSemifield 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 inst✝ : ContinuousMul 𝕜 x : 𝕜 hx : x < 1 x' : 𝕜 h₀ : 0 < x' hxx' : x ≤ x' h₁ : x' < 1 ⊢ ∀ᶠ (b : 𝕜) in 𝓝 1, x < b⁻¹ [PROOFSTEP] filter_upwards [Ioo_mem_nhds one_pos (one_lt_inv h₀ h₁)] with y hy [GOAL] case h 𝕜✝ : Type u_1 α : Type u_2 inst✝⁶ : LinearOrderedField 𝕜✝ inst✝⁵ : TopologicalSpace 𝕜✝ inst✝⁴ : OrderTopology 𝕜✝ l : Filter α f g : α → 𝕜✝ 𝕜 : Type ?u.49426 inst✝³ : LinearOrderedSemifield 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 inst✝ : ContinuousMul 𝕜 x : 𝕜 hx : x < 1 x' : 𝕜 h₀ : 0 < x' hxx' : x ≤ x' h₁ : x' < 1 y : 𝕜 hy : y ∈ Ioo 0 x'⁻¹ ⊢ x < y⁻¹ [PROOFSTEP] exact hxx'.trans_lt <| inv_inv x' ▸ inv_lt_inv_of_lt hy.1 hy.2 [GOAL] case refine_2 𝕜✝ : Type u_1 α : Type u_2 inst✝⁶ : LinearOrderedField 𝕜✝ inst✝⁵ : TopologicalSpace 𝕜✝ inst✝⁴ : OrderTopology 𝕜✝ l : Filter α f g : α → 𝕜✝ 𝕜 : Type ?u.49426 inst✝³ : LinearOrderedSemifield 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 inst✝ : ContinuousMul 𝕜 x : 𝕜 hx : x > 1 ⊢ ∀ᶠ (b : 𝕜) in 𝓝 1, b⁻¹ < x [PROOFSTEP] filter_upwards [Ioi_mem_nhds (inv_lt_one hx)] with y hy [GOAL] case h 𝕜✝ : Type u_1 α : Type u_2 inst✝⁶ : LinearOrderedField 𝕜✝ inst✝⁵ : TopologicalSpace 𝕜✝ inst✝⁴ : OrderTopology 𝕜✝ l : Filter α f g : α → 𝕜✝ 𝕜 : Type ?u.49426 inst✝³ : LinearOrderedSemifield 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 inst✝ : ContinuousMul 𝕜 x : 𝕜 hx : x > 1 y : 𝕜 hy : y ∈ Ioi x⁻¹ ⊢ y⁻¹ < x [PROOFSTEP] simpa only [inv_inv] using inv_lt_inv_of_lt (inv_pos.2 <| one_pos.trans hx) hy [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 x : 𝕜 hx : 0 < x ⊢ comap (fun x_1 => x * x_1) (𝓝[Ioi 0] 0) = 𝓝[Ioi 0] 0 [PROOFSTEP] rw [nhdsWithin, comap_inf, comap_principal, preimage_const_mul_Ioi _ hx, zero_div] [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 x : 𝕜 hx : 0 < x ⊢ comap (fun x_1 => x * x_1) (𝓝 0) ⊓ 𝓟 (Ioi 0) = 𝓝 0 ⊓ 𝓟 (Ioi 0) [PROOFSTEP] congr 1 [GOAL] case e_a 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 x : 𝕜 hx : 0 < x ⊢ comap (fun x_1 => x * x_1) (𝓝 0) = 𝓝 0 [PROOFSTEP] refine ((Homeomorph.mulLeft₀ x hx.ne').comap_nhds_eq _).trans ?_ [GOAL] case e_a 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 x : 𝕜 hx : 0 < x ⊢ 𝓝 (↑(Homeomorph.symm (Homeomorph.mulLeft₀ x (_ : x ≠ 0))) 0) = 𝓝 0 [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 x : 𝕜 hx : 0 < x p : 𝕜 → Prop h : ∀ᶠ (ε : 𝕜) in 𝓝[Ioi 0] 0, p ε ⊢ ∀ᶠ (ε : 𝕜) in 𝓝[Ioi 0] 0, p (x * ε) [PROOFSTEP] rw [← nhdsWithin_pos_comap_mul_left hx] [GOAL] 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 l : Filter α f g : α → 𝕜 x : 𝕜 hx : 0 < x p : 𝕜 → Prop h : ∀ᶠ (ε : 𝕜) in 𝓝[Ioi 0] 0, p ε ⊢ ∀ᶠ (ε : 𝕜) in comap (fun x_1 => x * x_1) (𝓝[Ioi 0] 0), p (x * ε) [PROOFSTEP] exact h.comap fun ε => x * ε
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.Field", "llama_tokens": 17367}
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.Filter", "llama_tokens": 0}
[GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : StrictMonoOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioc (f a) b ⊢ ContinuousWithinAt f (Ici a) a [PROOFSTEP] have ha : a ∈ Ici a := left_mem_Ici [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : StrictMonoOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioc (f a) b ha : a ∈ Ici a ⊢ ContinuousWithinAt f (Ici a) a [PROOFSTEP] have has : a ∈ s := mem_of_mem_nhdsWithin ha hs [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : StrictMonoOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioc (f a) b ha : a ∈ Ici a has : a ∈ s ⊢ ContinuousWithinAt f (Ici a) a [PROOFSTEP] refine' tendsto_order.2 ⟨fun b hb => _, fun b hb => _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : StrictMonoOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioc (f a) b ha : a ∈ Ici a has : a ∈ s b : β hb : b < f a ⊢ ∀ᶠ (b_1 : α) in 𝓝[Ici a] a, b < f b_1 [PROOFSTEP] filter_upwards [hs, @self_mem_nhdsWithin _ _ a (Ici a)] with _ hxs hxa using hb.trans_le ((h_mono.le_iff_le has hxs).2 hxa) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : StrictMonoOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioc (f a) b ha : a ∈ Ici a has : a ∈ s b : β hb : b > f a ⊢ ∀ᶠ (b_1 : α) in 𝓝[Ici a] a, f b_1 < b [PROOFSTEP] rcases hfs b hb with ⟨c, hcs, hac, hcb⟩ [GOAL] case refine'_2.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : StrictMonoOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioc (f a) b ha : a ∈ Ici a has : a ∈ s b : β hb : b > f a c : α hcs : c ∈ s hac : f a < f c hcb : f c ≤ b ⊢ ∀ᶠ (b_1 : α) in 𝓝[Ici a] a, f b_1 < b [PROOFSTEP] rw [h_mono.lt_iff_lt has hcs] at hac [GOAL] case refine'_2.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : StrictMonoOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioc (f a) b ha : a ∈ Ici a has : a ∈ s b : β hb : b > f a c : α hcs : c ∈ s hac : a < c hcb : f c ≤ b ⊢ ∀ᶠ (b_1 : α) in 𝓝[Ici a] a, f b_1 < b [PROOFSTEP] filter_upwards [hs, Ico_mem_nhdsWithin_Ici (left_mem_Ico.2 hac)] [GOAL] case h α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : StrictMonoOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioc (f a) b ha : a ∈ Ici a has : a ∈ s b : β hb : b > f a c : α hcs : c ∈ s hac : a < c hcb : f c ≤ b ⊢ ∀ (a_1 : α), a_1 ∈ s → a_1 ∈ Ico a c → f a_1 < b [PROOFSTEP] rintro x hx ⟨_, hxc⟩ [GOAL] case h.intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : StrictMonoOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioc (f a) b ha : a ∈ Ici a has : a ∈ s b : β hb : b > f a c : α hcs : c ∈ s hac : a < c hcb : f c ≤ b x : α hx : x ∈ s left✝ : a ≤ x hxc : x < c ⊢ f x < b [PROOFSTEP] exact ((h_mono.lt_iff_lt hx hcs).2 hxc).trans_le hcb [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioo (f a) b ⊢ ContinuousWithinAt f (Ici a) a [PROOFSTEP] have ha : a ∈ Ici a := left_mem_Ici [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioo (f a) b ha : a ∈ Ici a ⊢ ContinuousWithinAt f (Ici a) a [PROOFSTEP] have has : a ∈ s := mem_of_mem_nhdsWithin ha hs [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioo (f a) b ha : a ∈ Ici a has : a ∈ s ⊢ ContinuousWithinAt f (Ici a) a [PROOFSTEP] refine' tendsto_order.2 ⟨fun b hb => _, fun b hb => _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioo (f a) b ha : a ∈ Ici a has : a ∈ s b : β hb : b < f a ⊢ ∀ᶠ (b_1 : α) in 𝓝[Ici a] a, b < f b_1 [PROOFSTEP] filter_upwards [hs, @self_mem_nhdsWithin _ _ a (Ici a)] with _ hxs hxa using hb.trans_le (h_mono has hxs hxa) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioo (f a) b ha : a ∈ Ici a has : a ∈ s b : β hb : b > f a ⊢ ∀ᶠ (b_1 : α) in 𝓝[Ici a] a, f b_1 < b [PROOFSTEP] rcases hfs b hb with ⟨c, hcs, hac, hcb⟩ [GOAL] case refine'_2.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioo (f a) b ha : a ∈ Ici a has : a ∈ s b : β hb : b > f a c : α hcs : c ∈ s hac : f a < f c hcb : f c < b ⊢ ∀ᶠ (b_1 : α) in 𝓝[Ici a] a, f b_1 < b [PROOFSTEP] have : a < c := not_le.1 fun h => hac.not_le <| h_mono hcs has h [GOAL] case refine'_2.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioo (f a) b ha : a ∈ Ici a has : a ∈ s b : β hb : b > f a c : α hcs : c ∈ s hac : f a < f c hcb : f c < b this : a < c ⊢ ∀ᶠ (b_1 : α) in 𝓝[Ici a] a, f b_1 < b [PROOFSTEP] filter_upwards [hs, Ico_mem_nhdsWithin_Ici (left_mem_Ico.2 this)] [GOAL] case h α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioo (f a) b ha : a ∈ Ici a has : a ∈ s b : β hb : b > f a c : α hcs : c ∈ s hac : f a < f c hcb : f c < b this : a < c ⊢ ∀ (a_1 : α), a_1 ∈ s → a_1 ∈ Ico a c → f a_1 < b [PROOFSTEP] rintro x hx ⟨_, hxc⟩ [GOAL] case h.intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : LinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : ∀ (b : β), b > f a → ∃ c, c ∈ s ∧ f c ∈ Ioo (f a) b ha : a ∈ Ici a has : a ∈ s b : β hb : b > f a c : α hcs : c ∈ s hac : f a < f c hcb : f c < b this : a < c x : α hx : x ∈ s left✝ : a ≤ x hxc : x < c ⊢ f x < b [PROOFSTEP] exact (h_mono hx hcs hxc.le).trans_lt hcb [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : LinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : DenselyOrdered β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : closure (f '' s) ∈ 𝓝[Ici (f a)] f a ⊢ ContinuousWithinAt f (Ici a) a [PROOFSTEP] refine' continuousWithinAt_right_of_monotoneOn_of_exists_between h_mono hs fun b hb => _ [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : LinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : DenselyOrdered β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : closure (f '' s) ∈ 𝓝[Ici (f a)] f a b : β hb : b > f a ⊢ ∃ c, c ∈ s ∧ f c ∈ Ioo (f a) b [PROOFSTEP] rcases(mem_nhdsWithin_Ici_iff_exists_mem_Ioc_Ico_subset hb).1 hfs with ⟨b', ⟨hab', hbb'⟩, hb'⟩ [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : LinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : DenselyOrdered β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : closure (f '' s) ∈ 𝓝[Ici (f a)] f a b : β hb : b > f a b' : β hb' : Ico (f a) b' ⊆ closure (f '' s) hab' : f a < b' hbb' : b' ≤ b ⊢ ∃ c, c ∈ s ∧ f c ∈ Ioo (f a) b [PROOFSTEP] rcases exists_between hab' with ⟨c', hc'⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : LinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : DenselyOrdered β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : closure (f '' s) ∈ 𝓝[Ici (f a)] f a b : β hb : b > f a b' : β hb' : Ico (f a) b' ⊆ closure (f '' s) hab' : f a < b' hbb' : b' ≤ b c' : β hc' : f a < c' ∧ c' < b' ⊢ ∃ c, c ∈ s ∧ f c ∈ Ioo (f a) b [PROOFSTEP] rcases mem_closure_iff.1 (hb' ⟨hc'.1.le, hc'.2⟩) (Ioo (f a) b') isOpen_Ioo hc' with ⟨_, hc, ⟨c, hcs, rfl⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : LinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : DenselyOrdered β f : α → β s : Set α a : α h_mono : MonotoneOn f s hs : s ∈ 𝓝[Ici a] a hfs : closure (f '' s) ∈ 𝓝[Ici (f a)] f a b : β hb : b > f a b' : β hb' : Ico (f a) b' ⊆ closure (f '' s) hab' : f a < b' hbb' : b' ≤ b c' : β hc' : f a < c' ∧ c' < b' c : α hcs : c ∈ s hc : f c ∈ Ioo (f a) b' ⊢ ∃ c, c ∈ s ∧ f c ∈ Ioo (f a) b [PROOFSTEP] exact ⟨c, hcs, hc.1, hc.2.trans_le hbb'⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : LinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : DenselyOrdered β f : α → β h_mono : Monotone f h_dense : DenseRange f a : α ⊢ closure (f '' univ) ∈ 𝓝 (f a) [PROOFSTEP] simp only [image_univ, h_dense.closure_eq, univ_mem] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α inst✝⁴ : PartialOrder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : OrderTopology α inst✝ : OrderTopology β e : α ≃o β ⊢ Continuous ↑e [PROOFSTEP] rw [‹OrderTopology β›.topology_eq_generate_intervals] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α inst✝⁴ : PartialOrder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : OrderTopology α inst✝ : OrderTopology β e : α ≃o β ⊢ Continuous ↑e [PROOFSTEP] refine' continuous_generateFrom fun s hs => _ [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α inst✝⁴ : PartialOrder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : OrderTopology α inst✝ : OrderTopology β e : α ≃o β s : Set β hs : s ∈ {s | ∃ a, s = Ioi a ∨ s = Iio a} ⊢ IsOpen (↑e ⁻¹' s) [PROOFSTEP] rcases hs with ⟨a, rfl | rfl⟩ [GOAL] case intro.inl α : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α inst✝⁴ : PartialOrder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : OrderTopology α inst✝ : OrderTopology β e : α ≃o β a : β ⊢ IsOpen (↑e ⁻¹' Ioi a) [PROOFSTEP] rw [e.preimage_Ioi] [GOAL] case intro.inl α : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α inst✝⁴ : PartialOrder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : OrderTopology α inst✝ : OrderTopology β e : α ≃o β a : β ⊢ IsOpen (Ioi (↑(symm e) a)) [PROOFSTEP] apply isOpen_lt' [GOAL] case intro.inr α : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α inst✝⁴ : PartialOrder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : OrderTopology α inst✝ : OrderTopology β e : α ≃o β a : β ⊢ IsOpen (↑e ⁻¹' Iio a) [PROOFSTEP] rw [e.preimage_Iio] [GOAL] case intro.inr α : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α inst✝⁴ : PartialOrder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : OrderTopology α inst✝ : OrderTopology β e : α ≃o β a : β ⊢ IsOpen (Iio (↑(symm e) a)) [PROOFSTEP] apply isOpen_gt'
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.MonotoneContinuity", "llama_tokens": 7388}
[GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] let m := (AddMonoidHom.mul : α →+ α →+ α).compr₂ toCompl [GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α m : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] have : Continuous fun p : α × α => m p.1 p.2 := by apply (continuous_coe α).comp _ simp only [AddMonoidHom.coe_mul, AddMonoidHom.coe_mulLeft] exact _root_.continuous_mul [GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α m : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl ⊢ Continuous fun p => ↑(↑m p.fst) p.snd [PROOFSTEP] apply (continuous_coe α).comp _ [GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α m : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl ⊢ Continuous fun p => ↑(↑AddMonoidHom.mul p.fst) p.snd [PROOFSTEP] simp only [AddMonoidHom.coe_mul, AddMonoidHom.coe_mulLeft] [GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α m : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] exact _root_.continuous_mul [GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α m : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl this : Continuous fun p => ↑(↑m p.fst) p.snd ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] have di : DenseInducing (toCompl : α → Completion α) := denseInducing_coe [GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α m : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl this : Continuous fun p => ↑(↑m p.fst) p.snd di : DenseInducing ↑toCompl ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] convert di.extend_Z_bilin di this [GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α src✝³ : AddMonoidWithOne (Completion α) := AddMonoidWithOne.unary src✝² : AddCommGroup (Completion α) := inferInstanceAs (AddCommGroup (Completion α)) src✝¹ : Mul (Completion α) := inferInstanceAs (Mul (Completion α)) src✝ : One (Completion α) := inferInstanceAs (One (Completion α)) a✝ b✝ c✝ : Completion α a b c : α ⊢ ↑α a * (↑α b + ↑α c) = ↑α a * ↑α b + ↑α a * ↑α c [PROOFSTEP] rw [← coe_add, ← coe_mul, ← coe_mul, ← coe_mul, ← coe_add, mul_add] [GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α src✝³ : AddMonoidWithOne (Completion α) := AddMonoidWithOne.unary src✝² : AddCommGroup (Completion α) := inferInstanceAs (AddCommGroup (Completion α)) src✝¹ : Mul (Completion α) := inferInstanceAs (Mul (Completion α)) src✝ : One (Completion α) := inferInstanceAs (One (Completion α)) a✝ b✝ c✝ : Completion α a b c : α ⊢ (↑α a + ↑α b) * ↑α c = ↑α a * ↑α c + ↑α b * ↑α c [PROOFSTEP] rw [← coe_add, ← coe_mul, ← coe_mul, ← coe_mul, ← coe_add, add_mul] [GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α src✝³ : AddMonoidWithOne (Completion α) := AddMonoidWithOne.unary src✝² : AddCommGroup (Completion α) := inferInstanceAs (AddCommGroup (Completion α)) src✝¹ : Mul (Completion α) := inferInstanceAs (Mul (Completion α)) src✝ : One (Completion α) := inferInstanceAs (One (Completion α)) a✝ : Completion α a : α ⊢ 0 * ↑α a = 0 [PROOFSTEP] rw [← coe_zero, ← coe_mul, zero_mul] [GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α src✝³ : AddMonoidWithOne (Completion α) := AddMonoidWithOne.unary src✝² : AddCommGroup (Completion α) := inferInstanceAs (AddCommGroup (Completion α)) src✝¹ : Mul (Completion α) := inferInstanceAs (Mul (Completion α)) src✝ : One (Completion α) := inferInstanceAs (One (Completion α)) a✝ : Completion α a : α ⊢ ↑α a * 0 = 0 [PROOFSTEP] rw [← coe_zero, ← coe_mul, mul_zero] [GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α src✝³ : AddMonoidWithOne (Completion α) := AddMonoidWithOne.unary src✝² : AddCommGroup (Completion α) := inferInstanceAs (AddCommGroup (Completion α)) src✝¹ : Mul (Completion α) := inferInstanceAs (Mul (Completion α)) src✝ : One (Completion α) := inferInstanceAs (One (Completion α)) a✝ b✝ c✝ : Completion α a b c : α ⊢ ↑α a * ↑α b * ↑α c = ↑α a * (↑α b * ↑α c) [PROOFSTEP] rw [← coe_mul, ← coe_mul, ← coe_mul, ← coe_mul, mul_assoc] [GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α src✝³ : AddMonoidWithOne (Completion α) := AddMonoidWithOne.unary src✝² : AddCommGroup (Completion α) := inferInstanceAs (AddCommGroup (Completion α)) src✝¹ : Mul (Completion α) := inferInstanceAs (Mul (Completion α)) src✝ : One (Completion α) := inferInstanceAs (One (Completion α)) a✝ : Completion α a : α ⊢ 1 * ↑α a = ↑α a [PROOFSTEP] rw [← coe_one, ← coe_mul, one_mul] [GOAL] α : Type u_1 inst✝³ : Ring α inst✝² : UniformSpace α inst✝¹ : TopologicalRing α inst✝ : UniformAddGroup α src✝³ : AddMonoidWithOne (Completion α) := AddMonoidWithOne.unary src✝² : AddCommGroup (Completion α) := inferInstanceAs (AddCommGroup (Completion α)) src✝¹ : Mul (Completion α) := inferInstanceAs (Mul (Completion α)) src✝ : One (Completion α) := inferInstanceAs (One (Completion α)) a✝ : Completion α a : α ⊢ ↑α a * 1 = ↑α a [PROOFSTEP] rw [← coe_one, ← coe_mul, mul_one] [GOAL] α : Type u_1 inst✝⁹ : Ring α inst✝⁸ : UniformSpace α inst✝⁷ : TopologicalRing α inst✝⁶ : UniformAddGroup α β : Type u inst✝⁵ : UniformSpace β inst✝⁴ : Ring β inst✝³ : UniformAddGroup β inst✝² : TopologicalRing β f : α →+* β hf✝ : Continuous ↑f inst✝¹ : CompleteSpace β inst✝ : SeparatedSpace β hf' : Continuous ↑↑f hf : UniformContinuous ↑f ⊢ Completion.extension (↑f) 1 = 1 [PROOFSTEP] rw [← coe_one, extension_coe hf, f.map_one] [GOAL] α : Type u_1 inst✝⁹ : Ring α inst✝⁸ : UniformSpace α inst✝⁷ : TopologicalRing α inst✝⁶ : UniformAddGroup α β : Type u inst✝⁵ : UniformSpace β inst✝⁴ : Ring β inst✝³ : UniformAddGroup β inst✝² : TopologicalRing β f : α →+* β hf✝ : Continuous ↑f inst✝¹ : CompleteSpace β inst✝ : SeparatedSpace β hf' : Continuous ↑↑f hf : UniformContinuous ↑f a✝ b✝ : Completion α a b : α ⊢ OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } (↑α a * ↑α b) = OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } (↑α a) * OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } (↑α b) [PROOFSTEP] simp_rw [← coe_mul, extension_coe hf, f.map_mul] [GOAL] α : Type u_1 inst✝⁹ : Ring α inst✝⁸ : UniformSpace α inst✝⁷ : TopologicalRing α inst✝⁶ : UniformAddGroup α β : Type u inst✝⁵ : UniformSpace β inst✝⁴ : Ring β inst✝³ : UniformAddGroup β inst✝² : TopologicalRing β f : α →+* β hf✝ : Continuous ↑f inst✝¹ : CompleteSpace β inst✝ : SeparatedSpace β hf' : Continuous ↑↑f hf : UniformContinuous ↑f ⊢ OneHom.toFun (↑{ toOneHom := { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) }, map_mul' := (_ : ∀ (a b : Completion α), OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } (a * b) = OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } a * OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } b) }) 0 = 0 [PROOFSTEP] simp_rw [← coe_zero, extension_coe hf, f.map_zero] [GOAL] α : Type u_1 inst✝⁹ : Ring α inst✝⁸ : UniformSpace α inst✝⁷ : TopologicalRing α inst✝⁶ : UniformAddGroup α β : Type u inst✝⁵ : UniformSpace β inst✝⁴ : Ring β inst✝³ : UniformAddGroup β inst✝² : TopologicalRing β f : α →+* β hf✝ : Continuous ↑f inst✝¹ : CompleteSpace β inst✝ : SeparatedSpace β hf' : Continuous ↑↑f hf : UniformContinuous ↑f a✝ b✝ : Completion α a b : α ⊢ OneHom.toFun (↑{ toOneHom := { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) }, map_mul' := (_ : ∀ (a b : Completion α), OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } (a * b) = OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } a * OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } b) }) (↑α a + ↑α b) = OneHom.toFun (↑{ toOneHom := { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) }, map_mul' := (_ : ∀ (a b : Completion α), OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } (a * b) = OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } a * OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } b) }) (↑α a) + OneHom.toFun (↑{ toOneHom := { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) }, map_mul' := (_ : ∀ (a b : Completion α), OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } (a * b) = OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } a * OneHom.toFun { toFun := Completion.extension ↑f, map_one' := (_ : Completion.extension (↑f) 1 = 1) } b) }) (↑α b) [PROOFSTEP] simp_rw [← coe_add, extension_coe hf, f.map_add] [GOAL] α : Type u_1 inst✝¹⁴ : Ring α inst✝¹³ : UniformSpace α inst✝¹² : TopologicalRing α inst✝¹¹ : UniformAddGroup α β : Type u inst✝¹⁰ : UniformSpace β inst✝⁹ : Ring β inst✝⁸ : UniformAddGroup β inst✝⁷ : TopologicalRing β f : α →+* β hf : Continuous ↑f A : Type u_2 inst✝⁶ : Ring A inst✝⁵ : UniformSpace A inst✝⁴ : UniformAddGroup A inst✝³ : TopologicalRing A R : Type u_3 inst✝² : CommSemiring R inst✝¹ : Algebra R A inst✝ : UniformContinuousConstSMul R A r : R ⊢ Completion.map ((fun x x_1 => x • x_1) r) = (fun x x_1 => x * x_1) (↑((fun x => A) r) (↑(algebraMap R A) r)) [PROOFSTEP] ext x [GOAL] case h α : Type u_1 inst✝¹⁴ : Ring α inst✝¹³ : UniformSpace α inst✝¹² : TopologicalRing α inst✝¹¹ : UniformAddGroup α β : Type u inst✝¹⁰ : UniformSpace β inst✝⁹ : Ring β inst✝⁸ : UniformAddGroup β inst✝⁷ : TopologicalRing β f : α →+* β hf : Continuous ↑f A : Type u_2 inst✝⁶ : Ring A inst✝⁵ : UniformSpace A inst✝⁴ : UniformAddGroup A inst✝³ : TopologicalRing A R : Type u_3 inst✝² : CommSemiring R inst✝¹ : Algebra R A inst✝ : UniformContinuousConstSMul R A r : R x : Completion ((fun x => A) r) ⊢ Completion.map ((fun x x_1 => x • x_1) r) x = (fun x x_1 => x * x_1) (↑((fun x => A) r) (↑(algebraMap R A) r)) x [PROOFSTEP] refine' Completion.induction_on x _ fun a => _ [GOAL] case h.refine'_1 α : Type u_1 inst✝¹⁴ : Ring α inst✝¹³ : UniformSpace α inst✝¹² : TopologicalRing α inst✝¹¹ : UniformAddGroup α β : Type u inst✝¹⁰ : UniformSpace β inst✝⁹ : Ring β inst✝⁸ : UniformAddGroup β inst✝⁷ : TopologicalRing β f : α →+* β hf : Continuous ↑f A : Type u_2 inst✝⁶ : Ring A inst✝⁵ : UniformSpace A inst✝⁴ : UniformAddGroup A inst✝³ : TopologicalRing A R : Type u_3 inst✝² : CommSemiring R inst✝¹ : Algebra R A inst✝ : UniformContinuousConstSMul R A r : R x : Completion ((fun x => A) r) ⊢ IsClosed {a | Completion.map ((fun x x_1 => x • x_1) r) a = (fun x x_1 => x * x_1) (↑((fun x => A) r) (↑(algebraMap R A) r)) a} [PROOFSTEP] exact isClosed_eq Completion.continuous_map (continuous_mul_left _) [GOAL] case h.refine'_2 α : Type u_1 inst✝¹⁴ : Ring α inst✝¹³ : UniformSpace α inst✝¹² : TopologicalRing α inst✝¹¹ : UniformAddGroup α β : Type u inst✝¹⁰ : UniformSpace β inst✝⁹ : Ring β inst✝⁸ : UniformAddGroup β inst✝⁷ : TopologicalRing β f : α →+* β hf : Continuous ↑f A : Type u_2 inst✝⁶ : Ring A inst✝⁵ : UniformSpace A inst✝⁴ : UniformAddGroup A inst✝³ : TopologicalRing A R : Type u_3 inst✝² : CommSemiring R inst✝¹ : Algebra R A inst✝ : UniformContinuousConstSMul R A r : R x : Completion ((fun x => A) r) a : (fun x => A) r ⊢ Completion.map ((fun x x_1 => x • x_1) r) (↑((fun x => A) r) a) = (fun x x_1 => x * x_1) (↑((fun x => A) r) (↑(algebraMap R A) r)) (↑((fun x => A) r) a) [PROOFSTEP] simp_rw [map_coe (uniformContinuous_const_smul r) a, Algebra.smul_def, coe_mul] [GOAL] α : Type u_1 inst✝¹⁴ : Ring α inst✝¹³ : UniformSpace α inst✝¹² : TopologicalRing α inst✝¹¹ : UniformAddGroup α β : Type u inst✝¹⁰ : UniformSpace β inst✝⁹ : Ring β inst✝⁸ : UniformAddGroup β inst✝⁷ : TopologicalRing β f : α →+* β hf : Continuous ↑f A : Type u_2 inst✝⁶ : Ring A inst✝⁵ : UniformSpace A inst✝⁴ : UniformAddGroup A inst✝³ : TopologicalRing A R : Type u_3 inst✝² : CommSemiring R inst✝¹ : Algebra R A inst✝ : UniformContinuousConstSMul R A src✝ : R →+* Completion A := RingHom.comp coeRingHom (algebraMap R A) r : R x : (fun x => Completion A) r a : A ⊢ ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * ↑A a = ↑A a * ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r [PROOFSTEP] simpa only [coe_mul] using congr_arg ((↑) : A → Completion A) (Algebra.commutes r a) [GOAL] α : Type u_1 inst✝¹¹ : Ring α inst✝¹⁰ : UniformSpace α inst✝⁹ : TopologicalRing α inst✝⁸ : UniformAddGroup α β : Type u inst✝⁷ : UniformSpace β inst✝⁶ : Ring β inst✝⁵ : UniformAddGroup β inst✝⁴ : TopologicalRing β f : α →+* β hf : Continuous ↑f R : Type u_2 inst✝³ : CommRing R inst✝² : UniformSpace R inst✝¹ : UniformAddGroup R inst✝ : TopologicalRing R src✝ : Ring (Completion R) := ring a✝ b✝ : Completion R a b : R ⊢ ↑R a * ↑R b = ↑R b * ↑R a [PROOFSTEP] rw [← coe_mul, ← coe_mul, mul_comm] [GOAL] α : Type u_1 inst✝¹¹ : Ring α inst✝¹⁰ : UniformSpace α inst✝⁹ : TopologicalRing α inst✝⁸ : UniformAddGroup α β : Type u inst✝⁷ : UniformSpace β inst✝⁶ : Ring β inst✝⁵ : UniformAddGroup β inst✝⁴ : TopologicalRing β f : α →+* β hf : Continuous ↑f R : Type u_2 inst✝³ : CommRing R inst✝² : UniformSpace R inst✝¹ : UniformAddGroup R inst✝ : TopologicalRing R ⊢ Algebra R (Completion R) [PROOFSTEP] infer_instance [GOAL] α✝ : Type u_1 α : Type u_2 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α x y : α ⊢ x - y ∈ closure {0} ↔ x - y ∈ Ideal.closure ⊥ [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 α : Type u r : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α ⊢ Quotient (separationSetoid α) = (α ⧸ Ideal.closure ⊥) [PROOFSTEP] rw [@ring_sep_rel α r] [GOAL] α✝ : Type u_1 α : Type u r : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α ⊢ Quotient (Submodule.quotientRel (Ideal.closure ⊥)) = (α ⧸ Ideal.closure ⊥) [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 α : Type ?u.345143 r : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α x y : α ⊢ x - y ∈ closure {0} ↔ x - y ∈ Ideal.closure ⊥ [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α ⊢ CommRing (Quotient (separationSetoid α)) [PROOFSTEP] rw [ring_sep_quot α] [GOAL] α : Type u_1 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α ⊢ CommRing (α ⧸ Ideal.closure ⊥) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α ⊢ TopologicalRing (Quotient (separationSetoid α)) [PROOFSTEP] convert topologicalRing_quotient (⊥ : Ideal α).closure [GOAL] case h.e'_1 α : Type u_1 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α ⊢ Quotient (separationSetoid α) = (α ⧸ Ideal.closure ⊥) [PROOFSTEP] try congr; apply ring_sep_rel [GOAL] case h.e'_1 α : Type u_1 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α ⊢ Quotient (separationSetoid α) = (α ⧸ Ideal.closure ⊥) [PROOFSTEP] congr [GOAL] case h.e'_1.e_s α : Type u_1 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α ⊢ separationSetoid α = Submodule.quotientRel (Ideal.closure ⊥) [PROOFSTEP] apply ring_sep_rel [GOAL] case h.e'_2 α : Type u_1 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α e_1✝ : Quotient (separationSetoid α) = (α ⧸ Ideal.closure ⊥) ⊢ HEq instTopologicalSpaceQuotient (topologicalRingQuotientTopology (Ideal.closure ⊥)) [PROOFSTEP] try congr; apply ring_sep_rel [GOAL] case h.e'_2 α : Type u_1 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α e_1✝ : Quotient (separationSetoid α) = (α ⧸ Ideal.closure ⊥) ⊢ HEq instTopologicalSpaceQuotient (topologicalRingQuotientTopology (Ideal.closure ⊥)) [PROOFSTEP] congr [GOAL] case h.e'_2.e_2.h α : Type u_1 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α e_1✝ : Quotient (separationSetoid α) = (α ⧸ Ideal.closure ⊥) ⊢ separationSetoid α = Submodule.quotientRel (Ideal.closure ⊥) [PROOFSTEP] apply ring_sep_rel [GOAL] case h.e'_3.e'_2.e'_2.e'_2 α : Type u_1 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α e_1✝ : Quotient (separationSetoid α) = (α ⧸ Ideal.closure ⊥) ⊢ HEq commRing (Ideal.Quotient.commRing (Ideal.closure ⊥)) [PROOFSTEP] try congr; apply ring_sep_rel [GOAL] case h.e'_3.e'_2.e'_2.e'_2 α : Type u_1 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α e_1✝ : Quotient (separationSetoid α) = (α ⧸ Ideal.closure ⊥) ⊢ HEq commRing (Ideal.Quotient.commRing (Ideal.closure ⊥)) [PROOFSTEP] congr [GOAL] case h.e'_3.e'_2.e'_2.e'_2 α : Type u_1 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α e_1✝ : Quotient (separationSetoid α) = (α ⧸ Ideal.closure ⊥) ⊢ HEq commRing (Ideal.Quotient.commRing (Ideal.closure ⊥)) [PROOFSTEP] apply ring_sep_rel [GOAL] case h.e'_3.e'_2.e'_2.e'_2 α : Type u_1 inst✝³ : CommRing α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : TopologicalRing α e_1✝ : Quotient (separationSetoid α) = (α ⧸ Ideal.closure ⊥) ⊢ HEq commRing (Ideal.Quotient.commRing (Ideal.closure ⊥)) [PROOFSTEP] simp [commRing] [GOAL] α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f ⊢ extend (_ : DenseInducing ↑i) (↑f) 1 = 1 [PROOFSTEP] convert DenseInducing.extend_eq (ue.denseInducing dr) hf.continuous 1 [GOAL] case h.e'_2.h.e'_10 α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f ⊢ 1 = ↑i 1 case h.e'_3 α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f ⊢ 1 = ↑f 1 [PROOFSTEP] exacts [i.map_one.symm, f.map_one.symm] [GOAL] α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f ⊢ ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y [PROOFSTEP] have h := (uniformContinuous_uniformly_extend ue dr hf).continuous [GOAL] α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f h : Continuous (extend (_ : DenseInducing ↑i) ↑f) ⊢ ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y [PROOFSTEP] refine' fun x y => DenseRange.induction_on₂ dr _ (fun a b => _) x y [GOAL] case refine'_1 α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f h : Continuous (extend (_ : DenseInducing ↑i) ↑f) x y : β ⊢ IsClosed {q | OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (q.fst * q.snd) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } q.fst * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } q.snd} [PROOFSTEP] exact isClosed_eq (Continuous.comp h continuous_mul) ((h.comp continuous_fst).mul (h.comp continuous_snd)) [GOAL] case refine'_2 α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f h : Continuous (extend (_ : DenseInducing ↑i) ↑f) x y : β a b : α ⊢ OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (↑i a * ↑i b) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (↑i a) * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (↑i b) [PROOFSTEP] simp_rw [← i.map_mul, DenseInducing.extend_eq (ue.denseInducing dr) hf.continuous _, ← f.map_mul] [GOAL] α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f ⊢ OneHom.toFun (↑{ toOneHom := { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y) }) 0 = 0 [PROOFSTEP] convert DenseInducing.extend_eq (ue.denseInducing dr) hf.continuous 0 [GOAL] case h.e'_2.h.e'_1 α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f ⊢ 0 = ↑i 0 [PROOFSTEP] simp only [map_zero] [GOAL] case h.e'_3 α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f ⊢ 0 = ↑f 0 [PROOFSTEP] simp only [map_zero] [GOAL] α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f ⊢ ∀ (x y : β), OneHom.toFun (↑{ toOneHom := { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y) }) y [PROOFSTEP] have h := (uniformContinuous_uniformly_extend ue dr hf).continuous [GOAL] α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f h : Continuous (extend (_ : DenseInducing ↑i) ↑f) ⊢ ∀ (x y : β), OneHom.toFun (↑{ toOneHom := { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y) }) y [PROOFSTEP] refine' fun x y => DenseRange.induction_on₂ dr _ (fun a b => _) x y [GOAL] case refine'_1 α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f h : Continuous (extend (_ : DenseInducing ↑i) ↑f) x y : β ⊢ IsClosed {q | OneHom.toFun (↑{ toOneHom := { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y) }) (q.fst + q.snd) = OneHom.toFun (↑{ toOneHom := { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y) }) q.fst + OneHom.toFun (↑{ toOneHom := { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y) }) q.snd} [PROOFSTEP] exact isClosed_eq (Continuous.comp h continuous_add) ((h.comp continuous_fst).add (h.comp continuous_snd)) [GOAL] case refine'_2 α : Type u_1 inst✝⁹ : UniformSpace α inst✝⁸ : Semiring α β : Type u_2 inst✝⁷ : UniformSpace β inst✝⁶ : Semiring β inst✝⁵ : TopologicalSemiring β γ : Type u_3 inst✝⁴ : UniformSpace γ inst✝³ : Semiring γ inst✝² : TopologicalSemiring γ inst✝¹ : T2Space γ inst✝ : CompleteSpace γ i : α →+* β f : α →+* γ ue : UniformInducing ↑i dr : DenseRange ↑i hf : UniformContinuous ↑f h : Continuous (extend (_ : DenseInducing ↑i) ↑f) x y : β a b : α ⊢ OneHom.toFun (↑{ toOneHom := { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y) }) (↑i a + ↑i b) = OneHom.toFun (↑{ toOneHom := { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y) }) (↑i a) + OneHom.toFun (↑{ toOneHom := { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } (x * y) = OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } x * OneHom.toFun { toFun := extend (_ : DenseInducing ↑i) ↑f, map_one' := (_ : extend (_ : DenseInducing ↑i) (↑f) 1 = 1) } y) }) (↑i b) [PROOFSTEP] simp_rw [← i.map_add, DenseInducing.extend_eq (ue.denseInducing dr) hf.continuous _, ← f.map_add]
{"mathlib_filename": "Mathlib.Topology.Algebra.UniformRing", "llama_tokens": 17286}
[GOAL] X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c [PROOFSTEP] have ne : (Icc a b).Nonempty := nonempty_Icc.2 (le_of_lt hab) -- Consider absolute min and max points [GOAL] X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) ⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c [PROOFSTEP] obtain ⟨c, cmem, cle⟩ : ∃ c ∈ Icc a b, ∀ x ∈ Icc a b, f c ≤ f x := isCompact_Icc.exists_forall_le ne hfc [GOAL] case intro.intro X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x ⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c [PROOFSTEP] obtain ⟨C, Cmem, Cge⟩ : ∃ C ∈ Icc a b, ∀ x ∈ Icc a b, f x ≤ f C := isCompact_Icc.exists_forall_ge ne hfc [GOAL] case intro.intro.intro.intro X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C ⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c [PROOFSTEP] by_cases hc : f c = f a [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : f c = f a ⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c [PROOFSTEP] by_cases hC : f C = f a [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : f c = f a hC : f C = f a ⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c [PROOFSTEP] have : ∀ x ∈ Icc a b, f x = f a := fun x hx => le_antisymm (hC ▸ Cge x hx) (hc ▸ cle x hx) -- `f` is a constant, so we can take any point in `Ioo a b` [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : f c = f a hC : f C = f a this : ∀ (x : X), x ∈ Icc a b → f x = f a ⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c [PROOFSTEP] rcases nonempty_Ioo.2 hab with ⟨c', hc'⟩ [GOAL] case pos.intro X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : f c = f a hC : f C = f a this : ∀ (x : X), x ∈ Icc a b → f x = f a c' : X hc' : c' ∈ Ioo a b ⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c [PROOFSTEP] refine ⟨c', hc', Or.inl fun x hx ↦ ?_⟩ [GOAL] case pos.intro X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : f c = f a hC : f C = f a this : ∀ (x : X), x ∈ Icc a b → f x = f a c' : X hc' : c' ∈ Ioo a b x : X hx : x ∈ Icc a b ⊢ x ∈ {x | (fun x => f c' ≤ f x) x} [PROOFSTEP] simp only [mem_setOf_eq, this x hx, this c' (Ioo_subset_Icc_self hc'), le_rfl] [GOAL] case neg X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : f c = f a hC : ¬f C = f a ⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c [PROOFSTEP] refine' ⟨C, ⟨lt_of_le_of_ne Cmem.1 <| mt _ hC, lt_of_le_of_ne Cmem.2 <| mt _ hC⟩, Or.inr Cge⟩ [GOAL] case neg.refine'_1 X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : f c = f a hC : ¬f C = f a ⊢ a = C → f C = f a case neg.refine'_2 X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : f c = f a hC : ¬f C = f a ⊢ C = b → f C = f a [PROOFSTEP] exacts [fun h => by rw [h], fun h => by rw [h, hfI]] [GOAL] X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : f c = f a hC : ¬f C = f a h : a = C ⊢ f C = f a [PROOFSTEP] rw [h] [GOAL] X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : f c = f a hC : ¬f C = f a h : C = b ⊢ f C = f a [PROOFSTEP] rw [h, hfI] [GOAL] case neg X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : ¬f c = f a ⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c [PROOFSTEP] refine' ⟨c, ⟨lt_of_le_of_ne cmem.1 <| mt _ hc, lt_of_le_of_ne cmem.2 <| mt _ hc⟩, Or.inl cle⟩ [GOAL] case neg.refine'_1 X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : ¬f c = f a ⊢ a = c → f c = f a case neg.refine'_2 X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : ¬f c = f a ⊢ c = b → f c = f a [PROOFSTEP] exacts [fun h => by rw [h], fun h => by rw [h, hfI]] [GOAL] X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : ¬f c = f a h : a = c ⊢ f c = f a [PROOFSTEP] rw [h] [GOAL] X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) c : X cmem : c ∈ Icc a b cle : ∀ (x : X), x ∈ Icc a b → f c ≤ f x C : X Cmem : C ∈ Icc a b Cge : ∀ (x : X), x ∈ Icc a b → f x ≤ f C hc : ¬f c = f a h : c = b ⊢ f c = f a [PROOFSTEP] rw [h, hfI] [GOAL] X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 l) hb : Tendsto f (𝓝[Iio b] b) (𝓝 l) ⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Ioo a b) c [PROOFSTEP] have h : EqOn (extendFrom (Ioo a b) f) f (Ioo a b) := extendFrom_extends hfc [GOAL] X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 l) hb : Tendsto f (𝓝[Iio b] b) (𝓝 l) h : EqOn (extendFrom (Ioo a b) f) f (Ioo a b) ⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Ioo a b) c [PROOFSTEP] obtain ⟨c, hc, hfc⟩ : ∃ c ∈ Ioo a b, IsExtrOn (extendFrom (Ioo a b) f) (Icc a b) c := exists_Ioo_extr_on_Icc hab (continuousOn_Icc_extendFrom_Ioo hab.ne hfc ha hb) ((eq_lim_at_left_extendFrom_Ioo hab ha).trans (eq_lim_at_right_extendFrom_Ioo hab hb).symm) [GOAL] case intro.intro X : Type u_1 Y : Type u_2 inst✝⁶ : ConditionallyCompleteLinearOrder X inst✝⁵ : DenselyOrdered X inst✝⁴ : TopologicalSpace X inst✝³ : OrderTopology X inst✝² : LinearOrder Y inst✝¹ : TopologicalSpace Y inst✝ : OrderTopology Y f : X → Y a b : X l : Y hab : a < b hfc✝ : ContinuousOn f (Ioo a b) ha : Tendsto f (𝓝[Ioi a] a) (𝓝 l) hb : Tendsto f (𝓝[Iio b] b) (𝓝 l) h : EqOn (extendFrom (Ioo a b) f) f (Ioo a b) c : X hc : c ∈ Ioo a b hfc : IsExtrOn (extendFrom (Ioo a b) f) (Icc a b) c ⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Ioo a b) c [PROOFSTEP] exact ⟨c, hc, (hfc.on_subset Ioo_subset_Icc_self).congr h (h hc)⟩
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.Rolle", "llama_tokens": 6651}
[GOAL] M : Type u_1 α : Type u_2 β : Type u_3 inst✝⁵ : TopologicalSpace α inst✝⁴ : SMul M α inst✝³ : ContinuousConstSMul M α inst✝² : TopologicalSpace β f : β → M g : β → α b : β s : Set β inst✝¹ : SMul Mᵐᵒᵖ α inst✝ : IsCentralScalar M α c : M ⊢ Continuous fun x => MulOpposite.op c • x [PROOFSTEP] simpa only [op_smul_eq_smul] using continuous_const_smul c [GOAL] M : Type u_1 α✝ : Type u_2 β✝ : Type u_3 inst✝⁹ : TopologicalSpace α✝ inst✝⁸ : Monoid M inst✝⁷ : MulAction M α✝ inst✝⁶ : ContinuousConstSMul M α✝ N : Type u_4 inst✝⁵ : Monoid N α : Type u_5 β : Type u_6 inst✝⁴ : MulAction M α inst✝³ : MulAction N β inst✝² : TopologicalSpace β inst✝¹ : T2Space β inst✝ : ContinuousConstSMul N β σ : M → N ⊢ IsClosed {f | ∀ (c : M) (x : α), f (c • x) = σ c • f x} [PROOFSTEP] simp only [Set.setOf_forall] [GOAL] M : Type u_1 α✝ : Type u_2 β✝ : Type u_3 inst✝⁹ : TopologicalSpace α✝ inst✝⁸ : Monoid M inst✝⁷ : MulAction M α✝ inst✝⁶ : ContinuousConstSMul M α✝ N : Type u_4 inst✝⁵ : Monoid N α : Type u_5 β : Type u_6 inst✝⁴ : MulAction M α inst✝³ : MulAction N β inst✝² : TopologicalSpace β inst✝¹ : T2Space β inst✝ : ContinuousConstSMul N β σ : M → N ⊢ IsClosed (⋂ (i : M) (i_1 : α), {x | x (i • i_1) = σ i • x i_1}) [PROOFSTEP] exact isClosed_iInter fun c => isClosed_iInter fun x => isClosed_eq (continuous_apply _) ((continuous_apply _).const_smul _) [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 G : Type u_4 inst✝³ : TopologicalSpace α inst✝² : Group G inst✝¹ : MulAction G α inst✝ : ContinuousConstSMul G α f : β → α l : Filter β a : α c : G h : Tendsto (fun x => c • f x) l (𝓝 (c • a)) ⊢ Tendsto f l (𝓝 a) [PROOFSTEP] simpa only [inv_smul_smul] using h.const_smul c⁻¹ [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 G : Type u_4 inst✝⁴ : TopologicalSpace α inst✝³ : Group G inst✝² : MulAction G α inst✝¹ : ContinuousConstSMul G α inst✝ : TopologicalSpace β f : β → α b : β s : Set β c : G ⊢ (Continuous fun x => c • f x) ↔ Continuous f [PROOFSTEP] simp only [continuous_iff_continuousAt, continuousAt_const_smul_iff] [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 G : Type u_4 inst✝⁴ : TopologicalSpace α inst✝³ : Group G inst✝² : MulAction G α inst✝¹ : ContinuousConstSMul G α inst✝ : TopologicalSpace β f : β → α b : β s✝ : Set β c : G s : Set α hs : Dense s ⊢ Dense (c • s) [PROOFSTEP] rw [dense_iff_closure_eq] at hs ⊢ [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 G : Type u_4 inst✝⁴ : TopologicalSpace α inst✝³ : Group G inst✝² : MulAction G α inst✝¹ : ContinuousConstSMul G α inst✝ : TopologicalSpace β f : β → α b : β s✝ : Set β c : G s : Set α hs : closure s = univ ⊢ closure (c • s) = univ [PROOFSTEP] rw [closure_smul, hs, smul_set_univ] [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 G₀ : Type u_4 inst✝⁹ : TopologicalSpace α inst✝⁸ : GroupWithZero G₀ inst✝⁷ : MulAction G₀ α inst✝⁶ : ContinuousConstSMul G₀ α inst✝⁵ : TopologicalSpace β f : β → α b : β c✝ : G₀ s✝ : Set β E : Type u_5 inst✝⁴ : Zero E inst✝³ : MulActionWithZero G₀ E inst✝² : TopologicalSpace E inst✝¹ : T1Space E inst✝ : ContinuousConstSMul G₀ E c : G₀ s : Set E ⊢ closure (c • s) = c • closure s [PROOFSTEP] rcases eq_or_ne c 0 with (rfl | hc) [GOAL] case inl M : Type u_1 α : Type u_2 β : Type u_3 G₀ : Type u_4 inst✝⁹ : TopologicalSpace α inst✝⁸ : GroupWithZero G₀ inst✝⁷ : MulAction G₀ α inst✝⁶ : ContinuousConstSMul G₀ α inst✝⁵ : TopologicalSpace β f : β → α b : β c : G₀ s✝ : Set β E : Type u_5 inst✝⁴ : Zero E inst✝³ : MulActionWithZero G₀ E inst✝² : TopologicalSpace E inst✝¹ : T1Space E inst✝ : ContinuousConstSMul G₀ E s : Set E ⊢ closure (0 • s) = 0 • closure s [PROOFSTEP] rcases eq_empty_or_nonempty s with (rfl | hs) [GOAL] case inl.inl M : Type u_1 α : Type u_2 β : Type u_3 G₀ : Type u_4 inst✝⁹ : TopologicalSpace α inst✝⁸ : GroupWithZero G₀ inst✝⁷ : MulAction G₀ α inst✝⁶ : ContinuousConstSMul G₀ α inst✝⁵ : TopologicalSpace β f : β → α b : β c : G₀ s : Set β E : Type u_5 inst✝⁴ : Zero E inst✝³ : MulActionWithZero G₀ E inst✝² : TopologicalSpace E inst✝¹ : T1Space E inst✝ : ContinuousConstSMul G₀ E ⊢ closure (0 • ∅) = 0 • closure ∅ [PROOFSTEP] simp [GOAL] case inl.inr M : Type u_1 α : Type u_2 β : Type u_3 G₀ : Type u_4 inst✝⁹ : TopologicalSpace α inst✝⁸ : GroupWithZero G₀ inst✝⁷ : MulAction G₀ α inst✝⁶ : ContinuousConstSMul G₀ α inst✝⁵ : TopologicalSpace β f : β → α b : β c : G₀ s✝ : Set β E : Type u_5 inst✝⁴ : Zero E inst✝³ : MulActionWithZero G₀ E inst✝² : TopologicalSpace E inst✝¹ : T1Space E inst✝ : ContinuousConstSMul G₀ E s : Set E hs : Set.Nonempty s ⊢ closure (0 • s) = 0 • closure s [PROOFSTEP] rw [zero_smul_set hs, zero_smul_set hs.closure] [GOAL] case inl.inr M : Type u_1 α : Type u_2 β : Type u_3 G₀ : Type u_4 inst✝⁹ : TopologicalSpace α inst✝⁸ : GroupWithZero G₀ inst✝⁷ : MulAction G₀ α inst✝⁶ : ContinuousConstSMul G₀ α inst✝⁵ : TopologicalSpace β f : β → α b : β c : G₀ s✝ : Set β E : Type u_5 inst✝⁴ : Zero E inst✝³ : MulActionWithZero G₀ E inst✝² : TopologicalSpace E inst✝¹ : T1Space E inst✝ : ContinuousConstSMul G₀ E s : Set E hs : Set.Nonempty s ⊢ closure 0 = 0 [PROOFSTEP] exact closure_singleton [GOAL] case inr M : Type u_1 α : Type u_2 β : Type u_3 G₀ : Type u_4 inst✝⁹ : TopologicalSpace α inst✝⁸ : GroupWithZero G₀ inst✝⁷ : MulAction G₀ α inst✝⁶ : ContinuousConstSMul G₀ α inst✝⁵ : TopologicalSpace β f : β → α b : β c✝ : G₀ s✝ : Set β E : Type u_5 inst✝⁴ : Zero E inst✝³ : MulActionWithZero G₀ E inst✝² : TopologicalSpace E inst✝¹ : T1Space E inst✝ : ContinuousConstSMul G₀ E c : G₀ s : Set E hc : c ≠ 0 ⊢ closure (c • s) = c • closure s [PROOFSTEP] exact ((Homeomorph.smulOfNeZero c hc).image_closure s).symm [GOAL] M✝ : Type u_1 α : Type u_2 β : Type u_3 G₀ : Type u_4 inst✝¹⁰ : TopologicalSpace α inst✝⁹ : GroupWithZero G₀ inst✝⁸ : MulAction G₀ α inst✝⁷ : ContinuousConstSMul G₀ α inst✝⁶ : TopologicalSpace β f : β → α b : β c✝ : G₀ s : Set β 𝕜 : Type u_5 M : Type u_6 inst✝⁵ : DivisionRing 𝕜 inst✝⁴ : AddCommMonoid M inst✝³ : TopologicalSpace M inst✝² : T1Space M inst✝¹ : Module 𝕜 M inst✝ : ContinuousConstSMul 𝕜 M c : 𝕜 ⊢ IsClosedMap fun x => c • x [PROOFSTEP] rcases eq_or_ne c 0 with (rfl | hne) [GOAL] case inl M✝ : Type u_1 α : Type u_2 β : Type u_3 G₀ : Type u_4 inst✝¹⁰ : TopologicalSpace α inst✝⁹ : GroupWithZero G₀ inst✝⁸ : MulAction G₀ α inst✝⁷ : ContinuousConstSMul G₀ α inst✝⁶ : TopologicalSpace β f : β → α b : β c : G₀ s : Set β 𝕜 : Type u_5 M : Type u_6 inst✝⁵ : DivisionRing 𝕜 inst✝⁴ : AddCommMonoid M inst✝³ : TopologicalSpace M inst✝² : T1Space M inst✝¹ : Module 𝕜 M inst✝ : ContinuousConstSMul 𝕜 M ⊢ IsClosedMap fun x => 0 • x [PROOFSTEP] simp only [zero_smul] [GOAL] case inl M✝ : Type u_1 α : Type u_2 β : Type u_3 G₀ : Type u_4 inst✝¹⁰ : TopologicalSpace α inst✝⁹ : GroupWithZero G₀ inst✝⁸ : MulAction G₀ α inst✝⁷ : ContinuousConstSMul G₀ α inst✝⁶ : TopologicalSpace β f : β → α b : β c : G₀ s : Set β 𝕜 : Type u_5 M : Type u_6 inst✝⁵ : DivisionRing 𝕜 inst✝⁴ : AddCommMonoid M inst✝³ : TopologicalSpace M inst✝² : T1Space M inst✝¹ : Module 𝕜 M inst✝ : ContinuousConstSMul 𝕜 M ⊢ IsClosedMap fun x => 0 [PROOFSTEP] exact isClosedMap_const [GOAL] case inr M✝ : Type u_1 α : Type u_2 β : Type u_3 G₀ : Type u_4 inst✝¹⁰ : TopologicalSpace α inst✝⁹ : GroupWithZero G₀ inst✝⁸ : MulAction G₀ α inst✝⁷ : ContinuousConstSMul G₀ α inst✝⁶ : TopologicalSpace β f : β → α b : β c✝ : G₀ s : Set β 𝕜 : Type u_5 M : Type u_6 inst✝⁵ : DivisionRing 𝕜 inst✝⁴ : AddCommMonoid M inst✝³ : TopologicalSpace M inst✝² : T1Space M inst✝¹ : Module 𝕜 M inst✝ : ContinuousConstSMul 𝕜 M c : 𝕜 hne : c ≠ 0 ⊢ IsClosedMap fun x => c • x [PROOFSTEP] exact (Homeomorph.smulOfNeZero c hne).isClosedMap [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝³ : Group Γ T : Type u_5 inst✝² : TopologicalSpace T inst✝¹ : MulAction Γ T inst✝ : ContinuousConstSMul Γ T U : Set T hU : IsOpen U ⊢ IsOpen (Quotient.mk' '' U) [PROOFSTEP] rw [isOpen_coinduced, MulAction.quotient_preimage_image_eq_union_mul U] [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝³ : Group Γ T : Type u_5 inst✝² : TopologicalSpace T inst✝¹ : MulAction Γ T inst✝ : ContinuousConstSMul Γ T U : Set T hU : IsOpen U ⊢ IsOpen (⋃ (g : Γ), (fun x x_1 => x • x_1) g '' U) [PROOFSTEP] exact isOpen_iUnion fun γ => isOpenMap_smul γ U hU [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T ⊢ T2Space (Quotient (MulAction.orbitRel Γ T)) [PROOFSTEP] letI := MulAction.orbitRel Γ T [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T ⊢ T2Space (Quotient (MulAction.orbitRel Γ T)) [PROOFSTEP] set Q := Quotient (MulAction.orbitRel Γ T) [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) ⊢ T2Space (Quotient (MulAction.orbitRel Γ T)) [PROOFSTEP] rw [t2Space_iff_nhds] [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) ⊢ ∀ {x y : Quotient (MulAction.orbitRel Γ T)}, x ≠ y → ∃ U, U ∈ 𝓝 x ∧ ∃ V, V ∈ 𝓝 y ∧ Disjoint U V [PROOFSTEP] let f : T → Q := Quotient.mk' [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' ⊢ ∀ {x y : Quotient (MulAction.orbitRel Γ T)}, x ≠ y → ∃ U, U ∈ 𝓝 x ∧ ∃ V, V ∈ 𝓝 y ∧ Disjoint U V [PROOFSTEP] have f_op : IsOpenMap f := isOpenMap_quotient_mk'_mul [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f ⊢ ∀ {x y : Quotient (MulAction.orbitRel Γ T)}, x ≠ y → ∃ U, U ∈ 𝓝 x ∧ ∃ V, V ∈ 𝓝 y ∧ Disjoint U V [PROOFSTEP] rintro ⟨x₀⟩ ⟨y₀⟩ (hxy : f x₀ ≠ f y₀) [GOAL] case mk.mk M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ ⊢ ∃ U, U ∈ 𝓝 (Quot.mk Setoid.r x₀) ∧ ∃ V, V ∈ 𝓝 (Quot.mk Setoid.r y₀) ∧ Disjoint U V [PROOFSTEP] show ∃ U ∈ 𝓝 (f x₀), ∃ V ∈ 𝓝 (f y₀), _ [GOAL] case mk.mk M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ ⊢ ∃ U, U ∈ 𝓝 (f x₀) ∧ ∃ V, V ∈ 𝓝 (f y₀) ∧ Disjoint U V [PROOFSTEP] have hγx₀y₀ : ∀ γ : Γ, γ • x₀ ≠ y₀ := not_exists.mp (mt Quotient.sound hxy.symm : _) [GOAL] case mk.mk M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ ⊢ ∃ U, U ∈ 𝓝 (f x₀) ∧ ∃ V, V ∈ 𝓝 (f y₀) ∧ Disjoint U V [PROOFSTEP] obtain ⟨K₀, hK₀, K₀_in⟩ := exists_compact_mem_nhds x₀ [GOAL] case mk.mk.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ ⊢ ∃ U, U ∈ 𝓝 (f x₀) ∧ ∃ V, V ∈ 𝓝 (f y₀) ∧ Disjoint U V [PROOFSTEP] obtain ⟨L₀, hL₀, L₀_in⟩ := exists_compact_mem_nhds y₀ [GOAL] case mk.mk.intro.intro.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ ⊢ ∃ U, U ∈ 𝓝 (f x₀) ∧ ∃ V, V ∈ 𝓝 (f y₀) ∧ Disjoint U V [PROOFSTEP] let bad_Γ_set := {γ : Γ | (γ • ·) '' K₀ ∩ L₀ ≠ ∅} [GOAL] case mk.mk.intro.intro.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} ⊢ ∃ U, U ∈ 𝓝 (f x₀) ∧ ∃ V, V ∈ 𝓝 (f y₀) ∧ Disjoint U V [PROOFSTEP] have bad_Γ_finite : bad_Γ_set.Finite := finite_disjoint_inter_image (Γ := Γ) hK₀ hL₀ [GOAL] case mk.mk.intro.intro.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set ⊢ ∃ U, U ∈ 𝓝 (f x₀) ∧ ∃ V, V ∈ 𝓝 (f y₀) ∧ Disjoint U V [PROOFSTEP] choose u v hu hv u_v_disjoint using fun γ => t2_separation_nhds (hγx₀y₀ γ) [GOAL] case mk.mk.intro.intro.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) ⊢ ∃ U, U ∈ 𝓝 (f x₀) ∧ ∃ V, V ∈ 𝓝 (f y₀) ∧ Disjoint U V [PROOFSTEP] let U₀₀ := ⋂ γ ∈ bad_Γ_set, (γ • ·) ⁻¹' u γ [GOAL] case mk.mk.intro.intro.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ ⊢ ∃ U, U ∈ 𝓝 (f x₀) ∧ ∃ V, V ∈ 𝓝 (f y₀) ∧ Disjoint U V [PROOFSTEP] let U₀ := U₀₀ ∩ K₀ [GOAL] case mk.mk.intro.intro.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ U₀ : Set T := U₀₀ ∩ K₀ ⊢ ∃ U, U ∈ 𝓝 (f x₀) ∧ ∃ V, V ∈ 𝓝 (f y₀) ∧ Disjoint U V [PROOFSTEP] let V₀₀ := ⋂ γ ∈ bad_Γ_set, v γ [GOAL] case mk.mk.intro.intro.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ U₀ : Set T := U₀₀ ∩ K₀ V₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), v γ ⊢ ∃ U, U ∈ 𝓝 (f x₀) ∧ ∃ V, V ∈ 𝓝 (f y₀) ∧ Disjoint U V [PROOFSTEP] let V₀ := V₀₀ ∩ L₀ [GOAL] case mk.mk.intro.intro.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ U₀ : Set T := U₀₀ ∩ K₀ V₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), v γ V₀ : Set T := V₀₀ ∩ L₀ ⊢ ∃ U, U ∈ 𝓝 (f x₀) ∧ ∃ V, V ∈ 𝓝 (f y₀) ∧ Disjoint U V [PROOFSTEP] have U_nhds : f '' U₀ ∈ 𝓝 (f x₀) := by refine f_op.image_mem_nhds (inter_mem ((biInter_mem bad_Γ_finite).mpr fun γ _ => ?_) K₀_in) exact (continuous_const_smul _).continuousAt (hu γ) [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ U₀ : Set T := U₀₀ ∩ K₀ V₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), v γ V₀ : Set T := V₀₀ ∩ L₀ ⊢ f '' U₀ ∈ 𝓝 (f x₀) [PROOFSTEP] refine f_op.image_mem_nhds (inter_mem ((biInter_mem bad_Γ_finite).mpr fun γ _ => ?_) K₀_in) [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝¹ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ U₀ : Set T := U₀₀ ∩ K₀ V₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), v γ V₀ : Set T := V₀₀ ∩ L₀ γ : Γ x✝ : γ ∈ bad_Γ_set ⊢ (fun x => γ • x) ⁻¹' u γ ∈ 𝓝 x₀ [PROOFSTEP] exact (continuous_const_smul _).continuousAt (hu γ) [GOAL] case mk.mk.intro.intro.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ U₀ : Set T := U₀₀ ∩ K₀ V₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), v γ V₀ : Set T := V₀₀ ∩ L₀ U_nhds : f '' U₀ ∈ 𝓝 (f x₀) ⊢ ∃ U, U ∈ 𝓝 (f x₀) ∧ ∃ V, V ∈ 𝓝 (f y₀) ∧ Disjoint U V [PROOFSTEP] have V_nhds : f '' V₀ ∈ 𝓝 (f y₀) := f_op.image_mem_nhds (inter_mem ((biInter_mem bad_Γ_finite).mpr fun γ _ => hv γ) L₀_in) [GOAL] case mk.mk.intro.intro.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ U₀ : Set T := U₀₀ ∩ K₀ V₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), v γ V₀ : Set T := V₀₀ ∩ L₀ U_nhds : f '' U₀ ∈ 𝓝 (f x₀) V_nhds : f '' V₀ ∈ 𝓝 (f y₀) ⊢ ∃ U, U ∈ 𝓝 (f x₀) ∧ ∃ V, V ∈ 𝓝 (f y₀) ∧ Disjoint U V [PROOFSTEP] refine' ⟨f '' U₀, U_nhds, f '' V₀, V_nhds, MulAction.disjoint_image_image_iff.2 _⟩ [GOAL] case mk.mk.intro.intro.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ U₀ : Set T := U₀₀ ∩ K₀ V₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), v γ V₀ : Set T := V₀₀ ∩ L₀ U_nhds : f '' U₀ ∈ 𝓝 (f x₀) V_nhds : f '' V₀ ∈ 𝓝 (f y₀) ⊢ ∀ (x : T), x ∈ U₀ → ∀ (g : Γ), ¬g • x ∈ V₀ [PROOFSTEP] rintro x ⟨x_in_U₀₀, x_in_K₀⟩ γ [GOAL] case mk.mk.intro.intro.intro.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ U₀ : Set T := U₀₀ ∩ K₀ V₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), v γ V₀ : Set T := V₀₀ ∩ L₀ U_nhds : f '' U₀ ∈ 𝓝 (f x₀) V_nhds : f '' V₀ ∈ 𝓝 (f y₀) x : T x_in_U₀₀ : x ∈ U₀₀ x_in_K₀ : x ∈ K₀ γ : Γ ⊢ ¬γ • x ∈ V₀ [PROOFSTEP] by_cases H : γ ∈ bad_Γ_set [GOAL] case pos M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ U₀ : Set T := U₀₀ ∩ K₀ V₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), v γ V₀ : Set T := V₀₀ ∩ L₀ U_nhds : f '' U₀ ∈ 𝓝 (f x₀) V_nhds : f '' V₀ ∈ 𝓝 (f y₀) x : T x_in_U₀₀ : x ∈ U₀₀ x_in_K₀ : x ∈ K₀ γ : Γ H : γ ∈ bad_Γ_set ⊢ ¬γ • x ∈ V₀ [PROOFSTEP] exact fun h => (u_v_disjoint γ).le_bot ⟨mem_iInter₂.mp x_in_U₀₀ γ H, mem_iInter₂.mp h.1 γ H⟩ [GOAL] case neg M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ U₀ : Set T := U₀₀ ∩ K₀ V₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), v γ V₀ : Set T := V₀₀ ∩ L₀ U_nhds : f '' U₀ ∈ 𝓝 (f x₀) V_nhds : f '' V₀ ∈ 𝓝 (f y₀) x : T x_in_U₀₀ : x ∈ U₀₀ x_in_K₀ : x ∈ K₀ γ : Γ H : ¬γ ∈ bad_Γ_set ⊢ ¬γ • x ∈ V₀ [PROOFSTEP] rintro ⟨-, h'⟩ [GOAL] case neg.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ U₀ : Set T := U₀₀ ∩ K₀ V₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), v γ V₀ : Set T := V₀₀ ∩ L₀ U_nhds : f '' U₀ ∈ 𝓝 (f x₀) V_nhds : f '' V₀ ∈ 𝓝 (f y₀) x : T x_in_U₀₀ : x ∈ U₀₀ x_in_K₀ : x ∈ K₀ γ : Γ H : ¬γ ∈ bad_Γ_set h' : γ • x ∈ L₀ ⊢ False [PROOFSTEP] simp only [image_smul, Classical.not_not, mem_setOf_eq, Ne.def] at H [GOAL] case neg.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T inst✝³ : T2Space T inst✝² : LocallyCompactSpace T inst✝¹ : ContinuousConstSMul Γ T inst✝ : ProperlyDiscontinuousSMul Γ T this : Setoid T := MulAction.orbitRel Γ T Q : Type u_5 := Quotient (MulAction.orbitRel Γ T) f : T → Q := Quotient.mk' f_op : IsOpenMap f x✝ : Quotient (MulAction.orbitRel Γ T) x₀ : T y✝ : Quotient (MulAction.orbitRel Γ T) y₀ : T hxy : f x₀ ≠ f y₀ hγx₀y₀ : ∀ (γ : Γ), γ • x₀ ≠ y₀ K₀ : Set T hK₀ : IsCompact K₀ K₀_in : K₀ ∈ 𝓝 x₀ L₀ : Set T hL₀ : IsCompact L₀ L₀_in : L₀ ∈ 𝓝 y₀ bad_Γ_set : Set Γ := {γ | (fun x => γ • x) '' K₀ ∩ L₀ ≠ ∅} bad_Γ_finite : Set.Finite bad_Γ_set u v : Γ → Set T hu : ∀ (γ : Γ), u γ ∈ 𝓝 (γ • x₀) hv : ∀ (γ : Γ), v γ ∈ 𝓝 y₀ u_v_disjoint : ∀ (γ : Γ), Disjoint (u γ) (v γ) U₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), (fun x => γ • x) ⁻¹' u γ U₀ : Set T := U₀₀ ∩ K₀ V₀₀ : Set T := ⋂ (γ : Γ) (_ : γ ∈ bad_Γ_set), v γ V₀ : Set T := V₀₀ ∩ L₀ U_nhds : f '' U₀ ∈ 𝓝 (f x₀) V_nhds : f '' V₀ ∈ 𝓝 (f y₀) x : T x_in_U₀₀ : x ∈ U₀₀ x_in_K₀ : x ∈ K₀ γ : Γ h' : γ • x ∈ L₀ H : γ • K₀ ∩ L₀ = ∅ ⊢ False [PROOFSTEP] exact eq_empty_iff_forall_not_mem.mp H (γ • x) ⟨mem_image_of_mem _ x_in_K₀, h'⟩ [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T G₀ : Type u_6 inst✝³ : GroupWithZero G₀ inst✝² : MulAction G₀ α inst✝¹ : TopologicalSpace α inst✝ : ContinuousConstSMul G₀ α c : G₀ s : Set α x : α hs : s ∈ 𝓝 x hc : c ≠ 0 ⊢ c • s ∈ 𝓝 (c • x) [PROOFSTEP] rw [mem_nhds_iff] at hs ⊢ [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T G₀ : Type u_6 inst✝³ : GroupWithZero G₀ inst✝² : MulAction G₀ α inst✝¹ : TopologicalSpace α inst✝ : ContinuousConstSMul G₀ α c : G₀ s : Set α x : α hs : ∃ t, t ⊆ s ∧ IsOpen t ∧ x ∈ t hc : c ≠ 0 ⊢ ∃ t, t ⊆ c • s ∧ IsOpen t ∧ c • x ∈ t [PROOFSTEP] obtain ⟨U, hs', hU, hU'⟩ := hs [GOAL] case intro.intro.intro M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T G₀ : Type u_6 inst✝³ : GroupWithZero G₀ inst✝² : MulAction G₀ α inst✝¹ : TopologicalSpace α inst✝ : ContinuousConstSMul G₀ α c : G₀ s : Set α x : α hc : c ≠ 0 U : Set α hs' : U ⊆ s hU : IsOpen U hU' : x ∈ U ⊢ ∃ t, t ⊆ c • s ∧ IsOpen t ∧ c • x ∈ t [PROOFSTEP] exact ⟨c • U, Set.smul_set_mono hs', hU.smul₀ hc, Set.smul_mem_smul_set hU'⟩ [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T G₀ : Type u_6 inst✝³ : GroupWithZero G₀ inst✝² : MulAction G₀ α inst✝¹ : TopologicalSpace α inst✝ : ContinuousConstSMul G₀ α c : G₀ s : Set α x : α hc : c ≠ 0 ⊢ c • s ∈ 𝓝 (c • x) ↔ s ∈ 𝓝 x [PROOFSTEP] refine' ⟨fun h => _, fun h => set_smul_mem_nhds_smul h hc⟩ [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T G₀ : Type u_6 inst✝³ : GroupWithZero G₀ inst✝² : MulAction G₀ α inst✝¹ : TopologicalSpace α inst✝ : ContinuousConstSMul G₀ α c : G₀ s : Set α x : α hc : c ≠ 0 h : c • s ∈ 𝓝 (c • x) ⊢ s ∈ 𝓝 x [PROOFSTEP] rw [← inv_smul_smul₀ hc x, ← inv_smul_smul₀ hc s] [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁶ : Group Γ T : Type u_5 inst✝⁵ : TopologicalSpace T inst✝⁴ : MulAction Γ T G₀ : Type u_6 inst✝³ : GroupWithZero G₀ inst✝² : MulAction G₀ α inst✝¹ : TopologicalSpace α inst✝ : ContinuousConstSMul G₀ α c : G₀ s : Set α x : α hc : c ≠ 0 h : c • s ∈ 𝓝 (c • x) ⊢ c⁻¹ • c • s ∈ 𝓝 (c⁻¹ • c • x) [PROOFSTEP] exact set_smul_mem_nhds_smul h (inv_ne_zero hc) [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁷ : Group Γ T : Type u_5 inst✝⁶ : TopologicalSpace T inst✝⁵ : MulAction Γ T G₀ : Type u_6 inst✝⁴ : GroupWithZero G₀ inst✝³ : AddMonoid α inst✝² : DistribMulAction G₀ α inst✝¹ : TopologicalSpace α inst✝ : ContinuousConstSMul G₀ α s : Set α c : G₀ hc : c ≠ 0 ⊢ c • s ∈ 𝓝 0 ↔ s ∈ 𝓝 0 [PROOFSTEP] refine' Iff.trans _ (set_smul_mem_nhds_smul_iff hc) [GOAL] M : Type u_1 α : Type u_2 β : Type u_3 Γ : Type u_4 inst✝⁷ : Group Γ T : Type u_5 inst✝⁶ : TopologicalSpace T inst✝⁵ : MulAction Γ T G₀ : Type u_6 inst✝⁴ : GroupWithZero G₀ inst✝³ : AddMonoid α inst✝² : DistribMulAction G₀ α inst✝¹ : TopologicalSpace α inst✝ : ContinuousConstSMul G₀ α s : Set α c : G₀ hc : c ≠ 0 ⊢ c • s ∈ 𝓝 0 ↔ c • s ∈ 𝓝 (c • 0) [PROOFSTEP] rw [smul_zero]
{"mathlib_filename": "Mathlib.Topology.Algebra.ConstMulAction", "llama_tokens": 20284}
[GOAL] R : Type u_1 V : Type u_2 W : Type u_3 P : Type u_4 Q : Type u_5 inst✝⁸ : Ring R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : TopologicalSpace P inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup W inst✝² : Module R W inst✝¹ : TopologicalSpace Q inst✝ : AddTorsor W Q f g : P →A[R] Q h : f.toAffineMap = g.toAffineMap ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk R : Type u_1 V : Type u_2 W : Type u_3 P : Type u_4 Q : Type u_5 inst✝⁸ : Ring R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : TopologicalSpace P inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup W inst✝² : Module R W inst✝¹ : TopologicalSpace Q inst✝ : AddTorsor W Q g : P →A[R] Q toAffineMap✝ : P →ᵃ[R] Q cont✝ : Continuous toAffineMap✝.toFun h : { toAffineMap := toAffineMap✝, cont := cont✝ }.toAffineMap = g.toAffineMap ⊢ { toAffineMap := toAffineMap✝, cont := cont✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk R : Type u_1 V : Type u_2 W : Type u_3 P : Type u_4 Q : Type u_5 inst✝⁸ : Ring R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : TopologicalSpace P inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup W inst✝² : Module R W inst✝¹ : TopologicalSpace Q inst✝ : AddTorsor W Q toAffineMap✝¹ : P →ᵃ[R] Q cont✝¹ : Continuous toAffineMap✝¹.toFun toAffineMap✝ : P →ᵃ[R] Q cont✝ : Continuous toAffineMap✝.toFun h : { toAffineMap := toAffineMap✝¹, cont := cont✝¹ }.toAffineMap = { toAffineMap := toAffineMap✝, cont := cont✝ }.toAffineMap ⊢ { toAffineMap := toAffineMap✝¹, cont := cont✝¹ } = { toAffineMap := toAffineMap✝, cont := cont✝ } [PROOFSTEP] congr [GOAL] R : Type u_1 V : Type u_2 W : Type u_3 P : Type u_4 Q : Type u_5 inst✝⁸ : Ring R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : TopologicalSpace P inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup W inst✝² : Module R W inst✝¹ : TopologicalSpace Q inst✝ : AddTorsor W Q f g : P →A[R] Q h : ↑f = ↑g ⊢ f = g [PROOFSTEP] ext a [GOAL] case h R : Type u_1 V : Type u_2 W : Type u_3 P : Type u_4 Q : Type u_5 inst✝⁸ : Ring R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : TopologicalSpace P inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup W inst✝² : Module R W inst✝¹ : TopologicalSpace Q inst✝ : AddTorsor W Q f g : P →A[R] Q h : ↑f = ↑g a : P ⊢ ↑f a = ↑g a [PROOFSTEP] exact ContinuousMap.congr_fun h a [GOAL] R : Type u_1 V : Type u_2 W : Type u_3 P : Type u_4 Q : Type u_5 inst✝⁸ : Ring R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : TopologicalSpace P inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup W inst✝² : Module R W inst✝¹ : TopologicalSpace Q inst✝ : AddTorsor W Q f : P →A[R] Q h : Continuous f.toFun ⊢ { toAffineMap := f.toAffineMap, cont := h } = f [PROOFSTEP] ext [GOAL] case h R : Type u_1 V : Type u_2 W : Type u_3 P : Type u_4 Q : Type u_5 inst✝⁸ : Ring R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : TopologicalSpace P inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup W inst✝² : Module R W inst✝¹ : TopologicalSpace Q inst✝ : AddTorsor W Q f : P →A[R] Q h : Continuous f.toFun x✝ : P ⊢ ↑{ toAffineMap := f.toAffineMap, cont := h } x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 V : Type u_2 W : Type u_3 P : Type u_4 Q : Type u_5 inst✝⁸ : Ring R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : TopologicalSpace P inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup W inst✝² : Module R W inst✝¹ : TopologicalSpace Q inst✝ : AddTorsor W Q ⊢ Nonempty Q [PROOFSTEP] infer_instance [GOAL] R : Type u_1 V : Type u_2 W : Type u_3 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : TopologicalSpace V inst✝² : AddCommGroup W inst✝¹ : Module R W inst✝ : TopologicalSpace W f : V →L[R] W ⊢ ∀ (p v : V), ↑f (v +ᵥ p) = ↑↑f v +ᵥ ↑f p [PROOFSTEP] simp [GOAL] R : Type u_1 V : Type u_2 W : Type u_3 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : TopologicalSpace V inst✝² : AddCommGroup W inst✝¹ : Module R W inst✝ : TopologicalSpace W f : V →L[R] W ⊢ ↑(toContinuousAffineMap f) 0 = 0 [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Topology.Algebra.ContinuousAffineMap", "llama_tokens": 1992}
[GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Mul M inst✝ : ContinuousMul M a b : M ⊢ 𝓝 a * 𝓝 b ≤ 𝓝 (a * b) [PROOFSTEP] rw [← map₂_mul, ← map_uncurry_prod, ← nhds_prod_eq] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Mul M inst✝ : ContinuousMul M a b : M ⊢ map (Function.uncurry fun x x_1 => x * x_1) (𝓝 (a, b)) ≤ 𝓝 (a * b) [PROOFSTEP] exact continuous_mul.tendsto _ [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : TopologicalSpace X inst✝⁷ : TopologicalSpace M inst✝⁶ : Mul M inst✝⁵ : ContinuousMul M inst✝⁴ : TopologicalSpace N inst✝³ : Monoid N inst✝² : ContinuousMul N inst✝¹ : T2Space N f : ι → Nˣ r₁ r₂ : N l : Filter ι inst✝ : NeBot l h₁ : Tendsto (fun x => ↑(f x)) l (𝓝 r₁) h₂ : Tendsto (fun x => ↑(f x)⁻¹) l (𝓝 r₂) ⊢ r₁ * r₂ = 1 [PROOFSTEP] symm [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : TopologicalSpace X inst✝⁷ : TopologicalSpace M inst✝⁶ : Mul M inst✝⁵ : ContinuousMul M inst✝⁴ : TopologicalSpace N inst✝³ : Monoid N inst✝² : ContinuousMul N inst✝¹ : T2Space N f : ι → Nˣ r₁ r₂ : N l : Filter ι inst✝ : NeBot l h₁ : Tendsto (fun x => ↑(f x)) l (𝓝 r₁) h₂ : Tendsto (fun x => ↑(f x)⁻¹) l (𝓝 r₂) ⊢ 1 = r₁ * r₂ [PROOFSTEP] simpa using h₁.mul h₂ [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : TopologicalSpace X inst✝⁷ : TopologicalSpace M inst✝⁶ : Mul M inst✝⁵ : ContinuousMul M inst✝⁴ : TopologicalSpace N inst✝³ : Monoid N inst✝² : ContinuousMul N inst✝¹ : T2Space N f : ι → Nˣ r₁ r₂ : N l : Filter ι inst✝ : NeBot l h₁ : Tendsto (fun x => ↑(f x)) l (𝓝 r₁) h₂ : Tendsto (fun x => ↑(f x)⁻¹) l (𝓝 r₂) ⊢ r₂ * r₁ = 1 [PROOFSTEP] symm [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : TopologicalSpace X inst✝⁷ : TopologicalSpace M inst✝⁶ : Mul M inst✝⁵ : ContinuousMul M inst✝⁴ : TopologicalSpace N inst✝³ : Monoid N inst✝² : ContinuousMul N inst✝¹ : T2Space N f : ι → Nˣ r₁ r₂ : N l : Filter ι inst✝ : NeBot l h₁ : Tendsto (fun x => ↑(f x)) l (𝓝 r₁) h₂ : Tendsto (fun x => ↑(f x)⁻¹) l (𝓝 r₂) ⊢ 1 = r₂ * r₁ [PROOFSTEP] simpa using h₂.mul h₁ [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : Monoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] rw [continuous_iff_continuousAt] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : Monoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) ⊢ ∀ (x : M × M), ContinuousAt (fun p => p.fst * p.snd) x [PROOFSTEP] rintro ⟨x₀, y₀⟩ [GOAL] case mk ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : Monoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) x₀ y₀ : M ⊢ ContinuousAt (fun p => p.fst * p.snd) (x₀, y₀) [PROOFSTEP] have key : (fun p : M × M => x₀ * p.1 * (p.2 * y₀)) = ((fun x => x₀ * x) ∘ fun x => x * y₀) ∘ uncurry (· * ·) := by ext p simp [uncurry, mul_assoc] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : Monoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) x₀ y₀ : M ⊢ (fun p => x₀ * p.fst * (p.snd * y₀)) = ((fun x => x₀ * x) ∘ fun x => x * y₀) ∘ uncurry fun x x_1 => x * x_1 [PROOFSTEP] ext p [GOAL] case h ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : Monoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) x₀ y₀ : M p : M × M ⊢ x₀ * p.fst * (p.snd * y₀) = (((fun x => x₀ * x) ∘ fun x => x * y₀) ∘ uncurry fun x x_1 => x * x_1) p [PROOFSTEP] simp [uncurry, mul_assoc] [GOAL] case mk ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : Monoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) x₀ y₀ : M key : (fun p => x₀ * p.fst * (p.snd * y₀)) = ((fun x => x₀ * x) ∘ fun x => x * y₀) ∘ uncurry fun x x_1 => x * x_1 ⊢ ContinuousAt (fun p => p.fst * p.snd) (x₀, y₀) [PROOFSTEP] have key₂ : ((fun x => x₀ * x) ∘ fun x => y₀ * x) = fun x => x₀ * y₀ * x := by ext x simp [mul_assoc] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : Monoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) x₀ y₀ : M key : (fun p => x₀ * p.fst * (p.snd * y₀)) = ((fun x => x₀ * x) ∘ fun x => x * y₀) ∘ uncurry fun x x_1 => x * x_1 ⊢ ((fun x => x₀ * x) ∘ fun x => y₀ * x) = fun x => x₀ * y₀ * x [PROOFSTEP] ext x [GOAL] case h ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : Monoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) x₀ y₀ : M key : (fun p => x₀ * p.fst * (p.snd * y₀)) = ((fun x => x₀ * x) ∘ fun x => x * y₀) ∘ uncurry fun x x_1 => x * x_1 x : M ⊢ ((fun x => x₀ * x) ∘ fun x => y₀ * x) x = x₀ * y₀ * x [PROOFSTEP] simp [mul_assoc] [GOAL] case mk ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : Monoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) x₀ y₀ : M key : (fun p => x₀ * p.fst * (p.snd * y₀)) = ((fun x => x₀ * x) ∘ fun x => x * y₀) ∘ uncurry fun x x_1 => x * x_1 key₂ : ((fun x => x₀ * x) ∘ fun x => y₀ * x) = fun x => x₀ * y₀ * x ⊢ ContinuousAt (fun p => p.fst * p.snd) (x₀, y₀) [PROOFSTEP] calc map (uncurry (· * ·)) (𝓝 (x₀, y₀)) = map (uncurry (· * ·)) (𝓝 x₀ ×ˢ 𝓝 y₀) := by rw [nhds_prod_eq] _ = map (fun p : M × M => x₀ * p.1 * (p.2 * y₀)) (𝓝 1 ×ˢ 𝓝 1) := -- Porting note: `rw` was able to prove this -- Now it fails with `failed to rewrite using equation theorems for 'Function.uncurry'` -- and `failed to rewrite using equation theorems for 'Function.comp'`. -- Removing those two lemmas, the `rw` would succeed, but then needs a `rfl`.by simp_rw [uncurry, hleft x₀, hright y₀, prod_map_map_eq, Filter.map_map, Function.comp] _ = map ((fun x => x₀ * x) ∘ fun x => x * y₀) (map (uncurry (· * ·)) (𝓝 1 ×ˢ 𝓝 1)) := by rw [key, ← Filter.map_map] _ ≤ map ((fun x : M => x₀ * x) ∘ fun x => x * y₀) (𝓝 1) := (map_mono hmul) _ = 𝓝 (x₀ * y₀) := by rw [← Filter.map_map, ← hright, hleft y₀, Filter.map_map, key₂, ← hleft] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : Monoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) x₀ y₀ : M key : (fun p => x₀ * p.fst * (p.snd * y₀)) = ((fun x => x₀ * x) ∘ fun x => x * y₀) ∘ uncurry fun x x_1 => x * x_1 key₂ : ((fun x => x₀ * x) ∘ fun x => y₀ * x) = fun x => x₀ * y₀ * x ⊢ map (uncurry fun x x_1 => x * x_1) (𝓝 (x₀, y₀)) = map (uncurry fun x x_1 => x * x_1) (𝓝 x₀ ×ˢ 𝓝 y₀) [PROOFSTEP] rw [nhds_prod_eq] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : Monoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) x₀ y₀ : M key : (fun p => x₀ * p.fst * (p.snd * y₀)) = ((fun x => x₀ * x) ∘ fun x => x * y₀) ∘ uncurry fun x x_1 => x * x_1 key₂ : ((fun x => x₀ * x) ∘ fun x => y₀ * x) = fun x => x₀ * y₀ * x ⊢ map (uncurry fun x x_1 => x * x_1) (𝓝 x₀ ×ˢ 𝓝 y₀) = map (fun p => x₀ * p.fst * (p.snd * y₀)) (𝓝 1 ×ˢ 𝓝 1) [PROOFSTEP] simp_rw [uncurry, hleft x₀, hright y₀, prod_map_map_eq, Filter.map_map, Function.comp] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : Monoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) x₀ y₀ : M key : (fun p => x₀ * p.fst * (p.snd * y₀)) = ((fun x => x₀ * x) ∘ fun x => x * y₀) ∘ uncurry fun x x_1 => x * x_1 key₂ : ((fun x => x₀ * x) ∘ fun x => y₀ * x) = fun x => x₀ * y₀ * x ⊢ map (fun p => x₀ * p.fst * (p.snd * y₀)) (𝓝 1 ×ˢ 𝓝 1) = map ((fun x => x₀ * x) ∘ fun x => x * y₀) (map (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1)) [PROOFSTEP] rw [key, ← Filter.map_map] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : Monoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) x₀ y₀ : M key : (fun p => x₀ * p.fst * (p.snd * y₀)) = ((fun x => x₀ * x) ∘ fun x => x * y₀) ∘ uncurry fun x x_1 => x * x_1 key₂ : ((fun x => x₀ * x) ∘ fun x => y₀ * x) = fun x => x₀ * y₀ * x ⊢ map ((fun x => x₀ * x) ∘ fun x => x * y₀) (𝓝 1) = 𝓝 (x₀ * y₀) [PROOFSTEP] rw [← Filter.map_map, ← hright, hleft y₀, Filter.map_map, key₂, ← hleft] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : CommMonoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) ⊢ ContinuousMul M [PROOFSTEP] apply ContinuousMul.of_nhds_one hmul hleft [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : CommMonoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) ⊢ ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) [PROOFSTEP] intro x₀ [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace M✝ inst✝³ : Mul M✝ inst✝² : ContinuousMul M✝ M : Type u inst✝¹ : CommMonoid M inst✝ : TopologicalSpace M hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hleft : ∀ (x₀ : M), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) x₀ : M ⊢ 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) [PROOFSTEP] simp_rw [mul_comm, hleft x₀] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X M₁ : Type u_6 M₂ : Type u_7 inst✝⁴ : TopologicalSpace M₂ inst✝³ : T2Space M₂ inst✝² : Mul M₁ inst✝¹ : Mul M₂ inst✝ : ContinuousMul M₂ ⊢ IsClosed {f | ∀ (x y : M₁), f (x * y) = f x * f y} [PROOFSTEP] simp only [setOf_forall] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X M₁ : Type u_6 M₂ : Type u_7 inst✝⁴ : TopologicalSpace M₂ inst✝³ : T2Space M₂ inst✝² : Mul M₁ inst✝¹ : Mul M₂ inst✝ : ContinuousMul M₂ ⊢ IsClosed (⋂ (i : M₁) (i_1 : M₁), {x | x (i * i_1) = x i * x i_1}) [PROOFSTEP] exact isClosed_iInter fun x => isClosed_iInter fun y => isClosed_eq (continuous_apply _) -- Porting note: proof was: -- `((continuous_apply _).mul (continuous_apply _))` (by continuity) [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝⁵ : TopologicalSpace X M₁ : Type u_6 M₂ : Type u_7 inst✝⁴ : TopologicalSpace M₂ inst✝³ : T2Space M₂ inst✝² : Mul M₁ inst✝¹ : Mul M₂ inst✝ : ContinuousMul M₂ x y : M₁ ⊢ Continuous fun x_1 => x_1 x * x_1 y [PROOFSTEP] continuity [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N✝ : Type u_5 inst✝⁶ : TopologicalSpace X M : Type u_6 N : Type u_7 F : Type u_8 inst✝⁵ : Mul M inst✝⁴ : Mul N inst✝³ : MulHomClass F M N inst✝² : TopologicalSpace M inst✝¹ : TopologicalSpace N inst✝ : ContinuousMul N f : F hf : Inducing ↑f ⊢ Continuous (↑f ∘ fun p => p.fst * p.snd) [PROOFSTEP] simpa only [(· ∘ ·), map_mul f] using hf.continuous.fst'.mul hf.continuous.snd' [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M s : Set M hs : s ∈ 𝓝 1 ⊢ ∃ V, IsOpen V ∧ 1 ∈ V ∧ ∀ (v : M), v ∈ V → ∀ (w : M), w ∈ V → v * w ∈ s [PROOFSTEP] have : (fun a : M × M => a.1 * a.2) ⁻¹' s ∈ 𝓝 ((1, 1) : M × M) := tendsto_mul (by simpa only [one_mul] using hs) [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M s : Set M hs : s ∈ 𝓝 1 ⊢ s ∈ 𝓝 (1 * 1) [PROOFSTEP] simpa only [one_mul] using hs [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M s : Set M hs : s ∈ 𝓝 1 this : (fun a => a.fst * a.snd) ⁻¹' s ∈ 𝓝 (1, 1) ⊢ ∃ V, IsOpen V ∧ 1 ∈ V ∧ ∀ (v : M), v ∈ V → ∀ (w : M), w ∈ V → v * w ∈ s [PROOFSTEP] simpa only [prod_subset_iff] using exists_nhds_square this [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M u : Set M hu : u ∈ 𝓝 1 ⊢ ∃ V, V ∈ 𝓝 1 ∧ ∀ {v w s t : M}, v ∈ V → w ∈ V → s ∈ V → t ∈ V → v * w * s * t ∈ u [PROOFSTEP] rcases exists_nhds_one_split hu with ⟨W, W1, h⟩ [GOAL] case intro.intro ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M u : Set M hu : u ∈ 𝓝 1 W : Set M W1 : W ∈ 𝓝 1 h : ∀ (v : M), v ∈ W → ∀ (w : M), w ∈ W → v * w ∈ u ⊢ ∃ V, V ∈ 𝓝 1 ∧ ∀ {v w s t : M}, v ∈ V → w ∈ V → s ∈ V → t ∈ V → v * w * s * t ∈ u [PROOFSTEP] rcases exists_nhds_one_split W1 with ⟨V, V1, h'⟩ [GOAL] case intro.intro.intro.intro ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M u : Set M hu : u ∈ 𝓝 1 W : Set M W1 : W ∈ 𝓝 1 h : ∀ (v : M), v ∈ W → ∀ (w : M), w ∈ W → v * w ∈ u V : Set M V1 : V ∈ 𝓝 1 h' : ∀ (v : M), v ∈ V → ∀ (w : M), w ∈ V → v * w ∈ W ⊢ ∃ V, V ∈ 𝓝 1 ∧ ∀ {v w s t : M}, v ∈ V → w ∈ V → s ∈ V → t ∈ V → v * w * s * t ∈ u [PROOFSTEP] use V, V1 [GOAL] case right ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M u : Set M hu : u ∈ 𝓝 1 W : Set M W1 : W ∈ 𝓝 1 h : ∀ (v : M), v ∈ W → ∀ (w : M), w ∈ W → v * w ∈ u V : Set M V1 : V ∈ 𝓝 1 h' : ∀ (v : M), v ∈ V → ∀ (w : M), w ∈ V → v * w ∈ W ⊢ ∀ {v w s t : M}, v ∈ V → w ∈ V → s ∈ V → t ∈ V → v * w * s * t ∈ u [PROOFSTEP] intro v w s t v_in w_in s_in t_in [GOAL] case right ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M u : Set M hu : u ∈ 𝓝 1 W : Set M W1 : W ∈ 𝓝 1 h : ∀ (v : M), v ∈ W → ∀ (w : M), w ∈ W → v * w ∈ u V : Set M V1 : V ∈ 𝓝 1 h' : ∀ (v : M), v ∈ V → ∀ (w : M), w ∈ V → v * w ∈ W v w s t : M v_in : v ∈ V w_in : w ∈ V s_in : s ∈ V t_in : t ∈ V ⊢ v * w * s * t ∈ u [PROOFSTEP] simpa only [mul_assoc] using h _ (h' v v_in w w_in) _ (h' s s_in t t_in) [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M U : Set M hU : U ∈ 𝓝 1 ⊢ ∃ V, IsOpen V ∧ 1 ∈ V ∧ V * V ⊆ U [PROOFSTEP] rcases exists_open_nhds_one_split hU with ⟨V, Vo, V1, hV⟩ [GOAL] case intro.intro.intro ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M U : Set M hU : U ∈ 𝓝 1 V : Set M Vo : IsOpen V V1 : 1 ∈ V hV : ∀ (v : M), v ∈ V → ∀ (w : M), w ∈ V → v * w ∈ U ⊢ ∃ V, IsOpen V ∧ 1 ∈ V ∧ V * V ⊆ U [PROOFSTEP] use V, Vo, V1 [GOAL] case right ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M U : Set M hU : U ∈ 𝓝 1 V : Set M Vo : IsOpen V V1 : 1 ∈ V hV : ∀ (v : M), v ∈ V → ∀ (w : M), w ∈ V → v * w ∈ U ⊢ V * V ⊆ U [PROOFSTEP] rintro _ ⟨x, y, hx, hy, rfl⟩ [GOAL] case right.intro.intro.intro.intro ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M U : Set M hU : U ∈ 𝓝 1 V : Set M Vo : IsOpen V V1 : 1 ∈ V hV : ∀ (v : M), v ∈ V → ∀ (w : M), w ∈ V → v * w ∈ U x y : M hx : x ∈ V hy : y ∈ V ⊢ (fun x x_1 => x * x_1) x y ∈ U [PROOFSTEP] exact hV _ hx _ hy [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M s t : Set M hs : IsCompact s ht : IsCompact t ⊢ IsCompact (s * t) [PROOFSTEP] rw [← image_mul_prod] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M s t : Set M hs : IsCompact s ht : IsCompact t ⊢ IsCompact ((fun x => x.fst * x.snd) '' s ×ˢ t) [PROOFSTEP] exact (hs.prod ht).image continuous_mul [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M f : ι → α → M x : Filter α a : ι → M x✝ : ∀ (i : ι), i ∈ [] → Tendsto (f i) x (𝓝 (a i)) ⊢ Tendsto (fun b => List.prod (List.map (fun c => f c b) [])) x (𝓝 (List.prod (List.map a []))) [PROOFSTEP] simp [tendsto_const_nhds] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M f✝ : ι → α → M x : Filter α a : ι → M f : ι l : List ι h : ∀ (i : ι), i ∈ f :: l → Tendsto (f✝ i) x (𝓝 (a i)) ⊢ Tendsto (fun b => List.prod (List.map (fun c => f✝ c b) (f :: l))) x (𝓝 (List.prod (List.map a (f :: l)))) [PROOFSTEP] simp only [List.map_cons, List.prod_cons] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M f✝ : ι → α → M x : Filter α a : ι → M f : ι l : List ι h : ∀ (i : ι), i ∈ f :: l → Tendsto (f✝ i) x (𝓝 (a i)) ⊢ Tendsto (fun b => f✝ f b * List.prod (List.map (fun c => f✝ c b) l)) x (𝓝 (a f * List.prod (List.map a l))) [PROOFSTEP] exact (h f (List.mem_cons_self _ _)).mul (tendsto_list_prod l fun c hc => h c (List.mem_cons_of_mem _ hc)) [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M f : ι → X → M l : List ι t : Set X h : ∀ (i : ι), i ∈ l → ContinuousOn (f i) t ⊢ ContinuousOn (fun a => List.prod (List.map (fun i => f i a) l)) t [PROOFSTEP] intro x hx [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M f : ι → X → M l : List ι t : Set X h : ∀ (i : ι), i ∈ l → ContinuousOn (f i) t x : X hx : x ∈ t ⊢ ContinuousWithinAt (fun a => List.prod (List.map (fun i => f i a) l)) t x [PROOFSTEP] rw [continuousWithinAt_iff_continuousAt_restrict _ hx] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M f : ι → X → M l : List ι t : Set X h : ∀ (i : ι), i ∈ l → ContinuousOn (f i) t x : X hx : x ∈ t ⊢ ContinuousAt (restrict t fun a => List.prod (List.map (fun i => f i a) l)) { val := x, property := hx } [PROOFSTEP] refine' tendsto_list_prod _ fun i hi => _ [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M f : ι → X → M l : List ι t : Set X h : ∀ (i : ι), i ∈ l → ContinuousOn (f i) t x : X hx : x ∈ t i : ι hi : i ∈ l ⊢ Tendsto (fun b => f i ↑b) (𝓝 { val := x, property := hx }) (𝓝 (f i ↑{ val := x, property := hx })) [PROOFSTEP] specialize h i hi x hx [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M f : ι → X → M l : List ι t : Set X x : X hx : x ∈ t i : ι hi : i ∈ l h : ContinuousWithinAt (f i) t x ⊢ Tendsto (fun b => f i ↑b) (𝓝 { val := x, property := hx }) (𝓝 (f i ↑{ val := x, property := hx })) [PROOFSTEP] rw [continuousWithinAt_iff_continuousAt_restrict _ hx] at h [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M f : ι → X → M l : List ι t : Set X x : X hx : x ∈ t i : ι hi : i ∈ l h : ContinuousAt (restrict t (f i)) { val := x, property := hx } ⊢ Tendsto (fun b => f i ↑b) (𝓝 { val := x, property := hx }) (𝓝 (f i ↑{ val := x, property := hx })) [PROOFSTEP] exact h [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M ⊢ Continuous fun a => a ^ 0 [PROOFSTEP] simpa using continuous_const [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M k : ℕ ⊢ Continuous fun a => a ^ (k + 1) [PROOFSTEP] simp only [pow_succ] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M k : ℕ ⊢ Continuous fun a => a * a ^ k [PROOFSTEP] exact continuous_id.mul (continuous_pow _) [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M a b : M ha : b * a = 1 ⊢ Tendsto (fun x => a * x) (cocompact M) (cocompact M) [PROOFSTEP] refine Filter.Tendsto.of_tendsto_comp ?_ (Filter.comap_cocompact_le (continuous_mul_left b)) [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M a b : M ha : b * a = 1 ⊢ Tendsto ((fun b_1 => b * b_1) ∘ fun x => a * x) (cocompact M) (cocompact M) [PROOFSTEP] simp only [comp_mul_left, ha, one_mul] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M a b : M ha : b * a = 1 ⊢ Tendsto (fun x => x) (cocompact M) (cocompact M) [PROOFSTEP] exact Filter.tendsto_id [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M a b : M ha : a * b = 1 ⊢ Tendsto (fun x => x * a) (cocompact M) (cocompact M) [PROOFSTEP] refine Filter.Tendsto.of_tendsto_comp ?_ (Filter.comap_cocompact_le (continuous_mul_right b)) [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M a b : M ha : a * b = 1 ⊢ Tendsto ((fun b_1 => b_1 * b) ∘ fun x => x * a) (cocompact M) (cocompact M) [PROOFSTEP] simp only [comp_mul_right, ha, mul_one] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : ContinuousMul M a b : M ha : a * b = 1 ⊢ Tendsto (fun x => x) (cocompact M) (cocompact M) [PROOFSTEP] exact Filter.tendsto_id [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : TopologicalSpace X inst✝⁷ : TopologicalSpace M inst✝⁶ : Monoid M inst✝⁵ : ContinuousMul M R : Type u_6 A : Type u_7 inst✝⁴ : Monoid A inst✝³ : SMul R A inst✝² : IsScalarTower R A A inst✝¹ : TopologicalSpace A inst✝ : ContinuousMul A q : R ⊢ Continuous fun x => q • x [PROOFSTEP] simp (config := { singlePass := true }) only [← smul_one_mul q (_ : A)] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : TopologicalSpace X inst✝⁷ : TopologicalSpace M inst✝⁶ : Monoid M inst✝⁵ : ContinuousMul M R : Type u_6 A : Type u_7 inst✝⁴ : Monoid A inst✝³ : SMul R A inst✝² : IsScalarTower R A A inst✝¹ : TopologicalSpace A inst✝ : ContinuousMul A q : R ⊢ Continuous fun x => q • 1 * x [PROOFSTEP] exact continuous_const.mul continuous_id [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : TopologicalSpace X inst✝⁷ : TopologicalSpace M inst✝⁶ : Monoid M inst✝⁵ : ContinuousMul M R : Type u_6 A : Type u_7 inst✝⁴ : Monoid A inst✝³ : SMul R A inst✝² : SMulCommClass R A A inst✝¹ : TopologicalSpace A inst✝ : ContinuousMul A q : R ⊢ Continuous fun x => q • x [PROOFSTEP] simp (config := { singlePass := true }) only [← mul_smul_one q (_ : A)] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : TopologicalSpace X inst✝⁷ : TopologicalSpace M inst✝⁶ : Monoid M inst✝⁵ : ContinuousMul M R : Type u_6 A : Type u_7 inst✝⁴ : Monoid A inst✝³ : SMul R A inst✝² : SMulCommClass R A A inst✝¹ : TopologicalSpace A inst✝ : ContinuousMul A q : R ⊢ Continuous fun x => x * q • 1 [PROOFSTEP] exact continuous_id.mul continuous_const [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : CommMonoid M inst✝ : ContinuousMul M f : ι → α → M x : Filter α a : ι → M s : Multiset ι ⊢ (∀ (i : ι), i ∈ s → Tendsto (f i) x (𝓝 (a i))) → Tendsto (fun b => Multiset.prod (Multiset.map (fun c => f c b) s)) x (𝓝 (Multiset.prod (Multiset.map a s))) [PROOFSTEP] rcases s with ⟨l⟩ [GOAL] case mk ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : CommMonoid M inst✝ : ContinuousMul M f : ι → α → M x : Filter α a : ι → M s : Multiset ι l : List ι ⊢ (∀ (i : ι), i ∈ Quot.mk Setoid.r l → Tendsto (f i) x (𝓝 (a i))) → Tendsto (fun b => Multiset.prod (Multiset.map (fun c => f c b) (Quot.mk Setoid.r l))) x (𝓝 (Multiset.prod (Multiset.map a (Quot.mk Setoid.r l)))) [PROOFSTEP] simpa using tendsto_list_prod l [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : CommMonoid M inst✝ : ContinuousMul M f : ι → X → M s : Multiset ι ⊢ (∀ (i : ι), i ∈ s → Continuous (f i)) → Continuous fun a => Multiset.prod (Multiset.map (fun i => f i a) s) [PROOFSTEP] rcases s with ⟨l⟩ [GOAL] case mk ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : CommMonoid M inst✝ : ContinuousMul M f : ι → X → M s : Multiset ι l : List ι ⊢ (∀ (i : ι), i ∈ Quot.mk Setoid.r l → Continuous (f i)) → Continuous fun a => Multiset.prod (Multiset.map (fun i => f i a) (Quot.mk Setoid.r l)) [PROOFSTEP] simpa using continuous_list_prod l [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : CommMonoid M inst✝ : ContinuousMul M f : ι → X → M s : Multiset ι t : Set X ⊢ (∀ (i : ι), i ∈ s → ContinuousOn (f i) t) → ContinuousOn (fun a => Multiset.prod (Multiset.map (fun i => f i a) s)) t [PROOFSTEP] rcases s with ⟨l⟩ [GOAL] case mk ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : CommMonoid M inst✝ : ContinuousMul M f : ι → X → M s : Multiset ι t : Set X l : List ι ⊢ (∀ (i : ι), i ∈ Quot.mk Setoid.r l → ContinuousOn (f i) t) → ContinuousOn (fun a => Multiset.prod (Multiset.map (fun i => f i a) (Quot.mk Setoid.r l))) t [PROOFSTEP] simpa using continuousOn_list_prod l [GOAL] ι : Type u_1 α : Type u_2 X✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : TopologicalSpace X✝ inst✝³ : TopologicalSpace M✝ inst✝² : CommMonoid M✝ inst✝¹ : ContinuousMul M✝ X : Type u_6 M : Type u_7 inst✝ : CommMonoid M s : Finset ι l : Filter X f g : ι → X → M hs : ∀ (i : ι), i ∈ s → f i =ᶠ[l] g i ⊢ ∏ i in s, f i =ᶠ[l] ∏ i in s, g i [PROOFSTEP] replace hs : ∀ᶠ x in l, ∀ i ∈ s, f i x = g i x [GOAL] case hs ι : Type u_1 α : Type u_2 X✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : TopologicalSpace X✝ inst✝³ : TopologicalSpace M✝ inst✝² : CommMonoid M✝ inst✝¹ : ContinuousMul M✝ X : Type u_6 M : Type u_7 inst✝ : CommMonoid M s : Finset ι l : Filter X f g : ι → X → M hs : ∀ (i : ι), i ∈ s → f i =ᶠ[l] g i ⊢ ∀ᶠ (x : X) in l, ∀ (i : ι), i ∈ s → f i x = g i x [PROOFSTEP] rwa [eventually_all_finset] [GOAL] ι : Type u_1 α : Type u_2 X✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : TopologicalSpace X✝ inst✝³ : TopologicalSpace M✝ inst✝² : CommMonoid M✝ inst✝¹ : ContinuousMul M✝ X : Type u_6 M : Type u_7 inst✝ : CommMonoid M s : Finset ι l : Filter X f g : ι → X → M hs : ∀ᶠ (x : X) in l, ∀ (i : ι), i ∈ s → f i x = g i x ⊢ ∏ i in s, f i =ᶠ[l] ∏ i in s, g i [PROOFSTEP] filter_upwards [hs] with x hx [GOAL] case h ι : Type u_1 α : Type u_2 X✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : TopologicalSpace X✝ inst✝³ : TopologicalSpace M✝ inst✝² : CommMonoid M✝ inst✝¹ : ContinuousMul M✝ X : Type u_6 M : Type u_7 inst✝ : CommMonoid M s : Finset ι l : Filter X f g : ι → X → M hs : ∀ᶠ (x : X) in l, ∀ (i : ι), i ∈ s → f i x = g i x x : X hx : ∀ (i : ι), i ∈ s → f i x = g i x ⊢ Finset.prod s (fun i => f i) x = Finset.prod s (fun i => g i) x [PROOFSTEP] simp only [Finset.prod_apply, Finset.prod_congr rfl hx] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : TopologicalSpace X inst✝³ : TopologicalSpace M✝ inst✝² : CommMonoid M✝ inst✝¹ : ContinuousMul M✝ M : Type u_6 inst✝ : CommMonoid M f : ι → X → M hf : LocallyFinite fun i => mulSupport (f i) x₀ : X ⊢ ∃ I, ∀ᶠ (x : X) in 𝓝 x₀, (mulSupport fun i => f i x) ⊆ ↑I [PROOFSTEP] rcases hf x₀ with ⟨U, hxU, hUf⟩ [GOAL] case intro.intro ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : TopologicalSpace X inst✝³ : TopologicalSpace M✝ inst✝² : CommMonoid M✝ inst✝¹ : ContinuousMul M✝ M : Type u_6 inst✝ : CommMonoid M f : ι → X → M hf : LocallyFinite fun i => mulSupport (f i) x₀ : X U : Set X hxU : U ∈ 𝓝 x₀ hUf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ U)} ⊢ ∃ I, ∀ᶠ (x : X) in 𝓝 x₀, (mulSupport fun i => f i x) ⊆ ↑I [PROOFSTEP] refine' ⟨hUf.toFinset, mem_of_superset hxU fun y hy i hi => _⟩ [GOAL] case intro.intro ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : TopologicalSpace X inst✝³ : TopologicalSpace M✝ inst✝² : CommMonoid M✝ inst✝¹ : ContinuousMul M✝ M : Type u_6 inst✝ : CommMonoid M f : ι → X → M hf : LocallyFinite fun i => mulSupport (f i) x₀ : X U : Set X hxU : U ∈ 𝓝 x₀ hUf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ U)} y : X hy : y ∈ U i : ι hi : i ∈ mulSupport fun i => f i y ⊢ i ∈ ↑(Finite.toFinset hUf) [PROOFSTEP] rw [hUf.coe_toFinset] [GOAL] case intro.intro ι : Type u_1 α : Type u_2 X : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : TopologicalSpace X inst✝³ : TopologicalSpace M✝ inst✝² : CommMonoid M✝ inst✝¹ : ContinuousMul M✝ M : Type u_6 inst✝ : CommMonoid M f : ι → X → M hf : LocallyFinite fun i => mulSupport (f i) x₀ : X U : Set X hxU : U ∈ 𝓝 x₀ hUf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ U)} y : X hy : y ∈ U i : ι hi : i ∈ mulSupport fun i => f i y ⊢ i ∈ {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ U)} [PROOFSTEP] exact ⟨y, hi, hy⟩ [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : CommMonoid M inst✝ : ContinuousMul M f : ι → X → M hc : ∀ (i : ι), Continuous (f i) hf : LocallyFinite fun i => mulSupport (f i) ⊢ Continuous fun x => ∏ᶠ (i : ι), f i x [PROOFSTEP] refine' continuous_iff_continuousAt.2 fun x => _ [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : CommMonoid M inst✝ : ContinuousMul M f : ι → X → M hc : ∀ (i : ι), Continuous (f i) hf : LocallyFinite fun i => mulSupport (f i) x : X ⊢ ContinuousAt (fun x => ∏ᶠ (i : ι), f i x) x [PROOFSTEP] rcases finprod_eventually_eq_prod hf x with ⟨s, hs⟩ [GOAL] case intro ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : CommMonoid M inst✝ : ContinuousMul M f : ι → X → M hc : ∀ (i : ι), Continuous (f i) hf : LocallyFinite fun i => mulSupport (f i) x : X s : Finset ι hs : ∀ᶠ (y : X) in 𝓝 x, ∏ᶠ (i : ι), f i y = ∏ i in s, f i y ⊢ ContinuousAt (fun x => ∏ᶠ (i : ι), f i x) x [PROOFSTEP] refine' ContinuousAt.congr _ (EventuallyEq.symm hs) [GOAL] case intro ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : CommMonoid M inst✝ : ContinuousMul M f : ι → X → M hc : ∀ (i : ι), Continuous (f i) hf : LocallyFinite fun i => mulSupport (f i) x : X s : Finset ι hs : ∀ᶠ (y : X) in 𝓝 x, ∏ᶠ (i : ι), f i y = ∏ i in s, f i y ⊢ ContinuousAt (fun x => ∏ i in s, f i x) x [PROOFSTEP] exact tendsto_finset_prod _ fun i _ => (hc i).continuousAt [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : CommMonoid M inst✝ : ContinuousMul M f : ι → X → M p : ι → Prop hc : ∀ (i : ι), p i → Continuous (f i) hf : LocallyFinite fun i => mulSupport (f i) ⊢ Continuous fun x => ∏ᶠ (i : ι) (_ : p i), f i x [PROOFSTEP] simp only [← finprod_subtype_eq_finprod_cond] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace M inst✝¹ : CommMonoid M inst✝ : ContinuousMul M f : ι → X → M p : ι → Prop hc : ∀ (i : ι), p i → Continuous (f i) hf : LocallyFinite fun i => mulSupport (f i) ⊢ Continuous fun x => ∏ᶠ (j : { i // p i }), f (↑j) x [PROOFSTEP] exact continuous_finprod (fun i => hc i i.2) (hf.comp_injective Subtype.coe_injective) [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : TopologicalSpace X ι' : Sort u_6 inst✝ : Mul M ts : ι' → TopologicalSpace M h' : ∀ (i : ι'), ContinuousMul M ⊢ ContinuousMul M [PROOFSTEP] rw [← sInf_range] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : TopologicalSpace X ι' : Sort u_6 inst✝ : Mul M ts : ι' → TopologicalSpace M h' : ∀ (i : ι'), ContinuousMul M ⊢ ContinuousMul M [PROOFSTEP] exact continuousMul_sInf (Set.forall_range_iff.mpr h') [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : TopologicalSpace X ι' : Sort u_6 inst✝ : Mul M t₁ t₂ : TopologicalSpace M h₁ : ContinuousMul M h₂ : ContinuousMul M ⊢ ContinuousMul M [PROOFSTEP] rw [inf_eq_iInf] [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : TopologicalSpace X ι' : Sort u_6 inst✝ : Mul M t₁ t₂ : TopologicalSpace M h₁ : ContinuousMul M h₂ : ContinuousMul M ⊢ ContinuousMul M [PROOFSTEP] refine' continuousMul_iInf fun b => _ [GOAL] ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : TopologicalSpace X ι' : Sort u_6 inst✝ : Mul M t₁ t₂ : TopologicalSpace M h₁ : ContinuousMul M h₂ : ContinuousMul M b : Bool ⊢ ContinuousMul M [PROOFSTEP] cases b [GOAL] case false ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : TopologicalSpace X ι' : Sort u_6 inst✝ : Mul M t₁ t₂ : TopologicalSpace M h₁ : ContinuousMul M h₂ : ContinuousMul M ⊢ ContinuousMul M [PROOFSTEP] assumption [GOAL] case true ι : Type u_1 α : Type u_2 X : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : TopologicalSpace X ι' : Sort u_6 inst✝ : Mul M t₁ t₂ : TopologicalSpace M h₁ : ContinuousMul M h₂ : ContinuousMul M ⊢ ContinuousMul M [PROOFSTEP] assumption
{"mathlib_filename": "Mathlib.Topology.Algebra.Monoid", "llama_tokens": 19925}
[GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁶ : CommSemiring R inst✝⁵ : StarRing R inst✝⁴ : TopologicalSpace A inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : StarRing A inst✝ : StarModule R A S₁ S₂ : StarSubalgebra R A h : S₁ ≤ S₂ hS₁ : IsClosed ↑S₁ src✝ : Embedding ↑(inclusion h) := embedding_inclusion h ⊢ Subtype.val ⁻¹' ↑S₁ = range ↑(inclusion h) [PROOFSTEP] convert (Set.range_subtype_map id _).symm [GOAL] case h.e'_2.h.e'_4 R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁶ : CommSemiring R inst✝⁵ : StarRing R inst✝⁴ : TopologicalSpace A inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : StarRing A inst✝ : StarModule R A S₁ S₂ : StarSubalgebra R A h : S₁ ≤ S₂ hS₁ : IsClosed ↑S₁ src✝ : Embedding ↑(inclusion h) := embedding_inclusion h ⊢ ↑S₁ = id '' {x | x ∈ S₁} [PROOFSTEP] rw [Set.image_id] [GOAL] case h.e'_2.h.e'_4 R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁶ : CommSemiring R inst✝⁵ : StarRing R inst✝⁴ : TopologicalSpace A inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : StarRing A inst✝ : StarModule R A S₁ S₂ : StarSubalgebra R A h : S₁ ≤ S₂ hS₁ : IsClosed ↑S₁ src✝ : Embedding ↑(inclusion h) := embedding_inclusion h ⊢ ↑S₁ = {x | x ∈ S₁} [PROOFSTEP] rfl [GOAL] case convert_4 R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁶ : CommSemiring R inst✝⁵ : StarRing R inst✝⁴ : TopologicalSpace A inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : StarRing A inst✝ : StarModule R A S₁ S₂ : StarSubalgebra R A h : S₁ ≤ S₂ hS₁ : IsClosed ↑S₁ src✝ : Embedding ↑(inclusion h) := embedding_inclusion h ⊢ ∀ (x : A), x ∈ S₁ → id x ∈ S₂ [PROOFSTEP] intro _ h' [GOAL] case convert_4 R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁶ : CommSemiring R inst✝⁵ : StarRing R inst✝⁴ : TopologicalSpace A inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : StarRing A inst✝ : StarModule R A S₁ S₂ : StarSubalgebra R A h : S₁ ≤ S₂ hS₁ : IsClosed ↑S₁ src✝ : Embedding ↑(inclusion h) := embedding_inclusion h x✝ : A h' : x✝ ∈ S₁ ⊢ id x✝ ∈ S₂ [PROOFSTEP] apply h h' [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹² : CommSemiring R inst✝¹¹ : StarRing R inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : StarRing A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSemiring A inst✝⁴ : ContinuousStar A inst✝³ : TopologicalSpace B inst✝² : Semiring B inst✝¹ : Algebra R B inst✝ : StarRing B s : Subalgebra R A ⊢ Subalgebra.topologicalClosure (star s) = star (Subalgebra.topologicalClosure s) [PROOFSTEP] suffices ∀ t : Subalgebra R A, (star t).topologicalClosure ≤ star t.topologicalClosure from le_antisymm (this s) (by simpa only [star_star] using Subalgebra.star_mono (this (star s))) [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹² : CommSemiring R inst✝¹¹ : StarRing R inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : StarRing A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSemiring A inst✝⁴ : ContinuousStar A inst✝³ : TopologicalSpace B inst✝² : Semiring B inst✝¹ : Algebra R B inst✝ : StarRing B s : Subalgebra R A this : ∀ (t : Subalgebra R A), Subalgebra.topologicalClosure (star t) ≤ star (Subalgebra.topologicalClosure t) ⊢ star (Subalgebra.topologicalClosure s) ≤ Subalgebra.topologicalClosure (star s) [PROOFSTEP] simpa only [star_star] using Subalgebra.star_mono (this (star s)) [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹² : CommSemiring R inst✝¹¹ : StarRing R inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : StarRing A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSemiring A inst✝⁴ : ContinuousStar A inst✝³ : TopologicalSpace B inst✝² : Semiring B inst✝¹ : Algebra R B inst✝ : StarRing B s : Subalgebra R A ⊢ ∀ (t : Subalgebra R A), Subalgebra.topologicalClosure (star t) ≤ star (Subalgebra.topologicalClosure t) [PROOFSTEP] exact fun t => (star t).topologicalClosure_minimal (Subalgebra.star_mono subset_closure) (isClosed_closure.preimage continuous_star) [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : TopologicalSpace A inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : StarRing A inst✝⁷ : StarModule R A inst✝⁶ : TopologicalSemiring A inst✝⁵ : ContinuousStar A inst✝⁴ : TopologicalSpace B inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : T2Space B S : StarSubalgebra R A φ ψ : { x // x ∈ topologicalClosure S } →⋆ₐ[R] B hφ : Continuous ↑φ hψ : Continuous ↑ψ h : StarAlgHom.comp φ (inclusion (_ : S ≤ topologicalClosure S)) = StarAlgHom.comp ψ (inclusion (_ : S ≤ topologicalClosure S)) ⊢ φ = ψ [PROOFSTEP] rw [FunLike.ext'_iff] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : TopologicalSpace A inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : StarRing A inst✝⁷ : StarModule R A inst✝⁶ : TopologicalSemiring A inst✝⁵ : ContinuousStar A inst✝⁴ : TopologicalSpace B inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : T2Space B S : StarSubalgebra R A φ ψ : { x // x ∈ topologicalClosure S } →⋆ₐ[R] B hφ : Continuous ↑φ hψ : Continuous ↑ψ h : StarAlgHom.comp φ (inclusion (_ : S ≤ topologicalClosure S)) = StarAlgHom.comp ψ (inclusion (_ : S ≤ topologicalClosure S)) ⊢ ↑φ = ↑ψ [PROOFSTEP] have : Dense (Set.range <| inclusion (le_topologicalClosure S)) := by refine' embedding_subtype_val.toInducing.dense_iff.2 fun x => _ convert show ↑x ∈ closure (S : Set A) from x.prop rw [← Set.range_comp] exact Set.ext fun y => ⟨by rintro ⟨y, rfl⟩ exact y.prop, fun hy => ⟨⟨y, hy⟩, rfl⟩⟩ [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : TopologicalSpace A inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : StarRing A inst✝⁷ : StarModule R A inst✝⁶ : TopologicalSemiring A inst✝⁵ : ContinuousStar A inst✝⁴ : TopologicalSpace B inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : T2Space B S : StarSubalgebra R A φ ψ : { x // x ∈ topologicalClosure S } →⋆ₐ[R] B hφ : Continuous ↑φ hψ : Continuous ↑ψ h : StarAlgHom.comp φ (inclusion (_ : S ≤ topologicalClosure S)) = StarAlgHom.comp ψ (inclusion (_ : S ≤ topologicalClosure S)) ⊢ Dense (range ↑(inclusion (_ : S ≤ topologicalClosure S))) [PROOFSTEP] refine' embedding_subtype_val.toInducing.dense_iff.2 fun x => _ [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : TopologicalSpace A inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : StarRing A inst✝⁷ : StarModule R A inst✝⁶ : TopologicalSemiring A inst✝⁵ : ContinuousStar A inst✝⁴ : TopologicalSpace B inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : T2Space B S : StarSubalgebra R A φ ψ : { x // x ∈ topologicalClosure S } →⋆ₐ[R] B hφ : Continuous ↑φ hψ : Continuous ↑ψ h : StarAlgHom.comp φ (inclusion (_ : S ≤ topologicalClosure S)) = StarAlgHom.comp ψ (inclusion (_ : S ≤ topologicalClosure S)) x : { x // x ∈ topologicalClosure S } ⊢ ↑x ∈ closure (Subtype.val '' range ↑(inclusion (_ : S ≤ topologicalClosure S))) [PROOFSTEP] convert show ↑x ∈ closure (S : Set A) from x.prop [GOAL] case h.e'_5.h.e'_3 R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : TopologicalSpace A inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : StarRing A inst✝⁷ : StarModule R A inst✝⁶ : TopologicalSemiring A inst✝⁵ : ContinuousStar A inst✝⁴ : TopologicalSpace B inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : T2Space B S : StarSubalgebra R A φ ψ : { x // x ∈ topologicalClosure S } →⋆ₐ[R] B hφ : Continuous ↑φ hψ : Continuous ↑ψ h : StarAlgHom.comp φ (inclusion (_ : S ≤ topologicalClosure S)) = StarAlgHom.comp ψ (inclusion (_ : S ≤ topologicalClosure S)) x : { x // x ∈ topologicalClosure S } ⊢ Subtype.val '' range ↑(inclusion (_ : S ≤ topologicalClosure S)) = ↑S [PROOFSTEP] rw [← Set.range_comp] [GOAL] case h.e'_5.h.e'_3 R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : TopologicalSpace A inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : StarRing A inst✝⁷ : StarModule R A inst✝⁶ : TopologicalSemiring A inst✝⁵ : ContinuousStar A inst✝⁴ : TopologicalSpace B inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : T2Space B S : StarSubalgebra R A φ ψ : { x // x ∈ topologicalClosure S } →⋆ₐ[R] B hφ : Continuous ↑φ hψ : Continuous ↑ψ h : StarAlgHom.comp φ (inclusion (_ : S ≤ topologicalClosure S)) = StarAlgHom.comp ψ (inclusion (_ : S ≤ topologicalClosure S)) x : { x // x ∈ topologicalClosure S } ⊢ range (Subtype.val ∘ ↑(inclusion (_ : S ≤ topologicalClosure S))) = ↑S [PROOFSTEP] exact Set.ext fun y => ⟨by rintro ⟨y, rfl⟩ exact y.prop, fun hy => ⟨⟨y, hy⟩, rfl⟩⟩ [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : TopologicalSpace A inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : StarRing A inst✝⁷ : StarModule R A inst✝⁶ : TopologicalSemiring A inst✝⁵ : ContinuousStar A inst✝⁴ : TopologicalSpace B inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : T2Space B S : StarSubalgebra R A φ ψ : { x // x ∈ topologicalClosure S } →⋆ₐ[R] B hφ : Continuous ↑φ hψ : Continuous ↑ψ h : StarAlgHom.comp φ (inclusion (_ : S ≤ topologicalClosure S)) = StarAlgHom.comp ψ (inclusion (_ : S ≤ topologicalClosure S)) x : { x // x ∈ topologicalClosure S } y : A ⊢ y ∈ range (Subtype.val ∘ ↑(inclusion (_ : S ≤ topologicalClosure S))) → y ∈ ↑S [PROOFSTEP] rintro ⟨y, rfl⟩ [GOAL] case intro R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : TopologicalSpace A inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : StarRing A inst✝⁷ : StarModule R A inst✝⁶ : TopologicalSemiring A inst✝⁵ : ContinuousStar A inst✝⁴ : TopologicalSpace B inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : T2Space B S : StarSubalgebra R A φ ψ : { x // x ∈ topologicalClosure S } →⋆ₐ[R] B hφ : Continuous ↑φ hψ : Continuous ↑ψ h : StarAlgHom.comp φ (inclusion (_ : S ≤ topologicalClosure S)) = StarAlgHom.comp ψ (inclusion (_ : S ≤ topologicalClosure S)) x : { x // x ∈ topologicalClosure S } y : { x // x ∈ S } ⊢ (Subtype.val ∘ ↑(inclusion (_ : S ≤ topologicalClosure S))) y ∈ ↑S [PROOFSTEP] exact y.prop [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : TopologicalSpace A inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : StarRing A inst✝⁷ : StarModule R A inst✝⁶ : TopologicalSemiring A inst✝⁵ : ContinuousStar A inst✝⁴ : TopologicalSpace B inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : T2Space B S : StarSubalgebra R A φ ψ : { x // x ∈ topologicalClosure S } →⋆ₐ[R] B hφ : Continuous ↑φ hψ : Continuous ↑ψ h : StarAlgHom.comp φ (inclusion (_ : S ≤ topologicalClosure S)) = StarAlgHom.comp ψ (inclusion (_ : S ≤ topologicalClosure S)) this : Dense (range ↑(inclusion (_ : S ≤ topologicalClosure S))) ⊢ ↑φ = ↑ψ [PROOFSTEP] refine' Continuous.ext_on this hφ hψ _ [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : TopologicalSpace A inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : StarRing A inst✝⁷ : StarModule R A inst✝⁶ : TopologicalSemiring A inst✝⁵ : ContinuousStar A inst✝⁴ : TopologicalSpace B inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : T2Space B S : StarSubalgebra R A φ ψ : { x // x ∈ topologicalClosure S } →⋆ₐ[R] B hφ : Continuous ↑φ hψ : Continuous ↑ψ h : StarAlgHom.comp φ (inclusion (_ : S ≤ topologicalClosure S)) = StarAlgHom.comp ψ (inclusion (_ : S ≤ topologicalClosure S)) this : Dense (range ↑(inclusion (_ : S ≤ topologicalClosure S))) ⊢ EqOn (↑φ) (↑ψ) (range ↑(inclusion (_ : S ≤ topologicalClosure S))) [PROOFSTEP] rintro _ ⟨x, rfl⟩ [GOAL] case intro R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : TopologicalSpace A inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : StarRing A inst✝⁷ : StarModule R A inst✝⁶ : TopologicalSemiring A inst✝⁵ : ContinuousStar A inst✝⁴ : TopologicalSpace B inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : T2Space B S : StarSubalgebra R A φ ψ : { x // x ∈ topologicalClosure S } →⋆ₐ[R] B hφ : Continuous ↑φ hψ : Continuous ↑ψ h : StarAlgHom.comp φ (inclusion (_ : S ≤ topologicalClosure S)) = StarAlgHom.comp ψ (inclusion (_ : S ≤ topologicalClosure S)) this : Dense (range ↑(inclusion (_ : S ≤ topologicalClosure S))) x : { x // x ∈ S } ⊢ ↑φ (↑(inclusion (_ : S ≤ topologicalClosure S)) x) = ↑ψ (↑(inclusion (_ : S ≤ topologicalClosure S)) x) [PROOFSTEP] simpa only using FunLike.congr_fun h x [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : StarRing A inst✝⁸ : StarModule R A inst✝⁷ : TopologicalSemiring A inst✝⁶ : ContinuousStar A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : T2Space B F : Type u_4 S : StarSubalgebra R A inst✝ : StarAlgHomClass F R { x // x ∈ topologicalClosure S } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ∀ (x : { x // x ∈ S }), ↑φ (↑(inclusion (_ : S ≤ topologicalClosure S)) x) = ↑ψ (↑(inclusion (_ : S ≤ topologicalClosure S)) x) ⊢ φ = ψ [PROOFSTEP] have : (φ : S.topologicalClosure →⋆ₐ[R] B) = (ψ : S.topologicalClosure →⋆ₐ[R] B) := by refine StarAlgHom.ext_topologicalClosure (R := R) (A := A) (B := B) hφ hψ (StarAlgHom.ext ?_) simpa only [StarAlgHom.coe_comp, StarAlgHom.coe_coe] using h [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : StarRing A inst✝⁸ : StarModule R A inst✝⁷ : TopologicalSemiring A inst✝⁶ : ContinuousStar A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : T2Space B F : Type u_4 S : StarSubalgebra R A inst✝ : StarAlgHomClass F R { x // x ∈ topologicalClosure S } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ∀ (x : { x // x ∈ S }), ↑φ (↑(inclusion (_ : S ≤ topologicalClosure S)) x) = ↑ψ (↑(inclusion (_ : S ≤ topologicalClosure S)) x) ⊢ ↑φ = ↑ψ [PROOFSTEP] refine StarAlgHom.ext_topologicalClosure (R := R) (A := A) (B := B) hφ hψ (StarAlgHom.ext ?_) [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : StarRing A inst✝⁸ : StarModule R A inst✝⁷ : TopologicalSemiring A inst✝⁶ : ContinuousStar A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : T2Space B F : Type u_4 S : StarSubalgebra R A inst✝ : StarAlgHomClass F R { x // x ∈ topologicalClosure S } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ∀ (x : { x // x ∈ S }), ↑φ (↑(inclusion (_ : S ≤ topologicalClosure S)) x) = ↑ψ (↑(inclusion (_ : S ≤ topologicalClosure S)) x) ⊢ ∀ (x : { x // x ∈ S }), ↑(StarAlgHom.comp (↑φ) (inclusion (_ : S ≤ topologicalClosure S))) x = ↑(StarAlgHom.comp (↑ψ) (inclusion (_ : S ≤ topologicalClosure S))) x [PROOFSTEP] simpa only [StarAlgHom.coe_comp, StarAlgHom.coe_coe] using h [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : StarRing A inst✝⁸ : StarModule R A inst✝⁷ : TopologicalSemiring A inst✝⁶ : ContinuousStar A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : T2Space B F : Type u_4 S : StarSubalgebra R A inst✝ : StarAlgHomClass F R { x // x ∈ topologicalClosure S } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ∀ (x : { x // x ∈ S }), ↑φ (↑(inclusion (_ : S ≤ topologicalClosure S)) x) = ↑ψ (↑(inclusion (_ : S ≤ topologicalClosure S)) x) this : ↑φ = ↑ψ ⊢ φ = ψ [PROOFSTEP] rw [FunLike.ext'_iff, ← StarAlgHom.coe_coe] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : StarRing A inst✝⁸ : StarModule R A inst✝⁷ : TopologicalSemiring A inst✝⁶ : ContinuousStar A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : T2Space B F : Type u_4 S : StarSubalgebra R A inst✝ : StarAlgHomClass F R { x // x ∈ topologicalClosure S } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ∀ (x : { x // x ∈ S }), ↑φ (↑(inclusion (_ : S ≤ topologicalClosure S)) x) = ↑ψ (↑(inclusion (_ : S ≤ topologicalClosure S)) x) this : ↑φ = ↑ψ ⊢ ↑↑φ = ↑ψ [PROOFSTEP] apply congrArg _ this [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹² : CommSemiring R inst✝¹¹ : StarRing R inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : StarRing A inst✝⁷ : TopologicalSemiring A inst✝⁶ : ContinuousStar A inst✝⁵ : Algebra R A inst✝⁴ : StarModule R A inst✝³ : TopologicalSpace B inst✝² : Semiring B inst✝¹ : StarRing B inst✝ : Algebra R B x : A ⊢ IsClosed (range Subtype.val) [PROOFSTEP] convert elementalStarAlgebra.isClosed R x [GOAL] case h.e'_3 R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹² : CommSemiring R inst✝¹¹ : StarRing R inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : StarRing A inst✝⁷ : TopologicalSemiring A inst✝⁶ : ContinuousStar A inst✝⁵ : Algebra R A inst✝⁴ : StarModule R A inst✝³ : TopologicalSpace B inst✝² : Semiring B inst✝¹ : StarRing B inst✝ : Algebra R B x : A ⊢ range Subtype.val = ↑(elementalStarAlgebra R x) [PROOFSTEP] exact Set.ext fun y => ⟨by rintro ⟨y, rfl⟩ exact y.prop, fun hy => ⟨⟨y, hy⟩, rfl⟩⟩ [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹² : CommSemiring R inst✝¹¹ : StarRing R inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : StarRing A inst✝⁷ : TopologicalSemiring A inst✝⁶ : ContinuousStar A inst✝⁵ : Algebra R A inst✝⁴ : StarModule R A inst✝³ : TopologicalSpace B inst✝² : Semiring B inst✝¹ : StarRing B inst✝ : Algebra R B x y : A ⊢ y ∈ range Subtype.val → y ∈ ↑(elementalStarAlgebra R x) [PROOFSTEP] rintro ⟨y, rfl⟩ [GOAL] case intro R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹² : CommSemiring R inst✝¹¹ : StarRing R inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : StarRing A inst✝⁷ : TopologicalSemiring A inst✝⁶ : ContinuousStar A inst✝⁵ : Algebra R A inst✝⁴ : StarModule R A inst✝³ : TopologicalSpace B inst✝² : Semiring B inst✝¹ : StarRing B inst✝ : Algebra R B x : A y : { x_1 // x_1 ∈ ↑(elementalStarAlgebra R x) } ⊢ ↑y ∈ ↑(elementalStarAlgebra R x) [PROOFSTEP] exact y.prop [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : TopologicalSemiring A inst✝⁸ : ContinuousStar A inst✝⁷ : Algebra R A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : StarRing B inst✝² : Algebra R B inst✝¹ : T2Space B F : Type u_4 a : A inst✝ : StarAlgHomClass F R { x // x ∈ elementalStarAlgebra R a } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } = ↑ψ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } ⊢ φ = ψ [PROOFSTEP] refine StarAlgHomClass.ext_topologicalClosure hφ hψ fun x => ?_ [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : TopologicalSemiring A inst✝⁸ : ContinuousStar A inst✝⁷ : Algebra R A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : StarRing B inst✝² : Algebra R B inst✝¹ : T2Space B F : Type u_4 a : A inst✝ : StarAlgHomClass F R { x // x ∈ elementalStarAlgebra R a } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } = ↑ψ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } x : { x // x ∈ adjoin R {a} } ⊢ ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) [PROOFSTEP] apply adjoin_induction' x ?_ ?_ ?_ ?_ ?_ [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : TopologicalSemiring A inst✝⁸ : ContinuousStar A inst✝⁷ : Algebra R A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : StarRing B inst✝² : Algebra R B inst✝¹ : T2Space B F : Type u_4 a : A inst✝ : StarAlgHomClass F R { x // x ∈ elementalStarAlgebra R a } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } = ↑ψ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } x : { x // x ∈ adjoin R {a} } ⊢ ∀ (x : A) (h : x ∈ {a}), ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) { val := x, property := (_ : x ∈ ↑(adjoin R {a})) }) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) { val := x, property := (_ : x ∈ ↑(adjoin R {a})) }) R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : TopologicalSemiring A inst✝⁸ : ContinuousStar A inst✝⁷ : Algebra R A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : StarRing B inst✝² : Algebra R B inst✝¹ : T2Space B F : Type u_4 a : A inst✝ : StarAlgHomClass F R { x // x ∈ elementalStarAlgebra R a } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } = ↑ψ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } x : { x // x ∈ adjoin R {a} } ⊢ ∀ (r : R), ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (↑(algebraMap R { x // x ∈ adjoin R {a} }) r)) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (↑(algebraMap R { x // x ∈ adjoin R {a} }) r)) R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : TopologicalSemiring A inst✝⁸ : ContinuousStar A inst✝⁷ : Algebra R A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : StarRing B inst✝² : Algebra R B inst✝¹ : T2Space B F : Type u_4 a : A inst✝ : StarAlgHomClass F R { x // x ∈ elementalStarAlgebra R a } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } = ↑ψ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } x : { x // x ∈ adjoin R {a} } ⊢ ∀ (x y : { x // x ∈ adjoin R {a} }), ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) → ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) y) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) y) → ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (x + y)) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (x + y)) R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : TopologicalSemiring A inst✝⁸ : ContinuousStar A inst✝⁷ : Algebra R A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : StarRing B inst✝² : Algebra R B inst✝¹ : T2Space B F : Type u_4 a : A inst✝ : StarAlgHomClass F R { x // x ∈ elementalStarAlgebra R a } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } = ↑ψ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } x : { x // x ∈ adjoin R {a} } ⊢ ∀ (x y : { x // x ∈ adjoin R {a} }), ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) → ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) y) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) y) → ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (x * y)) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (x * y)) R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : TopologicalSemiring A inst✝⁸ : ContinuousStar A inst✝⁷ : Algebra R A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : StarRing B inst✝² : Algebra R B inst✝¹ : T2Space B F : Type u_4 a : A inst✝ : StarAlgHomClass F R { x // x ∈ elementalStarAlgebra R a } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } = ↑ψ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } x : { x // x ∈ adjoin R {a} } ⊢ ∀ (x : { x // x ∈ adjoin R {a} }), ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) → ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (star x)) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (star x)) [PROOFSTEP] exacts [fun y hy => by simpa only [Set.mem_singleton_iff.mp hy] using h, fun r => by simp only [AlgHomClass.commutes], fun x y hx hy => by simp only [map_add, hx, hy], fun x y hx hy => by simp only [map_mul, hx, hy], fun x hx => by simp only [map_star, hx]] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : TopologicalSemiring A inst✝⁸ : ContinuousStar A inst✝⁷ : Algebra R A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : StarRing B inst✝² : Algebra R B inst✝¹ : T2Space B F : Type u_4 a : A inst✝ : StarAlgHomClass F R { x // x ∈ elementalStarAlgebra R a } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } = ↑ψ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } x : { x // x ∈ adjoin R {a} } y : A hy : y ∈ {a} ⊢ ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) { val := y, property := (_ : y ∈ ↑(adjoin R {a})) }) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) { val := y, property := (_ : y ∈ ↑(adjoin R {a})) }) [PROOFSTEP] simpa only [Set.mem_singleton_iff.mp hy] using h [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : TopologicalSemiring A inst✝⁸ : ContinuousStar A inst✝⁷ : Algebra R A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : StarRing B inst✝² : Algebra R B inst✝¹ : T2Space B F : Type u_4 a : A inst✝ : StarAlgHomClass F R { x // x ∈ elementalStarAlgebra R a } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } = ↑ψ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } x : { x // x ∈ adjoin R {a} } r : R ⊢ ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (↑(algebraMap R { x // x ∈ adjoin R {a} }) r)) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (↑(algebraMap R { x // x ∈ adjoin R {a} }) r)) [PROOFSTEP] simp only [AlgHomClass.commutes] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : TopologicalSemiring A inst✝⁸ : ContinuousStar A inst✝⁷ : Algebra R A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : StarRing B inst✝² : Algebra R B inst✝¹ : T2Space B F : Type u_4 a : A inst✝ : StarAlgHomClass F R { x // x ∈ elementalStarAlgebra R a } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } = ↑ψ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } x✝ x y : { x // x ∈ adjoin R {a} } hx : ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) hy : ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) y) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) y) ⊢ ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (x + y)) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (x + y)) [PROOFSTEP] simp only [map_add, hx, hy] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : TopologicalSemiring A inst✝⁸ : ContinuousStar A inst✝⁷ : Algebra R A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : StarRing B inst✝² : Algebra R B inst✝¹ : T2Space B F : Type u_4 a : A inst✝ : StarAlgHomClass F R { x // x ∈ elementalStarAlgebra R a } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } = ↑ψ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } x✝ x y : { x // x ∈ adjoin R {a} } hx : ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) hy : ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) y) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) y) ⊢ ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (x * y)) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (x * y)) [PROOFSTEP] simp only [map_mul, hx, hy] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝¹⁴ : CommSemiring R inst✝¹³ : StarRing R inst✝¹² : TopologicalSpace A inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : TopologicalSemiring A inst✝⁸ : ContinuousStar A inst✝⁷ : Algebra R A inst✝⁶ : StarModule R A inst✝⁵ : TopologicalSpace B inst✝⁴ : Semiring B inst✝³ : StarRing B inst✝² : Algebra R B inst✝¹ : T2Space B F : Type u_4 a : A inst✝ : StarAlgHomClass F R { x // x ∈ elementalStarAlgebra R a } B φ ψ : F hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } = ↑ψ { val := a, property := (_ : a ∈ elementalStarAlgebra R a) } x✝ x : { x // x ∈ adjoin R {a} } hx : ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) x) ⊢ ↑φ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (star x)) = ↑ψ (↑(StarSubalgebra.inclusion (_ : adjoin R {a} ≤ topologicalClosure (adjoin R {a}))) (star x)) [PROOFSTEP] simp only [map_star, hx]
{"mathlib_filename": "Mathlib.Topology.Algebra.StarSubalgebra", "llama_tokens": 14729}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace γ a b c : α h : a ≤ b inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace β s : Set ↑(Icc a b) hs : IsOpen (projIcc a b h ⁻¹' s) ⊢ Subtype.val ⁻¹' (projIcc a b h ⁻¹' s) = s [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace γ a b c : α h : a ≤ b inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace β s : Set ↑(Icc a b) hs : IsOpen (projIcc a b h ⁻¹' s) x✝ : { x // x ∈ Icc a b } ⊢ x✝ ∈ Subtype.val ⁻¹' (projIcc a b h ⁻¹' s) ↔ x✝ ∈ s [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.ProjIcc", "llama_tokens": 349}
[GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : PartialOrder α t : OrderClosedTopology α ⊢ IsClosed (diagonal α) [PROOFSTEP] simpa only [diagonal, le_antisymm_iff] using t.isClosed_le'.inter (isClosed_le continuous_snd continuous_fst) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α inst✝ : TopologicalSpace β f g : β → α hf : Continuous f hg : Continuous g ⊢ IsOpen {b | f b < g b} [PROOFSTEP] simpa only [lt_iff_not_le] using (isClosed_le hg hf).isOpen_compl [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α a b : α ⊢ Ioo a b ⊆ closure (interior (Ioo a b)) [PROOFSTEP] simp only [interior_Ioo, subset_closure] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α a✝ b✝ : α inst✝ : TopologicalSpace γ a b c : α H : b ∈ Ico a c ⊢ Iio c ∩ Ioi b ⊆ Ioo a c [PROOFSTEP] rw [inter_comm, Ioi_inter_Iio] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α a✝ b✝ : α inst✝ : TopologicalSpace γ a b c : α H : b ∈ Ico a c ⊢ Ioo b c ⊆ Ioo a c [PROOFSTEP] exact Ioo_subset_Ioo_left H.1 [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderClosedTopology α a✝ b✝ : α inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace β a b : α f : α → β h : a < b ⊢ ContinuousWithinAt f (Ioc a b) a ↔ ContinuousWithinAt f (Ioi a) a [PROOFSTEP] simp only [ContinuousWithinAt, nhdsWithin_Ioc_eq_nhdsWithin_Ioi h] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderClosedTopology α a✝ b✝ : α inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace β a b : α f : α → β h : a < b ⊢ ContinuousWithinAt f (Ioo a b) a ↔ ContinuousWithinAt f (Ioi a) a [PROOFSTEP] simp only [ContinuousWithinAt, nhdsWithin_Ioo_eq_nhdsWithin_Ioi h] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α a✝ b✝ : α inst✝ : TopologicalSpace γ a b c : α H : b ∈ Ioc a c ⊢ Ioo a c ∈ 𝓝[Iio b] b [PROOFSTEP] simpa only [dual_Ioo] using Ioo_mem_nhdsWithin_Ioi (show toDual b ∈ Ico (toDual c) (toDual a) from H.symm) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α a✝ b✝ : α inst✝ : TopologicalSpace γ a b : α h : a < b ⊢ 𝓝[Ico a b] b = 𝓝[Iio b] b [PROOFSTEP] simpa only [dual_Ioc] using nhdsWithin_Ioc_eq_nhdsWithin_Ioi h.dual [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α a✝ b✝ : α inst✝ : TopologicalSpace γ a b : α h : a < b ⊢ 𝓝[Ioo a b] b = 𝓝[Iio b] b [PROOFSTEP] simpa only [dual_Ioo] using nhdsWithin_Ioo_eq_nhdsWithin_Ioi h.dual [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α a✝ b✝ : α inst✝ : TopologicalSpace γ a b : α f : α → γ h : a < b ⊢ ContinuousWithinAt f (Ico a b) b ↔ ContinuousWithinAt f (Iio b) b [PROOFSTEP] simp only [ContinuousWithinAt, nhdsWithin_Ico_eq_nhdsWithin_Iio h] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α a✝ b✝ : α inst✝ : TopologicalSpace γ a b : α f : α → γ h : a < b ⊢ ContinuousWithinAt f (Ioo a b) b ↔ ContinuousWithinAt f (Iio b) b [PROOFSTEP] simp only [ContinuousWithinAt, nhdsWithin_Ioo_eq_nhdsWithin_Iio h] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α a✝ b✝ : α inst✝ : TopologicalSpace γ a b c : α H : b ∈ Ico a c ⊢ Iio c ∩ Ici b ⊆ Ico a c [PROOFSTEP] simp only [inter_comm, Ici_inter_Iio, Ico_subset_Ico_left H.1] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderClosedTopology α a✝ b✝ : α inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace β a b : α f : α → β h : a < b ⊢ ContinuousWithinAt f (Icc a b) a ↔ ContinuousWithinAt f (Ici a) a [PROOFSTEP] simp only [ContinuousWithinAt, nhdsWithin_Icc_eq_nhdsWithin_Ici h] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderClosedTopology α a✝ b✝ : α inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace β a b : α f : α → β h : a < b ⊢ ContinuousWithinAt f (Ico a b) a ↔ ContinuousWithinAt f (Ici a) a [PROOFSTEP] simp only [ContinuousWithinAt, nhdsWithin_Ico_eq_nhdsWithin_Ici h] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α a✝ b✝ : α inst✝ : TopologicalSpace γ a b c : α H : b ∈ Ioc a c ⊢ Ioc a c ∈ 𝓝[Iic b] b [PROOFSTEP] simpa only [dual_Ico] using Ico_mem_nhdsWithin_Ici (show toDual b ∈ Ico (toDual c) (toDual a) from H.symm) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α a✝ b✝ : α inst✝ : TopologicalSpace γ a b : α h : a < b ⊢ 𝓝[Icc a b] b = 𝓝[Iic b] b [PROOFSTEP] simpa only [dual_Icc] using nhdsWithin_Icc_eq_nhdsWithin_Ici h.dual [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α a✝ b✝ : α inst✝ : TopologicalSpace γ a b : α h : a < b ⊢ 𝓝[Ioc a b] b = 𝓝[Iic b] b [PROOFSTEP] simpa only [dual_Ico] using nhdsWithin_Ico_eq_nhdsWithin_Ici h.dual [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderClosedTopology α a✝ b✝ : α inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace β a b : α f : α → β h : a < b ⊢ ContinuousWithinAt f (Icc a b) b ↔ ContinuousWithinAt f (Iic b) b [PROOFSTEP] simp only [ContinuousWithinAt, nhdsWithin_Icc_eq_nhdsWithin_Iic h] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderClosedTopology α a✝ b✝ : α inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace β a b : α f : α → β h : a < b ⊢ ContinuousWithinAt f (Ioc a b) b ↔ ContinuousWithinAt f (Iic b) b [PROOFSTEP] simp only [ContinuousWithinAt, nhdsWithin_Ioc_eq_nhdsWithin_Iic h] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : TopologicalSpace β hf : Continuous f hg : Continuous g ⊢ frontier {b | f b ≤ g b} ⊆ {b | f b = g b} [PROOFSTEP] rw [frontier_eq_closure_inter_closure, closure_le_eq hf hg] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : TopologicalSpace β hf : Continuous f hg : Continuous g ⊢ {b | f b ≤ g b} ∩ closure {b | f b ≤ g b}ᶜ ⊆ {b | f b = g b} [PROOFSTEP] rintro b ⟨hb₁, hb₂⟩ [GOAL] case intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : TopologicalSpace β hf : Continuous f hg : Continuous g b : β hb₁ : b ∈ {b | f b ≤ g b} hb₂ : b ∈ closure {b | f b ≤ g b}ᶜ ⊢ b ∈ {b | f b = g b} [PROOFSTEP] refine' le_antisymm hb₁ (closure_lt_subset_le hg hf _) [GOAL] case intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : TopologicalSpace β hf : Continuous f hg : Continuous g b : β hb₁ : b ∈ {b | f b ≤ g b} hb₂ : b ∈ closure {b | f b ≤ g b}ᶜ ⊢ b ∈ closure {b | g b < f b} [PROOFSTEP] convert hb₂ using 2 [GOAL] case h.e'_5.h.e'_3 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : TopologicalSpace β hf : Continuous f hg : Continuous g b : β hb₁ : b ∈ {b | f b ≤ g b} hb₂ : b ∈ closure {b | f b ≤ g b}ᶜ ⊢ {b | g b < f b} = {b | f b ≤ g b}ᶜ [PROOFSTEP] simp only [not_le.symm] [GOAL] case h.e'_5.h.e'_3 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : TopologicalSpace β hf : Continuous f hg : Continuous g b : β hb₁ : b ∈ {b | f b ≤ g b} hb₂ : b ∈ closure {b | f b ≤ g b}ᶜ ⊢ {b | ¬f b ≤ g b} = {b | f b ≤ g b}ᶜ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : TopologicalSpace β hf : Continuous f hg : Continuous g ⊢ frontier {b | f b < g b} ⊆ {b | f b = g b} [PROOFSTEP] simpa only [← not_lt, ← compl_setOf, frontier_compl, eq_comm] using frontier_le_subset_eq hg hf [GOAL] α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderClosedTopology α f g : β → α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : (x : β) → Decidable (f x ≤ g x) f' g' : β → γ hf : Continuous f hg : Continuous g hf' : ContinuousOn f' {x | f x ≤ g x} hg' : ContinuousOn g' {x | g x ≤ f x} hfg : ∀ (x : β), f x = g x → f' x = g' x ⊢ Continuous fun x => if f x ≤ g x then f' x else g' x [PROOFSTEP] refine' continuous_if (fun a ha => hfg _ (frontier_le_subset_eq hf hg ha)) _ (hg'.mono _) [GOAL] case refine'_1 α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderClosedTopology α f g : β → α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : (x : β) → Decidable (f x ≤ g x) f' g' : β → γ hf : Continuous f hg : Continuous g hf' : ContinuousOn f' {x | f x ≤ g x} hg' : ContinuousOn g' {x | g x ≤ f x} hfg : ∀ (x : β), f x = g x → f' x = g' x ⊢ ContinuousOn (fun x => f' x) (closure {x | f x ≤ g x}) [PROOFSTEP] rwa [(isClosed_le hf hg).closure_eq] [GOAL] case refine'_2 α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderClosedTopology α f g : β → α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : (x : β) → Decidable (f x ≤ g x) f' g' : β → γ hf : Continuous f hg : Continuous g hf' : ContinuousOn f' {x | f x ≤ g x} hg' : ContinuousOn g' {x | g x ≤ f x} hfg : ∀ (x : β), f x = g x → f' x = g' x ⊢ closure {x | ¬f x ≤ g x} ⊆ {x | g x ≤ f x} [PROOFSTEP] simp only [not_le] [GOAL] case refine'_2 α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderClosedTopology α f g : β → α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : (x : β) → Decidable (f x ≤ g x) f' g' : β → γ hf : Continuous f hg : Continuous g hf' : ContinuousOn f' {x | f x ≤ g x} hg' : ContinuousOn g' {x | g x ≤ f x} hfg : ∀ (x : β), f x = g x → f' x = g' x ⊢ closure {x | g x < f x} ⊆ {x | g x ≤ f x} [PROOFSTEP] exact closure_lt_subset_le hg hf [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : TopologicalSpace β hf : Continuous f hg : Continuous g ⊢ Continuous fun b => min (f b) (g b) [PROOFSTEP] simp only [min_def] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : TopologicalSpace β hf : Continuous f hg : Continuous g ⊢ Continuous fun b => if f b ≤ g b then f b else g b [PROOFSTEP] exact hf.if_le hg hf hg fun x => id [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α f g : β → α l : Filter β a : α h : Tendsto f l (𝓝 a) ⊢ Tendsto (fun i => max a (f i)) l (𝓝 a) [PROOFSTEP] convert ((continuous_max.comp (@Continuous.Prod.mk α α _ _ a)).tendsto a).comp h [GOAL] case h.e'_5.h.e'_3 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α f g : β → α l : Filter β a : α h : Tendsto f l (𝓝 a) ⊢ a = ((fun p => max p.fst p.snd) ∘ fun b => (a, b)) a [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α f g : β → α l : Filter β a : α h : Tendsto f l (𝓝 a) ⊢ Tendsto (fun i => max (f i) a) l (𝓝 a) [PROOFSTEP] simp_rw [max_comm _ a] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α f g : β → α l : Filter β a : α h : Tendsto f l (𝓝 a) ⊢ Tendsto (fun i => max a (f i)) l (𝓝 a) [PROOFSTEP] exact h.max_right [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α f g : β → α l : Filter β a : α h : Tendsto f l (𝓝[Ioi a] a) ⊢ Tendsto (fun i => max a (f i)) l (𝓝[Ioi a] a) [PROOFSTEP] obtain ⟨h₁ : Tendsto f l (𝓝 a), h₂ : ∀ᶠ i in l, f i ∈ Ioi a⟩ := tendsto_nhdsWithin_iff.mp h [GOAL] case intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α f g : β → α l : Filter β a : α h : Tendsto f l (𝓝[Ioi a] a) h₁ : Tendsto f l (𝓝 a) h₂ : ∀ᶠ (i : β) in l, f i ∈ Ioi a ⊢ Tendsto (fun i => max a (f i)) l (𝓝[Ioi a] a) [PROOFSTEP] exact tendsto_nhdsWithin_iff.mpr ⟨h₁.max_right, h₂.mono fun i hi => lt_max_of_lt_right hi⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α f g : β → α l : Filter β a : α h : Tendsto f l (𝓝[Ioi a] a) ⊢ Tendsto (fun i => max (f i) a) l (𝓝[Ioi a] a) [PROOFSTEP] simp_rw [max_comm _ a] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α f g : β → α l : Filter β a : α h : Tendsto f l (𝓝[Ioi a] a) ⊢ Tendsto (fun i => max a (f i)) l (𝓝[Ioi a] a) [PROOFSTEP] exact Filter.tendsto_nhds_max_right h [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α f g : β → α s : Set α hs : Dense s hbot : ∀ (x : α), IsBot x → x ∈ s x : α ⊢ ∃ y, y ∈ s ∧ y ≤ x [PROOFSTEP] by_cases hx : IsBot x [GOAL] case pos α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α f g : β → α s : Set α hs : Dense s hbot : ∀ (x : α), IsBot x → x ∈ s x : α hx : IsBot x ⊢ ∃ y, y ∈ s ∧ y ≤ x [PROOFSTEP] exact ⟨x, hbot x hx, le_rfl⟩ [GOAL] case neg α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α f g : β → α s : Set α hs : Dense s hbot : ∀ (x : α), IsBot x → x ∈ s x : α hx : ¬IsBot x ⊢ ∃ y, y ∈ s ∧ y ≤ x [PROOFSTEP] simp only [IsBot, not_forall, not_le] at hx [GOAL] case neg α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α f g : β → α s : Set α hs : Dense s hbot : ∀ (x : α), IsBot x → x ∈ s x : α hx : ∃ x_1, x_1 < x ⊢ ∃ y, y ∈ s ∧ y ≤ x [PROOFSTEP] rcases hs.exists_mem_open isOpen_Iio hx with ⟨y, hys, hy : y < x⟩ [GOAL] case neg.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α f g : β → α s : Set α hs : Dense s hbot : ∀ (x : α), IsBot x → x ∈ s x : α hx : ∃ x_1, x_1 < x y : α hys : y ∈ s hy : y < x ⊢ ∃ y, y ∈ s ∧ y ≤ x [PROOFSTEP] exact ⟨y, hys, hy.le⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : DenselyOrdered α s : Set α hs : Dense s x : α ⊢ Ioi x = ⋃ (y : α) (_ : y ∈ s ∩ Ioi x), Ioi y [PROOFSTEP] refine Subset.antisymm (fun z hz ↦ ?_) (iUnion₂_subset fun y hy ↦ Ioi_subset_Ioi (le_of_lt hy.2)) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : DenselyOrdered α s : Set α hs : Dense s x z : α hz : z ∈ Ioi x ⊢ z ∈ ⋃ (y : α) (_ : y ∈ s ∩ Ioi x), Ioi y [PROOFSTEP] rcases hs.exists_between hz with ⟨y, hys, hxy, hyz⟩ [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : DenselyOrdered α s : Set α hs : Dense s x z : α hz : z ∈ Ioi x y : α hys : y ∈ s hxy : x < y hyz : y < z ⊢ z ∈ ⋃ (y : α) (_ : y ∈ s ∩ Ioi x), Ioi y [PROOFSTEP] exact mem_iUnion₂.2 ⟨y, ⟨hys, hxy⟩, hyz⟩ [GOAL] α✝ : Type u β : Type v γ : Type w ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), OrderClosedTopology (α i) ⊢ OrderClosedTopology ((i : ι) → α i) [PROOFSTEP] constructor [GOAL] case isClosed_le' α✝ : Type u β : Type v γ : Type w ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), OrderClosedTopology (α i) ⊢ IsClosed {p | p.fst ≤ p.snd} [PROOFSTEP] simp only [Pi.le_def, setOf_forall] [GOAL] case isClosed_le' α✝ : Type u β : Type v γ : Type w ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), OrderClosedTopology (α i) ⊢ IsClosed (⋂ (i : ι), {x | Prod.fst x i ≤ Prod.snd x i}) [PROOFSTEP] exact isClosed_iInter fun i => isClosed_le (continuous_apply i).fst' (continuous_apply i).snd' [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α ⊢ instTopologicalSpaceOrderDual = generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} [PROOFSTEP] convert OrderTopology.topology_eq_generate_intervals (α := α) using 6 [GOAL] case h.e'_3.h.h.e'_2.h.h.e'_2.h.h.h.e'_2.h.h.a α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α e_1✝² : TopologicalSpace αᵒᵈ = TopologicalSpace α e_1✝¹ : αᵒᵈ = α e_1✝ : Set αᵒᵈ = Set α x✝¹ : Set αᵒᵈ x✝ : αᵒᵈ ⊢ x✝¹ = Ioi x✝ ∨ x✝¹ = Iio x✝ ↔ x✝¹ = Ioi x✝ ∨ x✝¹ = Iio x✝ [PROOFSTEP] apply or_comm [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α s : Set α ⊢ IsOpen s ↔ GenerateOpen {s | ∃ a, s = Ioi a ∨ s = Iio a} s [PROOFSTEP] rw [t.topology_eq_generate_intervals] [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α s : Set α ⊢ IsOpen s ↔ GenerateOpen {s | ∃ a, s = Ioi a ∨ s = Iio a} s [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α a : α ⊢ 𝓝 a = (⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b)) ⊓ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b) [PROOFSTEP] rw [t.topology_eq_generate_intervals, nhds_generateFrom] [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α a : α ⊢ ⨅ (s : Set α) (_ : s ∈ {s | a ∈ s ∧ s ∈ {s | ∃ a, s = Ioi a ∨ s = Iio a}}), 𝓟 s = (⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b)) ⊓ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b) [PROOFSTEP] simp_rw [mem_setOf_eq, @and_comm (a ∈ _), exists_or, or_and_right, iInf_or, iInf_and, iInf_exists, iInf_inf_eq, iInf_comm (ι := Set α), iInf_iInf_eq_left, mem_Ioi, mem_Iio] [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α f : β → α a : α x : Filter β ⊢ Tendsto f x (𝓝 a) ↔ (∀ (a' : α), a' < a → ∀ᶠ (b : β) in x, a' < f b) ∧ ∀ (a' : α), a' > a → ∀ᶠ (b : β) in x, f b < a' [PROOFSTEP] simp only [nhds_eq_order a, tendsto_inf, tendsto_iInf, tendsto_principal] [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α f : β → α a : α x : Filter β ⊢ ((∀ (i : α), i ∈ Iio a → ∀ᶠ (a : β) in x, f a ∈ Ioi i) ∧ ∀ (i : α), i ∈ Ioi a → ∀ᶠ (a : β) in x, f a ∈ Iio i) ↔ (∀ (a' : α), a' < a → ∀ᶠ (b : β) in x, a' < f b) ∧ ∀ (a' : α), a' > a → ∀ᶠ (b : β) in x, f b < a' [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α a : α ⊢ TendstoIxxClass Icc (𝓝 a) (𝓝 a) [PROOFSTEP] simp only [nhds_eq_order, iInf_subtype'] [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α a : α ⊢ TendstoIxxClass Icc ((⨅ (x : { i // i ∈ Iio a }), 𝓟 (Ioi ↑x)) ⊓ ⨅ (x : { i // i ∈ Ioi a }), 𝓟 (Iio ↑x)) ((⨅ (x : { i // i ∈ Iio a }), 𝓟 (Ioi ↑x)) ⊓ ⨅ (x : { i // i ∈ Ioi a }), 𝓟 (Iio ↑x)) [PROOFSTEP] refine ((hasBasis_iInf_principal_finite _).inf (hasBasis_iInf_principal_finite _)).tendstoIxxClass fun s _ => ?_ [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α a : α s : Set { i // i ∈ Iio a } × Set { i // i ∈ Ioi a } x✝ : Set.Finite s.fst ∧ Set.Finite s.snd ⊢ ∀ (x : α), x ∈ (⋂ (i : { i // i ∈ Iio a }) (_ : i ∈ s.fst), Ioi ↑i) ∩ ⋂ (i : { i // i ∈ Ioi a }) (_ : i ∈ s.snd), Iio ↑i → ∀ (y : α), y ∈ (⋂ (i : { i // i ∈ Iio a }) (_ : i ∈ s.fst), Ioi ↑i) ∩ ⋂ (i : { i // i ∈ Ioi a }) (_ : i ∈ s.snd), Iio ↑i → Icc x y ⊆ (⋂ (i : { i // i ∈ Iio a }) (_ : i ∈ s.fst), Ioi ↑i) ∩ ⋂ (i : { i // i ∈ Ioi a }) (_ : i ∈ s.snd), Iio ↑i [PROOFSTEP] refine' ((ordConnected_biInter _).inter (ordConnected_biInter _)).out [GOAL] case refine'_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α a : α s : Set { i // i ∈ Iio a } × Set { i // i ∈ Ioi a } x✝ : Set.Finite s.fst ∧ Set.Finite s.snd ⊢ ∀ (i : { i // i ∈ Iio a }), i ∈ s.fst → OrdConnected (Ioi ↑i) [PROOFSTEP] intro _ _ [GOAL] case refine'_2 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α a : α s : Set { i // i ∈ Iio a } × Set { i // i ∈ Ioi a } x✝ : Set.Finite s.fst ∧ Set.Finite s.snd ⊢ ∀ (i : { i // i ∈ Ioi a }), i ∈ s.snd → OrdConnected (Iio ↑i) [PROOFSTEP] intro _ _ [GOAL] case refine'_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α a : α s : Set { i // i ∈ Iio a } × Set { i // i ∈ Ioi a } x✝ : Set.Finite s.fst ∧ Set.Finite s.snd i✝ : { i // i ∈ Iio a } hi✝ : i✝ ∈ s.fst ⊢ OrdConnected (Ioi ↑i✝) case refine'_2 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α a : α s : Set { i // i ∈ Iio a } × Set { i // i ∈ Ioi a } x✝ : Set.Finite s.fst ∧ Set.Finite s.snd i✝ : { i // i ∈ Ioi a } hi✝ : i✝ ∈ s.snd ⊢ OrdConnected (Iio ↑i✝) [PROOFSTEP] exacts [ordConnected_Ioi, ordConnected_Iio] [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α a : α hu : ∃ u, a < u hl : ∃ l, l < a ⊢ 𝓝 a = ⨅ (l : α) (_ : l < a) (u : α) (_ : a < u), 𝓟 (Ioo l u) [PROOFSTEP] simp only [nhds_eq_order, ← inf_biInf, ← biInf_inf, *, ← inf_principal, ← Ioi_inter_Iio] [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α a : α hu : ∃ u, a < u hl : ∃ l, l < a ⊢ (⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b)) ⊓ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b) = (⨅ (i : α) (_ : i < a), 𝓟 (Ioi i)) ⊓ ⨅ (i : α) (_ : a < i), 𝓟 (Iio i) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α f : β → α a : α x : Filter β hu : ∃ u, a < u hl : ∃ l, l < a h : ∀ (l u : α), l < a → a < u → ∀ᶠ (b : β) in x, l < f b ∧ f b < u ⊢ Tendsto f x (𝓝 a) [PROOFSTEP] simp only [nhds_order_unbounded hu hl, tendsto_iInf, tendsto_principal] [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : Preorder α t : OrderTopology α f : β → α a : α x : Filter β hu : ∃ u, a < u hl : ∃ l, l < a h : ∀ (l u : α), l < a → a < u → ∀ᶠ (b : β) in x, l < f b ∧ f b < u ⊢ ∀ (i : α), i < a → ∀ (i_2 : α), a < i_2 → ∀ᶠ (a : β) in x, f a ∈ Ioo i i_2 [PROOFSTEP] exact fun l hl u => h l u hl [GOAL] α✝ : Type u β : Type v γ : Type w ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), OrderTopology (α i) f : (i : ι) → α i ⊢ TendstoIxxClass Icc (𝓝 f) (𝓝 f) [PROOFSTEP] constructor [GOAL] case tendsto_Ixx α✝ : Type u β : Type v γ : Type w ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), OrderTopology (α i) f : (i : ι) → α i ⊢ Tendsto (fun p => Icc p.fst p.snd) (𝓝 f ×ˢ 𝓝 f) (smallSets (𝓝 f)) [PROOFSTEP] conv in (𝓝 f).smallSets => rw [nhds_pi, Filter.pi] [GOAL] α✝ : Type u β : Type v γ : Type w ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), OrderTopology (α i) f : (i : ι) → α i | smallSets (𝓝 f) [PROOFSTEP] rw [nhds_pi, Filter.pi] [GOAL] α✝ : Type u β : Type v γ : Type w ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), OrderTopology (α i) f : (i : ι) → α i | smallSets (𝓝 f) [PROOFSTEP] rw [nhds_pi, Filter.pi] [GOAL] α✝ : Type u β : Type v γ : Type w ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), OrderTopology (α i) f : (i : ι) → α i | smallSets (𝓝 f) [PROOFSTEP] rw [nhds_pi, Filter.pi] [GOAL] case tendsto_Ixx α✝ : Type u β : Type v γ : Type w ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), OrderTopology (α i) f : (i : ι) → α i ⊢ Tendsto (fun p => Icc p.fst p.snd) (𝓝 f ×ˢ 𝓝 f) (smallSets (⨅ (i : ι), comap (eval i) (𝓝 (f i)))) [PROOFSTEP] simp only [smallSets_iInf, smallSets_comap, tendsto_iInf, tendsto_lift', (· ∘ ·), mem_powerset_iff] [GOAL] case tendsto_Ixx α✝ : Type u β : Type v γ : Type w ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), OrderTopology (α i) f : (i : ι) → α i ⊢ ∀ (i : ι) (s : Set (α i)), s ∈ 𝓝 (f i) → ∀ᶠ (a : ((i : ι) → α i) × ((i : ι) → α i)) in 𝓝 f ×ˢ 𝓝 f, Icc a.fst a.snd ⊆ eval i ⁻¹' s [PROOFSTEP] intro i s hs [GOAL] case tendsto_Ixx α✝ : Type u β : Type v γ : Type w ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), OrderTopology (α i) f : (i : ι) → α i i : ι s : Set (α i) hs : s ∈ 𝓝 (f i) ⊢ ∀ᶠ (a : ((i : ι) → α i) × ((i : ι) → α i)) in 𝓝 f ×ˢ 𝓝 f, Icc a.fst a.snd ⊆ eval i ⁻¹' s [PROOFSTEP] have : Tendsto (fun g : ∀ i, α i => g i) (𝓝 f) (𝓝 (f i)) := (continuous_apply i).tendsto f [GOAL] case tendsto_Ixx α✝ : Type u β : Type v γ : Type w ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), OrderTopology (α i) f : (i : ι) → α i i : ι s : Set (α i) hs : s ∈ 𝓝 (f i) this : Tendsto (fun g => g i) (𝓝 f) (𝓝 (f i)) ⊢ ∀ᶠ (a : ((i : ι) → α i) × ((i : ι) → α i)) in 𝓝 f ×ˢ 𝓝 f, Icc a.fst a.snd ⊆ eval i ⁻¹' s [PROOFSTEP] refine' (tendsto_lift'.1 ((this.comp tendsto_fst).Icc (this.comp tendsto_snd)) s hs).mono _ [GOAL] case tendsto_Ixx α✝ : Type u β : Type v γ : Type w ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), OrderTopology (α i) f : (i : ι) → α i i : ι s : Set (α i) hs : s ∈ 𝓝 (f i) this : Tendsto (fun g => g i) (𝓝 f) (𝓝 (f i)) ⊢ ∀ (x : ((i : ι) → α i) × ((i : ι) → α i)), Icc (((fun g => g i) ∘ Prod.fst) x) (((fun g => g i) ∘ Prod.snd) x) ∈ 𝒫 s → Icc x.fst x.snd ⊆ eval i ⁻¹' s [PROOFSTEP] exact fun p hp g hg => hp ⟨hg.1 _, hg.2 _⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y ⊢ induced f inst✝¹ ≤ Preorder.topology α [PROOFSTEP] let _ := Preorder.topology α [GOAL] α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y x✝ : TopologicalSpace α := Preorder.topology α ⊢ induced f inst✝¹ ≤ Preorder.topology α [PROOFSTEP] have : OrderTopology α := ⟨rfl⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α ⊢ induced f inst✝¹ ≤ Preorder.topology α [PROOFSTEP] refine le_of_nhds_le_nhds fun x => ?_ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α x : α ⊢ 𝓝 x ≤ 𝓝 x [PROOFSTEP] simp only [nhds_eq_order, nhds_induced, comap_inf, comap_iInf, comap_principal, Ioi, Iio, ← hf] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α x : α ⊢ (⨅ (i : β) (_ : i ∈ {x_1 | x_1 < f x}), 𝓟 (f ⁻¹' {x | i < x})) ⊓ ⨅ (i : β) (_ : i ∈ {x_1 | f x < x_1}), 𝓟 (f ⁻¹' {x | x < i}) ≤ (⨅ (b : α) (_ : b ∈ {x_1 | f x_1 < f x}), 𝓟 {x | f b < f x}) ⊓ ⨅ (b : α) (_ : b ∈ {x_1 | f x < f x_1}), 𝓟 {x | f x < f b} [PROOFSTEP] refine inf_le_inf (le_iInf₂ fun a ha => ?_) (le_iInf₂ fun a ha => ?_) [GOAL] case refine_1 α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α x a : α ha : a ∈ {x_1 | f x_1 < f x} ⊢ ⨅ (i : β) (_ : i ∈ {x_1 | x_1 < f x}), 𝓟 (f ⁻¹' {x | i < x}) ≤ 𝓟 {x | f a < f x} case refine_2 α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α x a : α ha : a ∈ {x_1 | f x < f x_1} ⊢ ⨅ (i : β) (_ : i ∈ {x_1 | f x < x_1}), 𝓟 (f ⁻¹' {x | x < i}) ≤ 𝓟 {x | f x < f a} [PROOFSTEP] exacts [iInf₂_le (f a) ha, iInf₂_le (f a) ha] -- porting note: new lemma [GOAL] α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b ⊢ induced f inst✝¹ = Preorder.topology α [PROOFSTEP] let _ := Preorder.topology α [GOAL] α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α ⊢ induced f inst✝¹ = Preorder.topology α [PROOFSTEP] have : OrderTopology α := ⟨rfl⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α ⊢ induced f inst✝¹ = Preorder.topology α [PROOFSTEP] refine le_antisymm (induced_topology_le_preorder hf) ?_ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α ⊢ Preorder.topology α ≤ induced f inst✝¹ [PROOFSTEP] refine le_of_nhds_le_nhds fun a => ?_ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α a : α ⊢ 𝓝 a ≤ 𝓝 a [PROOFSTEP] simp only [nhds_eq_order, nhds_induced, comap_inf, comap_iInf, comap_principal] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α a : α ⊢ (⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b)) ⊓ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b) ≤ (⨅ (i : β) (_ : i ∈ Iio (f a)), 𝓟 (f ⁻¹' Ioi i)) ⊓ ⨅ (i : β) (_ : i ∈ Ioi (f a)), 𝓟 (f ⁻¹' Iio i) [PROOFSTEP] refine inf_le_inf (le_iInf₂ fun b hb => ?_) (le_iInf₂ fun b hb => ?_) [GOAL] case refine_1 α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α a : α b : β hb : b ∈ Iio (f a) ⊢ ⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b) ≤ 𝓟 (f ⁻¹' Ioi b) [PROOFSTEP] rcases em (∃ x, ¬(b < f x)) with (⟨x, hx⟩ | hb) [GOAL] case refine_1.inl.intro α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α a : α b : β hb : b ∈ Iio (f a) x : α hx : ¬b < f x ⊢ ⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b) ≤ 𝓟 (f ⁻¹' Ioi b) [PROOFSTEP] rcases H₁ hb hx with ⟨y, hya, hyb⟩ [GOAL] case refine_1.inl.intro.intro.intro α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α a : α b : β hb : b ∈ Iio (f a) x : α hx : ¬b < f x y : α hya : y < a hyb : b ≤ f y ⊢ ⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b) ≤ 𝓟 (f ⁻¹' Ioi b) [PROOFSTEP] exact iInf₂_le_of_le y hya (principal_mono.2 fun z hz => hyb.trans_lt (hf.2 hz)) [GOAL] case refine_1.inr α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α a : α b : β hb✝ : b ∈ Iio (f a) hb : ¬∃ x, ¬b < f x ⊢ ⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b) ≤ 𝓟 (f ⁻¹' Ioi b) [PROOFSTEP] push_neg at hb [GOAL] case refine_1.inr α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α a : α b : β hb✝ : b ∈ Iio (f a) hb : ∀ (x : α), b < f x ⊢ ⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b) ≤ 𝓟 (f ⁻¹' Ioi b) [PROOFSTEP] exact le_principal_iff.2 (univ_mem' hb) [GOAL] case refine_2 α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α a : α b : β hb : b ∈ Ioi (f a) ⊢ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b) ≤ 𝓟 (f ⁻¹' Iio b) [PROOFSTEP] rcases em (∃ x, ¬(f x < b)) with (⟨x, hx⟩ | hb) [GOAL] case refine_2.inl.intro α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α a : α b : β hb : b ∈ Ioi (f a) x : α hx : ¬f x < b ⊢ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b) ≤ 𝓟 (f ⁻¹' Iio b) [PROOFSTEP] rcases H₂ hb hx with ⟨y, hya, hyb⟩ [GOAL] case refine_2.inl.intro.intro.intro α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α a : α b : β hb : b ∈ Ioi (f a) x : α hx : ¬f x < b y : α hya : a < y hyb : f y ≤ b ⊢ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b) ≤ 𝓟 (f ⁻¹' Iio b) [PROOFSTEP] exact iInf₂_le_of_le y hya (principal_mono.2 fun z hz => (hf.2 hz).trans_le hyb) [GOAL] case refine_2.inr α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α a : α b : β hb✝ : b ∈ Ioi (f a) hb : ¬∃ x, ¬f x < b ⊢ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b) ≤ 𝓟 (f ⁻¹' Iio b) [PROOFSTEP] push_neg at hb [GOAL] case refine_2.inr α : Type u β : Type v γ : Type w inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : ∀ {x y : α}, f x < f y ↔ x < y H₁ : ∀ {a : α} {b : β} {x : α}, b < f a → ¬b < f x → ∃ y, y < a ∧ b ≤ f y H₂ : ∀ {a : α} {b : β} {x : α}, f a < b → ¬f x < b → ∃ y, a < y ∧ f y ≤ b x✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α a : α b : β hb✝ : b ∈ Ioi (f a) hb : ∀ (x : α), f x < b ⊢ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b) ≤ 𝓟 (f ⁻¹' Iio b) [PROOFSTEP] exact le_principal_iff.2 (univ_mem' hb) [GOAL] α✝ : Type u β✝ : Type v γ : Type w α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : LinearOrder β t : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : StrictMono f hc : OrdConnected (range f) ⊢ induced f t = Preorder.topology α [PROOFSTEP] refine induced_topology_eq_preorder hf.lt_iff_lt (fun h₁ h₂ => ?_) fun h₁ h₂ => ?_ [GOAL] case refine_1 α✝ : Type u β✝ : Type v γ : Type w α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : LinearOrder β t : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : StrictMono f hc : OrdConnected (range f) a✝ : α b✝ : β x✝ : α h₁ : b✝ < f a✝ h₂ : ¬b✝ < f x✝ ⊢ ∃ y, y < a✝ ∧ b✝ ≤ f y [PROOFSTEP] rcases hc.out (mem_range_self _) (mem_range_self _) ⟨not_lt.1 h₂, h₁.le⟩ with ⟨y, rfl⟩ [GOAL] case refine_1.intro α✝ : Type u β✝ : Type v γ : Type w α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : LinearOrder β t : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : StrictMono f hc : OrdConnected (range f) a✝ x✝ y : α h₁ : f y < f a✝ h₂ : ¬f y < f x✝ ⊢ ∃ y_1, y_1 < a✝ ∧ f y ≤ f y_1 [PROOFSTEP] exact ⟨y, hf.lt_iff_lt.1 h₁, le_rfl⟩ [GOAL] case refine_2 α✝ : Type u β✝ : Type v γ : Type w α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : LinearOrder β t : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : StrictMono f hc : OrdConnected (range f) a✝ : α b✝ : β x✝ : α h₁ : f a✝ < b✝ h₂ : ¬f x✝ < b✝ ⊢ ∃ y, a✝ < y ∧ f y ≤ b✝ [PROOFSTEP] rcases hc.out (mem_range_self _) (mem_range_self _) ⟨h₁.le, not_lt.1 h₂⟩ with ⟨y, rfl⟩ [GOAL] case refine_2.intro α✝ : Type u β✝ : Type v γ : Type w α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : LinearOrder β t : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : StrictMono f hc : OrdConnected (range f) a✝ x✝ y : α h₁ : f a✝ < f y h₂ : ¬f x✝ < f y ⊢ ∃ y_1, a✝ < y_1 ∧ f y_1 ≤ f y [PROOFSTEP] exact ⟨y, hf.lt_iff_lt.1 h₁, le_rfl⟩ [GOAL] α✝ : Type u β : Type v γ : Type w α : Type u inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α t : Set α ht : OrdConnected t ⊢ OrdConnected (range Subtype.val) [PROOFSTEP] rwa [← @Subtype.range_val _ t] at ht [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : OrderTopology α a : α ⊢ 𝓝[Ici a] a = (⨅ (u : α) (_ : a < u), 𝓟 (Iio u)) ⊓ 𝓟 (Ici a) [PROOFSTEP] rw [nhdsWithin, nhds_eq_order] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : OrderTopology α a : α ⊢ ((⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b)) ⊓ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b)) ⊓ 𝓟 (Ici a) = (⨅ (u : α) (_ : a < u), 𝓟 (Iio u)) ⊓ 𝓟 (Ici a) [PROOFSTEP] refine' le_antisymm (inf_le_inf_right _ inf_le_right) (le_inf (le_inf _ inf_le_left) inf_le_right) [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : OrderTopology α a : α ⊢ (⨅ (u : α) (_ : a < u), 𝓟 (Iio u)) ⊓ 𝓟 (Ici a) ≤ ⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b) [PROOFSTEP] exact inf_le_right.trans (le_iInf₂ fun l hl => principal_mono.2 <| Ici_subset_Ioi.2 hl) [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : OrderTopology α a : α ha : ∃ u, a < u ⊢ 𝓝[Ici a] a = ⨅ (u : α) (_ : a < u), 𝓟 (Ico a u) [PROOFSTEP] simp only [nhdsWithin_Ici_eq'', biInf_inf ha, inf_principal, Iio_inter_Ici] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : OrderTopology α a : α ha : ∃ l, l < a ⊢ 𝓝[Iic a] a = ⨅ (l : α) (_ : l < a), 𝓟 (Ioc l a) [PROOFSTEP] simp only [nhdsWithin_Iic_eq'', biInf_inf ha, inf_principal, Ioi_inter_Iic] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α ha : ∃ l, l < a ⊢ HasBasis (𝓝[Iic a] a) (fun l => l < a) fun l => Ioc l a [PROOFSTEP] convert nhdsWithin_Ici_basis' (α := αᵒᵈ) ha using 2 [GOAL] case h.e'_5.h.h α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α ha : ∃ l, l < a e_1✝ : α = αᵒᵈ x✝ : α ⊢ Ioc x✝ a = Ico a x✝ [PROOFSTEP] exact dual_Ico.symm [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : OrderTopology α ⊢ 𝓝 ⊤ = ⨅ (l : α) (_ : l < ⊤), 𝓟 (Ioi l) [PROOFSTEP] simp [nhds_eq_order (⊤ : α)] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : OrderTopology α ⊢ 𝓝 ⊥ = ⨅ (l : α) (_ : ⊥ < l), 𝓟 (Iio l) [PROOFSTEP] simp [nhds_eq_order (⊥ : α)] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTop α inst✝¹ : OrderTopology α inst✝ : Nontrivial α ⊢ HasBasis (𝓝 ⊤) (fun a => a < ⊤) fun a => Ioi a [PROOFSTEP] have : ∃ x : α, x < ⊤ := (exists_ne ⊤).imp fun x hx => hx.lt_top [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTop α inst✝¹ : OrderTopology α inst✝ : Nontrivial α this : ∃ x, x < ⊤ ⊢ HasBasis (𝓝 ⊤) (fun a => a < ⊤) fun a => Ioi a [PROOFSTEP] simpa only [Iic_top, nhdsWithin_univ, Ioc_top] using nhdsWithin_Iic_basis' this [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace β inst✝² : Preorder β inst✝¹ : OrderTop β inst✝ : OrderTopology β l : Filter α f g : α → β hf : Tendsto f l (𝓝 ⊤) hg : f ≤ᶠ[l] g ⊢ Tendsto g l (𝓝 ⊤) [PROOFSTEP] simp only [nhds_top_order, tendsto_iInf, tendsto_principal] at hf ⊢ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace β inst✝² : Preorder β inst✝¹ : OrderTop β inst✝ : OrderTopology β l : Filter α f g : α → β hg : f ≤ᶠ[l] g hf : ∀ (i : β), i < ⊤ → ∀ᶠ (a : α) in l, f a ∈ Ioi i ⊢ ∀ (i : β), i < ⊤ → ∀ᶠ (a : α) in l, g a ∈ Ioi i [PROOFSTEP] intro x hx [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace β inst✝² : Preorder β inst✝¹ : OrderTop β inst✝ : OrderTopology β l : Filter α f g : α → β hg : f ≤ᶠ[l] g hf : ∀ (i : β), i < ⊤ → ∀ᶠ (a : α) in l, f a ∈ Ioi i x : β hx : x < ⊤ ⊢ ∀ᶠ (a : α) in l, g a ∈ Ioi x [PROOFSTEP] filter_upwards [hf x hx, hg] with _ using lt_of_lt_of_le [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝 a u : α hu : a < u ⊢ ∃ u', u' ∈ Ioc a u ∧ Ico a u' ⊆ s [PROOFSTEP] simpa only [OrderDual.exists, exists_prop, dual_Ico, dual_Ioc] using exists_Ioc_subset_of_mem_nhds' (show ofDual ⁻¹' s ∈ 𝓝 (toDual a) from hs) hu.dual [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝[Ici a] a ⊢ ∃ b, a ≤ b ∧ Icc a b ∈ 𝓝[Ici a] a ∧ Icc a b ⊆ s [PROOFSTEP] rcases(em (IsMax a)).imp_right not_isMax_iff.mp with (ha | ha) [GOAL] case inl α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝[Ici a] a ha : IsMax a ⊢ ∃ b, a ≤ b ∧ Icc a b ∈ 𝓝[Ici a] a ∧ Icc a b ⊆ s [PROOFSTEP] use a [GOAL] case h α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝[Ici a] a ha : IsMax a ⊢ a ≤ a ∧ Icc a a ∈ 𝓝[Ici a] a ∧ Icc a a ⊆ s [PROOFSTEP] simpa [ha.Ici_eq] using hs [GOAL] case inr α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝[Ici a] a ha : ∃ b, a < b ⊢ ∃ b, a ≤ b ∧ Icc a b ∈ 𝓝[Ici a] a ∧ Icc a b ⊆ s [PROOFSTEP] rcases(nhdsWithin_Ici_basis' ha).mem_iff.mp hs with ⟨b, hab, hbs⟩ [GOAL] case inr.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝[Ici a] a ha : ∃ b, a < b b : α hab : a < b hbs : Ico a b ⊆ s ⊢ ∃ b, a ≤ b ∧ Icc a b ∈ 𝓝[Ici a] a ∧ Icc a b ⊆ s [PROOFSTEP] rcases eq_empty_or_nonempty (Ioo a b) with (H | ⟨c, hac, hcb⟩) [GOAL] case inr.intro.intro.inl α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝[Ici a] a ha : ∃ b, a < b b : α hab : a < b hbs : Ico a b ⊆ s H : Ioo a b = ∅ ⊢ ∃ b, a ≤ b ∧ Icc a b ∈ 𝓝[Ici a] a ∧ Icc a b ⊆ s [PROOFSTEP] have : Ico a b = Icc a a := by rw [← Icc_union_Ioo_eq_Ico le_rfl hab, H, union_empty] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝[Ici a] a ha : ∃ b, a < b b : α hab : a < b hbs : Ico a b ⊆ s H : Ioo a b = ∅ ⊢ Ico a b = Icc a a [PROOFSTEP] rw [← Icc_union_Ioo_eq_Ico le_rfl hab, H, union_empty] [GOAL] case inr.intro.intro.inl α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝[Ici a] a ha : ∃ b, a < b b : α hab : a < b hbs : Ico a b ⊆ s H : Ioo a b = ∅ this : Ico a b = Icc a a ⊢ ∃ b, a ≤ b ∧ Icc a b ∈ 𝓝[Ici a] a ∧ Icc a b ⊆ s [PROOFSTEP] exact ⟨a, le_rfl, this ▸ ⟨Ico_mem_nhdsWithin_Ici' hab, hbs⟩⟩ [GOAL] case inr.intro.intro.inr.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝[Ici a] a ha : ∃ b, a < b b : α hab : a < b hbs : Ico a b ⊆ s c : α hac : a < c hcb : c < b ⊢ ∃ b, a ≤ b ∧ Icc a b ∈ 𝓝[Ici a] a ∧ Icc a b ⊆ s [PROOFSTEP] refine' ⟨c, hac.le, Icc_mem_nhdsWithin_Ici' hac, _⟩ [GOAL] case inr.intro.intro.inr.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝[Ici a] a ha : ∃ b, a < b b : α hab : a < b hbs : Ico a b ⊆ s c : α hac : a < c hcb : c < b ⊢ Icc a c ⊆ s [PROOFSTEP] exact (Icc_subset_Ico_right hcb).trans hbs [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝[Iic a] a ⊢ ∃ b, b ≤ a ∧ Icc b a ∈ 𝓝[Iic a] a ∧ Icc b a ⊆ s [PROOFSTEP] simpa only [dual_Icc, toDual.surjective.exists] using exists_Icc_mem_subset_of_mem_nhdsWithin_Ici (α := αᵒᵈ) (a := toDual a) hs [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝 a ⊢ ∃ b c, a ∈ Icc b c ∧ Icc b c ∈ 𝓝 a ∧ Icc b c ⊆ s [PROOFSTEP] rcases exists_Icc_mem_subset_of_mem_nhdsWithin_Iic (nhdsWithin_le_nhds hs) with ⟨b, hba, hb_nhds, hbs⟩ [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝 a b : α hba : b ≤ a hb_nhds : Icc b a ∈ 𝓝[Iic a] a hbs : Icc b a ⊆ s ⊢ ∃ b c, a ∈ Icc b c ∧ Icc b c ∈ 𝓝 a ∧ Icc b c ⊆ s [PROOFSTEP] rcases exists_Icc_mem_subset_of_mem_nhdsWithin_Ici (nhdsWithin_le_nhds hs) with ⟨c, hac, hc_nhds, hcs⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝 a b : α hba : b ≤ a hb_nhds : Icc b a ∈ 𝓝[Iic a] a hbs : Icc b a ⊆ s c : α hac : a ≤ c hc_nhds : Icc a c ∈ 𝓝[Ici a] a hcs : Icc a c ⊆ s ⊢ ∃ b c, a ∈ Icc b c ∧ Icc b c ∈ 𝓝 a ∧ Icc b c ⊆ s [PROOFSTEP] refine' ⟨b, c, ⟨hba, hac⟩, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝 a b : α hba : b ≤ a hb_nhds : Icc b a ∈ 𝓝[Iic a] a hbs : Icc b a ⊆ s c : α hac : a ≤ c hc_nhds : Icc a c ∈ 𝓝[Ici a] a hcs : Icc a c ⊆ s ⊢ Icc b c ∈ 𝓝 a ∧ Icc b c ⊆ s [PROOFSTEP] rw [← Icc_union_Icc_eq_Icc hba hac, ← nhds_left_sup_nhds_right] [GOAL] case intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hs : s ∈ 𝓝 a b : α hba : b ≤ a hb_nhds : Icc b a ∈ 𝓝[Iic a] a hbs : Icc b a ⊆ s c : α hac : a ≤ c hc_nhds : Icc a c ∈ 𝓝[Ici a] a hcs : Icc a c ⊆ s ⊢ Icc b a ∪ Icc a c ∈ 𝓝[Iic a] a ⊔ 𝓝[Ici a] a ∧ Icc b a ∪ Icc a c ⊆ s [PROOFSTEP] exact ⟨union_mem_sup hb_nhds hc_nhds, union_subset hbs hcs⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : Nontrivial α s : Set α hs : IsOpen s h : Set.Nonempty s ⊢ ∃ a b, a < b ∧ Ioo a b ⊆ s [PROOFSTEP] obtain ⟨x, hx⟩ : ∃ x, x ∈ s := h [GOAL] case intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : Nontrivial α s : Set α hs : IsOpen s x : α hx : x ∈ s ⊢ ∃ a b, a < b ∧ Ioo a b ⊆ s [PROOFSTEP] obtain ⟨y, hy⟩ : ∃ y, y ≠ x := exists_ne x [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : Nontrivial α s : Set α hs : IsOpen s x : α hx : x ∈ s y : α hy : y ≠ x ⊢ ∃ a b, a < b ∧ Ioo a b ⊆ s [PROOFSTEP] rcases lt_trichotomy x y with (H | rfl | H) [GOAL] case intro.intro.inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : Nontrivial α s : Set α hs : IsOpen s x : α hx : x ∈ s y : α hy : y ≠ x H : x < y ⊢ ∃ a b, a < b ∧ Ioo a b ⊆ s [PROOFSTEP] obtain ⟨u, xu, hu⟩ : ∃ u, x < u ∧ Ico x u ⊆ s := exists_Ico_subset_of_mem_nhds (hs.mem_nhds hx) ⟨y, H⟩ [GOAL] case intro.intro.inl.intro.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : Nontrivial α s : Set α hs : IsOpen s x : α hx : x ∈ s y : α hy : y ≠ x H : x < y u : α xu : x < u hu : Ico x u ⊆ s ⊢ ∃ a b, a < b ∧ Ioo a b ⊆ s [PROOFSTEP] exact ⟨x, u, xu, Ioo_subset_Ico_self.trans hu⟩ [GOAL] case intro.intro.inr.inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : Nontrivial α s : Set α hs : IsOpen s x : α hx : x ∈ s hy : x ≠ x ⊢ ∃ a b, a < b ∧ Ioo a b ⊆ s [PROOFSTEP] exact (hy rfl).elim [GOAL] case intro.intro.inr.inr α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : Nontrivial α s : Set α hs : IsOpen s x : α hx : x ∈ s y : α hy : y ≠ x H : y < x ⊢ ∃ a b, a < b ∧ Ioo a b ⊆ s [PROOFSTEP] obtain ⟨l, lx, hl⟩ : ∃ l, l < x ∧ Ioc l x ⊆ s := exists_Ioc_subset_of_mem_nhds (hs.mem_nhds hx) ⟨y, H⟩ [GOAL] case intro.intro.inr.inr.intro.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : Nontrivial α s : Set α hs : IsOpen s x : α hx : x ∈ s y : α hy : y ≠ x H : y < x l : α lx : l < x hl : Ioc l x ⊆ s ⊢ ∃ a b, a < b ∧ Ioo a b ⊆ s [PROOFSTEP] exact ⟨l, x, lx, Ioo_subset_Ioc_self.trans hl⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : Nontrivial α s : Set α h : ∀ ⦃a b : α⦄, a < b → ∃ c, c ∈ s ∧ a < c ∧ c < b ⊢ Dense s [PROOFSTEP] refine dense_iff_inter_open.2 fun U U_open U_nonempty => ?_ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : Nontrivial α s : Set α h : ∀ ⦃a b : α⦄, a < b → ∃ c, c ∈ s ∧ a < c ∧ c < b U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U ⊢ Set.Nonempty (U ∩ s) [PROOFSTEP] obtain ⟨a, b, hab, H⟩ : ∃ a b : α, a < b ∧ Ioo a b ⊆ U := U_open.exists_Ioo_subset U_nonempty [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : Nontrivial α s : Set α h : ∀ ⦃a b : α⦄, a < b → ∃ c, c ∈ s ∧ a < c ∧ c < b U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U a b : α hab : a < b H : Ioo a b ⊆ U ⊢ Set.Nonempty (U ∩ s) [PROOFSTEP] obtain ⟨x, xs, hx⟩ : ∃ x ∈ s, a < x ∧ x < b := h hab [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : Nontrivial α s : Set α h : ∀ ⦃a b : α⦄, a < b → ∃ c, c ∈ s ∧ a < c ∧ c < b U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U a b : α hab : a < b H : Ioo a b ⊆ U x : α xs : x ∈ s hx : a < x ∧ x < b ⊢ Set.Nonempty (U ∩ s) [PROOFSTEP] exact ⟨x, ⟨H hx, xs⟩⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hl : ∃ l, l < a hu : ∃ u, a < u ⊢ s ∈ 𝓝 a ↔ ∃ l u, a ∈ Ioo l u ∧ Ioo l u ⊆ s [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hl : ∃ l, l < a hu : ∃ u, a < u ⊢ s ∈ 𝓝 a → ∃ l u, a ∈ Ioo l u ∧ Ioo l u ⊆ s [PROOFSTEP] intro h [GOAL] case mp α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hl : ∃ l, l < a hu : ∃ u, a < u h : s ∈ 𝓝 a ⊢ ∃ l u, a ∈ Ioo l u ∧ Ioo l u ⊆ s [PROOFSTEP] rcases exists_Ico_subset_of_mem_nhds h hu with ⟨u, au, hu⟩ [GOAL] case mp.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hl : ∃ l, l < a hu✝ : ∃ u, a < u h : s ∈ 𝓝 a u : α au : a < u hu : Ico a u ⊆ s ⊢ ∃ l u, a ∈ Ioo l u ∧ Ioo l u ⊆ s [PROOFSTEP] rcases exists_Ioc_subset_of_mem_nhds h hl with ⟨l, la, hl⟩ [GOAL] case mp.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hl✝ : ∃ l, l < a hu✝ : ∃ u, a < u h : s ∈ 𝓝 a u : α au : a < u hu : Ico a u ⊆ s l : α la : l < a hl : Ioc l a ⊆ s ⊢ ∃ l u, a ∈ Ioo l u ∧ Ioo l u ⊆ s [PROOFSTEP] exact ⟨l, u, ⟨la, au⟩, Ioc_union_Ico_eq_Ioo la au ▸ union_subset hl hu⟩ [GOAL] case mpr α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hl : ∃ l, l < a hu : ∃ u, a < u ⊢ (∃ l u, a ∈ Ioo l u ∧ Ioo l u ⊆ s) → s ∈ 𝓝 a [PROOFSTEP] rintro ⟨l, u, ha, h⟩ [GOAL] case mpr.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α hl : ∃ l, l < a hu : ∃ u, a < u l u : α ha : a ∈ Ioo l u h : Ioo l u ⊆ s ⊢ s ∈ 𝓝 a [PROOFSTEP] apply mem_of_superset (Ioo_mem_nhds ha.1 ha.2) h [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α hl : ∃ l, l < a hu : ∃ u, a < u s : Set α ⊢ (∃ l u, a ∈ Ioo l u ∧ Ioo l u ⊆ s) ↔ ∃ i, (i.fst < a ∧ a < i.snd) ∧ Ioo i.fst i.snd ⊆ s [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α s : Set α hs : Dense s ⊢ inst✝³ = generateFrom (Ioi '' s ∪ Iio '' s) [PROOFSTEP] refine (OrderTopology.topology_eq_generate_intervals (α := α)).trans ?_ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α s : Set α hs : Dense s ⊢ generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} = generateFrom (Ioi '' s ∪ Iio '' s) [PROOFSTEP] refine le_antisymm (generateFrom_anti ?_) (le_generateFrom ?_) [GOAL] case refine_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α s : Set α hs : Dense s ⊢ Ioi '' s ∪ Iio '' s ⊆ {s | ∃ a, s = Ioi a ∨ s = Iio a} [PROOFSTEP] simp only [union_subset_iff, image_subset_iff] [GOAL] case refine_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α s : Set α hs : Dense s ⊢ s ⊆ Ioi ⁻¹' {s | ∃ a, s = Ioi a ∨ s = Iio a} ∧ s ⊆ Iio ⁻¹' {s | ∃ a, s = Ioi a ∨ s = Iio a} [PROOFSTEP] exact ⟨fun a _ ↦ ⟨a, .inl rfl⟩, fun a _ ↦ ⟨a, .inr rfl⟩⟩ [GOAL] case refine_2 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α s : Set α hs : Dense s ⊢ ∀ (s_1 : Set α), s_1 ∈ {s | ∃ a, s = Ioi a ∨ s = Iio a} → IsOpen s_1 [PROOFSTEP] rintro _ ⟨a, rfl | rfl⟩ [GOAL] case refine_2.intro.inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α s : Set α hs : Dense s a : α ⊢ IsOpen (Ioi a) [PROOFSTEP] rw [hs.Ioi_eq_biUnion] [GOAL] case refine_2.intro.inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α s : Set α hs : Dense s a : α ⊢ IsOpen (⋃ (y : α) (_ : y ∈ s ∩ Ioi a), Ioi y) [PROOFSTEP] let _ := generateFrom (Ioi '' s ∪ Iio '' s) [GOAL] case refine_2.intro.inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α s : Set α hs : Dense s a : α x✝ : TopologicalSpace α := generateFrom (Ioi '' s ∪ Iio '' s) ⊢ IsOpen (⋃ (y : α) (_ : y ∈ s ∩ Ioi a), Ioi y) [PROOFSTEP] exact isOpen_iUnion fun x ↦ isOpen_iUnion fun h ↦ .basic _ <| .inl <| mem_image_of_mem _ h.1 [GOAL] case refine_2.intro.inr α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α s : Set α hs : Dense s a : α ⊢ IsOpen (Iio a) [PROOFSTEP] rw [hs.Iio_eq_biUnion] [GOAL] case refine_2.intro.inr α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α s : Set α hs : Dense s a : α ⊢ IsOpen (⋃ (y : α) (_ : y ∈ s ∩ Iio a), Iio y) [PROOFSTEP] let _ := generateFrom (Ioi '' s ∪ Iio '' s) [GOAL] case refine_2.intro.inr α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α s : Set α hs : Dense s a : α x✝ : TopologicalSpace α := generateFrom (Ioi '' s ∪ Iio '' s) ⊢ IsOpen (⋃ (y : α) (_ : y ∈ s ∩ Iio a), Iio y) [PROOFSTEP] exact isOpen_iUnion fun x ↦ isOpen_iUnion fun h ↦ .basic _ <| .inr <| mem_image_of_mem _ h.1 [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α inst✝ : SeparableSpace α ⊢ SecondCountableTopology α [PROOFSTEP] rcases exists_countable_dense α with ⟨s, hc, hd⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α inst✝ : SeparableSpace α s : Set α hc : Set.Countable s hd : Dense s ⊢ SecondCountableTopology α [PROOFSTEP] refine ⟨⟨_, ?_, hd.topology_eq_generateFrom⟩⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α inst✝ : SeparableSpace α s : Set α hc : Set.Countable s hd : Dense s ⊢ Set.Countable (Ioi '' s ∪ Iio '' s) [PROOFSTEP] exact (hc.image _).union (hc.image _) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ⊢ Set.Countable {x | ∃ y, x ⋖ y} [PROOFSTEP] nontriviality α [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α ⊢ Set.Countable {x | ∃ y, x ⋖ y} [PROOFSTEP] let s := {x : α | ∃ y, x ⋖ y} [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} ⊢ Set.Countable {x | ∃ y, x ⋖ y} [PROOFSTEP] have : ∀ x ∈ s, ∃ y, x ⋖ y := fun x => id [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} this : ∀ (x : α), x ∈ s → ∃ y, x ⋖ y ⊢ Set.Countable {x | ∃ y, x ⋖ y} [PROOFSTEP] choose! y hy using this [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x ⊢ Set.Countable {x | ∃ y, x ⋖ y} [PROOFSTEP] have Hy : ∀ x z, x ∈ s → z < y x → z ≤ x := fun x z hx => (hy x hx).le_of_lt [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x ⊢ Set.Countable {x | ∃ y, x ⋖ y} [PROOFSTEP] suffices H : ∀ a : Set α, IsOpen a → Set.Countable {x | x ∈ s ∧ x ∈ a ∧ y x ∉ a} [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x H : ∀ (a : Set α), IsOpen a → Set.Countable {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} ⊢ Set.Countable {x | ∃ y, x ⋖ y} [PROOFSTEP] have : s ⊆ ⋃ a ∈ countableBasis α, {x | x ∈ s ∧ x ∈ a ∧ y x ∉ a} := fun x hx => by rcases(isBasis_countableBasis α).exists_mem_of_ne (hy x hx).ne with ⟨a, ab, xa, ya⟩ exact mem_iUnion₂.2 ⟨a, ab, hx, xa, ya⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x H : ∀ (a : Set α), IsOpen a → Set.Countable {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} x : α hx : x ∈ s ⊢ x ∈ ⋃ (a : Set α) (_ : a ∈ countableBasis α), {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} [PROOFSTEP] rcases(isBasis_countableBasis α).exists_mem_of_ne (hy x hx).ne with ⟨a, ab, xa, ya⟩ [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x H : ∀ (a : Set α), IsOpen a → Set.Countable {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} x : α hx : x ∈ s a : Set α ab : a ∈ countableBasis α xa : x ∈ a ya : ¬y x ∈ a ⊢ x ∈ ⋃ (a : Set α) (_ : a ∈ countableBasis α), {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} [PROOFSTEP] exact mem_iUnion₂.2 ⟨a, ab, hx, xa, ya⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x H : ∀ (a : Set α), IsOpen a → Set.Countable {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} this : s ⊆ ⋃ (a : Set α) (_ : a ∈ countableBasis α), {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} ⊢ Set.Countable {x | ∃ y, x ⋖ y} [PROOFSTEP] refine Set.Countable.mono this ?_ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x H : ∀ (a : Set α), IsOpen a → Set.Countable {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} this : s ⊆ ⋃ (a : Set α) (_ : a ∈ countableBasis α), {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} ⊢ Set.Countable (⋃ (a : Set α) (_ : a ∈ countableBasis α), {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a}) [PROOFSTEP] refine' Countable.biUnion (countable_countableBasis α) fun a ha => H _ _ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x H : ∀ (a : Set α), IsOpen a → Set.Countable {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} this : s ⊆ ⋃ (a : Set α) (_ : a ∈ countableBasis α), {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} a : Set α ha : a ∈ countableBasis α ⊢ IsOpen a [PROOFSTEP] exact isOpen_of_mem_countableBasis ha [GOAL] case H α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x ⊢ ∀ (a : Set α), IsOpen a → Set.Countable {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} [PROOFSTEP] intro a ha [GOAL] case H α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a ⊢ Set.Countable {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} [PROOFSTEP] suffices H : Set.Countable {x | (x ∈ s ∧ x ∈ a ∧ y x ∉ a) ∧ ¬IsBot x} [GOAL] case H α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a H : Set.Countable {x | (x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a) ∧ ¬IsBot x} ⊢ Set.Countable {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a} [PROOFSTEP] exact H.of_diff (subsingleton_isBot α).countable [GOAL] case H α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a ⊢ Set.Countable {x | (x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a) ∧ ¬IsBot x} [PROOFSTEP] simp only [and_assoc] [GOAL] case H α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a ⊢ Set.Countable {x | x ∈ {x | ∃ y, x ⋖ y} ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} [PROOFSTEP] let t := {x | x ∈ s ∧ x ∈ a ∧ y x ∉ a ∧ ¬IsBot x} [GOAL] case H α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} ⊢ Set.Countable {x | x ∈ {x | ∃ y, x ⋖ y} ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} [PROOFSTEP] have : ∀ x ∈ t, ∃ z < x, Ioc z x ⊆ a := by intro x hx apply exists_Ioc_subset_of_mem_nhds (ha.mem_nhds hx.2.1) simpa only [IsBot, not_forall, not_le] using hx.right.right.right [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} ⊢ ∀ (x : α), x ∈ t → ∃ z, z < x ∧ Ioc z x ⊆ a [PROOFSTEP] intro x hx [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} x : α hx : x ∈ t ⊢ ∃ z, z < x ∧ Ioc z x ⊆ a [PROOFSTEP] apply exists_Ioc_subset_of_mem_nhds (ha.mem_nhds hx.2.1) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} x : α hx : x ∈ t ⊢ ∃ l, l < x [PROOFSTEP] simpa only [IsBot, not_forall, not_le] using hx.right.right.right [GOAL] case H α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} this : ∀ (x : α), x ∈ t → ∃ z, z < x ∧ Ioc z x ⊆ a ⊢ Set.Countable {x | x ∈ {x | ∃ y, x ⋖ y} ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} [PROOFSTEP] choose! z hz h'z using this [GOAL] case H α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a ⊢ Set.Countable {x | x ∈ {x | ∃ y, x ⋖ y} ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} [PROOFSTEP] have : PairwiseDisjoint t fun x => Ioc (z x) x := fun x xt x' x't hxx' => by rcases hxx'.lt_or_lt with (h' | h') · refine' disjoint_left.2 fun u ux ux' => xt.2.2.1 _ refine' h'z x' x't ⟨ux'.1.trans_le (ux.2.trans (hy x xt.1).le), _⟩ by_contra' H exact lt_irrefl _ ((Hy _ _ xt.1 H).trans_lt h') · refine' disjoint_left.2 fun u ux ux' => x't.2.2.1 _ refine' h'z x xt ⟨ux.1.trans_le (ux'.2.trans (hy x' x't.1).le), _⟩ by_contra' H exact lt_irrefl _ ((Hy _ _ x't.1 H).trans_lt h') [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a x : α xt : x ∈ t x' : α x't : x' ∈ t hxx' : x ≠ x' ⊢ (Disjoint on fun x => Ioc (z x) x) x x' [PROOFSTEP] rcases hxx'.lt_or_lt with (h' | h') [GOAL] case inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a x : α xt : x ∈ t x' : α x't : x' ∈ t hxx' : x ≠ x' h' : x < x' ⊢ (Disjoint on fun x => Ioc (z x) x) x x' [PROOFSTEP] refine' disjoint_left.2 fun u ux ux' => xt.2.2.1 _ [GOAL] case inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a x : α xt : x ∈ t x' : α x't : x' ∈ t hxx' : x ≠ x' h' : x < x' u : α ux : u ∈ (fun x => Ioc (z x) x) x ux' : u ∈ (fun x => Ioc (z x) x) x' ⊢ y x ∈ a [PROOFSTEP] refine' h'z x' x't ⟨ux'.1.trans_le (ux.2.trans (hy x xt.1).le), _⟩ [GOAL] case inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a x : α xt : x ∈ t x' : α x't : x' ∈ t hxx' : x ≠ x' h' : x < x' u : α ux : u ∈ (fun x => Ioc (z x) x) x ux' : u ∈ (fun x => Ioc (z x) x) x' ⊢ y x ≤ x' [PROOFSTEP] by_contra' H [GOAL] case inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a x : α xt : x ∈ t x' : α x't : x' ∈ t hxx' : x ≠ x' h' : x < x' u : α ux : u ∈ (fun x => Ioc (z x) x) x ux' : u ∈ (fun x => Ioc (z x) x) x' H : x' < y x ⊢ False [PROOFSTEP] exact lt_irrefl _ ((Hy _ _ xt.1 H).trans_lt h') [GOAL] case inr α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a x : α xt : x ∈ t x' : α x't : x' ∈ t hxx' : x ≠ x' h' : x' < x ⊢ (Disjoint on fun x => Ioc (z x) x) x x' [PROOFSTEP] refine' disjoint_left.2 fun u ux ux' => x't.2.2.1 _ [GOAL] case inr α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a x : α xt : x ∈ t x' : α x't : x' ∈ t hxx' : x ≠ x' h' : x' < x u : α ux : u ∈ (fun x => Ioc (z x) x) x ux' : u ∈ (fun x => Ioc (z x) x) x' ⊢ y x' ∈ a [PROOFSTEP] refine' h'z x xt ⟨ux.1.trans_le (ux'.2.trans (hy x' x't.1).le), _⟩ [GOAL] case inr α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a x : α xt : x ∈ t x' : α x't : x' ∈ t hxx' : x ≠ x' h' : x' < x u : α ux : u ∈ (fun x => Ioc (z x) x) x ux' : u ∈ (fun x => Ioc (z x) x) x' ⊢ y x' ≤ x [PROOFSTEP] by_contra' H [GOAL] case inr α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a x : α xt : x ∈ t x' : α x't : x' ∈ t hxx' : x ≠ x' h' : x' < x u : α ux : u ∈ (fun x => Ioc (z x) x) x ux' : u ∈ (fun x => Ioc (z x) x) x' H : x < y x' ⊢ False [PROOFSTEP] exact lt_irrefl _ ((Hy _ _ x't.1 H).trans_lt h') [GOAL] case H α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a this : PairwiseDisjoint t fun x => Ioc (z x) x ⊢ Set.Countable {x | x ∈ {x | ∃ y, x ⋖ y} ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} [PROOFSTEP] refine' this.countable_of_isOpen (fun x hx => _) fun x hx => ⟨x, hz x hx, le_rfl⟩ [GOAL] case H α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a this : PairwiseDisjoint t fun x => Ioc (z x) x x : α hx : x ∈ t ⊢ IsOpen (Ioc (z x) x) [PROOFSTEP] suffices H : Ioc (z x) x = Ioo (z x) (y x) [GOAL] case H α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a this : PairwiseDisjoint t fun x => Ioc (z x) x x : α hx : x ∈ t H : Ioc (z x) x = Ioo (z x) (y x) ⊢ IsOpen (Ioc (z x) x) [PROOFSTEP] rw [H] [GOAL] case H α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a this : PairwiseDisjoint t fun x => Ioc (z x) x x : α hx : x ∈ t H : Ioc (z x) x = Ioo (z x) (y x) ⊢ IsOpen (Ioo (z x) (y x)) [PROOFSTEP] exact isOpen_Ioo [GOAL] case H α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ✝ : Nontrivial α s : Set α := {x | ∃ y, x ⋖ y} y : α → α hy : ∀ (x : α), x ∈ s → x ⋖ y x Hy : ∀ (x z : α), x ∈ s → z < y x → z ≤ x a : Set α ha : IsOpen a t : Set α := {x | x ∈ s ∧ x ∈ a ∧ ¬y x ∈ a ∧ ¬IsBot x} z : α → α hz : ∀ (x : α), x ∈ t → z x < x h'z : ∀ (x : α), x ∈ t → Ioc (z x) x ⊆ a this : PairwiseDisjoint t fun x => Ioc (z x) x x : α hx : x ∈ t ⊢ Ioc (z x) x = Ioo (z x) (y x) [PROOFSTEP] exact Subset.antisymm (Ioc_subset_Ioo_right (hy x hx.1).lt) fun u hu => ⟨hu.1, Hy _ _ hx.1 hu.2⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ⊢ Set.Countable {x | ∃ y, x < y ∧ Ioo x y = ∅} [PROOFSTEP] simpa only [← covby_iff_Ioo_eq] using countable_setOf_covby_right [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ⊢ Set.Countable {x | ∃ y, y ⋖ x} [PROOFSTEP] convert countable_setOf_covby_right (α := αᵒᵈ) using 5 [GOAL] case h.e'_2.h.h.e'_2.h.h.h.e'_2.h.h.a α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α e_1✝ : α = αᵒᵈ x✝¹ x✝ : α ⊢ x✝ ⋖ x✝¹ ↔ x✝¹ ⋖ x✝ [PROOFSTEP] exact toDual_covby_toDual_iff.symm [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ⊢ Set.Countable {x | ∃ y, y < x ∧ Ioo y x = ∅} [PROOFSTEP] simpa only [← covby_iff_Ioo_eq] using countable_setOf_covby_left [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : LinearOrder α inst✝⁵ : OrderTopology α ι : Type u_1 π : ι → Type u_2 inst✝⁴ : Finite ι inst✝³ : (i : ι) → LinearOrder (π i) inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : ∀ (i : ι), OrderTopology (π i) a b x : (i : ι) → π i a' b' x' : ι → α inst✝ : Nonempty ι ha : ∀ (i : ι), x i < a i ⊢ Iio a ∈ 𝓝 x [PROOFSTEP] refine' mem_of_superset (set_pi_mem_nhds Set.finite_univ fun i _ => _) (pi_univ_Iio_subset a) [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : LinearOrder α inst✝⁵ : OrderTopology α ι : Type u_1 π : ι → Type u_2 inst✝⁴ : Finite ι inst✝³ : (i : ι) → LinearOrder (π i) inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : ∀ (i : ι), OrderTopology (π i) a b x : (i : ι) → π i a' b' x' : ι → α inst✝ : Nonempty ι ha : ∀ (i : ι), x i < a i i : ι x✝ : i ∈ univ ⊢ Iio (a i) ∈ 𝓝 (x i) [PROOFSTEP] exact Iio_mem_nhds (ha i) [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : LinearOrder α inst✝⁵ : OrderTopology α ι : Type u_1 π : ι → Type u_2 inst✝⁴ : Finite ι inst✝³ : (i : ι) → LinearOrder (π i) inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : ∀ (i : ι), OrderTopology (π i) a b x : (i : ι) → π i a' b' x' : ι → α inst✝ : Nonempty ι ha : ∀ (i : ι), a i < x i hb : ∀ (i : ι), x i < b i ⊢ Ioc a b ∈ 𝓝 x [PROOFSTEP] refine' mem_of_superset (set_pi_mem_nhds Set.finite_univ fun i _ => _) (pi_univ_Ioc_subset a b) [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : LinearOrder α inst✝⁵ : OrderTopology α ι : Type u_1 π : ι → Type u_2 inst✝⁴ : Finite ι inst✝³ : (i : ι) → LinearOrder (π i) inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : ∀ (i : ι), OrderTopology (π i) a b x : (i : ι) → π i a' b' x' : ι → α inst✝ : Nonempty ι ha : ∀ (i : ι), a i < x i hb : ∀ (i : ι), x i < b i i : ι x✝ : i ∈ univ ⊢ Ioc (a i) (b i) ∈ 𝓝 (x i) [PROOFSTEP] exact Ioc_mem_nhds (ha i) (hb i) [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : LinearOrder α inst✝⁵ : OrderTopology α ι : Type u_1 π : ι → Type u_2 inst✝⁴ : Finite ι inst✝³ : (i : ι) → LinearOrder (π i) inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : ∀ (i : ι), OrderTopology (π i) a b x : (i : ι) → π i a' b' x' : ι → α inst✝ : Nonempty ι ha : ∀ (i : ι), a i < x i hb : ∀ (i : ι), x i < b i ⊢ Ico a b ∈ 𝓝 x [PROOFSTEP] refine' mem_of_superset (set_pi_mem_nhds Set.finite_univ fun i _ => _) (pi_univ_Ico_subset a b) [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : LinearOrder α inst✝⁵ : OrderTopology α ι : Type u_1 π : ι → Type u_2 inst✝⁴ : Finite ι inst✝³ : (i : ι) → LinearOrder (π i) inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : ∀ (i : ι), OrderTopology (π i) a b x : (i : ι) → π i a' b' x' : ι → α inst✝ : Nonempty ι ha : ∀ (i : ι), a i < x i hb : ∀ (i : ι), x i < b i i : ι x✝ : i ∈ univ ⊢ Ico (a i) (b i) ∈ 𝓝 (x i) [PROOFSTEP] exact Ico_mem_nhds (ha i) (hb i) [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : LinearOrder α inst✝⁵ : OrderTopology α ι : Type u_1 π : ι → Type u_2 inst✝⁴ : Finite ι inst✝³ : (i : ι) → LinearOrder (π i) inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : ∀ (i : ι), OrderTopology (π i) a b x : (i : ι) → π i a' b' x' : ι → α inst✝ : Nonempty ι ha : ∀ (i : ι), a i < x i hb : ∀ (i : ι), x i < b i ⊢ Ioo a b ∈ 𝓝 x [PROOFSTEP] refine' mem_of_superset (set_pi_mem_nhds Set.finite_univ fun i _ => _) (pi_univ_Ioo_subset a b) [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : LinearOrder α inst✝⁵ : OrderTopology α ι : Type u_1 π : ι → Type u_2 inst✝⁴ : Finite ι inst✝³ : (i : ι) → LinearOrder (π i) inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : ∀ (i : ι), OrderTopology (π i) a b x : (i : ι) → π i a' b' x' : ι → α inst✝ : Nonempty ι ha : ∀ (i : ι), a i < x i hb : ∀ (i : ι), x i < b i i : ι x✝ : i ∈ univ ⊢ Ioo (a i) (b i) ∈ 𝓝 (x i) [PROOFSTEP] exact Ioo_mem_nhds (ha i) (hb i) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : NoMaxOrder α x : α ⊢ Disjoint (𝓝 x) atTop [PROOFSTEP] rcases exists_gt x with ⟨y, hy : x < y⟩ [GOAL] case intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : NoMaxOrder α x y : α hy : x < y ⊢ Disjoint (𝓝 x) atTop [PROOFSTEP] refine' disjoint_of_disjoint_of_mem _ (Iio_mem_nhds hy) (mem_atTop y) [GOAL] case intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : NoMaxOrder α x y : α hy : x < y ⊢ Disjoint (Iio y) {b | y ≤ b} [PROOFSTEP] exact disjoint_left.mpr fun z => not_le.2 [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α ⊢ TFAE [s ∈ 𝓝[Ioi a] a, s ∈ 𝓝[Ioc a b] a, s ∈ 𝓝[Ioo a b] a, ∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s] [PROOFSTEP] tfae_have 1 ↔ 2 [GOAL] case tfae_1_iff_2 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α ⊢ s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a [PROOFSTEP] rw [nhdsWithin_Ioc_eq_nhdsWithin_Ioi hab] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a ⊢ TFAE [s ∈ 𝓝[Ioi a] a, s ∈ 𝓝[Ioc a b] a, s ∈ 𝓝[Ioo a b] a, ∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s] [PROOFSTEP] tfae_have 1 ↔ 3 [GOAL] case tfae_1_iff_3 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a ⊢ s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a [PROOFSTEP] rw [nhdsWithin_Ioo_eq_nhdsWithin_Ioi hab] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a ⊢ TFAE [s ∈ 𝓝[Ioi a] a, s ∈ 𝓝[Ioc a b] a, s ∈ 𝓝[Ioo a b] a, ∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s] [PROOFSTEP] tfae_have 4 → 5 [GOAL] case tfae_4_to_5 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a ⊢ (∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s [PROOFSTEP] exact fun ⟨u, umem, hu⟩ => ⟨u, umem.1, hu⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s ⊢ TFAE [s ∈ 𝓝[Ioi a] a, s ∈ 𝓝[Ioc a b] a, s ∈ 𝓝[Ioo a b] a, ∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s] [PROOFSTEP] tfae_have 5 → 1 [GOAL] case tfae_5_to_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s ⊢ (∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s) → s ∈ 𝓝[Ioi a] a [PROOFSTEP] rintro ⟨u, hau, hu⟩ [GOAL] case tfae_5_to_1.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s u : α hau : u ∈ Ioi a hu : Ioo a u ⊆ s ⊢ s ∈ 𝓝[Ioi a] a [PROOFSTEP] exact mem_of_superset (Ioo_mem_nhdsWithin_Ioi ⟨le_refl a, hau⟩) hu [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s tfae_5_to_1 : (∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s) → s ∈ 𝓝[Ioi a] a ⊢ TFAE [s ∈ 𝓝[Ioi a] a, s ∈ 𝓝[Ioc a b] a, s ∈ 𝓝[Ioo a b] a, ∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s] [PROOFSTEP] tfae_have 1 → 4 [GOAL] case tfae_1_to_4 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s tfae_5_to_1 : (∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s) → s ∈ 𝓝[Ioi a] a ⊢ s ∈ 𝓝[Ioi a] a → ∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s [PROOFSTEP] intro h [GOAL] case tfae_1_to_4 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s tfae_5_to_1 : (∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s) → s ∈ 𝓝[Ioi a] a h : s ∈ 𝓝[Ioi a] a ⊢ ∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s [PROOFSTEP] rcases mem_nhdsWithin_iff_exists_mem_nhds_inter.1 h with ⟨v, va, hv⟩ [GOAL] case tfae_1_to_4.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s tfae_5_to_1 : (∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s) → s ∈ 𝓝[Ioi a] a h : s ∈ 𝓝[Ioi a] a v : Set α va : v ∈ 𝓝 a hv : v ∩ Ioi a ⊆ s ⊢ ∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s [PROOFSTEP] rcases exists_Ico_subset_of_mem_nhds' va hab with ⟨u, au, hu⟩ [GOAL] case tfae_1_to_4.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s tfae_5_to_1 : (∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s) → s ∈ 𝓝[Ioi a] a h : s ∈ 𝓝[Ioi a] a v : Set α va : v ∈ 𝓝 a hv : v ∩ Ioi a ⊆ s u : α au : u ∈ Ioc a b hu : Ico a u ⊆ v ⊢ ∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s [PROOFSTEP] refine' ⟨u, au, fun x hx => _⟩ [GOAL] case tfae_1_to_4.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s tfae_5_to_1 : (∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s) → s ∈ 𝓝[Ioi a] a h : s ∈ 𝓝[Ioi a] a v : Set α va : v ∈ 𝓝 a hv : v ∩ Ioi a ⊆ s u : α au : u ∈ Ioc a b hu : Ico a u ⊆ v x : α hx : x ∈ Ioo a u ⊢ x ∈ s [PROOFSTEP] refine' hv ⟨hu ⟨le_of_lt hx.1, hx.2⟩, _⟩ [GOAL] case tfae_1_to_4.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s tfae_5_to_1 : (∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s) → s ∈ 𝓝[Ioi a] a h : s ∈ 𝓝[Ioi a] a v : Set α va : v ∈ 𝓝 a hv : v ∩ Ioi a ⊆ s u : α au : u ∈ Ioc a b hu : Ico a u ⊆ v x : α hx : x ∈ Ioo a u ⊢ x ∈ Ioi a [PROOFSTEP] exact hx.1 [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ioi a] a ↔ s ∈ 𝓝[Ioo a b] a tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s tfae_5_to_1 : (∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s) → s ∈ 𝓝[Ioi a] a tfae_1_to_4 : s ∈ 𝓝[Ioi a] a → ∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s ⊢ TFAE [s ∈ 𝓝[Ioi a] a, s ∈ 𝓝[Ioc a b] a, s ∈ 𝓝[Ioo a b] a, ∃ u, u ∈ Ioc a b ∧ Ioo a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s] [PROOFSTEP] tfae_finish [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α ⊢ 𝓝[Ioi a] a = ⊥ ↔ IsTop a ∨ ∃ b, a ⋖ b [PROOFSTEP] by_cases ha : IsTop a [GOAL] case pos α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α ha : IsTop a ⊢ 𝓝[Ioi a] a = ⊥ ↔ IsTop a ∨ ∃ b, a ⋖ b [PROOFSTEP] simp [ha, ha.isMax.Ioi_eq] [GOAL] case neg α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α ha : ¬IsTop a ⊢ 𝓝[Ioi a] a = ⊥ ↔ IsTop a ∨ ∃ b, a ⋖ b [PROOFSTEP] simp only [ha, false_or] [GOAL] case neg α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α ha : ¬IsTop a ⊢ 𝓝[Ioi a] a = ⊥ ↔ ∃ b, a ⋖ b [PROOFSTEP] rw [isTop_iff_isMax, not_isMax_iff] at ha [GOAL] case neg α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α ha : ∃ b, a < b ⊢ 𝓝[Ioi a] a = ⊥ ↔ ∃ b, a ⋖ b [PROOFSTEP] simp only [(nhdsWithin_Ioi_basis' ha).eq_bot_iff, covby_iff_Ioo_eq] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ⊢ Set.Countable {x | 𝓝[Ioi x] x = ⊥} [PROOFSTEP] simp only [nhdsWithin_Ioi_eq_bot_iff, setOf_or] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology α ⊢ Set.Countable ({a | IsTop a} ∪ {a | ∃ b, a ⋖ b}) [PROOFSTEP] exact (subsingleton_isTop α).countable.union countable_setOf_covby_right [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α ⊢ s ∈ 𝓝[Ioi a] a ↔ ∃ u, u ∈ Ioi a ∧ Ioc a u ⊆ s [PROOFSTEP] rw [mem_nhdsWithin_Ioi_iff_exists_Ioo_subset] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α ⊢ (∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s) ↔ ∃ u, u ∈ Ioi a ∧ Ioc a u ⊆ s [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α ⊢ (∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioc a u ⊆ s [PROOFSTEP] rintro ⟨u, au, as⟩ [GOAL] case mp.intro.intro α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α u : α au : u ∈ Ioi a as : Ioo a u ⊆ s ⊢ ∃ u, u ∈ Ioi a ∧ Ioc a u ⊆ s [PROOFSTEP] rcases exists_between au with ⟨v, hv⟩ [GOAL] case mp.intro.intro.intro α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α u : α au : u ∈ Ioi a as : Ioo a u ⊆ s v : α hv : a < v ∧ v < u ⊢ ∃ u, u ∈ Ioi a ∧ Ioc a u ⊆ s [PROOFSTEP] exact ⟨v, hv.1, fun x hx => as ⟨hx.1, lt_of_le_of_lt hx.2 hv.2⟩⟩ [GOAL] case mpr α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α ⊢ (∃ u, u ∈ Ioi a ∧ Ioc a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s [PROOFSTEP] rintro ⟨u, au, as⟩ [GOAL] case mpr.intro.intro α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α u : α au : u ∈ Ioi a as : Ioc a u ⊆ s ⊢ ∃ u, u ∈ Ioi a ∧ Ioo a u ⊆ s [PROOFSTEP] exact ⟨u, au, Subset.trans Ioo_subset_Ioc_self as⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α h : a < b s : Set α ⊢ TFAE [s ∈ 𝓝[Iio b] b, s ∈ 𝓝[Ico a b] b, s ∈ 𝓝[Ioo a b] b, ∃ l, l ∈ Ico a b ∧ Ioo l b ⊆ s, ∃ l, l ∈ Iio b ∧ Ioo l b ⊆ s] [PROOFSTEP] simpa only [exists_prop, OrderDual.exists, dual_Ioi, dual_Ioc, dual_Ioo] using TFAE_mem_nhdsWithin_Ioi h.dual (ofDual ⁻¹' s) [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMinOrder α inst✝ : DenselyOrdered α a : α s : Set α ⊢ s ∈ 𝓝[Iio a] a ↔ ∃ l, l ∈ Iio a ∧ Ico l a ⊆ s [PROOFSTEP] have : ofDual ⁻¹' s ∈ 𝓝[>] toDual a ↔ _ := mem_nhdsWithin_Ioi_iff_exists_Ioc_subset [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMinOrder α inst✝ : DenselyOrdered α a : α s : Set α this : ↑ofDual ⁻¹' s ∈ 𝓝[Ioi (↑toDual a)] ↑toDual a ↔ ∃ u, u ∈ Ioi (↑toDual a) ∧ Ioc (↑toDual a) u ⊆ ↑ofDual ⁻¹' s ⊢ s ∈ 𝓝[Iio a] a ↔ ∃ l, l ∈ Iio a ∧ Ico l a ⊆ s [PROOFSTEP] simpa only [OrderDual.exists, exists_prop, dual_Ioc] using this [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α ⊢ 𝓝[Iio a] a = ⊥ ↔ IsBot a ∨ ∃ b, b ⋖ a [PROOFSTEP] convert (config := { preTransparency := .default }) nhdsWithin_Ioi_eq_bot_iff (a := OrderDual.toDual a) using 4 [GOAL] case h.e'_2.h.e'_2.h.e'_2.h.h.a α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α e_1✝ : α = (fun x => αᵒᵈ) a x✝ : α ⊢ x✝ ⋖ a ↔ ↑toDual a ⋖ x✝ [PROOFSTEP] exact ofDual_covby_ofDual_iff [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α ⊢ TFAE [s ∈ 𝓝[Ici a] a, s ∈ 𝓝[Icc a b] a, s ∈ 𝓝[Ico a b] a, ∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s] [PROOFSTEP] tfae_have 1 ↔ 2 [GOAL] case tfae_1_iff_2 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α ⊢ s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Icc a b] a [PROOFSTEP] rw [nhdsWithin_Icc_eq_nhdsWithin_Ici hab] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Icc a b] a ⊢ TFAE [s ∈ 𝓝[Ici a] a, s ∈ 𝓝[Icc a b] a, s ∈ 𝓝[Ico a b] a, ∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s] [PROOFSTEP] tfae_have 1 ↔ 3 [GOAL] case tfae_1_iff_3 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Icc a b] a ⊢ s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Ico a b] a [PROOFSTEP] rw [nhdsWithin_Ico_eq_nhdsWithin_Ici hab] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Icc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Ico a b] a ⊢ TFAE [s ∈ 𝓝[Ici a] a, s ∈ 𝓝[Icc a b] a, s ∈ 𝓝[Ico a b] a, ∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s] [PROOFSTEP] tfae_have 1 ↔ 5 [GOAL] case tfae_1_iff_5 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Icc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Ico a b] a ⊢ s ∈ 𝓝[Ici a] a ↔ ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s [PROOFSTEP] exact (nhdsWithin_Ici_basis' ⟨b, hab⟩).mem_iff [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Icc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Ico a b] a tfae_1_iff_5 : s ∈ 𝓝[Ici a] a ↔ ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s ⊢ TFAE [s ∈ 𝓝[Ici a] a, s ∈ 𝓝[Icc a b] a, s ∈ 𝓝[Ico a b] a, ∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s] [PROOFSTEP] tfae_have 4 → 5 [GOAL] case tfae_4_to_5 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Icc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Ico a b] a tfae_1_iff_5 : s ∈ 𝓝[Ici a] a ↔ ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s ⊢ (∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s [PROOFSTEP] exact fun ⟨u, umem, hu⟩ => ⟨u, umem.1, hu⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Icc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Ico a b] a tfae_1_iff_5 : s ∈ 𝓝[Ici a] a ↔ ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s ⊢ TFAE [s ∈ 𝓝[Ici a] a, s ∈ 𝓝[Icc a b] a, s ∈ 𝓝[Ico a b] a, ∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s] [PROOFSTEP] tfae_have 5 → 4 [GOAL] case tfae_5_to_4 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Icc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Ico a b] a tfae_1_iff_5 : s ∈ 𝓝[Ici a] a ↔ ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s ⊢ (∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s) → ∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s [PROOFSTEP] rintro ⟨u, hua, hus⟩ [GOAL] case tfae_5_to_4.intro.intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Icc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Ico a b] a tfae_1_iff_5 : s ∈ 𝓝[Ici a] a ↔ ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s u : α hua : u ∈ Ioi a hus : Ico a u ⊆ s ⊢ ∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s [PROOFSTEP] exact ⟨min u b, ⟨lt_min hua hab, min_le_right _ _⟩, (Ico_subset_Ico_right <| min_le_left _ _).trans hus⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α hab : a < b s : Set α tfae_1_iff_2 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Icc a b] a tfae_1_iff_3 : s ∈ 𝓝[Ici a] a ↔ s ∈ 𝓝[Ico a b] a tfae_1_iff_5 : s ∈ 𝓝[Ici a] a ↔ ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s tfae_4_to_5 : (∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s tfae_5_to_4 : (∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s) → ∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s ⊢ TFAE [s ∈ 𝓝[Ici a] a, s ∈ 𝓝[Icc a b] a, s ∈ 𝓝[Ico a b] a, ∃ u, u ∈ Ioc a b ∧ Ico a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s] [PROOFSTEP] tfae_finish [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a u' : α s : Set α hu' : a < u' ⊢ List.get? [s ∈ 𝓝[Ici a] a, s ∈ 𝓝[Icc a u'] a, s ∈ 𝓝[Ico a u'] a, ∃ u, u ∈ Ioc a u' ∧ Ico a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s] 0 = some (s ∈ 𝓝[Ici a] a) [PROOFSTEP] norm_num [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a u' : α s : Set α hu' : a < u' ⊢ List.get? [s ∈ 𝓝[Ici a] a, s ∈ 𝓝[Icc a u'] a, s ∈ 𝓝[Ico a u'] a, ∃ u, u ∈ Ioc a u' ∧ Ico a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s] 3 = some (∃ u, u ∈ Ioc a u' ∧ Ico a u ⊆ s) [PROOFSTEP] norm_num [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a u' : α s : Set α hu' : a < u' ⊢ List.get? [s ∈ 𝓝[Ici a] a, s ∈ 𝓝[Icc a u'] a, s ∈ 𝓝[Ico a u'] a, ∃ u, u ∈ Ioc a u' ∧ Ico a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s] 0 = some (s ∈ 𝓝[Ici a] a) [PROOFSTEP] norm_num [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a u' : α s : Set α hu' : a < u' ⊢ List.get? [s ∈ 𝓝[Ici a] a, s ∈ 𝓝[Icc a u'] a, s ∈ 𝓝[Ico a u'] a, ∃ u, u ∈ Ioc a u' ∧ Ico a u ⊆ s, ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s] 4 = some (∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s) [PROOFSTEP] norm_num [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α ⊢ s ∈ 𝓝[Ici a] a ↔ ∃ u, a < u ∧ Icc a u ⊆ s [PROOFSTEP] rw [mem_nhdsWithin_Ici_iff_exists_Ico_subset] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α ⊢ (∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s) ↔ ∃ u, a < u ∧ Icc a u ⊆ s [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α ⊢ (∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s) → ∃ u, a < u ∧ Icc a u ⊆ s [PROOFSTEP] rintro ⟨u, au, as⟩ [GOAL] case mp.intro.intro α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α u : α au : u ∈ Ioi a as : Ico a u ⊆ s ⊢ ∃ u, a < u ∧ Icc a u ⊆ s [PROOFSTEP] rcases exists_between au with ⟨v, hv⟩ [GOAL] case mp.intro.intro.intro α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α u : α au : u ∈ Ioi a as : Ico a u ⊆ s v : α hv : a < v ∧ v < u ⊢ ∃ u, a < u ∧ Icc a u ⊆ s [PROOFSTEP] exact ⟨v, hv.1, fun x hx => as ⟨hx.1, lt_of_le_of_lt hx.2 hv.2⟩⟩ [GOAL] case mpr α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α ⊢ (∃ u, a < u ∧ Icc a u ⊆ s) → ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s [PROOFSTEP] rintro ⟨u, au, as⟩ [GOAL] case mpr.intro.intro α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α a : α s : Set α u : α au : a < u as : Icc a u ⊆ s ⊢ ∃ u, u ∈ Ioi a ∧ Ico a u ⊆ s [PROOFSTEP] exact ⟨u, au, Subset.trans Ico_subset_Icc_self as⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a b : α h : a < b s : Set α ⊢ TFAE [s ∈ 𝓝[Iic b] b, s ∈ 𝓝[Icc a b] b, s ∈ 𝓝[Ioc a b] b, ∃ l, l ∈ Ico a b ∧ Ioc l b ⊆ s, ∃ l, l ∈ Iio b ∧ Ioc l b ⊆ s] [PROOFSTEP] simpa only [exists_prop, OrderDual.exists, dual_Ici, dual_Ioc, dual_Icc, dual_Ico] using TFAE_mem_nhdsWithin_Ici h.dual (ofDual ⁻¹' s) [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a l' : α s : Set α hl' : l' < a ⊢ List.get? [s ∈ 𝓝[Iic a] a, s ∈ 𝓝[Icc l' a] a, s ∈ 𝓝[Ioc l' a] a, ∃ l, l ∈ Ico l' a ∧ Ioc l a ⊆ s, ∃ l, l ∈ Iio a ∧ Ioc l a ⊆ s] 0 = some (s ∈ 𝓝[Iic a] a) [PROOFSTEP] norm_num [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a l' : α s : Set α hl' : l' < a ⊢ List.get? [s ∈ 𝓝[Iic a] a, s ∈ 𝓝[Icc l' a] a, s ∈ 𝓝[Ioc l' a] a, ∃ l, l ∈ Ico l' a ∧ Ioc l a ⊆ s, ∃ l, l ∈ Iio a ∧ Ioc l a ⊆ s] 3 = some (∃ l, l ∈ Ico l' a ∧ Ioc l a ⊆ s) [PROOFSTEP] norm_num [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a l' : α s : Set α hl' : l' < a ⊢ List.get? [s ∈ 𝓝[Iic a] a, s ∈ 𝓝[Icc l' a] a, s ∈ 𝓝[Ioc l' a] a, ∃ l, l ∈ Ico l' a ∧ Ioc l a ⊆ s, ∃ l, l ∈ Iio a ∧ Ioc l a ⊆ s] 0 = some (s ∈ 𝓝[Iic a] a) [PROOFSTEP] norm_num [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a l' : α s : Set α hl' : l' < a ⊢ List.get? [s ∈ 𝓝[Iic a] a, s ∈ 𝓝[Icc l' a] a, s ∈ 𝓝[Ioc l' a] a, ∃ l, l ∈ Ico l' a ∧ Ioc l a ⊆ s, ∃ l, l ∈ Iio a ∧ Ioc l a ⊆ s] 4 = some (∃ l, l ∈ Iio a ∧ Ioc l a ⊆ s) [PROOFSTEP] norm_num [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMinOrder α inst✝ : DenselyOrdered α a : α s : Set α ⊢ (∃ u, ↑toDual a < ↑toDual u ∧ Icc (↑toDual a) (↑toDual u) ⊆ ↑ofDual ⁻¹' s) ↔ ∃ l, l < a ∧ Icc l a ⊆ s [PROOFSTEP] simp only [dual_Icc] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : NoMinOrder α inst✝ : DenselyOrdered α a : α s : Set α ⊢ (∃ u, ↑toDual a < ↑toDual u ∧ ↑ofDual ⁻¹' Icc u a ⊆ ↑ofDual ⁻¹' s) ↔ ∃ l, l < a ∧ Icc l a ⊆ s [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α a : α ⊢ 𝓝 a = ⨅ (r : α) (_ : r > 0), 𝓟 {b | |a - b| < r} [PROOFSTEP] simp only [nhds_eq_order, abs_lt, setOf_and, ← inf_principal, iInf_inf_eq] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α a : α ⊢ (⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b)) ⊓ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b) = (⨅ (x : α) (_ : x > 0), 𝓟 {a_1 | -x < a - a_1}) ⊓ ⨅ (x : α) (_ : x > 0), 𝓟 {a_1 | a - a_1 < x} [PROOFSTEP] refine (congr_arg₂ _ ?_ ?_).trans inf_comm [GOAL] case refine_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α a : α ⊢ ⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b) = ⨅ (x : α) (_ : x > 0), 𝓟 {a_1 | a - a_1 < x} [PROOFSTEP] refine (Equiv.subLeft a).iInf_congr fun x => ?_ [GOAL] case refine_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α a x : α ⊢ ⨅ (_ : ↑(Equiv.subLeft a) x > 0), 𝓟 {a_1 | a - a_1 < ↑(Equiv.subLeft a) x} = ⨅ (_ : x ∈ Iio a), 𝓟 (Ioi x) [PROOFSTEP] simp [Ioi] [GOAL] case refine_2 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α a : α ⊢ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b) = ⨅ (x : α) (_ : x > 0), 𝓟 {a_1 | -x < a - a_1} [PROOFSTEP] refine (Equiv.subRight a).iInf_congr fun x => ?_ [GOAL] case refine_2 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α a x : α ⊢ ⨅ (_ : ↑(Equiv.subRight a) x > 0), 𝓟 {a_1 | -↑(Equiv.subRight a) x < a - a_1} = ⨅ (_ : x ∈ Ioi a), 𝓟 (Iio x) [PROOFSTEP] simp [Iio] [GOAL] α✝ : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α✝ inst✝³ : LinearOrderedAddCommGroup α✝ inst✝² : OrderTopology α✝ l : Filter β f g : β → α✝ α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : LinearOrderedAddCommGroup α h_nhds : ∀ (a : α), 𝓝 a = ⨅ (r : α) (_ : r > 0), 𝓟 {b | |a - b| < r} ⊢ OrderTopology α [PROOFSTEP] refine' ⟨eq_of_nhds_eq_nhds fun a => _⟩ [GOAL] α✝ : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α✝ inst✝³ : LinearOrderedAddCommGroup α✝ inst✝² : OrderTopology α✝ l : Filter β f g : β → α✝ α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : LinearOrderedAddCommGroup α h_nhds : ∀ (a : α), 𝓝 a = ⨅ (r : α) (_ : r > 0), 𝓟 {b | |a - b| < r} a : α ⊢ 𝓝 a = 𝓝 a [PROOFSTEP] rw [h_nhds] [GOAL] α✝ : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α✝ inst✝³ : LinearOrderedAddCommGroup α✝ inst✝² : OrderTopology α✝ l : Filter β f g : β → α✝ α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : LinearOrderedAddCommGroup α h_nhds : ∀ (a : α), 𝓝 a = ⨅ (r : α) (_ : r > 0), 𝓟 {b | |a - b| < r} a : α ⊢ ⨅ (r : α) (_ : r > 0), 𝓟 {b | |a - b| < r} = 𝓝 a [PROOFSTEP] letI := Preorder.topology α [GOAL] α✝ : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α✝ inst✝³ : LinearOrderedAddCommGroup α✝ inst✝² : OrderTopology α✝ l : Filter β f g : β → α✝ α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : LinearOrderedAddCommGroup α h_nhds : ∀ (a : α), 𝓝 a = ⨅ (r : α) (_ : r > 0), 𝓟 {b | |a - b| < r} a : α this : TopologicalSpace α := Preorder.topology α ⊢ ⨅ (r : α) (_ : r > 0), 𝓟 {b | |a - b| < r} = 𝓝 a [PROOFSTEP] letI : OrderTopology α := ⟨rfl⟩ [GOAL] α✝ : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α✝ inst✝³ : LinearOrderedAddCommGroup α✝ inst✝² : OrderTopology α✝ l : Filter β f g : β → α✝ α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : LinearOrderedAddCommGroup α h_nhds : ∀ (a : α), 𝓝 a = ⨅ (r : α) (_ : r > 0), 𝓟 {b | |a - b| < r} a : α this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α := { topology_eq_generate_intervals := rfl } ⊢ ⨅ (r : α) (_ : r > 0), 𝓟 {b | |a - b| < r} = 𝓝 a [PROOFSTEP] exact (nhds_eq_iInf_abs_sub a).symm [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α x : Filter β a : α ⊢ Tendsto f x (𝓝 a) ↔ ∀ (ε : α), ε > 0 → ∀ᶠ (b : β) in x, |f b - a| < ε [PROOFSTEP] simp [nhds_eq_iInf_abs_sub, abs_sub_comm a] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α a ε : α hε : 0 < ε ⊢ {x | (fun x => |x - a| < ε) x} ∈ 𝓟 {b | |a - b| < ε} [PROOFSTEP] simp only [abs_sub_comm, mem_principal_self] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l (𝓝 C) hg : Tendsto g l atTop ⊢ Tendsto (fun x => f x + g x) l atTop [PROOFSTEP] nontriviality α [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l (𝓝 C) hg : Tendsto g l atTop ✝ : Nontrivial α ⊢ Tendsto (fun x => f x + g x) l atTop [PROOFSTEP] obtain ⟨C', hC'⟩ : ∃ C', C' < C := exists_lt C [GOAL] case intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l (𝓝 C) hg : Tendsto g l atTop ✝ : Nontrivial α C' : α hC' : C' < C ⊢ Tendsto (fun x => f x + g x) l atTop [PROOFSTEP] refine' tendsto_atTop_add_left_of_le' _ C' _ hg [GOAL] case intro α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l (𝓝 C) hg : Tendsto g l atTop ✝ : Nontrivial α C' : α hC' : C' < C ⊢ ∀ᶠ (x : β) in l, C' ≤ f x [PROOFSTEP] exact (hf.eventually (lt_mem_nhds hC')).mono fun x => le_of_lt [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l atTop hg : Tendsto g l (𝓝 C) ⊢ Tendsto (fun x => f x + g x) l atTop [PROOFSTEP] conv in _ + _ => rw [add_comm] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l atTop hg : Tendsto g l (𝓝 C) x : β | f x + g x [PROOFSTEP] rw [add_comm] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l atTop hg : Tendsto g l (𝓝 C) x : β | f x + g x [PROOFSTEP] rw [add_comm] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l atTop hg : Tendsto g l (𝓝 C) x : β | f x + g x [PROOFSTEP] rw [add_comm] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l atTop hg : Tendsto g l (𝓝 C) ⊢ Tendsto (fun x => g x + f x) l atTop [PROOFSTEP] exact hg.add_atTop hf [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l atBot hg : Tendsto g l (𝓝 C) ⊢ Tendsto (fun x => f x + g x) l atBot [PROOFSTEP] conv in _ + _ => rw [add_comm] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l atBot hg : Tendsto g l (𝓝 C) x : β | f x + g x [PROOFSTEP] rw [add_comm] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l atBot hg : Tendsto g l (𝓝 C) x : β | f x + g x [PROOFSTEP] rw [add_comm] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l atBot hg : Tendsto g l (𝓝 C) x : β | f x + g x [PROOFSTEP] rw [add_comm] [GOAL] α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : OrderTopology α l : Filter β f g : β → α C : α hf : Tendsto f l atBot hg : Tendsto g l (𝓝 C) ⊢ Tendsto (fun x => g x + f x) l atBot [PROOFSTEP] exact hg.add_atBot hf [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrderedAddCommGroup α inst✝¹ : OrderTopology α l : Filter β f g : β → α inst✝ : NoMaxOrder α a : α ⊢ HasBasis (𝓝 a) (fun ε => 0 < ε) fun ε => {b | |b - a| < ε} [PROOFSTEP] simp only [nhds_eq_iInf_abs_sub, abs_sub_comm (a := a)] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrderedAddCommGroup α inst✝¹ : OrderTopology α l : Filter β f g : β → α inst✝ : NoMaxOrder α a : α ⊢ HasBasis (⨅ (r : α) (_ : r > 0), 𝓟 {b | |b - a| < r}) (fun ε => 0 < ε) fun ε => {b | |b - a| < ε} [PROOFSTEP] refine hasBasis_biInf_principal' (fun x hx y hy => ?_) (exists_gt _) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrderedAddCommGroup α inst✝¹ : OrderTopology α l : Filter β f g : β → α inst✝ : NoMaxOrder α a x : α hx : x > 0 y : α hy : y > 0 ⊢ ∃ k, k > 0 ∧ {b | |b - a| < k} ⊆ {b | |b - a| < x} ∧ {b | |b - a| < k} ⊆ {b | |b - a| < y} [PROOFSTEP] exact ⟨min x y, lt_min hx hy, fun _ hz => hz.trans_le (min_le_left _ _), fun _ hz => hz.trans_le (min_le_right _ _)⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrderedAddCommGroup α inst✝¹ : OrderTopology α l : Filter β f g : β → α inst✝ : NoMaxOrder α a : α ⊢ HasBasis (𝓝 a) (fun ε => 0 < ε) fun ε => Ioo (a - ε) (a + ε) [PROOFSTEP] convert nhds_basis_abs_sub_lt a [GOAL] case h.e'_5.h α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrderedAddCommGroup α inst✝¹ : OrderTopology α l : Filter β f g : β → α inst✝ : NoMaxOrder α a x✝ : α ⊢ Ioo (a - x✝) (a + x✝) = {b | |b - a| < x✝} [PROOFSTEP] simp only [Ioo, abs_lt, ← sub_lt_iff_lt_add, neg_lt_sub_iff_lt_add, sub_lt_comm] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrderedAddCommGroup α inst✝¹ : OrderTopology α l : Filter β f g : β → α inst✝ : NoMaxOrder α ⊢ HasBasis (𝓝 0) (fun ε => 0 < ε) fun ε => {b | |b| < ε} [PROOFSTEP] simpa using nhds_basis_abs_sub_lt (0 : α) [GOAL] α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrder α inst✝² : LinearOrder β inst✝¹ : OrderTopology α inst✝ : OrderTopology β a : α s : Set α ha : IsLUB s a hs : Set.Nonempty s ⊢ ∃ᶠ (x : α) in 𝓝[Iic a] a, x ∈ s [PROOFSTEP] rcases hs with ⟨a', ha'⟩ [GOAL] case intro α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrder α inst✝² : LinearOrder β inst✝¹ : OrderTopology α inst✝ : OrderTopology β a : α s : Set α ha : IsLUB s a a' : α ha' : a' ∈ s ⊢ ∃ᶠ (x : α) in 𝓝[Iic a] a, x ∈ s [PROOFSTEP] intro h [GOAL] case intro α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrder α inst✝² : LinearOrder β inst✝¹ : OrderTopology α inst✝ : OrderTopology β a : α s : Set α ha : IsLUB s a a' : α ha' : a' ∈ s h : ∀ᶠ (x : α) in 𝓝[Iic a] a, ¬(fun x => x ∈ s) x ⊢ False [PROOFSTEP] rcases(ha.1 ha').eq_or_lt with (rfl | ha'a) [GOAL] case intro.inl α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrder α inst✝² : LinearOrder β inst✝¹ : OrderTopology α inst✝ : OrderTopology β s : Set α a' : α ha' : a' ∈ s ha : IsLUB s a' h : ∀ᶠ (x : α) in 𝓝[Iic a'] a', ¬(fun x => x ∈ s) x ⊢ False [PROOFSTEP] exact h.self_of_nhdsWithin le_rfl ha' [GOAL] case intro.inr α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrder α inst✝² : LinearOrder β inst✝¹ : OrderTopology α inst✝ : OrderTopology β a : α s : Set α ha : IsLUB s a a' : α ha' : a' ∈ s h : ∀ᶠ (x : α) in 𝓝[Iic a] a, ¬(fun x => x ∈ s) x ha'a : a' < a ⊢ False [PROOFSTEP] rcases(mem_nhdsWithin_Iic_iff_exists_Ioc_subset' ha'a).1 h with ⟨b, hba, hb⟩ [GOAL] case intro.inr.intro.intro α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrder α inst✝² : LinearOrder β inst✝¹ : OrderTopology α inst✝ : OrderTopology β a : α s : Set α ha : IsLUB s a a' : α ha' : a' ∈ s h : ∀ᶠ (x : α) in 𝓝[Iic a] a, ¬(fun x => x ∈ s) x ha'a : a' < a b : α hba : b ∈ Iio a hb : Ioc b a ⊆ {x | (fun x => ¬(fun x => x ∈ s) x) x} ⊢ False [PROOFSTEP] rcases ha.exists_between hba with ⟨b', hb's, hb'⟩ [GOAL] case intro.inr.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrder α inst✝² : LinearOrder β inst✝¹ : OrderTopology α inst✝ : OrderTopology β a : α s : Set α ha : IsLUB s a a' : α ha' : a' ∈ s h : ∀ᶠ (x : α) in 𝓝[Iic a] a, ¬(fun x => x ∈ s) x ha'a : a' < a b : α hba : b ∈ Iio a hb : Ioc b a ⊆ {x | (fun x => ¬(fun x => x ∈ s) x) x} b' : α hb's : b' ∈ s hb' : b < b' ∧ b' ≤ a ⊢ False [PROOFSTEP] exact hb hb' hb's [GOAL] α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrder α inst✝² : LinearOrder β inst✝¹ : OrderTopology α inst✝ : OrderTopology β s : Set α a : α hsa : a ∈ upperBounds s hsf : a ∈ closure s ⊢ IsLUB s a [PROOFSTEP] rw [mem_closure_iff_clusterPt, ClusterPt, inf_comm] at hsf [GOAL] α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrder α inst✝² : LinearOrder β inst✝¹ : OrderTopology α inst✝ : OrderTopology β s : Set α a : α hsa : a ∈ upperBounds s hsf : NeBot (𝓟 s ⊓ 𝓝 a) ⊢ IsLUB s a [PROOFSTEP] exact isLUB_of_mem_nhds hsa (mem_principal_self s) [GOAL] α : Type u β : Type v γ : Type w inst✝⁸ : TopologicalSpace α inst✝⁷ : TopologicalSpace β inst✝⁶ : LinearOrder α inst✝⁵ : LinearOrder β inst✝⁴ : OrderTopology α inst✝³ : OrderTopology β inst✝² : Preorder γ inst✝¹ : TopologicalSpace γ inst✝ : OrderClosedTopology γ f : α → γ s : Set α a : α b : γ hf : MonotoneOn f s ha : IsLUB s a hb : Tendsto f (𝓝[s] a) (𝓝 b) ⊢ b ∈ upperBounds (f '' s) [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝⁸ : TopologicalSpace α inst✝⁷ : TopologicalSpace β inst✝⁶ : LinearOrder α inst✝⁵ : LinearOrder β inst✝⁴ : OrderTopology α inst✝³ : OrderTopology β inst✝² : Preorder γ inst✝¹ : TopologicalSpace γ inst✝ : OrderClosedTopology γ f : α → γ s : Set α a : α b : γ hf : MonotoneOn f s ha : IsLUB s a hb : Tendsto f (𝓝[s] a) (𝓝 b) x : α hx : x ∈ s ⊢ f x ≤ b [PROOFSTEP] replace ha := ha.inter_Ici_of_mem hx [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝⁸ : TopologicalSpace α inst✝⁷ : TopologicalSpace β inst✝⁶ : LinearOrder α inst✝⁵ : LinearOrder β inst✝⁴ : OrderTopology α inst✝³ : OrderTopology β inst✝² : Preorder γ inst✝¹ : TopologicalSpace γ inst✝ : OrderClosedTopology γ f : α → γ s : Set α a : α b : γ hf : MonotoneOn f s hb : Tendsto f (𝓝[s] a) (𝓝 b) x : α hx : x ∈ s ha : IsLUB (s ∩ Ici x) a ⊢ f x ≤ b [PROOFSTEP] haveI := ha.nhdsWithin_neBot ⟨x, hx, le_rfl⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝⁸ : TopologicalSpace α inst✝⁷ : TopologicalSpace β inst✝⁶ : LinearOrder α inst✝⁵ : LinearOrder β inst✝⁴ : OrderTopology α inst✝³ : OrderTopology β inst✝² : Preorder γ inst✝¹ : TopologicalSpace γ inst✝ : OrderClosedTopology γ f : α → γ s : Set α a : α b : γ hf : MonotoneOn f s hb : Tendsto f (𝓝[s] a) (𝓝 b) x : α hx : x ∈ s ha : IsLUB (s ∩ Ici x) a this : NeBot (𝓝[s ∩ Ici x] a) ⊢ f x ≤ b [PROOFSTEP] refine' ge_of_tendsto (hb.mono_left (nhdsWithin_mono _ (inter_subset_left s (Ici x)))) _ [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝⁸ : TopologicalSpace α inst✝⁷ : TopologicalSpace β inst✝⁶ : LinearOrder α inst✝⁵ : LinearOrder β inst✝⁴ : OrderTopology α inst✝³ : OrderTopology β inst✝² : Preorder γ inst✝¹ : TopologicalSpace γ inst✝ : OrderClosedTopology γ f : α → γ s : Set α a : α b : γ hf : MonotoneOn f s hb : Tendsto f (𝓝[s] a) (𝓝 b) x : α hx : x ∈ s ha : IsLUB (s ∩ Ici x) a this : NeBot (𝓝[s ∩ Ici x] a) ⊢ ∀ᶠ (c : α) in 𝓝[s ∩ Ici x] a, f x ≤ f c [PROOFSTEP] exact mem_of_superset self_mem_nhdsWithin fun y hy => hf hx hy.1 hy.2 [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x not_mem : ¬x ∈ t ht : Set.Nonempty t ⊢ ∃ u, StrictMono u ∧ (∀ (n : ℕ), u n < x) ∧ Tendsto u atTop (𝓝 x) ∧ ∀ (n : ℕ), u n ∈ t [PROOFSTEP] obtain ⟨v, hvx, hvt⟩ := exists_seq_forall_of_frequently (htx.frequently_mem ht) [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x not_mem : ¬x ∈ t ht : Set.Nonempty t v : ℕ → α hvx : Tendsto v atTop (𝓝[Iic x] x) hvt : ∀ (n : ℕ), v n ∈ t ⊢ ∃ u, StrictMono u ∧ (∀ (n : ℕ), u n < x) ∧ Tendsto u atTop (𝓝 x) ∧ ∀ (n : ℕ), u n ∈ t [PROOFSTEP] replace hvx := hvx.mono_right nhdsWithin_le_nhds [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x not_mem : ¬x ∈ t ht : Set.Nonempty t v : ℕ → α hvt : ∀ (n : ℕ), v n ∈ t hvx : Tendsto v atTop (𝓝 x) ⊢ ∃ u, StrictMono u ∧ (∀ (n : ℕ), u n < x) ∧ Tendsto u atTop (𝓝 x) ∧ ∀ (n : ℕ), u n ∈ t [PROOFSTEP] have hvx' : ∀ {n}, v n < x := (htx.1 (hvt _)).lt_of_ne (ne_of_mem_of_not_mem (hvt _) not_mem) [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x not_mem : ¬x ∈ t ht : Set.Nonempty t v : ℕ → α hvt : ∀ (n : ℕ), v n ∈ t hvx : Tendsto v atTop (𝓝 x) hvx' : ∀ {n : ℕ}, v n < x ⊢ ∃ u, StrictMono u ∧ (∀ (n : ℕ), u n < x) ∧ Tendsto u atTop (𝓝 x) ∧ ∀ (n : ℕ), u n ∈ t [PROOFSTEP] have : ∀ k, ∀ᶠ l in atTop, v k < v l := fun k => hvx.eventually (lt_mem_nhds hvx') [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x not_mem : ¬x ∈ t ht : Set.Nonempty t v : ℕ → α hvt : ∀ (n : ℕ), v n ∈ t hvx : Tendsto v atTop (𝓝 x) hvx' : ∀ {n : ℕ}, v n < x this : ∀ (k : ℕ), ∀ᶠ (l : ℕ) in atTop, v k < v l ⊢ ∃ u, StrictMono u ∧ (∀ (n : ℕ), u n < x) ∧ Tendsto u atTop (𝓝 x) ∧ ∀ (n : ℕ), u n ∈ t [PROOFSTEP] choose N hN hvN using fun k => ((eventually_gt_atTop k).and (this k)).exists [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x not_mem : ¬x ∈ t ht : Set.Nonempty t v : ℕ → α hvt : ∀ (n : ℕ), v n ∈ t hvx : Tendsto v atTop (𝓝 x) hvx' : ∀ {n : ℕ}, v n < x this : ∀ (k : ℕ), ∀ᶠ (l : ℕ) in atTop, v k < v l N : ℕ → ℕ hN : ∀ (k : ℕ), k < N k hvN : ∀ (k : ℕ), v k < v (N k) ⊢ ∃ u, StrictMono u ∧ (∀ (n : ℕ), u n < x) ∧ Tendsto u atTop (𝓝 x) ∧ ∀ (n : ℕ), u n ∈ t [PROOFSTEP] refine ⟨fun k => v (N^[k] 0), strictMono_nat_of_lt_succ fun _ => ?_, fun _ => hvx', hvx.comp (strictMono_nat_of_lt_succ fun _ => ?_).tendsto_atTop, fun _ => hvt _⟩ [GOAL] case intro.intro.refine_1 α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x not_mem : ¬x ∈ t ht : Set.Nonempty t v : ℕ → α hvt : ∀ (n : ℕ), v n ∈ t hvx : Tendsto v atTop (𝓝 x) hvx' : ∀ {n : ℕ}, v n < x this : ∀ (k : ℕ), ∀ᶠ (l : ℕ) in atTop, v k < v l N : ℕ → ℕ hN : ∀ (k : ℕ), k < N k hvN : ∀ (k : ℕ), v k < v (N k) x✝ : ℕ ⊢ v (N^[x✝] 0) < v (N^[x✝ + 1] 0) [PROOFSTEP] rw [iterate_succ_apply'] [GOAL] case intro.intro.refine_1 α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x not_mem : ¬x ∈ t ht : Set.Nonempty t v : ℕ → α hvt : ∀ (n : ℕ), v n ∈ t hvx : Tendsto v atTop (𝓝 x) hvx' : ∀ {n : ℕ}, v n < x this : ∀ (k : ℕ), ∀ᶠ (l : ℕ) in atTop, v k < v l N : ℕ → ℕ hN : ∀ (k : ℕ), k < N k hvN : ∀ (k : ℕ), v k < v (N k) x✝ : ℕ ⊢ v (N^[x✝] 0) < v (N (N^[x✝] 0)) [PROOFSTEP] exact hvN _ [GOAL] case intro.intro.refine_2 α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x not_mem : ¬x ∈ t ht : Set.Nonempty t v : ℕ → α hvt : ∀ (n : ℕ), v n ∈ t hvx : Tendsto v atTop (𝓝 x) hvx' : ∀ {n : ℕ}, v n < x this : ∀ (k : ℕ), ∀ᶠ (l : ℕ) in atTop, v k < v l N : ℕ → ℕ hN : ∀ (k : ℕ), k < N k hvN : ∀ (k : ℕ), v k < v (N k) x✝ : ℕ ⊢ N^[x✝] 0 < N^[x✝ + 1] 0 [PROOFSTEP] rw [iterate_succ_apply'] [GOAL] case intro.intro.refine_2 α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x not_mem : ¬x ∈ t ht : Set.Nonempty t v : ℕ → α hvt : ∀ (n : ℕ), v n ∈ t hvx : Tendsto v atTop (𝓝 x) hvx' : ∀ {n : ℕ}, v n < x this : ∀ (k : ℕ), ∀ᶠ (l : ℕ) in atTop, v k < v l N : ℕ → ℕ hN : ∀ (k : ℕ), k < N k hvN : ∀ (k : ℕ), v k < v (N k) x✝ : ℕ ⊢ N^[x✝] 0 < N (N^[x✝] 0) [PROOFSTEP] exact hN _ [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x ht : Set.Nonempty t ⊢ ∃ u, Monotone u ∧ (∀ (n : ℕ), u n ≤ x) ∧ Tendsto u atTop (𝓝 x) ∧ ∀ (n : ℕ), u n ∈ t [PROOFSTEP] by_cases h : x ∈ t [GOAL] case pos α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x ht : Set.Nonempty t h : x ∈ t ⊢ ∃ u, Monotone u ∧ (∀ (n : ℕ), u n ≤ x) ∧ Tendsto u atTop (𝓝 x) ∧ ∀ (n : ℕ), u n ∈ t [PROOFSTEP] exact ⟨fun _ => x, monotone_const, fun n => le_rfl, tendsto_const_nhds, fun _ => h⟩ [GOAL] case neg α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x ht : Set.Nonempty t h : ¬x ∈ t ⊢ ∃ u, Monotone u ∧ (∀ (n : ℕ), u n ≤ x) ∧ Tendsto u atTop (𝓝 x) ∧ ∀ (n : ℕ), u n ∈ t [PROOFSTEP] rcases htx.exists_seq_strictMono_tendsto_of_not_mem h ht with ⟨u, hu⟩ [GOAL] case neg.intro α : Type u β : Type v γ : Type w inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : OrderTopology α inst✝¹ : OrderTopology β t : Set α x : α inst✝ : IsCountablyGenerated (𝓝 x) htx : IsLUB t x ht : Set.Nonempty t h : ¬x ∈ t u : ℕ → α hu : StrictMono u ∧ (∀ (n : ℕ), u n < x) ∧ Tendsto u atTop (𝓝 x) ∧ ∀ (n : ℕ), u n ∈ t ⊢ ∃ u, Monotone u ∧ (∀ (n : ℕ), u n ≤ x) ∧ Tendsto u atTop (𝓝 x) ∧ ∀ (n : ℕ), u n ∈ t [PROOFSTEP] exact ⟨u, hu.1.monotone, fun n => (hu.2.1 n).le, hu.2.2⟩ [GOAL] α✝ : Type u β : Type v γ : Type w inst✝¹⁰ : TopologicalSpace α✝ inst✝⁹ : TopologicalSpace β inst✝⁸ : LinearOrder α✝ inst✝⁷ : LinearOrder β inst✝⁶ : OrderTopology α✝ inst✝⁵ : OrderTopology β α : Type u_1 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : DenselyOrdered α inst✝¹ : OrderTopology α inst✝ : FirstCountableTopology α x y : α hy : y < x ⊢ ∃ u, StrictMono u ∧ (∀ (n : ℕ), u n ∈ Ioo y x) ∧ Tendsto u atTop (𝓝 x) [PROOFSTEP] have hx : x ∉ Ioo y x := fun h => (lt_irrefl x h.2).elim [GOAL] α✝ : Type u β : Type v γ : Type w inst✝¹⁰ : TopologicalSpace α✝ inst✝⁹ : TopologicalSpace β inst✝⁸ : LinearOrder α✝ inst✝⁷ : LinearOrder β inst✝⁶ : OrderTopology α✝ inst✝⁵ : OrderTopology β α : Type u_1 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : DenselyOrdered α inst✝¹ : OrderTopology α inst✝ : FirstCountableTopology α x y : α hy : y < x hx : ¬x ∈ Ioo y x ⊢ ∃ u, StrictMono u ∧ (∀ (n : ℕ), u n ∈ Ioo y x) ∧ Tendsto u atTop (𝓝 x) [PROOFSTEP] have ht : Set.Nonempty (Ioo y x) := nonempty_Ioo.2 hy [GOAL] α✝ : Type u β : Type v γ : Type w inst✝¹⁰ : TopologicalSpace α✝ inst✝⁹ : TopologicalSpace β inst✝⁸ : LinearOrder α✝ inst✝⁷ : LinearOrder β inst✝⁶ : OrderTopology α✝ inst✝⁵ : OrderTopology β α : Type u_1 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : DenselyOrdered α inst✝¹ : OrderTopology α inst✝ : FirstCountableTopology α x y : α hy : y < x hx : ¬x ∈ Ioo y x ht : Set.Nonempty (Ioo y x) ⊢ ∃ u, StrictMono u ∧ (∀ (n : ℕ), u n ∈ Ioo y x) ∧ Tendsto u atTop (𝓝 x) [PROOFSTEP] rcases(isLUB_Ioo hy).exists_seq_strictMono_tendsto_of_not_mem hx ht with ⟨u, hu⟩ [GOAL] case intro α✝ : Type u β : Type v γ : Type w inst✝¹⁰ : TopologicalSpace α✝ inst✝⁹ : TopologicalSpace β inst✝⁸ : LinearOrder α✝ inst✝⁷ : LinearOrder β inst✝⁶ : OrderTopology α✝ inst✝⁵ : OrderTopology β α : Type u_1 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : DenselyOrdered α inst✝¹ : OrderTopology α inst✝ : FirstCountableTopology α x y : α hy : y < x hx : ¬x ∈ Ioo y x ht : Set.Nonempty (Ioo y x) u : ℕ → α hu : StrictMono u ∧ (∀ (n : ℕ), u n < x) ∧ Tendsto u atTop (𝓝 x) ∧ ∀ (n : ℕ), u n ∈ Ioo y x ⊢ ∃ u, StrictMono u ∧ (∀ (n : ℕ), u n ∈ Ioo y x) ∧ Tendsto u atTop (𝓝 x) [PROOFSTEP] exact ⟨u, hu.1, hu.2.2.symm⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝⁸ : TopologicalSpace α inst✝⁷ : TopologicalSpace β inst✝⁶ : LinearOrder α inst✝⁵ : LinearOrder β inst✝⁴ : OrderTopology α inst✝³ : OrderTopology β inst✝² : DenselyOrdered α inst✝¹ : NoMinOrder α inst✝ : FirstCountableTopology α x : α ⊢ ∃ u, StrictMono u ∧ (∀ (n : ℕ), u n < x) ∧ Tendsto u atTop (𝓝 x) [PROOFSTEP] obtain ⟨y, hy⟩ : ∃ y, y < x := exists_lt x [GOAL] case intro α : Type u β : Type v γ : Type w inst✝⁸ : TopologicalSpace α inst✝⁷ : TopologicalSpace β inst✝⁶ : LinearOrder α inst✝⁵ : LinearOrder β inst✝⁴ : OrderTopology α inst✝³ : OrderTopology β inst✝² : DenselyOrdered α inst✝¹ : NoMinOrder α inst✝ : FirstCountableTopology α x y : α hy : y < x ⊢ ∃ u, StrictMono u ∧ (∀ (n : ℕ), u n < x) ∧ Tendsto u atTop (𝓝 x) [PROOFSTEP] rcases exists_seq_strictMono_tendsto' hy with ⟨u, hu_mono, hu_mem, hux⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝⁸ : TopologicalSpace α inst✝⁷ : TopologicalSpace β inst✝⁶ : LinearOrder α inst✝⁵ : LinearOrder β inst✝⁴ : OrderTopology α inst✝³ : OrderTopology β inst✝² : DenselyOrdered α inst✝¹ : NoMinOrder α inst✝ : FirstCountableTopology α x y : α hy : y < x u : ℕ → α hu_mono : StrictMono u hu_mem : ∀ (n : ℕ), u n ∈ Ioo y x hux : Tendsto u atTop (𝓝 x) ⊢ ∃ u, StrictMono u ∧ (∀ (n : ℕ), u n < x) ∧ Tendsto u atTop (𝓝 x) [PROOFSTEP] exact ⟨u, hu_mono, fun n => (hu_mem n).2, hux⟩ [GOAL] α✝ : Type u β : Type v γ : Type w inst✝⁹ : TopologicalSpace α✝ inst✝⁸ : TopologicalSpace β inst✝⁷ : LinearOrder α✝ inst✝⁶ : LinearOrder β inst✝⁵ : OrderTopology α✝ inst✝⁴ : OrderTopology β α : Type u_1 inst✝³ : ConditionallyCompleteLinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : FirstCountableTopology α S : Set α hS : Set.Nonempty S hS' : BddAbove S ⊢ ∃ u, Monotone u ∧ Tendsto u atTop (𝓝 (sSup S)) ∧ ∀ (n : ℕ), u n ∈ S [PROOFSTEP] rcases(isLUB_csSup hS hS').exists_seq_monotone_tendsto hS with ⟨u, hu⟩ [GOAL] case intro α✝ : Type u β : Type v γ : Type w inst✝⁹ : TopologicalSpace α✝ inst✝⁸ : TopologicalSpace β inst✝⁷ : LinearOrder α✝ inst✝⁶ : LinearOrder β inst✝⁵ : OrderTopology α✝ inst✝⁴ : OrderTopology β α : Type u_1 inst✝³ : ConditionallyCompleteLinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : FirstCountableTopology α S : Set α hS : Set.Nonempty S hS' : BddAbove S u : ℕ → α hu : Monotone u ∧ (∀ (n : ℕ), u n ≤ sSup S) ∧ Tendsto u atTop (𝓝 (sSup S)) ∧ ∀ (n : ℕ), u n ∈ S ⊢ ∃ u, Monotone u ∧ Tendsto u atTop (𝓝 (sSup S)) ∧ ∀ (n : ℕ), u n ∈ S [PROOFSTEP] exact ⟨u, hu.1, hu.2.2⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : TopologicalSpace β inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : OrderTopology α inst✝² : OrderTopology β inst✝¹ : DenselyOrdered α inst✝ : FirstCountableTopology α x y : α hy : x < y ⊢ ∃ u, StrictAnti u ∧ (∀ (n : ℕ), u n ∈ Ioo x y) ∧ Tendsto u atTop (𝓝 x) [PROOFSTEP] simpa only [dual_Ioo] using exists_seq_strictMono_tendsto' (α := αᵒᵈ) (OrderDual.toDual_lt_toDual.2 hy) [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : TopologicalSpace β inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : OrderTopology α inst✝² : OrderTopology β inst✝¹ : DenselyOrdered α inst✝ : FirstCountableTopology α x y : α h : x < y ⊢ ∃ u v, StrictAnti u ∧ StrictMono v ∧ (∀ (k : ℕ), u k ∈ Ioo x y) ∧ (∀ (l : ℕ), v l ∈ Ioo x y) ∧ (∀ (k l : ℕ), u k < v l) ∧ Tendsto u atTop (𝓝 x) ∧ Tendsto v atTop (𝓝 y) [PROOFSTEP] rcases exists_seq_strictAnti_tendsto' h with ⟨u, hu_anti, hu_mem, hux⟩ [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : TopologicalSpace β inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : OrderTopology α inst✝² : OrderTopology β inst✝¹ : DenselyOrdered α inst✝ : FirstCountableTopology α x y : α h : x < y u : ℕ → α hu_anti : StrictAnti u hu_mem : ∀ (n : ℕ), u n ∈ Ioo x y hux : Tendsto u atTop (𝓝 x) ⊢ ∃ u v, StrictAnti u ∧ StrictMono v ∧ (∀ (k : ℕ), u k ∈ Ioo x y) ∧ (∀ (l : ℕ), v l ∈ Ioo x y) ∧ (∀ (k l : ℕ), u k < v l) ∧ Tendsto u atTop (𝓝 x) ∧ Tendsto v atTop (𝓝 y) [PROOFSTEP] rcases exists_seq_strictMono_tendsto' (hu_mem 0).2 with ⟨v, hv_mono, hv_mem, hvy⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : TopologicalSpace β inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : OrderTopology α inst✝² : OrderTopology β inst✝¹ : DenselyOrdered α inst✝ : FirstCountableTopology α x y : α h : x < y u : ℕ → α hu_anti : StrictAnti u hu_mem : ∀ (n : ℕ), u n ∈ Ioo x y hux : Tendsto u atTop (𝓝 x) v : ℕ → α hv_mono : StrictMono v hv_mem : ∀ (n : ℕ), v n ∈ Ioo (u 0) y hvy : Tendsto v atTop (𝓝 y) ⊢ ∃ u v, StrictAnti u ∧ StrictMono v ∧ (∀ (k : ℕ), u k ∈ Ioo x y) ∧ (∀ (l : ℕ), v l ∈ Ioo x y) ∧ (∀ (k l : ℕ), u k < v l) ∧ Tendsto u atTop (𝓝 x) ∧ Tendsto v atTop (𝓝 y) [PROOFSTEP] exact ⟨u, v, hu_anti, hv_mono, hu_mem, fun l => ⟨(hu_mem 0).1.trans (hv_mem l).1, (hv_mem l).2⟩, fun k l => (hu_anti.antitone (zero_le k)).trans_lt (hv_mem l).1, hux, hvy⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α a : α h : Set.Nonempty (Ioi a) ⊢ closure (Ioi a) = Ici a [PROOFSTEP] apply Subset.antisymm [GOAL] case h₁ α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α a : α h : Set.Nonempty (Ioi a) ⊢ closure (Ioi a) ⊆ Ici a [PROOFSTEP] exact closure_minimal Ioi_subset_Ici_self isClosed_Ici [GOAL] case h₂ α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α a : α h : Set.Nonempty (Ioi a) ⊢ Ici a ⊆ closure (Ioi a) [PROOFSTEP] rw [← diff_subset_closure_iff, Ici_diff_Ioi_same, singleton_subset_iff] [GOAL] case h₂ α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α a : α h : Set.Nonempty (Ioi a) ⊢ a ∈ closure (Ioi a) [PROOFSTEP] exact isGLB_Ioi.mem_closure h [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab : a ≠ b ⊢ closure (Ioo a b) = Icc a b [PROOFSTEP] apply Subset.antisymm [GOAL] case h₁ α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab : a ≠ b ⊢ closure (Ioo a b) ⊆ Icc a b [PROOFSTEP] exact closure_minimal Ioo_subset_Icc_self isClosed_Icc [GOAL] case h₂ α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab : a ≠ b ⊢ Icc a b ⊆ closure (Ioo a b) [PROOFSTEP] cases' hab.lt_or_lt with hab hab [GOAL] case h₂.inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab✝ : a ≠ b hab : a < b ⊢ Icc a b ⊆ closure (Ioo a b) [PROOFSTEP] rw [← diff_subset_closure_iff, Icc_diff_Ioo_same hab.le] [GOAL] case h₂.inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab✝ : a ≠ b hab : a < b ⊢ {a, b} ⊆ closure (Ioo a b) [PROOFSTEP] have hab' : (Ioo a b).Nonempty := nonempty_Ioo.2 hab [GOAL] case h₂.inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab✝ : a ≠ b hab : a < b hab' : Set.Nonempty (Ioo a b) ⊢ {a, b} ⊆ closure (Ioo a b) [PROOFSTEP] simp only [insert_subset_iff, singleton_subset_iff] [GOAL] case h₂.inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab✝ : a ≠ b hab : a < b hab' : Set.Nonempty (Ioo a b) ⊢ a ∈ closure (Ioo a b) ∧ b ∈ closure (Ioo a b) [PROOFSTEP] exact ⟨(isGLB_Ioo hab).mem_closure hab', (isLUB_Ioo hab).mem_closure hab'⟩ [GOAL] case h₂.inr α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab✝ : a ≠ b hab : b < a ⊢ Icc a b ⊆ closure (Ioo a b) [PROOFSTEP] rw [Icc_eq_empty_of_lt hab] [GOAL] case h₂.inr α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab✝ : a ≠ b hab : b < a ⊢ ∅ ⊆ closure (Ioo a b) [PROOFSTEP] exact empty_subset _ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab : a ≠ b ⊢ closure (Ioc a b) = Icc a b [PROOFSTEP] apply Subset.antisymm [GOAL] case h₁ α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab : a ≠ b ⊢ closure (Ioc a b) ⊆ Icc a b [PROOFSTEP] exact closure_minimal Ioc_subset_Icc_self isClosed_Icc [GOAL] case h₂ α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab : a ≠ b ⊢ Icc a b ⊆ closure (Ioc a b) [PROOFSTEP] apply Subset.trans _ (closure_mono Ioo_subset_Ioc_self) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab : a ≠ b ⊢ Icc a b ⊆ closure (Ioo a b) [PROOFSTEP] rw [closure_Ioo hab] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab : a ≠ b ⊢ closure (Ico a b) = Icc a b [PROOFSTEP] apply Subset.antisymm [GOAL] case h₁ α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab : a ≠ b ⊢ closure (Ico a b) ⊆ Icc a b [PROOFSTEP] exact closure_minimal Ico_subset_Icc_self isClosed_Icc [GOAL] case h₂ α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab : a ≠ b ⊢ Icc a b ⊆ closure (Ico a b) [PROOFSTEP] apply Subset.trans _ (closure_mono Ioo_subset_Ico_self) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α hab : a ≠ b ⊢ Icc a b ⊆ closure (Ioo a b) [PROOFSTEP] rw [closure_Ioo hab] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α a : α ha : Set.Nonempty (Iio a) ⊢ interior (Ici a) = Ioi a [PROOFSTEP] rw [← compl_Iio, interior_compl, closure_Iio' ha, compl_Iic] [GOAL] α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderTopology α inst✝² : DenselyOrdered α a✝ b✝ : α s : Set α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a b : α ⊢ interior (Icc a b) = Ioo a b [PROOFSTEP] rw [← Ici_inter_Iic, interior_inter, interior_Ici, interior_Iic, Ioi_inter_Iio] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α a✝ b✝ : α s : Set α inst✝ : NoMinOrder α a b : α ⊢ interior (Ico a b) = Ioo a b [PROOFSTEP] rw [← Ici_inter_Iio, interior_inter, interior_Ici, interior_Iio, Ioi_inter_Iio] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α a✝ b✝ : α s : Set α inst✝ : NoMaxOrder α a b : α ⊢ interior (Ioc a b) = Ioo a b [PROOFSTEP] rw [← Ioi_inter_Iic, interior_inter, interior_Ioi, interior_Iic, Ioi_inter_Iio] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α ⊢ Ioc a b ⊆ closure (interior (Ioc a b)) [PROOFSTEP] rcases eq_or_ne a b with (rfl | h) [GOAL] case inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α a : α ⊢ Ioc a a ⊆ closure (interior (Ioc a a)) [PROOFSTEP] simp [GOAL] case inr α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α h : a ≠ b ⊢ Ioc a b ⊆ closure (interior (Ioc a b)) [PROOFSTEP] calc Ioc a b ⊆ Icc a b := Ioc_subset_Icc_self _ = closure (Ioo a b) := (closure_Ioo h).symm _ ⊆ closure (interior (Ioc a b)) := closure_mono (interior_maximal Ioo_subset_Ioc_self isOpen_Ioo) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α ⊢ Ico a b ⊆ closure (interior (Ico a b)) [PROOFSTEP] simpa only [dual_Ioc] using Ioc_subset_closure_interior (OrderDual.toDual b) (OrderDual.toDual a) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α a : α ha : Set.Nonempty (Iio a) ⊢ frontier (Ici a) = {a} [PROOFSTEP] simp [frontier, ha] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α a : α ha : Set.Nonempty (Ioi a) ⊢ frontier (Iic a) = {a} [PROOFSTEP] simp [frontier, ha] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α a : α ha : Set.Nonempty (Ioi a) ⊢ frontier (Ioi a) = {a} [PROOFSTEP] simp [frontier, closure_Ioi' ha, Iic_diff_Iio, Icc_self] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α a : α ha : Set.Nonempty (Iio a) ⊢ frontier (Iio a) = {a} [PROOFSTEP] simp [frontier, closure_Iio' ha, Iic_diff_Iio, Icc_self] [GOAL] α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderTopology α inst✝² : DenselyOrdered α a✝ b✝ : α s : Set α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a b : α h : a ≤ b ⊢ frontier (Icc a b) = {a, b} [PROOFSTEP] simp [frontier, h, Icc_diff_Ioo_same] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α h : a < b ⊢ frontier (Ioo a b) = {a, b} [PROOFSTEP] rw [frontier, closure_Ioo h.ne, interior_Ioo, Icc_diff_Ioo_same h.le] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α a✝ b✝ : α s : Set α inst✝ : NoMinOrder α a b : α h : a < b ⊢ frontier (Ico a b) = {a, b} [PROOFSTEP] rw [frontier, closure_Ico h.ne, interior_Ico, Icc_diff_Ioo_same h.le] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α a✝ b✝ : α s : Set α inst✝ : NoMaxOrder α a b : α h : a < b ⊢ frontier (Ioc a b) = {a, b} [PROOFSTEP] rw [frontier, closure_Ioc h.ne, interior_Ioc, Icc_diff_Ioo_same h.le] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b✝ : α s : Set α a b : α H₁ : Set.Nonempty (Ioi a) H₂ : a ≤ b ⊢ b ∈ closure (Ioi a) [PROOFSTEP] rwa [closure_Ioi' H₁] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α a✝ b : α s : Set α inst✝ : NoMaxOrder α a : α p : α → Prop h : ∀ᶠ (x : α) in 𝓝 a, p x ⊢ ∃ b, b > a ∧ p b [PROOFSTEP] simpa only [exists_prop, gt_iff_lt, and_comm] using ((h.filter_mono (@nhdsWithin_le_nhds _ _ a (Ioi a))).and self_mem_nhdsWithin).exists [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b✝ : α s : Set α b c : α H₁ : Set.Nonempty (Iio c) H₂ : b ≤ c ⊢ b ∈ closure (Iio c) [PROOFSTEP] rwa [closure_Iio' H₁] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α hb : s ⊆ Iio b hs : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ⊢ comap Subtype.val (𝓝[Iio b] b) = atTop [PROOFSTEP] nontriviality [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α hb : s ⊆ Iio b hs : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ✝ : Nontrivial (Filter { x // x ∈ s }) ⊢ comap Subtype.val (𝓝[Iio b] b) = atTop [PROOFSTEP] haveI : Nonempty s := nontrivial_iff_nonempty.1 ‹_› [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α hb : s ⊆ Iio b hs : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ✝ : Nontrivial (Filter { x // x ∈ s }) this : Nonempty ↑s ⊢ comap Subtype.val (𝓝[Iio b] b) = atTop [PROOFSTEP] rcases hs (nonempty_subtype.1 ‹_›) with ⟨a, h, hs⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs✝ : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ✝ : Nontrivial (Filter { x // x ∈ s }) this : Nonempty ↑s a : α h : a < b hs : Ioo a b ⊆ s ⊢ comap Subtype.val (𝓝[Iio b] b) = atTop [PROOFSTEP] ext u [GOAL] case intro.intro.a α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs✝ : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ✝ : Nontrivial (Filter { x // x ∈ s }) this : Nonempty ↑s a : α h : a < b hs : Ioo a b ⊆ s u : Set { x // x ∈ s } ⊢ u ∈ comap Subtype.val (𝓝[Iio b] b) ↔ u ∈ atTop [PROOFSTEP] constructor [GOAL] case intro.intro.a.mp α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs✝ : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ✝ : Nontrivial (Filter { x // x ∈ s }) this : Nonempty ↑s a : α h : a < b hs : Ioo a b ⊆ s u : Set { x // x ∈ s } ⊢ u ∈ comap Subtype.val (𝓝[Iio b] b) → u ∈ atTop [PROOFSTEP] rintro ⟨t, ht, hts⟩ [GOAL] case intro.intro.a.mp.intro.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs✝ : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ✝ : Nontrivial (Filter { x // x ∈ s }) this : Nonempty ↑s a : α h : a < b hs : Ioo a b ⊆ s u : Set { x // x ∈ s } t : Set α ht : t ∈ 𝓝[Iio b] b hts : Subtype.val ⁻¹' t ⊆ u ⊢ u ∈ atTop [PROOFSTEP] obtain ⟨x, ⟨hxa : a ≤ x, hxb : x < b⟩, hxt : Ioo x b ⊆ t⟩ := (mem_nhdsWithin_Iio_iff_exists_mem_Ico_Ioo_subset h).mp ht [GOAL] case intro.intro.a.mp.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs✝ : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ✝ : Nontrivial (Filter { x // x ∈ s }) this : Nonempty ↑s a : α h : a < b hs : Ioo a b ⊆ s u : Set { x // x ∈ s } t : Set α ht : t ∈ 𝓝[Iio b] b hts : Subtype.val ⁻¹' t ⊆ u x : α hxt : Ioo x b ⊆ t hxa : a ≤ x hxb : x < b ⊢ u ∈ atTop [PROOFSTEP] obtain ⟨y, hxy, hyb⟩ := exists_between hxb [GOAL] case intro.intro.a.mp.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs✝ : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ✝ : Nontrivial (Filter { x // x ∈ s }) this : Nonempty ↑s a : α h : a < b hs : Ioo a b ⊆ s u : Set { x // x ∈ s } t : Set α ht : t ∈ 𝓝[Iio b] b hts : Subtype.val ⁻¹' t ⊆ u x : α hxt : Ioo x b ⊆ t hxa : a ≤ x hxb : x < b y : α hxy : x < y hyb : y < b ⊢ u ∈ atTop [PROOFSTEP] refine' mem_of_superset (mem_atTop ⟨y, hs ⟨hxa.trans_lt hxy, hyb⟩⟩) _ [GOAL] case intro.intro.a.mp.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs✝ : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ✝ : Nontrivial (Filter { x // x ∈ s }) this : Nonempty ↑s a : α h : a < b hs : Ioo a b ⊆ s u : Set { x // x ∈ s } t : Set α ht : t ∈ 𝓝[Iio b] b hts : Subtype.val ⁻¹' t ⊆ u x : α hxt : Ioo x b ⊆ t hxa : a ≤ x hxb : x < b y : α hxy : x < y hyb : y < b ⊢ {b_1 | { val := y, property := (_ : y ∈ s) } ≤ b_1} ⊆ u [PROOFSTEP] rintro ⟨z, hzs⟩ (hyz : y ≤ z) [GOAL] case intro.intro.a.mp.intro.intro.intro.intro.intro.intro.intro.mk α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs✝ : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ✝ : Nontrivial (Filter { x // x ∈ s }) this : Nonempty ↑s a : α h : a < b hs : Ioo a b ⊆ s u : Set { x // x ∈ s } t : Set α ht : t ∈ 𝓝[Iio b] b hts : Subtype.val ⁻¹' t ⊆ u x : α hxt : Ioo x b ⊆ t hxa : a ≤ x hxb : x < b y : α hxy : x < y hyb : y < b z : α hzs : z ∈ s hyz : y ≤ z ⊢ { val := z, property := hzs } ∈ u [PROOFSTEP] exact hts (hxt ⟨hxy.trans_le hyz, hb hzs⟩) [GOAL] case intro.intro.a.mpr α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs✝ : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ✝ : Nontrivial (Filter { x // x ∈ s }) this : Nonempty ↑s a : α h : a < b hs : Ioo a b ⊆ s u : Set { x // x ∈ s } ⊢ u ∈ atTop → u ∈ comap Subtype.val (𝓝[Iio b] b) [PROOFSTEP] intro hu [GOAL] case intro.intro.a.mpr α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs✝ : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ✝ : Nontrivial (Filter { x // x ∈ s }) this : Nonempty ↑s a : α h : a < b hs : Ioo a b ⊆ s u : Set { x // x ∈ s } hu : u ∈ atTop ⊢ u ∈ comap Subtype.val (𝓝[Iio b] b) [PROOFSTEP] obtain ⟨x : s, hx : ∀ z, x ≤ z → z ∈ u⟩ := mem_atTop_sets.1 hu [GOAL] case intro.intro.a.mpr.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs✝ : Set.Nonempty s → ∃ a, a < b ∧ Ioo a b ⊆ s ✝ : Nontrivial (Filter { x // x ∈ s }) this : Nonempty ↑s a : α h : a < b hs : Ioo a b ⊆ s u : Set { x // x ∈ s } hu : u ∈ atTop x : ↑s hx : ∀ (z : ↑s), x ≤ z → z ∈ u ⊢ u ∈ comap Subtype.val (𝓝[Iio b] b) [PROOFSTEP] exact ⟨Ioo x b, Ioo_mem_nhdsWithin_Iio' (hb x.2), fun z hz => hx _ hz.1.le⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α ha : s ⊆ Ioi a hs : Set.Nonempty s → ∃ b, b > a ∧ Ioo a b ⊆ s h : Set.Nonempty (↑ofDual ⁻¹' s) ⊢ ∃ a_1, a_1 < ↑toDual a ∧ Ioo a_1 (↑toDual a) ⊆ ↑ofDual ⁻¹' s [PROOFSTEP] simpa only [OrderDual.exists, dual_Ioo] using hs h [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α hb : s ⊆ Iio b hs : ∀ (a' : α), a' < b → ∃ a, a < b ∧ Ioo a b ⊆ s ⊢ map Subtype.val atTop = 𝓝[Iio b] b [PROOFSTEP] rcases eq_empty_or_nonempty (Iio b) with (hb' | ⟨a, ha⟩) [GOAL] case inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α hb : s ⊆ Iio b hs : ∀ (a' : α), a' < b → ∃ a, a < b ∧ Ioo a b ⊆ s hb' : Iio b = ∅ ⊢ map Subtype.val atTop = 𝓝[Iio b] b [PROOFSTEP] have : IsEmpty s := ⟨fun x => hb'.subset (hb x.2)⟩ [GOAL] case inl α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α hb : s ⊆ Iio b hs : ∀ (a' : α), a' < b → ∃ a, a < b ∧ Ioo a b ⊆ s hb' : Iio b = ∅ this : IsEmpty ↑s ⊢ map Subtype.val atTop = 𝓝[Iio b] b [PROOFSTEP] rw [filter_eq_bot_of_isEmpty atTop, Filter.map_bot, hb', nhdsWithin_empty] [GOAL] case inr.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs : ∀ (a' : α), a' < b → ∃ a, a < b ∧ Ioo a b ⊆ s a : α ha : a ∈ Iio b ⊢ map Subtype.val atTop = 𝓝[Iio b] b [PROOFSTEP] rw [← comap_coe_nhdsWithin_Iio_of_Ioo_subset hb fun _ => hs a ha, map_comap_of_mem] [GOAL] case inr.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs : ∀ (a' : α), a' < b → ∃ a, a < b ∧ Ioo a b ⊆ s a : α ha : a ∈ Iio b ⊢ range Subtype.val ∈ 𝓝[Iio b] b [PROOFSTEP] rw [Subtype.range_val] [GOAL] case inr.intro α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a✝ b : α s : Set α hb : s ⊆ Iio b hs : ∀ (a' : α), a' < b → ∃ a, a < b ∧ Ioo a b ⊆ s a : α ha : a ∈ Iio b ⊢ s ∈ 𝓝[Iio b] b [PROOFSTEP] exact (mem_nhdsWithin_Iio_iff_exists_Ioo_subset' ha).2 (hs a ha) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α ha : s ⊆ Ioi a hs : ∀ (b' : α), b' > a → ∃ b, b > a ∧ Ioo a b ⊆ s ⊢ map Subtype.val atBot = 𝓝[Ioi a] a [PROOFSTEP] refine' (map_coe_atTop_of_Ioo_subset (show ofDual ⁻¹' s ⊆ Iio (toDual a) from ha) fun b' hb' => _ : _) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α ha : s ⊆ Ioi a hs : ∀ (b' : α), b' > a → ∃ b, b > a ∧ Ioo a b ⊆ s b' : αᵒᵈ hb' : b' < ↑toDual a ⊢ ∃ a_1, a_1 < ↑toDual a ∧ Ioo a_1 (↑toDual a) ⊆ ↑ofDual ⁻¹' s [PROOFSTEP] simpa only [OrderDual.exists, dual_Ioo] using hs b' hb' [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f : α → β h : a < b ⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto f (𝓝[Iio b] b) l [PROOFSTEP] rw [← map_coe_Ioo_atTop h, tendsto_map'_iff] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f : α → β h : a < b ⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto (f ∘ Subtype.val) atTop l [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f : α → β h : a < b ⊢ Tendsto (fun x => f ↑x) atBot l ↔ Tendsto f (𝓝[Ioi a] a) l [PROOFSTEP] rw [← map_coe_Ioo_atBot h, tendsto_map'_iff] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f : α → β h : a < b ⊢ Tendsto (fun x => f ↑x) atBot l ↔ Tendsto (f ∘ Subtype.val) atBot l [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f : α → β ⊢ Tendsto (fun x => f ↑x) atBot l ↔ Tendsto f (𝓝[Ioi a] a) l [PROOFSTEP] rw [← map_coe_Ioi_atBot, tendsto_map'_iff] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f : α → β ⊢ Tendsto (fun x => f ↑x) atBot l ↔ Tendsto (f ∘ Subtype.val) atBot l [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f : α → β ⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto f (𝓝[Iio a] a) l [PROOFSTEP] rw [← map_coe_Iio_atTop, tendsto_map'_iff] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f : α → β ⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto (f ∘ Subtype.val) atTop l [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f✝ : α → β f : β → ↑(Ioo a b) ⊢ Tendsto f l atTop ↔ Tendsto (fun x => ↑(f x)) l (𝓝[Iio b] b) [PROOFSTEP] rw [← comap_coe_Ioo_nhdsWithin_Iio, tendsto_comap_iff] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f✝ : α → β f : β → ↑(Ioo a b) ⊢ Tendsto (Subtype.val ∘ f) l (𝓝[Iio b] b) ↔ Tendsto (fun x => ↑(f x)) l (𝓝[Iio b] b) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f✝ : α → β f : β → ↑(Ioo a b) ⊢ Tendsto f l atBot ↔ Tendsto (fun x => ↑(f x)) l (𝓝[Ioi a] a) [PROOFSTEP] rw [← comap_coe_Ioo_nhdsWithin_Ioi, tendsto_comap_iff] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f✝ : α → β f : β → ↑(Ioo a b) ⊢ Tendsto (Subtype.val ∘ f) l (𝓝[Ioi a] a) ↔ Tendsto (fun x => ↑(f x)) l (𝓝[Ioi a] a) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f✝ : α → β f : β → ↑(Ioi a) ⊢ Tendsto f l atBot ↔ Tendsto (fun x => ↑(f x)) l (𝓝[Ioi a] a) [PROOFSTEP] rw [← comap_coe_Ioi_nhdsWithin_Ioi, tendsto_comap_iff] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f✝ : α → β f : β → ↑(Ioi a) ⊢ Tendsto (Subtype.val ∘ f) l (𝓝[Ioi a] a) ↔ Tendsto (fun x => ↑(f x)) l (𝓝[Ioi a] a) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f✝ : α → β f : β → ↑(Iio a) ⊢ Tendsto f l atTop ↔ Tendsto (fun x => ↑(f x)) l (𝓝[Iio a] a) [PROOFSTEP] rw [← comap_coe_Iio_nhdsWithin_Iio, tendsto_comap_iff] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f✝ : α → β f : β → ↑(Iio a) ⊢ Tendsto (Subtype.val ∘ f) l (𝓝[Iio a] a) ↔ Tendsto (fun x => ↑(f x)) l (𝓝[Iio a] a) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α a b : α s : Set α l : Filter β f : α → β x : α inst✝ : Nontrivial α ⊢ NeBot (𝓝[{x}ᶜ] x) [PROOFSTEP] refine forall_mem_nonempty_iff_neBot.1 fun s hs => ?_ [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α a b : α s✝ : Set α l : Filter β f : α → β x : α inst✝ : Nontrivial α s : Set α hs : s ∈ 𝓝[{x}ᶜ] x ⊢ Set.Nonempty s [PROOFSTEP] obtain ⟨u, u_open, xu, us⟩ : ∃ u : Set α, IsOpen u ∧ x ∈ u ∧ u ∩ { x }ᶜ ⊆ s := mem_nhdsWithin.1 hs [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α a b : α s✝ : Set α l : Filter β f : α → β x : α inst✝ : Nontrivial α s : Set α hs : s ∈ 𝓝[{x}ᶜ] x u : Set α u_open : IsOpen u xu : x ∈ u us : u ∩ {x}ᶜ ⊆ s ⊢ Set.Nonempty s [PROOFSTEP] obtain ⟨a, b, a_lt_b, hab⟩ : ∃ a b : α, a < b ∧ Ioo a b ⊆ u := u_open.exists_Ioo_subset ⟨x, xu⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α a✝ b✝ : α s✝ : Set α l : Filter β f : α → β x : α inst✝ : Nontrivial α s : Set α hs : s ∈ 𝓝[{x}ᶜ] x u : Set α u_open : IsOpen u xu : x ∈ u us : u ∩ {x}ᶜ ⊆ s a b : α a_lt_b : a < b hab : Ioo a b ⊆ u ⊢ Set.Nonempty s [PROOFSTEP] obtain ⟨y, hy⟩ : ∃ y, a < y ∧ y < b := exists_between a_lt_b [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α a✝ b✝ : α s✝ : Set α l : Filter β f : α → β x : α inst✝ : Nontrivial α s : Set α hs : s ∈ 𝓝[{x}ᶜ] x u : Set α u_open : IsOpen u xu : x ∈ u us : u ∩ {x}ᶜ ⊆ s a b : α a_lt_b : a < b hab : Ioo a b ⊆ u y : α hy : a < y ∧ y < b ⊢ Set.Nonempty s [PROOFSTEP] rcases ne_or_eq x y with (xy | rfl) [GOAL] case intro.intro.intro.intro.intro.intro.intro.inl α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α a✝ b✝ : α s✝ : Set α l : Filter β f : α → β x : α inst✝ : Nontrivial α s : Set α hs : s ∈ 𝓝[{x}ᶜ] x u : Set α u_open : IsOpen u xu : x ∈ u us : u ∩ {x}ᶜ ⊆ s a b : α a_lt_b : a < b hab : Ioo a b ⊆ u y : α hy : a < y ∧ y < b xy : x ≠ y ⊢ Set.Nonempty s [PROOFSTEP] exact ⟨y, us ⟨hab hy, xy.symm⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.inr α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α a✝ b✝ : α s✝ : Set α l : Filter β f : α → β x : α inst✝ : Nontrivial α s : Set α hs : s ∈ 𝓝[{x}ᶜ] x u : Set α u_open : IsOpen u xu : x ∈ u us : u ∩ {x}ᶜ ⊆ s a b : α a_lt_b : a < b hab : Ioo a b ⊆ u hy : a < x ∧ x < b ⊢ Set.Nonempty s [PROOFSTEP] obtain ⟨z, hz⟩ : ∃ z, a < z ∧ z < x := exists_between hy.1 [GOAL] case intro.intro.intro.intro.intro.intro.intro.inr.intro α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : DenselyOrdered α a✝ b✝ : α s✝ : Set α l : Filter β f : α → β x : α inst✝ : Nontrivial α s : Set α hs : s ∈ 𝓝[{x}ᶜ] x u : Set α u_open : IsOpen u xu : x ∈ u us : u ∩ {x}ᶜ ⊆ s a b : α a_lt_b : a < b hab : Ioo a b ⊆ u hy : a < x ∧ x < b z : α hz : a < z ∧ z < x ⊢ Set.Nonempty s [PROOFSTEP] exact ⟨z, us ⟨hab ⟨hz.1, hz.2.trans hy.2⟩, hz.2.ne⟩⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderTopology α inst✝² : DenselyOrdered α a b : α s✝ : Set α l : Filter β f : α → β inst✝¹ : Nontrivial α s : Set α inst✝ : SeparableSpace ↑s hs : Dense s ⊢ ∃ t, t ⊆ s ∧ Set.Countable t ∧ Dense t ∧ (∀ (x : α), IsBot x → ¬x ∈ t) ∧ ∀ (x : α), IsTop x → ¬x ∈ t [PROOFSTEP] rcases hs.exists_countable_dense_subset with ⟨t, hts, htc, htd⟩ [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderTopology α inst✝² : DenselyOrdered α a b : α s✝ : Set α l : Filter β f : α → β inst✝¹ : Nontrivial α s : Set α inst✝ : SeparableSpace ↑s hs : Dense s t : Set α hts : t ⊆ s htc : Set.Countable t htd : Dense t ⊢ ∃ t, t ⊆ s ∧ Set.Countable t ∧ Dense t ∧ (∀ (x : α), IsBot x → ¬x ∈ t) ∧ ∀ (x : α), IsTop x → ¬x ∈ t [PROOFSTEP] refine' ⟨t \ ({x | IsBot x} ∪ {x | IsTop x}), _, _, _, fun x hx => _, fun x hx => _⟩ [GOAL] case intro.intro.intro.refine'_1 α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderTopology α inst✝² : DenselyOrdered α a b : α s✝ : Set α l : Filter β f : α → β inst✝¹ : Nontrivial α s : Set α inst✝ : SeparableSpace ↑s hs : Dense s t : Set α hts : t ⊆ s htc : Set.Countable t htd : Dense t ⊢ t \ ({x | IsBot x} ∪ {x | IsTop x}) ⊆ s [PROOFSTEP] exact (diff_subset _ _).trans hts [GOAL] case intro.intro.intro.refine'_2 α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderTopology α inst✝² : DenselyOrdered α a b : α s✝ : Set α l : Filter β f : α → β inst✝¹ : Nontrivial α s : Set α inst✝ : SeparableSpace ↑s hs : Dense s t : Set α hts : t ⊆ s htc : Set.Countable t htd : Dense t ⊢ Set.Countable (t \ ({x | IsBot x} ∪ {x | IsTop x})) [PROOFSTEP] exact htc.mono (diff_subset _ _) [GOAL] case intro.intro.intro.refine'_3 α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderTopology α inst✝² : DenselyOrdered α a b : α s✝ : Set α l : Filter β f : α → β inst✝¹ : Nontrivial α s : Set α inst✝ : SeparableSpace ↑s hs : Dense s t : Set α hts : t ⊆ s htc : Set.Countable t htd : Dense t ⊢ Dense (t \ ({x | IsBot x} ∪ {x | IsTop x})) [PROOFSTEP] exact htd.diff_finite ((subsingleton_isBot α).finite.union (subsingleton_isTop α).finite) [GOAL] case intro.intro.intro.refine'_4 α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderTopology α inst✝² : DenselyOrdered α a b : α s✝ : Set α l : Filter β f : α → β inst✝¹ : Nontrivial α s : Set α inst✝ : SeparableSpace ↑s hs : Dense s t : Set α hts : t ⊆ s htc : Set.Countable t htd : Dense t x : α hx : IsBot x ⊢ ¬x ∈ t \ ({x | IsBot x} ∪ {x | IsTop x}) [PROOFSTEP] simp [hx] [GOAL] case intro.intro.intro.refine'_5 α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderTopology α inst✝² : DenselyOrdered α a b : α s✝ : Set α l : Filter β f : α → β inst✝¹ : Nontrivial α s : Set α inst✝ : SeparableSpace ↑s hs : Dense s t : Set α hts : t ⊆ s htc : Set.Countable t htd : Dense t x : α hx : IsTop x ⊢ ¬x ∈ t \ ({x | IsBot x} ∪ {x | IsTop x}) [PROOFSTEP] simp [hx] [GOAL] α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderTopology α inst✝² : DenselyOrdered α a b : α s : Set α l : Filter β f : α → β inst✝¹ : SeparableSpace α inst✝ : Nontrivial α ⊢ ∃ s, Set.Countable s ∧ Dense s ∧ (∀ (x : α), IsBot x → ¬x ∈ s) ∧ ∀ (x : α), IsTop x → ¬x ∈ s [PROOFSTEP] simpa using dense_univ.exists_countable_dense_subset_no_bot_top [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderClosedTopology β inst✝¹ : Nonempty γ ι : Sort u_1 inst✝ : Nonempty ι f : α → β g : ι → α Cf : ContinuousAt f (iSup g) Mf : Monotone f bdd : autoParam (BddAbove (range g)) _auto✝ ⊢ f (⨆ (i : ι), g i) = ⨆ (i : ι), f (g i) [PROOFSTEP] rw [iSup, Monotone.map_sSup_of_continuousAt' Cf Mf (range_nonempty g) bdd, ← range_comp, iSup] [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderClosedTopology β inst✝¹ : Nonempty γ ι : Sort u_1 inst✝ : Nonempty ι f : α → β g : ι → α Cf : ContinuousAt f (iSup g) Mf : Monotone f bdd : autoParam (BddAbove (range g)) _auto✝ ⊢ sSup (range (f ∘ g)) = sSup (range fun i => f (g i)) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderClosedTopology β inst✝¹ : Nonempty γ ι : Sort u_1 inst✝ : Nonempty ι f : α → β g : ι → α Cf : ContinuousAt f (iInf g) Mf : Monotone f bdd : autoParam (BddBelow (range g)) _auto✝ ⊢ f (⨅ (i : ι), g i) = ⨅ (i : ι), f (g i) [PROOFSTEP] rw [iInf, Monotone.map_sInf_of_continuousAt' Cf Mf (range_nonempty g) bdd, ← range_comp, iInf] [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderClosedTopology β inst✝¹ : Nonempty γ ι : Sort u_1 inst✝ : Nonempty ι f : α → β g : ι → α Cf : ContinuousAt f (iInf g) Mf : Monotone f bdd : autoParam (BddBelow (range g)) _auto✝ ⊢ sInf (range (f ∘ g)) = sInf (range fun i => f (g i)) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderClosedTopology β inst✝¹ : Nonempty γ ι : Sort u_1 inst✝ : Nonempty ι f : α → β g : ι → α Cf : ContinuousAt f (iInf g) Af : Antitone f bdd : autoParam (BddBelow (range g)) _auto✝ ⊢ f (⨅ (i : ι), g i) = ⨆ (i : ι), f (g i) [PROOFSTEP] rw [iInf, Antitone.map_sInf_of_continuousAt' Cf Af (range_nonempty g) bdd, ← range_comp, iSup] [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderClosedTopology β inst✝¹ : Nonempty γ ι : Sort u_1 inst✝ : Nonempty ι f : α → β g : ι → α Cf : ContinuousAt f (iInf g) Af : Antitone f bdd : autoParam (BddBelow (range g)) _auto✝ ⊢ sSup (range (f ∘ g)) = sSup (range fun i => f (g i)) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderClosedTopology β inst✝¹ : Nonempty γ ι : Sort u_1 inst✝ : Nonempty ι f : α → β g : ι → α Cf : ContinuousAt f (iSup g) Af : Antitone f bdd : autoParam (BddAbove (range g)) _auto✝ ⊢ f (⨆ (i : ι), g i) = ⨅ (i : ι), f (g i) [PROOFSTEP] rw [iSup, Antitone.map_sSup_of_continuousAt' Cf Af (range_nonempty g) bdd, ← range_comp, iInf] [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderClosedTopology β inst✝¹ : Nonempty γ ι : Sort u_1 inst✝ : Nonempty ι f : α → β g : ι → α Cf : ContinuousAt f (iSup g) Af : Antitone f bdd : autoParam (BddAbove (range g)) _auto✝ ⊢ sInf (range (f ∘ g)) = sInf (range fun i => f (g i)) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : CompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : CompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderClosedTopology β inst✝ : Nonempty γ f : α → β s : Set α Cf : ContinuousAt f (sSup s) Mf : Monotone f fbot : f ⊥ = ⊥ ⊢ f (sSup s) = sSup (f '' s) [PROOFSTEP] cases' s.eq_empty_or_nonempty with h h [GOAL] case inl α : Type u β : Type v γ : Type w inst✝⁶ : CompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : CompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderClosedTopology β inst✝ : Nonempty γ f : α → β s : Set α Cf : ContinuousAt f (sSup s) Mf : Monotone f fbot : f ⊥ = ⊥ h : s = ∅ ⊢ f (sSup s) = sSup (f '' s) [PROOFSTEP] simp [h, fbot] [GOAL] case inr α : Type u β : Type v γ : Type w inst✝⁶ : CompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : CompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderClosedTopology β inst✝ : Nonempty γ f : α → β s : Set α Cf : ContinuousAt f (sSup s) Mf : Monotone f fbot : f ⊥ = ⊥ h : Set.Nonempty s ⊢ f (sSup s) = sSup (f '' s) [PROOFSTEP] exact Mf.map_sSup_of_continuousAt' Cf h [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : CompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : CompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderClosedTopology β inst✝ : Nonempty γ ι : Sort u_1 f : α → β g : ι → α Cf : ContinuousAt f (iSup g) Mf : Monotone f fbot : f ⊥ = ⊥ ⊢ f (⨆ (i : ι), g i) = ⨆ (i : ι), f (g i) [PROOFSTEP] rw [iSup, Mf.map_sSup_of_continuousAt Cf fbot, ← range_comp, iSup] [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : CompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : CompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderClosedTopology β inst✝ : Nonempty γ ι : Sort u_1 f : α → β g : ι → α Cf : ContinuousAt f (iSup g) Mf : Monotone f fbot : f ⊥ = ⊥ ⊢ sSup (range (f ∘ g)) = sSup (range fun i => f (g i)) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderClosedTopology β inst✝ : Nonempty γ f : α → β s : Set α Cf : ContinuousAt f (sSup s) Mf : Monotone f ne : Set.Nonempty s H : BddAbove s ⊢ f (sSup s) = sSup (f '' s) [PROOFSTEP] refine' ((isLUB_csSup (ne.image f) (Mf.map_bddAbove H)).unique _).symm [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderClosedTopology β inst✝ : Nonempty γ f : α → β s : Set α Cf : ContinuousAt f (sSup s) Mf : Monotone f ne : Set.Nonempty s H : BddAbove s ⊢ IsLUB (f '' s) (f (sSup s)) [PROOFSTEP] refine' (isLUB_csSup ne H).isLUB_of_tendsto (fun x _ y _ xy => Mf xy) ne _ [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderClosedTopology β inst✝ : Nonempty γ f : α → β s : Set α Cf : ContinuousAt f (sSup s) Mf : Monotone f ne : Set.Nonempty s H : BddAbove s ⊢ Tendsto f (𝓝[s] sSup s) (𝓝 (f (sSup s))) [PROOFSTEP] exact Cf.mono_left inf_le_left [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderClosedTopology β inst✝ : Nonempty γ f : α → β g : γ → α Cf : ContinuousAt f (⨆ (i : γ), g i) Mf : Monotone f H : BddAbove (range g) ⊢ f (⨆ (i : γ), g i) = ⨆ (i : γ), f (g i) [PROOFSTEP] rw [iSup, Mf.map_csSup_of_continuousAt Cf (range_nonempty _) H, ← range_comp, iSup] [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderClosedTopology β inst✝ : Nonempty γ f : α → β g : γ → α Cf : ContinuousAt f (⨆ (i : γ), g i) Mf : Monotone f H : BddAbove (range g) ⊢ sSup (range (f ∘ fun i => g i)) = sSup (range fun i => f (g i)) [PROOFSTEP] rfl [GOAL] α✝ : Type u β✝ : Type v γ : Type w inst✝¹² : ConditionallyCompleteLinearOrder α✝ inst✝¹¹ : TopologicalSpace α✝ inst✝¹⁰ : OrderTopology α✝ inst✝⁹ : ConditionallyCompleteLinearOrder β✝ inst✝⁸ : TopologicalSpace β✝ inst✝⁷ : OrderClosedTopology β✝ inst✝⁶ : Nonempty γ α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β Mf : Monotone f x : α ⊢ Tendsto f (𝓝[Iio x] x) (𝓝 (sSup (f '' Iio x))) [PROOFSTEP] rcases eq_empty_or_nonempty (Iio x) with (h | h) [GOAL] case inl α✝ : Type u β✝ : Type v γ : Type w inst✝¹² : ConditionallyCompleteLinearOrder α✝ inst✝¹¹ : TopologicalSpace α✝ inst✝¹⁰ : OrderTopology α✝ inst✝⁹ : ConditionallyCompleteLinearOrder β✝ inst✝⁸ : TopologicalSpace β✝ inst✝⁷ : OrderClosedTopology β✝ inst✝⁶ : Nonempty γ α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β Mf : Monotone f x : α h : Iio x = ∅ ⊢ Tendsto f (𝓝[Iio x] x) (𝓝 (sSup (f '' Iio x))) [PROOFSTEP] simp [h] [GOAL] case inr α✝ : Type u β✝ : Type v γ : Type w inst✝¹² : ConditionallyCompleteLinearOrder α✝ inst✝¹¹ : TopologicalSpace α✝ inst✝¹⁰ : OrderTopology α✝ inst✝⁹ : ConditionallyCompleteLinearOrder β✝ inst✝⁸ : TopologicalSpace β✝ inst✝⁷ : OrderClosedTopology β✝ inst✝⁶ : Nonempty γ α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β Mf : Monotone f x : α h : Set.Nonempty (Iio x) ⊢ Tendsto f (𝓝[Iio x] x) (𝓝 (sSup (f '' Iio x))) [PROOFSTEP] refine' tendsto_order.2 ⟨fun l hl => _, fun m hm => _⟩ [GOAL] case inr.refine'_1 α✝ : Type u β✝ : Type v γ : Type w inst✝¹² : ConditionallyCompleteLinearOrder α✝ inst✝¹¹ : TopologicalSpace α✝ inst✝¹⁰ : OrderTopology α✝ inst✝⁹ : ConditionallyCompleteLinearOrder β✝ inst✝⁸ : TopologicalSpace β✝ inst✝⁷ : OrderClosedTopology β✝ inst✝⁶ : Nonempty γ α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β Mf : Monotone f x : α h : Set.Nonempty (Iio x) l : β hl : l < sSup (f '' Iio x) ⊢ ∀ᶠ (b : α) in 𝓝[Iio x] x, l < f b [PROOFSTEP] obtain ⟨z, zx, lz⟩ : ∃ a : α, a < x ∧ l < f a := by simpa only [mem_image, exists_prop, exists_exists_and_eq_and] using exists_lt_of_lt_csSup (nonempty_image_iff.2 h) hl [GOAL] α✝ : Type u β✝ : Type v γ : Type w inst✝¹² : ConditionallyCompleteLinearOrder α✝ inst✝¹¹ : TopologicalSpace α✝ inst✝¹⁰ : OrderTopology α✝ inst✝⁹ : ConditionallyCompleteLinearOrder β✝ inst✝⁸ : TopologicalSpace β✝ inst✝⁷ : OrderClosedTopology β✝ inst✝⁶ : Nonempty γ α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β Mf : Monotone f x : α h : Set.Nonempty (Iio x) l : β hl : l < sSup (f '' Iio x) ⊢ ∃ a, a < x ∧ l < f a [PROOFSTEP] simpa only [mem_image, exists_prop, exists_exists_and_eq_and] using exists_lt_of_lt_csSup (nonempty_image_iff.2 h) hl [GOAL] case inr.refine'_1.intro.intro α✝ : Type u β✝ : Type v γ : Type w inst✝¹² : ConditionallyCompleteLinearOrder α✝ inst✝¹¹ : TopologicalSpace α✝ inst✝¹⁰ : OrderTopology α✝ inst✝⁹ : ConditionallyCompleteLinearOrder β✝ inst✝⁸ : TopologicalSpace β✝ inst✝⁷ : OrderClosedTopology β✝ inst✝⁶ : Nonempty γ α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β Mf : Monotone f x : α h : Set.Nonempty (Iio x) l : β hl : l < sSup (f '' Iio x) z : α zx : z < x lz : l < f z ⊢ ∀ᶠ (b : α) in 𝓝[Iio x] x, l < f b [PROOFSTEP] exact mem_of_superset (Ioo_mem_nhdsWithin_Iio' zx) fun y hy => lz.trans_le (Mf hy.1.le) [GOAL] case inr.refine'_2 α✝ : Type u β✝ : Type v γ : Type w inst✝¹² : ConditionallyCompleteLinearOrder α✝ inst✝¹¹ : TopologicalSpace α✝ inst✝¹⁰ : OrderTopology α✝ inst✝⁹ : ConditionallyCompleteLinearOrder β✝ inst✝⁸ : TopologicalSpace β✝ inst✝⁷ : OrderClosedTopology β✝ inst✝⁶ : Nonempty γ α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β Mf : Monotone f x : α h : Set.Nonempty (Iio x) m : β hm : m > sSup (f '' Iio x) ⊢ ∀ᶠ (b : α) in 𝓝[Iio x] x, f b < m [PROOFSTEP] refine mem_of_superset self_mem_nhdsWithin fun _ hy => lt_of_le_of_lt ?_ hm [GOAL] case inr.refine'_2 α✝ : Type u β✝ : Type v γ : Type w inst✝¹² : ConditionallyCompleteLinearOrder α✝ inst✝¹¹ : TopologicalSpace α✝ inst✝¹⁰ : OrderTopology α✝ inst✝⁹ : ConditionallyCompleteLinearOrder β✝ inst✝⁸ : TopologicalSpace β✝ inst✝⁷ : OrderClosedTopology β✝ inst✝⁶ : Nonempty γ α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : OrderTopology α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β Mf : Monotone f x : α h : Set.Nonempty (Iio x) m : β hm : m > sSup (f '' Iio x) x✝ : α hy : x✝ ∈ Iio x ⊢ f x✝ ≤ sSup (f '' Iio x) [PROOFSTEP] exact le_csSup (Mf.map_bddAbove bddAbove_Iio) (mem_image_of_mem _ hy)
{"mathlib_filename": "Mathlib.Topology.Order.Basic", "llama_tokens": 100206}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α b : ℤ ⊢ b ≤ ⌊↑(b + 1)⌋ [PROOFSTEP] rw [floor_intCast] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α b : ℤ ⊢ b ≤ b + 1 [PROOFSTEP] exact (lt_add_one _).le [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α b : ℤ ⊢ ⌈↑(b - 1)⌉ ≤ b [PROOFSTEP] rw [ceil_intCast] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α b : ℤ ⊢ b - 1 ≤ b [PROOFSTEP] exact (sub_one_lt _).le [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α n : ℤ ⊢ Tendsto floor (𝓝[Ici ↑n] ↑n) (pure n) [PROOFSTEP] simpa only [floor_intCast] using tendsto_floor_right_pure_floor (n : α) -- porting note: new theorem [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α n : ℤ ⊢ Tendsto ceil (𝓝[Iic ↑n] ↑n) (pure n) [PROOFSTEP] simpa only [ceil_intCast] using tendsto_ceil_left_pure_ceil (n : α) -- porting note: new theorem [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α x : α ⊢ ↑(⌈x⌉ - 1) < x [PROOFSTEP] rw [cast_sub, cast_one, sub_lt_iff_lt_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α x : α ⊢ ↑⌈x⌉ < x + 1 [PROOFSTEP] exact ceil_lt_add_one _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α x : α h₁ : ↑(⌈x⌉ - 1) < x ⊢ x ≤ ↑(⌈x⌉ - 1) + 1 [PROOFSTEP] rw [cast_sub, cast_one, sub_add_cancel] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α x : α h₁ : ↑(⌈x⌉ - 1) < x ⊢ x ≤ ↑⌈x⌉ [PROOFSTEP] exact le_ceil _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α n : ℤ ⊢ Tendsto floor (𝓝[Iio ↑n] ↑n) (pure (n - 1)) [PROOFSTEP] simpa only [ceil_intCast] using tendsto_floor_left_pure_ceil_sub_one (n : α) -- porting note: new theorem [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α x : α ⊢ ↑(⌊x⌋ + 1) - 1 ≤ x [PROOFSTEP] rw [cast_add, cast_one, add_sub_cancel] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α x : α ⊢ ↑⌊x⌋ ≤ x [PROOFSTEP] exact floor_le _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α n : ℤ ⊢ Tendsto ceil (𝓝[Ioi ↑n] ↑n) (pure (n + 1)) [PROOFSTEP] simpa only [floor_intCast] using tendsto_ceil_right_pure_floor_add_one (n : α) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α n : ℤ ⊢ pure (IntCast.intCast (n - 1)) ≤ 𝓝[Iic (↑n - 1)] (↑n - 1) [PROOFSTEP] rw [← @cast_one α, ← cast_sub] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α n : ℤ ⊢ pure (IntCast.intCast (n - 1)) ≤ 𝓝[Iic ↑(n - 1)] ↑(n - 1) [PROOFSTEP] exact pure_le_nhdsWithin le_rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α n : ℤ ⊢ pure (IntCast.intCast (n + 1)) ≤ 𝓝[Ici (↑n + 1)] (↑n + 1) [PROOFSTEP] rw [← @cast_one α, ← cast_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α n : ℤ ⊢ pure (IntCast.intCast (n + 1)) ≤ 𝓝[Ici ↑(n + 1)] ↑(n + 1) [PROOFSTEP] exact pure_le_nhdsWithin le_rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : FloorRing α inst✝² : TopologicalSpace α inst✝¹ : OrderClosedTopology α inst✝ : TopologicalAddGroup α n : ℤ ⊢ Tendsto fract (𝓝[Iio ↑n] ↑n) (𝓝 1) [PROOFSTEP] rw [← sub_sub_cancel (n : α) 1] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : FloorRing α inst✝² : TopologicalSpace α inst✝¹ : OrderClosedTopology α inst✝ : TopologicalAddGroup α n : ℤ ⊢ Tendsto fract (𝓝[Iio ↑n] ↑n) (𝓝 (↑n - (↑n - 1))) [PROOFSTEP] refine (tendsto_id.mono_left nhdsWithin_le_nhds).sub ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : FloorRing α inst✝² : TopologicalSpace α inst✝¹ : OrderClosedTopology α inst✝ : TopologicalAddGroup α n : ℤ ⊢ Tendsto (fun x => ↑⌊x⌋) (𝓝[Iio ↑n] ↑n) (𝓝 (↑n - 1)) [PROOFSTEP] exact tendsto_floor_left' n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 ⊢ Continuous fun st => f st.fst (fract st.snd) [PROOFSTEP] change Continuous (uncurry f ∘ Prod.map id fract) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 ⊢ Continuous (uncurry f ∘ Prod.map id fract) [PROOFSTEP] rw [continuous_iff_continuousAt] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 ⊢ ∀ (x : β × α), ContinuousAt (uncurry f ∘ Prod.map id fract) x [PROOFSTEP] rintro ⟨s, t⟩ [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 s : β t : α ⊢ ContinuousAt (uncurry f ∘ Prod.map id fract) (s, t) [PROOFSTEP] rcases em (∃ n : ℤ, t = n) with (⟨n, rfl⟩ | ht) [GOAL] case mk.inl.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 s : β n : ℤ ⊢ ContinuousAt (uncurry f ∘ Prod.map id fract) (s, ↑n) [PROOFSTEP] rw [ContinuousAt, nhds_prod_eq, ← nhds_left'_sup_nhds_right (n : α), prod_sup, tendsto_sup] [GOAL] case mk.inl.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 s : β n : ℤ ⊢ Tendsto (uncurry f ∘ Prod.map id fract) (𝓝 s ×ˢ 𝓝[Iio ↑n] ↑n) (𝓝 ((uncurry f ∘ Prod.map id fract) (s, ↑n))) ∧ Tendsto (uncurry f ∘ Prod.map id fract) (𝓝 s ×ˢ 𝓝[Ici ↑n] ↑n) (𝓝 ((uncurry f ∘ Prod.map id fract) (s, ↑n))) [PROOFSTEP] constructor [GOAL] case mk.inl.intro.left α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 s : β n : ℤ ⊢ Tendsto (uncurry f ∘ Prod.map id fract) (𝓝 s ×ˢ 𝓝[Iio ↑n] ↑n) (𝓝 ((uncurry f ∘ Prod.map id fract) (s, ↑n))) [PROOFSTEP] refine (((h (s, 1) ⟨trivial, zero_le_one, le_rfl⟩).tendsto.mono_left ?_).comp (tendsto_id.prod_map (tendsto_fract_left _))).mono_right (le_of_eq ?_) [GOAL] case mk.inl.intro.left.refine_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 s : β n : ℤ ⊢ 𝓝 s ×ˢ 𝓝[Iio 1] 1 ≤ 𝓝[univ ×ˢ Icc 0 1] (s, 1) [PROOFSTEP] rw [nhdsWithin_prod_eq, nhdsWithin_univ, ← nhdsWithin_Ico_eq_nhdsWithin_Iio one_pos] [GOAL] case mk.inl.intro.left.refine_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 s : β n : ℤ ⊢ 𝓝 s ×ˢ 𝓝[Ico 0 1] 1 ≤ 𝓝 s ×ˢ 𝓝[Icc 0 1] 1 [PROOFSTEP] exact Filter.prod_mono le_rfl (nhdsWithin_mono _ Ico_subset_Icc_self) [GOAL] case mk.inl.intro.left.refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 s : β n : ℤ ⊢ 𝓝 (uncurry f (s, 1)) = 𝓝 ((uncurry f ∘ Prod.map id fract) (s, ↑n)) [PROOFSTEP] simp [hf] [GOAL] case mk.inl.intro.right α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 s : β n : ℤ ⊢ Tendsto (uncurry f ∘ Prod.map id fract) (𝓝 s ×ˢ 𝓝[Ici ↑n] ↑n) (𝓝 ((uncurry f ∘ Prod.map id fract) (s, ↑n))) [PROOFSTEP] refine (((h (s, 0) ⟨trivial, le_rfl, zero_le_one⟩).tendsto.mono_left <| le_of_eq ?_).comp (tendsto_id.prod_map (tendsto_fract_right _))).mono_right (le_of_eq ?_) [GOAL] case mk.inl.intro.right.refine_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 s : β n : ℤ ⊢ 𝓝 s ×ˢ 𝓝[Ici 0] 0 = 𝓝[univ ×ˢ Icc 0 1] (s, 0) [PROOFSTEP] simp [nhdsWithin_prod_eq, nhdsWithin_univ] [GOAL] case mk.inl.intro.right.refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 s : β n : ℤ ⊢ 𝓝 (uncurry f (s, 0)) = 𝓝 ((uncurry f ∘ Prod.map id fract) (s, ↑n)) [PROOFSTEP] simp [nhdsWithin_prod_eq, nhdsWithin_univ] [GOAL] case mk.inr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 s : β t : α ht : ¬∃ n, t = ↑n ⊢ ContinuousAt (uncurry f ∘ Prod.map id fract) (s, t) [PROOFSTEP] replace ht : t ≠ ⌊t⌋ := fun ht' => ht ⟨_, ht'⟩ [GOAL] case mk.inr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 s : β t : α ht : t ≠ ↑⌊t⌋ ⊢ ContinuousAt (uncurry f ∘ Prod.map id fract) (s, t) [PROOFSTEP] refine (h.continuousAt ?_).comp (continuousAt_id.prod_map (continuousAt_fract ht)) [GOAL] case mk.inr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrderedRing α inst✝⁴ : FloorRing α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : β → α → γ h : ContinuousOn (uncurry f) (univ ×ˢ Icc 0 1) hf : ∀ (s : β), f s 0 = f s 1 s : β t : α ht : t ≠ ↑⌊t⌋ ⊢ univ ×ˢ Icc 0 1 ∈ 𝓝 (Prod.map id fract (s, t)) [PROOFSTEP] exact prod_mem_nhds univ_mem (Icc_mem_nhds (fract_pos.2 ht) (fract_lt_one _))
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.Floor", "llama_tokens": 6737}
[GOAL] X : Type u α : Type v inst✝⁴ : TopologicalSpace X inst✝³ : LinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderClosedTopology α inst✝ : PreconnectedSpace X a b : X f g : X → α hf : Continuous f hg : Continuous g ha : f a ≤ g a hb : g b ≤ f b ⊢ ∃ x, f x = g x [PROOFSTEP] obtain ⟨x, _, hfg, hgf⟩ : (univ ∩ {x | f x ≤ g x ∧ g x ≤ f x}).Nonempty [GOAL] X : Type u α : Type v inst✝⁴ : TopologicalSpace X inst✝³ : LinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderClosedTopology α inst✝ : PreconnectedSpace X a b : X f g : X → α hf : Continuous f hg : Continuous g ha : f a ≤ g a hb : g b ≤ f b ⊢ Set.Nonempty (univ ∩ {x | f x ≤ g x ∧ g x ≤ f x}) case intro.intro.intro X : Type u α : Type v inst✝⁴ : TopologicalSpace X inst✝³ : LinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderClosedTopology α inst✝ : PreconnectedSpace X a b : X f g : X → α hf : Continuous f hg : Continuous g ha : f a ≤ g a hb : g b ≤ f b x : X left✝ : x ∈ univ hfg : f x ≤ g x hgf : g x ≤ f x ⊢ ∃ x, f x = g x [PROOFSTEP] exact isPreconnected_closed_iff.1 PreconnectedSpace.isPreconnected_univ _ _ (isClosed_le hf hg) (isClosed_le hg hf) (fun _ _ => le_total _ _) ⟨a, trivial, ha⟩ ⟨b, trivial, hb⟩ [GOAL] case intro.intro.intro X : Type u α : Type v inst✝⁴ : TopologicalSpace X inst✝³ : LinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderClosedTopology α inst✝ : PreconnectedSpace X a b : X f g : X → α hf : Continuous f hg : Continuous g ha : f a ≤ g a hb : g b ≤ f b x : X left✝ : x ∈ univ hfg : f x ≤ g x hgf : g x ≤ f x ⊢ ∃ x, f x = g x [PROOFSTEP] exact ⟨x, le_antisymm hfg hgf⟩ [GOAL] X : Type u α : Type v inst✝⁴ : TopologicalSpace X inst✝³ : LinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderClosedTopology α s : Set X hs : IsPreconnected s a : X l : Filter X ha : a ∈ s inst✝ : NeBot l hl : l ≤ 𝓟 s f g : X → α hf : ContinuousOn f s hg : ContinuousOn g s ha' : f a ≤ g a he : g ≤ᶠ[l] f ⊢ ∃ x, x ∈ s ∧ f x = g x [PROOFSTEP] rw [continuousOn_iff_continuous_restrict] at hf hg [GOAL] X : Type u α : Type v inst✝⁴ : TopologicalSpace X inst✝³ : LinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderClosedTopology α s : Set X hs : IsPreconnected s a : X l : Filter X ha : a ∈ s inst✝ : NeBot l hl : l ≤ 𝓟 s f g : X → α hf : Continuous (restrict s f) hg : Continuous (restrict s g) ha' : f a ≤ g a he : g ≤ᶠ[l] f ⊢ ∃ x, x ∈ s ∧ f x = g x [PROOFSTEP] obtain ⟨b, h⟩ := @intermediate_value_univ₂_eventually₁ _ _ _ _ _ _ (Subtype.preconnectedSpace hs) ⟨a, ha⟩ _ (comap_coe_neBot_of_le_principal hl) _ _ hf hg ha' (he.comap _) [GOAL] case intro X : Type u α : Type v inst✝⁴ : TopologicalSpace X inst✝³ : LinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderClosedTopology α s : Set X hs : IsPreconnected s a : X l : Filter X ha : a ∈ s inst✝ : NeBot l hl : l ≤ 𝓟 s f g : X → α hf : Continuous (restrict s f) hg : Continuous (restrict s g) ha' : f a ≤ g a he : g ≤ᶠ[l] f b : ↑s h : restrict s f b = restrict s g b ⊢ ∃ x, x ∈ s ∧ f x = g x [PROOFSTEP] exact ⟨b, b.prop, h⟩ [GOAL] X : Type u α : Type v inst✝⁵ : TopologicalSpace X inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderClosedTopology α s : Set X hs : IsPreconnected s l₁ l₂ : Filter X inst✝¹ : NeBot l₁ inst✝ : NeBot l₂ hl₁ : l₁ ≤ 𝓟 s hl₂ : l₂ ≤ 𝓟 s f g : X → α hf : ContinuousOn f s hg : ContinuousOn g s he₁ : f ≤ᶠ[l₁] g he₂ : g ≤ᶠ[l₂] f ⊢ ∃ x, x ∈ s ∧ f x = g x [PROOFSTEP] rw [continuousOn_iff_continuous_restrict] at hf hg [GOAL] X : Type u α : Type v inst✝⁵ : TopologicalSpace X inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderClosedTopology α s : Set X hs : IsPreconnected s l₁ l₂ : Filter X inst✝¹ : NeBot l₁ inst✝ : NeBot l₂ hl₁ : l₁ ≤ 𝓟 s hl₂ : l₂ ≤ 𝓟 s f g : X → α hf : Continuous (restrict s f) hg : Continuous (restrict s g) he₁ : f ≤ᶠ[l₁] g he₂ : g ≤ᶠ[l₂] f ⊢ ∃ x, x ∈ s ∧ f x = g x [PROOFSTEP] obtain ⟨b, h⟩ := @intermediate_value_univ₂_eventually₂ _ _ _ _ _ _ (Subtype.preconnectedSpace hs) _ _ (comap_coe_neBot_of_le_principal hl₁) (comap_coe_neBot_of_le_principal hl₂) _ _ hf hg (he₁.comap _) (he₂.comap _) [GOAL] case intro X : Type u α : Type v inst✝⁵ : TopologicalSpace X inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderClosedTopology α s : Set X hs : IsPreconnected s l₁ l₂ : Filter X inst✝¹ : NeBot l₁ inst✝ : NeBot l₂ hl₁ : l₁ ≤ 𝓟 s hl₂ : l₂ ≤ 𝓟 s f g : X → α hf : Continuous (restrict s f) hg : Continuous (restrict s g) he₁ : f ≤ᶠ[l₁] g he₂ : g ≤ᶠ[l₂] f b : ↑s h : restrict s f b = restrict s g b ⊢ ∃ x, x ∈ s ∧ f x = g x [PROOFSTEP] exact ⟨b, b.prop, h⟩ [GOAL] X : Type u α : Type v inst✝³ : TopologicalSpace X inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α s : Set α hs : IsPreconnected s a b : α ha : a ∈ s hb : b ∈ s ⊢ Icc a b ⊆ s [PROOFSTEP] simpa only [image_id] using hs.intermediate_value ha hb continuousOn_id [GOAL] X : Type u α : Type v inst✝³ : TopologicalSpace X inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α s : Set α hs : IsPreconnected s hb : ¬BddBelow s ha : ¬BddAbove s ⊢ s = univ [PROOFSTEP] refine' eq_univ_of_forall fun x => _ [GOAL] X : Type u α : Type v inst✝³ : TopologicalSpace X inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α s : Set α hs : IsPreconnected s hb : ¬BddBelow s ha : ¬BddAbove s x : α ⊢ x ∈ s [PROOFSTEP] obtain ⟨y, ys, hy⟩ : ∃ y ∈ s, y < x := not_bddBelow_iff.1 hb x [GOAL] case intro.intro X : Type u α : Type v inst✝³ : TopologicalSpace X inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α s : Set α hs : IsPreconnected s hb : ¬BddBelow s ha : ¬BddAbove s x y : α ys : y ∈ s hy : y < x ⊢ x ∈ s [PROOFSTEP] obtain ⟨z, zs, hz⟩ : ∃ z ∈ s, x < z := not_bddAbove_iff.1 ha x [GOAL] case intro.intro.intro.intro X : Type u α : Type v inst✝³ : TopologicalSpace X inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α s : Set α hs : IsPreconnected s hb : ¬BddBelow s ha : ¬BddAbove s x y : α ys : y ∈ s hy : y < x z : α zs : z ∈ s hz : x < z ⊢ x ∈ s [PROOFSTEP] exact hs.Icc_subset ys zs ⟨le_of_lt hy, le_of_lt hz⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] rcases s.eq_empty_or_nonempty with (rfl | hne) [GOAL] case inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ hs : IsPreconnected ∅ ⊢ ∅ ∈ {Icc (sInf ∅) (sSup ∅), Ico (sInf ∅) (sSup ∅), Ioc (sInf ∅) (sSup ∅), Ioo (sInf ∅) (sSup ∅), Ici (sInf ∅), Ioi (sInf ∅), Iic (sSup ∅), Iio (sSup ∅), univ, ∅} [PROOFSTEP] apply_rules [Or.inr, mem_singleton] [GOAL] case inr α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] have hs' : IsConnected s := ⟨hne, hs⟩ [GOAL] case inr α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] by_cases hb : BddBelow s [GOAL] case pos α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : BddBelow s ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] by_cases ha : BddAbove s [GOAL] case neg α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] by_cases ha : BddAbove s [GOAL] case pos α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : BddBelow s ha : BddAbove s ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] rcases mem_Icc_Ico_Ioc_Ioo_of_subset_of_subset (hs'.Ioo_csInf_csSup_subset hb ha) (subset_Icc_csInf_csSup hb ha) with (hs | hs | hs | hs) [GOAL] case pos.inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : BddBelow s ha : BddAbove s hs : s = Icc (sInf s) (sSup s) ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] exact Or.inl hs [GOAL] case pos.inr.inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : BddBelow s ha : BddAbove s hs : s = Ico (sInf s) (sSup s) ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] exact Or.inr <| Or.inl hs [GOAL] case pos.inr.inr.inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : BddBelow s ha : BddAbove s hs : s = Ioc (sInf s) (sSup s) ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] exact Or.inr <| Or.inr <| Or.inl hs [GOAL] case pos.inr.inr.inr α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : BddBelow s ha : BddAbove s hs : s ∈ {Ioo (sInf s) (sSup s)} ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] exact Or.inr <| Or.inr <| Or.inr <| Or.inl hs [GOAL] case neg α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : BddBelow s ha : ¬BddAbove s ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] refine' Or.inr <| Or.inr <| Or.inr <| Or.inr _ [GOAL] case neg α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : BddBelow s ha : ¬BddAbove s ⊢ s ∈ {Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] cases' mem_Ici_Ioi_of_subset_of_subset (hs.Ioi_csInf_subset hb ha) fun x hx => csInf_le hb hx with hs hs [GOAL] case neg.inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : BddBelow s ha : ¬BddAbove s hs : s = Ici (sInf s) ⊢ s ∈ {Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] exact Or.inl hs [GOAL] case neg.inr α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : BddBelow s ha : ¬BddAbove s hs : s ∈ {Ioi (sInf s)} ⊢ s ∈ {Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] exact Or.inr (Or.inl hs) [GOAL] case pos α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : BddAbove s ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] iterate 6 apply Or.inr [GOAL] case pos α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : BddAbove s ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case pos.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : BddAbove s ⊢ s ∈ {Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case pos.h.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : BddAbove s ⊢ s ∈ {Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case pos.h.h.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : BddAbove s ⊢ s ∈ {Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case pos.h.h.h.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : BddAbove s ⊢ s ∈ {Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case pos.h.h.h.h.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : BddAbove s ⊢ s ∈ {Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case pos.h.h.h.h.h.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : BddAbove s ⊢ s ∈ {Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] cases' mem_Iic_Iio_of_subset_of_subset (hs.Iio_csSup_subset hb ha) fun x hx => le_csSup ha hx with hs hs [GOAL] case pos.h.h.h.h.h.h.inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : BddAbove s hs : s = Iic (sSup s) ⊢ s ∈ {Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] exact Or.inl hs [GOAL] case pos.h.h.h.h.h.h.inr α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : BddAbove s hs : s ∈ {Iio (sSup s)} ⊢ s ∈ {Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] exact Or.inr (Or.inl hs) [GOAL] case neg α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : ¬BddAbove s ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] iterate 8 apply Or.inr [GOAL] case neg α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : ¬BddAbove s ⊢ s ∈ {Icc (sInf s) (sSup s), Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case neg.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : ¬BddAbove s ⊢ s ∈ {Ico (sInf s) (sSup s), Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case neg.h.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : ¬BddAbove s ⊢ s ∈ {Ioc (sInf s) (sSup s), Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case neg.h.h.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : ¬BddAbove s ⊢ s ∈ {Ioo (sInf s) (sSup s), Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case neg.h.h.h.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : ¬BddAbove s ⊢ s ∈ {Ici (sInf s), Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case neg.h.h.h.h.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : ¬BddAbove s ⊢ s ∈ {Ioi (sInf s), Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case neg.h.h.h.h.h.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : ¬BddAbove s ⊢ s ∈ {Iic (sSup s), Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case neg.h.h.h.h.h.h.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : ¬BddAbove s ⊢ s ∈ {Iio (sSup s), univ, ∅} [PROOFSTEP] apply Or.inr [GOAL] case neg.h.h.h.h.h.h.h.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : IsPreconnected s hne : Set.Nonempty s hs' : IsConnected s hb : ¬BddBelow s ha : ¬BddAbove s ⊢ s ∈ {univ, ∅} [PROOFSTEP] exact Or.inl (hs.eq_univ_of_unbounded hb ha) [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ ⊢ {s | IsPreconnected s} ⊆ range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) [PROOFSTEP] intro s hs [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs : s ∈ {s | IsPreconnected s} ⊢ s ∈ range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) [PROOFSTEP] rcases hs.mem_intervals with (hs | hs | hs | hs | hs | hs | hs | hs | hs | hs) [GOAL] case inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : s ∈ {s | IsPreconnected s} hs : s = Icc (sInf s) (sSup s) ⊢ s ∈ range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) [PROOFSTEP] exact Or.inl <| Or.inl <| Or.inl <| Or.inl ⟨(sInf s, sSup s), hs.symm⟩ [GOAL] case inr.inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : s ∈ {s | IsPreconnected s} hs : s = Ico (sInf s) (sSup s) ⊢ s ∈ range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) [PROOFSTEP] exact Or.inl <| Or.inl <| Or.inl <| Or.inr ⟨(sInf s, sSup s), hs.symm⟩ [GOAL] case inr.inr.inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : s ∈ {s | IsPreconnected s} hs : s = Ioc (sInf s) (sSup s) ⊢ s ∈ range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) [PROOFSTEP] exact Or.inl <| Or.inl <| Or.inr ⟨(sInf s, sSup s), hs.symm⟩ [GOAL] case inr.inr.inr.inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : s ∈ {s | IsPreconnected s} hs : s = Ioo (sInf s) (sSup s) ⊢ s ∈ range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) [PROOFSTEP] exact Or.inl <| Or.inr ⟨(sInf s, sSup s), hs.symm⟩ [GOAL] case inr.inr.inr.inr.inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : s ∈ {s | IsPreconnected s} hs : s = Ici (sInf s) ⊢ s ∈ range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) [PROOFSTEP] exact Or.inr <| Or.inl <| Or.inl <| Or.inl <| Or.inl ⟨sInf s, hs.symm⟩ [GOAL] case inr.inr.inr.inr.inr.inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : s ∈ {s | IsPreconnected s} hs : s = Ioi (sInf s) ⊢ s ∈ range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) [PROOFSTEP] exact Or.inr <| Or.inl <| Or.inl <| Or.inl <| Or.inr ⟨sInf s, hs.symm⟩ [GOAL] case inr.inr.inr.inr.inr.inr.inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : s ∈ {s | IsPreconnected s} hs : s = Iic (sSup s) ⊢ s ∈ range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) [PROOFSTEP] exact Or.inr <| Or.inl <| Or.inl <| Or.inr ⟨sSup s, hs.symm⟩ [GOAL] case inr.inr.inr.inr.inr.inr.inr.inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : s ∈ {s | IsPreconnected s} hs : s = Iio (sSup s) ⊢ s ∈ range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) [PROOFSTEP] exact Or.inr <| Or.inl <| Or.inr ⟨sSup s, hs.symm⟩ [GOAL] case inr.inr.inr.inr.inr.inr.inr.inr.inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : s ∈ {s | IsPreconnected s} hs : s = univ ⊢ s ∈ range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) [PROOFSTEP] exact Or.inr <| Or.inr <| Or.inl hs [GOAL] case inr.inr.inr.inr.inr.inr.inr.inr.inr α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ s : Set α hs✝ : s ∈ {s | IsPreconnected s} hs : s ∈ {∅} ⊢ s ∈ range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) [PROOFSTEP] exact Or.inr <| Or.inr <| Or.inr hs [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) ⊢ b ∈ s [PROOFSTEP] let S := s ∩ Icc a b [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) S : Set α := s ∩ Icc a b ⊢ b ∈ s [PROOFSTEP] replace ha : a ∈ S [GOAL] case ha α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) S : Set α := s ∩ Icc a b ⊢ a ∈ S α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) S : Set α := s ∩ Icc a b ha : a ∈ S ⊢ b ∈ s [PROOFSTEP] exact ⟨ha, left_mem_Icc.2 hab⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) S : Set α := s ∩ Icc a b ha : a ∈ S ⊢ b ∈ s [PROOFSTEP] have Sbd : BddAbove S := ⟨b, fun z hz => hz.2.2⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) S : Set α := s ∩ Icc a b ha : a ∈ S Sbd : BddAbove S ⊢ b ∈ s [PROOFSTEP] let c := sSup (s ∩ Icc a b) [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) S : Set α := s ∩ Icc a b ha : a ∈ S Sbd : BddAbove S c : α := sSup (s ∩ Icc a b) ⊢ b ∈ s [PROOFSTEP] have c_mem : c ∈ S := hs.csSup_mem ⟨_, ha⟩ Sbd [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) S : Set α := s ∩ Icc a b ha : a ∈ S Sbd : BddAbove S c : α := sSup (s ∩ Icc a b) c_mem : c ∈ S ⊢ b ∈ s [PROOFSTEP] have c_le : c ≤ b := csSup_le ⟨_, ha⟩ fun x hx => hx.2.2 [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) S : Set α := s ∩ Icc a b ha : a ∈ S Sbd : BddAbove S c : α := sSup (s ∩ Icc a b) c_mem : c ∈ S c_le : c ≤ b ⊢ b ∈ s [PROOFSTEP] cases' eq_or_lt_of_le c_le with hc hc [GOAL] case inl α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) S : Set α := s ∩ Icc a b ha : a ∈ S Sbd : BddAbove S c : α := sSup (s ∩ Icc a b) c_mem : c ∈ S c_le : c ≤ b hc : c = b ⊢ b ∈ s case inr α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) S : Set α := s ∩ Icc a b ha : a ∈ S Sbd : BddAbove S c : α := sSup (s ∩ Icc a b) c_mem : c ∈ S c_le : c ≤ b hc : c < b ⊢ b ∈ s [PROOFSTEP] exact hc ▸ c_mem.1 [GOAL] case inr α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) S : Set α := s ∩ Icc a b ha : a ∈ S Sbd : BddAbove S c : α := sSup (s ∩ Icc a b) c_mem : c ∈ S c_le : c ≤ b hc : c < b ⊢ b ∈ s [PROOFSTEP] exfalso [GOAL] case inr.h α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) S : Set α := s ∩ Icc a b ha : a ∈ S Sbd : BddAbove S c : α := sSup (s ∩ Icc a b) c_mem : c ∈ S c_le : c ≤ b hc : c < b ⊢ False [PROOFSTEP] rcases hgt c ⟨c_mem.1, c_mem.2.1, hc⟩ with ⟨x, xs, cx, xb⟩ [GOAL] case inr.h.intro.intro.intro α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) hab : a ≤ b hgt : ∀ (x : α), x ∈ s ∩ Ico a b → Set.Nonempty (s ∩ Ioc x b) S : Set α := s ∩ Icc a b ha : a ∈ S Sbd : BddAbove S c : α := sSup (s ∩ Icc a b) c_mem : c ∈ S c_le : c ≤ b hc : c < b x : α xs : x ∈ s cx : c < x xb : x ≤ b ⊢ False [PROOFSTEP] exact not_lt_of_le (le_csSup Sbd ⟨xs, le_trans (le_csSup Sbd ha) (le_of_lt cx), xb⟩) cx [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hgt : ∀ (x : α), x ∈ s ∩ Ico a b → ∀ (y : α), y ∈ Ioi x → Set.Nonempty (s ∩ Ioc x y) ⊢ Icc a b ⊆ s [PROOFSTEP] intro y hy [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hgt : ∀ (x : α), x ∈ s ∩ Ico a b → ∀ (y : α), y ∈ Ioi x → Set.Nonempty (s ∩ Ioc x y) y : α hy : y ∈ Icc a b ⊢ y ∈ s [PROOFSTEP] have : IsClosed (s ∩ Icc a y) := by suffices s ∩ Icc a y = s ∩ Icc a b ∩ Icc a y by rw [this] exact IsClosed.inter hs isClosed_Icc rw [inter_assoc] congr exact (inter_eq_self_of_subset_right <| Icc_subset_Icc_right hy.2).symm [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hgt : ∀ (x : α), x ∈ s ∩ Ico a b → ∀ (y : α), y ∈ Ioi x → Set.Nonempty (s ∩ Ioc x y) y : α hy : y ∈ Icc a b ⊢ IsClosed (s ∩ Icc a y) [PROOFSTEP] suffices s ∩ Icc a y = s ∩ Icc a b ∩ Icc a y by rw [this] exact IsClosed.inter hs isClosed_Icc [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hgt : ∀ (x : α), x ∈ s ∩ Ico a b → ∀ (y : α), y ∈ Ioi x → Set.Nonempty (s ∩ Ioc x y) y : α hy : y ∈ Icc a b this : s ∩ Icc a y = s ∩ Icc a b ∩ Icc a y ⊢ IsClosed (s ∩ Icc a y) [PROOFSTEP] rw [this] [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hgt : ∀ (x : α), x ∈ s ∩ Ico a b → ∀ (y : α), y ∈ Ioi x → Set.Nonempty (s ∩ Ioc x y) y : α hy : y ∈ Icc a b this : s ∩ Icc a y = s ∩ Icc a b ∩ Icc a y ⊢ IsClosed (s ∩ Icc a b ∩ Icc a y) [PROOFSTEP] exact IsClosed.inter hs isClosed_Icc [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hgt : ∀ (x : α), x ∈ s ∩ Ico a b → ∀ (y : α), y ∈ Ioi x → Set.Nonempty (s ∩ Ioc x y) y : α hy : y ∈ Icc a b ⊢ s ∩ Icc a y = s ∩ Icc a b ∩ Icc a y [PROOFSTEP] rw [inter_assoc] [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hgt : ∀ (x : α), x ∈ s ∩ Ico a b → ∀ (y : α), y ∈ Ioi x → Set.Nonempty (s ∩ Ioc x y) y : α hy : y ∈ Icc a b ⊢ s ∩ Icc a y = s ∩ (Icc a b ∩ Icc a y) [PROOFSTEP] congr [GOAL] case e_a α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hgt : ∀ (x : α), x ∈ s ∩ Ico a b → ∀ (y : α), y ∈ Ioi x → Set.Nonempty (s ∩ Ioc x y) y : α hy : y ∈ Icc a b ⊢ Icc a y = Icc a b ∩ Icc a y [PROOFSTEP] exact (inter_eq_self_of_subset_right <| Icc_subset_Icc_right hy.2).symm [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : ConditionallyCompleteLinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : Nonempty γ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hgt : ∀ (x : α), x ∈ s ∩ Ico a b → ∀ (y : α), y ∈ Ioi x → Set.Nonempty (s ∩ Ioc x y) y : α hy : y ∈ Icc a b this : IsClosed (s ∩ Icc a y) ⊢ y ∈ s [PROOFSTEP] exact IsClosed.mem_of_ge_of_forall_exists_gt this ha hy.1 fun x hx => hgt x ⟨hx.1, Ico_subset_Ico_right hy.2 hx.2⟩ y hx.2.2 [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a✝ b✝ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hgt : ∀ (x : α), x ∈ s ∩ Ico a b → s ∈ 𝓝[Ioi x] x ⊢ Icc a b ⊆ s [PROOFSTEP] apply hs.Icc_subset_of_forall_exists_gt ha [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a✝ b✝ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hgt : ∀ (x : α), x ∈ s ∩ Ico a b → s ∈ 𝓝[Ioi x] x ⊢ ∀ (x : α), x ∈ s ∩ Ico a b → ∀ (y : α), y ∈ Ioi x → Set.Nonempty (s ∩ Ioc x y) [PROOFSTEP] rintro x ⟨hxs, hxab⟩ y hyxb [GOAL] case intro α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a✝ b✝ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hgt : ∀ (x : α), x ∈ s ∩ Ico a b → s ∈ 𝓝[Ioi x] x x : α hxs : x ∈ s hxab : x ∈ Ico a b y : α hyxb : y ∈ Ioi x ⊢ Set.Nonempty (s ∩ Ioc x y) [PROOFSTEP] have : s ∩ Ioc x y ∈ 𝓝[>] x := inter_mem (hgt x ⟨hxs, hxab⟩) (Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, hyxb⟩) [GOAL] case intro α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a✝ b✝ a b : α s : Set α hs : IsClosed (s ∩ Icc a b) ha : a ∈ s hgt : ∀ (x : α), x ∈ s ∩ Ico a b → s ∈ 𝓝[Ioi x] x x : α hxs : x ∈ s hxab : x ∈ Ico a b y : α hyxb : y ∈ Ioi x this : s ∩ Ioc x y ∈ 𝓝[Ioi x] x ⊢ Set.Nonempty (s ∩ Ioc x y) [PROOFSTEP] exact (nhdsWithin_Ioi_self_neBot' ⟨b, hxab.2⟩).nonempty_of_mem this [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t ⊢ Set.Nonempty (Icc a b ∩ (s ∩ t)) [PROOFSTEP] have xyab : Icc x y ⊆ Icc a b := Icc_subset_Icc hx.1.1 hy.1.2 [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t xyab : Icc x y ⊆ Icc a b ⊢ Set.Nonempty (Icc a b ∩ (s ∩ t)) [PROOFSTEP] by_contra hst [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t xyab : Icc x y ⊆ Icc a b hst : ¬Set.Nonempty (Icc a b ∩ (s ∩ t)) ⊢ False [PROOFSTEP] suffices : Icc x y ⊆ s [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t xyab : Icc x y ⊆ Icc a b hst : ¬Set.Nonempty (Icc a b ∩ (s ∩ t)) this : Icc x y ⊆ s ⊢ False case this α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t xyab : Icc x y ⊆ Icc a b hst : ¬Set.Nonempty (Icc a b ∩ (s ∩ t)) ⊢ Icc x y ⊆ s [PROOFSTEP] exact hst ⟨y, xyab <| right_mem_Icc.2 hxy, this <| right_mem_Icc.2 hxy, hy.2⟩ [GOAL] case this α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t xyab : Icc x y ⊆ Icc a b hst : ¬Set.Nonempty (Icc a b ∩ (s ∩ t)) ⊢ Icc x y ⊆ s [PROOFSTEP] apply (IsClosed.inter hs isClosed_Icc).Icc_subset_of_forall_mem_nhdsWithin hx.2 [GOAL] case this α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t xyab : Icc x y ⊆ Icc a b hst : ¬Set.Nonempty (Icc a b ∩ (s ∩ t)) ⊢ ∀ (x_1 : α), x_1 ∈ s ∩ Ico x y → s ∈ 𝓝[Ioi x_1] x_1 [PROOFSTEP] rintro z ⟨zs, hz⟩ [GOAL] case this.intro α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t xyab : Icc x y ⊆ Icc a b hst : ¬Set.Nonempty (Icc a b ∩ (s ∩ t)) z : α zs : z ∈ s hz : z ∈ Ico x y ⊢ s ∈ 𝓝[Ioi z] z [PROOFSTEP] have zt : z ∈ tᶜ := fun zt => hst ⟨z, xyab <| Ico_subset_Icc_self hz, zs, zt⟩ [GOAL] case this.intro α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t xyab : Icc x y ⊆ Icc a b hst : ¬Set.Nonempty (Icc a b ∩ (s ∩ t)) z : α zs : z ∈ s hz : z ∈ Ico x y zt : z ∈ tᶜ ⊢ s ∈ 𝓝[Ioi z] z [PROOFSTEP] have : tᶜ ∩ Ioc z y ∈ 𝓝[>] z := by rw [← nhdsWithin_Ioc_eq_nhdsWithin_Ioi hz.2] exact mem_nhdsWithin.2 ⟨tᶜ, ht.isOpen_compl, zt, Subset.rfl⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t xyab : Icc x y ⊆ Icc a b hst : ¬Set.Nonempty (Icc a b ∩ (s ∩ t)) z : α zs : z ∈ s hz : z ∈ Ico x y zt : z ∈ tᶜ ⊢ tᶜ ∩ Ioc z y ∈ 𝓝[Ioi z] z [PROOFSTEP] rw [← nhdsWithin_Ioc_eq_nhdsWithin_Ioi hz.2] [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t xyab : Icc x y ⊆ Icc a b hst : ¬Set.Nonempty (Icc a b ∩ (s ∩ t)) z : α zs : z ∈ s hz : z ∈ Ico x y zt : z ∈ tᶜ ⊢ tᶜ ∩ Ioc z y ∈ 𝓝[Ioc z y] z [PROOFSTEP] exact mem_nhdsWithin.2 ⟨tᶜ, ht.isOpen_compl, zt, Subset.rfl⟩ [GOAL] case this.intro α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t xyab : Icc x y ⊆ Icc a b hst : ¬Set.Nonempty (Icc a b ∩ (s ∩ t)) z : α zs : z ∈ s hz : z ∈ Ico x y zt : z ∈ tᶜ this : tᶜ ∩ Ioc z y ∈ 𝓝[Ioi z] z ⊢ s ∈ 𝓝[Ioi z] z [PROOFSTEP] apply mem_of_superset this [GOAL] case this.intro α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t xyab : Icc x y ⊆ Icc a b hst : ¬Set.Nonempty (Icc a b ∩ (s ∩ t)) z : α zs : z ∈ s hz : z ∈ Ico x y zt : z ∈ tᶜ this : tᶜ ∩ Ioc z y ∈ 𝓝[Ioi z] z ⊢ tᶜ ∩ Ioc z y ⊆ s [PROOFSTEP] have : Ioc z y ⊆ s ∪ t := fun w hw => hab (xyab ⟨le_trans hz.1 (le_of_lt hw.1), hw.2⟩) [GOAL] case this.intro α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b x y : α s t : Set α hxy : x ≤ y hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t hx : x ∈ Icc a b ∩ s hy : y ∈ Icc a b ∩ t xyab : Icc x y ⊆ Icc a b hst : ¬Set.Nonempty (Icc a b ∩ (s ∩ t)) z : α zs : z ∈ s hz : z ∈ Ico x y zt : z ∈ tᶜ this✝ : tᶜ ∩ Ioc z y ∈ 𝓝[Ioi z] z this : Ioc z y ⊆ s ∪ t ⊢ tᶜ ∩ Ioc z y ⊆ s [PROOFSTEP] exact fun w ⟨wt, wzy⟩ => (this wzy).elim id fun h => (wt h).elim [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b : α ⊢ ∀ (t t' : Set α), IsClosed t → IsClosed t' → Icc a b ⊆ t ∪ t' → Set.Nonempty (Icc a b ∩ t) → Set.Nonempty (Icc a b ∩ t') → Set.Nonempty (Icc a b ∩ (t ∩ t')) [PROOFSTEP] rintro s t hs ht hab ⟨x, hx⟩ ⟨y, hy⟩ -- This used to use `wlog`, but it was causing timeouts. [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b : α s t : Set α hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t x : α hx : x ∈ Icc a b ∩ s y : α hy : y ∈ Icc a b ∩ t ⊢ Set.Nonempty (Icc a b ∩ (s ∩ t)) [PROOFSTEP] cases' le_total x y with h h [GOAL] case intro.intro.inl α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b : α s t : Set α hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t x : α hx : x ∈ Icc a b ∩ s y : α hy : y ∈ Icc a b ∩ t h : x ≤ y ⊢ Set.Nonempty (Icc a b ∩ (s ∩ t)) [PROOFSTEP] exact isPreconnected_Icc_aux x y s t h hs ht hab hx hy [GOAL] case intro.intro.inr α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b : α s t : Set α hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t x : α hx : x ∈ Icc a b ∩ s y : α hy : y ∈ Icc a b ∩ t h : y ≤ x ⊢ Set.Nonempty (Icc a b ∩ (s ∩ t)) [PROOFSTEP] rw [inter_comm s t] [GOAL] case intro.intro.inr α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b : α s t : Set α hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ s ∪ t x : α hx : x ∈ Icc a b ∩ s y : α hy : y ∈ Icc a b ∩ t h : y ≤ x ⊢ Set.Nonempty (Icc a b ∩ (t ∩ s)) [PROOFSTEP] rw [union_comm s t] at hab [GOAL] case intro.intro.inr α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b : α s t : Set α hs : IsClosed s ht : IsClosed t hab : Icc a b ⊆ t ∪ s x : α hx : x ∈ Icc a b ∩ s y : α hy : y ∈ Icc a b ∩ t h : y ≤ x ⊢ Set.Nonempty (Icc a b ∩ (t ∩ s)) [PROOFSTEP] exact isPreconnected_Icc_aux y x t s h ht hs hab hy hx [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b : α ⊢ {s | IsPreconnected s} = range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) [PROOFSTEP] refine' Subset.antisymm setOf_isPreconnected_subset_of_ordered _ [GOAL] α : Type u β : Type v γ : Type w inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β inst✝¹ : Nonempty γ inst✝ : DenselyOrdered α a b : α ⊢ range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo) ∪ (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) ⊆ {s | IsPreconnected s} [PROOFSTEP] simp only [subset_def, forall_range_iff, uncurry, or_imp, forall_and, mem_union, mem_setOf_eq, insert_eq, mem_singleton_iff, forall_eq, forall_true_iff, and_true_iff, isPreconnected_Icc, isPreconnected_Ico, isPreconnected_Ioc, isPreconnected_Ioo, isPreconnected_Ioi, isPreconnected_Iio, isPreconnected_Ici, isPreconnected_Iic, isPreconnected_univ, isPreconnected_empty] [GOAL] α : Type u β : Type v γ : Type w inst✝¹⁰ : ConditionallyCompleteLinearOrder α inst✝⁹ : TopologicalSpace α inst✝⁸ : OrderTopology α inst✝⁷ : ConditionallyCompleteLinearOrder β inst✝⁶ : TopologicalSpace β inst✝⁵ : OrderTopology β inst✝⁴ : Nonempty γ inst✝³ : DenselyOrdered α a✝ b✝ : α δ : Type u_1 inst✝² : LinearOrder δ inst✝¹ : TopologicalSpace δ inst✝ : OrderClosedTopology δ a b : α f : α → δ hf : ContinuousOn f (uIcc a b) ⊢ uIcc (f a) (f b) ⊆ f '' uIcc a b [PROOFSTEP] cases le_total (f a) (f b) [GOAL] case inl α : Type u β : Type v γ : Type w inst✝¹⁰ : ConditionallyCompleteLinearOrder α inst✝⁹ : TopologicalSpace α inst✝⁸ : OrderTopology α inst✝⁷ : ConditionallyCompleteLinearOrder β inst✝⁶ : TopologicalSpace β inst✝⁵ : OrderTopology β inst✝⁴ : Nonempty γ inst✝³ : DenselyOrdered α a✝ b✝ : α δ : Type u_1 inst✝² : LinearOrder δ inst✝¹ : TopologicalSpace δ inst✝ : OrderClosedTopology δ a b : α f : α → δ hf : ContinuousOn f (uIcc a b) h✝ : f a ≤ f b ⊢ uIcc (f a) (f b) ⊆ f '' uIcc a b [PROOFSTEP] simp [*, isPreconnected_uIcc.intermediate_value] [GOAL] case inr α : Type u β : Type v γ : Type w inst✝¹⁰ : ConditionallyCompleteLinearOrder α inst✝⁹ : TopologicalSpace α inst✝⁸ : OrderTopology α inst✝⁷ : ConditionallyCompleteLinearOrder β inst✝⁶ : TopologicalSpace β inst✝⁵ : OrderTopology β inst✝⁴ : Nonempty γ inst✝³ : DenselyOrdered α a✝ b✝ : α δ : Type u_1 inst✝² : LinearOrder δ inst✝¹ : TopologicalSpace δ inst✝ : OrderClosedTopology δ a b : α f : α → δ hf : ContinuousOn f (uIcc a b) h✝ : f b ≤ f a ⊢ uIcc (f a) (f b) ⊆ f '' uIcc a b [PROOFSTEP] simp [*, isPreconnected_uIcc.intermediate_value] [GOAL] α : Type u β : Type v γ : Type w inst✝¹⁰ : ConditionallyCompleteLinearOrder α inst✝⁹ : TopologicalSpace α inst✝⁸ : OrderTopology α inst✝⁷ : ConditionallyCompleteLinearOrder β inst✝⁶ : TopologicalSpace β inst✝⁵ : OrderTopology β inst✝⁴ : Nonempty γ inst✝³ : DenselyOrdered α a✝ b✝ : α δ : Type u_1 inst✝² : LinearOrder δ inst✝¹ : TopologicalSpace δ inst✝ : OrderClosedTopology δ s : Set α hs : OrdConnected s f : α → δ hf : ContinuousOn f s a b : α ha : a ∈ s hb : b ∈ s ⊢ SurjOn f s (uIcc (f a) (f b)) [PROOFSTEP] cases' le_total (f a) (f b) with hab hab [GOAL] case inl α : Type u β : Type v γ : Type w inst✝¹⁰ : ConditionallyCompleteLinearOrder α inst✝⁹ : TopologicalSpace α inst✝⁸ : OrderTopology α inst✝⁷ : ConditionallyCompleteLinearOrder β inst✝⁶ : TopologicalSpace β inst✝⁵ : OrderTopology β inst✝⁴ : Nonempty γ inst✝³ : DenselyOrdered α a✝ b✝ : α δ : Type u_1 inst✝² : LinearOrder δ inst✝¹ : TopologicalSpace δ inst✝ : OrderClosedTopology δ s : Set α hs : OrdConnected s f : α → δ hf : ContinuousOn f s a b : α ha : a ∈ s hb : b ∈ s hab : f a ≤ f b ⊢ SurjOn f s (uIcc (f a) (f b)) [PROOFSTEP] simp [hf.surjOn_Icc, *] [GOAL] case inr α : Type u β : Type v γ : Type w inst✝¹⁰ : ConditionallyCompleteLinearOrder α inst✝⁹ : TopologicalSpace α inst✝⁸ : OrderTopology α inst✝⁷ : ConditionallyCompleteLinearOrder β inst✝⁶ : TopologicalSpace β inst✝⁵ : OrderTopology β inst✝⁴ : Nonempty γ inst✝³ : DenselyOrdered α a✝ b✝ : α δ : Type u_1 inst✝² : LinearOrder δ inst✝¹ : TopologicalSpace δ inst✝ : OrderClosedTopology δ s : Set α hs : OrdConnected s f : α → δ hf : ContinuousOn f s a b : α ha : a ∈ s hb : b ∈ s hab : f b ≤ f a ⊢ SurjOn f s (uIcc (f a) (f b)) [PROOFSTEP] simp [hf.surjOn_Icc, *]
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.IntermediateValue", "llama_tokens": 29787}
[GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X ⊢ ordConnectedComponent s a ∈ 𝓝 a ↔ s ∈ 𝓝 a [PROOFSTEP] refine' ⟨fun h => mem_of_superset h ordConnectedComponent_subset, fun h => _⟩ [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X h : s ∈ 𝓝 a ⊢ ordConnectedComponent s a ∈ 𝓝 a [PROOFSTEP] rcases exists_Icc_mem_subset_of_mem_nhds h with ⟨b, c, ha, ha', hs⟩ [GOAL] case intro.intro.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X h : s ∈ 𝓝 a b c : X ha : a ∈ Icc b c ha' : Icc b c ∈ 𝓝 a hs : Icc b c ⊆ s ⊢ ordConnectedComponent s a ∈ 𝓝 a [PROOFSTEP] exact mem_of_superset ha' (subset_ordConnectedComponent ha hs) [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Ici a] a [PROOFSTEP] have hmem : tᶜ ∈ 𝓝[≥] a := by refine' mem_nhdsWithin_of_mem_nhds _ rw [← mem_interior_iff_mem_nhds, interior_compl] exact disjoint_left.1 hd ha [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s ⊢ tᶜ ∈ 𝓝[Ici a] a [PROOFSTEP] refine' mem_nhdsWithin_of_mem_nhds _ [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s ⊢ tᶜ ∈ 𝓝 a [PROOFSTEP] rw [← mem_interior_iff_mem_nhds, interior_compl] [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s ⊢ a ∈ (closure t)ᶜ [PROOFSTEP] exact disjoint_left.1 hd ha [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Ici a] a [PROOFSTEP] rcases exists_Icc_mem_subset_of_mem_nhdsWithin_Ici hmem with ⟨b, hab, hmem', hsub⟩ [GOAL] case intro.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Ici a] a [PROOFSTEP] by_cases H : Disjoint (Icc a b) (ordConnectedSection <| ordSeparatingSet s t) [GOAL] case pos X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ H : Disjoint (Icc a b) (ordConnectedSection (ordSeparatingSet s t)) ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Ici a] a [PROOFSTEP] exact mem_of_superset hmem' (disjoint_left.1 H) [GOAL] case neg X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ H : ¬Disjoint (Icc a b) (ordConnectedSection (ordSeparatingSet s t)) ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Ici a] a [PROOFSTEP] simp only [Set.disjoint_left, not_forall, Classical.not_not] at H [GOAL] case neg X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ H : ∃ x h, x ∈ ordConnectedSection (ordSeparatingSet s t) ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Ici a] a [PROOFSTEP] rcases H with ⟨c, ⟨hac, hcb⟩, hc⟩ [GOAL] case neg.intro.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hac : a ≤ c hcb : c ≤ b ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Ici a] a [PROOFSTEP] have hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a := subset_ordConnectedComponent (left_mem_Icc.2 hab) hsub [GOAL] case neg.intro.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hac : a ≤ c hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Ici a] a [PROOFSTEP] have hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) := disjoint_left_ordSeparatingSet.mono_right ordConnectedSection_subset [GOAL] case neg.intro.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hac : a ≤ c hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Ici a] a [PROOFSTEP] replace hac : a < c := hac.lt_of_ne <| Ne.symm <| ne_of_mem_of_not_mem hc <| disjoint_left.1 hd ha [GOAL] case neg.intro.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) hac : a < c ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Ici a] a [PROOFSTEP] refine' mem_of_superset (Ico_mem_nhdsWithin_Ici (left_mem_Ico.2 hac)) fun x hx hx' => _ [GOAL] case neg.intro.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) hac : a < c x : X hx : x ∈ Ico a c hx' : x ∈ ordConnectedSection (ordSeparatingSet s t) ⊢ False [PROOFSTEP] refine' hx.2.ne (eq_of_mem_ordConnectedSection_of_uIcc_subset hx' hc _) [GOAL] case neg.intro.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) hac : a < c x : X hx : x ∈ Ico a c hx' : x ∈ ordConnectedSection (ordSeparatingSet s t) ⊢ [[x, c]] ⊆ ordSeparatingSet s t [PROOFSTEP] refine' subset_inter (subset_iUnion₂_of_subset a ha _) _ [GOAL] case neg.intro.intro.intro.refine'_1 X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) hac : a < c x : X hx : x ∈ Ico a c hx' : x ∈ ordConnectedSection (ordSeparatingSet s t) ⊢ [[x, c]] ⊆ ordConnectedComponent tᶜ a [PROOFSTEP] exact OrdConnected.uIcc_subset inferInstance (hsub' ⟨hx.1, hx.2.le.trans hcb⟩) (hsub' ⟨hac.le, hcb⟩) [GOAL] case neg.intro.intro.intro.refine'_2 X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) hac : a < c x : X hx : x ∈ Ico a c hx' : x ∈ ordConnectedSection (ordSeparatingSet s t) ⊢ [[x, c]] ⊆ ⋃ (x : X) (_ : x ∈ t), ordConnectedComponent sᶜ x [PROOFSTEP] rcases mem_iUnion₂.1 (ordConnectedSection_subset hx').2 with ⟨y, hyt, hxy⟩ [GOAL] case neg.intro.intro.intro.refine'_2.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) hac : a < c x : X hx : x ∈ Ico a c hx' : x ∈ ordConnectedSection (ordSeparatingSet s t) y : X hyt : y ∈ t hxy : x ∈ ordConnectedComponent sᶜ y ⊢ [[x, c]] ⊆ ⋃ (x : X) (_ : x ∈ t), ordConnectedComponent sᶜ x [PROOFSTEP] refine' subset_iUnion₂_of_subset y hyt (OrdConnected.uIcc_subset inferInstance hxy _) [GOAL] case neg.intro.intro.intro.refine'_2.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) hac : a < c x : X hx : x ∈ Ico a c hx' : x ∈ ordConnectedSection (ordSeparatingSet s t) y : X hyt : y ∈ t hxy : x ∈ ordConnectedComponent sᶜ y ⊢ c ∈ ordConnectedComponent sᶜ y [PROOFSTEP] refine' subset_ordConnectedComponent left_mem_uIcc hxy _ [GOAL] case neg.intro.intro.intro.refine'_2.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) hac : a < c x : X hx : x ∈ Ico a c hx' : x ∈ ordConnectedSection (ordSeparatingSet s t) y : X hyt : y ∈ t hxy : x ∈ ordConnectedComponent sᶜ y ⊢ c ∈ [[y, x]] [PROOFSTEP] suffices c < y by rw [uIcc_of_ge (hx.2.trans this).le] exact ⟨hx.2.le, this.le⟩ [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) hac : a < c x : X hx : x ∈ Ico a c hx' : x ∈ ordConnectedSection (ordSeparatingSet s t) y : X hyt : y ∈ t hxy : x ∈ ordConnectedComponent sᶜ y this : c < y ⊢ c ∈ [[y, x]] [PROOFSTEP] rw [uIcc_of_ge (hx.2.trans this).le] [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) hac : a < c x : X hx : x ∈ Ico a c hx' : x ∈ ordConnectedSection (ordSeparatingSet s t) y : X hyt : y ∈ t hxy : x ∈ ordConnectedComponent sᶜ y this : c < y ⊢ c ∈ Icc x y [PROOFSTEP] exact ⟨hx.2.le, this.le⟩ [GOAL] case neg.intro.intro.intro.refine'_2.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) hac : a < c x : X hx : x ∈ Ico a c hx' : x ∈ ordConnectedSection (ordSeparatingSet s t) y : X hyt : y ∈ t hxy : x ∈ ordConnectedComponent sᶜ y ⊢ c < y [PROOFSTEP] refine' lt_of_not_le fun hyc => _ [GOAL] case neg.intro.intro.intro.refine'_2.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) hac : a < c x : X hx : x ∈ Ico a c hx' : x ∈ ordConnectedSection (ordSeparatingSet s t) y : X hyt : y ∈ t hxy : x ∈ ordConnectedComponent sᶜ y hyc : y ≤ c ⊢ False [PROOFSTEP] have hya : y < a := not_le.1 fun hay => hsub ⟨hay, hyc.trans hcb⟩ hyt [GOAL] case neg.intro.intro.intro.refine'_2.intro.intro X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b✝ c✝ : X s t : Set X hd✝ : Disjoint s (closure t) ha : a ∈ s hmem : tᶜ ∈ 𝓝[Ici a] a b : X hab : a ≤ b hmem' : Icc a b ∈ 𝓝[Ici a] a hsub : Icc a b ⊆ tᶜ c : X hc : c ∈ ordConnectedSection (ordSeparatingSet s t) hcb : c ≤ b hsub' : Icc a b ⊆ ordConnectedComponent tᶜ a hd : Disjoint s (ordConnectedSection (ordSeparatingSet s t)) hac : a < c x : X hx : x ∈ Ico a c hx' : x ∈ ordConnectedSection (ordSeparatingSet s t) y : X hyt : y ∈ t hxy : x ∈ ordConnectedComponent sᶜ y hyc : y ≤ c hya : y < a ⊢ False [PROOFSTEP] exact hxy (Icc_subset_uIcc ⟨hya.le, hx.1⟩) ha [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Iic a] a [PROOFSTEP] have hd' : Disjoint (ofDual ⁻¹' s) (closure <| ofDual ⁻¹' t) := hd [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s hd' : Disjoint (↑ofDual ⁻¹' s) (closure (↑ofDual ⁻¹' t)) ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Iic a] a [PROOFSTEP] have ha' : toDual a ∈ ofDual ⁻¹' s := ha [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s hd' : Disjoint (↑ofDual ⁻¹' s) (closure (↑ofDual ⁻¹' t)) ha' : ↑toDual a ∈ ↑ofDual ⁻¹' s ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Iic a] a [PROOFSTEP] simpa only [dual_ordSeparatingSet, dual_ordConnectedSection] using compl_section_ordSeparatingSet_mem_nhdsWithin_Ici hd' ha' [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝 a [PROOFSTEP] rw [← nhds_left_sup_nhds_right, mem_sup] [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X hd : Disjoint s (closure t) ha : a ∈ s ⊢ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Iic a] a ∧ (ordConnectedSection (ordSeparatingSet s t))ᶜ ∈ 𝓝[Ici a] a [PROOFSTEP] exact ⟨compl_section_ordSeparatingSet_mem_nhdsWithin_Iic hd ha, compl_section_ordSeparatingSet_mem_nhdsWithin_Ici hd ha⟩ [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X hd : Disjoint s (closure t) x : X hx : x ∈ s ⊢ tᶜ ∈ 𝓝 x [PROOFSTEP] rw [← mem_interior_iff_mem_nhds, interior_compl] [GOAL] X : Type u_1 inst✝² : LinearOrder X inst✝¹ : TopologicalSpace X inst✝ : OrderTopology X a b c : X s t : Set X hd : Disjoint s (closure t) x : X hx : x ∈ s ⊢ x ∈ (closure t)ᶜ [PROOFSTEP] exact disjoint_left.1 hd hx
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.T5", "llama_tokens": 8292}
[GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : Preorder α h : ∀ {a b : α}, a ≤ b → IsCompact (Icc a b) a b : α hab : ¬a ≤ b ⊢ IsCompact (Icc a b) [PROOFSTEP] rw [Icc_eq_empty hab] [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : Preorder α h : ∀ {a b : α}, a ≤ b → IsCompact (Icc a b) a b : α hab : ¬a ≤ b ⊢ IsCompact ∅ [PROOFSTEP] exact isCompact_empty [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : PartialOrder α h : ∀ {a b : α}, a < b → IsCompact (Icc a b) a✝ b✝ : α hab : a✝ ≤ b✝ ⊢ a✝ = b✝ → IsCompact (Icc a✝ b✝) [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : PartialOrder α h : ∀ {a b : α}, a < b → IsCompact (Icc a b) a✝ : α hab : a✝ ≤ a✝ ⊢ IsCompact (Icc a✝ a✝) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α ⊢ CompactIccSpace α [PROOFSTEP] refine' .mk'' fun {a b} hlt => ?_ [GOAL] α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b ⊢ IsCompact (Icc a b) [PROOFSTEP] cases' le_or_lt a b with hab hab [GOAL] case inl α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b ⊢ IsCompact (Icc a b) case inr α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : b < a ⊢ IsCompact (Icc a b) [PROOFSTEP] swap [GOAL] case inr α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : b < a ⊢ IsCompact (Icc a b) [PROOFSTEP] simp [hab] [GOAL] case inl α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b ⊢ IsCompact (Icc a b) [PROOFSTEP] refine' isCompact_iff_ultrafilter_le_nhds.2 fun f hf => _ [GOAL] case inl α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hf : ↑f ≤ 𝓟 (Icc a b) ⊢ ∃ a_1, a_1 ∈ Icc a b ∧ ↑f ≤ 𝓝 a_1 [PROOFSTEP] contrapose! hf [GOAL] case inl α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hf : ∀ (a_1 : α), a_1 ∈ Icc a b → ¬↑f ≤ 𝓝 a_1 ⊢ ¬↑f ≤ 𝓟 (Icc a b) [PROOFSTEP] rw [le_principal_iff] [GOAL] case inl α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hf : ∀ (a_1 : α), a_1 ∈ Icc a b → ¬↑f ≤ 𝓝 a_1 ⊢ ¬Icc a b ∈ ↑f [PROOFSTEP] have hpt : ∀ x ∈ Icc a b, { x } ∉ f := fun x hx hxf => hf x hx ((le_pure_iff.2 hxf).trans (pure_le_nhds x)) [GOAL] case inl α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hf : ∀ (a_1 : α), a_1 ∈ Icc a b → ¬↑f ≤ 𝓝 a_1 hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f ⊢ ¬Icc a b ∈ ↑f [PROOFSTEP] set s := {x ∈ Icc a b | Icc a x ∉ f} [GOAL] case inl α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hf : ∀ (a_1 : α), a_1 ∈ Icc a b → ¬↑f ≤ 𝓝 a_1 hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} ⊢ ¬Icc a b ∈ ↑f [PROOFSTEP] have hsb : b ∈ upperBounds s := fun x hx => hx.1.2 [GOAL] case inl α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hf : ∀ (a_1 : α), a_1 ∈ Icc a b → ¬↑f ≤ 𝓝 a_1 hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s ⊢ ¬Icc a b ∈ ↑f [PROOFSTEP] have sbd : BddAbove s := ⟨b, hsb⟩ [GOAL] case inl α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hf : ∀ (a_1 : α), a_1 ∈ Icc a b → ¬↑f ≤ 𝓝 a_1 hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ⊢ ¬Icc a b ∈ ↑f [PROOFSTEP] have ha : a ∈ s := by simp [hpt, hab] [GOAL] α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hf : ∀ (a_1 : α), a_1 ∈ Icc a b → ¬↑f ≤ 𝓝 a_1 hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ⊢ a ∈ s [PROOFSTEP] simp [hpt, hab] [GOAL] case inl α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hf : ∀ (a_1 : α), a_1 ∈ Icc a b → ¬↑f ≤ 𝓝 a_1 hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s ⊢ ¬Icc a b ∈ ↑f [PROOFSTEP] rcases hab.eq_or_lt with (rfl | _hlt) [GOAL] case inl.inl α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a : α f : Ultrafilter α hlt : a < a hab : a ≤ a hf : ∀ (a_1 : α), a_1 ∈ Icc a a → ¬↑f ≤ 𝓝 a_1 hpt : ∀ (x : α), x ∈ Icc a a → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a a ∧ ¬Icc a x ∈ f} hsb : a ∈ upperBounds s sbd : BddAbove s ha : a ∈ s ⊢ ¬Icc a a ∈ ↑f [PROOFSTEP] exact ha.2 -- porting note: the `obtain` below was instead -- `set c := Sup s` -- `have hsc : IsLUB s c := isLUB_csSup ⟨a, ha⟩ sbd` [GOAL] case inl.inr α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hf : ∀ (a_1 : α), a_1 ∈ Icc a b → ¬↑f ≤ 𝓝 a_1 hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b ⊢ ¬Icc a b ∈ ↑f [PROOFSTEP] obtain ⟨c, hsc⟩ : ∃ c, IsLUB s c := ⟨sSup s, isLUB_csSup ⟨a, ha⟩ ⟨b, hsb⟩⟩ [GOAL] case inl.inr.intro α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hf : ∀ (a_1 : α), a_1 ∈ Icc a b → ¬↑f ≤ 𝓝 a_1 hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c ⊢ ¬Icc a b ∈ ↑f [PROOFSTEP] have hc : c ∈ Icc a b := ⟨hsc.1 ha, hsc.2 hsb⟩ [GOAL] case inl.inr.intro α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hf : ∀ (a_1 : α), a_1 ∈ Icc a b → ¬↑f ≤ 𝓝 a_1 hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b ⊢ ¬Icc a b ∈ ↑f [PROOFSTEP] specialize hf c hc [GOAL] case inl.inr.intro α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hf : ¬↑f ≤ 𝓝 c ⊢ ¬Icc a b ∈ ↑f [PROOFSTEP] have hcs : c ∈ s := by rcases hc.1.eq_or_lt with (rfl | hlt); · assumption refine' ⟨hc, fun hcf => hf fun U hU => _⟩ rcases(mem_nhdsWithin_Iic_iff_exists_Ioc_subset' hlt).1 (mem_nhdsWithin_of_mem_nhds hU) with ⟨x, hxc, hxU⟩ rcases((hsc.frequently_mem ⟨a, ha⟩).and_eventually (Ioc_mem_nhdsWithin_Iic ⟨hxc, le_rfl⟩)).exists with ⟨y, ⟨_hyab, hyf⟩, hy⟩ refine' mem_of_superset (f.diff_mem_iff.2 ⟨hcf, hyf⟩) (Subset.trans _ hxU) rw [diff_subset_iff] exact Subset.trans Icc_subset_Icc_union_Ioc <| union_subset_union Subset.rfl <| Ioc_subset_Ioc_left hy.1.le [GOAL] α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hf : ¬↑f ≤ 𝓝 c ⊢ c ∈ s [PROOFSTEP] rcases hc.1.eq_or_lt with (rfl | hlt) [GOAL] case inl α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b hsc : IsLUB s a hc : a ∈ Icc a b hf : ¬↑f ≤ 𝓝 a ⊢ a ∈ s [PROOFSTEP] assumption [GOAL] case inr α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hf : ¬↑f ≤ 𝓝 c hlt : a < c ⊢ c ∈ s [PROOFSTEP] refine' ⟨hc, fun hcf => hf fun U hU => _⟩ [GOAL] case inr α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hf : ¬↑f ≤ 𝓝 c hlt : a < c hcf : Icc a c ∈ f U : Set α hU : U ∈ 𝓝 c ⊢ U ∈ ↑f [PROOFSTEP] rcases(mem_nhdsWithin_Iic_iff_exists_Ioc_subset' hlt).1 (mem_nhdsWithin_of_mem_nhds hU) with ⟨x, hxc, hxU⟩ [GOAL] case inr.intro.intro α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hf : ¬↑f ≤ 𝓝 c hlt : a < c hcf : Icc a c ∈ f U : Set α hU : U ∈ 𝓝 c x : α hxc : x ∈ Iio c hxU : Ioc x c ⊆ U ⊢ U ∈ ↑f [PROOFSTEP] rcases((hsc.frequently_mem ⟨a, ha⟩).and_eventually (Ioc_mem_nhdsWithin_Iic ⟨hxc, le_rfl⟩)).exists with ⟨y, ⟨_hyab, hyf⟩, hy⟩ [GOAL] case inr.intro.intro.intro.intro.intro α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hf : ¬↑f ≤ 𝓝 c hlt : a < c hcf : Icc a c ∈ f U : Set α hU : U ∈ 𝓝 c x : α hxc : x ∈ Iio c hxU : Ioc x c ⊆ U y : α hy : x < y ∧ y ≤ c _hyab : y ∈ Icc a b hyf : ¬Icc a y ∈ f ⊢ U ∈ ↑f [PROOFSTEP] refine' mem_of_superset (f.diff_mem_iff.2 ⟨hcf, hyf⟩) (Subset.trans _ hxU) [GOAL] case inr.intro.intro.intro.intro.intro α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hf : ¬↑f ≤ 𝓝 c hlt : a < c hcf : Icc a c ∈ f U : Set α hU : U ∈ 𝓝 c x : α hxc : x ∈ Iio c hxU : Ioc x c ⊆ U y : α hy : x < y ∧ y ≤ c _hyab : y ∈ Icc a b hyf : ¬Icc a y ∈ f ⊢ Icc a c \ Icc a y ⊆ Ioc x c [PROOFSTEP] rw [diff_subset_iff] [GOAL] case inr.intro.intro.intro.intro.intro α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hf : ¬↑f ≤ 𝓝 c hlt : a < c hcf : Icc a c ∈ f U : Set α hU : U ∈ 𝓝 c x : α hxc : x ∈ Iio c hxU : Ioc x c ⊆ U y : α hy : x < y ∧ y ≤ c _hyab : y ∈ Icc a b hyf : ¬Icc a y ∈ f ⊢ Icc a c ⊆ Icc a y ∪ Ioc x c [PROOFSTEP] exact Subset.trans Icc_subset_Icc_union_Ioc <| union_subset_union Subset.rfl <| Ioc_subset_Ioc_left hy.1.le [GOAL] case inl.inr.intro α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hf : ¬↑f ≤ 𝓝 c hcs : c ∈ s ⊢ ¬Icc a b ∈ ↑f [PROOFSTEP] rcases hc.2.eq_or_lt with (rfl | hlt) [GOAL] case inl.inr.intro.inl α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a : α f : Ultrafilter α c : α hf : ¬↑f ≤ 𝓝 c hlt : a < c hab : a ≤ c hpt : ∀ (x : α), x ∈ Icc a c → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a c ∧ ¬Icc a x ∈ f} hsb : c ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < c hsc : IsLUB s c hc : c ∈ Icc a c hcs : c ∈ s ⊢ ¬Icc a c ∈ ↑f [PROOFSTEP] exact hcs.2 [GOAL] case inl.inr.intro.inr α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hf : ¬↑f ≤ 𝓝 c hcs : c ∈ s hlt : c < b ⊢ ¬Icc a b ∈ ↑f [PROOFSTEP] contrapose! hf [GOAL] case inl.inr.intro.inr α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hcs : c ∈ s hlt : c < b hf : Icc a b ∈ ↑f ⊢ ↑f ≤ 𝓝 c [PROOFSTEP] intro U hU [GOAL] case inl.inr.intro.inr α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hcs : c ∈ s hlt : c < b hf : Icc a b ∈ ↑f U : Set α hU : U ∈ 𝓝 c ⊢ U ∈ ↑f [PROOFSTEP] rcases(mem_nhdsWithin_Ici_iff_exists_mem_Ioc_Ico_subset hlt).1 (mem_nhdsWithin_of_mem_nhds hU) with ⟨y, hxy, hyU⟩ [GOAL] case inl.inr.intro.inr.intro.intro α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hcs : c ∈ s hlt : c < b hf : Icc a b ∈ ↑f U : Set α hU : U ∈ 𝓝 c y : α hxy : y ∈ Ioc c b hyU : Ico c y ⊆ U ⊢ U ∈ ↑f [PROOFSTEP] refine' mem_of_superset _ hyU [GOAL] case inl.inr.intro.inr.intro.intro α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hcs : c ∈ s hlt : c < b hf : Icc a b ∈ ↑f U : Set α hU : U ∈ 𝓝 c y : α hxy : y ∈ Ioc c b hyU : Ico c y ⊆ U ⊢ Ico c y ∈ ↑f [PROOFSTEP] clear! U [GOAL] case inl.inr.intro.inr.intro.intro α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hcs : c ∈ s hlt : c < b hf : Icc a b ∈ ↑f y : α hxy : y ∈ Ioc c b ⊢ Ico c y ∈ ↑f [PROOFSTEP] have hy : y ∈ Icc a b := ⟨hc.1.trans hxy.1.le, hxy.2⟩ [GOAL] case inl.inr.intro.inr.intro.intro α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hcs : c ∈ s hlt : c < b hf : Icc a b ∈ ↑f y : α hxy : y ∈ Ioc c b hy : y ∈ Icc a b ⊢ Ico c y ∈ ↑f [PROOFSTEP] by_cases hay : Icc a y ∈ f [GOAL] case pos α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hcs : c ∈ s hlt : c < b hf : Icc a b ∈ ↑f y : α hxy : y ∈ Ioc c b hy : y ∈ Icc a b hay : Icc a y ∈ f ⊢ Ico c y ∈ ↑f [PROOFSTEP] refine' mem_of_superset (f.diff_mem_iff.2 ⟨f.diff_mem_iff.2 ⟨hay, hcs.2⟩, hpt y hy⟩) _ [GOAL] case pos α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hcs : c ∈ s hlt : c < b hf : Icc a b ∈ ↑f y : α hxy : y ∈ Ioc c b hy : y ∈ Icc a b hay : Icc a y ∈ f ⊢ (Icc a y \ Icc a c) \ {y} ⊆ Ico c y [PROOFSTEP] rw [diff_subset_iff, union_comm, Ico_union_right hxy.1.le, diff_subset_iff] [GOAL] case pos α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hcs : c ∈ s hlt : c < b hf : Icc a b ∈ ↑f y : α hxy : y ∈ Ioc c b hy : y ∈ Icc a b hay : Icc a y ∈ f ⊢ Icc a y ⊆ Icc a c ∪ Icc c y [PROOFSTEP] exact Icc_subset_Icc_union_Icc [GOAL] case neg α : Type u_1 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a b : α hlt✝ : a < b hab : a ≤ b f : Ultrafilter α hpt : ∀ (x : α), x ∈ Icc a b → ¬{x} ∈ f s : Set α := {x | x ∈ Icc a b ∧ ¬Icc a x ∈ f} hsb : b ∈ upperBounds s sbd : BddAbove s ha : a ∈ s _hlt : a < b c : α hsc : IsLUB s c hc : c ∈ Icc a b hcs : c ∈ s hlt : c < b hf : Icc a b ∈ ↑f y : α hxy : y ∈ Ioc c b hy : y ∈ Icc a b hay : ¬Icc a y ∈ f ⊢ Ico c y ∈ ↑f [PROOFSTEP] exact ((hsc.1 ⟨hy, hay⟩).not_lt hxy.1).elim [GOAL] α : Type u_1 inst✝² : CompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α ⊢ IsCompact univ [PROOFSTEP] simp only [← Icc_bot_top, isCompact_Icc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set α hs : IsCompact s ne_s : Set.Nonempty s ⊢ ∃ x, IsLeast s x [PROOFSTEP] haveI : Nonempty s := ne_s.to_subtype [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set α hs : IsCompact s ne_s : Set.Nonempty s this : Nonempty ↑s ⊢ ∃ x, IsLeast s x [PROOFSTEP] suffices : (s ∩ ⋂ x ∈ s, Iic x).Nonempty [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set α hs : IsCompact s ne_s : Set.Nonempty s this✝ : Nonempty ↑s this : Set.Nonempty (s ∩ ⋂ (x : α) (_ : x ∈ s), Iic x) ⊢ ∃ x, IsLeast s x [PROOFSTEP] exact ⟨this.choose, this.choose_spec.1, mem_iInter₂.mp this.choose_spec.2⟩ [GOAL] case this α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set α hs : IsCompact s ne_s : Set.Nonempty s this : Nonempty ↑s ⊢ Set.Nonempty (s ∩ ⋂ (x : α) (_ : x ∈ s), Iic x) [PROOFSTEP] rw [biInter_eq_iInter] [GOAL] case this α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set α hs : IsCompact s ne_s : Set.Nonempty s this : Nonempty ↑s ⊢ Set.Nonempty (s ∩ ⋂ (x : ↑s), Iic ↑x) [PROOFSTEP] by_contra H [GOAL] case this α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set α hs : IsCompact s ne_s : Set.Nonempty s this : Nonempty ↑s H : ¬Set.Nonempty (s ∩ ⋂ (x : ↑s), Iic ↑x) ⊢ False [PROOFSTEP] rw [not_nonempty_iff_eq_empty] at H [GOAL] case this α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set α hs : IsCompact s ne_s : Set.Nonempty s this : Nonempty ↑s H : s ∩ ⋂ (x : ↑s), Iic ↑x = ∅ ⊢ False [PROOFSTEP] rcases hs.elim_directed_family_closed (fun x : s => Iic ↑x) (fun x => isClosed_Iic) H (directed_of_inf fun _ _ h => Iic_subset_Iic.mpr h) with ⟨x, hx⟩ [GOAL] case this.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set α hs : IsCompact s ne_s : Set.Nonempty s this : Nonempty ↑s H : s ∩ ⋂ (x : ↑s), Iic ↑x = ∅ x : ↑s hx : s ∩ Iic ↑x = ∅ ⊢ False [PROOFSTEP] exact not_nonempty_iff_eq_empty.mpr hx ⟨x, x.2, le_rfl⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set β hs : IsCompact s ne_s : Set.Nonempty s f : β → α hf : ContinuousOn f s ⊢ ∃ x, x ∈ s ∧ IsMinOn f s x [PROOFSTEP] rcases(hs.image_of_continuousOn hf).exists_isLeast (ne_s.image f) with ⟨_, ⟨x, hxs, rfl⟩, hx⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set β hs : IsCompact s ne_s : Set.Nonempty s f : β → α hf : ContinuousOn f s x : β hxs : x ∈ s hx : f x ∈ lowerBounds (f '' s) ⊢ ∃ x, x ∈ s ∧ IsMinOn f s x [PROOFSTEP] exact ⟨x, hxs, ball_image_iff.1 hx⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set β f : β → α hf : ContinuousOn f s hsc : IsClosed s x₀ : β h₀ : x₀ ∈ s hc : ∀ᶠ (x : β) in cocompact β ⊓ 𝓟 s, f x₀ ≤ f x ⊢ ∃ x, x ∈ s ∧ IsMinOn f s x [PROOFSTEP] rcases(hasBasis_cocompact.inf_principal _).eventually_iff.1 hc with ⟨K, hK, hKf⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set β f : β → α hf : ContinuousOn f s hsc : IsClosed s x₀ : β h₀ : x₀ ∈ s hc : ∀ᶠ (x : β) in cocompact β ⊓ 𝓟 s, f x₀ ≤ f x K : Set β hK : IsCompact K hKf : ∀ ⦃x : β⦄, x ∈ Kᶜ ∩ s → f x₀ ≤ f x ⊢ ∃ x, x ∈ s ∧ IsMinOn f s x [PROOFSTEP] have hsub : insert x₀ (K ∩ s) ⊆ s := insert_subset_iff.2 ⟨h₀, inter_subset_right _ _⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set β f : β → α hf : ContinuousOn f s hsc : IsClosed s x₀ : β h₀ : x₀ ∈ s hc : ∀ᶠ (x : β) in cocompact β ⊓ 𝓟 s, f x₀ ≤ f x K : Set β hK : IsCompact K hKf : ∀ ⦃x : β⦄, x ∈ Kᶜ ∩ s → f x₀ ≤ f x hsub : insert x₀ (K ∩ s) ⊆ s ⊢ ∃ x, x ∈ s ∧ IsMinOn f s x [PROOFSTEP] obtain ⟨x, hx, hxf⟩ : ∃ x ∈ insert x₀ (K ∩ s), ∀ y ∈ insert x₀ (K ∩ s), f x ≤ f y := ((hK.inter_right hsc).insert x₀).exists_forall_le (insert_nonempty _ _) (hf.mono hsub) [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set β f : β → α hf : ContinuousOn f s hsc : IsClosed s x₀ : β h₀ : x₀ ∈ s hc : ∀ᶠ (x : β) in cocompact β ⊓ 𝓟 s, f x₀ ≤ f x K : Set β hK : IsCompact K hKf : ∀ ⦃x : β⦄, x ∈ Kᶜ ∩ s → f x₀ ≤ f x hsub : insert x₀ (K ∩ s) ⊆ s x : β hx : x ∈ insert x₀ (K ∩ s) hxf : ∀ (y : β), y ∈ insert x₀ (K ∩ s) → f x ≤ f y ⊢ ∃ x, x ∈ s ∧ IsMinOn f s x [PROOFSTEP] refine' ⟨x, hsub hx, fun y hy => _⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set β f : β → α hf : ContinuousOn f s hsc : IsClosed s x₀ : β h₀ : x₀ ∈ s hc : ∀ᶠ (x : β) in cocompact β ⊓ 𝓟 s, f x₀ ≤ f x K : Set β hK : IsCompact K hKf : ∀ ⦃x : β⦄, x ∈ Kᶜ ∩ s → f x₀ ≤ f x hsub : insert x₀ (K ∩ s) ⊆ s x : β hx : x ∈ insert x₀ (K ∩ s) hxf : ∀ (y : β), y ∈ insert x₀ (K ∩ s) → f x ≤ f y y : β hy : y ∈ s ⊢ y ∈ {x_1 | (fun x_2 => f x ≤ f x_2) x_1} [PROOFSTEP] by_cases hyK : y ∈ K [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set β f : β → α hf : ContinuousOn f s hsc : IsClosed s x₀ : β h₀ : x₀ ∈ s hc : ∀ᶠ (x : β) in cocompact β ⊓ 𝓟 s, f x₀ ≤ f x K : Set β hK : IsCompact K hKf : ∀ ⦃x : β⦄, x ∈ Kᶜ ∩ s → f x₀ ≤ f x hsub : insert x₀ (K ∩ s) ⊆ s x : β hx : x ∈ insert x₀ (K ∩ s) hxf : ∀ (y : β), y ∈ insert x₀ (K ∩ s) → f x ≤ f y y : β hy : y ∈ s hyK : y ∈ K ⊢ y ∈ {x_1 | (fun x_2 => f x ≤ f x_2) x_1} case neg α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α s : Set β f : β → α hf : ContinuousOn f s hsc : IsClosed s x₀ : β h₀ : x₀ ∈ s hc : ∀ᶠ (x : β) in cocompact β ⊓ 𝓟 s, f x₀ ≤ f x K : Set β hK : IsCompact K hKf : ∀ ⦃x : β⦄, x ∈ Kᶜ ∩ s → f x₀ ≤ f x hsub : insert x₀ (K ∩ s) ⊆ s x : β hx : x ∈ insert x₀ (K ∩ s) hxf : ∀ (y : β), y ∈ insert x₀ (K ∩ s) → f x ≤ f y y : β hy : y ∈ s hyK : ¬y ∈ K ⊢ y ∈ {x_1 | (fun x_2 => f x ≤ f x_2) x_1} [PROOFSTEP] exacts [hxf _ (Or.inr ⟨hyK, hy⟩), (hxf _ (Or.inl rfl)).trans (hKf ⟨hyK, hy⟩)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIicTopology α f : β → α hf : Continuous f x₀ : β h : ∀ᶠ (x : β) in cocompact β, f x₀ ≤ f x ⊢ ∀ᶠ (x : β) in cocompact β ⊓ 𝓟 univ, f x₀ ≤ f x [PROOFSTEP] rwa [principal_univ, inf_top_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : ClosedIicTopology α inst✝ : Nonempty β f : β → α hf : Continuous f hlim : Tendsto f (cocompact β) atTop ⊢ ∃ x, ∀ (y : β), f x ≤ f y [PROOFSTEP] inhabit β [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : ClosedIicTopology α inst✝ : Nonempty β f : β → α hf : Continuous f hlim : Tendsto f (cocompact β) atTop inhabited_h : Inhabited β ⊢ ∃ x, ∀ (y : β), f x ≤ f y [PROOFSTEP] exact hf.exists_forall_le' default (hlim.eventually <| eventually_ge_atTop _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁶ : LinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : ClosedIicTopology α inst✝¹ : Nonempty β inst✝ : One α f : β → α hf : Continuous f h : HasCompactMulSupport f ⊢ ∃ x, ∀ (y : β), f x ≤ f y [PROOFSTEP] obtain ⟨_, ⟨x, rfl⟩, hx⟩ := (h.isCompact_range hf).exists_isLeast (range_nonempty _) [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁶ : LinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : ClosedIicTopology α inst✝¹ : Nonempty β inst✝ : One α f : β → α hf : Continuous f h : HasCompactMulSupport f x : β hx : f x ∈ lowerBounds (range f) ⊢ ∃ x, ∀ (y : β), f x ≤ f y [PROOFSTEP] rw [mem_lowerBounds, forall_range_iff] at hx [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁶ : LinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : ClosedIicTopology α inst✝¹ : Nonempty β inst✝ : One α f : β → α hf : Continuous f h : HasCompactMulSupport f x : β hx : ∀ (i : β), f x ≤ f i ⊢ ∃ x, ∀ (y : β), f x ≤ f y [PROOFSTEP] exact ⟨x, hx⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : ClosedIicTopology α inst✝ : Nonempty α s : Set α hs : IsCompact s ⊢ BddBelow s [PROOFSTEP] rcases s.eq_empty_or_nonempty with rfl | hne [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : ClosedIicTopology α inst✝ : Nonempty α hs : IsCompact ∅ ⊢ BddBelow ∅ [PROOFSTEP] exact bddBelow_empty [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : ClosedIicTopology α inst✝ : Nonempty α s : Set α hs : IsCompact s hne : Set.Nonempty s ⊢ BddBelow s [PROOFSTEP] obtain ⟨a, -, has⟩ := hs.exists_isLeast hne [GOAL] case inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁵ : LinearOrder α inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : ClosedIicTopology α inst✝ : Nonempty α s : Set α hs : IsCompact s hne : Set.Nonempty s a : α has : a ∈ lowerBounds s ⊢ BddBelow s [PROOFSTEP] exact ⟨a, has⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIciTopology α f : β → α K : Set β hK : IsCompact K h0K : Set.Nonempty K hf : ContinuousOn f K y : α ⊢ sSup (f '' K) < y ↔ ∀ (x : β), x ∈ K → f x < y [PROOFSTEP] refine' ⟨fun h x hx => (le_csSup (hK.bddAbove_image hf) <| mem_image_of_mem f hx).trans_lt h, fun h => _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIciTopology α f : β → α K : Set β hK : IsCompact K h0K : Set.Nonempty K hf : ContinuousOn f K y : α h : ∀ (x : β), x ∈ K → f x < y ⊢ sSup (f '' K) < y [PROOFSTEP] obtain ⟨x, hx, h2x⟩ := hK.exists_forall_ge h0K hf [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIciTopology α f : β → α K : Set β hK : IsCompact K h0K : Set.Nonempty K hf : ContinuousOn f K y : α h : ∀ (x : β), x ∈ K → f x < y x : β hx : x ∈ K h2x : ∀ (y : β), y ∈ K → f y ≤ f x ⊢ sSup (f '' K) < y [PROOFSTEP] refine' (csSup_le (h0K.image f) _).trans_lt (h x hx) [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIciTopology α f : β → α K : Set β hK : IsCompact K h0K : Set.Nonempty K hf : ContinuousOn f K y : α h : ∀ (x : β), x ∈ K → f x < y x : β hx : x ∈ K h2x : ∀ (y : β), y ∈ K → f y ≤ f x ⊢ ∀ (b : α), b ∈ f '' K → b ≤ f x [PROOFSTEP] rintro _ ⟨x', hx', rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : ClosedIciTopology α f : β → α K : Set β hK : IsCompact K h0K : Set.Nonempty K hf : ContinuousOn f K y : α h : ∀ (x : β), x ∈ K → f x < y x : β hx : x ∈ K h2x : ∀ (y : β), y ∈ K → f y ≤ f x x' : β hx' : x' ∈ K ⊢ f x' ≤ f x [PROOFSTEP] exact h2x x' hx' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f ⊢ Continuous fun x => sSup (f x '' K) [PROOFSTEP] rcases eq_empty_or_nonempty K with (rfl | h0K) [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α hf : Continuous ↿f hK : IsCompact ∅ ⊢ Continuous fun x => sSup (f x '' ∅) [PROOFSTEP] simp_rw [image_empty] [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α hf : Continuous ↿f hK : IsCompact ∅ ⊢ Continuous fun x => sSup ∅ [PROOFSTEP] exact continuous_const [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K ⊢ Continuous fun x => sSup (f x '' K) [PROOFSTEP] rw [continuous_iff_continuousAt] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K ⊢ ∀ (x : γ), ContinuousAt (fun x => sSup (f x '' K)) x [PROOFSTEP] intro x [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K x : γ ⊢ ContinuousAt (fun x => sSup (f x '' K)) x [PROOFSTEP] obtain ⟨y, hyK, h2y, hy⟩ := hK.exists_sSup_image_eq_and_ge h0K (show Continuous fun y => f x y from hf.comp <| Continuous.Prod.mk x).continuousOn [GOAL] case inr.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K x : γ y : β hyK : y ∈ K h2y : sSup ((fun y => f x y) '' K) = f x y hy : ∀ (y_1 : β), y_1 ∈ K → f x y_1 ≤ f x y ⊢ ContinuousAt (fun x => sSup (f x '' K)) x [PROOFSTEP] rw [ContinuousAt, h2y, tendsto_order] [GOAL] case inr.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K x : γ y : β hyK : y ∈ K h2y : sSup ((fun y => f x y) '' K) = f x y hy : ∀ (y_1 : β), y_1 ∈ K → f x y_1 ≤ f x y ⊢ (∀ (a' : α), a' < f x y → ∀ᶠ (b : γ) in 𝓝 x, a' < sSup (f b '' K)) ∧ ∀ (a' : α), a' > f x y → ∀ᶠ (b : γ) in 𝓝 x, sSup (f b '' K) < a' [PROOFSTEP] have := tendsto_order.mp ((show Continuous fun x => f x y from hf.comp <| continuous_id.prod_mk continuous_const).tendsto x) [GOAL] case inr.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K x : γ y : β hyK : y ∈ K h2y : sSup ((fun y => f x y) '' K) = f x y hy : ∀ (y_1 : β), y_1 ∈ K → f x y_1 ≤ f x y this : (∀ (a' : α), a' < f x y → ∀ᶠ (b : γ) in 𝓝 x, a' < f b y) ∧ ∀ (a' : α), a' > f x y → ∀ᶠ (b : γ) in 𝓝 x, f b y < a' ⊢ (∀ (a' : α), a' < f x y → ∀ᶠ (b : γ) in 𝓝 x, a' < sSup (f b '' K)) ∧ ∀ (a' : α), a' > f x y → ∀ᶠ (b : γ) in 𝓝 x, sSup (f b '' K) < a' [PROOFSTEP] refine' ⟨fun z hz => _, fun z hz => _⟩ [GOAL] case inr.intro.intro.intro.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K x : γ y : β hyK : y ∈ K h2y : sSup ((fun y => f x y) '' K) = f x y hy : ∀ (y_1 : β), y_1 ∈ K → f x y_1 ≤ f x y this : (∀ (a' : α), a' < f x y → ∀ᶠ (b : γ) in 𝓝 x, a' < f b y) ∧ ∀ (a' : α), a' > f x y → ∀ᶠ (b : γ) in 𝓝 x, f b y < a' z : α hz : z < f x y ⊢ ∀ᶠ (b : γ) in 𝓝 x, z < sSup (f b '' K) [PROOFSTEP] refine' (this.1 z hz).mono fun x' hx' => hx'.trans_le <| le_csSup _ <| mem_image_of_mem (f x') hyK [GOAL] case inr.intro.intro.intro.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K x : γ y : β hyK : y ∈ K h2y : sSup ((fun y => f x y) '' K) = f x y hy : ∀ (y_1 : β), y_1 ∈ K → f x y_1 ≤ f x y this : (∀ (a' : α), a' < f x y → ∀ᶠ (b : γ) in 𝓝 x, a' < f b y) ∧ ∀ (a' : α), a' > f x y → ∀ᶠ (b : γ) in 𝓝 x, f b y < a' z : α hz : z < f x y x' : γ hx' : z < f x' y ⊢ BddAbove (f x' '' K) [PROOFSTEP] exact hK.bddAbove_image (hf.comp <| Continuous.Prod.mk x').continuousOn [GOAL] case inr.intro.intro.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K x : γ y : β hyK : y ∈ K h2y : sSup ((fun y => f x y) '' K) = f x y hy : ∀ (y_1 : β), y_1 ∈ K → f x y_1 ≤ f x y this : (∀ (a' : α), a' < f x y → ∀ᶠ (b : γ) in 𝓝 x, a' < f b y) ∧ ∀ (a' : α), a' > f x y → ∀ᶠ (b : γ) in 𝓝 x, f b y < a' z : α hz : z > f x y ⊢ ∀ᶠ (b : γ) in 𝓝 x, sSup (f b '' K) < z [PROOFSTEP] have h : ({ x } : Set γ) ×ˢ K ⊆ ↿f ⁻¹' Iio z := by rintro ⟨x', y'⟩ ⟨(rfl : x' = x), hy'⟩ exact (hy y' hy').trans_lt hz [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K x : γ y : β hyK : y ∈ K h2y : sSup ((fun y => f x y) '' K) = f x y hy : ∀ (y_1 : β), y_1 ∈ K → f x y_1 ≤ f x y this : (∀ (a' : α), a' < f x y → ∀ᶠ (b : γ) in 𝓝 x, a' < f b y) ∧ ∀ (a' : α), a' > f x y → ∀ᶠ (b : γ) in 𝓝 x, f b y < a' z : α hz : z > f x y ⊢ {x} ×ˢ K ⊆ ↿f ⁻¹' Iio z [PROOFSTEP] rintro ⟨x', y'⟩ ⟨(rfl : x' = x), hy'⟩ [GOAL] case mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K y : β hyK : y ∈ K z : α x' : γ y' : β hy' : (x', y').snd ∈ K h2y : sSup ((fun y => f x' y) '' K) = f x' y hy : ∀ (y_1 : β), y_1 ∈ K → f x' y_1 ≤ f x' y this : (∀ (a' : α), a' < f x' y → ∀ᶠ (b : γ) in 𝓝 x', a' < f b y) ∧ ∀ (a' : α), a' > f x' y → ∀ᶠ (b : γ) in 𝓝 x', f b y < a' hz : z > f x' y ⊢ (x', y') ∈ ↿f ⁻¹' Iio z [PROOFSTEP] exact (hy y' hy').trans_lt hz [GOAL] case inr.intro.intro.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K x : γ y : β hyK : y ∈ K h2y : sSup ((fun y => f x y) '' K) = f x y hy : ∀ (y_1 : β), y_1 ∈ K → f x y_1 ≤ f x y this : (∀ (a' : α), a' < f x y → ∀ᶠ (b : γ) in 𝓝 x, a' < f b y) ∧ ∀ (a' : α), a' > f x y → ∀ᶠ (b : γ) in 𝓝 x, f b y < a' z : α hz : z > f x y h : {x} ×ˢ K ⊆ ↿f ⁻¹' Iio z ⊢ ∀ᶠ (b : γ) in 𝓝 x, sSup (f b '' K) < z [PROOFSTEP] obtain ⟨u, v, hu, _, hxu, hKv, huv⟩ := generalized_tube_lemma isCompact_singleton hK (isOpen_Iio.preimage hf) h [GOAL] case inr.intro.intro.intro.refine'_2.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K x : γ y : β hyK : y ∈ K h2y : sSup ((fun y => f x y) '' K) = f x y hy : ∀ (y_1 : β), y_1 ∈ K → f x y_1 ≤ f x y this : (∀ (a' : α), a' < f x y → ∀ᶠ (b : γ) in 𝓝 x, a' < f b y) ∧ ∀ (a' : α), a' > f x y → ∀ᶠ (b : γ) in 𝓝 x, f b y < a' z : α hz : z > f x y h : {x} ×ˢ K ⊆ ↿f ⁻¹' Iio z u : Set γ v : Set β hu : IsOpen u left✝ : IsOpen v hxu : {x} ⊆ u hKv : K ⊆ v huv : u ×ˢ v ⊆ ↿f ⁻¹' Iio z ⊢ ∀ᶠ (b : γ) in 𝓝 x, sSup (f b '' K) < z [PROOFSTEP] refine' eventually_of_mem (hu.mem_nhds (singleton_subset_iff.mp hxu)) fun x' hx' => _ [GOAL] case inr.intro.intro.intro.refine'_2.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K x : γ y : β hyK : y ∈ K h2y : sSup ((fun y => f x y) '' K) = f x y hy : ∀ (y_1 : β), y_1 ∈ K → f x y_1 ≤ f x y this : (∀ (a' : α), a' < f x y → ∀ᶠ (b : γ) in 𝓝 x, a' < f b y) ∧ ∀ (a' : α), a' > f x y → ∀ᶠ (b : γ) in 𝓝 x, f b y < a' z : α hz : z > f x y h : {x} ×ˢ K ⊆ ↿f ⁻¹' Iio z u : Set γ v : Set β hu : IsOpen u left✝ : IsOpen v hxu : {x} ⊆ u hKv : K ⊆ v huv : u ×ˢ v ⊆ ↿f ⁻¹' Iio z x' : γ hx' : x' ∈ u ⊢ sSup (f x' '' K) < z [PROOFSTEP] rw [hK.sSup_lt_iff_of_continuous h0K (show Continuous (f x') from hf.comp <| Continuous.Prod.mk x').continuousOn] [GOAL] case inr.intro.intro.intro.refine'_2.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : γ → β → α K : Set β hK : IsCompact K hf : Continuous ↿f h0K : Set.Nonempty K x : γ y : β hyK : y ∈ K h2y : sSup ((fun y => f x y) '' K) = f x y hy : ∀ (y_1 : β), y_1 ∈ K → f x y_1 ≤ f x y this : (∀ (a' : α), a' < f x y → ∀ᶠ (b : γ) in 𝓝 x, a' < f b y) ∧ ∀ (a' : α), a' > f x y → ∀ᶠ (b : γ) in 𝓝 x, f b y < a' z : α hz : z > f x y h : {x} ×ˢ K ⊆ ↿f ⁻¹' Iio z u : Set γ v : Set β hu : IsOpen u left✝ : IsOpen v hxu : {x} ⊆ u hKv : K ⊆ v huv : u ×ˢ v ⊆ ↿f ⁻¹' Iio z x' : γ hx' : x' ∈ u ⊢ ∀ (x : β), x ∈ K → f x' x < z [PROOFSTEP] exact fun y' hy' => huv (mk_mem_prod hx' (hKv hy')) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : DenselyOrdered α inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a b c : α h : ContinuousOn f [[a, b]] ⊢ f '' [[a, b]] = [[sInf (f '' [[a, b]]), sSup (f '' [[a, b]])]] [PROOFSTEP] refine' h.image_uIcc_eq_Icc.trans (uIcc_of_le _).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : DenselyOrdered α inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a b c : α h : ContinuousOn f [[a, b]] ⊢ sInf (f '' [[a, b]]) ≤ sSup (f '' [[a, b]]) [PROOFSTEP] refine' csInf_le_csSup _ _ (nonempty_uIcc.image _) [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : DenselyOrdered α inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a b c : α h : ContinuousOn f [[a, b]] ⊢ BddBelow (f '' [[a, b]]) [PROOFSTEP] rw [h.image_uIcc_eq_Icc] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : DenselyOrdered α inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a b c : α h : ContinuousOn f [[a, b]] ⊢ BddAbove (f '' [[a, b]]) [PROOFSTEP] rw [h.image_uIcc_eq_Icc] [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : DenselyOrdered α inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a b c : α h : ContinuousOn f [[a, b]] ⊢ BddBelow (Icc (sInf (f '' [[a, b]])) (sSup (f '' [[a, b]]))) case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : DenselyOrdered α inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a b c : α h : ContinuousOn f [[a, b]] ⊢ BddAbove (Icc (sInf (f '' [[a, b]])) (sSup (f '' [[a, b]]))) [PROOFSTEP] exacts [bddBelow_Icc, bddAbove_Icc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : DenselyOrdered α inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a b c : α h : ContinuousOn f (Icc a b) hc : c ∈ Icc a b ⊢ sInf (f '' Icc a b) ≤ f c [PROOFSTEP] have := mem_image_of_mem f hc [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : DenselyOrdered α inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a b c : α h : ContinuousOn f (Icc a b) hc : c ∈ Icc a b this : f c ∈ f '' Icc a b ⊢ sInf (f '' Icc a b) ≤ f c [PROOFSTEP] rw [h.image_Icc (hc.1.trans hc.2)] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : DenselyOrdered α inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a b c : α h : ContinuousOn f (Icc a b) hc : c ∈ Icc a b this : f c ∈ Icc (sInf (f '' Icc a b)) (sSup (f '' Icc a b)) ⊢ sInf (f '' Icc a b) ≤ f c [PROOFSTEP] exact this.1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : DenselyOrdered α inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a b c : α h : ContinuousOn f (Icc a b) hc : c ∈ Icc a b ⊢ f c ≤ sSup (f '' Icc a b) [PROOFSTEP] have := mem_image_of_mem f hc [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : DenselyOrdered α inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a b c : α h : ContinuousOn f (Icc a b) hc : c ∈ Icc a b this : f c ∈ f '' Icc a b ⊢ f c ≤ sSup (f '' Icc a b) [PROOFSTEP] rw [h.image_Icc (hc.1.trans hc.2)] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁷ : ConditionallyCompleteLinearOrder α inst✝⁶ : TopologicalSpace α inst✝⁵ : OrderTopology α inst✝⁴ : TopologicalSpace β inst✝³ : TopologicalSpace γ inst✝² : DenselyOrdered α inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a b c : α h : ContinuousOn f (Icc a b) hc : c ∈ Icc a b this : f c ∈ Icc (sInf (f '' Icc a b)) (sSup (f '' Icc a b)) ⊢ f c ≤ sSup (f '' Icc a b) [PROOFSTEP] exact this.2
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.Compact", "llama_tokens": 25874}
[GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α ⊢ SupConvergenceClass α [PROOFSTEP] refine' ⟨fun a s ha => tendsto_order.2 ⟨fun b hb => _, fun b hb => _⟩⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α ha : IsLUB s a b : α hb : b < a ⊢ ∀ᶠ (b_1 : ↑s) in atTop, b < CoeTC.coe b_1 [PROOFSTEP] rcases ha.exists_between hb with ⟨c, hcs, bc, bca⟩ [GOAL] case refine'_1.intro.intro.intro α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α ha : IsLUB s a b : α hb : b < a c : α hcs : c ∈ s bc : b < c bca : c ≤ a ⊢ ∀ᶠ (b_1 : ↑s) in atTop, b < CoeTC.coe b_1 [PROOFSTEP] lift c to s using hcs [GOAL] case refine'_1.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α ha : IsLUB s a b : α hb : b < a c : { x // x ∈ s } bc : b < ↑c bca : ↑c ≤ a ⊢ ∀ᶠ (b_1 : ↑s) in atTop, b < CoeTC.coe b_1 [PROOFSTEP] refine' (eventually_ge_atTop c).mono fun x hx => bc.trans_le hx [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α s : Set α ha : IsLUB s a b : α hb : b > a ⊢ ∀ᶠ (b_1 : ↑s) in atTop, CoeTC.coe b_1 < b [PROOFSTEP] exact eventually_of_forall fun x => (ha.1 x.2).trans_lt hb [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝³ : Preorder ι inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : SupConvergenceClass α f : ι → α a : α h_mono : Monotone f ha : IsLUB (range f) a ⊢ Tendsto f atTop (𝓝 a) [PROOFSTEP] suffices : Tendsto (rangeFactorization f) atTop atTop [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝³ : Preorder ι inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : SupConvergenceClass α f : ι → α a : α h_mono : Monotone f ha : IsLUB (range f) a this : Tendsto (rangeFactorization f) atTop atTop ⊢ Tendsto f atTop (𝓝 a) case this α : Type u_1 β : Type u_2 ι : Type u_3 inst✝³ : Preorder ι inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : SupConvergenceClass α f : ι → α a : α h_mono : Monotone f ha : IsLUB (range f) a ⊢ Tendsto (rangeFactorization f) atTop atTop [PROOFSTEP] exact (SupConvergenceClass.tendsto_coe_atTop_isLUB _ _ ha).comp this [GOAL] case this α : Type u_1 β : Type u_2 ι : Type u_3 inst✝³ : Preorder ι inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : SupConvergenceClass α f : ι → α a : α h_mono : Monotone f ha : IsLUB (range f) a ⊢ Tendsto (rangeFactorization f) atTop atTop [PROOFSTEP] exact h_mono.rangeFactorization.tendsto_atTop_atTop fun b => b.2.imp fun a ha => ha.ge [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝³ : Preorder ι inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : SupConvergenceClass α f : ι → α a : α h_anti : Antitone f ha : IsLUB (range f) a ⊢ Tendsto f atBot (𝓝 a) [PROOFSTEP] convert tendsto_atTop_isLUB h_anti.dual_left ha using 1 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝³ : Preorder ι inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : InfConvergenceClass α f : ι → α a : α h_mono : Monotone f ha : IsGLB (range f) a ⊢ Tendsto f atBot (𝓝 a) [PROOFSTEP] convert tendsto_atTop_isLUB h_mono.dual ha.dual using 1 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝³ : Preorder ι inst✝² : TopologicalSpace α inst✝¹ : Preorder α inst✝ : InfConvergenceClass α f : ι → α a : α h_anti : Antitone f ha : IsGLB (range f) a ⊢ Tendsto f atTop (𝓝 a) [PROOFSTEP] convert tendsto_atBot_isLUB h_anti.dual ha.dual using 1 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝³ : Preorder ι inst✝² : TopologicalSpace α inst✝¹ : ConditionallyCompleteLattice α inst✝ : SupConvergenceClass α f : ι → α a : α h_mono : Monotone f hbdd : BddAbove (range f) ⊢ Tendsto f atTop (𝓝 (⨆ (i : ι), f i)) [PROOFSTEP] cases isEmpty_or_nonempty ι [GOAL] case inl α : Type u_1 β : Type u_2 ι : Type u_3 inst✝³ : Preorder ι inst✝² : TopologicalSpace α inst✝¹ : ConditionallyCompleteLattice α inst✝ : SupConvergenceClass α f : ι → α a : α h_mono : Monotone f hbdd : BddAbove (range f) h✝ : IsEmpty ι ⊢ Tendsto f atTop (𝓝 (⨆ (i : ι), f i)) case inr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝³ : Preorder ι inst✝² : TopologicalSpace α inst✝¹ : ConditionallyCompleteLattice α inst✝ : SupConvergenceClass α f : ι → α a : α h_mono : Monotone f hbdd : BddAbove (range f) h✝ : Nonempty ι ⊢ Tendsto f atTop (𝓝 (⨆ (i : ι), f i)) [PROOFSTEP] exacts [tendsto_of_isEmpty, tendsto_atTop_isLUB h_mono (isLUB_ciSup hbdd)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝³ : Preorder ι inst✝² : TopologicalSpace α inst✝¹ : ConditionallyCompleteLattice α inst✝ : SupConvergenceClass α f : ι → α a : α h_anti : Antitone f hbdd : BddAbove (range f) ⊢ Tendsto f atBot (𝓝 (⨆ (i : ι), f i)) [PROOFSTEP] convert tendsto_atTop_ciSup h_anti.dual hbdd.dual using 1 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝³ : Preorder ι inst✝² : TopologicalSpace α inst✝¹ : ConditionallyCompleteLattice α inst✝ : InfConvergenceClass α f : ι → α a : α h_mono : Monotone f hbdd : BddBelow (range f) ⊢ Tendsto f atBot (𝓝 (⨅ (i : ι), f i)) [PROOFSTEP] convert tendsto_atTop_ciSup h_mono.dual hbdd.dual using 1 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝³ : Preorder ι inst✝² : TopologicalSpace α inst✝¹ : ConditionallyCompleteLattice α inst✝ : InfConvergenceClass α f : ι → α a : α h_anti : Antitone f hbdd : BddBelow (range f) ⊢ Tendsto f atTop (𝓝 (⨅ (i : ι), f i)) [PROOFSTEP] convert tendsto_atBot_ciSup h_anti.dual hbdd.dual using 1 [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : SupConvergenceClass α inst✝ : SupConvergenceClass β ⊢ SupConvergenceClass (α × β) [PROOFSTEP] constructor [GOAL] case tendsto_coe_atTop_isLUB α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : SupConvergenceClass α inst✝ : SupConvergenceClass β ⊢ ∀ (a : α × β) (s : Set (α × β)), IsLUB s a → Tendsto CoeTC.coe atTop (𝓝 a) [PROOFSTEP] rintro ⟨a, b⟩ s h [GOAL] case tendsto_coe_atTop_isLUB.mk α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : SupConvergenceClass α inst✝ : SupConvergenceClass β a : α b : β s : Set (α × β) h : IsLUB s (a, b) ⊢ Tendsto CoeTC.coe atTop (𝓝 (a, b)) [PROOFSTEP] rw [isLUB_prod, ← range_restrict, ← range_restrict] at h [GOAL] case tendsto_coe_atTop_isLUB.mk α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : SupConvergenceClass α inst✝ : SupConvergenceClass β a : α b : β s : Set (α × β) h : IsLUB (range (restrict s fst)) (a, b).fst ∧ IsLUB (range (restrict s snd)) (a, b).snd ⊢ Tendsto CoeTC.coe atTop (𝓝 (a, b)) [PROOFSTEP] have A : Tendsto (fun x : s => (x : α × β).1) atTop (𝓝 a) := tendsto_atTop_isLUB (monotone_fst.restrict s) h.1 [GOAL] case tendsto_coe_atTop_isLUB.mk α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : SupConvergenceClass α inst✝ : SupConvergenceClass β a : α b : β s : Set (α × β) h : IsLUB (range (restrict s fst)) (a, b).fst ∧ IsLUB (range (restrict s snd)) (a, b).snd A : Tendsto (fun x => (↑x).fst) atTop (𝓝 a) ⊢ Tendsto CoeTC.coe atTop (𝓝 (a, b)) [PROOFSTEP] have B : Tendsto (fun x : s => (x : α × β).2) atTop (𝓝 b) := tendsto_atTop_isLUB (monotone_snd.restrict s) h.2 [GOAL] case tendsto_coe_atTop_isLUB.mk α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : SupConvergenceClass α inst✝ : SupConvergenceClass β a : α b : β s : Set (α × β) h : IsLUB (range (restrict s fst)) (a, b).fst ∧ IsLUB (range (restrict s snd)) (a, b).snd A : Tendsto (fun x => (↑x).fst) atTop (𝓝 a) B : Tendsto (fun x => (↑x).snd) atTop (𝓝 b) ⊢ Tendsto CoeTC.coe atTop (𝓝 (a, b)) [PROOFSTEP] convert A.prod_mk_nhds B [GOAL] α✝ : Type u_1 β : Type u_2 ι : Type u_3 α : ι → Type u_4 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), SupConvergenceClass (α i) ⊢ SupConvergenceClass ((i : ι) → α i) [PROOFSTEP] refine' ⟨fun f s h => _⟩ [GOAL] α✝ : Type u_1 β : Type u_2 ι : Type u_3 α : ι → Type u_4 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), SupConvergenceClass (α i) f : (i : ι) → α i s : Set ((i : ι) → α i) h : IsLUB s f ⊢ Tendsto CoeTC.coe atTop (𝓝 f) [PROOFSTEP] simp only [isLUB_pi, ← range_restrict] at h [GOAL] α✝ : Type u_1 β : Type u_2 ι : Type u_3 α : ι → Type u_4 inst✝² : (i : ι) → Preorder (α i) inst✝¹ : (i : ι) → TopologicalSpace (α i) inst✝ : ∀ (i : ι), SupConvergenceClass (α i) f : (i : ι) → α i s : Set ((i : ι) → α i) h : ∀ (a : ι), IsLUB (range (restrict s (eval a))) (f a) ⊢ Tendsto CoeTC.coe atTop (𝓝 f) [PROOFSTEP] exact tendsto_pi_nhds.2 fun i => tendsto_atTop_isLUB ((monotone_eval _).restrict _) (h i) [GOAL] α✝ : Type u_1 β : Type u_2 ι₁ : Type u_3 ι₂ : Type u_4 α : Type u_5 inst✝⁶ : SemilatticeSup ι₁ inst✝⁵ : Preorder ι₂ inst✝⁴ : Nonempty ι₁ inst✝³ : TopologicalSpace α inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : OrderTopology α inst✝ : NoMaxOrder α f : ι₂ → α φ : ι₁ → ι₂ l : α hf : Monotone f hg : Tendsto φ atTop atTop ⊢ Tendsto f atTop (𝓝 l) ↔ Tendsto (f ∘ φ) atTop (𝓝 l) [PROOFSTEP] constructor [GOAL] case mp α✝ : Type u_1 β : Type u_2 ι₁ : Type u_3 ι₂ : Type u_4 α : Type u_5 inst✝⁶ : SemilatticeSup ι₁ inst✝⁵ : Preorder ι₂ inst✝⁴ : Nonempty ι₁ inst✝³ : TopologicalSpace α inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : OrderTopology α inst✝ : NoMaxOrder α f : ι₂ → α φ : ι₁ → ι₂ l : α hf : Monotone f hg : Tendsto φ atTop atTop ⊢ Tendsto f atTop (𝓝 l) → Tendsto (f ∘ φ) atTop (𝓝 l) [PROOFSTEP] intro h [GOAL] case mpr α✝ : Type u_1 β : Type u_2 ι₁ : Type u_3 ι₂ : Type u_4 α : Type u_5 inst✝⁶ : SemilatticeSup ι₁ inst✝⁵ : Preorder ι₂ inst✝⁴ : Nonempty ι₁ inst✝³ : TopologicalSpace α inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : OrderTopology α inst✝ : NoMaxOrder α f : ι₂ → α φ : ι₁ → ι₂ l : α hf : Monotone f hg : Tendsto φ atTop atTop ⊢ Tendsto (f ∘ φ) atTop (𝓝 l) → Tendsto f atTop (𝓝 l) [PROOFSTEP] intro h [GOAL] case mp α✝ : Type u_1 β : Type u_2 ι₁ : Type u_3 ι₂ : Type u_4 α : Type u_5 inst✝⁶ : SemilatticeSup ι₁ inst✝⁵ : Preorder ι₂ inst✝⁴ : Nonempty ι₁ inst✝³ : TopologicalSpace α inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : OrderTopology α inst✝ : NoMaxOrder α f : ι₂ → α φ : ι₁ → ι₂ l : α hf : Monotone f hg : Tendsto φ atTop atTop h : Tendsto f atTop (𝓝 l) ⊢ Tendsto (f ∘ φ) atTop (𝓝 l) [PROOFSTEP] exact h.comp hg [GOAL] case mpr α✝ : Type u_1 β : Type u_2 ι₁ : Type u_3 ι₂ : Type u_4 α : Type u_5 inst✝⁶ : SemilatticeSup ι₁ inst✝⁵ : Preorder ι₂ inst✝⁴ : Nonempty ι₁ inst✝³ : TopologicalSpace α inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : OrderTopology α inst✝ : NoMaxOrder α f : ι₂ → α φ : ι₁ → ι₂ l : α hf : Monotone f hg : Tendsto φ atTop atTop h : Tendsto (f ∘ φ) atTop (𝓝 l) ⊢ Tendsto f atTop (𝓝 l) [PROOFSTEP] rcases tendsto_of_monotone hf with (h' | ⟨l', hl'⟩) [GOAL] case mpr.inl α✝ : Type u_1 β : Type u_2 ι₁ : Type u_3 ι₂ : Type u_4 α : Type u_5 inst✝⁶ : SemilatticeSup ι₁ inst✝⁵ : Preorder ι₂ inst✝⁴ : Nonempty ι₁ inst✝³ : TopologicalSpace α inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : OrderTopology α inst✝ : NoMaxOrder α f : ι₂ → α φ : ι₁ → ι₂ l : α hf : Monotone f hg : Tendsto φ atTop atTop h : Tendsto (f ∘ φ) atTop (𝓝 l) h' : Tendsto f atTop atTop ⊢ Tendsto f atTop (𝓝 l) [PROOFSTEP] exact (not_tendsto_atTop_of_tendsto_nhds h (h'.comp hg)).elim [GOAL] case mpr.inr.intro α✝ : Type u_1 β : Type u_2 ι₁ : Type u_3 ι₂ : Type u_4 α : Type u_5 inst✝⁶ : SemilatticeSup ι₁ inst✝⁵ : Preorder ι₂ inst✝⁴ : Nonempty ι₁ inst✝³ : TopologicalSpace α inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : OrderTopology α inst✝ : NoMaxOrder α f : ι₂ → α φ : ι₁ → ι₂ l : α hf : Monotone f hg : Tendsto φ atTop atTop h : Tendsto (f ∘ φ) atTop (𝓝 l) l' : α hl' : Tendsto f atTop (𝓝 l') ⊢ Tendsto f atTop (𝓝 l) [PROOFSTEP] rwa [tendsto_nhds_unique h (hl'.comp hg)] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : Preorder α inst✝² : OrderClosedTopology α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β f : β → α a : α hf : Monotone f ha : Tendsto f atTop (𝓝 a) ⊢ IsLUB (range f) a [PROOFSTEP] constructor [GOAL] case left α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : Preorder α inst✝² : OrderClosedTopology α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β f : β → α a : α hf : Monotone f ha : Tendsto f atTop (𝓝 a) ⊢ a ∈ upperBounds (range f) [PROOFSTEP] rintro _ ⟨b, rfl⟩ [GOAL] case left.intro α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : Preorder α inst✝² : OrderClosedTopology α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β f : β → α a : α hf : Monotone f ha : Tendsto f atTop (𝓝 a) b : β ⊢ f b ≤ a [PROOFSTEP] exact hf.ge_of_tendsto ha b [GOAL] case right α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : Preorder α inst✝² : OrderClosedTopology α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β f : β → α a : α hf : Monotone f ha : Tendsto f atTop (𝓝 a) ⊢ a ∈ lowerBounds (upperBounds (range f)) [PROOFSTEP] exact fun _ hb => le_of_tendsto' ha fun x => hb (Set.mem_range_self x)
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.MonotoneConvergence", "llama_tokens": 6714}
[GOAL] α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G ⊢ Continuous fun p => p.fst + p.snd [PROOFSTEP] refine' continuous_iff_continuousAt.2 _ [GOAL] α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G ⊢ ∀ (x : G × G), ContinuousAt (fun p => p.fst + p.snd) x [PROOFSTEP] rintro ⟨a, b⟩ [GOAL] case mk α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G a b : G ⊢ ContinuousAt (fun p => p.fst + p.snd) (a, b) [PROOFSTEP] refine' LinearOrderedAddCommGroup.tendsto_nhds.2 fun ε ε0 => _ [GOAL] case mk α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G a b ε : G ε0 : ε > 0 ⊢ ∀ᶠ (b_1 : G × G) in 𝓝 (a, b), |b_1.fst + b_1.snd - (fun p => p.fst + p.snd) (a, b)| < ε [PROOFSTEP] rcases dense_or_discrete 0 ε with (⟨δ, δ0, δε⟩ | ⟨_h₁, h₂⟩) [GOAL] case mk.inl.intro.intro α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G a b ε : G ε0 : ε > 0 δ : G δ0 : 0 < δ δε : δ < ε ⊢ ∀ᶠ (b_1 : G × G) in 𝓝 (a, b), |b_1.fst + b_1.snd - (fun p => p.fst + p.snd) (a, b)| < ε [PROOFSTEP] filter_upwards [(eventually_abs_sub_lt a δ0).prod_nhds (eventually_abs_sub_lt b (sub_pos.2 δε))] [GOAL] case h α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G a b ε : G ε0 : ε > 0 δ : G δ0 : 0 < δ δε : δ < ε ⊢ ∀ (a_1 : G × G), |a_1.fst - a| < δ ∧ |a_1.snd - b| < ε - δ → |a_1.fst + a_1.snd - (a + b)| < ε [PROOFSTEP] rintro ⟨x, y⟩ ⟨hx : |x - a| < δ, hy : |y - b| < ε - δ⟩ [GOAL] case h.mk.intro α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G a b ε : G ε0 : ε > 0 δ : G δ0 : 0 < δ δε : δ < ε x y : G hx : |x - a| < δ hy : |y - b| < ε - δ ⊢ |(x, y).fst + (x, y).snd - (a + b)| < ε [PROOFSTEP] rw [add_sub_add_comm] [GOAL] case h.mk.intro α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G a b ε : G ε0 : ε > 0 δ : G δ0 : 0 < δ δε : δ < ε x y : G hx : |x - a| < δ hy : |y - b| < ε - δ ⊢ |(x, y).fst - a + ((x, y).snd - b)| < ε [PROOFSTEP] calc |x - a + (y - b)| ≤ |x - a| + |y - b| := abs_add _ _ _ < δ + (ε - δ) := (add_lt_add hx hy) _ = ε := add_sub_cancel'_right _ _ [GOAL] case mk.inr.intro α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G a b ε : G ε0 : ε > 0 _h₁ : ∀ (a : G), 0 < a → ε ≤ a h₂ : ∀ (a : G), a < ε → a ≤ 0 ⊢ ∀ᶠ (b_1 : G × G) in 𝓝 (a, b), |b_1.fst + b_1.snd - (fun p => p.fst + p.snd) (a, b)| < ε [PROOFSTEP] have hε : ∀ {x y}, |x - y| < ε → x = y := by intro x y h simpa [sub_eq_zero] using h₂ _ h [GOAL] α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G a b ε : G ε0 : ε > 0 _h₁ : ∀ (a : G), 0 < a → ε ≤ a h₂ : ∀ (a : G), a < ε → a ≤ 0 ⊢ ∀ {x y : G}, |x - y| < ε → x = y [PROOFSTEP] intro x y h [GOAL] α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G a b ε : G ε0 : ε > 0 _h₁ : ∀ (a : G), 0 < a → ε ≤ a h₂ : ∀ (a : G), a < ε → a ≤ 0 x y : G h : |x - y| < ε ⊢ x = y [PROOFSTEP] simpa [sub_eq_zero] using h₂ _ h [GOAL] case mk.inr.intro α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G a b ε : G ε0 : ε > 0 _h₁ : ∀ (a : G), 0 < a → ε ≤ a h₂ : ∀ (a : G), a < ε → a ≤ 0 hε : ∀ {x y : G}, |x - y| < ε → x = y ⊢ ∀ᶠ (b_1 : G × G) in 𝓝 (a, b), |b_1.fst + b_1.snd - (fun p => p.fst + p.snd) (a, b)| < ε [PROOFSTEP] filter_upwards [(eventually_abs_sub_lt a ε0).prod_nhds (eventually_abs_sub_lt b ε0)] [GOAL] case h α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G a b ε : G ε0 : ε > 0 _h₁ : ∀ (a : G), 0 < a → ε ≤ a h₂ : ∀ (a : G), a < ε → a ≤ 0 hε : ∀ {x y : G}, |x - y| < ε → x = y ⊢ ∀ (a_1 : G × G), |a_1.fst - a| < ε ∧ |a_1.snd - b| < ε → |a_1.fst + a_1.snd - (a + b)| < ε [PROOFSTEP] rintro ⟨x, y⟩ ⟨hx : |x - a| < ε, hy : |y - b| < ε⟩ [GOAL] case h.mk.intro α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G a b ε : G ε0 : ε > 0 _h₁ : ∀ (a : G), 0 < a → ε ≤ a h₂ : ∀ (a : G), a < ε → a ≤ 0 hε : ∀ {x y : G}, |x - y| < ε → x = y x y : G hx : |x - a| < ε hy : |y - b| < ε ⊢ |(x, y).fst + (x, y).snd - (a + b)| < ε [PROOFSTEP] simpa [hε hx, hε hy] [GOAL] α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f g : α → G a ε : G ε0 : ε > 0 x : G hx : |x - a| < ε ⊢ |-x - (fun a => -a) a| < ε [PROOFSTEP] rwa [neg_sub_neg, abs_sub_comm] [GOAL] α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f✝ g f : α → G ⊢ Tendsto f l (𝓝 0) ↔ Tendsto (abs ∘ f) l (𝓝 0) [PROOFSTEP] refine' ⟨fun h => (abs_zero : |(0 : G)| = 0) ▸ h.abs, fun h => _⟩ [GOAL] α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f✝ g f : α → G h : Tendsto (abs ∘ f) l (𝓝 0) ⊢ Tendsto f l (𝓝 0) [PROOFSTEP] have : Tendsto (fun a => -|f a|) l (𝓝 0) := (neg_zero : -(0 : G) = 0) ▸ h.neg [GOAL] α : Type u_1 G : Type u_2 inst✝² : TopologicalSpace G inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderTopology G l : Filter α f✝ g f : α → G h : Tendsto (abs ∘ f) l (𝓝 0) this : Tendsto (fun a => -|f a|) l (𝓝 0) ⊢ Tendsto f l (𝓝 0) [PROOFSTEP] exact tendsto_of_tendsto_of_tendsto_of_le_of_le this h (fun x => neg_abs_le_self <| f x) fun x => le_abs_self <| f x
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.Group", "llama_tokens": 3359}
[GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝² : NonUnitalNonAssocSemiring α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSemiring α f g : ι → α a a₁ a₂✝ a₂ : α h : HasSum f a₁ ⊢ HasSum (fun i => a₂ * f i) (a₂ * a₁) [PROOFSTEP] simpa only using h.map (AddMonoidHom.mulLeft a₂) (continuous_const.mul continuous_id) [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝² : NonUnitalNonAssocSemiring α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSemiring α f g : ι → α a a₁ a₂✝ a₂ : α hf : HasSum f a₁ ⊢ HasSum (fun i => f i * a₂) (a₁ * a₂) [PROOFSTEP] simpa only using hf.map (AddMonoidHom.mulRight a₂) (continuous_id.mul continuous_const) [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝² : DivisionSemiring α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSemiring α f g : ι → α a a₁ a₂ : α h : HasSum f a b : α ⊢ HasSum (fun i => f i / b) (a / b) [PROOFSTEP] simp only [div_eq_mul_inv, h.mul_right b⁻¹] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝² : DivisionSemiring α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSemiring α f g : ι → α a a₁ a₂ : α h : a₂ ≠ 0 H : HasSum (fun i => a₂ * f i) (a₂ * a₁) ⊢ HasSum f a₁ [PROOFSTEP] simpa only [inv_mul_cancel_left₀ h] using H.mul_left a₂⁻¹ [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝² : DivisionSemiring α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSemiring α f g : ι → α a a₁ a₂ : α h : a₂ ≠ 0 H : HasSum (fun i => f i * a₂) (a₁ * a₂) ⊢ HasSum f a₁ [PROOFSTEP] simpa only [mul_inv_cancel_right₀ h] using H.mul_right a₂⁻¹ [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝² : DivisionSemiring α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSemiring α f g : ι → α a a₁ a₂ : α h : a₂ ≠ 0 ⊢ HasSum (fun i => f i / a₂) (a₁ / a₂) ↔ HasSum f a₁ [PROOFSTEP] simpa only [div_eq_mul_inv] using hasSum_mul_right_iff (inv_ne_zero h) [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝² : DivisionSemiring α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSemiring α f g : ι → α a a₁ a₂ : α h : a ≠ 0 H : Summable fun i => a * f i ⊢ Summable f [PROOFSTEP] simpa only [inv_mul_cancel_left₀ h] using H.mul_left a⁻¹ [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝² : DivisionSemiring α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSemiring α f g : ι → α a a₁ a₂ : α h : a ≠ 0 H : Summable fun i => f i * a ⊢ Summable f [PROOFSTEP] simpa only [mul_inv_cancel_right₀ h] using H.mul_right a⁻¹ [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝² : DivisionSemiring α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSemiring α f g : ι → α a a₁ a₂ : α h : a ≠ 0 ⊢ (Summable fun i => f i / a) ↔ Summable f [PROOFSTEP] simpa only [div_eq_mul_inv] using summable_mul_right_iff (inv_ne_zero h) [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : DivisionSemiring α inst✝² : TopologicalSpace α inst✝¹ : TopologicalSemiring α f g : ι → α a a₁ a₂ : α inst✝ : T2Space α hf : ¬Summable f ha : a = 0 ⊢ ∑' (x : ι), a * f x = a * ∑' (x : ι), f x [PROOFSTEP] simp [ha] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : DivisionSemiring α inst✝² : TopologicalSpace α inst✝¹ : TopologicalSemiring α f g : ι → α a a₁ a₂ : α inst✝ : T2Space α hf : ¬Summable f ha : ¬a = 0 ⊢ ∑' (x : ι), a * f x = a * ∑' (x : ι), f x [PROOFSTEP] rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable (mt (summable_mul_left_iff ha).mp hf), mul_zero] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : DivisionSemiring α inst✝² : TopologicalSpace α inst✝¹ : TopologicalSemiring α f g : ι → α a a₁ a₂ : α inst✝ : T2Space α hf : ¬Summable f ha : a = 0 ⊢ ∑' (x : ι), f x * a = (∑' (x : ι), f x) * a [PROOFSTEP] simp [ha] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : DivisionSemiring α inst✝² : TopologicalSpace α inst✝¹ : TopologicalSemiring α f g : ι → α a a₁ a₂ : α inst✝ : T2Space α hf : ¬Summable f ha : ¬a = 0 ⊢ ∑' (x : ι), f x * a = (∑' (x : ι), f x) * a [PROOFSTEP] rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable (mt (summable_mul_right_iff ha).mp hf), zero_mul] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : DivisionSemiring α inst✝² : TopologicalSpace α inst✝¹ : TopologicalSemiring α f g : ι → α a a₁ a₂ : α inst✝ : T2Space α ⊢ ∑' (x : ι), f x / a = (∑' (x : ι), f x) / a [PROOFSTEP] simpa only [div_eq_mul_inv] using tsum_mul_right [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α h : Summable fun x => f x.fst * g x.snd ⊢ Summable fun n => ∑ kl in Nat.antidiagonal n, f kl.fst * g kl.snd [PROOFSTEP] rw [summable_mul_prod_iff_summable_mul_sigma_antidiagonal] at h [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α h : Summable fun x => f (↑x.snd).fst * g (↑x.snd).snd ⊢ Summable fun n => ∑ kl in Nat.antidiagonal n, f kl.fst * g kl.snd [PROOFSTEP] conv => congr; ext; rw [← Finset.sum_finset_coe, ← tsum_fintype] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α h : Summable fun x => f (↑x.snd).fst * g (↑x.snd).snd | Summable fun n => ∑ kl in Nat.antidiagonal n, f kl.fst * g kl.snd [PROOFSTEP] congr; ext; rw [← Finset.sum_finset_coe, ← tsum_fintype] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α h : Summable fun x => f (↑x.snd).fst * g (↑x.snd).snd | Summable fun n => ∑ kl in Nat.antidiagonal n, f kl.fst * g kl.snd [PROOFSTEP] congr; ext; rw [← Finset.sum_finset_coe, ← tsum_fintype] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α h : Summable fun x => f (↑x.snd).fst * g (↑x.snd).snd | Summable fun n => ∑ kl in Nat.antidiagonal n, f kl.fst * g kl.snd [PROOFSTEP] congr [GOAL] case f ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α h : Summable fun x => f (↑x.snd).fst * g (↑x.snd).snd | fun n => ∑ kl in Nat.antidiagonal n, f kl.fst * g kl.snd [PROOFSTEP] ext [GOAL] case f.h ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α h : Summable fun x => f (↑x.snd).fst * g (↑x.snd).snd x✝ : ℕ | ∑ kl in Nat.antidiagonal x✝, f kl.fst * g kl.snd [PROOFSTEP] rw [← Finset.sum_finset_coe, ← tsum_fintype] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α h : Summable fun x => f (↑x.snd).fst * g (↑x.snd).snd ⊢ Summable fun x => ∑' (b : ↑↑(Nat.antidiagonal x)), f (↑b).fst * g (↑b).snd [PROOFSTEP] exact h.sigma' fun n => (hasSum_fintype _).summable [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α hf : Summable f hg : Summable g hfg : Summable fun x => f x.fst * g x.snd ⊢ (∑' (n : ℕ), f n) * ∑' (n : ℕ), g n = ∑' (n : ℕ), ∑ kl in Nat.antidiagonal n, f kl.fst * g kl.snd [PROOFSTEP] conv_rhs => congr; ext; rw [← Finset.sum_finset_coe, ← tsum_fintype] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α hf : Summable f hg : Summable g hfg : Summable fun x => f x.fst * g x.snd | ∑' (n : ℕ), ∑ kl in Nat.antidiagonal n, f kl.fst * g kl.snd [PROOFSTEP] congr; ext; rw [← Finset.sum_finset_coe, ← tsum_fintype] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α hf : Summable f hg : Summable g hfg : Summable fun x => f x.fst * g x.snd | ∑' (n : ℕ), ∑ kl in Nat.antidiagonal n, f kl.fst * g kl.snd [PROOFSTEP] congr; ext; rw [← Finset.sum_finset_coe, ← tsum_fintype] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α hf : Summable f hg : Summable g hfg : Summable fun x => f x.fst * g x.snd | ∑' (n : ℕ), ∑ kl in Nat.antidiagonal n, f kl.fst * g kl.snd [PROOFSTEP] congr [GOAL] case f ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α hf : Summable f hg : Summable g hfg : Summable fun x => f x.fst * g x.snd | fun n => ∑ kl in Nat.antidiagonal n, f kl.fst * g kl.snd [PROOFSTEP] ext [GOAL] case f.h ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α hf : Summable f hg : Summable g hfg : Summable fun x => f x.fst * g x.snd x✝ : ℕ | ∑ kl in Nat.antidiagonal x✝, f kl.fst * g kl.snd [PROOFSTEP] rw [← Finset.sum_finset_coe, ← tsum_fintype] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α hf : Summable f hg : Summable g hfg : Summable fun x => f x.fst * g x.snd ⊢ (∑' (n : ℕ), f n) * ∑' (n : ℕ), g n = ∑' (x : ℕ) (b : ↑↑(Nat.antidiagonal x)), f (↑b).fst * g (↑b).snd [PROOFSTEP] rw [tsum_mul_tsum hf hg hfg, ← Nat.sigmaAntidiagonalEquivProd.tsum_eq (_ : ℕ × ℕ → α)] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α hf : Summable f hg : Summable g hfg : Summable fun x => f x.fst * g x.snd ⊢ ∑' (c : (n : ℕ) × { x // x ∈ Nat.antidiagonal n }), f (↑Nat.sigmaAntidiagonalEquivProd c).fst * g (↑Nat.sigmaAntidiagonalEquivProd c).snd = ∑' (x : ℕ) (b : ↑↑(Nat.antidiagonal x)), f (↑b).fst * g (↑b).snd [PROOFSTEP] exact tsum_sigma' (fun n => (hasSum_fintype _).summable) (summable_mul_prod_iff_summable_mul_sigma_antidiagonal.mp hfg) [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α h : Summable fun x => f x.fst * g x.snd ⊢ Summable fun n => ∑ k in range (n + 1), f k * g (n - k) [PROOFSTEP] simp_rw [← Nat.sum_antidiagonal_eq_sum_range_succ fun k l => f k * g l] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α h : Summable fun x => f x.fst * g x.snd ⊢ Summable fun n => ∑ ij in Nat.antidiagonal n, f ij.fst * g ij.snd [PROOFSTEP] exact summable_sum_mul_antidiagonal_of_summable_mul h [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α hf : Summable f hg : Summable g hfg : Summable fun x => f x.fst * g x.snd ⊢ (∑' (n : ℕ), f n) * ∑' (n : ℕ), g n = ∑' (n : ℕ), ∑ k in range (n + 1), f k * g (n - k) [PROOFSTEP] simp_rw [← Nat.sum_antidiagonal_eq_sum_range_succ fun k l => f k * g l] [GOAL] ι : Type u_1 κ : Type u_2 R : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : NonUnitalNonAssocSemiring α f g : ℕ → α inst✝¹ : T3Space α inst✝ : TopologicalSemiring α hf : Summable f hg : Summable g hfg : Summable fun x => f x.fst * g x.snd ⊢ (∑' (n : ℕ), f n) * ∑' (n : ℕ), g n = ∑' (n : ℕ), ∑ ij in Nat.antidiagonal n, f ij.fst * g ij.snd [PROOFSTEP] exact tsum_mul_tsum_eq_tsum_sum_antidiagonal hf hg hfg
{"mathlib_filename": "Mathlib.Topology.Algebra.InfiniteSum.Ring", "llama_tokens": 6161}
[GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : TopologicalSpace β f : α → β a : α ⊢ β [PROOFSTEP] classical haveI : Nonempty β := ⟨f a⟩ letI : TopologicalSpace α := Preorder.topology α exact if 𝓝[<] a = ⊥ ∨ ¬∃ y, Tendsto f (𝓝[<] a) (𝓝 y) then f a else limUnder (𝓝[<] a) f [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : TopologicalSpace β f : α → β a : α ⊢ β [PROOFSTEP] haveI : Nonempty β := ⟨f a⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : TopologicalSpace β f : α → β a : α this : Nonempty β ⊢ β [PROOFSTEP] letI : TopologicalSpace α := Preorder.topology α [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : TopologicalSpace β f : α → β a : α this✝ : Nonempty β this : TopologicalSpace α := Preorder.topology α ⊢ β [PROOFSTEP] exact if 𝓝[<] a = ⊥ ∨ ¬∃ y, Tendsto f (𝓝[<] a) (𝓝 y) then f a else limUnder (𝓝[<] a) f [GOAL] α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace β hα : TopologicalSpace α h'α : OrderTopology α inst✝ : T2Space β f : α → β a : α y : β h : 𝓝[Iio a] a ≠ ⊥ h' : Tendsto f (𝓝[Iio a] a) (𝓝 y) ⊢ leftLim f a = y [PROOFSTEP] have h'' : ∃ y, Tendsto f (𝓝[<] a) (𝓝 y) := ⟨y, h'⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace β hα : TopologicalSpace α h'α : OrderTopology α inst✝ : T2Space β f : α → β a : α y : β h : 𝓝[Iio a] a ≠ ⊥ h' : Tendsto f (𝓝[Iio a] a) (𝓝 y) h'' : ∃ y, Tendsto f (𝓝[Iio a] a) (𝓝 y) ⊢ leftLim f a = y [PROOFSTEP] rw [h'α.topology_eq_generate_intervals] at h h' h'' [GOAL] α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace β hα : TopologicalSpace α h'α : OrderTopology α inst✝ : T2Space β f : α → β a : α y : β h : 𝓝[Iio a] a ≠ ⊥ h' : Tendsto f (𝓝[Iio a] a) (𝓝 y) h'' : ∃ y, Tendsto f (𝓝[Iio a] a) (𝓝 y) ⊢ leftLim f a = y [PROOFSTEP] simp only [leftLim, h, h'', not_true, or_self_iff, if_false] [GOAL] α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace β hα : TopologicalSpace α h'α : OrderTopology α inst✝ : T2Space β f : α → β a : α y : β h : 𝓝[Iio a] a ≠ ⊥ h' : Tendsto f (𝓝[Iio a] a) (𝓝 y) h'' : ∃ y, Tendsto f (𝓝[Iio a] a) (𝓝 y) ⊢ limUnder (𝓝[Iio a] a) f = y [PROOFSTEP] haveI := neBot_iff.2 h [GOAL] α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace β hα : TopologicalSpace α h'α : OrderTopology α inst✝ : T2Space β f : α → β a : α y : β h : 𝓝[Iio a] a ≠ ⊥ h' : Tendsto f (𝓝[Iio a] a) (𝓝 y) h'' : ∃ y, Tendsto f (𝓝[Iio a] a) (𝓝 y) this : NeBot (𝓝[Iio a] a) ⊢ limUnder (𝓝[Iio a] a) f = y [PROOFSTEP] exact lim_eq h' [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : TopologicalSpace β hα : TopologicalSpace α h'α : OrderTopology α f : α → β a : α h : 𝓝[Iio a] a = ⊥ ⊢ leftLim f a = f a [PROOFSTEP] rw [h'α.topology_eq_generate_intervals] at h [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : TopologicalSpace β hα : TopologicalSpace α h'α : OrderTopology α f : α → β a : α h : 𝓝[Iio a] a = ⊥ ⊢ leftLim f a = f a [PROOFSTEP] simp [leftLim, ite_eq_left_iff, h] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x ≤ y ⊢ leftLim f x ≤ f y [PROOFSTEP] letI : TopologicalSpace α := Preorder.topology α [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x ≤ y this : TopologicalSpace α := Preorder.topology α ⊢ leftLim f x ≤ f y [PROOFSTEP] haveI : OrderTopology α := ⟨rfl⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x ≤ y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α ⊢ leftLim f x ≤ f y [PROOFSTEP] rcases eq_or_ne (𝓝[<] x) ⊥ with (h' | h') [GOAL] case inl α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x ≤ y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio x] x = ⊥ ⊢ leftLim f x ≤ f y [PROOFSTEP] simpa [leftLim, h'] using hf h [GOAL] case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x ≤ y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio x] x ≠ ⊥ ⊢ leftLim f x ≤ f y [PROOFSTEP] haveI A : NeBot (𝓝[<] x) := neBot_iff.2 h' [GOAL] case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x ≤ y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio x] x ≠ ⊥ A : NeBot (𝓝[Iio x] x) ⊢ leftLim f x ≤ f y [PROOFSTEP] rw [leftLim_eq_sSup hf h'] [GOAL] case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x ≤ y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio x] x ≠ ⊥ A : NeBot (𝓝[Iio x] x) ⊢ sSup (f '' Iio x) ≤ f y [PROOFSTEP] refine' csSup_le _ _ [GOAL] case inr.refine'_1 α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x ≤ y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio x] x ≠ ⊥ A : NeBot (𝓝[Iio x] x) ⊢ Set.Nonempty (f '' Iio x) [PROOFSTEP] simp only [nonempty_image_iff] [GOAL] case inr.refine'_1 α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x ≤ y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio x] x ≠ ⊥ A : NeBot (𝓝[Iio x] x) ⊢ Set.Nonempty (Iio x) [PROOFSTEP] exact (forall_mem_nonempty_iff_neBot.2 A) _ self_mem_nhdsWithin [GOAL] case inr.refine'_2 α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x ≤ y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio x] x ≠ ⊥ A : NeBot (𝓝[Iio x] x) ⊢ ∀ (b : β), b ∈ f '' Iio x → b ≤ f y [PROOFSTEP] simp only [mem_image, mem_Iio, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂] [GOAL] case inr.refine'_2 α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x ≤ y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio x] x ≠ ⊥ A : NeBot (𝓝[Iio x] x) ⊢ ∀ (a : α), a < x → f a ≤ f y [PROOFSTEP] intro z hz [GOAL] case inr.refine'_2 α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x ≤ y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio x] x ≠ ⊥ A : NeBot (𝓝[Iio x] x) z : α hz : z < x ⊢ f z ≤ f y [PROOFSTEP] exact hf (hz.le.trans h) [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y ⊢ f x ≤ leftLim f y [PROOFSTEP] letI : TopologicalSpace α := Preorder.topology α [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this : TopologicalSpace α := Preorder.topology α ⊢ f x ≤ leftLim f y [PROOFSTEP] haveI : OrderTopology α := ⟨rfl⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α ⊢ f x ≤ leftLim f y [PROOFSTEP] rcases eq_or_ne (𝓝[<] y) ⊥ with (h' | h') [GOAL] case inl α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio y] y = ⊥ ⊢ f x ≤ leftLim f y [PROOFSTEP] rw [leftLim_eq_of_eq_bot _ h'] [GOAL] case inl α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio y] y = ⊥ ⊢ f x ≤ f y [PROOFSTEP] exact hf h.le [GOAL] case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio y] y ≠ ⊥ ⊢ f x ≤ leftLim f y [PROOFSTEP] rw [leftLim_eq_sSup hf h'] [GOAL] case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio y] y ≠ ⊥ ⊢ f x ≤ sSup (f '' Iio y) [PROOFSTEP] refine' le_csSup ⟨f y, _⟩ (mem_image_of_mem _ h) [GOAL] case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio y] y ≠ ⊥ ⊢ f y ∈ upperBounds (f '' Iio y) [PROOFSTEP] simp only [upperBounds, mem_image, mem_Iio, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂, mem_setOf_eq] [GOAL] case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio y] y ≠ ⊥ ⊢ ∀ (a : α), a < y → f a ≤ f y [PROOFSTEP] intro z hz [GOAL] case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio y] y ≠ ⊥ z : α hz : z < y ⊢ f z ≤ f y [PROOFSTEP] exact hf hz.le [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α ⊢ Monotone (leftLim f) [PROOFSTEP] intro x y h [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x✝ y✝ x y : α h : x ≤ y ⊢ leftLim f x ≤ leftLim f y [PROOFSTEP] rcases eq_or_lt_of_le h with (rfl | hxy) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x✝ y x : α h : x ≤ x ⊢ leftLim f x ≤ leftLim f x [PROOFSTEP] exact le_rfl [GOAL] case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x✝ y✝ x y : α h : x ≤ y hxy : x < y ⊢ leftLim f x ≤ leftLim f y [PROOFSTEP] exact (hf.leftLim_le le_rfl).trans (hf.le_leftLim hxy) [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y ⊢ rightLim f x ≤ leftLim f y [PROOFSTEP] letI : TopologicalSpace α := Preorder.topology α [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this : TopologicalSpace α := Preorder.topology α ⊢ rightLim f x ≤ leftLim f y [PROOFSTEP] haveI : OrderTopology α := ⟨rfl⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α ⊢ rightLim f x ≤ leftLim f y [PROOFSTEP] rcases eq_or_ne (𝓝[<] y) ⊥ with (h' | h') [GOAL] case inl α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio y] y = ⊥ ⊢ rightLim f x ≤ leftLim f y [PROOFSTEP] simp [leftLim, h'] [GOAL] case inl α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio y] y = ⊥ ⊢ rightLim f x ≤ f y [PROOFSTEP] exact rightLim_le hf h [GOAL] case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio y] y ≠ ⊥ ⊢ rightLim f x ≤ leftLim f y [PROOFSTEP] obtain ⟨a, ⟨xa, ay⟩⟩ : (Ioo x y).Nonempty := forall_mem_nonempty_iff_neBot.2 (neBot_iff.2 h') (Ioo x y) (Ioo_mem_nhdsWithin_Iio ⟨h, le_refl _⟩) [GOAL] case inr.intro.intro α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : ConditionallyCompleteLinearOrder β inst✝¹ : TopologicalSpace β inst✝ : OrderTopology β f : α → β hf : Monotone f x y : α h : x < y this✝ : TopologicalSpace α := Preorder.topology α this : OrderTopology α h' : 𝓝[Iio y] y ≠ ⊥ a : α xa : x < a ay : a < y ⊢ rightLim f x ≤ leftLim f y [PROOFSTEP] calc rightLim f x ≤ f a := hf.rightLim_le xa _ ≤ leftLim f y := hf.le_leftLim ay [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α x : α ⊢ Tendsto f (𝓝[Iio x] x) (𝓝 (leftLim f x)) [PROOFSTEP] rcases eq_or_ne (𝓝[<] x) ⊥ with (h' | h') [GOAL] case inl α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α x : α h' : 𝓝[Iio x] x = ⊥ ⊢ Tendsto f (𝓝[Iio x] x) (𝓝 (leftLim f x)) [PROOFSTEP] simp [h'] [GOAL] case inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α x : α h' : 𝓝[Iio x] x ≠ ⊥ ⊢ Tendsto f (𝓝[Iio x] x) (𝓝 (leftLim f x)) [PROOFSTEP] rw [leftLim_eq_sSup hf h'] [GOAL] case inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α x : α h' : 𝓝[Iio x] x ≠ ⊥ ⊢ Tendsto f (𝓝[Iio x] x) (𝓝 (sSup (f '' Iio x))) [PROOFSTEP] exact hf.tendsto_nhdsWithin_Iio x [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α x : α ⊢ Tendsto f (𝓝[Iio x] x) (𝓝[Iic (leftLim f x)] leftLim f x) [PROOFSTEP] apply tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within f (hf.tendsto_leftLim x) [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α x : α ⊢ ∀ᶠ (x_1 : α) in 𝓝[Iio x] x, f x_1 ∈ Iic (leftLim f x) [PROOFSTEP] filter_upwards [@self_mem_nhdsWithin _ _ x (Iio x)] with y hy using hf.le_leftLim hy [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α ⊢ ContinuousWithinAt f (Iio x) x ↔ leftLim f x = f x [PROOFSTEP] rcases eq_or_ne (𝓝[<] x) ⊥ with (h' | h') [GOAL] case inl α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h' : 𝓝[Iio x] x = ⊥ ⊢ ContinuousWithinAt f (Iio x) x ↔ leftLim f x = f x [PROOFSTEP] simp [leftLim_eq_of_eq_bot f h', ContinuousWithinAt, h'] [GOAL] case inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h' : 𝓝[Iio x] x ≠ ⊥ ⊢ ContinuousWithinAt f (Iio x) x ↔ leftLim f x = f x [PROOFSTEP] haveI : (𝓝[Iio x] x).NeBot := neBot_iff.2 h' [GOAL] case inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h' : 𝓝[Iio x] x ≠ ⊥ this : NeBot (𝓝[Iio x] x) ⊢ ContinuousWithinAt f (Iio x) x ↔ leftLim f x = f x [PROOFSTEP] refine' ⟨fun h => tendsto_nhds_unique (hf.tendsto_leftLim x) h.tendsto, fun h => _⟩ [GOAL] case inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h' : 𝓝[Iio x] x ≠ ⊥ this : NeBot (𝓝[Iio x] x) h : leftLim f x = f x ⊢ ContinuousWithinAt f (Iio x) x [PROOFSTEP] have := hf.tendsto_leftLim x [GOAL] case inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h' : 𝓝[Iio x] x ≠ ⊥ this✝ : NeBot (𝓝[Iio x] x) h : leftLim f x = f x this : Tendsto f (𝓝[Iio x] x) (𝓝 (leftLim f x)) ⊢ ContinuousWithinAt f (Iio x) x [PROOFSTEP] rwa [h] at this [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α ⊢ ContinuousAt f x ↔ leftLim f x = rightLim f x [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h : ContinuousAt f x ⊢ leftLim f x = rightLim f x [PROOFSTEP] have A : leftLim f x = f x := hf.continuousWithinAt_Iio_iff_leftLim_eq.1 h.continuousWithinAt [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h : ContinuousAt f x A : leftLim f x = f x ⊢ leftLim f x = rightLim f x [PROOFSTEP] have B : rightLim f x = f x := hf.continuousWithinAt_Ioi_iff_rightLim_eq.1 h.continuousWithinAt [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h : ContinuousAt f x A : leftLim f x = f x B : rightLim f x = f x ⊢ leftLim f x = rightLim f x [PROOFSTEP] exact A.trans B.symm [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h : leftLim f x = rightLim f x ⊢ ContinuousAt f x [PROOFSTEP] have h' : leftLim f x = f x := by apply le_antisymm (leftLim_le hf (le_refl _)) rw [h] exact le_rightLim hf (le_refl _) [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h : leftLim f x = rightLim f x ⊢ leftLim f x = f x [PROOFSTEP] apply le_antisymm (leftLim_le hf (le_refl _)) [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h : leftLim f x = rightLim f x ⊢ f x ≤ leftLim f x [PROOFSTEP] rw [h] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h : leftLim f x = rightLim f x ⊢ f x ≤ rightLim f x [PROOFSTEP] exact le_rightLim hf (le_refl _) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h : leftLim f x = rightLim f x h' : leftLim f x = f x ⊢ ContinuousAt f x [PROOFSTEP] refine' continuousAt_iff_continuous_left'_right'.2 ⟨_, _⟩ [GOAL] case refine'_2.refine'_1 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h : leftLim f x = rightLim f x h' : leftLim f x = f x ⊢ ContinuousWithinAt f (Iio x) x [PROOFSTEP] exact hf.continuousWithinAt_Iio_iff_leftLim_eq.2 h' [GOAL] case refine'_2.refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h : leftLim f x = rightLim f x h' : leftLim f x = f x ⊢ ContinuousWithinAt f (Ioi x) x [PROOFSTEP] rw [h] at h' [GOAL] case refine'_2.refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : ConditionallyCompleteLinearOrder β inst✝³ : TopologicalSpace β inst✝² : OrderTopology β f : α → β hf : Monotone f x y : α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α h : leftLim f x = rightLim f x h' : rightLim f x = f x ⊢ ContinuousWithinAt f (Ioi x) x [PROOFSTEP] exact hf.continuousWithinAt_Ioi_iff_rightLim_eq.2 h' [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ⊢ Set.Countable {x | ¬ContinuousWithinAt f (Ioi x) x} [PROOFSTEP] nontriviality α [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α ⊢ Set.Countable {x | ¬ContinuousWithinAt f (Ioi x) x} [PROOFSTEP] let s := {x | ¬ContinuousWithinAt f (Ioi x) x} [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} ⊢ Set.Countable {x | ¬ContinuousWithinAt f (Ioi x) x} [PROOFSTEP] have : ∀ x, x ∈ s → ∃ z, f x < z ∧ ∀ y, x < y → z ≤ f y := by rintro x (hx : ¬ContinuousWithinAt f (Ioi x) x) contrapose! hx refine' tendsto_order.2 ⟨fun m hm => _, fun u hu => _⟩ · filter_upwards [@self_mem_nhdsWithin _ _ x (Ioi x)] with y hy using hm.trans_le (hf (le_of_lt hy)) rcases hx u hu with ⟨v, xv, fvu⟩ have : Ioo x v ∈ 𝓝[>] x := Ioo_mem_nhdsWithin_Ioi ⟨le_refl _, xv⟩ filter_upwards [this] with y hy apply (hf hy.2.le).trans_lt fvu [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} ⊢ ∀ (x : α), x ∈ s → ∃ z, f x < z ∧ ∀ (y : α), x < y → z ≤ f y [PROOFSTEP] rintro x (hx : ¬ContinuousWithinAt f (Ioi x) x) [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} x : α hx : ¬ContinuousWithinAt f (Ioi x) x ⊢ ∃ z, f x < z ∧ ∀ (y : α), x < y → z ≤ f y [PROOFSTEP] contrapose! hx [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} x : α hx : ∀ (z : β), f x < z → ∃ y, x < y ∧ f y < z ⊢ ContinuousWithinAt f (Ioi x) x [PROOFSTEP] refine' tendsto_order.2 ⟨fun m hm => _, fun u hu => _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} x : α hx : ∀ (z : β), f x < z → ∃ y, x < y ∧ f y < z m : β hm : m < f x ⊢ ∀ᶠ (b : α) in 𝓝[Ioi x] x, m < f b [PROOFSTEP] filter_upwards [@self_mem_nhdsWithin _ _ x (Ioi x)] with y hy using hm.trans_le (hf (le_of_lt hy)) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} x : α hx : ∀ (z : β), f x < z → ∃ y, x < y ∧ f y < z u : β hu : u > f x ⊢ ∀ᶠ (b : α) in 𝓝[Ioi x] x, f b < u [PROOFSTEP] rcases hx u hu with ⟨v, xv, fvu⟩ [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} x : α hx : ∀ (z : β), f x < z → ∃ y, x < y ∧ f y < z u : β hu : u > f x v : α xv : x < v fvu : f v < u ⊢ ∀ᶠ (b : α) in 𝓝[Ioi x] x, f b < u [PROOFSTEP] have : Ioo x v ∈ 𝓝[>] x := Ioo_mem_nhdsWithin_Ioi ⟨le_refl _, xv⟩ [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} x : α hx : ∀ (z : β), f x < z → ∃ y, x < y ∧ f y < z u : β hu : u > f x v : α xv : x < v fvu : f v < u this : Ioo x v ∈ 𝓝[Ioi x] x ⊢ ∀ᶠ (b : α) in 𝓝[Ioi x] x, f b < u [PROOFSTEP] filter_upwards [this] with y hy [GOAL] case h α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x✝ y✝ : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} x : α hx : ∀ (z : β), f x < z → ∃ y, x < y ∧ f y < z u : β hu : u > f x v : α xv : x < v fvu : f v < u this : Ioo x v ∈ 𝓝[Ioi x] x y : α hy : y ∈ Ioo x v ⊢ f y < u [PROOFSTEP] apply (hf hy.2.le).trans_lt fvu [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} this : ∀ (x : α), x ∈ s → ∃ z, f x < z ∧ ∀ (y : α), x < y → z ≤ f y ⊢ Set.Countable {x | ¬ContinuousWithinAt f (Ioi x) x} [PROOFSTEP] choose! z hz using this [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y ⊢ Set.Countable {x | ¬ContinuousWithinAt f (Ioi x) x} [PROOFSTEP] have I : InjOn f s := by apply StrictMonoOn.injOn intro x hx y _ hxy calc f x < z x := (hz x hx).1 _ ≤ f y := (hz x hx).2 y hxy [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y ⊢ InjOn f s [PROOFSTEP] apply StrictMonoOn.injOn [GOAL] case H α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y ⊢ StrictMonoOn f s [PROOFSTEP] intro x hx y _ hxy [GOAL] case H α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x✝¹ y✝ : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y x : α hx : x ∈ s y : α x✝ : y ∈ s hxy : x < y ⊢ f x < f y [PROOFSTEP] calc f x < z x := (hz x hx).1 _ ≤ f y := (hz x hx).2 y hxy [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s ⊢ Set.Countable {x | ¬ContinuousWithinAt f (Ioi x) x} [PROOFSTEP] have fs_count : (f '' s).Countable := by have A : (f '' s).PairwiseDisjoint fun x => Ioo x (z (invFunOn f s x)) := by rintro _ ⟨u, us, rfl⟩ _ ⟨v, vs, rfl⟩ huv wlog hle : u ≤ v generalizing u v · exact (this v vs u us huv.symm (le_of_not_le hle)).symm have hlt : u < v := hle.lt_of_ne (ne_of_apply_ne _ huv) apply disjoint_iff_forall_ne.2 rintro a ha b hb rfl simp only [I.leftInvOn_invFunOn us, I.leftInvOn_invFunOn vs] at ha hb exact lt_irrefl _ ((ha.2.trans_le ((hz u us).2 v hlt)).trans hb.1) apply Set.PairwiseDisjoint.countable_of_Ioo A rintro _ ⟨y, ys, rfl⟩ simpa only [I.leftInvOn_invFunOn ys] using (hz y ys).1 [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s ⊢ Set.Countable (f '' s) [PROOFSTEP] have A : (f '' s).PairwiseDisjoint fun x => Ioo x (z (invFunOn f s x)) := by rintro _ ⟨u, us, rfl⟩ _ ⟨v, vs, rfl⟩ huv wlog hle : u ≤ v generalizing u v · exact (this v vs u us huv.symm (le_of_not_le hle)).symm have hlt : u < v := hle.lt_of_ne (ne_of_apply_ne _ huv) apply disjoint_iff_forall_ne.2 rintro a ha b hb rfl simp only [I.leftInvOn_invFunOn us, I.leftInvOn_invFunOn vs] at ha hb exact lt_irrefl _ ((ha.2.trans_le ((hz u us).2 v hlt)).trans hb.1) [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s ⊢ PairwiseDisjoint (f '' s) fun x => Ioo x (z (invFunOn f s x)) [PROOFSTEP] rintro _ ⟨u, us, rfl⟩ _ ⟨v, vs, rfl⟩ huv [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s u : α us : u ∈ s v : α vs : v ∈ s huv : f u ≠ f v ⊢ (Disjoint on fun x => Ioo x (z (invFunOn f s x))) (f u) (f v) [PROOFSTEP] wlog hle : u ≤ v generalizing u v [GOAL] case intro.intro.intro.intro.inr α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s u : α us : u ∈ s v : α vs : v ∈ s huv : f u ≠ f v this : ∀ (u : α), u ∈ s → ∀ (v : α), v ∈ s → f u ≠ f v → u ≤ v → (Disjoint on fun x => Ioo x (z (invFunOn f s x))) (f u) (f v) hle : ¬u ≤ v ⊢ (Disjoint on fun x => Ioo x (z (invFunOn f s x))) (f u) (f v) [PROOFSTEP] exact (this v vs u us huv.symm (le_of_not_le hle)).symm [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s u : α us : u ∈ s v : α vs : v ∈ s huv : f u ≠ f v hle : u ≤ v ⊢ (Disjoint on fun x => Ioo x (z (invFunOn f s x))) (f u) (f v) [PROOFSTEP] have hlt : u < v := hle.lt_of_ne (ne_of_apply_ne _ huv) [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s u : α us : u ∈ s v : α vs : v ∈ s huv : f u ≠ f v hle : u ≤ v hlt : u < v ⊢ (Disjoint on fun x => Ioo x (z (invFunOn f s x))) (f u) (f v) [PROOFSTEP] apply disjoint_iff_forall_ne.2 [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s u : α us : u ∈ s v : α vs : v ∈ s huv : f u ≠ f v hle : u ≤ v hlt : u < v ⊢ ∀ ⦃a : β⦄, a ∈ (fun x => Ioo x (z (invFunOn f s x))) (f u) → ∀ ⦃b : β⦄, b ∈ (fun x => Ioo x (z (invFunOn f s x))) (f v) → a ≠ b [PROOFSTEP] rintro a ha b hb rfl [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s u : α us : u ∈ s v : α vs : v ∈ s huv : f u ≠ f v hle : u ≤ v hlt : u < v a : β ha : a ∈ (fun x => Ioo x (z (invFunOn f s x))) (f u) hb : a ∈ (fun x => Ioo x (z (invFunOn f s x))) (f v) ⊢ False [PROOFSTEP] simp only [I.leftInvOn_invFunOn us, I.leftInvOn_invFunOn vs] at ha hb [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s u : α us : u ∈ s v : α vs : v ∈ s huv : f u ≠ f v hle : u ≤ v hlt : u < v a : β ha : a ∈ Ioo (f u) (z u) hb : a ∈ Ioo (f v) (z v) ⊢ False [PROOFSTEP] exact lt_irrefl _ ((ha.2.trans_le ((hz u us).2 v hlt)).trans hb.1) [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s A : PairwiseDisjoint (f '' s) fun x => Ioo x (z (invFunOn f s x)) ⊢ Set.Countable (f '' s) [PROOFSTEP] apply Set.PairwiseDisjoint.countable_of_Ioo A [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s A : PairwiseDisjoint (f '' s) fun x => Ioo x (z (invFunOn f s x)) ⊢ ∀ (x : β), x ∈ f '' s → x < z (invFunOn f s x) [PROOFSTEP] rintro _ ⟨y, ys, rfl⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y✝ : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s A : PairwiseDisjoint (f '' s) fun x => Ioo x (z (invFunOn f s x)) y : α ys : y ∈ s ⊢ f y < z (invFunOn f s (f y)) [PROOFSTEP] simpa only [I.leftInvOn_invFunOn ys] using (hz y ys).1 [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ✝ : Nontrivial α s : Set α := {x | ¬ContinuousWithinAt f (Ioi x) x} z : α → β hz : ∀ (x : α), x ∈ s → f x < z x ∧ ∀ (y : α), x < y → z x ≤ f y I : InjOn f s fs_count : Set.Countable (f '' s) ⊢ Set.Countable {x | ¬ContinuousWithinAt f (Ioi x) x} [PROOFSTEP] exact MapsTo.countable_of_injOn (mapsTo_image f s) I fs_count [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ⊢ Set.Countable {x | ¬ContinuousAt f x} [PROOFSTEP] apply (hf.countable_not_continuousWithinAt_Ioi.union hf.countable_not_continuousWithinAt_Iio).mono _ [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ⊢ {x | ¬ContinuousAt f x} ⊆ {x | ¬ContinuousWithinAt f (Ioi x) x} ∪ {x | ¬ContinuousWithinAt f (Iio x) x} [PROOFSTEP] refine' compl_subset_compl.1 _ [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ⊢ ({x | ¬ContinuousWithinAt f (Ioi x) x} ∪ {x | ¬ContinuousWithinAt f (Iio x) x})ᶜ ⊆ {x | ¬ContinuousAt f x}ᶜ [PROOFSTEP] simp only [compl_union] [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β ⊢ {x | ¬ContinuousWithinAt f (Ioi x) x}ᶜ ∩ {x | ¬ContinuousWithinAt f (Iio x) x}ᶜ ⊆ {x | ¬ContinuousAt f x}ᶜ [PROOFSTEP] rintro x ⟨hx, h'x⟩ [GOAL] case intro α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β x : α hx : x ∈ {x | ¬ContinuousWithinAt f (Ioi x) x}ᶜ h'x : x ∈ {x | ¬ContinuousWithinAt f (Iio x) x}ᶜ ⊢ x ∈ {x | ¬ContinuousAt f x}ᶜ [PROOFSTEP] simp only [mem_setOf_eq, Classical.not_not, mem_compl_iff] at hx h'x ⊢ [GOAL] case intro α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f x✝ y : α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : TopologicalSpace.SecondCountableTopology β x : α hx : ContinuousWithinAt f (Ioi x) x h'x : ContinuousWithinAt f (Iio x) x ⊢ ContinuousAt f x [PROOFSTEP] exact continuousAt_iff_continuous_left'_right'.2 ⟨h'x, hx⟩
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.LeftRightLim", "llama_tokens": 21915}
[GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g✝ : ι → α a a₁ a₂ : α g : κ → α e : ι → κ he : Injective e hs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c h : ∀ (i : ι), f i ≤ g (e i) hf : HasSum f a₁ hg : HasSum g a₂ ⊢ a₁ ≤ a₂ [PROOFSTEP] rw [← hasSum_extend_zero he] at hf [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g✝ : ι → α a a₁ a₂ : α g : κ → α e : ι → κ he : Injective e hs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c h : ∀ (i : ι), f i ≤ g (e i) hf : HasSum (extend e f 0) a₁ hg : HasSum g a₂ ⊢ a₁ ≤ a₂ [PROOFSTEP] refine hasSum_le (fun c => ?_) hf hg [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g✝ : ι → α a a₁ a₂ : α g : κ → α e : ι → κ he : Injective e hs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c h : ∀ (i : ι), f i ≤ g (e i) hf : HasSum (extend e f 0) a₁ hg : HasSum g a₂ c : κ ⊢ extend e f 0 c ≤ g c [PROOFSTEP] obtain ⟨i, rfl⟩ | h := em (c ∈ Set.range e) [GOAL] case inl.intro ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g✝ : ι → α a a₁ a₂ : α g : κ → α e : ι → κ he : Injective e hs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c h : ∀ (i : ι), f i ≤ g (e i) hf : HasSum (extend e f 0) a₁ hg : HasSum g a₂ i : ι ⊢ extend e f 0 (e i) ≤ g (e i) [PROOFSTEP] rw [he.extend_apply] [GOAL] case inl.intro ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g✝ : ι → α a a₁ a₂ : α g : κ → α e : ι → κ he : Injective e hs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c h : ∀ (i : ι), f i ≤ g (e i) hf : HasSum (extend e f 0) a₁ hg : HasSum g a₂ i : ι ⊢ f i ≤ g (e i) [PROOFSTEP] exact h _ [GOAL] case inr ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g✝ : ι → α a a₁ a₂ : α g : κ → α e : ι → κ he : Injective e hs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c h✝ : ∀ (i : ι), f i ≤ g (e i) hf : HasSum (extend e f 0) a₁ hg : HasSum g a₂ c : κ h : ¬c ∈ Set.range e ⊢ extend e f 0 c ≤ g c [PROOFSTEP] rw [extend_apply' _ _ _ h] [GOAL] case inr ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g✝ : ι → α a a₁ a₂ : α g : κ → α e : ι → κ he : Injective e hs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c h✝ : ∀ (i : ι), f i ≤ g (e i) hf : HasSum (extend e f 0) a₁ hg : HasSum g a₂ c : κ h : ¬c ∈ Set.range e ⊢ OfNat.ofNat 0 c ≤ g c [PROOFSTEP] exact hs _ h [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α hf : HasSum f a i : ι hb : ∀ (j : ι), j ≠ i → 0 ≤ f j ⊢ ∀ (i_1 : ι), ¬i_1 ∈ {i} → 0 ≤ f i_1 [PROOFSTEP] simpa [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α ha₂ : 0 ≤ a₂ h : ∀ (s : Finset ι), ∑ i in s, f i ≤ a₂ ⊢ ∑' (i : ι), f i ≤ a₂ [PROOFSTEP] by_cases hf : Summable f [GOAL] case pos ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α ha₂ : 0 ≤ a₂ h : ∀ (s : Finset ι), ∑ i in s, f i ≤ a₂ hf : Summable f ⊢ ∑' (i : ι), f i ≤ a₂ [PROOFSTEP] exact tsum_le_of_sum_le hf h [GOAL] case neg ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α ha₂ : 0 ≤ a₂ h : ∀ (s : Finset ι), ∑ i in s, f i ≤ a₂ hf : ¬Summable f ⊢ ∑' (i : ι), f i ≤ a₂ [PROOFSTEP] rw [tsum_eq_zero_of_not_summable hf] [GOAL] case neg ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α ha₂ : 0 ≤ a₂ h : ∀ (s : Finset ι), ∑ i in s, f i ≤ a₂ hf : ¬Summable f ⊢ 0 ≤ a₂ [PROOFSTEP] exact ha₂ [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α h : ∀ (i : ι), 0 ≤ g i ⊢ 0 ≤ ∑' (i : ι), g i [PROOFSTEP] by_cases hg : Summable g [GOAL] case pos ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α h : ∀ (i : ι), 0 ≤ g i hg : Summable g ⊢ 0 ≤ ∑' (i : ι), g i [PROOFSTEP] exact hg.hasSum.nonneg h [GOAL] case neg ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α h : ∀ (i : ι), 0 ≤ g i hg : ¬Summable g ⊢ 0 ≤ ∑' (i : ι), g i [PROOFSTEP] rw [tsum_eq_zero_of_not_summable hg] [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α h : ∀ (i : ι), f i ≤ 0 ⊢ ∑' (i : ι), f i ≤ 0 [PROOFSTEP] by_cases hf : Summable f [GOAL] case pos ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α h : ∀ (i : ι), f i ≤ 0 hf : Summable f ⊢ ∑' (i : ι), f i ≤ 0 [PROOFSTEP] exact hf.hasSum.nonpos h [GOAL] case neg ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α h : ∀ (i : ι), f i ≤ 0 hf : ¬Summable f ⊢ ∑' (i : ι), f i ≤ 0 [PROOFSTEP] rw [tsum_eq_zero_of_not_summable hf] [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α hf : ∀ (i : ι), 0 ≤ f i ⊢ HasSum f 0 ↔ f = 0 [PROOFSTEP] refine' ⟨fun hf' => _, _⟩ [GOAL] case refine'_1 ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α hf : ∀ (i : ι), 0 ≤ f i hf' : HasSum f 0 ⊢ f = 0 [PROOFSTEP] ext i [GOAL] case refine'_1.h ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α hf : ∀ (i : ι), 0 ≤ f i hf' : HasSum f 0 i : ι ⊢ f i = OfNat.ofNat 0 i [PROOFSTEP] exact (hf i).antisymm' (le_hasSum hf' _ fun j _ => hf j) [GOAL] case refine'_2 ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f g : ι → α a a₁ a₂ : α hf : ∀ (i : ι), 0 ≤ f i ⊢ f = 0 → HasSum f 0 [PROOFSTEP] rintro rfl [GOAL] case refine'_2 ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : OrderedAddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α g : ι → α a a₁ a₂ : α hf : ∀ (i : ι), 0 ≤ OfNat.ofNat 0 i ⊢ HasSum 0 0 [PROOFSTEP] exact hasSum_zero [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : OrderedAddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α inst✝ : OrderClosedTopology α f g : ι → α a₁ a₂ : α i : ι h : f ≤ g hi : f i < g i hf : HasSum f a₁ hg : HasSum g a₂ ⊢ a₁ < a₂ [PROOFSTEP] have : update f i 0 ≤ update g i 0 := update_le_update_iff.mpr ⟨rfl.le, fun i _ => h i⟩ [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : OrderedAddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α inst✝ : OrderClosedTopology α f g : ι → α a₁ a₂ : α i : ι h : f ≤ g hi : f i < g i hf : HasSum f a₁ hg : HasSum g a₂ this : update f i 0 ≤ update g i 0 ⊢ a₁ < a₂ [PROOFSTEP] have : 0 - f i + a₁ ≤ 0 - g i + a₂ := hasSum_le this (hf.update i 0) (hg.update i 0) [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : OrderedAddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α inst✝ : OrderClosedTopology α f g : ι → α a₁ a₂ : α i : ι h : f ≤ g hi : f i < g i hf : HasSum f a₁ hg : HasSum g a₂ this✝ : update f i 0 ≤ update g i 0 this : 0 - f i + a₁ ≤ 0 - g i + a₂ ⊢ a₁ < a₂ [PROOFSTEP] simpa only [zero_sub, add_neg_cancel_left] using add_lt_add_of_lt_of_le hi this [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : OrderedAddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α inst✝ : OrderClosedTopology α f g : ι → α a₁ a₂ : α i✝ : ι hsum : Summable g hg : ∀ (i : ι), 0 ≤ g i i : ι hi : 0 < g i ⊢ 0 < ∑' (i : ι), g i [PROOFSTEP] rw [← tsum_zero] [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : OrderedAddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α inst✝ : OrderClosedTopology α f g : ι → α a₁ a₂ : α i✝ : ι hsum : Summable g hg : ∀ (i : ι), 0 ≤ g i i : ι hi : 0 < g i ⊢ ∑' (x : ?m.47496), 0 < ∑' (i : ι), g i ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : OrderedAddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α inst✝ : OrderClosedTopology α f g : ι → α a₁ a₂ : α i✝ : ι hsum : Summable g hg : ∀ (i : ι), 0 ≤ g i i : ι hi : 0 < g i ⊢ Type ?u.47494 [PROOFSTEP] exact tsum_lt_tsum hg hi summable_zero hsum [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f : ι → α a : α hf : Summable f ⊢ ∑' (i : ι), f i = 0 ↔ ∀ (x : ι), f x = 0 [PROOFSTEP] rw [← hasSum_zero_iff, hf.hasSum_iff] [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f : ι → α a : α hf : Summable f ⊢ ∑' (i : ι), f i ≠ 0 ↔ ∃ x, f x ≠ 0 [PROOFSTEP] rw [Ne.def, tsum_eq_zero_iff hf, not_forall] [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : LinearOrderedAddCommGroup α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : CompleteSpace α f : ι → α s : Set ι := {x | 0 ≤ f x} h1 : ∀ (x : ↑s), |f ↑x| = f ↑x h2 : ∀ (x : ↑sᶜ), |f ↑x| = -f ↑x ⊢ ((Summable fun x => |f ↑x|) ∧ Summable fun x => |f ↑x|) ↔ (Summable fun x => f ↑x) ∧ Summable fun x => -f ↑x [PROOFSTEP] simp only [h1, h2] [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : LinearOrderedAddCommGroup α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : CompleteSpace α f : ι → α s : Set ι := {x | 0 ≤ f x} h1 : ∀ (x : ↑s), |f ↑x| = f ↑x h2 : ∀ (x : ↑sᶜ), |f ↑x| = -f ↑x ⊢ ((Summable fun x => f ↑x) ∧ Summable fun x => -f ↑x) ↔ Summable f [PROOFSTEP] simp only [summable_neg_iff, summable_subtype_and_compl] [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : LinearOrderedAddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : Archimedean α inst✝ : OrderClosedTopology α b : α hb : 0 < b hf : Summable fun x => b ⊢ Finite ι [PROOFSTEP] have H : ∀ s : Finset ι, s.card • b ≤ ∑' _ : ι, b := fun s => by simpa using sum_le_hasSum s (fun a _ => hb.le) hf.hasSum [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : LinearOrderedAddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : Archimedean α inst✝ : OrderClosedTopology α b : α hb : 0 < b hf : Summable fun x => b s : Finset ι ⊢ card s • b ≤ ∑' (x : ι), b [PROOFSTEP] simpa using sum_le_hasSum s (fun a _ => hb.le) hf.hasSum [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : LinearOrderedAddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : Archimedean α inst✝ : OrderClosedTopology α b : α hb : 0 < b hf : Summable fun x => b H : ∀ (s : Finset ι), card s • b ≤ ∑' (x : ι), b ⊢ Finite ι [PROOFSTEP] obtain ⟨n, hn⟩ := Archimedean.arch (∑' _ : ι, b) hb [GOAL] case intro ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : LinearOrderedAddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : Archimedean α inst✝ : OrderClosedTopology α b : α hb : 0 < b hf : Summable fun x => b H : ∀ (s : Finset ι), card s • b ≤ ∑' (x : ι), b n : ℕ hn : ∑' (x : ι), b ≤ n • b ⊢ Finite ι [PROOFSTEP] have : ∀ s : Finset ι, s.card ≤ n := fun s => by simpa [nsmul_le_nsmul_iff hb] using (H s).trans hn [GOAL] ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : LinearOrderedAddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : Archimedean α inst✝ : OrderClosedTopology α b : α hb : 0 < b hf : Summable fun x => b H : ∀ (s : Finset ι), card s • b ≤ ∑' (x : ι), b n : ℕ hn : ∑' (x : ι), b ≤ n • b s : Finset ι ⊢ card s ≤ n [PROOFSTEP] simpa [nsmul_le_nsmul_iff hb] using (H s).trans hn [GOAL] case intro ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : LinearOrderedAddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : Archimedean α inst✝ : OrderClosedTopology α b : α hb : 0 < b hf : Summable fun x => b H : ∀ (s : Finset ι), card s • b ≤ ∑' (x : ι), b n : ℕ hn : ∑' (x : ι), b ≤ n • b this : ∀ (s : Finset ι), card s ≤ n ⊢ Finite ι [PROOFSTEP] have : Fintype ι := fintypeOfFinsetCardLe n this [GOAL] case intro ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : LinearOrderedAddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : Archimedean α inst✝ : OrderClosedTopology α b : α hb : 0 < b hf : Summable fun x => b H : ∀ (s : Finset ι), card s • b ≤ ∑' (x : ι), b n : ℕ hn : ∑' (x : ι), b ≤ n • b this✝ : ∀ (s : Finset ι), card s ≤ n this : Fintype ι ⊢ Finite ι [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Topology.Algebra.InfiniteSum.Order", "llama_tokens": 6992}
[GOAL] α : Type u β : Type v inst✝³ : ConditionallyCompleteLinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α f : Filter β u : β → α s : Set α hs : Dense s H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a < b → ¬((∃ᶠ (n : β) in f, u n < a) ∧ ∃ᶠ (n : β) in f, b < u n) h : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ h' : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝ ⊢ ∃ c, Tendsto u f (𝓝 c) [PROOFSTEP] rcases f.eq_or_neBot with rfl | hbot [GOAL] case inl α : Type u β : Type v inst✝³ : ConditionallyCompleteLinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α u : β → α s : Set α hs : Dense s H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a < b → ¬((∃ᶠ (n : β) in ⊥, u n < a) ∧ ∃ᶠ (n : β) in ⊥, b < u n) h : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) ⊥ u) _auto✝ h' : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) ⊥ u) _auto✝ ⊢ ∃ c, Tendsto u ⊥ (𝓝 c) [PROOFSTEP] exact ⟨sInf ∅, tendsto_bot⟩ [GOAL] case inr α : Type u β : Type v inst✝³ : ConditionallyCompleteLinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α f : Filter β u : β → α s : Set α hs : Dense s H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a < b → ¬((∃ᶠ (n : β) in f, u n < a) ∧ ∃ᶠ (n : β) in f, b < u n) h : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ h' : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝ hbot : NeBot f ⊢ ∃ c, Tendsto u f (𝓝 c) [PROOFSTEP] refine' ⟨limsup u f, _⟩ [GOAL] case inr α : Type u β : Type v inst✝³ : ConditionallyCompleteLinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α f : Filter β u : β → α s : Set α hs : Dense s H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a < b → ¬((∃ᶠ (n : β) in f, u n < a) ∧ ∃ᶠ (n : β) in f, b < u n) h : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ h' : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝ hbot : NeBot f ⊢ Tendsto u f (𝓝 (limsup u f)) [PROOFSTEP] apply tendsto_of_le_liminf_of_limsup_le _ le_rfl h h' [GOAL] α : Type u β : Type v inst✝³ : ConditionallyCompleteLinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α f : Filter β u : β → α s : Set α hs : Dense s H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a < b → ¬((∃ᶠ (n : β) in f, u n < a) ∧ ∃ᶠ (n : β) in f, b < u n) h : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ h' : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝ hbot : NeBot f ⊢ limsup u f ≤ liminf u f [PROOFSTEP] by_contra' hlt [GOAL] α : Type u β : Type v inst✝³ : ConditionallyCompleteLinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α f : Filter β u : β → α s : Set α hs : Dense s H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a < b → ¬((∃ᶠ (n : β) in f, u n < a) ∧ ∃ᶠ (n : β) in f, b < u n) h : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ h' : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝ hbot : NeBot f hlt : liminf u f < limsup u f ⊢ False [PROOFSTEP] obtain ⟨a, ⟨⟨la, au⟩, as⟩⟩ : ∃ a, (f.liminf u < a ∧ a < f.limsup u) ∧ a ∈ s := dense_iff_inter_open.1 hs (Set.Ioo (f.liminf u) (f.limsup u)) isOpen_Ioo (Set.nonempty_Ioo.2 hlt) [GOAL] case intro.intro.intro α : Type u β : Type v inst✝³ : ConditionallyCompleteLinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α f : Filter β u : β → α s : Set α hs : Dense s H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a < b → ¬((∃ᶠ (n : β) in f, u n < a) ∧ ∃ᶠ (n : β) in f, b < u n) h : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ h' : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝ hbot : NeBot f hlt : liminf u f < limsup u f a : α as : a ∈ s la : liminf u f < a au : a < limsup u f ⊢ False [PROOFSTEP] obtain ⟨b, ⟨⟨ab, bu⟩, bs⟩⟩ : ∃ b, (a < b ∧ b < f.limsup u) ∧ b ∈ s := dense_iff_inter_open.1 hs (Set.Ioo a (f.limsup u)) isOpen_Ioo (Set.nonempty_Ioo.2 au) [GOAL] case intro.intro.intro.intro.intro.intro α : Type u β : Type v inst✝³ : ConditionallyCompleteLinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α f : Filter β u : β → α s : Set α hs : Dense s H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a < b → ¬((∃ᶠ (n : β) in f, u n < a) ∧ ∃ᶠ (n : β) in f, b < u n) h : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ h' : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝ hbot : NeBot f hlt : liminf u f < limsup u f a : α as : a ∈ s la : liminf u f < a au : a < limsup u f b : α bs : b ∈ s ab : a < b bu : b < limsup u f ⊢ False [PROOFSTEP] have A : ∃ᶠ n in f, u n < a := frequently_lt_of_liminf_lt (IsBounded.isCobounded_ge h) la [GOAL] case intro.intro.intro.intro.intro.intro α : Type u β : Type v inst✝³ : ConditionallyCompleteLinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α f : Filter β u : β → α s : Set α hs : Dense s H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a < b → ¬((∃ᶠ (n : β) in f, u n < a) ∧ ∃ᶠ (n : β) in f, b < u n) h : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ h' : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝ hbot : NeBot f hlt : liminf u f < limsup u f a : α as : a ∈ s la : liminf u f < a au : a < limsup u f b : α bs : b ∈ s ab : a < b bu : b < limsup u f A : ∃ᶠ (n : β) in f, u n < a ⊢ False [PROOFSTEP] have B : ∃ᶠ n in f, b < u n := frequently_lt_of_lt_limsup (IsBounded.isCobounded_le h') bu [GOAL] case intro.intro.intro.intro.intro.intro α : Type u β : Type v inst✝³ : ConditionallyCompleteLinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α f : Filter β u : β → α s : Set α hs : Dense s H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a < b → ¬((∃ᶠ (n : β) in f, u n < a) ∧ ∃ᶠ (n : β) in f, b < u n) h : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ h' : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝ hbot : NeBot f hlt : liminf u f < limsup u f a : α as : a ∈ s la : liminf u f < a au : a < limsup u f b : α bs : b ∈ s ab : a < b bu : b < limsup u f A : ∃ᶠ (n : β) in f, u n < a B : ∃ᶠ (n : β) in f, b < u n ⊢ False [PROOFSTEP] exact H a as b bs ab ⟨A, B⟩ [GOAL] α : Type u β : Type v inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : FirstCountableTopology α f : Filter β inst✝ : CountableInterFilter f u : β → α hf : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ⊢ ∀ᶠ (b : β) in f, u b ≤ limsup u f [PROOFSTEP] obtain ha | ha := isTop_or_exists_gt (f.limsup u) [GOAL] case inl α : Type u β : Type v inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : FirstCountableTopology α f : Filter β inst✝ : CountableInterFilter f u : β → α hf : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ha : IsTop (limsup u f) ⊢ ∀ᶠ (b : β) in f, u b ≤ limsup u f [PROOFSTEP] exact eventually_of_forall fun _ => ha _ [GOAL] case inr α : Type u β : Type v inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : FirstCountableTopology α f : Filter β inst✝ : CountableInterFilter f u : β → α hf : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ha : ∃ b, limsup u f < b ⊢ ∀ᶠ (b : β) in f, u b ≤ limsup u f [PROOFSTEP] by_cases H : IsGLB (Set.Ioi (f.limsup u)) (f.limsup u) [GOAL] case pos α : Type u β : Type v inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : FirstCountableTopology α f : Filter β inst✝ : CountableInterFilter f u : β → α hf : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ha : ∃ b, limsup u f < b H : IsGLB (Set.Ioi (limsup u f)) (limsup u f) ⊢ ∀ᶠ (b : β) in f, u b ≤ limsup u f [PROOFSTEP] obtain ⟨u, -, -, hua, hu⟩ := H.exists_seq_antitone_tendsto ha [GOAL] case pos.intro.intro.intro.intro α : Type u β : Type v inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : FirstCountableTopology α f : Filter β inst✝ : CountableInterFilter f u✝ : β → α hf : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u✝) _auto✝ ha : ∃ b, limsup u✝ f < b H : IsGLB (Set.Ioi (limsup u✝ f)) (limsup u✝ f) u : ℕ → α hua : Tendsto u atTop (𝓝 (limsup u✝ f)) hu : ∀ (n : ℕ), u n ∈ Set.Ioi (limsup u✝ f) ⊢ ∀ᶠ (b : β) in f, u✝ b ≤ limsup u✝ f [PROOFSTEP] have := fun n => eventually_lt_of_limsup_lt (hu n) hf [GOAL] case pos.intro.intro.intro.intro α : Type u β : Type v inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : FirstCountableTopology α f : Filter β inst✝ : CountableInterFilter f u✝ : β → α hf : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u✝) _auto✝ ha : ∃ b, limsup u✝ f < b H : IsGLB (Set.Ioi (limsup u✝ f)) (limsup u✝ f) u : ℕ → α hua : Tendsto u atTop (𝓝 (limsup u✝ f)) hu : ∀ (n : ℕ), u n ∈ Set.Ioi (limsup u✝ f) this : ∀ (n : ℕ), ∀ᶠ (a : β) in f, u✝ a < u n ⊢ ∀ᶠ (b : β) in f, u✝ b ≤ limsup u✝ f [PROOFSTEP] exact (eventually_countable_forall.2 this).mono fun b hb => ge_of_tendsto hua <| eventually_of_forall fun n => (hb _).le [GOAL] case neg α : Type u β : Type v inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : FirstCountableTopology α f : Filter β inst✝ : CountableInterFilter f u : β → α hf : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ha : ∃ b, limsup u f < b H : ¬IsGLB (Set.Ioi (limsup u f)) (limsup u f) ⊢ ∀ᶠ (b : β) in f, u b ≤ limsup u f [PROOFSTEP] obtain ⟨x, hx, xa⟩ : ∃ x, (∀ ⦃b⦄, f.limsup u < b → x ≤ b) ∧ f.limsup u < x := by simp only [IsGLB, IsGreatest, lowerBounds, upperBounds, Set.mem_Ioi, Set.mem_setOf_eq, not_and, not_forall, not_le, exists_prop] at H exact H fun x => le_of_lt [GOAL] α : Type u β : Type v inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : FirstCountableTopology α f : Filter β inst✝ : CountableInterFilter f u : β → α hf : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ha : ∃ b, limsup u f < b H : ¬IsGLB (Set.Ioi (limsup u f)) (limsup u f) ⊢ ∃ x, (∀ ⦃b : α⦄, limsup u f < b → x ≤ b) ∧ limsup u f < x [PROOFSTEP] simp only [IsGLB, IsGreatest, lowerBounds, upperBounds, Set.mem_Ioi, Set.mem_setOf_eq, not_and, not_forall, not_le, exists_prop] at H [GOAL] α : Type u β : Type v inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : FirstCountableTopology α f : Filter β inst✝ : CountableInterFilter f u : β → α hf : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ha : ∃ b, limsup u f < b H : (∀ ⦃a : α⦄, limsup u f < a → limsup u f ≤ a) → ∃ x, (∀ ⦃a : α⦄, limsup u f < a → x ≤ a) ∧ limsup u f < x ⊢ ∃ x, (∀ ⦃b : α⦄, limsup u f < b → x ≤ b) ∧ limsup u f < x [PROOFSTEP] exact H fun x => le_of_lt [GOAL] case neg.intro.intro α : Type u β : Type v inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : FirstCountableTopology α f : Filter β inst✝ : CountableInterFilter f u : β → α hf : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ha : ∃ b, limsup u f < b H : ¬IsGLB (Set.Ioi (limsup u f)) (limsup u f) x : α hx : ∀ ⦃b : α⦄, limsup u f < b → x ≤ b xa : limsup u f < x ⊢ ∀ᶠ (b : β) in f, u b ≤ limsup u f [PROOFSTEP] filter_upwards [eventually_lt_of_limsup_lt xa hf] with y hy [GOAL] case h α : Type u β : Type v inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : FirstCountableTopology α f : Filter β inst✝ : CountableInterFilter f u : β → α hf : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ha : ∃ b, limsup u f < b H : ¬IsGLB (Set.Ioi (limsup u f)) (limsup u f) x : α hx : ∀ ⦃b : α⦄, limsup u f < b → x ≤ b xa : limsup u f < x y : β hy : u y < x ⊢ u y ≤ limsup u f [PROOFSTEP] contrapose! hy [GOAL] case h α : Type u β : Type v inst✝⁴ : ConditionallyCompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : OrderTopology α inst✝¹ : FirstCountableTopology α f : Filter β inst✝ : CountableInterFilter f u : β → α hf : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ha : ∃ b, limsup u f < b H : ¬IsGLB (Set.Ioi (limsup u f)) (limsup u f) x : α hx : ∀ ⦃b : α⦄, limsup u f < b → x ≤ b xa : limsup u f < x y : β hy : limsup u f < u y ⊢ x ≤ u y [PROOFSTEP] exact hx hy [GOAL] α : Type u β : Type v inst✝⁴ : CompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : FirstCountableTopology α inst✝¹ : OrderTopology α f : Filter β inst✝ : CountableInterFilter f u : β → α h : u =ᶠ[f] ⊥ ⊢ limsup u f = ⊥ [PROOFSTEP] rw [limsup_congr h] [GOAL] α : Type u β : Type v inst✝⁴ : CompleteLinearOrder α inst✝³ : TopologicalSpace α inst✝² : FirstCountableTopology α inst✝¹ : OrderTopology α f : Filter β inst✝ : CountableInterFilter f u : β → α h : u =ᶠ[f] ⊥ ⊢ limsup (fun a => ⊥ a) f = ⊥ [PROOFSTEP] exact limsup_const_bot [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ ⊢ f (limsSup F) = liminf f F [PROOFSTEP] have cobdd : F.IsCobounded (· ≤ ·) := bdd_below.isCobounded_flip [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F ⊢ f (limsSup F) = liminf f F [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F ⊢ f (limsSup F) ≤ liminf f F [PROOFSTEP] rw [limsSup, f_decr.map_sInf_of_continuousAt' f_cont bdd_above cobdd] [GOAL] case a α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F ⊢ sSup (f '' {a | ∀ᶠ (n : R) in F, n ≤ a}) ≤ liminf f F [PROOFSTEP] apply le_of_forall_lt [GOAL] case a.H α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F ⊢ ∀ (c : S), c < sSup (f '' {a | ∀ᶠ (n : R) in F, n ≤ a}) → c < liminf f F [PROOFSTEP] intro c hc [GOAL] case a.H α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : S hc : c < sSup (f '' {a | ∀ᶠ (n : R) in F, n ≤ a}) ⊢ c < liminf f F [PROOFSTEP] simp only [liminf, limsInf, eventually_map] at hc ⊢ [GOAL] case a.H α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : S hc : c < sSup (f '' {a | ∀ᶠ (n : R) in F, n ≤ a}) ⊢ c < sSup {a | ∀ᶠ (a_1 : R) in F, a ≤ f a_1} [PROOFSTEP] obtain ⟨d, hd, h'd⟩ := exists_lt_of_lt_csSup (bdd_above.recOn fun x hx ↦ ⟨f x, Set.mem_image_of_mem f hx⟩) hc [GOAL] case a.H.intro.intro α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : S hc : c < sSup (f '' {a | ∀ᶠ (n : R) in F, n ≤ a}) d : S hd : d ∈ f '' {a | ∀ᶠ (n : R) in F, n ≤ a} h'd : c < d ⊢ c < sSup {a | ∀ᶠ (a_1 : R) in F, a ≤ f a_1} [PROOFSTEP] apply lt_csSup_of_lt ?_ ?_ h'd [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : S hc : c < sSup (f '' {a | ∀ᶠ (n : R) in F, n ≤ a}) d : S hd : d ∈ f '' {a | ∀ᶠ (n : R) in F, n ≤ a} h'd : c < d ⊢ BddAbove {a | ∀ᶠ (a_1 : R) in F, a ≤ f a_1} [PROOFSTEP] exact (Antitone.isBoundedUnder_le_comp f_decr bdd_below).isCoboundedUnder_flip [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : S hc : c < sSup (f '' {a | ∀ᶠ (n : R) in F, n ≤ a}) d : S hd : d ∈ f '' {a | ∀ᶠ (n : R) in F, n ≤ a} h'd : c < d ⊢ d ∈ {a | ∀ᶠ (a_1 : R) in F, a ≤ f a_1} [PROOFSTEP] rcases hd with ⟨e, ⟨he, fe_eq_d⟩⟩ [GOAL] case intro.intro α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : S hc : c < sSup (f '' {a | ∀ᶠ (n : R) in F, n ≤ a}) d : S h'd : c < d e : R he : e ∈ {a | ∀ᶠ (n : R) in F, n ≤ a} fe_eq_d : f e = d ⊢ d ∈ {a | ∀ᶠ (a_1 : R) in F, a ≤ f a_1} [PROOFSTEP] filter_upwards [he] with x hx using (fe_eq_d.symm ▸ f_decr hx) [GOAL] case a α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F ⊢ liminf f F ≤ f (limsSup F) [PROOFSTEP] by_cases h' : ∃ c, c < F.limsSup ∧ Set.Ioo c F.limsSup = ∅ [GOAL] case pos α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∃ c, c < limsSup F ∧ Set.Ioo c (limsSup F) = ∅ ⊢ liminf f F ≤ f (limsSup F) [PROOFSTEP] rcases h' with ⟨c, c_lt, hc⟩ [GOAL] case pos.intro.intro α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : R c_lt : c < limsSup F hc : Set.Ioo c (limsSup F) = ∅ ⊢ liminf f F ≤ f (limsSup F) [PROOFSTEP] have B : ∃ᶠ n in F, F.limsSup ≤ n := by apply (frequently_lt_of_lt_limsSup cobdd c_lt).mono intro x hx by_contra' have : (Set.Ioo c F.limsSup).Nonempty := ⟨x, ⟨hx, this⟩⟩ simp only [hc, Set.not_nonempty_empty] at this [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : R c_lt : c < limsSup F hc : Set.Ioo c (limsSup F) = ∅ ⊢ ∃ᶠ (n : R) in F, limsSup F ≤ n [PROOFSTEP] apply (frequently_lt_of_lt_limsSup cobdd c_lt).mono [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : R c_lt : c < limsSup F hc : Set.Ioo c (limsSup F) = ∅ ⊢ ∀ (x : R), c < x → limsSup F ≤ x [PROOFSTEP] intro x hx [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : R c_lt : c < limsSup F hc : Set.Ioo c (limsSup F) = ∅ x : R hx : c < x ⊢ limsSup F ≤ x [PROOFSTEP] by_contra' [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : R c_lt : c < limsSup F hc : Set.Ioo c (limsSup F) = ∅ x : R hx : c < x this : x < limsSup F ⊢ False [PROOFSTEP] have : (Set.Ioo c F.limsSup).Nonempty := ⟨x, ⟨hx, this⟩⟩ [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : R c_lt : c < limsSup F hc : Set.Ioo c (limsSup F) = ∅ x : R hx : c < x this✝ : x < limsSup F this : Set.Nonempty (Set.Ioo c (limsSup F)) ⊢ False [PROOFSTEP] simp only [hc, Set.not_nonempty_empty] at this [GOAL] case pos.intro.intro α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : R c_lt : c < limsSup F hc : Set.Ioo c (limsSup F) = ∅ B : ∃ᶠ (n : R) in F, limsSup F ≤ n ⊢ liminf f F ≤ f (limsSup F) [PROOFSTEP] apply liminf_le_of_frequently_le _ (bdd_above.isBoundedUnder f_decr) [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F c : R c_lt : c < limsSup F hc : Set.Ioo c (limsSup F) = ∅ B : ∃ᶠ (n : R) in F, limsSup F ≤ n ⊢ ∃ᶠ (x : R) in F, f x ≤ f (limsSup F) [PROOFSTEP] exact (B.mono fun x hx ↦ f_decr hx) [GOAL] case neg α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ¬∃ c, c < limsSup F ∧ Set.Ioo c (limsSup F) = ∅ ⊢ liminf f F ≤ f (limsSup F) [PROOFSTEP] push_neg at h' [GOAL] case neg α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ ⊢ liminf f F ≤ f (limsSup F) [PROOFSTEP] by_contra' H [GOAL] case neg α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ H : f (limsSup F) < liminf f F ⊢ False [PROOFSTEP] have not_bot : ¬IsBot F.limsSup := fun maybe_bot ↦ lt_irrefl (F.liminf f) <| lt_of_le_of_lt (liminf_le_of_frequently_le (frequently_of_forall (fun r ↦ f_decr (maybe_bot r))) (bdd_above.isBoundedUnder f_decr)) H [GOAL] case neg α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) ⊢ False [PROOFSTEP] obtain ⟨l, l_lt, h'l⟩ : ∃ l < F.limsSup, Set.Ioc l F.limsSup ⊆ {x : R | f x < F.liminf f} [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) ⊢ ∃ l, l < limsSup F ∧ Set.Ioc l (limsSup F) ⊆ {x | f x < liminf f F} [PROOFSTEP] apply exists_Ioc_subset_of_mem_nhds ((tendsto_order.1 f_cont.tendsto).2 _ H) [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) ⊢ ∃ l, l < limsSup F [PROOFSTEP] simpa [IsBot] using not_bot [GOAL] case neg.intro.intro α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) l : R l_lt : l < limsSup F h'l : Set.Ioc l (limsSup F) ⊆ {x | f x < liminf f F} ⊢ False [PROOFSTEP] obtain ⟨m, l_m, m_lt⟩ : (Set.Ioo l F.limsSup).Nonempty := by contrapose! h' refine' ⟨l, l_lt, by rwa [Set.not_nonempty_iff_eq_empty] at h' ⟩ [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) l : R l_lt : l < limsSup F h'l : Set.Ioc l (limsSup F) ⊆ {x | f x < liminf f F} ⊢ Set.Nonempty (Set.Ioo l (limsSup F)) [PROOFSTEP] contrapose! h' [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) l : R l_lt : l < limsSup F h'l : Set.Ioc l (limsSup F) ⊆ {x | f x < liminf f F} h' : ¬Set.Nonempty (Set.Ioo l (limsSup F)) ⊢ ∃ c, c < limsSup F ∧ Set.Ioo c (limsSup F) = ∅ [PROOFSTEP] refine' ⟨l, l_lt, by rwa [Set.not_nonempty_iff_eq_empty] at h' ⟩ [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) l : R l_lt : l < limsSup F h'l : Set.Ioc l (limsSup F) ⊆ {x | f x < liminf f F} h' : ¬Set.Nonempty (Set.Ioo l (limsSup F)) ⊢ Set.Ioo l (limsSup F) = ∅ [PROOFSTEP] rwa [Set.not_nonempty_iff_eq_empty] at h' [GOAL] case neg.intro.intro.intro.intro α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) l : R l_lt : l < limsSup F h'l : Set.Ioc l (limsSup F) ⊆ {x | f x < liminf f F} m : R l_m : l < m m_lt : m < limsSup F ⊢ False [PROOFSTEP] have B : F.liminf f ≤ f m := by apply liminf_le_of_frequently_le _ _ · apply (frequently_lt_of_lt_limsSup cobdd m_lt).mono exact fun x hx ↦ f_decr hx.le · exact IsBounded.isBoundedUnder f_decr bdd_above [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) l : R l_lt : l < limsSup F h'l : Set.Ioc l (limsSup F) ⊆ {x | f x < liminf f F} m : R l_m : l < m m_lt : m < limsSup F ⊢ liminf f F ≤ f m [PROOFSTEP] apply liminf_le_of_frequently_le _ _ [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) l : R l_lt : l < limsSup F h'l : Set.Ioc l (limsSup F) ⊆ {x | f x < liminf f F} m : R l_m : l < m m_lt : m < limsSup F ⊢ ∃ᶠ (x : R) in F, f x ≤ f m [PROOFSTEP] apply (frequently_lt_of_lt_limsSup cobdd m_lt).mono [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) l : R l_lt : l < limsSup F h'l : Set.Ioc l (limsSup F) ⊆ {x | f x < liminf f F} m : R l_m : l < m m_lt : m < limsSup F ⊢ ∀ (x : R), m < x → f x ≤ f m [PROOFSTEP] exact fun x hx ↦ f_decr hx.le [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) l : R l_lt : l < limsSup F h'l : Set.Ioc l (limsSup F) ⊆ {x | f x < liminf f F} m : R l_m : l < m m_lt : m < limsSup F ⊢ IsBoundedUnder (fun x x_1 => x ≥ x_1) F f [PROOFSTEP] exact IsBounded.isBoundedUnder f_decr bdd_above [GOAL] case neg.intro.intro.intro.intro α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) l : R l_lt : l < limsSup F h'l : Set.Ioc l (limsSup F) ⊆ {x | f x < liminf f F} m : R l_m : l < m m_lt : m < limsSup F B : liminf f F ≤ f m ⊢ False [PROOFSTEP] have I : f m < F.liminf f := h'l ⟨l_m, m_lt.le⟩ [GOAL] case neg.intro.intro.intro.intro α : Type u β : Type v ι : Type u_1 R : Type u_2 S : Type u_3 F✝ : Filter ι inst✝⁷ : NeBot F✝ inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : NeBot F f : R → S f_decr : Antitone f f_cont : ContinuousAt f (limsSup F) bdd_above : autoParam (IsBounded (fun x x_1 => x ≤ x_1) F) _auto✝ bdd_below : autoParam (IsBounded (fun x x_1 => x ≥ x_1) F) _auto✝ cobdd : IsCobounded (fun x x_1 => x ≤ x_1) F h' : ∀ (c : R), c < limsSup F → Set.Ioo c (limsSup F) ≠ ∅ H : f (limsSup F) < liminf f F not_bot : ¬IsBot (limsSup F) l : R l_lt : l < limsSup F h'l : Set.Ioc l (limsSup F) ⊆ {x | f x < liminf f F} m : R l_m : l < m m_lt : m < limsSup F B : liminf f F ≤ f m I : f m < liminf f F ⊢ False [PROOFSTEP] exact lt_irrefl _ (B.trans_lt I) [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 inst✝³ : CompleteLinearOrder R inst✝² : TopologicalSpace R inst✝¹ : OrderTopology R x : R as : ι → R x_le : ∀ (i : ι), x ≤ as i F : Filter ι inst✝ : NeBot F as_lim : Tendsto as F (𝓝 x) ⊢ ⨅ (i : ι), as i = x [PROOFSTEP] refine' iInf_eq_of_forall_ge_of_forall_gt_exists_lt (fun i ↦ x_le i) _ [GOAL] α : Type u β : Type v ι : Type u_1 R : Type u_2 inst✝³ : CompleteLinearOrder R inst✝² : TopologicalSpace R inst✝¹ : OrderTopology R x : R as : ι → R x_le : ∀ (i : ι), x ≤ as i F : Filter ι inst✝ : NeBot F as_lim : Tendsto as F (𝓝 x) ⊢ ∀ (w : R), x < w → ∃ i, as i < w [PROOFSTEP] apply fun w x_lt_w ↦ ‹Filter.NeBot F›.nonempty_of_mem (eventually_lt_of_tendsto_lt x_lt_w as_lim) [GOAL] α : Type u β : Type v ι✝ : Type u_1 R : Type u_2 inst✝³ : CompleteLinearOrder R inst✝² : TopologicalSpace R inst✝¹ : OrderTopology R ι : Type u_3 x : R as : ι → R x_lt : ∀ (i : ι), x < as i F : Filter ι inst✝ : NeBot F as_lim : Tendsto as F (𝓝 x) ⊢ ⋃ (i : ι), Ici (as i) = Ioi x [PROOFSTEP] have obs : x ∉ range as := by intro maybe_x_is rcases mem_range.mp maybe_x_is with ⟨i, hi⟩ simpa only [hi, lt_self_iff_false] using x_lt i [GOAL] α : Type u β : Type v ι✝ : Type u_1 R : Type u_2 inst✝³ : CompleteLinearOrder R inst✝² : TopologicalSpace R inst✝¹ : OrderTopology R ι : Type u_3 x : R as : ι → R x_lt : ∀ (i : ι), x < as i F : Filter ι inst✝ : NeBot F as_lim : Tendsto as F (𝓝 x) ⊢ ¬x ∈ range as [PROOFSTEP] intro maybe_x_is [GOAL] α : Type u β : Type v ι✝ : Type u_1 R : Type u_2 inst✝³ : CompleteLinearOrder R inst✝² : TopologicalSpace R inst✝¹ : OrderTopology R ι : Type u_3 x : R as : ι → R x_lt : ∀ (i : ι), x < as i F : Filter ι inst✝ : NeBot F as_lim : Tendsto as F (𝓝 x) maybe_x_is : x ∈ range as ⊢ False [PROOFSTEP] rcases mem_range.mp maybe_x_is with ⟨i, hi⟩ [GOAL] case intro α : Type u β : Type v ι✝ : Type u_1 R : Type u_2 inst✝³ : CompleteLinearOrder R inst✝² : TopologicalSpace R inst✝¹ : OrderTopology R ι : Type u_3 x : R as : ι → R x_lt : ∀ (i : ι), x < as i F : Filter ι inst✝ : NeBot F as_lim : Tendsto as F (𝓝 x) maybe_x_is : x ∈ range as i : ι hi : as i = x ⊢ False [PROOFSTEP] simpa only [hi, lt_self_iff_false] using x_lt i [GOAL] α : Type u β : Type v ι✝ : Type u_1 R : Type u_2 inst✝³ : CompleteLinearOrder R inst✝² : TopologicalSpace R inst✝¹ : OrderTopology R ι : Type u_3 x : R as : ι → R x_lt : ∀ (i : ι), x < as i F : Filter ι inst✝ : NeBot F as_lim : Tendsto as F (𝓝 x) obs : ¬x ∈ range as ⊢ ⋃ (i : ι), Ici (as i) = Ioi x [PROOFSTEP] have := iInf_eq_of_forall_le_of_tendsto (fun i ↦ (x_lt i).le) as_lim [GOAL] α : Type u β : Type v ι✝ : Type u_1 R : Type u_2 inst✝³ : CompleteLinearOrder R inst✝² : TopologicalSpace R inst✝¹ : OrderTopology R ι : Type u_3 x : R as : ι → R x_lt : ∀ (i : ι), x < as i F : Filter ι inst✝ : NeBot F as_lim : Tendsto as F (𝓝 x) obs : ¬x ∈ range as this : ⨅ (i : ι), as i = x ⊢ ⋃ (i : ι), Ici (as i) = Ioi x [PROOFSTEP] rw [← this] at obs [GOAL] α : Type u β : Type v ι✝ : Type u_1 R : Type u_2 inst✝³ : CompleteLinearOrder R inst✝² : TopologicalSpace R inst✝¹ : OrderTopology R ι : Type u_3 x : R as : ι → R x_lt : ∀ (i : ι), x < as i F : Filter ι inst✝ : NeBot F as_lim : Tendsto as F (𝓝 x) obs : ¬⨅ (i : ι), as i ∈ range as this : ⨅ (i : ι), as i = x ⊢ ⋃ (i : ι), Ici (as i) = Ioi x [PROOFSTEP] rw [← this] [GOAL] α : Type u β : Type v ι✝ : Type u_1 R : Type u_2 inst✝³ : CompleteLinearOrder R inst✝² : TopologicalSpace R inst✝¹ : OrderTopology R ι : Type u_3 x : R as : ι → R x_lt : ∀ (i : ι), x < as i F : Filter ι inst✝ : NeBot F as_lim : Tendsto as F (𝓝 x) obs : ¬⨅ (i : ι), as i ∈ range as this : ⨅ (i : ι), as i = x ⊢ ⋃ (i : ι), Ici (as i) = Ioi (⨅ (i : ι), as i) [PROOFSTEP] exact iUnion_Ici_eq_Ioi_iInf obs [GOAL] α : Type u β : Type v s : ℕ → Set α ⊢ limsup s atTop = {ω | Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop} [PROOFSTEP] ext ω [GOAL] case h α : Type u β : Type v s : ℕ → Set α ω : α ⊢ ω ∈ limsup s atTop ↔ ω ∈ {ω | Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop} [PROOFSTEP] simp only [limsup_eq_iInf_iSup_of_nat, ge_iff_le, Set.iSup_eq_iUnion, Set.iInf_eq_iInter, Set.mem_iInter, Set.mem_iUnion, exists_prop] [GOAL] case h α : Type u β : Type v s : ℕ → Set α ω : α ⊢ (∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1) ↔ ω ∈ {ω | Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop} [PROOFSTEP] constructor [GOAL] case h.mp α : Type u β : Type v s : ℕ → Set α ω : α ⊢ (∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1) → ω ∈ {ω | Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop} [PROOFSTEP] intro hω [GOAL] case h.mp α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 ⊢ ω ∈ {ω | Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop} [PROOFSTEP] refine' tendsto_atTop_atTop_of_monotone' (fun n m hnm ↦ Finset.sum_mono_set_of_nonneg (fun i ↦ Set.indicator_nonneg (fun _ _ ↦ zero_le_one) _) (Finset.range_mono hnm)) _ [GOAL] case h.mp α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 ⊢ ¬BddAbove (Set.range fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) [PROOFSTEP] rintro ⟨i, h⟩ [GOAL] case h.mp.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i : ℕ h : i ∈ upperBounds (Set.range fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) ⊢ False [PROOFSTEP] simp only [mem_upperBounds, Set.mem_range, forall_exists_index, forall_apply_eq_imp_iff'] at h [GOAL] case h.mp.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i : ℕ h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i ⊢ False [PROOFSTEP] induction' i with k hk [GOAL] case h.mp.intro.zero α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.zero ⊢ False [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := hω 1 [GOAL] case h.mp.intro.zero.intro.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.zero j : ℕ hj₁ : 1 ≤ j hj₂ : ω ∈ s j ⊢ False [PROOFSTEP] refine' not_lt.2 (h <| j + 1) (lt_of_le_of_lt (Finset.sum_const_zero.symm : 0 = ∑ k in Finset.range (j + 1), 0).le _) [GOAL] case h.mp.intro.zero.intro.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.zero j : ℕ hj₁ : 1 ≤ j hj₂ : ω ∈ s j ⊢ ∑ _x in Finset.range (j + 1), 0 < ∑ k in Finset.range (j + 1), Set.indicator (s (k + 1)) 1 ω [PROOFSTEP] refine' Finset.sum_lt_sum (fun m _ ↦ Set.indicator_nonneg (fun _ _ ↦ zero_le_one) _) ⟨j - 1, Finset.mem_range.2 (lt_of_le_of_lt (Nat.sub_le _ _) j.lt_succ_self), _⟩ [GOAL] case h.mp.intro.zero.intro.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.zero j : ℕ hj₁ : 1 ≤ j hj₂ : ω ∈ s j ⊢ 0 < Set.indicator (s (j - 1 + 1)) 1 ω [PROOFSTEP] rw [Nat.sub_add_cancel hj₁, Set.indicator_of_mem hj₂] [GOAL] case h.mp.intro.zero.intro.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.zero j : ℕ hj₁ : 1 ≤ j hj₂ : ω ∈ s j ⊢ 0 < OfNat.ofNat 1 ω [PROOFSTEP] exact zero_lt_one [GOAL] case h.mp.intro.succ α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i k : ℕ hk : (∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ k) → False h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.succ k ⊢ False [PROOFSTEP] rw [imp_false] at hk [GOAL] case h.mp.intro.succ α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i k : ℕ hk : ¬∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ k h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.succ k ⊢ False [PROOFSTEP] push_neg at hk [GOAL] case h.mp.intro.succ α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i k : ℕ h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.succ k hk : ∃ a, k < ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ⊢ False [PROOFSTEP] obtain ⟨i, hi⟩ := hk [GOAL] case h.mp.intro.succ.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i✝ : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i✝ k : ℕ h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.succ k i : ℕ hi : k < ∑ k in Finset.range i, Set.indicator (s (k + 1)) 1 ω ⊢ False [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := hω (i + 1) [GOAL] case h.mp.intro.succ.intro.intro.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i✝ : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i✝ k : ℕ h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.succ k i : ℕ hi : k < ∑ k in Finset.range i, Set.indicator (s (k + 1)) 1 ω j : ℕ hj₁ : i + 1 ≤ j hj₂ : ω ∈ s j ⊢ False [PROOFSTEP] replace hi : (∑ k in Finset.range i, (s (k + 1)).indicator 1 ω) = k + 1 := le_antisymm (h i) hi [GOAL] case h.mp.intro.succ.intro.intro.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i✝ : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i✝ k : ℕ h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.succ k i j : ℕ hj₁ : i + 1 ≤ j hj₂ : ω ∈ s j hi : ∑ k in Finset.range i, Set.indicator (s (k + 1)) 1 ω = k + 1 ⊢ False [PROOFSTEP] refine' not_lt.2 (h <| j + 1) _ [GOAL] case h.mp.intro.succ.intro.intro.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i✝ : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i✝ k : ℕ h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.succ k i j : ℕ hj₁ : i + 1 ≤ j hj₂ : ω ∈ s j hi : ∑ k in Finset.range i, Set.indicator (s (k + 1)) 1 ω = k + 1 ⊢ Nat.succ k < ∑ k in Finset.range (j + 1), Set.indicator (s (k + 1)) 1 ω [PROOFSTEP] rw [← Finset.sum_range_add_sum_Ico _ (i.le_succ.trans (hj₁.trans j.le_succ)), hi] [GOAL] case h.mp.intro.succ.intro.intro.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i✝ : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i✝ k : ℕ h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.succ k i j : ℕ hj₁ : i + 1 ≤ j hj₂ : ω ∈ s j hi : ∑ k in Finset.range i, Set.indicator (s (k + 1)) 1 ω = k + 1 ⊢ Nat.succ k < k + 1 + ∑ k in Finset.Ico i (Nat.succ j), Set.indicator (s (k + 1)) 1 ω [PROOFSTEP] refine' lt_add_of_pos_right _ _ [GOAL] case h.mp.intro.succ.intro.intro.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i✝ : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i✝ k : ℕ h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.succ k i j : ℕ hj₁ : i + 1 ≤ j hj₂ : ω ∈ s j hi : ∑ k in Finset.range i, Set.indicator (s (k + 1)) 1 ω = k + 1 ⊢ 0 < ∑ k in Finset.Ico i (Nat.succ j), Set.indicator (s (k + 1)) 1 ω [PROOFSTEP] rw [(Finset.sum_const_zero.symm : 0 = ∑ k in Finset.Ico i (j + 1), 0)] [GOAL] case h.mp.intro.succ.intro.intro.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i✝ : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i✝ k : ℕ h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.succ k i j : ℕ hj₁ : i + 1 ≤ j hj₂ : ω ∈ s j hi : ∑ k in Finset.range i, Set.indicator (s (k + 1)) 1 ω = k + 1 ⊢ ∑ _x in Finset.Ico i (j + 1), 0 < ∑ k in Finset.Ico i (Nat.succ j), Set.indicator (s (k + 1)) 1 ω [PROOFSTEP] refine' Finset.sum_lt_sum (fun m _ ↦ Set.indicator_nonneg (fun _ _ ↦ zero_le_one) _) ⟨j - 1, Finset.mem_Ico.2 ⟨(Nat.le_sub_iff_add_le (le_trans ((le_add_iff_nonneg_left _).2 zero_le') hj₁)).2 hj₁, lt_of_le_of_lt (Nat.sub_le _ _) j.lt_succ_self⟩, _⟩ [GOAL] case h.mp.intro.succ.intro.intro.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i✝ : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i✝ k : ℕ h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.succ k i j : ℕ hj₁ : i + 1 ≤ j hj₂ : ω ∈ s j hi : ∑ k in Finset.range i, Set.indicator (s (k + 1)) 1 ω = k + 1 ⊢ 0 < Set.indicator (s (j - 1 + 1)) 1 ω [PROOFSTEP] rw [Nat.sub_add_cancel (le_trans ((le_add_iff_nonneg_left _).2 zero_le') hj₁), Set.indicator_of_mem hj₂] [GOAL] case h.mp.intro.succ.intro.intro.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 i✝ : ℕ h✝ : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ i✝ k : ℕ h : ∀ (a : ℕ), ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ≤ Nat.succ k i j : ℕ hj₁ : i + 1 ≤ j hj₂ : ω ∈ s j hi : ∑ k in Finset.range i, Set.indicator (s (k + 1)) 1 ω = k + 1 ⊢ 0 < OfNat.ofNat 1 ω [PROOFSTEP] exact zero_lt_one [GOAL] case h.mpr α : Type u β : Type v s : ℕ → Set α ω : α ⊢ ω ∈ {ω | Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop} → ∀ (i : ℕ), ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 [PROOFSTEP] rintro hω i [GOAL] case h.mpr α : Type u β : Type v s : ℕ → Set α ω : α hω : ω ∈ {ω | Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop} i : ℕ ⊢ ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 [PROOFSTEP] rw [Set.mem_setOf_eq, tendsto_atTop_atTop] at hω [GOAL] case h.mpr α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ ⊢ ∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 [PROOFSTEP] by_contra hcon [GOAL] case h.mpr α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ¬∃ i_1, i ≤ i_1 ∧ ω ∈ s i_1 ⊢ False [PROOFSTEP] push_neg at hcon [GOAL] case h.mpr α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 ⊢ False [PROOFSTEP] obtain ⟨j, h⟩ := hω (i + 1) [GOAL] case h.mpr.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j : ℕ h : ∀ (a : ℕ), j ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ⊢ False [PROOFSTEP] have : (∑ k in Finset.range j, (s (k + 1)).indicator 1 ω) ≤ i := by have hle : ∀ j ≤ i, (∑ k in Finset.range j, (s (k + 1)).indicator 1 ω) ≤ i := by refine' fun j hij ↦ (Finset.sum_le_card_nsmul _ _ _ _ : _ ≤ (Finset.range j).card • 1).trans _ · exact fun m _ ↦ Set.indicator_apply_le' (fun _ ↦ le_rfl) fun _ ↦ zero_le_one · simpa only [Finset.card_range, smul_eq_mul, mul_one] by_cases hij : j < i · exact hle _ hij.le · rw [← Finset.sum_range_add_sum_Ico _ (not_lt.1 hij)] suffices (∑ k in Finset.Ico i j, (s (k + 1)).indicator 1 ω) = 0 by rw [this, add_zero] exact hle _ le_rfl refine' Finset.sum_eq_zero fun m hm ↦ _ exact Set.indicator_of_not_mem (hcon _ <| (Finset.mem_Ico.1 hm).1.trans m.le_succ) _ [GOAL] α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j : ℕ h : ∀ (a : ℕ), j ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ⊢ ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i [PROOFSTEP] have hle : ∀ j ≤ i, (∑ k in Finset.range j, (s (k + 1)).indicator 1 ω) ≤ i := by refine' fun j hij ↦ (Finset.sum_le_card_nsmul _ _ _ _ : _ ≤ (Finset.range j).card • 1).trans _ · exact fun m _ ↦ Set.indicator_apply_le' (fun _ ↦ le_rfl) fun _ ↦ zero_le_one · simpa only [Finset.card_range, smul_eq_mul, mul_one] [GOAL] α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j : ℕ h : ∀ (a : ℕ), j ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω ⊢ ∀ (j : ℕ), j ≤ i → ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i [PROOFSTEP] refine' fun j hij ↦ (Finset.sum_le_card_nsmul _ _ _ _ : _ ≤ (Finset.range j).card • 1).trans _ [GOAL] case refine'_1 α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j✝ : ℕ h : ∀ (a : ℕ), j✝ ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω j : ℕ hij : j ≤ i ⊢ ∀ (x : ℕ), x ∈ Finset.range j → Set.indicator (s (x + 1)) 1 ω ≤ 1 [PROOFSTEP] exact fun m _ ↦ Set.indicator_apply_le' (fun _ ↦ le_rfl) fun _ ↦ zero_le_one [GOAL] case refine'_2 α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j✝ : ℕ h : ∀ (a : ℕ), j✝ ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω j : ℕ hij : j ≤ i ⊢ Finset.card (Finset.range j) • 1 ≤ i [PROOFSTEP] simpa only [Finset.card_range, smul_eq_mul, mul_one] [GOAL] α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j : ℕ h : ∀ (a : ℕ), j ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω hle : ∀ (j : ℕ), j ≤ i → ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i ⊢ ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i [PROOFSTEP] by_cases hij : j < i [GOAL] case pos α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j : ℕ h : ∀ (a : ℕ), j ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω hle : ∀ (j : ℕ), j ≤ i → ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i hij : j < i ⊢ ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i [PROOFSTEP] exact hle _ hij.le [GOAL] case neg α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j : ℕ h : ∀ (a : ℕ), j ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω hle : ∀ (j : ℕ), j ≤ i → ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i hij : ¬j < i ⊢ ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i [PROOFSTEP] rw [← Finset.sum_range_add_sum_Ico _ (not_lt.1 hij)] [GOAL] case neg α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j : ℕ h : ∀ (a : ℕ), j ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω hle : ∀ (j : ℕ), j ≤ i → ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i hij : ¬j < i ⊢ ∑ k in Finset.range i, Set.indicator (s (k + 1)) 1 ω + ∑ k in Finset.Ico i j, Set.indicator (s (k + 1)) 1 ω ≤ i [PROOFSTEP] suffices (∑ k in Finset.Ico i j, (s (k + 1)).indicator 1 ω) = 0 by rw [this, add_zero] exact hle _ le_rfl [GOAL] α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j : ℕ h : ∀ (a : ℕ), j ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω hle : ∀ (j : ℕ), j ≤ i → ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i hij : ¬j < i this : ∑ k in Finset.Ico i j, Set.indicator (s (k + 1)) 1 ω = 0 ⊢ ∑ k in Finset.range i, Set.indicator (s (k + 1)) 1 ω + ∑ k in Finset.Ico i j, Set.indicator (s (k + 1)) 1 ω ≤ i [PROOFSTEP] rw [this, add_zero] [GOAL] α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j : ℕ h : ∀ (a : ℕ), j ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω hle : ∀ (j : ℕ), j ≤ i → ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i hij : ¬j < i this : ∑ k in Finset.Ico i j, Set.indicator (s (k + 1)) 1 ω = 0 ⊢ ∑ k in Finset.range i, Set.indicator (s (k + 1)) 1 ω ≤ i [PROOFSTEP] exact hle _ le_rfl [GOAL] case neg α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j : ℕ h : ∀ (a : ℕ), j ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω hle : ∀ (j : ℕ), j ≤ i → ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i hij : ¬j < i ⊢ ∑ k in Finset.Ico i j, Set.indicator (s (k + 1)) 1 ω = 0 [PROOFSTEP] refine' Finset.sum_eq_zero fun m hm ↦ _ [GOAL] case neg α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j : ℕ h : ∀ (a : ℕ), j ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω hle : ∀ (j : ℕ), j ≤ i → ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i hij : ¬j < i m : ℕ hm : m ∈ Finset.Ico i j ⊢ Set.indicator (s (m + 1)) 1 ω = 0 [PROOFSTEP] exact Set.indicator_of_not_mem (hcon _ <| (Finset.mem_Ico.1 hm).1.trans m.le_succ) _ [GOAL] case h.mpr.intro α : Type u β : Type v s : ℕ → Set α ω : α hω : ∀ (b : ℕ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω i : ℕ hcon : ∀ (i_1 : ℕ), i ≤ i_1 → ¬ω ∈ s i_1 j : ℕ h : ∀ (a : ℕ), j ≤ a → i + 1 ≤ ∑ k in Finset.range a, Set.indicator (s (k + 1)) 1 ω this : ∑ k in Finset.range j, Set.indicator (s (k + 1)) 1 ω ≤ i ⊢ False [PROOFSTEP] exact not_le.2 (lt_of_lt_of_le i.lt_succ_self <| h _ le_rfl) this [GOAL] α : Type u β : Type v R : Type u_1 inst✝¹ : StrictOrderedSemiring R inst✝ : Archimedean R s : ℕ → Set α ⊢ limsup s atTop = {ω | Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop} [PROOFSTEP] rw [limsup_eq_tendsto_sum_indicator_nat_atTop s] [GOAL] α : Type u β : Type v R : Type u_1 inst✝¹ : StrictOrderedSemiring R inst✝ : Archimedean R s : ℕ → Set α ⊢ {ω | Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop} = {ω | Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop} [PROOFSTEP] ext ω [GOAL] case h α : Type u β : Type v R : Type u_1 inst✝¹ : StrictOrderedSemiring R inst✝ : Archimedean R s : ℕ → Set α ω : α ⊢ ω ∈ {ω | Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop} ↔ ω ∈ {ω | Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop} [PROOFSTEP] simp only [Set.mem_setOf_eq] [GOAL] case h α : Type u β : Type v R : Type u_1 inst✝¹ : StrictOrderedSemiring R inst✝ : Archimedean R s : ℕ → Set α ω : α ⊢ Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop ↔ Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop [PROOFSTEP] rw [(_ : (fun n ↦ ∑ k in Finset.range n, (s (k + 1)).indicator (1 : α → R) ω) = fun n ↦ ↑(∑ k in Finset.range n, (s (k + 1)).indicator (1 : α → ℕ) ω))] [GOAL] case h α : Type u β : Type v R : Type u_1 inst✝¹ : StrictOrderedSemiring R inst✝ : Archimedean R s : ℕ → Set α ω : α ⊢ Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop ↔ Tendsto (fun n => ↑(∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω)) atTop atTop [PROOFSTEP] exact tendsto_nat_cast_atTop_iff.symm [GOAL] α : Type u β : Type v R : Type u_1 inst✝¹ : StrictOrderedSemiring R inst✝ : Archimedean R s : ℕ → Set α ω : α ⊢ (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) = fun n => ↑(∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) [PROOFSTEP] ext n [GOAL] case h α : Type u β : Type v R : Type u_1 inst✝¹ : StrictOrderedSemiring R inst✝ : Archimedean R s : ℕ → Set α ω : α n : ℕ ⊢ ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω = ↑(∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) [PROOFSTEP] simp only [Set.indicator, Pi.one_apply, Finset.sum_boole, Nat.cast_id]
{"mathlib_filename": "Mathlib.Topology.Algebra.Order.LiminfLimsup", "llama_tokens": 35558}
{"mathlib_filename": "Mathlib.Topology.Algebra.Module.Determinant", "llama_tokens": 0}
[GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : TopologicalAddGroup E ι : Type u_3 b : ι → Set E p : ι → Prop hbasis : HasBasis (𝓝 0) p b hconvex : ∀ (i : ι), p i → Convex 𝕜 (b i) ⊢ LocallyConvexSpace 𝕜 E [PROOFSTEP] refine' LocallyConvexSpace.ofBases 𝕜 E (fun (x : E) (i : ι) => (· + ·) x '' b i) (fun _ => p) (fun x => _) fun x i hi => (hconvex i hi).translate x [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : TopologicalAddGroup E ι : Type u_3 b : ι → Set E p : ι → Prop hbasis : HasBasis (𝓝 0) p b hconvex : ∀ (i : ι), p i → Convex 𝕜 (b i) x : E ⊢ HasBasis (𝓝 x) ((fun x => p) x) ((fun x i => (fun x x_1 => x + x_1) x '' b i) x) [PROOFSTEP] rw [← map_add_left_nhds_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : TopologicalAddGroup E ι : Type u_3 b : ι → Set E p : ι → Prop hbasis : HasBasis (𝓝 0) p b hconvex : ∀ (i : ι), p i → Convex 𝕜 (b i) x : E ⊢ HasBasis (map ((fun x x_1 => x + x_1) x) (𝓝 0)) ((fun x => p) x) ((fun x i => (fun x x_1 => x + x_1) x '' b i) x) [PROOFSTEP] exact hbasis.map _ [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousConstSMul 𝕜 E inst✝ : LocallyConvexSpace 𝕜 E s t : Set E disj : Disjoint s t hs₁ : Convex 𝕜 s hs₂ : IsCompact s ht₁ : Convex 𝕜 t ht₂ : IsClosed t ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ Convex 𝕜 u ∧ Convex 𝕜 v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v [PROOFSTEP] letI : UniformSpace E := TopologicalAddGroup.toUniformSpace E [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousConstSMul 𝕜 E inst✝ : LocallyConvexSpace 𝕜 E s t : Set E disj : Disjoint s t hs₁ : Convex 𝕜 s hs₂ : IsCompact s ht₁ : Convex 𝕜 t ht₂ : IsClosed t this : UniformSpace E := TopologicalAddGroup.toUniformSpace E ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ Convex 𝕜 u ∧ Convex 𝕜 v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v [PROOFSTEP] haveI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousConstSMul 𝕜 E inst✝ : LocallyConvexSpace 𝕜 E s t : Set E disj : Disjoint s t hs₁ : Convex 𝕜 s hs₂ : IsCompact s ht₁ : Convex 𝕜 t ht₂ : IsClosed t this✝ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this : UniformAddGroup E ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ Convex 𝕜 u ∧ Convex 𝕜 v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v [PROOFSTEP] have := (LocallyConvexSpace.convex_open_basis_zero 𝕜 E).comap fun x : E × E => x.2 - x.1 [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousConstSMul 𝕜 E inst✝ : LocallyConvexSpace 𝕜 E s t : Set E disj : Disjoint s t hs₁ : Convex 𝕜 s hs₂ : IsCompact s ht₁ : Convex 𝕜 t ht₂ : IsClosed t this✝¹ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝ : UniformAddGroup E this : HasBasis (comap (fun x => x.snd - x.fst) (𝓝 0)) (fun s => 0 ∈ s ∧ IsOpen s ∧ Convex 𝕜 s) fun i => (fun x => x.snd - x.fst) ⁻¹' id i ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ Convex 𝕜 u ∧ Convex 𝕜 v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v [PROOFSTEP] rw [← uniformity_eq_comap_nhds_zero] at this [GOAL] 𝕜 : Type u_1 E : Type u_2 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousConstSMul 𝕜 E inst✝ : LocallyConvexSpace 𝕜 E s t : Set E disj : Disjoint s t hs₁ : Convex 𝕜 s hs₂ : IsCompact s ht₁ : Convex 𝕜 t ht₂ : IsClosed t this✝¹ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝ : UniformAddGroup E this : HasBasis (uniformity E) (fun s => 0 ∈ s ∧ IsOpen s ∧ Convex 𝕜 s) fun i => (fun x => x.snd - x.fst) ⁻¹' id i ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ Convex 𝕜 u ∧ Convex 𝕜 v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v [PROOFSTEP] rcases disj.exists_uniform_thickening_of_basis this hs₂ ht₂ with ⟨V, ⟨hV0, hVopen, hVconvex⟩, hV⟩ [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousConstSMul 𝕜 E inst✝ : LocallyConvexSpace 𝕜 E s t : Set E disj : Disjoint s t hs₁ : Convex 𝕜 s hs₂ : IsCompact s ht₁ : Convex 𝕜 t ht₂ : IsClosed t this✝¹ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝ : UniformAddGroup E this : HasBasis (uniformity E) (fun s => 0 ∈ s ∧ IsOpen s ∧ Convex 𝕜 s) fun i => (fun x => x.snd - x.fst) ⁻¹' id i V : Set E hV : Disjoint (⋃ (x : E) (_ : x ∈ s), UniformSpace.ball x ((fun x => x.snd - x.fst) ⁻¹' id V)) (⋃ (x : E) (_ : x ∈ t), UniformSpace.ball x ((fun x => x.snd - x.fst) ⁻¹' id V)) hV0 : 0 ∈ V hVopen : IsOpen V hVconvex : Convex 𝕜 V ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ Convex 𝕜 u ∧ Convex 𝕜 v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v [PROOFSTEP] refine' ⟨s + V, t + V, hVopen.add_left, hVopen.add_left, hs₁.add hVconvex, ht₁.add hVconvex, subset_add_left _ hV0, subset_add_left _ hV0, _⟩ [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousConstSMul 𝕜 E inst✝ : LocallyConvexSpace 𝕜 E s t : Set E disj : Disjoint s t hs₁ : Convex 𝕜 s hs₂ : IsCompact s ht₁ : Convex 𝕜 t ht₂ : IsClosed t this✝¹ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝ : UniformAddGroup E this : HasBasis (uniformity E) (fun s => 0 ∈ s ∧ IsOpen s ∧ Convex 𝕜 s) fun i => (fun x => x.snd - x.fst) ⁻¹' id i V : Set E hV : Disjoint (⋃ (x : E) (_ : x ∈ s), UniformSpace.ball x ((fun x => x.snd - x.fst) ⁻¹' id V)) (⋃ (x : E) (_ : x ∈ t), UniformSpace.ball x ((fun x => x.snd - x.fst) ⁻¹' id V)) hV0 : 0 ∈ V hVopen : IsOpen V hVconvex : Convex 𝕜 V ⊢ Disjoint (s + V) (t + V) [PROOFSTEP] simp_rw [← iUnion_add_left_image, image_add_left] [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousConstSMul 𝕜 E inst✝ : LocallyConvexSpace 𝕜 E s t : Set E disj : Disjoint s t hs₁ : Convex 𝕜 s hs₂ : IsCompact s ht₁ : Convex 𝕜 t ht₂ : IsClosed t this✝¹ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝ : UniformAddGroup E this : HasBasis (uniformity E) (fun s => 0 ∈ s ∧ IsOpen s ∧ Convex 𝕜 s) fun i => (fun x => x.snd - x.fst) ⁻¹' id i V : Set E hV : Disjoint (⋃ (x : E) (_ : x ∈ s), UniformSpace.ball x ((fun x => x.snd - x.fst) ⁻¹' id V)) (⋃ (x : E) (_ : x ∈ t), UniformSpace.ball x ((fun x => x.snd - x.fst) ⁻¹' id V)) hV0 : 0 ∈ V hVopen : IsOpen V hVconvex : Convex 𝕜 V ⊢ Disjoint (⋃ (a : E) (_ : a ∈ s), (fun x => -a + x) ⁻¹' V) (⋃ (a : E) (_ : a ∈ t), (fun x => -a + x) ⁻¹' V) [PROOFSTEP] simp_rw [UniformSpace.ball, ← preimage_comp, sub_eq_neg_add] at hV [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁶ : LinearOrderedField 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousConstSMul 𝕜 E inst✝ : LocallyConvexSpace 𝕜 E s t : Set E disj : Disjoint s t hs₁ : Convex 𝕜 s hs₂ : IsCompact s ht₁ : Convex 𝕜 t ht₂ : IsClosed t this✝¹ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝ : UniformAddGroup E this : HasBasis (uniformity E) (fun s => 0 ∈ s ∧ IsOpen s ∧ Convex 𝕜 s) fun i => (fun x => x.snd - x.fst) ⁻¹' id i V : Set E hV0 : 0 ∈ V hVopen : IsOpen V hVconvex : Convex 𝕜 V hV : Disjoint (⋃ (x : E) (_ : x ∈ s), (fun x => -x.fst + x.snd) ∘ Prod.mk x ⁻¹' id V) (⋃ (x : E) (_ : x ∈ t), (fun x => -x.fst + x.snd) ∘ Prod.mk x ⁻¹' id V) ⊢ Disjoint (⋃ (a : E) (_ : a ∈ s), (fun x => -a + x) ⁻¹' V) (⋃ (a : E) (_ : a ∈ t), (fun x => -a + x) ⁻¹' V) [PROOFSTEP] exact hV [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : Module 𝕜 E inst✝¹ : AddCommMonoid F inst✝ : Module 𝕜 F ts : Set (TopologicalSpace E) h : ∀ (t : TopologicalSpace E), t ∈ ts → LocallyConvexSpace 𝕜 E ⊢ LocallyConvexSpace 𝕜 E [PROOFSTEP] letI : TopologicalSpace E := sInf ts [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : Module 𝕜 E inst✝¹ : AddCommMonoid F inst✝ : Module 𝕜 F ts : Set (TopologicalSpace E) h : ∀ (t : TopologicalSpace E), t ∈ ts → LocallyConvexSpace 𝕜 E this : TopologicalSpace E := sInf ts ⊢ LocallyConvexSpace 𝕜 E [PROOFSTEP] refine' LocallyConvexSpace.ofBases 𝕜 E (fun _ => fun If : Set ts × (ts → Set E) => ⋂ i ∈ If.1, If.2 i) (fun x => fun If : Set ts × (ts → Set E) => If.1.Finite ∧ ∀ i ∈ If.1, If.2 i ∈ @nhds _ (↑i) x ∧ Convex 𝕜 (If.2 i)) (fun x => _) fun x If hif => convex_iInter fun i => convex_iInter fun hi => (hif.2 i hi).2 [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : Module 𝕜 E inst✝¹ : AddCommMonoid F inst✝ : Module 𝕜 F ts : Set (TopologicalSpace E) h : ∀ (t : TopologicalSpace E), t ∈ ts → LocallyConvexSpace 𝕜 E this : TopologicalSpace E := sInf ts x : E ⊢ HasBasis (𝓝 x) ((fun x If => Set.Finite If.fst ∧ ∀ (i : ↑ts), i ∈ If.fst → Prod.snd If i ∈ 𝓝 x ∧ Convex 𝕜 (Prod.snd If i)) x) ((fun x If => ⋂ (i : ↑ts) (_ : i ∈ If.fst), Prod.snd If i) x) [PROOFSTEP] rw [nhds_sInf, ← iInf_subtype''] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : Module 𝕜 E inst✝¹ : AddCommMonoid F inst✝ : Module 𝕜 F ts : Set (TopologicalSpace E) h : ∀ (t : TopologicalSpace E), t ∈ ts → LocallyConvexSpace 𝕜 E this : TopologicalSpace E := sInf ts x : E ⊢ HasBasis (⨅ (i : ↑ts), 𝓝 x) ((fun x If => Set.Finite If.fst ∧ ∀ (i : ↑ts), i ∈ If.fst → Prod.snd If i ∈ 𝓝 x ∧ Convex 𝕜 (Prod.snd If i)) x) ((fun x If => ⋂ (i : ↑ts) (_ : i ∈ If.fst), Prod.snd If i) x) [PROOFSTEP] exact hasBasis_iInf' fun i : ts => (@locallyConvexSpace_iff 𝕜 E _ _ _ ↑i).mp (h (↑i) i.2) x [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : Module 𝕜 E inst✝¹ : AddCommMonoid F inst✝ : Module 𝕜 F ts' : ι → TopologicalSpace E h' : ∀ (i : ι), LocallyConvexSpace 𝕜 E ⊢ LocallyConvexSpace 𝕜 E [PROOFSTEP] refine' locallyConvexSpace_sInf _ [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : Module 𝕜 E inst✝¹ : AddCommMonoid F inst✝ : Module 𝕜 F ts' : ι → TopologicalSpace E h' : ∀ (i : ι), LocallyConvexSpace 𝕜 E ⊢ ∀ (t : TopologicalSpace E), (t ∈ range fun i => ts' i) → LocallyConvexSpace 𝕜 E [PROOFSTEP] rwa [forall_range_iff] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : Module 𝕜 E inst✝¹ : AddCommMonoid F inst✝ : Module 𝕜 F t₁ t₂ : TopologicalSpace E h₁ : LocallyConvexSpace 𝕜 E h₂ : LocallyConvexSpace 𝕜 E ⊢ LocallyConvexSpace 𝕜 E [PROOFSTEP] rw [inf_eq_iInf] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : Module 𝕜 E inst✝¹ : AddCommMonoid F inst✝ : Module 𝕜 F t₁ t₂ : TopologicalSpace E h₁ : LocallyConvexSpace 𝕜 E h₂ : LocallyConvexSpace 𝕜 E ⊢ LocallyConvexSpace 𝕜 E [PROOFSTEP] refine' locallyConvexSpace_iInf fun b => _ [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : Module 𝕜 E inst✝¹ : AddCommMonoid F inst✝ : Module 𝕜 F t₁ t₂ : TopologicalSpace E h₁ : LocallyConvexSpace 𝕜 E h₂ : LocallyConvexSpace 𝕜 E b : Bool ⊢ LocallyConvexSpace 𝕜 E [PROOFSTEP] cases b [GOAL] case false ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : Module 𝕜 E inst✝¹ : AddCommMonoid F inst✝ : Module 𝕜 F t₁ t₂ : TopologicalSpace E h₁ : LocallyConvexSpace 𝕜 E h₂ : LocallyConvexSpace 𝕜 E ⊢ LocallyConvexSpace 𝕜 E [PROOFSTEP] assumption [GOAL] case true ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : Module 𝕜 E inst✝¹ : AddCommMonoid F inst✝ : Module 𝕜 F t₁ t₂ : TopologicalSpace E h₁ : LocallyConvexSpace 𝕜 E h₂ : LocallyConvexSpace 𝕜 E ⊢ LocallyConvexSpace 𝕜 E [PROOFSTEP] assumption [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : Module 𝕜 E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 F t : TopologicalSpace F inst✝ : LocallyConvexSpace 𝕜 F f : E →ₗ[𝕜] F ⊢ LocallyConvexSpace 𝕜 E [PROOFSTEP] letI : TopologicalSpace E := t.induced f [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : Module 𝕜 E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 F t : TopologicalSpace F inst✝ : LocallyConvexSpace 𝕜 F f : E →ₗ[𝕜] F this : TopologicalSpace E := induced (↑f) t ⊢ LocallyConvexSpace 𝕜 E [PROOFSTEP] refine' LocallyConvexSpace.ofBases 𝕜 E (fun _ => preimage f) (fun x => fun s : Set F => s ∈ 𝓝 (f x) ∧ Convex 𝕜 s) (fun x => _) fun x s ⟨_, hs⟩ => hs.linear_preimage f [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : Module 𝕜 E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 F t : TopologicalSpace F inst✝ : LocallyConvexSpace 𝕜 F f : E →ₗ[𝕜] F this : TopologicalSpace E := induced (↑f) t x : E ⊢ HasBasis (𝓝 x) ((fun x s => s ∈ 𝓝 (↑f x) ∧ Convex 𝕜 s) x) ((fun x => preimage ↑f) x) [PROOFSTEP] rw [nhds_induced] [GOAL] ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : Module 𝕜 E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 F t : TopologicalSpace F inst✝ : LocallyConvexSpace 𝕜 F f : E →ₗ[𝕜] F this : TopologicalSpace E := induced (↑f) t x : E ⊢ HasBasis (comap (↑f) (𝓝 (↑f x))) ((fun x s => s ∈ 𝓝 (↑f x) ∧ Convex 𝕜 s) x) ((fun x => preimage ↑f) x) [PROOFSTEP] exact (LocallyConvexSpace.convex_basis <| f x).comap f
{"mathlib_filename": "Mathlib.Topology.Algebra.Module.LocallyConvex", "llama_tokens": 6951}
[GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0 hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ ↑(d n) hd : Summable d ⊢ CauchySeq f [PROOFSTEP] refine EMetric.cauchySeq_iff_NNReal.2 fun ε εpos => ?_ -- Actually we need partial sums of `d` to be a Cauchy sequence [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0 hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ ↑(d n) hd : Summable d ε : ℝ≥0 εpos : 0 < ε ⊢ ∃ N, ∀ (n : ℕ), N ≤ n → edist (f n) (f N) < ↑ε [PROOFSTEP] replace hd : CauchySeq fun n : ℕ => ∑ x in range n, d x := let ⟨_, H⟩ := hd H.tendsto_sum_nat.cauchySeq [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0 hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ ↑(d n) ε : ℝ≥0 εpos : 0 < ε hd : CauchySeq fun n => ∑ x in range n, d x ⊢ ∃ N, ∀ (n : ℕ), N ≤ n → edist (f n) (f N) < ↑ε [PROOFSTEP] refine (Metric.cauchySeq_iff'.1 hd ε (NNReal.coe_pos.2 εpos)).imp fun N hN n hn => ?_ [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0 hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ ↑(d n) ε : ℝ≥0 εpos : 0 < ε hd : CauchySeq fun n => ∑ x in range n, d x N : ℕ hN : ∀ (n : ℕ), n ≥ N → dist (∑ x in range n, d x) (∑ x in range N, d x) < ↑ε n : ℕ hn : N ≤ n ⊢ edist (f n) (f N) < ↑ε [PROOFSTEP] specialize hN n hn [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0 hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ ↑(d n) ε : ℝ≥0 εpos : 0 < ε hd : CauchySeq fun n => ∑ x in range n, d x N n : ℕ hn : N ≤ n hN : dist (∑ x in range n, d x) (∑ x in range N, d x) < ↑ε ⊢ edist (f n) (f N) < ↑ε [PROOFSTEP] rw [dist_nndist, NNReal.nndist_eq, ← sum_range_add_sum_Ico _ hn, add_tsub_cancel_left, NNReal.coe_lt_coe, max_lt_iff] at hN [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0 hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ ↑(d n) ε : ℝ≥0 εpos : 0 < ε hd : CauchySeq fun n => ∑ x in range n, d x N n : ℕ hn : N ≤ n hN : ∑ k in Ico N n, d k < ε ∧ ∑ x in range N, d x - (∑ k in range N, d k + ∑ k in Ico N n, d k) < ε ⊢ edist (f n) (f N) < ↑ε [PROOFSTEP] rw [edist_comm] -- Then use `hf` to simplify the goal to the same form [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0 hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ ↑(d n) ε : ℝ≥0 εpos : 0 < ε hd : CauchySeq fun n => ∑ x in range n, d x N n : ℕ hn : N ≤ n hN : ∑ k in Ico N n, d k < ε ∧ ∑ x in range N, d x - (∑ k in range N, d k + ∑ k in Ico N n, d k) < ε ⊢ edist (f N) (f n) < ↑ε [PROOFSTEP] refine lt_of_le_of_lt (edist_le_Ico_sum_of_edist_le hn fun _ _ => hf _) ?_ [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0 hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ ↑(d n) ε : ℝ≥0 εpos : 0 < ε hd : CauchySeq fun n => ∑ x in range n, d x N n : ℕ hn : N ≤ n hN : ∑ k in Ico N n, d k < ε ∧ ∑ x in range N, d x - (∑ k in range N, d k + ∑ k in Ico N n, d k) < ε ⊢ ∑ i in Ico N n, ↑(d i) < ↑ε [PROOFSTEP] exact_mod_cast hN.1 [GOAL] α : Type u_1 inst✝ : PseudoMetricSpace α f : ℕ → α a : α d : ℕ → ℝ hf : ∀ (n : ℕ), dist (f n) (f (Nat.succ n)) ≤ d n hd : Summable d ⊢ CauchySeq f [PROOFSTEP] refine' Metric.cauchySeq_iff'.2 fun ε εpos => _ [GOAL] α : Type u_1 inst✝ : PseudoMetricSpace α f : ℕ → α a : α d : ℕ → ℝ hf : ∀ (n : ℕ), dist (f n) (f (Nat.succ n)) ≤ d n hd : Summable d ε : ℝ εpos : ε > 0 ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → dist (f n) (f N) < ε [PROOFSTEP] replace hd : CauchySeq fun n : ℕ => ∑ x in range n, d x := let ⟨_, H⟩ := hd H.tendsto_sum_nat.cauchySeq [GOAL] α : Type u_1 inst✝ : PseudoMetricSpace α f : ℕ → α a : α d : ℕ → ℝ hf : ∀ (n : ℕ), dist (f n) (f (Nat.succ n)) ≤ d n ε : ℝ εpos : ε > 0 hd : CauchySeq fun n => ∑ x in range n, d x ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → dist (f n) (f N) < ε [PROOFSTEP] refine' (Metric.cauchySeq_iff'.1 hd ε εpos).imp fun N hN n hn => _ [GOAL] α : Type u_1 inst✝ : PseudoMetricSpace α f : ℕ → α a : α d : ℕ → ℝ hf : ∀ (n : ℕ), dist (f n) (f (Nat.succ n)) ≤ d n ε : ℝ εpos : ε > 0 hd : CauchySeq fun n => ∑ x in range n, d x N : ℕ hN : ∀ (n : ℕ), n ≥ N → dist (∑ x in range n, d x) (∑ x in range N, d x) < ε n : ℕ hn : n ≥ N ⊢ dist (f n) (f N) < ε [PROOFSTEP] have hsum := hN n hn [GOAL] α : Type u_1 inst✝ : PseudoMetricSpace α f : ℕ → α a : α d : ℕ → ℝ hf : ∀ (n : ℕ), dist (f n) (f (Nat.succ n)) ≤ d n ε : ℝ εpos : ε > 0 hd : CauchySeq fun n => ∑ x in range n, d x N : ℕ hN : ∀ (n : ℕ), n ≥ N → dist (∑ x in range n, d x) (∑ x in range N, d x) < ε n : ℕ hn : n ≥ N hsum : dist (∑ x in range n, d x) (∑ x in range N, d x) < ε ⊢ dist (f n) (f N) < ε [PROOFSTEP] rw [Real.dist_eq, ← sum_Ico_eq_sub _ hn] at hsum [GOAL] α : Type u_1 inst✝ : PseudoMetricSpace α f : ℕ → α a : α d : ℕ → ℝ hf : ∀ (n : ℕ), dist (f n) (f (Nat.succ n)) ≤ d n ε : ℝ εpos : ε > 0 hd : CauchySeq fun n => ∑ x in range n, d x N : ℕ hN : ∀ (n : ℕ), n ≥ N → dist (∑ x in range n, d x) (∑ x in range N, d x) < ε n : ℕ hn : n ≥ N hsum : |∑ k in Ico N n, d k| < ε ⊢ dist (f n) (f N) < ε [PROOFSTEP] calc dist (f n) (f N) = dist (f N) (f n) := dist_comm _ _ _ ≤ ∑ x in Ico N n, d x := (dist_le_Ico_sum_of_dist_le hn fun _ _ => hf _) _ ≤ |∑ x in Ico N n, d x| := (le_abs_self _) _ < ε := hsum [GOAL] α : Type u_1 inst✝ : PseudoMetricSpace α f : ℕ → α a✝ : α d : ℕ → ℝ hf : ∀ (n : ℕ), dist (f n) (f (Nat.succ n)) ≤ d n hd : Summable d a : α ha : Tendsto f atTop (𝓝 a) n : ℕ ⊢ dist (f n) a ≤ ∑' (m : ℕ), d (n + m) [PROOFSTEP] refine' le_of_tendsto (tendsto_const_nhds.dist ha) (eventually_atTop.2 ⟨n, fun m hnm => _⟩) [GOAL] α : Type u_1 inst✝ : PseudoMetricSpace α f : ℕ → α a✝ : α d : ℕ → ℝ hf : ∀ (n : ℕ), dist (f n) (f (Nat.succ n)) ≤ d n hd : Summable d a : α ha : Tendsto f atTop (𝓝 a) n m : ℕ hnm : m ≥ n ⊢ dist (f n) (f m) ≤ ∑' (m : ℕ), d (n + m) [PROOFSTEP] refine' le_trans (dist_le_Ico_sum_of_dist_le hnm fun _ _ => hf _) _ [GOAL] α : Type u_1 inst✝ : PseudoMetricSpace α f : ℕ → α a✝ : α d : ℕ → ℝ hf : ∀ (n : ℕ), dist (f n) (f (Nat.succ n)) ≤ d n hd : Summable d a : α ha : Tendsto f atTop (𝓝 a) n m : ℕ hnm : m ≥ n ⊢ ∑ i in Ico n m, d i ≤ ∑' (m : ℕ), d (n + m) [PROOFSTEP] rw [sum_Ico_eq_sum_range] [GOAL] α : Type u_1 inst✝ : PseudoMetricSpace α f : ℕ → α a✝ : α d : ℕ → ℝ hf : ∀ (n : ℕ), dist (f n) (f (Nat.succ n)) ≤ d n hd : Summable d a : α ha : Tendsto f atTop (𝓝 a) n m : ℕ hnm : m ≥ n ⊢ ∑ k in range (m - n), d (n + k) ≤ ∑' (m : ℕ), d (n + m) [PROOFSTEP] refine' sum_le_tsum (range _) (fun _ _ => le_trans dist_nonneg (hf _)) _ [GOAL] α : Type u_1 inst✝ : PseudoMetricSpace α f : ℕ → α a✝ : α d : ℕ → ℝ hf : ∀ (n : ℕ), dist (f n) (f (Nat.succ n)) ≤ d n hd : Summable d a : α ha : Tendsto f atTop (𝓝 a) n m : ℕ hnm : m ≥ n ⊢ Summable fun k => d (n + k) [PROOFSTEP] exact hd.comp_injective (add_right_injective n) [GOAL] α : Type u_1 inst✝ : PseudoMetricSpace α f : ℕ → α a : α d : ℕ → ℝ hf : ∀ (n : ℕ), dist (f n) (f (Nat.succ n)) ≤ d n hd : Summable d ha : Tendsto f atTop (𝓝 a) ⊢ dist (f 0) a ≤ tsum d [PROOFSTEP] simpa only [zero_add] using dist_le_tsum_of_dist_le_of_tendsto d hf hd ha 0 [GOAL] α : Type u_1 inst✝ : PseudoMetricSpace α f : ℕ → α a : α h : Summable fun n => dist (f n) (f (Nat.succ n)) ha : Tendsto f atTop (𝓝 a) ⊢ dist (f 0) a ≤ ∑' (n : ℕ), dist (f n) (f (Nat.succ n)) [PROOFSTEP] simpa only [zero_add] using dist_le_tsum_dist_of_tendsto h ha 0
{"mathlib_filename": "Mathlib.Topology.Algebra.InfiniteSum.Real", "llama_tokens": 4078}
[GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ ⊢ ∀ (i j : Γ₀ˣ), ∃ k, ltAddSubgroup v k ≤ ltAddSubgroup v i ⊓ ltAddSubgroup v j [PROOFSTEP] rintro γ₀ γ₁ [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ γ₀ γ₁ : Γ₀ˣ ⊢ ∃ k, ltAddSubgroup v k ≤ ltAddSubgroup v γ₀ ⊓ ltAddSubgroup v γ₁ [PROOFSTEP] use min γ₀ γ₁ [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ γ₀ γ₁ : Γ₀ˣ ⊢ ltAddSubgroup v (min γ₀ γ₁) ≤ ltAddSubgroup v γ₀ ⊓ ltAddSubgroup v γ₁ [PROOFSTEP] simp [Valuation.ltAddSubgroup] [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ γ₀ γ₁ : Γ₀ˣ ⊢ ∀ (a : R), ↑v a < ↑γ₀ → ↑v a < ↑γ₁ → ↑v a < ↑γ₀ [PROOFSTEP] tauto [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ ⊢ ∀ (i : Γ₀ˣ), ∃ j, ↑(ltAddSubgroup v j) * ↑(ltAddSubgroup v j) ⊆ ↑(ltAddSubgroup v i) [PROOFSTEP] rintro γ [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ γ : Γ₀ˣ ⊢ ∃ j, ↑(ltAddSubgroup v j) * ↑(ltAddSubgroup v j) ⊆ ↑(ltAddSubgroup v γ) [PROOFSTEP] cases' exists_square_le γ with γ₀ h [GOAL] case intro R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ γ γ₀ : Γ₀ˣ h : γ₀ * γ₀ ≤ γ ⊢ ∃ j, ↑(ltAddSubgroup v j) * ↑(ltAddSubgroup v j) ⊆ ↑(ltAddSubgroup v γ) [PROOFSTEP] use γ₀ [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ γ γ₀ : Γ₀ˣ h : γ₀ * γ₀ ≤ γ ⊢ ↑(ltAddSubgroup v γ₀) * ↑(ltAddSubgroup v γ₀) ⊆ ↑(ltAddSubgroup v γ) [PROOFSTEP] rintro - ⟨r, s, r_in, s_in, rfl⟩ [GOAL] case h.intro.intro.intro.intro R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ γ γ₀ : Γ₀ˣ h : γ₀ * γ₀ ≤ γ r s : R r_in : r ∈ ↑(ltAddSubgroup v γ₀) s_in : s ∈ ↑(ltAddSubgroup v γ₀) ⊢ (fun x x_1 => x * x_1) r s ∈ ↑(ltAddSubgroup v γ) [PROOFSTEP] calc (v (r * s) : Γ₀) = v r * v s := Valuation.map_mul _ _ _ _ < γ₀ * γ₀ := (mul_lt_mul₀ r_in s_in) _ ≤ γ := by exact_mod_cast h [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ γ γ₀ : Γ₀ˣ h : γ₀ * γ₀ ≤ γ r s : R r_in : r ∈ ↑(ltAddSubgroup v γ₀) s_in : s ∈ ↑(ltAddSubgroup v γ₀) ⊢ ↑γ₀ * ↑γ₀ ≤ ↑γ [PROOFSTEP] exact_mod_cast h [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ ⊢ ∀ (x : R) (i : Γ₀ˣ), ∃ j, ↑(ltAddSubgroup v j) ⊆ (fun x_1 => x * x_1) ⁻¹' ↑(ltAddSubgroup v i) [PROOFSTEP] rintro x γ [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ ⊢ ∃ j, ↑(ltAddSubgroup v j) ⊆ (fun x_1 => x * x_1) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] rcases GroupWithZero.eq_zero_or_unit (v x) with (Hx | ⟨γx, Hx⟩) [GOAL] case inl R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ Hx : ↑v x = 0 ⊢ ∃ j, ↑(ltAddSubgroup v j) ⊆ (fun x_1 => x * x_1) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] use(1 : Γ₀ˣ) [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ Hx : ↑v x = 0 ⊢ ↑(ltAddSubgroup v 1) ⊆ (fun x_1 => x * x_1) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] rintro y _ [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ Hx : ↑v x = 0 y : R a✝ : y ∈ ↑(ltAddSubgroup v 1) ⊢ y ∈ (fun x_1 => x * x_1) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] change v (x * y) < _ [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ Hx : ↑v x = 0 y : R a✝ : y ∈ ↑(ltAddSubgroup v 1) ⊢ ↑v (x * y) < ↑γ [PROOFSTEP] rw [Valuation.map_mul, Hx, zero_mul] [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ Hx : ↑v x = 0 y : R a✝ : y ∈ ↑(ltAddSubgroup v 1) ⊢ 0 < ↑γ [PROOFSTEP] exact Units.zero_lt γ [GOAL] case inr.intro R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ γx : ((fun x => Γ₀) x)ˣ Hx : ↑v x = ↑γx ⊢ ∃ j, ↑(ltAddSubgroup v j) ⊆ (fun x_1 => x * x_1) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] use γx⁻¹ * γ [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ γx : ((fun x => Γ₀) x)ˣ Hx : ↑v x = ↑γx ⊢ ↑(ltAddSubgroup v (γx⁻¹ * γ)) ⊆ (fun x_1 => x * x_1) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] rintro y (vy_lt : v y < ↑(γx⁻¹ * γ)) [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ γx : ((fun x => Γ₀) x)ˣ Hx : ↑v x = ↑γx y : R vy_lt : ↑v y < ↑(γx⁻¹ * γ) ⊢ y ∈ (fun x_1 => x * x_1) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] change (v (x * y) : Γ₀) < γ [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ γx : ((fun x => Γ₀) x)ˣ Hx : ↑v x = ↑γx y : R vy_lt : ↑v y < ↑(γx⁻¹ * γ) ⊢ ↑v (x * y) < ↑γ [PROOFSTEP] rw [Valuation.map_mul, Hx, mul_comm] [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ γx : ((fun x => Γ₀) x)ˣ Hx : ↑v x = ↑γx y : R vy_lt : ↑v y < ↑(γx⁻¹ * γ) ⊢ ↑v y * ↑γx < ↑γ [PROOFSTEP] rw [Units.val_mul, mul_comm] at vy_lt [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ γx : ((fun x => Γ₀) x)ˣ Hx : ↑v x = ↑γx y : R vy_lt : ↑v y < ↑γ * ↑γx⁻¹ ⊢ ↑v y * ↑γx < ↑γ [PROOFSTEP] simpa using mul_inv_lt_of_lt_mul₀ vy_lt [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ ⊢ ∀ (x : R) (i : Γ₀ˣ), ∃ j, ↑(ltAddSubgroup v j) ⊆ (fun x_1 => x_1 * x) ⁻¹' ↑(ltAddSubgroup v i) [PROOFSTEP] rintro x γ [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ ⊢ ∃ j, ↑(ltAddSubgroup v j) ⊆ (fun x_1 => x_1 * x) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] rcases GroupWithZero.eq_zero_or_unit (v x) with (Hx | ⟨γx, Hx⟩) [GOAL] case inl R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ Hx : ↑v x = 0 ⊢ ∃ j, ↑(ltAddSubgroup v j) ⊆ (fun x_1 => x_1 * x) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] use 1 [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ Hx : ↑v x = 0 ⊢ ↑(ltAddSubgroup v 1) ⊆ (fun x_1 => x_1 * x) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] rintro y _ [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ Hx : ↑v x = 0 y : R a✝ : y ∈ ↑(ltAddSubgroup v 1) ⊢ y ∈ (fun x_1 => x_1 * x) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] change v (y * x) < _ [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ Hx : ↑v x = 0 y : R a✝ : y ∈ ↑(ltAddSubgroup v 1) ⊢ ↑v (y * x) < ↑γ [PROOFSTEP] rw [Valuation.map_mul, Hx, mul_zero] [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ Hx : ↑v x = 0 y : R a✝ : y ∈ ↑(ltAddSubgroup v 1) ⊢ 0 < ↑γ [PROOFSTEP] exact Units.zero_lt γ [GOAL] case inr.intro R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ γx : ((fun x => Γ₀) x)ˣ Hx : ↑v x = ↑γx ⊢ ∃ j, ↑(ltAddSubgroup v j) ⊆ (fun x_1 => x_1 * x) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] use γx⁻¹ * γ [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ γx : ((fun x => Γ₀) x)ˣ Hx : ↑v x = ↑γx ⊢ ↑(ltAddSubgroup v (γx⁻¹ * γ)) ⊆ (fun x_1 => x_1 * x) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] rintro y (vy_lt : v y < ↑(γx⁻¹ * γ)) [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ γx : ((fun x => Γ₀) x)ˣ Hx : ↑v x = ↑γx y : R vy_lt : ↑v y < ↑(γx⁻¹ * γ) ⊢ y ∈ (fun x_1 => x_1 * x) ⁻¹' ↑(ltAddSubgroup v γ) [PROOFSTEP] change (v (y * x) : Γ₀) < γ [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ γx : ((fun x => Γ₀) x)ˣ Hx : ↑v x = ↑γx y : R vy_lt : ↑v y < ↑(γx⁻¹ * γ) ⊢ ↑v (y * x) < ↑γ [PROOFSTEP] rw [Valuation.map_mul, Hx] [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ γx : ((fun x => Γ₀) x)ˣ Hx : ↑v x = ↑γx y : R vy_lt : ↑v y < ↑(γx⁻¹ * γ) ⊢ ↑v y * ↑γx < ↑γ [PROOFSTEP] rw [Units.val_mul, mul_comm] at vy_lt [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ : Γ₀ˣ γx : ((fun x => Γ₀) x)ˣ Hx : ↑v x = ↑γx y : R vy_lt : ↑v y < ↑γ * ↑γx⁻¹ ⊢ ↑v y * ↑γx < ↑γ [PROOFSTEP] simpa using mul_inv_lt_of_lt_mul₀ vy_lt [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ ⊢ ∀ (s : Set R), s ∈ 𝓝 0 ↔ ∃ γ, {x | ↑v x < ↑γ} ⊆ s [PROOFSTEP] letI := @TopologicalAddGroup.toUniformSpace R _ v.subgroups_basis.topology _ [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ this : UniformSpace R := TopologicalAddGroup.toUniformSpace R ⊢ ∀ (s : Set R), s ∈ 𝓝 0 ↔ ∃ γ, {x | ↑v x < ↑γ} ⊆ s [PROOFSTEP] intro s [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ this : UniformSpace R := TopologicalAddGroup.toUniformSpace R s : Set R ⊢ s ∈ 𝓝 0 ↔ ∃ γ, {x | ↑v x < ↑γ} ⊆ s [PROOFSTEP] rw [Filter.hasBasis_iff.mp v.subgroups_basis.hasBasis_nhds_zero s] [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ this : UniformSpace R := TopologicalAddGroup.toUniformSpace R s : Set R ⊢ (∃ i, True ∧ ↑(ltAddSubgroup v i) ⊆ s) ↔ ∃ γ, {x | ↑v x < ↑γ} ⊆ s [PROOFSTEP] exact exists_congr fun γ => by rw [true_and]; rfl [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ this : UniformSpace R := TopologicalAddGroup.toUniformSpace R s : Set R γ : Γ₀ˣ ⊢ True ∧ ↑(ltAddSubgroup v γ) ⊆ s ↔ {x | ↑v x < ↑γ} ⊆ s [PROOFSTEP] rw [true_and] [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ this : UniformSpace R := TopologicalAddGroup.toUniformSpace R s : Set R γ : Γ₀ˣ ⊢ ↑(ltAddSubgroup v γ) ⊆ s ↔ {x | ↑v x < ↑γ} ⊆ s [PROOFSTEP] rfl [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ ⊢ Filter.HasBasis (𝓝 0) (fun x => True) fun γ => {x | ↑v x < ↑γ} [PROOFSTEP] simp [Filter.hasBasis_iff, is_topological_valuation] [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ ⊢ Filter.HasBasis (uniformity R) (fun x => True) fun γ => {p | ↑v (p.snd - p.fst) < ↑γ} [PROOFSTEP] rw [uniformity_eq_comap_nhds_zero] [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ ⊢ Filter.HasBasis (Filter.comap (fun x => x.snd - x.fst) (𝓝 0)) (fun x => True) fun γ => {p | ↑v (p.snd - p.fst) < ↑γ} [PROOFSTEP] exact (hasBasis_nhds_zero R Γ₀).comap _ [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ s : Set R x : R ⊢ s ∈ 𝓝 x ↔ ∃ γ, {y | ↑v (y - x) < ↑γ} ⊆ s [PROOFSTEP] simp only [← nhds_translation_add_neg x, ← sub_eq_add_neg, preimage_setOf_eq, true_and, ((hasBasis_nhds_zero R Γ₀).comap fun y => y - x).mem_iff] [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ s : Set R ⊢ s ∈ 𝓝 0 ↔ ∃ γ, {x | ↑v x < ↑γ} ⊆ s [PROOFSTEP] simp only [mem_nhds, sub_zero] [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ x : R h : ↑v x ≠ 0 ⊢ {y | ↑v y = ↑v x} ∈ 𝓝 x [PROOFSTEP] rw [mem_nhds] [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ x : R h : ↑v x ≠ 0 ⊢ ∃ γ, {y | ↑v (y - x) < ↑γ} ⊆ {y | ↑v y = ↑v x} [PROOFSTEP] rcases Units.exists_iff_ne_zero.mpr h with ⟨γ, hx⟩ [GOAL] case intro R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ x : R h : ↑v x ≠ 0 γ : ((fun x => Γ₀) x)ˣ hx : ↑γ = ↑v x ⊢ ∃ γ, {y | ↑v (y - x) < ↑γ} ⊆ {y | ↑v y = ↑v x} [PROOFSTEP] use γ [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ x : R h : ↑v x ≠ 0 γ : ((fun x => Γ₀) x)ˣ hx : ↑γ = ↑v x ⊢ {y | ↑v (y - x) < ↑γ} ⊆ {y | ↑v y = ↑v x} [PROOFSTEP] rw [hx] [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ x : R h : ↑v x ≠ 0 γ : ((fun x => Γ₀) x)ˣ hx : ↑γ = ↑v x ⊢ {y | ↑v (y - x) < ↑v x} ⊆ {y | ↑v y = ↑v x} [PROOFSTEP] intro y y_in [GOAL] case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ x : R h : ↑v x ≠ 0 γ : ((fun x => Γ₀) x)ˣ hx : ↑γ = ↑v x y : R y_in : y ∈ {y | ↑v (y - x) < ↑v x} ⊢ y ∈ {y | ↑v y = ↑v x} [PROOFSTEP] exact Valuation.map_eq_of_sub_lt _ y_in [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ F : Filter R ⊢ Cauchy F ↔ Filter.NeBot F ∧ ∀ (γ : Γ₀ˣ), ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → ↑v (y - x) < ↑γ [PROOFSTEP] rw [toUniformSpace_eq, AddGroupFilterBasis.cauchy_iff] [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ F : Filter R ⊢ (Filter.NeBot F ∧ ∀ (U : Set R), U ∈ RingFilterBasis.toAddGroupFilterBasis → ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → y - x ∈ U) ↔ Filter.NeBot F ∧ ∀ (γ : Γ₀ˣ), ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → ↑v (y - x) < ↑γ [PROOFSTEP] apply and_congr Iff.rfl [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ F : Filter R ⊢ (∀ (U : Set R), U ∈ RingFilterBasis.toAddGroupFilterBasis → ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → y - x ∈ U) ↔ ∀ (γ : Γ₀ˣ), ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → ↑v (y - x) < ↑γ [PROOFSTEP] simp_rw [Valued.v.subgroups_basis.mem_addGroupFilterBasis_iff] [GOAL] R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ F : Filter R ⊢ (∀ (U : Set R), (∃ i, U = ↑(ltAddSubgroup v i)) → ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → y - x ∈ U) ↔ ∀ (γ : Γ₀ˣ), ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → ↑v (y - x) < ↑γ [PROOFSTEP] constructor [GOAL] case mp R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ F : Filter R ⊢ (∀ (U : Set R), (∃ i, U = ↑(ltAddSubgroup v i)) → ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → y - x ∈ U) → ∀ (γ : Γ₀ˣ), ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → ↑v (y - x) < ↑γ [PROOFSTEP] intro h γ [GOAL] case mp R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ F : Filter R h : ∀ (U : Set R), (∃ i, U = ↑(ltAddSubgroup v i)) → ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → y - x ∈ U γ : Γ₀ˣ ⊢ ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → ↑v (y - x) < ↑γ [PROOFSTEP] exact h _ (Valued.v.subgroups_basis.mem_addGroupFilterBasis _) [GOAL] case mpr R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ F : Filter R ⊢ (∀ (γ : Γ₀ˣ), ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → ↑v (y - x) < ↑γ) → ∀ (U : Set R), (∃ i, U = ↑(ltAddSubgroup v i)) → ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → y - x ∈ U [PROOFSTEP] rintro h - ⟨γ, rfl⟩ [GOAL] case mpr.intro R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ _i : Valued R Γ₀ F : Filter R h : ∀ (γ : Γ₀ˣ), ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → ↑v (y - x) < ↑γ γ : Γ₀ˣ ⊢ ∃ M, M ∈ F ∧ ∀ (x : R), x ∈ M → ∀ (y : R), y ∈ M → y - x ∈ ↑(ltAddSubgroup v γ) [PROOFSTEP] exact h γ
{"mathlib_filename": "Mathlib.Topology.Algebra.Valuation", "llama_tokens": 9139}
[GOAL] R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Module R N inst✝¹ : ContinuousAdd M inst✝ : IsSimpleModule R N l : M →ₗ[R] N ⊢ IsClosed ↑(ker l) ∨ Dense ↑(ker l) [PROOFSTEP] rcases l.surjective_or_eq_zero with (hl | rfl) [GOAL] case inl R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Module R N inst✝¹ : ContinuousAdd M inst✝ : IsSimpleModule R N l : M →ₗ[R] N hl : Function.Surjective ↑l ⊢ IsClosed ↑(ker l) ∨ Dense ↑(ker l) [PROOFSTEP] exact l.ker.isClosed_or_dense_of_isCoatom (LinearMap.isCoatom_ker_of_surjective hl) [GOAL] case inr R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Module R N inst✝¹ : ContinuousAdd M inst✝ : IsSimpleModule R N ⊢ IsClosed ↑(ker 0) ∨ Dense ↑(ker 0) [PROOFSTEP] rw [LinearMap.ker_zero] [GOAL] case inr R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Module R N inst✝¹ : ContinuousAdd M inst✝ : IsSimpleModule R N ⊢ IsClosed ↑⊤ ∨ Dense ↑⊤ [PROOFSTEP] left [GOAL] case inr.h R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Module R N inst✝¹ : ContinuousAdd M inst✝ : IsSimpleModule R N ⊢ IsClosed ↑⊤ [PROOFSTEP] exact isClosed_univ
{"mathlib_filename": "Mathlib.Topology.Algebra.Module.Simple", "llama_tokens": 900}
[GOAL] A✝ : Type u_1 ι✝ : Type u_2 inst✝¹ : Ring A✝ A : Type u_3 ι : Type u_4 inst✝ : CommRing A B : ι → AddSubgroup A inter : ∀ (i j : ι), ∃ k, B k ≤ B i ⊓ B j mul : ∀ (i : ι), ∃ j, ↑(B j) * ↑(B j) ⊆ ↑(B i) leftMul : ∀ (x : A) (i : ι), ∃ j, ↑(B j) ⊆ (fun y => x * y) ⁻¹' ↑(B i) ⊢ ∀ (x : A) (i : ι), ∃ j, ↑(B j) ⊆ (fun x_1 => x_1 * x) ⁻¹' ↑(B i) [PROOFSTEP] intro x i [GOAL] A✝ : Type u_1 ι✝ : Type u_2 inst✝¹ : Ring A✝ A : Type u_3 ι : Type u_4 inst✝ : CommRing A B : ι → AddSubgroup A inter : ∀ (i j : ι), ∃ k, B k ≤ B i ⊓ B j mul : ∀ (i : ι), ∃ j, ↑(B j) * ↑(B j) ⊆ ↑(B i) leftMul : ∀ (x : A) (i : ι), ∃ j, ↑(B j) ⊆ (fun y => x * y) ⁻¹' ↑(B i) x : A i : ι ⊢ ∃ j, ↑(B j) ⊆ (fun x_1 => x_1 * x) ⁻¹' ↑(B i) [PROOFSTEP] cases' leftMul x i with j hj [GOAL] case intro A✝ : Type u_1 ι✝ : Type u_2 inst✝¹ : Ring A✝ A : Type u_3 ι : Type u_4 inst✝ : CommRing A B : ι → AddSubgroup A inter : ∀ (i j : ι), ∃ k, B k ≤ B i ⊓ B j mul : ∀ (i : ι), ∃ j, ↑(B j) * ↑(B j) ⊆ ↑(B i) leftMul : ∀ (x : A) (i : ι), ∃ j, ↑(B j) ⊆ (fun y => x * y) ⁻¹' ↑(B i) x : A i j : ι hj : ↑(B j) ⊆ (fun y => x * y) ⁻¹' ↑(B i) ⊢ ∃ j, ↑(B j) ⊆ (fun x_1 => x_1 * x) ⁻¹' ↑(B i) [PROOFSTEP] use j [GOAL] case h A✝ : Type u_1 ι✝ : Type u_2 inst✝¹ : Ring A✝ A : Type u_3 ι : Type u_4 inst✝ : CommRing A B : ι → AddSubgroup A inter : ∀ (i j : ι), ∃ k, B k ≤ B i ⊓ B j mul : ∀ (i : ι), ∃ j, ↑(B j) * ↑(B j) ⊆ ↑(B i) leftMul : ∀ (x : A) (i : ι), ∃ j, ↑(B j) ⊆ (fun y => x * y) ⁻¹' ↑(B i) x : A i j : ι hj : ↑(B j) ⊆ (fun y => x * y) ⁻¹' ↑(B i) ⊢ ↑(B j) ⊆ (fun x_1 => x_1 * x) ⁻¹' ↑(B i) [PROOFSTEP] simpa [mul_comm] using hj [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B ⊢ Set.Nonempty {U | ∃ i, U = ↑(B i)} [PROOFSTEP] inhabit ι [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B inhabited_h : Inhabited ι ⊢ Set.Nonempty {U | ∃ i, U = ↑(B i)} [PROOFSTEP] exact ⟨B default, default, rfl⟩ [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B ⊢ ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y [PROOFSTEP] rintro _ _ ⟨i, rfl⟩ ⟨j, rfl⟩ [GOAL] case intro.intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i j : ι ⊢ ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ ↑(B i) ∩ ↑(B j) [PROOFSTEP] cases' hB.inter i j with k hk [GOAL] case intro.intro.intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i j k : ι hk : B k ≤ B i ⊓ B j ⊢ ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ ↑(B i) ∩ ↑(B j) [PROOFSTEP] use B k [GOAL] case h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i j k : ι hk : B k ≤ B i ⊓ B j ⊢ ↑(B k) ∈ {U | ∃ i, U = ↑(B i)} ∧ ↑(B k) ⊆ ↑(B i) ∩ ↑(B j) [PROOFSTEP] constructor [GOAL] case h.left A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i j k : ι hk : B k ≤ B i ⊓ B j ⊢ ↑(B k) ∈ {U | ∃ i, U = ↑(B i)} [PROOFSTEP] use k [GOAL] case h.right A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i j k : ι hk : B k ≤ B i ⊓ B j ⊢ ↑(B k) ⊆ ↑(B i) ∩ ↑(B j) [PROOFSTEP] exact hk [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B ⊢ ∀ {U : Set A}, U ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets → 0 ∈ U [PROOFSTEP] rintro _ ⟨i, rfl⟩ [GOAL] case intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι ⊢ 0 ∈ ↑(B i) [PROOFSTEP] exact (B i).zero_mem [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B ⊢ ∀ {U : Set A}, U ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets → ∃ V, V ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ V + V ⊆ U [PROOFSTEP] rintro _ ⟨i, rfl⟩ [GOAL] case intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι ⊢ ∃ V, V ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ V + V ⊆ ↑(B i) [PROOFSTEP] use B i [GOAL] case h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι ⊢ ↑(B i) ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ ↑(B i) + ↑(B i) ⊆ ↑(B i) [PROOFSTEP] constructor [GOAL] case h.left A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι ⊢ ↑(B i) ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets [PROOFSTEP] use i [GOAL] case h.right A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι ⊢ ↑(B i) + ↑(B i) ⊆ ↑(B i) [PROOFSTEP] rintro x ⟨y, z, y_in, z_in, rfl⟩ [GOAL] case h.right.intro.intro.intro.intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι y z : A y_in : y ∈ ↑(B i) z_in : z ∈ ↑(B i) ⊢ (fun x x_1 => x + x_1) y z ∈ ↑(B i) [PROOFSTEP] exact (B i).add_mem y_in z_in [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B ⊢ ∀ {U : Set A}, U ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets → ∃ V, V ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ V ⊆ (fun x => -x) ⁻¹' U [PROOFSTEP] rintro _ ⟨i, rfl⟩ [GOAL] case intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι ⊢ ∃ V, V ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ V ⊆ (fun x => -x) ⁻¹' ↑(B i) [PROOFSTEP] use B i [GOAL] case h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι ⊢ ↑(B i) ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ ↑(B i) ⊆ (fun x => -x) ⁻¹' ↑(B i) [PROOFSTEP] constructor [GOAL] case h.left A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι ⊢ ↑(B i) ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets [PROOFSTEP] use i [GOAL] case h.right A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι ⊢ ↑(B i) ⊆ (fun x => -x) ⁻¹' ↑(B i) [PROOFSTEP] intro x x_in [GOAL] case h.right A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι x : A x_in : x ∈ ↑(B i) ⊢ x ∈ (fun x => -x) ⁻¹' ↑(B i) [PROOFSTEP] exact (B i).neg_mem x_in [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B ⊢ ∀ (x₀ : A) {U : Set A}, U ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets → ∃ V, V ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ V ⊆ (fun x => x₀ + x + -x₀) ⁻¹' U [PROOFSTEP] rintro x₀ _ ⟨i, rfl⟩ [GOAL] case intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i : ι ⊢ ∃ V, V ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ V ⊆ (fun x => x₀ + x + -x₀) ⁻¹' ↑(B i) [PROOFSTEP] use B i [GOAL] case h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i : ι ⊢ ↑(B i) ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ ↑(B i) ⊆ (fun x => x₀ + x + -x₀) ⁻¹' ↑(B i) [PROOFSTEP] constructor [GOAL] case h.left A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i : ι ⊢ ↑(B i) ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set A}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets [PROOFSTEP] use i [GOAL] case h.right A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i : ι ⊢ ↑(B i) ⊆ (fun x => x₀ + x + -x₀) ⁻¹' ↑(B i) [PROOFSTEP] simp [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B ⊢ ∀ {U : Set A}, U ∈ AddGroupFilterBasis.toFilterBasis.sets → ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V * V ⊆ U [PROOFSTEP] rintro _ ⟨i, rfl⟩ [GOAL] case intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι ⊢ ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V * V ⊆ ↑(B i) [PROOFSTEP] cases' hB.mul i with k hk [GOAL] case intro.intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i k : ι hk : ↑(B k) * ↑(B k) ⊆ ↑(B i) ⊢ ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V * V ⊆ ↑(B i) [PROOFSTEP] use B k [GOAL] case h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i k : ι hk : ↑(B k) * ↑(B k) ⊆ ↑(B i) ⊢ ↑(B k) ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ ↑(B k) * ↑(B k) ⊆ ↑(B i) [PROOFSTEP] constructor [GOAL] case h.left A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i k : ι hk : ↑(B k) * ↑(B k) ⊆ ↑(B i) ⊢ ↑(B k) ∈ AddGroupFilterBasis.toFilterBasis.sets [PROOFSTEP] use k [GOAL] case h.right A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i k : ι hk : ↑(B k) * ↑(B k) ⊆ ↑(B i) ⊢ ↑(B k) * ↑(B k) ⊆ ↑(B i) [PROOFSTEP] exact hk [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B ⊢ ∀ (x₀ : A) {U : Set A}, U ∈ AddGroupFilterBasis.toFilterBasis.sets → ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V ⊆ (fun x => x₀ * x) ⁻¹' U [PROOFSTEP] rintro x₀ _ ⟨i, rfl⟩ [GOAL] case intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i : ι ⊢ ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V ⊆ (fun x => x₀ * x) ⁻¹' ↑(B i) [PROOFSTEP] cases' hB.leftMul x₀ i with k hk [GOAL] case intro.intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i k : ι hk : ↑(B k) ⊆ (fun x => x₀ * x) ⁻¹' ↑(B i) ⊢ ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V ⊆ (fun x => x₀ * x) ⁻¹' ↑(B i) [PROOFSTEP] use B k [GOAL] case h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i k : ι hk : ↑(B k) ⊆ (fun x => x₀ * x) ⁻¹' ↑(B i) ⊢ ↑(B k) ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ ↑(B k) ⊆ (fun x => x₀ * x) ⁻¹' ↑(B i) [PROOFSTEP] constructor [GOAL] case h.left A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i k : ι hk : ↑(B k) ⊆ (fun x => x₀ * x) ⁻¹' ↑(B i) ⊢ ↑(B k) ∈ AddGroupFilterBasis.toFilterBasis.sets [PROOFSTEP] use k [GOAL] case h.right A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i k : ι hk : ↑(B k) ⊆ (fun x => x₀ * x) ⁻¹' ↑(B i) ⊢ ↑(B k) ⊆ (fun x => x₀ * x) ⁻¹' ↑(B i) [PROOFSTEP] exact hk [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B ⊢ ∀ (x₀ : A) {U : Set A}, U ∈ AddGroupFilterBasis.toFilterBasis.sets → ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V ⊆ (fun x => x * x₀) ⁻¹' U [PROOFSTEP] rintro x₀ _ ⟨i, rfl⟩ [GOAL] case intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i : ι ⊢ ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V ⊆ (fun x => x * x₀) ⁻¹' ↑(B i) [PROOFSTEP] cases' hB.rightMul x₀ i with k hk [GOAL] case intro.intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i k : ι hk : ↑(B k) ⊆ (fun x => x * x₀) ⁻¹' ↑(B i) ⊢ ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V ⊆ (fun x => x * x₀) ⁻¹' ↑(B i) [PROOFSTEP] use B k [GOAL] case h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i k : ι hk : ↑(B k) ⊆ (fun x => x * x₀) ⁻¹' ↑(B i) ⊢ ↑(B k) ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ ↑(B k) ⊆ (fun x => x * x₀) ⁻¹' ↑(B i) [PROOFSTEP] constructor [GOAL] case h.left A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i k : ι hk : ↑(B k) ⊆ (fun x => x * x₀) ⁻¹' ↑(B i) ⊢ ↑(B k) ∈ AddGroupFilterBasis.toFilterBasis.sets [PROOFSTEP] use k [GOAL] case h.right A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B x₀ : A i k : ι hk : ↑(B k) ⊆ (fun x => x * x₀) ⁻¹' ↑(B i) ⊢ ↑(B k) ⊆ (fun x => x * x₀) ⁻¹' ↑(B i) [PROOFSTEP] exact hk [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B ⊢ ∀ (t : Set A), t ∈ 𝓝 0 ↔ ∃ i, True ∧ ↑(B i) ⊆ t [PROOFSTEP] intro s [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B s : Set A ⊢ s ∈ 𝓝 0 ↔ ∃ i, True ∧ ↑(B i) ⊆ s [PROOFSTEP] rw [hB.toRingFilterBasis.toAddGroupFilterBasis.nhds_zero_hasBasis.mem_iff] [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B s : Set A ⊢ (∃ i, i ∈ RingFilterBasis.toAddGroupFilterBasis ∧ id i ⊆ s) ↔ ∃ i, True ∧ ↑(B i) ⊆ s [PROOFSTEP] constructor [GOAL] case mp A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B s : Set A ⊢ (∃ i, i ∈ RingFilterBasis.toAddGroupFilterBasis ∧ id i ⊆ s) → ∃ i, True ∧ ↑(B i) ⊆ s [PROOFSTEP] rintro ⟨-, ⟨i, rfl⟩, hi⟩ [GOAL] case mp.intro.intro.intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B s : Set A i : ι hi : id ↑(B i) ⊆ s ⊢ ∃ i, True ∧ ↑(B i) ⊆ s [PROOFSTEP] exact ⟨i, trivial, hi⟩ [GOAL] case mpr A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B s : Set A ⊢ (∃ i, True ∧ ↑(B i) ⊆ s) → ∃ i, i ∈ RingFilterBasis.toAddGroupFilterBasis ∧ id i ⊆ s [PROOFSTEP] rintro ⟨i, -, hi⟩ [GOAL] case mpr.intro.intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B s : Set A i : ι hi : ↑(B i) ⊆ s ⊢ ∃ i, i ∈ RingFilterBasis.toAddGroupFilterBasis ∧ id i ⊆ s [PROOFSTEP] exact ⟨B i, ⟨i, rfl⟩, hi⟩ [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A ⊢ ∀ (t : Set A), t ∈ 𝓝 a ↔ ∃ i, True ∧ {b | b - a ∈ B i} ⊆ t [PROOFSTEP] intro s [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A ⊢ s ∈ 𝓝 a ↔ ∃ i, True ∧ {b | b - a ∈ B i} ⊆ s [PROOFSTEP] rw [(hB.toRingFilterBasis.toAddGroupFilterBasis.nhds_hasBasis a).mem_iff] [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A ⊢ (∃ i, i ∈ RingFilterBasis.toAddGroupFilterBasis ∧ (fun y => a + y) '' i ⊆ s) ↔ ∃ i, True ∧ {b | b - a ∈ B i} ⊆ s [PROOFSTEP] simp only [true_and] [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A ⊢ (∃ i, i ∈ RingFilterBasis.toAddGroupFilterBasis ∧ (fun y => a + y) '' i ⊆ s) ↔ ∃ i, {b | b - a ∈ B i} ⊆ s [PROOFSTEP] constructor [GOAL] case mp A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A ⊢ (∃ i, i ∈ RingFilterBasis.toAddGroupFilterBasis ∧ (fun y => a + y) '' i ⊆ s) → ∃ i, {b | b - a ∈ B i} ⊆ s [PROOFSTEP] rintro ⟨-, ⟨i, rfl⟩, hi⟩ [GOAL] case mp.intro.intro.intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : (fun y => a + y) '' ↑(B i) ⊆ s ⊢ ∃ i, {b | b - a ∈ B i} ⊆ s [PROOFSTEP] use i [GOAL] case h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : (fun y => a + y) '' ↑(B i) ⊆ s ⊢ {b | b - a ∈ B i} ⊆ s [PROOFSTEP] suffices h : {b : A | b - a ∈ B i} = (fun y => a + y) '' ↑(B i) [GOAL] case h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : (fun y => a + y) '' ↑(B i) ⊆ s h : {b | b - a ∈ B i} = (fun y => a + y) '' ↑(B i) ⊢ {b | b - a ∈ B i} ⊆ s [PROOFSTEP] rw [h] [GOAL] case h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : (fun y => a + y) '' ↑(B i) ⊆ s h : {b | b - a ∈ B i} = (fun y => a + y) '' ↑(B i) ⊢ (fun y => a + y) '' ↑(B i) ⊆ s [PROOFSTEP] assumption [GOAL] case h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : (fun y => a + y) '' ↑(B i) ⊆ s ⊢ {b | b - a ∈ B i} = (fun y => a + y) '' ↑(B i) [PROOFSTEP] simp only [image_add_left, neg_add_eq_sub] [GOAL] case h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : (fun y => a + y) '' ↑(B i) ⊆ s ⊢ {b | b - a ∈ B i} = (fun x => x - a) ⁻¹' ↑(B i) [PROOFSTEP] ext b [GOAL] case h.h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : (fun y => a + y) '' ↑(B i) ⊆ s b : A ⊢ b ∈ {b | b - a ∈ B i} ↔ b ∈ (fun x => x - a) ⁻¹' ↑(B i) [PROOFSTEP] simp [GOAL] case mpr A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A ⊢ (∃ i, {b | b - a ∈ B i} ⊆ s) → ∃ i, i ∈ RingFilterBasis.toAddGroupFilterBasis ∧ (fun y => a + y) '' i ⊆ s [PROOFSTEP] rintro ⟨i, hi⟩ [GOAL] case mpr.intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : {b | b - a ∈ B i} ⊆ s ⊢ ∃ i, i ∈ RingFilterBasis.toAddGroupFilterBasis ∧ (fun y => a + y) '' i ⊆ s [PROOFSTEP] use B i [GOAL] case h A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : {b | b - a ∈ B i} ⊆ s ⊢ ↑(B i) ∈ RingFilterBasis.toAddGroupFilterBasis ∧ (fun y => a + y) '' ↑(B i) ⊆ s [PROOFSTEP] constructor [GOAL] case h.left A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : {b | b - a ∈ B i} ⊆ s ⊢ ↑(B i) ∈ RingFilterBasis.toAddGroupFilterBasis [PROOFSTEP] use i [GOAL] case h.right A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : {b | b - a ∈ B i} ⊆ s ⊢ (fun y => a + y) '' ↑(B i) ⊆ s [PROOFSTEP] rw [image_subset_iff] [GOAL] case h.right A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : {b | b - a ∈ B i} ⊆ s ⊢ ↑(B i) ⊆ (fun y => a + y) ⁻¹' s [PROOFSTEP] rintro b b_in [GOAL] case h.right A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : {b | b - a ∈ B i} ⊆ s b : A b_in : b ∈ ↑(B i) ⊢ b ∈ (fun y => a + y) ⁻¹' s [PROOFSTEP] apply hi [GOAL] case h.right.a A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B a : A s : Set A i : ι hi : {b | b - a ∈ B i} ⊆ s b : A b_in : b ∈ ↑(B i) ⊢ (fun y => a + y) b ∈ {b | b - a ∈ B i} [PROOFSTEP] simpa using b_in [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι x✝ : TopologicalSpace A := topology hB src✝ : AddSubgroup A := B i ⊢ IsOpen { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : A}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] rw [isOpen_iff_mem_nhds] [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι x✝ : TopologicalSpace A := topology hB src✝ : AddSubgroup A := B i ⊢ ∀ (a : A), a ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : A}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : A}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ∈ 𝓝 a [PROOFSTEP] intro a a_in [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι x✝ : TopologicalSpace A := topology hB src✝ : AddSubgroup A := B i a : A a_in : a ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : A}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : A}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ∈ 𝓝 a [PROOFSTEP] rw [(hB.hasBasis_nhds a).mem_iff] [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι x✝ : TopologicalSpace A := topology hB src✝ : AddSubgroup A := B i a : A a_in : a ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : A}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ∃ i, True ∧ {b | b - a ∈ B i} ⊆ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : A}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] use i, trivial [GOAL] case right A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι x✝ : TopologicalSpace A := topology hB src✝ : AddSubgroup A := B i a : A a_in : a ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : A}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ {b | b - a ∈ B i} ⊆ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : A}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] rintro b b_in [GOAL] case right A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B i : ι x✝ : TopologicalSpace A := topology hB src✝ : AddSubgroup A := B i a : A a_in : a ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : A}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier b : A b_in : b ∈ {b | b - a ∈ B i} ⊢ b ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : A}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] simpa using (B i).add_mem a_in b_in [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B ⊢ NonarchimedeanRing A [PROOFSTEP] letI := hB.topology [GOAL] A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B this : TopologicalSpace A := topology hB ⊢ NonarchimedeanRing A [PROOFSTEP] constructor [GOAL] case is_nonarchimedean A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B this : TopologicalSpace A := topology hB ⊢ ∀ (U : Set A), U ∈ 𝓝 0 → ∃ V, ↑V ⊆ U [PROOFSTEP] intro U hU [GOAL] case is_nonarchimedean A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B this : TopologicalSpace A := topology hB U : Set A hU : U ∈ 𝓝 0 ⊢ ∃ V, ↑V ⊆ U [PROOFSTEP] obtain ⟨i, -, hi : (B i : Set A) ⊆ U⟩ := hB.hasBasis_nhds_zero.mem_iff.mp hU [GOAL] case is_nonarchimedean.intro.intro A : Type u_1 ι : Type u_2 inst✝¹ : Ring A inst✝ : Nonempty ι B : ι → AddSubgroup A hB : RingSubgroupsBasis B this : TopologicalSpace A := topology hB U : Set A hU : U ∈ 𝓝 0 i : ι hi : ↑(B i) ⊆ U ⊢ ∃ V, ↑V ⊆ U [PROOFSTEP] exact ⟨hB.openAddSubgroup i, hi⟩ [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A B : ι → Submodule R A hB✝ hB : SubmodulesRingBasis B ⊢ RingSubgroupsBasis fun i => Submodule.toAddSubgroup (B i) [PROOFSTEP] apply RingSubgroupsBasis.of_comm (fun i => (B i).toAddSubgroup) hB.inter hB.mul [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A B : ι → Submodule R A hB✝ hB : SubmodulesRingBasis B ⊢ ∀ (x : A) (i : ι), ∃ j, ↑(Submodule.toAddSubgroup (B j)) ⊆ (fun y => x * y) ⁻¹' ↑(Submodule.toAddSubgroup (B i)) [PROOFSTEP] intro a i [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A B : ι → Submodule R A hB✝ hB : SubmodulesRingBasis B a : A i : ι ⊢ ∃ j, ↑(Submodule.toAddSubgroup (B j)) ⊆ (fun y => a * y) ⁻¹' ↑(Submodule.toAddSubgroup (B i)) [PROOFSTEP] rcases hB.leftMul a i with ⟨j, hj⟩ [GOAL] case intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A B : ι → Submodule R A hB✝ hB : SubmodulesRingBasis B a : A i j : ι hj : a • B j ≤ B i ⊢ ∃ j, ↑(Submodule.toAddSubgroup (B j)) ⊆ (fun y => a * y) ⁻¹' ↑(Submodule.toAddSubgroup (B i)) [PROOFSTEP] use j [GOAL] case h ι : Type u_1 R : Type u_2 A : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A B : ι → Submodule R A hB✝ hB : SubmodulesRingBasis B a : A i j : ι hj : a • B j ≤ B i ⊢ ↑(Submodule.toAddSubgroup (B j)) ⊆ (fun y => a * y) ⁻¹' ↑(Submodule.toAddSubgroup (B i)) [PROOFSTEP] rintro b (b_in : b ∈ B j) [GOAL] case h ι : Type u_1 R : Type u_2 A : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A B : ι → Submodule R A hB✝ hB : SubmodulesRingBasis B a : A i j : ι hj : a • B j ≤ B i b : A b_in : b ∈ B j ⊢ b ∈ (fun y => a * y) ⁻¹' ↑(Submodule.toAddSubgroup (B i)) [PROOFSTEP] exact hj ⟨b, b_in, rfl⟩ [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B ⊢ Set.Nonempty {U | ∃ i, U = ↑(B i)} [PROOFSTEP] inhabit ι [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B inhabited_h : Inhabited ι ⊢ Set.Nonempty {U | ∃ i, U = ↑(B i)} [PROOFSTEP] exact ⟨B default, default, rfl⟩ [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B ⊢ ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y [PROOFSTEP] rintro _ _ ⟨i, rfl⟩ ⟨j, rfl⟩ [GOAL] case intro.intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i j : ι ⊢ ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ ↑(B i) ∩ ↑(B j) [PROOFSTEP] cases' hB.inter i j with k hk [GOAL] case intro.intro.intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i j k : ι hk : B k ≤ B i ⊓ B j ⊢ ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ ↑(B i) ∩ ↑(B j) [PROOFSTEP] use B k [GOAL] case h ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i j k : ι hk : B k ≤ B i ⊓ B j ⊢ ↑(B k) ∈ {U | ∃ i, U = ↑(B i)} ∧ ↑(B k) ⊆ ↑(B i) ∩ ↑(B j) [PROOFSTEP] constructor [GOAL] case h.left ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i j k : ι hk : B k ≤ B i ⊓ B j ⊢ ↑(B k) ∈ {U | ∃ i, U = ↑(B i)} [PROOFSTEP] use k [GOAL] case h.right ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i j k : ι hk : B k ≤ B i ⊓ B j ⊢ ↑(B k) ⊆ ↑(B i) ∩ ↑(B j) [PROOFSTEP] exact hk [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B ⊢ ∀ {U : Set M}, U ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets → 0 ∈ U [PROOFSTEP] rintro _ ⟨i, rfl⟩ [GOAL] case intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ 0 ∈ ↑(B i) [PROOFSTEP] exact (B i).zero_mem [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B ⊢ ∀ {U : Set M}, U ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets → ∃ V, V ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ V + V ⊆ U [PROOFSTEP] rintro _ ⟨i, rfl⟩ [GOAL] case intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ ∃ V, V ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ V + V ⊆ ↑(B i) [PROOFSTEP] use B i [GOAL] case h ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ ↑(B i) ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ ↑(B i) + ↑(B i) ⊆ ↑(B i) [PROOFSTEP] constructor [GOAL] case h.left ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ ↑(B i) ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets [PROOFSTEP] use i [GOAL] case h.right ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ ↑(B i) + ↑(B i) ⊆ ↑(B i) [PROOFSTEP] rintro x ⟨y, z, y_in, z_in, rfl⟩ [GOAL] case h.right.intro.intro.intro.intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι y z : M y_in : y ∈ ↑(B i) z_in : z ∈ ↑(B i) ⊢ (fun x x_1 => x + x_1) y z ∈ ↑(B i) [PROOFSTEP] exact (B i).add_mem y_in z_in [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B ⊢ ∀ {U : Set M}, U ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets → ∃ V, V ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ V ⊆ (fun x => -x) ⁻¹' U [PROOFSTEP] rintro _ ⟨i, rfl⟩ [GOAL] case intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ ∃ V, V ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ V ⊆ (fun x => -x) ⁻¹' ↑(B i) [PROOFSTEP] use B i [GOAL] case h ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ ↑(B i) ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ ↑(B i) ⊆ (fun x => -x) ⁻¹' ↑(B i) [PROOFSTEP] constructor [GOAL] case h.left ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ ↑(B i) ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets [PROOFSTEP] use i [GOAL] case h.right ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ ↑(B i) ⊆ (fun x => -x) ⁻¹' ↑(B i) [PROOFSTEP] intro x x_in [GOAL] case h.right ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι x : M x_in : x ∈ ↑(B i) ⊢ x ∈ (fun x => -x) ⁻¹' ↑(B i) [PROOFSTEP] exact (B i).neg_mem x_in [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B ⊢ ∀ (x₀ : M) {U : Set M}, U ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets → ∃ V, V ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ V ⊆ (fun x => x₀ + x + -x₀) ⁻¹' U [PROOFSTEP] rintro x₀ _ ⟨i, rfl⟩ [GOAL] case intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B x₀ : M i : ι ⊢ ∃ V, V ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ V ⊆ (fun x => x₀ + x + -x₀) ⁻¹' ↑(B i) [PROOFSTEP] use B i [GOAL] case h ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B x₀ : M i : ι ⊢ ↑(B i) ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets ∧ ↑(B i) ⊆ (fun x => x₀ + x + -x₀) ⁻¹' ↑(B i) [PROOFSTEP] constructor [GOAL] case h.left ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B x₀ : M i : ι ⊢ ↑(B i) ∈ { sets := {U | ∃ i, U = ↑(B i)}, nonempty := (_ : ∃ x, x ∈ {U | ∃ i, U = ↑(B i)}), inter_sets := (_ : ∀ {x y : Set M}, x ∈ {U | ∃ i, U = ↑(B i)} → y ∈ {U | ∃ i, U = ↑(B i)} → ∃ z, z ∈ {U | ∃ i, U = ↑(B i)} ∧ z ⊆ x ∩ y) }.sets [PROOFSTEP] use i [GOAL] case h.right ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B x₀ : M i : ι ⊢ ↑(B i) ⊆ (fun x => x₀ + x + -x₀) ⁻¹' ↑(B i) [PROOFSTEP] simp [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B ⊢ ∀ {U : Set M}, U ∈ AddGroupFilterBasis.toFilterBasis.sets → ∃ V, V ∈ 𝓝 0 ∧ ∃ W, W ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V • W ⊆ U [PROOFSTEP] rintro _ ⟨i, rfl⟩ [GOAL] case intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ ∃ V, V ∈ 𝓝 0 ∧ ∃ W, W ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V • W ⊆ ↑(B i) [PROOFSTEP] use univ [GOAL] case h ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ univ ∈ 𝓝 0 ∧ ∃ W, W ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ univ • W ⊆ ↑(B i) [PROOFSTEP] constructor [GOAL] case h.left ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ univ ∈ 𝓝 0 [PROOFSTEP] exact univ_mem [GOAL] case h.right ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ ∃ W, W ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ univ • W ⊆ ↑(B i) [PROOFSTEP] use B i [GOAL] case h ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ ↑(B i) ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ univ • ↑(B i) ⊆ ↑(B i) [PROOFSTEP] constructor [GOAL] case h.left ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ ↑(B i) ∈ AddGroupFilterBasis.toFilterBasis.sets [PROOFSTEP] use i [GOAL] case h.right ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι ⊢ univ • ↑(B i) ⊆ ↑(B i) [PROOFSTEP] rintro _ ⟨a, m, -, hm, rfl⟩ [GOAL] case h.right.intro.intro.intro.intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι a : R m : M hm : m ∈ ↑(B i) ⊢ (fun x x_1 => x • x_1) a m ∈ ↑(B i) [PROOFSTEP] exact (B i).smul_mem _ hm [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B ⊢ ∀ (x₀ : R) {U : Set M}, U ∈ AddGroupFilterBasis.toFilterBasis.sets → ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V ⊆ (fun x => x₀ • x) ⁻¹' U [PROOFSTEP] rintro x₀ _ ⟨i, rfl⟩ [GOAL] case intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B x₀ : R i : ι ⊢ ∃ V, V ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ V ⊆ (fun x => x₀ • x) ⁻¹' ↑(B i) [PROOFSTEP] use B i [GOAL] case h ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B x₀ : R i : ι ⊢ ↑(B i) ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ ↑(B i) ⊆ (fun x => x₀ • x) ⁻¹' ↑(B i) [PROOFSTEP] constructor [GOAL] case h.left ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B x₀ : R i : ι ⊢ ↑(B i) ∈ AddGroupFilterBasis.toFilterBasis.sets [PROOFSTEP] use i [GOAL] case h.right ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B x₀ : R i : ι ⊢ ↑(B i) ⊆ (fun x => x₀ • x) ⁻¹' ↑(B i) [PROOFSTEP] intro m [GOAL] case h.right ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B x₀ : R i : ι m : M ⊢ m ∈ ↑(B i) → m ∈ (fun x => x₀ • x) ⁻¹' ↑(B i) [PROOFSTEP] exact (B i).smul_mem _ [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B ⊢ ∀ (m₀ : M) {U : Set M}, U ∈ AddGroupFilterBasis.toFilterBasis.sets → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ U [PROOFSTEP] rintro m₀ _ ⟨i, rfl⟩ [GOAL] case intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B m₀ : M i : ι ⊢ ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ ↑(B i) [PROOFSTEP] exact hB.smul m₀ i [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι x✝ : TopologicalSpace M := topology hB src✝ : AddSubgroup M := Submodule.toAddSubgroup (B i) ⊢ IsOpen { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] letI := hB.topology [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι x✝ : TopologicalSpace M := topology hB src✝ : AddSubgroup M := Submodule.toAddSubgroup (B i) this : TopologicalSpace M := topology hB ⊢ IsOpen { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] rw [isOpen_iff_mem_nhds] [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι x✝ : TopologicalSpace M := topology hB src✝ : AddSubgroup M := Submodule.toAddSubgroup (B i) this : TopologicalSpace M := topology hB ⊢ ∀ (a : M), a ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ∈ 𝓝 a [PROOFSTEP] intro a a_in [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι x✝ : TopologicalSpace M := topology hB src✝ : AddSubgroup M := Submodule.toAddSubgroup (B i) this : TopologicalSpace M := topology hB a : M a_in : a ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ∈ 𝓝 a [PROOFSTEP] rw [(hB.toModuleFilterBasis.toAddGroupFilterBasis.nhds_hasBasis a).mem_iff] [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι x✝ : TopologicalSpace M := topology hB src✝ : AddSubgroup M := Submodule.toAddSubgroup (B i) this : TopologicalSpace M := topology hB a : M a_in : a ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ∃ i, i ∈ (toModuleFilterBasis hB).toAddGroupFilterBasis ∧ (fun y => a + y) '' i ⊆ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] use B i [GOAL] case h ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι x✝ : TopologicalSpace M := topology hB src✝ : AddSubgroup M := Submodule.toAddSubgroup (B i) this : TopologicalSpace M := topology hB a : M a_in : a ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ↑(B i) ∈ (toModuleFilterBasis hB).toAddGroupFilterBasis ∧ (fun y => a + y) '' ↑(B i) ⊆ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] constructor [GOAL] case h.left ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι x✝ : TopologicalSpace M := topology hB src✝ : AddSubgroup M := Submodule.toAddSubgroup (B i) this : TopologicalSpace M := topology hB a : M a_in : a ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ↑(B i) ∈ (toModuleFilterBasis hB).toAddGroupFilterBasis [PROOFSTEP] use i [GOAL] case h.right ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι x✝ : TopologicalSpace M := topology hB src✝ : AddSubgroup M := Submodule.toAddSubgroup (B i) this : TopologicalSpace M := topology hB a : M a_in : a ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ (fun y => a + y) '' ↑(B i) ⊆ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] rintro - ⟨b, b_in, rfl⟩ [GOAL] case h.right.intro.intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB : SubmodulesBasis B i : ι x✝ : TopologicalSpace M := topology hB src✝ : AddSubgroup M := Submodule.toAddSubgroup (B i) this : TopologicalSpace M := topology hB a : M a_in : a ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier b : M b_in : b ∈ ↑(B i) ⊢ (fun y => a + y) b ∈ { toAddSubmonoid := src✝.toAddSubmonoid, neg_mem' := (_ : ∀ {x : M}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] exact (B i).add_mem a_in b_in [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB✝ hB : SubmodulesBasis B ⊢ NonarchimedeanAddGroup M [PROOFSTEP] letI := hB.topology [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB✝ hB : SubmodulesBasis B this : TopologicalSpace M := topology hB ⊢ NonarchimedeanAddGroup M [PROOFSTEP] constructor [GOAL] case is_nonarchimedean ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB✝ hB : SubmodulesBasis B this : TopologicalSpace M := topology hB ⊢ ∀ (U : Set M), U ∈ 𝓝 0 → ∃ V, ↑V ⊆ U [PROOFSTEP] intro U hU [GOAL] case is_nonarchimedean ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB✝ hB : SubmodulesBasis B this : TopologicalSpace M := topology hB U : Set M hU : U ∈ 𝓝 0 ⊢ ∃ V, ↑V ⊆ U [PROOFSTEP] obtain ⟨-, ⟨i, rfl⟩, hi : (B i : Set M) ⊆ U⟩ := hB.toModuleFilterBasis.toAddGroupFilterBasis.nhds_zero_hasBasis.mem_iff.mp hU [GOAL] case is_nonarchimedean.intro.intro.intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : Algebra R A M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalSpace R inst✝ : Nonempty ι B : ι → Submodule R M hB✝ hB : SubmodulesBasis B this : TopologicalSpace M := topology hB U : Set M hU : U ∈ 𝓝 0 i : ι hi : ↑(B i) ⊆ U ⊢ ∃ V, ↑V ⊆ U [PROOFSTEP] exact ⟨hB.openAddSubgroup i, hi⟩ [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A M : Type u_4 inst✝¹ : AddCommGroup M inst✝ : Module R M BR : RingFilterBasis R B : ι → Submodule R M hB : SubmodulesBasis BR B x✝ : TopologicalSpace R := topology BR ⊢ ∀ (m : M) (i : ι), ∀ᶠ (a : R) in 𝓝 0, a • m ∈ B i [PROOFSTEP] letI := BR.topology [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A M : Type u_4 inst✝¹ : AddCommGroup M inst✝ : Module R M BR : RingFilterBasis R B : ι → Submodule R M hB : SubmodulesBasis BR B x✝ : TopologicalSpace R := topology BR this : TopologicalSpace R := topology BR ⊢ ∀ (m : M) (i : ι), ∀ᶠ (a : R) in 𝓝 0, a • m ∈ B i [PROOFSTEP] intro m i [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A M : Type u_4 inst✝¹ : AddCommGroup M inst✝ : Module R M BR : RingFilterBasis R B : ι → Submodule R M hB : SubmodulesBasis BR B x✝ : TopologicalSpace R := topology BR this : TopologicalSpace R := topology BR m : M i : ι ⊢ ∀ᶠ (a : R) in 𝓝 0, a • m ∈ B i [PROOFSTEP] rcases hB.smul m i with ⟨V, V_in, hV⟩ [GOAL] case intro.intro ι : Type u_1 R : Type u_2 A : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A M : Type u_4 inst✝¹ : AddCommGroup M inst✝ : Module R M BR : RingFilterBasis R B : ι → Submodule R M hB : SubmodulesBasis BR B x✝ : TopologicalSpace R := topology BR this : TopologicalSpace R := topology BR m : M i : ι V : Set R V_in : V ∈ BR hV : V ⊆ (fun x => x • m) ⁻¹' ↑(B i) ⊢ ∀ᶠ (a : R) in 𝓝 0, a • m ∈ B i [PROOFSTEP] exact mem_of_superset (BR.toAddGroupFilterBasis.mem_nhds_zero V_in) hV
{"mathlib_filename": "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "llama_tokens": 31788}
[GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K f : G →* H emb : OpenEmbedding ↑f U : Set H hU : U ∈ nhds 1 ⊢ ↑f ⁻¹' U ∈ nhds 1 [PROOFSTEP] apply emb.continuous.tendsto [GOAL] case a G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K f : G →* H emb : OpenEmbedding ↑f U : Set H hU : U ∈ nhds 1 ⊢ U ∈ nhds (↑f 1) [PROOFSTEP] rwa [f.map_one] [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K U : Set (G × K) hU : U ∈ nhds 1 ⊢ ∃ V W, ↑V ×ˢ ↑W ⊆ U [PROOFSTEP] erw [nhds_prod_eq, Filter.mem_prod_iff] at hU [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K U : Set (G × K) hU : ∃ t₁, t₁ ∈ nhds 1 ∧ ∃ t₂, t₂ ∈ nhds 1 ∧ t₁ ×ˢ t₂ ⊆ U ⊢ ∃ V W, ↑V ×ˢ ↑W ⊆ U [PROOFSTEP] rcases hU with ⟨U₁, hU₁, U₂, hU₂, h⟩ [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K U : Set (G × K) U₁ : Set G hU₁ : U₁ ∈ nhds 1 U₂ : Set K hU₂ : U₂ ∈ nhds 1 h : U₁ ×ˢ U₂ ⊆ U ⊢ ∃ V W, ↑V ×ˢ ↑W ⊆ U [PROOFSTEP] cases' is_nonarchimedean _ hU₁ with V hV [GOAL] case intro.intro.intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K U : Set (G × K) U₁ : Set G hU₁ : U₁ ∈ nhds 1 U₂ : Set K hU₂ : U₂ ∈ nhds 1 h : U₁ ×ˢ U₂ ⊆ U V : OpenSubgroup G hV : ↑V ⊆ U₁ ⊢ ∃ V W, ↑V ×ˢ ↑W ⊆ U [PROOFSTEP] cases' is_nonarchimedean _ hU₂ with W hW [GOAL] case intro.intro.intro.intro.intro.intro G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K U : Set (G × K) U₁ : Set G hU₁ : U₁ ∈ nhds 1 U₂ : Set K hU₂ : U₂ ∈ nhds 1 h : U₁ ×ˢ U₂ ⊆ U V : OpenSubgroup G hV : ↑V ⊆ U₁ W : OpenSubgroup K hW : ↑W ⊆ U₂ ⊢ ∃ V W, ↑V ×ˢ ↑W ⊆ U [PROOFSTEP] use V [GOAL] case h G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K U : Set (G × K) U₁ : Set G hU₁ : U₁ ∈ nhds 1 U₂ : Set K hU₂ : U₂ ∈ nhds 1 h : U₁ ×ˢ U₂ ⊆ U V : OpenSubgroup G hV : ↑V ⊆ U₁ W : OpenSubgroup K hW : ↑W ⊆ U₂ ⊢ ∃ W, ↑V ×ˢ ↑W ⊆ U [PROOFSTEP] use W [GOAL] case h G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K U : Set (G × K) U₁ : Set G hU₁ : U₁ ∈ nhds 1 U₂ : Set K hU₂ : U₂ ∈ nhds 1 h : U₁ ×ˢ U₂ ⊆ U V : OpenSubgroup G hV : ↑V ⊆ U₁ W : OpenSubgroup K hW : ↑W ⊆ U₂ ⊢ ↑V ×ˢ ↑W ⊆ U [PROOFSTEP] rw [Set.prod_subset_iff] [GOAL] case h G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K U : Set (G × K) U₁ : Set G hU₁ : U₁ ∈ nhds 1 U₂ : Set K hU₂ : U₂ ∈ nhds 1 h : U₁ ×ˢ U₂ ⊆ U V : OpenSubgroup G hV : ↑V ⊆ U₁ W : OpenSubgroup K hW : ↑W ⊆ U₂ ⊢ ∀ (x : G), x ∈ ↑V → ∀ (y : K), y ∈ ↑W → (x, y) ∈ U [PROOFSTEP] intro x hX y hY [GOAL] case h G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K U : Set (G × K) U₁ : Set G hU₁ : U₁ ∈ nhds 1 U₂ : Set K hU₂ : U₂ ∈ nhds 1 h : U₁ ×ˢ U₂ ⊆ U V : OpenSubgroup G hV : ↑V ⊆ U₁ W : OpenSubgroup K hW : ↑W ⊆ U₂ x : G hX : x ∈ ↑V y : K hY : y ∈ ↑W ⊢ (x, y) ∈ U [PROOFSTEP] exact Set.Subset.trans (Set.prod_mono hV hW) h (Set.mem_sep hX hY) [GOAL] G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K U : Set (G × G) hU : U ∈ nhds 1 V W : OpenSubgroup G h : ↑V ×ˢ ↑W ⊆ U ⊢ ↑(V ⊓ W) ×ˢ ↑(V ⊓ W) ⊆ U [PROOFSTEP] refine' Set.Subset.trans (Set.prod_mono _ _) ‹_› [GOAL] case refine'_1 G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K U : Set (G × G) hU : U ∈ nhds 1 V W : OpenSubgroup G h : ↑V ×ˢ ↑W ⊆ U ⊢ ↑(V ⊓ W) ⊆ ↑V [PROOFSTEP] simp [GOAL] case refine'_2 G : Type u_1 inst✝⁸ : Group G inst✝⁷ : TopologicalSpace G inst✝⁶ : NonarchimedeanGroup G H : Type u_2 inst✝⁵ : Group H inst✝⁴ : TopologicalSpace H inst✝³ : TopologicalGroup H K : Type u_3 inst✝² : Group K inst✝¹ : TopologicalSpace K inst✝ : NonarchimedeanGroup K U : Set (G × G) hU : U ∈ nhds 1 V W : OpenSubgroup G h : ↑V ×ˢ ↑W ⊆ U ⊢ ↑(V ⊓ W) ⊆ ↑W [PROOFSTEP] simp [GOAL] R : Type u_1 S : Type u_2 inst✝⁵ : Ring R inst✝⁴ : TopologicalSpace R inst✝³ : NonarchimedeanRing R inst✝² : Ring S inst✝¹ : TopologicalSpace S inst✝ : NonarchimedeanRing S U : OpenAddSubgroup R ⊢ ∃ V, ↑V * ↑V ⊆ ↑U [PROOFSTEP] let ⟨V, H⟩ := prod_self_subset (IsOpen.mem_nhds (IsOpen.preimage continuous_mul U.isOpen) (by simpa only [Set.mem_preimage, SetLike.mem_coe, Prod.snd_zero, mul_zero] using U.zero_mem)) [GOAL] R : Type u_1 S : Type u_2 inst✝⁵ : Ring R inst✝⁴ : TopologicalSpace R inst✝³ : NonarchimedeanRing R inst✝² : Ring S inst✝¹ : TopologicalSpace S inst✝ : NonarchimedeanRing S U : OpenAddSubgroup R ⊢ 0 ∈ (fun p => p.fst * p.snd) ⁻¹' ↑U [PROOFSTEP] simpa only [Set.mem_preimage, SetLike.mem_coe, Prod.snd_zero, mul_zero] using U.zero_mem [GOAL] R : Type u_1 S : Type u_2 inst✝⁵ : Ring R inst✝⁴ : TopologicalSpace R inst✝³ : NonarchimedeanRing R inst✝² : Ring S inst✝¹ : TopologicalSpace S inst✝ : NonarchimedeanRing S U V : OpenAddSubgroup R H : ↑V ×ˢ ↑V ⊆ (fun p => p.fst * p.snd) ⁻¹' ↑U ⊢ ∃ V, ↑V * ↑V ⊆ ↑U [PROOFSTEP] use V [GOAL] case h R : Type u_1 S : Type u_2 inst✝⁵ : Ring R inst✝⁴ : TopologicalSpace R inst✝³ : NonarchimedeanRing R inst✝² : Ring S inst✝¹ : TopologicalSpace S inst✝ : NonarchimedeanRing S U V : OpenAddSubgroup R H : ↑V ×ˢ ↑V ⊆ (fun p => p.fst * p.snd) ⁻¹' ↑U ⊢ ↑V * ↑V ⊆ ↑U [PROOFSTEP] rintro v ⟨a, b, ha, hb, hv⟩ [GOAL] case h.intro.intro.intro.intro R : Type u_1 S : Type u_2 inst✝⁵ : Ring R inst✝⁴ : TopologicalSpace R inst✝³ : NonarchimedeanRing R inst✝² : Ring S inst✝¹ : TopologicalSpace S inst✝ : NonarchimedeanRing S U V : OpenAddSubgroup R H : ↑V ×ˢ ↑V ⊆ (fun p => p.fst * p.snd) ⁻¹' ↑U v a b : R ha : a ∈ ↑V hb : b ∈ ↑V hv : (fun x x_1 => x * x_1) a b = v ⊢ v ∈ ↑U [PROOFSTEP] have hy := H (Set.mk_mem_prod ha hb) [GOAL] case h.intro.intro.intro.intro R : Type u_1 S : Type u_2 inst✝⁵ : Ring R inst✝⁴ : TopologicalSpace R inst✝³ : NonarchimedeanRing R inst✝² : Ring S inst✝¹ : TopologicalSpace S inst✝ : NonarchimedeanRing S U V : OpenAddSubgroup R H : ↑V ×ˢ ↑V ⊆ (fun p => p.fst * p.snd) ⁻¹' ↑U v a b : R ha : a ∈ ↑V hb : b ∈ ↑V hv : (fun x x_1 => x * x_1) a b = v hy : (a, b) ∈ (fun p => p.fst * p.snd) ⁻¹' ↑U ⊢ v ∈ ↑U [PROOFSTEP] simp only [Set.mem_preimage, SetLike.mem_coe, hv] at hy [GOAL] case h.intro.intro.intro.intro R : Type u_1 S : Type u_2 inst✝⁵ : Ring R inst✝⁴ : TopologicalSpace R inst✝³ : NonarchimedeanRing R inst✝² : Ring S inst✝¹ : TopologicalSpace S inst✝ : NonarchimedeanRing S U V : OpenAddSubgroup R H : ↑V ×ˢ ↑V ⊆ (fun p => p.fst * p.snd) ⁻¹' ↑U v a b : R ha : a ∈ ↑V hb : b ∈ ↑V hv : (fun x x_1 => x * x_1) a b = v hy : v ∈ U ⊢ v ∈ ↑U [PROOFSTEP] rw [SetLike.mem_coe] [GOAL] case h.intro.intro.intro.intro R : Type u_1 S : Type u_2 inst✝⁵ : Ring R inst✝⁴ : TopologicalSpace R inst✝³ : NonarchimedeanRing R inst✝² : Ring S inst✝¹ : TopologicalSpace S inst✝ : NonarchimedeanRing S U V : OpenAddSubgroup R H : ↑V ×ˢ ↑V ⊆ (fun p => p.fst * p.snd) ⁻¹' ↑U v a b : R ha : a ∈ ↑V hb : b ∈ ↑V hv : (fun x x_1 => x * x_1) a b = v hy : v ∈ U ⊢ v ∈ U [PROOFSTEP] exact hy
{"mathlib_filename": "Mathlib.Topology.Algebra.Nonarchimedean.Basic", "llama_tokens": 4909}
[GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 ⊢ 𝔠 ≤ #𝕜 [PROOFSTEP] suffices ∃ f : (ℕ → Bool) → 𝕜, range f ⊆ univ ∧ Continuous f ∧ Injective f by rcases this with ⟨f, -, -, f_inj⟩ simpa using lift_mk_le_lift_mk_of_injective f_inj [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 this : ∃ f, range f ⊆ Set.univ ∧ Continuous f ∧ Injective f ⊢ 𝔠 ≤ #𝕜 [PROOFSTEP] rcases this with ⟨f, -, -, f_inj⟩ [GOAL] case intro.intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 f : (ℕ → Bool) → 𝕜 f_inj : Injective f ⊢ 𝔠 ≤ #𝕜 [PROOFSTEP] simpa using lift_mk_le_lift_mk_of_injective f_inj [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 ⊢ ∃ f, range f ⊆ Set.univ ∧ Continuous f ∧ Injective f [PROOFSTEP] apply Perfect.exists_nat_bool_injection _ univ_nonempty [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 ⊢ Perfect Set.univ [PROOFSTEP] refine ⟨isClosed_univ, preperfect_iff_nhds.2 (fun x _ U hU ↦ ?_)⟩ [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x ⊢ ∃ y, y ∈ U ∩ Set.univ ∧ y ≠ x [PROOFSTEP] rcases NormedField.exists_norm_lt_one 𝕜 with ⟨c, c_pos, hc⟩ [GOAL] case intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 ⊢ ∃ y, y ∈ U ∩ Set.univ ∧ y ≠ x [PROOFSTEP] have A : Tendsto (fun n ↦ x + c ^ n) atTop (𝓝 (x + 0)) := tendsto_const_nhds.add (tendsto_pow_atTop_nhds_0_of_norm_lt_1 hc) [GOAL] case intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 (x + 0)) ⊢ ∃ y, y ∈ U ∩ Set.univ ∧ y ≠ x [PROOFSTEP] rw [add_zero] at A [GOAL] case intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) ⊢ ∃ y, y ∈ U ∩ Set.univ ∧ y ≠ x [PROOFSTEP] have B : ∀ᶠ n in atTop, x + c ^ n ∈ U := tendsto_def.1 A U hU [GOAL] case intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) B : ∀ᶠ (n : ℕ) in atTop, x + c ^ n ∈ U ⊢ ∃ y, y ∈ U ∩ Set.univ ∧ y ≠ x [PROOFSTEP] rcases B.exists with ⟨n, hn⟩ [GOAL] case intro.intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) B : ∀ᶠ (n : ℕ) in atTop, x + c ^ n ∈ U n : ℕ hn : x + c ^ n ∈ U ⊢ ∃ y, y ∈ U ∩ Set.univ ∧ y ≠ x [PROOFSTEP] refine ⟨x + c ^ n, by simpa using hn, ?_⟩ [GOAL] 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) B : ∀ᶠ (n : ℕ) in atTop, x + c ^ n ∈ U n : ℕ hn : x + c ^ n ∈ U ⊢ x + c ^ n ∈ U ∩ Set.univ [PROOFSTEP] simpa using hn [GOAL] case intro.intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) B : ∀ᶠ (n : ℕ) in atTop, x + c ^ n ∈ U n : ℕ hn : x + c ^ n ∈ U ⊢ x + c ^ n ≠ x [PROOFSTEP] simp only [ne_eq, add_right_eq_self] [GOAL] case intro.intro.intro 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) B : ∀ᶠ (n : ℕ) in atTop, x + c ^ n ∈ U n : ℕ hn : x + c ^ n ∈ U ⊢ ¬c ^ n = 0 [PROOFSTEP] apply pow_ne_zero [GOAL] case intro.intro.intro.h 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : CompleteSpace 𝕜 x : 𝕜 x✝ : x ∈ Set.univ U : Set 𝕜 hU : U ∈ 𝓝 x c : 𝕜 c_pos : 0 < ‖c‖ hc : ‖c‖ < 1 A : Tendsto (fun n => x + c ^ n) atTop (𝓝 x) B : ∀ᶠ (n : ℕ) in atTop, x + c ^ n ∈ U n : ℕ hn : x + c ^ n ∈ U ⊢ c ≠ 0 [PROOFSTEP] simpa using c_pos [GOAL] 𝕜 : Type u E : Type v inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : CompleteSpace 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : Nontrivial E ⊢ 𝔠 ≤ #E [PROOFSTEP] have A : lift.{v} (𝔠 : Cardinal.{u}) ≤ lift.{v} (#𝕜) := by simpa using continuum_le_cardinal_of_nontriviallyNormedField 𝕜 [GOAL] 𝕜 : Type u E : Type v inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : CompleteSpace 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : Nontrivial E ⊢ lift 𝔠 ≤ lift #𝕜 [PROOFSTEP] simpa using continuum_le_cardinal_of_nontriviallyNormedField 𝕜 [GOAL] 𝕜 : Type u E : Type v inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : CompleteSpace 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : Nontrivial E A : lift 𝔠 ≤ lift #𝕜 ⊢ 𝔠 ≤ #E [PROOFSTEP] simpa using A.trans (Cardinal.mk_le_of_module 𝕜 E) [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 ⊢ #↑s = #E [PROOFSTEP] obtain ⟨c, hc⟩ : ∃ x : 𝕜, 1 < ‖x‖ := NormedField.exists_lt_norm 𝕜 1 [GOAL] case intro E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ ⊢ #↑s = #E [PROOFSTEP] have cn_ne : ∀ n, c ^ n ≠ 0 := by intro n apply pow_ne_zero rintro rfl simp only [norm_zero] at hc exact lt_irrefl _ (hc.trans zero_lt_one) [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ ⊢ ∀ (n : ℕ), c ^ n ≠ 0 [PROOFSTEP] intro n [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ n : ℕ ⊢ c ^ n ≠ 0 [PROOFSTEP] apply pow_ne_zero [GOAL] case h E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ n : ℕ ⊢ c ≠ 0 [PROOFSTEP] rintro rfl [GOAL] case h E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 n : ℕ hc : 1 < ‖0‖ ⊢ False [PROOFSTEP] simp only [norm_zero] at hc [GOAL] case h E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 n : ℕ hc : 1 < 0 ⊢ False [PROOFSTEP] exact lt_irrefl _ (hc.trans zero_lt_one) [GOAL] case intro E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 ⊢ #↑s = #E [PROOFSTEP] have A : ∀ (x : E), ∀ᶠ n in (atTop : Filter ℕ), x ∈ c ^ n • s := by intro x have : Tendsto (fun n ↦ (c ^ n)⁻¹ • x) atTop (𝓝 ((0 : 𝕜) • x)) := by have : Tendsto (fun n ↦ (c ^ n)⁻¹) atTop (𝓝 0) := by simp_rw [← inv_pow] apply tendsto_pow_atTop_nhds_0_of_norm_lt_1 rw [norm_inv] exact inv_lt_one hc exact Tendsto.smul_const this x rw [zero_smul] at this filter_upwards [this hs] with n (hn : (c ^ n)⁻¹ • x ∈ s) exact (mem_smul_set_iff_inv_smul_mem₀ (cn_ne n) _ _).2 hn [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 ⊢ ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s [PROOFSTEP] intro x [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E ⊢ ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s [PROOFSTEP] have : Tendsto (fun n ↦ (c ^ n)⁻¹ • x) atTop (𝓝 ((0 : 𝕜) • x)) := by have : Tendsto (fun n ↦ (c ^ n)⁻¹) atTop (𝓝 0) := by simp_rw [← inv_pow] apply tendsto_pow_atTop_nhds_0_of_norm_lt_1 rw [norm_inv] exact inv_lt_one hc exact Tendsto.smul_const this x [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E ⊢ Tendsto (fun n => (c ^ n)⁻¹ • x) atTop (𝓝 (0 • x)) [PROOFSTEP] have : Tendsto (fun n ↦ (c ^ n)⁻¹) atTop (𝓝 0) := by simp_rw [← inv_pow] apply tendsto_pow_atTop_nhds_0_of_norm_lt_1 rw [norm_inv] exact inv_lt_one hc [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E ⊢ Tendsto (fun n => (c ^ n)⁻¹) atTop (𝓝 0) [PROOFSTEP] simp_rw [← inv_pow] [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E ⊢ Tendsto (fun n => c⁻¹ ^ n) atTop (𝓝 0) [PROOFSTEP] apply tendsto_pow_atTop_nhds_0_of_norm_lt_1 [GOAL] case h E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E ⊢ ‖c⁻¹‖ < 1 [PROOFSTEP] rw [norm_inv] [GOAL] case h E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E ⊢ ‖c‖⁻¹ < 1 [PROOFSTEP] exact inv_lt_one hc [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E this : Tendsto (fun n => (c ^ n)⁻¹) atTop (𝓝 0) ⊢ Tendsto (fun n => (c ^ n)⁻¹ • x) atTop (𝓝 (0 • x)) [PROOFSTEP] exact Tendsto.smul_const this x [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E this : Tendsto (fun n => (c ^ n)⁻¹ • x) atTop (𝓝 (0 • x)) ⊢ ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s [PROOFSTEP] rw [zero_smul] at this [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E this : Tendsto (fun n => (c ^ n)⁻¹ • x) atTop (𝓝 0) ⊢ ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s [PROOFSTEP] filter_upwards [this hs] with n (hn : (c ^ n)⁻¹ • x ∈ s) [GOAL] case h E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E this : Tendsto (fun n => (c ^ n)⁻¹ • x) atTop (𝓝 0) n : ℕ hn : (c ^ n)⁻¹ • x ∈ s ⊢ x ∈ c ^ n • s [PROOFSTEP] exact (mem_smul_set_iff_inv_smul_mem₀ (cn_ne n) _ _).2 hn [GOAL] case intro E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s ⊢ #↑s = #E [PROOFSTEP] have B : ∀ n, #(c ^ n • s) = #s := by intro n have : c ^ n • s ≃ s := { toFun := fun x ↦ ⟨(c ^ n)⁻¹ • x.1, (mem_smul_set_iff_inv_smul_mem₀ (cn_ne n) _ _).1 x.2⟩ invFun := fun x ↦ ⟨(c ^ n) • x.1, smul_mem_smul_set x.2⟩ left_inv := fun x ↦ by simp [smul_smul, mul_inv_cancel (cn_ne n)] right_inv := fun x ↦ by simp [smul_smul, inv_mul_cancel (cn_ne n)] } exact Cardinal.mk_congr this [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s ⊢ ∀ (n : ℕ), #↑(c ^ n • s) = #↑s [PROOFSTEP] intro n [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s n : ℕ ⊢ #↑(c ^ n • s) = #↑s [PROOFSTEP] have : c ^ n • s ≃ s := { toFun := fun x ↦ ⟨(c ^ n)⁻¹ • x.1, (mem_smul_set_iff_inv_smul_mem₀ (cn_ne n) _ _).1 x.2⟩ invFun := fun x ↦ ⟨(c ^ n) • x.1, smul_mem_smul_set x.2⟩ left_inv := fun x ↦ by simp [smul_smul, mul_inv_cancel (cn_ne n)] right_inv := fun x ↦ by simp [smul_smul, inv_mul_cancel (cn_ne n)] } [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s n : ℕ x : ↑(c ^ n • s) ⊢ (fun x => { val := c ^ n • ↑x, property := (_ : c ^ n • ↑x ∈ c ^ n • s) }) ((fun x => { val := (c ^ n)⁻¹ • ↑x, property := (_ : (c ^ n)⁻¹ • ↑x ∈ s) }) x) = x [PROOFSTEP] simp [smul_smul, mul_inv_cancel (cn_ne n)] [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s n : ℕ x : ↑s ⊢ (fun x => { val := (c ^ n)⁻¹ • ↑x, property := (_ : (c ^ n)⁻¹ • ↑x ∈ s) }) ((fun x => { val := c ^ n • ↑x, property := (_ : c ^ n • ↑x ∈ c ^ n • s) }) x) = x [PROOFSTEP] simp [smul_smul, inv_mul_cancel (cn_ne n)] [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s n : ℕ this : ↑(c ^ n • s) ≃ ↑s ⊢ #↑(c ^ n • s) = #↑s [PROOFSTEP] exact Cardinal.mk_congr this [GOAL] case intro E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 A : ∀ (x : E), ∀ᶠ (n : ℕ) in atTop, x ∈ c ^ n • s B : ∀ (n : ℕ), #↑(c ^ n • s) = #↑s ⊢ #↑s = #E [PROOFSTEP] apply (Cardinal.mk_of_countable_eventually_mem A B).symm [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x ⊢ #↑s = #E [PROOFSTEP] let g := Homeomorph.addLeft x [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x ⊢ #↑s = #E [PROOFSTEP] let t := g ⁻¹' s [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x t : Set E := ↑g ⁻¹' s ⊢ #↑s = #E [PROOFSTEP] have : t ∈ 𝓝 0 := g.continuous.continuousAt.preimage_mem_nhds (by simpa using hs) [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x t : Set E := ↑g ⁻¹' s ⊢ s ∈ 𝓝 (↑g 0) [PROOFSTEP] simpa using hs [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x t : Set E := ↑g ⁻¹' s this : t ∈ 𝓝 0 ⊢ #↑s = #E [PROOFSTEP] have A : #t = #E := cardinal_eq_of_mem_nhds_zero 𝕜 this [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x t : Set E := ↑g ⁻¹' s this : t ∈ 𝓝 0 A : #↑t = #E ⊢ #↑s = #E [PROOFSTEP] have B : #t = #s := Cardinal.mk_subtype_of_equiv s g.toEquiv [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E x : E hs : s ∈ 𝓝 x g : E ≃ₜ E := Homeomorph.addLeft x t : Set E := ↑g ⁻¹' s this : t ∈ 𝓝 0 A : #↑t = #E B : #↑t = #↑s ⊢ #↑s = #E [PROOFSTEP] rwa [B] at A [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : IsOpen s h's : Set.Nonempty s ⊢ #↑s = #E [PROOFSTEP] rcases h's with ⟨x, hx⟩ [GOAL] case intro E : Type u_1 𝕜 : Type u_2 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : IsOpen s x : E hx : x ∈ s ⊢ #↑s = #E [PROOFSTEP] exact cardinal_eq_of_mem_nhds 𝕜 (hs.mem_nhds hx) [GOAL] E : Type u_1 𝕜 : Type u_2 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : CompleteSpace 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : Nontrivial E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : IsOpen s h's : Set.Nonempty s ⊢ 𝔠 ≤ #↑s [PROOFSTEP] simpa [cardinal_eq_of_is_open 𝕜 hs h's] using continuum_le_cardinal_of_module 𝕜 E [GOAL] E : Type u 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : CompleteSpace 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : Nontrivial E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : Set.Countable s ⊢ Dense sᶜ [PROOFSTEP] rw [← interior_eq_empty_iff_dense_compl] [GOAL] E : Type u 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : CompleteSpace 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : Nontrivial E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : Set.Countable s ⊢ interior s = ∅ [PROOFSTEP] by_contra H [GOAL] E : Type u 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : CompleteSpace 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : Nontrivial E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : Set.Countable s H : ¬interior s = ∅ ⊢ False [PROOFSTEP] apply lt_irrefl (ℵ₀ : Cardinal.{u}) [GOAL] E : Type u 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : CompleteSpace 𝕜 inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : Nontrivial E inst✝² : TopologicalSpace E inst✝¹ : ContinuousAdd E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : Set.Countable s H : ¬interior s = ∅ ⊢ ℵ₀ < ℵ₀ [PROOFSTEP] calc (ℵ₀ : Cardinal.{u}) < 𝔠 := aleph0_lt_continuum _ ≤ #(interior s) := (continuum_le_cardinal_of_is_open 𝕜 isOpen_interior (nmem_singleton_empty.1 H)) _ ≤ #s := (mk_le_mk_of_subset interior_subset) _ ≤ ℵ₀ := le_aleph0 hs
{"mathlib_filename": "Mathlib.Topology.Algebra.Module.Cardinality", "llama_tokens": 11134}
[GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K : PositiveCompacts G ⊢ LocallyCompactSpace G [PROOFSTEP] refine' locally_compact_of_compact_nhds fun x => _ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K : PositiveCompacts G x : G ⊢ ∃ s, s ∈ 𝓝 x ∧ IsCompact s [PROOFSTEP] obtain ⟨y, hy⟩ := K.interior_nonempty [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K : PositiveCompacts G x y : G hy : y ∈ interior ↑K ⊢ ∃ s, s ∈ 𝓝 x ∧ IsCompact s [PROOFSTEP] let F := Homeomorph.mulLeft (x * y⁻¹) [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K : PositiveCompacts G x y : G hy : y ∈ interior ↑K F : G ≃ₜ G := Homeomorph.mulLeft (x * y⁻¹) ⊢ ∃ s, s ∈ 𝓝 x ∧ IsCompact s [PROOFSTEP] refine' ⟨F '' K, _, K.isCompact.image F.continuous⟩ [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K : PositiveCompacts G x y : G hy : y ∈ interior ↑K F : G ≃ₜ G := Homeomorph.mulLeft (x * y⁻¹) ⊢ ↑F '' ↑K ∈ 𝓝 x [PROOFSTEP] suffices F.symm ⁻¹' K ∈ 𝓝 x by convert this using 1 apply Equiv.image_eq_preimage [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K : PositiveCompacts G x y : G hy : y ∈ interior ↑K F : G ≃ₜ G := Homeomorph.mulLeft (x * y⁻¹) this : ↑(Homeomorph.symm F) ⁻¹' ↑K ∈ 𝓝 x ⊢ ↑F '' ↑K ∈ 𝓝 x [PROOFSTEP] convert this using 1 [GOAL] case h.e'_4 α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K : PositiveCompacts G x y : G hy : y ∈ interior ↑K F : G ≃ₜ G := Homeomorph.mulLeft (x * y⁻¹) this : ↑(Homeomorph.symm F) ⁻¹' ↑K ∈ 𝓝 x ⊢ ↑F '' ↑K = ↑(Homeomorph.symm F) ⁻¹' ↑K [PROOFSTEP] apply Equiv.image_eq_preimage [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K : PositiveCompacts G x y : G hy : y ∈ interior ↑K F : G ≃ₜ G := Homeomorph.mulLeft (x * y⁻¹) ⊢ ↑(Homeomorph.symm F) ⁻¹' ↑K ∈ 𝓝 x [PROOFSTEP] apply ContinuousAt.preimage_mem_nhds F.symm.continuous.continuousAt [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K : PositiveCompacts G x y : G hy : y ∈ interior ↑K F : G ≃ₜ G := Homeomorph.mulLeft (x * y⁻¹) ⊢ ↑K ∈ 𝓝 (↑(Homeomorph.symm F) x) [PROOFSTEP] have : F.symm x = y := by simp only [Homeomorph.mulLeft_symm, mul_inv_rev, inv_inv, Homeomorph.coe_mulLeft, inv_mul_cancel_right] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K : PositiveCompacts G x y : G hy : y ∈ interior ↑K F : G ≃ₜ G := Homeomorph.mulLeft (x * y⁻¹) ⊢ ↑(Homeomorph.symm F) x = y [PROOFSTEP] simp only [Homeomorph.mulLeft_symm, mul_inv_rev, inv_inv, Homeomorph.coe_mulLeft, inv_mul_cancel_right] [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K : PositiveCompacts G x y : G hy : y ∈ interior ↑K F : G ≃ₜ G := Homeomorph.mulLeft (x * y⁻¹) this : ↑(Homeomorph.symm F) x = y ⊢ ↑K ∈ 𝓝 (↑(Homeomorph.symm F) x) [PROOFSTEP] rw [this] [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K : PositiveCompacts G x y : G hy : y ∈ interior ↑K F : G ≃ₜ G := Homeomorph.mulLeft (x * y⁻¹) this : ↑(Homeomorph.symm F) x = y ⊢ ↑K ∈ 𝓝 y [PROOFSTEP] exact mem_interior_iff_mem_nhds.1 hy [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G Γ : Subgroup G inst✝ : LocallyCompactSpace G ⊢ Continuous fun p => p.fst • p.snd [PROOFSTEP] let F : G × G ⧸ Γ → G ⧸ Γ := fun p => p.1 • p.2 [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G Γ : Subgroup G inst✝ : LocallyCompactSpace G F : G × G ⧸ Γ → G ⧸ Γ := fun p => p.fst • p.snd ⊢ Continuous fun p => p.fst • p.snd [PROOFSTEP] change Continuous F [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G Γ : Subgroup G inst✝ : LocallyCompactSpace G F : G × G ⧸ Γ → G ⧸ Γ := fun p => p.fst • p.snd ⊢ Continuous F [PROOFSTEP] have H : Continuous (F ∘ fun p : G × G => (p.1, QuotientGroup.mk p.2)) := by change Continuous fun p : G × G => QuotientGroup.mk (p.1 * p.2) refine' continuous_coinduced_rng.comp continuous_mul [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G Γ : Subgroup G inst✝ : LocallyCompactSpace G F : G × G ⧸ Γ → G ⧸ Γ := fun p => p.fst • p.snd ⊢ Continuous (F ∘ fun p => (p.fst, ↑p.snd)) [PROOFSTEP] change Continuous fun p : G × G => QuotientGroup.mk (p.1 * p.2) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G Γ : Subgroup G inst✝ : LocallyCompactSpace G F : G × G ⧸ Γ → G ⧸ Γ := fun p => p.fst • p.snd ⊢ Continuous fun p => ↑(p.fst * p.snd) [PROOFSTEP] refine' continuous_coinduced_rng.comp continuous_mul [GOAL] α : Type u β : Type v G : Type w H✝ : Type x inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G Γ : Subgroup G inst✝ : LocallyCompactSpace G F : G × G ⧸ Γ → G ⧸ Γ := fun p => p.fst • p.snd H : Continuous (F ∘ fun p => (p.fst, ↑p.snd)) ⊢ Continuous F [PROOFSTEP] exact QuotientMap.continuous_lift_prod_right quotientMap_quotient_mk' H
{"mathlib_filename": "Mathlib.Topology.Algebra.Group.Compact", "llama_tokens": 2901}
[GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f g : E →ₗ.[R] F hf : IsClosable f hfg : g ≤ f ⊢ IsClosable g [PROOFSTEP] cases' hf with f' hf [GOAL] case intro R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f g : E →ₗ.[R] F hfg : g ≤ f f' : E →ₗ.[R] F hf : Submodule.topologicalClosure (graph f) = graph f' ⊢ IsClosable g [PROOFSTEP] have : g.graph.topologicalClosure ≤ f'.graph := by rw [← hf] exact Submodule.topologicalClosure_mono (le_graph_of_le hfg) [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f g : E →ₗ.[R] F hfg : g ≤ f f' : E →ₗ.[R] F hf : Submodule.topologicalClosure (graph f) = graph f' ⊢ Submodule.topologicalClosure (graph g) ≤ graph f' [PROOFSTEP] rw [← hf] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f g : E →ₗ.[R] F hfg : g ≤ f f' : E →ₗ.[R] F hf : Submodule.topologicalClosure (graph f) = graph f' ⊢ Submodule.topologicalClosure (graph g) ≤ Submodule.topologicalClosure (graph f) [PROOFSTEP] exact Submodule.topologicalClosure_mono (le_graph_of_le hfg) [GOAL] case intro R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f g : E →ₗ.[R] F hfg : g ≤ f f' : E →ₗ.[R] F hf : Submodule.topologicalClosure (graph f) = graph f' this : Submodule.topologicalClosure (graph g) ≤ graph f' ⊢ IsClosable g [PROOFSTEP] use g.graph.topologicalClosure.toLinearPMap [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f g : E →ₗ.[R] F hfg : g ≤ f f' : E →ₗ.[R] F hf : Submodule.topologicalClosure (graph f) = graph f' this : Submodule.topologicalClosure (graph g) ≤ graph f' ⊢ Submodule.topologicalClosure (graph g) = graph (Submodule.toLinearPMap (Submodule.topologicalClosure (graph g))) [PROOFSTEP] rw [Submodule.toLinearPMap_graph_eq] [GOAL] case h.hg R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f g : E →ₗ.[R] F hfg : g ≤ f f' : E →ₗ.[R] F hf : Submodule.topologicalClosure (graph f) = graph f' this : Submodule.topologicalClosure (graph g) ≤ graph f' ⊢ ∀ (x : E × F), x ∈ Submodule.topologicalClosure (graph g) → x.fst = 0 → x.snd = 0 [PROOFSTEP] exact fun _ hx hx' => f'.graph_fst_eq_zero_snd (this hx) hx' [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : IsClosable f ⊢ ∃! f', Submodule.topologicalClosure (graph f) = graph f' [PROOFSTEP] refine' exists_unique_of_exists_of_unique hf fun _ _ hy₁ hy₂ => eq_of_eq_graph _ [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : IsClosable f x✝¹ x✝ : E →ₗ.[R] F hy₁ : Submodule.topologicalClosure (graph f) = graph x✝¹ hy₂ : Submodule.topologicalClosure (graph f) = graph x✝ ⊢ graph x✝¹ = graph x✝ [PROOFSTEP] rw [← hy₁, ← hy₂] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : IsClosable f ⊢ closure f = Exists.choose hf [PROOFSTEP] simp [closure, hf] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : ¬IsClosable f ⊢ closure f = f [PROOFSTEP] simp [closure, hf] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : IsClosable f ⊢ Submodule.topologicalClosure (graph f) = graph (closure f) [PROOFSTEP] rw [closure_def hf] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : IsClosable f ⊢ Submodule.topologicalClosure (graph f) = graph (Exists.choose hf) [PROOFSTEP] exact hf.choose_spec [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F ⊢ f ≤ closure f [PROOFSTEP] by_cases hf : f.IsClosable [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : IsClosable f ⊢ f ≤ closure f [PROOFSTEP] refine' le_of_le_graph _ [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : IsClosable f ⊢ graph f ≤ graph (closure f) [PROOFSTEP] rw [← hf.graph_closure_eq_closure_graph] [GOAL] case pos R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : IsClosable f ⊢ graph f ≤ Submodule.topologicalClosure (graph f) [PROOFSTEP] exact (graph f).le_topologicalClosure [GOAL] case neg R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : ¬IsClosable f ⊢ f ≤ closure f [PROOFSTEP] rw [closure_def' hf] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f g : E →ₗ.[R] F hg : IsClosable g h : f ≤ g ⊢ closure f ≤ closure g [PROOFSTEP] refine' le_of_le_graph _ [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f g : E →ₗ.[R] F hg : IsClosable g h : f ≤ g ⊢ graph (closure f) ≤ graph (closure g) [PROOFSTEP] rw [← (hg.leIsClosable h).graph_closure_eq_closure_graph] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f g : E →ₗ.[R] F hg : IsClosable g h : f ≤ g ⊢ Submodule.topologicalClosure (graph f) ≤ graph (closure g) [PROOFSTEP] rw [← hg.graph_closure_eq_closure_graph] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f g : E →ₗ.[R] F hg : IsClosable g h : f ≤ g ⊢ Submodule.topologicalClosure (graph f) ≤ Submodule.topologicalClosure (graph g) [PROOFSTEP] exact Submodule.topologicalClosure_mono (le_graph_of_le h) [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : IsClosable f ⊢ IsClosed (closure f) [PROOFSTEP] rw [IsClosed, ← hf.graph_closure_eq_closure_graph] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : IsClosable f ⊢ _root_.IsClosed ↑(Submodule.topologicalClosure (graph f)) [PROOFSTEP] exact f.graph.isClosed_topologicalClosure [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F ⊢ HasCore (closure f) f.domain [PROOFSTEP] refine' ⟨f.le_closure.1, _⟩ [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F ⊢ closure (domRestrict (closure f) f.domain) = closure f [PROOFSTEP] congr [GOAL] case e_f R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F ⊢ domRestrict (closure f) f.domain = f [PROOFSTEP] ext x y hxy [GOAL] case e_f.h.h R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F x : E ⊢ x ∈ (domRestrict (closure f) f.domain).domain ↔ x ∈ f.domain [PROOFSTEP] simp only [domRestrict_domain, Submodule.mem_inf, and_iff_left_iff_imp] [GOAL] case e_f.h.h R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F x : E ⊢ x ∈ f.domain → x ∈ (closure f).domain [PROOFSTEP] intro hx [GOAL] case e_f.h.h R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F x : E hx : x ∈ f.domain ⊢ x ∈ (closure f).domain [PROOFSTEP] exact f.le_closure.1 hx [GOAL] case e_f.h' R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F x : { x // x ∈ (domRestrict (closure f) f.domain).domain } y : { x // x ∈ f.domain } hxy : ↑x = ↑y ⊢ ↑(domRestrict (closure f) f.domain) x = ↑f y [PROOFSTEP] let z : f.closure.domain := ⟨y.1, f.le_closure.1 y.2⟩ [GOAL] case e_f.h' R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F x : { x // x ∈ (domRestrict (closure f) f.domain).domain } y : { x // x ∈ f.domain } hxy : ↑x = ↑y z : { x // x ∈ (closure f).domain } := { val := ↑y, property := (_ : ↑y ∈ (closure f).domain) } ⊢ ↑(domRestrict (closure f) f.domain) x = ↑f y [PROOFSTEP] have hyz : (y : E) = z := by simp [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F x : { x // x ∈ (domRestrict (closure f) f.domain).domain } y : { x // x ∈ f.domain } hxy : ↑x = ↑y z : { x // x ∈ (closure f).domain } := { val := ↑y, property := (_ : ↑y ∈ (closure f).domain) } ⊢ ↑y = ↑z [PROOFSTEP] simp [GOAL] case e_f.h' R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F x : { x // x ∈ (domRestrict (closure f) f.domain).domain } y : { x // x ∈ f.domain } hxy : ↑x = ↑y z : { x // x ∈ (closure f).domain } := { val := ↑y, property := (_ : ↑y ∈ (closure f).domain) } hyz : ↑y = ↑z ⊢ ↑(domRestrict (closure f) f.domain) x = ↑f y [PROOFSTEP] rw [f.le_closure.2 hyz] [GOAL] case e_f.h' R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F x : { x // x ∈ (domRestrict (closure f) f.domain).domain } y : { x // x ∈ f.domain } hxy : ↑x = ↑y z : { x // x ∈ (closure f).domain } := { val := ↑y, property := (_ : ↑y ∈ (closure f).domain) } hyz : ↑y = ↑z ⊢ ↑(domRestrict (closure f) f.domain) x = ↑(closure f) z [PROOFSTEP] exact domRestrict_apply (hxy.trans hyz) [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f hcf : LinearMap.ker (closure f).toFun = ⊥ ⊢ graph (inverse (closure f)) = Submodule.topologicalClosure (graph (inverse f)) [PROOFSTEP] rw [inverse_graph hf, inverse_graph hcf, ← hf'.graph_closure_eq_closure_graph] [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f hcf : LinearMap.ker (closure f).toFun = ⊥ ⊢ Submodule.map (LinearEquiv.prodComm R E F) (Submodule.topologicalClosure (graph f)) = Submodule.topologicalClosure (Submodule.map (LinearEquiv.prodComm R E F) (graph f)) [PROOFSTEP] apply SetLike.ext' [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f hcf : LinearMap.ker (closure f).toFun = ⊥ ⊢ ↑(Submodule.map (LinearEquiv.prodComm R E F) (Submodule.topologicalClosure (graph f))) = ↑(Submodule.topologicalClosure (Submodule.map (LinearEquiv.prodComm R E F) (graph f))) [PROOFSTEP] simp only [Submodule.topologicalClosure_coe, Submodule.map_coe, LinearEquiv.prodComm_apply] [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f hcf : LinearMap.ker (closure f).toFun = ⊥ ⊢ (fun a => Prod.swap a) '' _root_.closure ↑(graph f) = _root_.closure ((fun a => Prod.swap a) '' ↑(graph f)) [PROOFSTEP] apply (image_closure_subset_closure_image continuous_swap).antisymm [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f hcf : LinearMap.ker (closure f).toFun = ⊥ ⊢ _root_.closure (Prod.swap '' ↑(graph f)) ⊆ Prod.swap '' _root_.closure ↑(graph f) [PROOFSTEP] have h1 := Set.image_equiv_eq_preimage_symm f.graph (LinearEquiv.prodComm R E F).toEquiv [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f hcf : LinearMap.ker (closure f).toFun = ⊥ h1 : ↑(LinearEquiv.toEquiv (LinearEquiv.prodComm R E F)) '' ↑(graph f) = ↑(LinearEquiv.toEquiv (LinearEquiv.prodComm R E F)).symm ⁻¹' ↑(graph f) ⊢ _root_.closure (Prod.swap '' ↑(graph f)) ⊆ Prod.swap '' _root_.closure ↑(graph f) [PROOFSTEP] have h2 := Set.image_equiv_eq_preimage_symm (_root_.closure f.graph) (LinearEquiv.prodComm R E F).toEquiv [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f hcf : LinearMap.ker (closure f).toFun = ⊥ h1 : ↑(LinearEquiv.toEquiv (LinearEquiv.prodComm R E F)) '' ↑(graph f) = ↑(LinearEquiv.toEquiv (LinearEquiv.prodComm R E F)).symm ⁻¹' ↑(graph f) h2 : ↑(LinearEquiv.toEquiv (LinearEquiv.prodComm R E F)) '' _root_.closure ↑(graph f) = ↑(LinearEquiv.toEquiv (LinearEquiv.prodComm R E F)).symm ⁻¹' _root_.closure ↑(graph f) ⊢ _root_.closure (Prod.swap '' ↑(graph f)) ⊆ Prod.swap '' _root_.closure ↑(graph f) [PROOFSTEP] simp only [LinearEquiv.coe_toEquiv, LinearEquiv.prodComm_apply, LinearEquiv.coe_toEquiv_symm] at h1 h2 [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f hcf : LinearMap.ker (closure f).toFun = ⊥ h1 : (fun a => Prod.swap a) '' ↑(graph f) = ↑↑(LinearEquiv.symm (LinearEquiv.prodComm R E F)) ⁻¹' ↑(graph f) h2 : (fun a => Prod.swap a) '' _root_.closure ↑(graph f) = ↑↑(LinearEquiv.symm (LinearEquiv.prodComm R E F)) ⁻¹' _root_.closure ↑(graph f) ⊢ _root_.closure (Prod.swap '' ↑(graph f)) ⊆ Prod.swap '' _root_.closure ↑(graph f) [PROOFSTEP] rw [h1, h2] [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f hcf : LinearMap.ker (closure f).toFun = ⊥ h1 : (fun a => Prod.swap a) '' ↑(graph f) = ↑↑(LinearEquiv.symm (LinearEquiv.prodComm R E F)) ⁻¹' ↑(graph f) h2 : (fun a => Prod.swap a) '' _root_.closure ↑(graph f) = ↑↑(LinearEquiv.symm (LinearEquiv.prodComm R E F)) ⁻¹' _root_.closure ↑(graph f) ⊢ _root_.closure (↑↑(LinearEquiv.symm (LinearEquiv.prodComm R E F)) ⁻¹' ↑(graph f)) ⊆ ↑↑(LinearEquiv.symm (LinearEquiv.prodComm R E F)) ⁻¹' _root_.closure ↑(graph f) [PROOFSTEP] apply continuous_swap.closure_preimage_subset [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f ⊢ IsClosable (inverse f) ↔ LinearMap.ker (closure f).toFun = ⊥ [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f ⊢ IsClosable (inverse f) → LinearMap.ker (closure f).toFun = ⊥ [PROOFSTEP] intro ⟨f', h⟩ [GOAL] case mp R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f f' : F →ₗ.[R] E h : Submodule.topologicalClosure (graph (inverse f)) = graph f' ⊢ LinearMap.ker (closure f).toFun = ⊥ [PROOFSTEP] rw [LinearMap.ker_eq_bot'] [GOAL] case mp R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f f' : F →ₗ.[R] E h : Submodule.topologicalClosure (graph (inverse f)) = graph f' ⊢ ∀ (m : { x // x ∈ (closure f).domain }), ↑(closure f).toFun m = 0 → m = 0 [PROOFSTEP] intro ⟨x, hx⟩ hx' [GOAL] case mp R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f f' : F →ₗ.[R] E h : Submodule.topologicalClosure (graph (inverse f)) = graph f' x : E hx : x ∈ (closure f).domain hx' : ↑(closure f).toFun { val := x, property := hx } = 0 ⊢ { val := x, property := hx } = 0 [PROOFSTEP] simp only [Submodule.mk_eq_zero] [GOAL] case mp R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f f' : F →ₗ.[R] E h : Submodule.topologicalClosure (graph (inverse f)) = graph f' x : E hx : x ∈ (closure f).domain hx' : ↑(closure f).toFun { val := x, property := hx } = 0 ⊢ x = 0 [PROOFSTEP] rw [toFun_eq_coe, eq_comm, image_iff] at hx' [GOAL] case mp R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f f' : F →ₗ.[R] E h : Submodule.topologicalClosure (graph (inverse f)) = graph f' x : E hx : x ∈ (closure f).domain hx' : (x, 0) ∈ graph (closure f) ⊢ x = 0 [PROOFSTEP] have : (0, x) ∈ graph f' [GOAL] case this R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f f' : F →ₗ.[R] E h : Submodule.topologicalClosure (graph (inverse f)) = graph f' x : E hx : x ∈ (closure f).domain hx' : (x, 0) ∈ graph (closure f) ⊢ (0, x) ∈ graph f' [PROOFSTEP] rw [← h, inverse_graph hf] [GOAL] case this R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f f' : F →ₗ.[R] E h : Submodule.topologicalClosure (graph (inverse f)) = graph f' x : E hx : x ∈ (closure f).domain hx' : (x, 0) ∈ graph (closure f) ⊢ (0, x) ∈ Submodule.topologicalClosure (Submodule.map (LinearEquiv.prodComm R E F) (graph f)) [PROOFSTEP] rw [← hf'.graph_closure_eq_closure_graph, ← SetLike.mem_coe, Submodule.topologicalClosure_coe] at hx' [GOAL] case this R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f f' : F →ₗ.[R] E h : Submodule.topologicalClosure (graph (inverse f)) = graph f' x : E hx : x ∈ (closure f).domain hx' : (x, 0) ∈ _root_.closure ↑(graph f) ⊢ (0, x) ∈ Submodule.topologicalClosure (Submodule.map (LinearEquiv.prodComm R E F) (graph f)) [PROOFSTEP] apply image_closure_subset_closure_image continuous_swap [GOAL] case this.a R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f f' : F →ₗ.[R] E h : Submodule.topologicalClosure (graph (inverse f)) = graph f' x : E hx : x ∈ (closure f).domain hx' : (x, 0) ∈ _root_.closure ↑(graph f) ⊢ (0, x) ∈ Prod.swap '' _root_.closure ↑(graph f) [PROOFSTEP] simp only [Set.mem_image, Prod.exists, Prod.swap_prod_mk, Prod.mk.injEq] [GOAL] case this.a R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f f' : F →ₗ.[R] E h : Submodule.topologicalClosure (graph (inverse f)) = graph f' x : E hx : x ∈ (closure f).domain hx' : (x, 0) ∈ _root_.closure ↑(graph f) ⊢ ∃ a b, (a, b) ∈ _root_.closure ↑(graph f) ∧ b = 0 ∧ a = x [PROOFSTEP] exact ⟨x, 0, hx', rfl, rfl⟩ [GOAL] case mp R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f f' : F →ₗ.[R] E h : Submodule.topologicalClosure (graph (inverse f)) = graph f' x : E hx : x ∈ (closure f).domain hx' : (x, 0) ∈ graph (closure f) this : (0, x) ∈ graph f' ⊢ x = 0 [PROOFSTEP] exact graph_fst_eq_zero_snd f' this rfl [GOAL] case mpr R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f ⊢ LinearMap.ker (closure f).toFun = ⊥ → IsClosable (inverse f) [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f h : LinearMap.ker (closure f).toFun = ⊥ ⊢ IsClosable (inverse f) [PROOFSTEP] use f.closure.inverse [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f h : LinearMap.ker (closure f).toFun = ⊥ ⊢ Submodule.topologicalClosure (graph (inverse f)) = graph (inverse (closure f)) [PROOFSTEP] exact (closure_inverse_graph hf hf' h).symm [GOAL] R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f hcf : LinearMap.ker (closure f).toFun = ⊥ ⊢ closure (inverse f) = inverse (closure f) [PROOFSTEP] apply eq_of_eq_graph [GOAL] case h R : Type u_1 E : Type u_2 F : Type u_3 inst✝¹¹ : CommRing R inst✝¹⁰ : AddCommGroup E inst✝⁹ : AddCommGroup F inst✝⁸ : Module R E inst✝⁷ : Module R F inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : ContinuousAdd E inst✝³ : ContinuousAdd F inst✝² : TopologicalSpace R inst✝¹ : ContinuousSMul R E inst✝ : ContinuousSMul R F f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ hf' : IsClosable f hcf : LinearMap.ker (closure f).toFun = ⊥ ⊢ graph (closure (inverse f)) = graph (inverse (closure f)) [PROOFSTEP] rw [closure_inverse_graph hf hf' hcf, ((inverse_isClosable_iff hf hf').mpr hcf).graph_closure_eq_closure_graph]
{"mathlib_filename": "Mathlib.Topology.Algebra.Module.LinearPMap", "llama_tokens": 16983}
[GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : LE α inst✝¹ : TopologicalSpace β inst✝ : LE β s t : ClopenUpperSet α h : (fun s => s.carrier) s = (fun s => s.carrier) t ⊢ s = t [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := s [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : LE α inst✝¹ : TopologicalSpace β inst✝ : LE β t : ClopenUpperSet α carrier✝ : Set α clopen'✝ : IsClopen carrier✝ upper'✝ : IsUpperSet { carrier := carrier✝, clopen' := clopen'✝ }.carrier h : (fun s => s.carrier) { toClopens := { carrier := carrier✝, clopen' := clopen'✝ }, upper' := upper'✝ } = (fun s => s.carrier) t ⊢ { toClopens := { carrier := carrier✝, clopen' := clopen'✝ }, upper' := upper'✝ } = t [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := t [GOAL] case mk.mk.mk.mk α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : LE α inst✝¹ : TopologicalSpace β inst✝ : LE β carrier✝¹ : Set α clopen'✝¹ : IsClopen carrier✝¹ upper'✝¹ : IsUpperSet { carrier := carrier✝¹, clopen' := clopen'✝¹ }.carrier carrier✝ : Set α clopen'✝ : IsClopen carrier✝ upper'✝ : IsUpperSet { carrier := carrier✝, clopen' := clopen'✝ }.carrier h : (fun s => s.carrier) { toClopens := { carrier := carrier✝¹, clopen' := clopen'✝¹ }, upper' := upper'✝¹ } = (fun s => s.carrier) { toClopens := { carrier := carrier✝, clopen' := clopen'✝ }, upper' := upper'✝ } ⊢ { toClopens := { carrier := carrier✝¹, clopen' := clopen'✝¹ }, upper' := upper'✝¹ } = { toClopens := { carrier := carrier✝, clopen' := clopen'✝ }, upper' := upper'✝ } [PROOFSTEP] congr
{"mathlib_filename": "Mathlib.Topology.Sets.Order", "llama_tokens": 762}
[GOAL] R : Type u_1 A : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : StarRing R inst✝⁶ : TrivialStar R inst✝⁵ : AddCommMonoid A inst✝⁴ : StarAddMonoid A inst✝³ : Module R A inst✝² : StarModule R A inst✝¹ : TopologicalSpace A inst✝ : ContinuousStar A src✝ : A ≃+ A := AddEquiv.refl A r : R a : A ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : A), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (r • a) = ↑(starRingEnd R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : A), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } a [PROOFSTEP] simp [starRingEnd_apply]
{"mathlib_filename": "Mathlib.Topology.Algebra.Module.Star", "llama_tokens": 370}
[GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R ⊢ ∀ (i j : ℕ), ∃ k, I ^ k • ⊤ ≤ I ^ i • ⊤ ⊓ I ^ j • ⊤ [PROOFSTEP] suffices ∀ i j : ℕ, ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j by simpa only [smul_eq_mul, mul_top, Algebra.id.map_eq_id, map_id, le_inf_iff] using this [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R this : ∀ (i j : ℕ), ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j ⊢ ∀ (i j : ℕ), ∃ k, I ^ k • ⊤ ≤ I ^ i • ⊤ ⊓ I ^ j • ⊤ [PROOFSTEP] simpa only [smul_eq_mul, mul_top, Algebra.id.map_eq_id, map_id, le_inf_iff] using this [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R ⊢ ∀ (i j : ℕ), ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j [PROOFSTEP] intro i j [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R i j : ℕ ⊢ ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j [PROOFSTEP] exact ⟨max i j, pow_le_pow (le_max_left i j), pow_le_pow (le_max_right i j)⟩ [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R ⊢ ∀ (a : R) (i : ℕ), ∃ j, a • I ^ j • ⊤ ≤ I ^ i • ⊤ [PROOFSTEP] suffices ∀ (a : R) (i : ℕ), ∃ j : ℕ, a • I ^ j ≤ I ^ i by simpa only [smul_top_eq_map, Algebra.id.map_eq_id, map_id] using this [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R this : ∀ (a : R) (i : ℕ), ∃ j, a • I ^ j ≤ I ^ i ⊢ ∀ (a : R) (i : ℕ), ∃ j, a • I ^ j • ⊤ ≤ I ^ i • ⊤ [PROOFSTEP] simpa only [smul_top_eq_map, Algebra.id.map_eq_id, map_id] using this [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R ⊢ ∀ (a : R) (i : ℕ), ∃ j, a • I ^ j ≤ I ^ i [PROOFSTEP] intro r n [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R r : R n : ℕ ⊢ ∃ j, r • I ^ j ≤ I ^ n [PROOFSTEP] use n [GOAL] case h R : Type u_1 inst✝ : CommRing R I : Ideal R r : R n : ℕ ⊢ r • I ^ n ≤ I ^ n [PROOFSTEP] rintro a ⟨x, hx, rfl⟩ [GOAL] case h.intro.intro R : Type u_1 inst✝ : CommRing R I : Ideal R r : R n : ℕ x : R hx : x ∈ ↑(I ^ n) ⊢ ↑(DistribMulAction.toLinearMap R R r) x ∈ I ^ n [PROOFSTEP] exact (I ^ n).smul_mem r hx [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R ⊢ ∀ (i : ℕ), ∃ j, ↑(I ^ j • ⊤) * ↑(I ^ j • ⊤) ⊆ ↑(I ^ i • ⊤) [PROOFSTEP] suffices ∀ i : ℕ, ∃ j : ℕ, (I ^ j : Set R) * (I ^ j : Set R) ⊆ (I ^ i : Set R) by simpa only [smul_top_eq_map, Algebra.id.map_eq_id, map_id] using this [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R this : ∀ (i : ℕ), ∃ j, ↑(I ^ j) * ↑(I ^ j) ⊆ ↑(I ^ i) ⊢ ∀ (i : ℕ), ∃ j, ↑(I ^ j • ⊤) * ↑(I ^ j • ⊤) ⊆ ↑(I ^ i • ⊤) [PROOFSTEP] simpa only [smul_top_eq_map, Algebra.id.map_eq_id, map_id] using this [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R ⊢ ∀ (i : ℕ), ∃ j, ↑(I ^ j) * ↑(I ^ j) ⊆ ↑(I ^ i) [PROOFSTEP] intro n [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R n : ℕ ⊢ ∃ j, ↑(I ^ j) * ↑(I ^ j) ⊆ ↑(I ^ n) [PROOFSTEP] use n [GOAL] case h R : Type u_1 inst✝ : CommRing R I : Ideal R n : ℕ ⊢ ↑(I ^ n) * ↑(I ^ n) ⊆ ↑(I ^ n) [PROOFSTEP] rintro a ⟨x, b, _hx, hb, rfl⟩ [GOAL] case h.intro.intro.intro.intro R : Type u_1 inst✝ : CommRing R I : Ideal R n : ℕ x b : R _hx : x ∈ ↑(I ^ n) hb : b ∈ ↑(I ^ n) ⊢ (fun x x_1 => x * x_1) x b ∈ ↑(I ^ n) [PROOFSTEP] exact (I ^ n).smul_mem x hb [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R ⊢ ∀ (t : Set R), t ∈ 𝓝 0 ↔ ∃ i, True ∧ ↑(I ^ i) ⊆ t [PROOFSTEP] intro U [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R U : Set R ⊢ U ∈ 𝓝 0 ↔ ∃ i, True ∧ ↑(I ^ i) ⊆ U [PROOFSTEP] rw [I.ringFilterBasis.toAddGroupFilterBasis.nhds_zero_hasBasis.mem_iff] [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R U : Set R ⊢ (∃ i, i ∈ RingFilterBasis.toAddGroupFilterBasis ∧ id i ⊆ U) ↔ ∃ i, True ∧ ↑(I ^ i) ⊆ U [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝ : CommRing R I : Ideal R U : Set R ⊢ (∃ i, i ∈ RingFilterBasis.toAddGroupFilterBasis ∧ id i ⊆ U) → ∃ i, True ∧ ↑(I ^ i) ⊆ U [PROOFSTEP] rintro ⟨-, ⟨i, rfl⟩, h⟩ [GOAL] case mp.intro.intro.intro R : Type u_1 inst✝ : CommRing R I : Ideal R U : Set R i : ℕ h : id ↑((fun i => toAddSubgroup (I ^ i • ⊤)) i) ⊆ U ⊢ ∃ i, True ∧ ↑(I ^ i) ⊆ U [PROOFSTEP] replace h : ↑(I ^ i) ⊆ U := by simpa using h [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R U : Set R i : ℕ h : id ↑((fun i => toAddSubgroup (I ^ i • ⊤)) i) ⊆ U ⊢ ↑(I ^ i) ⊆ U [PROOFSTEP] simpa using h [GOAL] case mp.intro.intro.intro R : Type u_1 inst✝ : CommRing R I : Ideal R U : Set R i : ℕ h : ↑(I ^ i) ⊆ U ⊢ ∃ i, True ∧ ↑(I ^ i) ⊆ U [PROOFSTEP] exact ⟨i, trivial, h⟩ [GOAL] case mpr R : Type u_1 inst✝ : CommRing R I : Ideal R U : Set R ⊢ (∃ i, True ∧ ↑(I ^ i) ⊆ U) → ∃ i, i ∈ RingFilterBasis.toAddGroupFilterBasis ∧ id i ⊆ U [PROOFSTEP] rintro ⟨i, -, h⟩ [GOAL] case mpr.intro.intro R : Type u_1 inst✝ : CommRing R I : Ideal R U : Set R i : ℕ h : ↑(I ^ i) ⊆ U ⊢ ∃ i, i ∈ RingFilterBasis.toAddGroupFilterBasis ∧ id i ⊆ U [PROOFSTEP] exact ⟨(I ^ i : Ideal R), ⟨i, by simp⟩, h⟩ [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R U : Set R i : ℕ h : ↑(I ^ i) ⊆ U ⊢ ↑(I ^ i) = ↑((fun i => toAddSubgroup (I ^ i • ⊤)) i) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R x : R ⊢ HasBasis (𝓝 x) (fun _n => True) fun n => (fun y => x + y) '' ↑(I ^ n) [PROOFSTEP] letI := I.adicTopology [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R x : R this : TopologicalSpace R := adicTopology I ⊢ HasBasis (𝓝 x) (fun _n => True) fun n => (fun y => x + y) '' ↑(I ^ n) [PROOFSTEP] have := I.hasBasis_nhds_zero_adic.map fun y => x + y [GOAL] R : Type u_1 inst✝ : CommRing R I : Ideal R x : R this✝ : TopologicalSpace R := adicTopology I this : HasBasis (Filter.map (fun y => x + y) (𝓝 0)) (fun _n => True) fun i => (fun y => x + y) '' ↑(I ^ i) ⊢ HasBasis (𝓝 x) (fun _n => True) fun n => (fun y => x + y) '' ↑(I ^ n) [PROOFSTEP] rwa [map_add_left_nhds_zero x] at this [GOAL] R : Type u_1 inst✝² : CommRing R I : Ideal R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M m : M i : ℕ ⊢ ↑(I ^ i • ⊤) = ↑((fun i => toAddSubgroup (I ^ i • ⊤)) i) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommRing R I : Ideal R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M m : M i : ℕ a : R a_in : a ∈ ↑(I ^ i • ⊤) ⊢ a ∈ (fun x => x • m) ⁻¹' ↑(I ^ i • ⊤) [PROOFSTEP] replace a_in : a ∈ I ^ i := by simpa [(I ^ i).mul_top] using a_in [GOAL] R : Type u_1 inst✝² : CommRing R I : Ideal R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M m : M i : ℕ a : R a_in : a ∈ ↑(I ^ i • ⊤) ⊢ a ∈ I ^ i [PROOFSTEP] simpa [(I ^ i).mul_top] using a_in [GOAL] R : Type u_1 inst✝² : CommRing R I : Ideal R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M m : M i : ℕ a : R a_in : a ∈ I ^ i ⊢ a ∈ (fun x => x • m) ⁻¹' ↑(I ^ i • ⊤) [PROOFSTEP] exact smul_mem_smul a_in mem_top [GOAL] R : Type u_1 inst✝² : CommRing R I : Ideal R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M n : ℕ ⊢ OpenAddSubgroup R [PROOFSTEP] letI := I.adicTopology [GOAL] R : Type u_1 inst✝² : CommRing R I : Ideal R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M n : ℕ this : TopologicalSpace R := adicTopology I ⊢ OpenAddSubgroup R [PROOFSTEP] refine ⟨(I ^ n).toAddSubgroup, ?_⟩ [GOAL] R : Type u_1 inst✝² : CommRing R I : Ideal R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M n : ℕ this : TopologicalSpace R := adicTopology I ⊢ IsOpen (toAddSubgroup (I ^ n)).toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] convert (I.adic_basis.toRing_subgroups_basis.openAddSubgroup n).isOpen [GOAL] case h.e'_3 R : Type u_1 inst✝² : CommRing R I : Ideal R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M n : ℕ this : TopologicalSpace R := adicTopology I ⊢ (toAddSubgroup (I ^ n)).toAddSubmonoid.toAddSubsemigroup.carrier = ↑(RingSubgroupsBasis.openAddSubgroup (_ : RingSubgroupsBasis fun i => toAddSubgroup (I ^ i • ⊤)) n) [PROOFSTEP] change (I ^ n : Set R) = (I ^ n • (⊤ : Ideal R) : Set R) [GOAL] case h.e'_3 R : Type u_1 inst✝² : CommRing R I : Ideal R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M n : ℕ this : TopologicalSpace R := adicTopology I ⊢ ↑(I ^ n) = ↑(I ^ n • ⊤) [PROOFSTEP] simp [smul_top_eq_map, Algebra.id.map_eq_id, map_id, restrictScalars_self] [GOAL] R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R ⊢ IsAdic J ↔ (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R ⊢ IsAdic J → (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s [PROOFSTEP] intro H [GOAL] case mp R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H : IsAdic J ⊢ (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s [PROOFSTEP] change _ = _ at H [GOAL] case mp R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H : top = Ideal.adicTopology J ⊢ (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s [PROOFSTEP] rw [H] [GOAL] case mp R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H : top = Ideal.adicTopology J ⊢ (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s [PROOFSTEP] letI := J.adicTopology [GOAL] case mp R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H : top = Ideal.adicTopology J this : TopologicalSpace R := Ideal.adicTopology J ⊢ (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s [PROOFSTEP] constructor [GOAL] case mp.left R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H : top = Ideal.adicTopology J this : TopologicalSpace R := Ideal.adicTopology J ⊢ ∀ (n : ℕ), IsOpen ↑(J ^ n) [PROOFSTEP] intro n [GOAL] case mp.left R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H : top = Ideal.adicTopology J this : TopologicalSpace R := Ideal.adicTopology J n : ℕ ⊢ IsOpen ↑(J ^ n) [PROOFSTEP] exact (J.openAddSubgroup n).isOpen' [GOAL] case mp.right R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H : top = Ideal.adicTopology J this : TopologicalSpace R := Ideal.adicTopology J ⊢ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s [PROOFSTEP] intro s hs [GOAL] case mp.right R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H : top = Ideal.adicTopology J this : TopologicalSpace R := Ideal.adicTopology J s : Set R hs : s ∈ 𝓝 0 ⊢ ∃ n, ↑(J ^ n) ⊆ s [PROOFSTEP] simpa using J.hasBasis_nhds_zero_adic.mem_iff.mp hs [GOAL] case mpr R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R ⊢ ((∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s) → IsAdic J [PROOFSTEP] rintro ⟨H₁, H₂⟩ [GOAL] case mpr.intro R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s ⊢ IsAdic J [PROOFSTEP] apply TopologicalAddGroup.ext [GOAL] case mpr.intro.tg R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s ⊢ TopologicalAddGroup R [PROOFSTEP] apply @TopologicalRing.to_topologicalAddGroup [GOAL] case mpr.intro.tg' R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s ⊢ TopologicalAddGroup R [PROOFSTEP] apply (RingSubgroupsBasis.toRingFilterBasis _).toAddGroupFilterBasis.isTopologicalAddGroup [GOAL] case mpr.intro.h R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s ⊢ 𝓝 0 = 𝓝 0 [PROOFSTEP] ext s [GOAL] case mpr.intro.h.a R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s s : Set R ⊢ s ∈ 𝓝 0 ↔ s ∈ 𝓝 0 [PROOFSTEP] letI := Ideal.adic_basis J [GOAL] case mpr.intro.h.a R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s s : Set R this : SubmodulesRingBasis fun n => J ^ n • ⊤ := Ideal.adic_basis J ⊢ s ∈ 𝓝 0 ↔ s ∈ 𝓝 0 [PROOFSTEP] rw [J.hasBasis_nhds_zero_adic.mem_iff] [GOAL] case mpr.intro.h.a R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s s : Set R this : SubmodulesRingBasis fun n => J ^ n • ⊤ := Ideal.adic_basis J ⊢ s ∈ 𝓝 0 ↔ ∃ i, True ∧ ↑(J ^ i) ⊆ s [PROOFSTEP] constructor [GOAL] case mpr.intro.h.a.mp R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s s : Set R this : SubmodulesRingBasis fun n => J ^ n • ⊤ := Ideal.adic_basis J ⊢ s ∈ 𝓝 0 → ∃ i, True ∧ ↑(J ^ i) ⊆ s [PROOFSTEP] intro H [GOAL] case mpr.intro.h.a.mpr R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s s : Set R this : SubmodulesRingBasis fun n => J ^ n • ⊤ := Ideal.adic_basis J ⊢ (∃ i, True ∧ ↑(J ^ i) ⊆ s) → s ∈ 𝓝 0 [PROOFSTEP] intro H [GOAL] case mpr.intro.h.a.mp R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s s : Set R this : SubmodulesRingBasis fun n => J ^ n • ⊤ := Ideal.adic_basis J H : s ∈ 𝓝 0 ⊢ ∃ i, True ∧ ↑(J ^ i) ⊆ s [PROOFSTEP] rcases H₂ s H with ⟨n, h⟩ [GOAL] case mpr.intro.h.a.mp.intro R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s s : Set R this : SubmodulesRingBasis fun n => J ^ n • ⊤ := Ideal.adic_basis J H : s ∈ 𝓝 0 n : ℕ h : ↑(J ^ n) ⊆ s ⊢ ∃ i, True ∧ ↑(J ^ i) ⊆ s [PROOFSTEP] exact ⟨n, trivial, h⟩ [GOAL] case mpr.intro.h.a.mpr R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s s : Set R this : SubmodulesRingBasis fun n => J ^ n • ⊤ := Ideal.adic_basis J H : ∃ i, True ∧ ↑(J ^ i) ⊆ s ⊢ s ∈ 𝓝 0 [PROOFSTEP] rcases H with ⟨n, -, hn⟩ [GOAL] case mpr.intro.h.a.mpr.intro.intro R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s s : Set R this : SubmodulesRingBasis fun n => J ^ n • ⊤ := Ideal.adic_basis J n : ℕ hn : ↑(J ^ n) ⊆ s ⊢ s ∈ 𝓝 0 [PROOFSTEP] rw [mem_nhds_iff] [GOAL] case mpr.intro.h.a.mpr.intro.intro R : Type u_1 inst✝¹ : CommRing R top : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R H₁ : ∀ (n : ℕ), IsOpen ↑(J ^ n) H₂ : ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s s : Set R this : SubmodulesRingBasis fun n => J ^ n • ⊤ := Ideal.adic_basis J n : ℕ hn : ↑(J ^ n) ⊆ s ⊢ ∃ t, t ⊆ s ∧ IsOpen t ∧ 0 ∈ t [PROOFSTEP] refine' ⟨_, hn, H₁ n, (J ^ n).zero_mem⟩ [GOAL] R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : IsAdic J n : ℕ hn : 0 < n ⊢ IsAdic (J ^ n) [PROOFSTEP] rw [isAdic_iff] at h ⊢ [GOAL] R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s n : ℕ hn : 0 < n ⊢ (∀ (n_1 : ℕ), IsOpen ↑((J ^ n) ^ n_1)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n_1, ↑((J ^ n) ^ n_1) ⊆ s [PROOFSTEP] constructor [GOAL] case left R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s n : ℕ hn : 0 < n ⊢ ∀ (n_1 : ℕ), IsOpen ↑((J ^ n) ^ n_1) [PROOFSTEP] intro m [GOAL] case left R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s n : ℕ hn : 0 < n m : ℕ ⊢ IsOpen ↑((J ^ n) ^ m) [PROOFSTEP] rw [← pow_mul] [GOAL] case left R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s n : ℕ hn : 0 < n m : ℕ ⊢ IsOpen ↑(J ^ (n * m)) [PROOFSTEP] apply h.left [GOAL] case right R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s n : ℕ hn : 0 < n ⊢ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n_1, ↑((J ^ n) ^ n_1) ⊆ s [PROOFSTEP] intro V hV [GOAL] case right R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s n : ℕ hn : 0 < n V : Set R hV : V ∈ 𝓝 0 ⊢ ∃ n_1, ↑((J ^ n) ^ n_1) ⊆ V [PROOFSTEP] cases' h.right V hV with m hm [GOAL] case right.intro R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s n : ℕ hn : 0 < n V : Set R hV : V ∈ 𝓝 0 m : ℕ hm : ↑(J ^ m) ⊆ V ⊢ ∃ n_1, ↑((J ^ n) ^ n_1) ⊆ V [PROOFSTEP] use m [GOAL] case h R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s n : ℕ hn : 0 < n V : Set R hV : V ∈ 𝓝 0 m : ℕ hm : ↑(J ^ m) ⊆ V ⊢ ↑((J ^ n) ^ m) ⊆ V [PROOFSTEP] refine' Set.Subset.trans _ hm [GOAL] case h R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s n : ℕ hn : 0 < n V : Set R hV : V ∈ 𝓝 0 m : ℕ hm : ↑(J ^ m) ⊆ V ⊢ ↑((J ^ n) ^ m) ⊆ ↑(J ^ m) [PROOFSTEP] cases n [GOAL] case h.zero R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s V : Set R hV : V ∈ 𝓝 0 m : ℕ hm : ↑(J ^ m) ⊆ V hn : 0 < Nat.zero ⊢ ↑((J ^ Nat.zero) ^ m) ⊆ ↑(J ^ m) [PROOFSTEP] exfalso [GOAL] case h.zero.h R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s V : Set R hV : V ∈ 𝓝 0 m : ℕ hm : ↑(J ^ m) ⊆ V hn : 0 < Nat.zero ⊢ False [PROOFSTEP] exact Nat.not_succ_le_zero 0 hn [GOAL] case h.succ R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s V : Set R hV : V ∈ 𝓝 0 m : ℕ hm : ↑(J ^ m) ⊆ V n✝ : ℕ hn : 0 < Nat.succ n✝ ⊢ ↑((J ^ Nat.succ n✝) ^ m) ⊆ ↑(J ^ m) [PROOFSTEP] rw [← pow_mul, Nat.succ_mul] [GOAL] case h.succ R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s V : Set R hV : V ∈ 𝓝 0 m : ℕ hm : ↑(J ^ m) ⊆ V n✝ : ℕ hn : 0 < Nat.succ n✝ ⊢ ↑(J ^ (n✝ * m + m)) ⊆ ↑(J ^ m) [PROOFSTEP] apply Ideal.pow_le_pow [GOAL] case h.succ.h R : Type u_1 inst✝² : CommRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R J : Ideal R h : (∀ (n : ℕ), IsOpen ↑(J ^ n)) ∧ ∀ (s : Set R), s ∈ 𝓝 0 → ∃ n, ↑(J ^ n) ⊆ s V : Set R hV : V ∈ 𝓝 0 m : ℕ hm : ↑(J ^ m) ⊆ V n✝ : ℕ hn : 0 < Nat.succ n✝ ⊢ m ≤ n✝ * m + m [PROOFSTEP] apply Nat.le_add_left [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : TopologicalSpace R inst✝³ : TopologicalRing R A : Type u_2 inst✝² : CommRing A inst✝¹ : TopologicalSpace A inst✝ : TopologicalRing A ⊢ IsAdic ⊥ ↔ DiscreteTopology A [PROOFSTEP] rw [isAdic_iff] [GOAL] R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : TopologicalSpace R inst✝³ : TopologicalRing R A : Type u_2 inst✝² : CommRing A inst✝¹ : TopologicalSpace A inst✝ : TopologicalRing A ⊢ ((∀ (n : ℕ), IsOpen ↑(⊥ ^ n)) ∧ ∀ (s : Set A), s ∈ 𝓝 0 → ∃ n, ↑(⊥ ^ n) ⊆ s) ↔ DiscreteTopology A [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : TopologicalSpace R inst✝³ : TopologicalRing R A : Type u_2 inst✝² : CommRing A inst✝¹ : TopologicalSpace A inst✝ : TopologicalRing A ⊢ ((∀ (n : ℕ), IsOpen ↑(⊥ ^ n)) ∧ ∀ (s : Set A), s ∈ 𝓝 0 → ∃ n, ↑(⊥ ^ n) ⊆ s) → DiscreteTopology A [PROOFSTEP] rintro ⟨h, _h'⟩ [GOAL] case mp.intro R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : TopologicalSpace R inst✝³ : TopologicalRing R A : Type u_2 inst✝² : CommRing A inst✝¹ : TopologicalSpace A inst✝ : TopologicalRing A h : ∀ (n : ℕ), IsOpen ↑(⊥ ^ n) _h' : ∀ (s : Set A), s ∈ 𝓝 0 → ∃ n, ↑(⊥ ^ n) ⊆ s ⊢ DiscreteTopology A [PROOFSTEP] rw [discreteTopology_iff_open_singleton_zero] [GOAL] case mp.intro R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : TopologicalSpace R inst✝³ : TopologicalRing R A : Type u_2 inst✝² : CommRing A inst✝¹ : TopologicalSpace A inst✝ : TopologicalRing A h : ∀ (n : ℕ), IsOpen ↑(⊥ ^ n) _h' : ∀ (s : Set A), s ∈ 𝓝 0 → ∃ n, ↑(⊥ ^ n) ⊆ s ⊢ IsOpen {0} [PROOFSTEP] simpa using h 1 [GOAL] case mpr R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : TopologicalSpace R inst✝³ : TopologicalRing R A : Type u_2 inst✝² : CommRing A inst✝¹ : TopologicalSpace A inst✝ : TopologicalRing A ⊢ DiscreteTopology A → (∀ (n : ℕ), IsOpen ↑(⊥ ^ n)) ∧ ∀ (s : Set A), s ∈ 𝓝 0 → ∃ n, ↑(⊥ ^ n) ⊆ s [PROOFSTEP] intros [GOAL] case mpr R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : TopologicalSpace R inst✝³ : TopologicalRing R A : Type u_2 inst✝² : CommRing A inst✝¹ : TopologicalSpace A inst✝ : TopologicalRing A a✝ : DiscreteTopology A ⊢ (∀ (n : ℕ), IsOpen ↑(⊥ ^ n)) ∧ ∀ (s : Set A), s ∈ 𝓝 0 → ∃ n, ↑(⊥ ^ n) ⊆ s [PROOFSTEP] constructor [GOAL] case mpr.left R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : TopologicalSpace R inst✝³ : TopologicalRing R A : Type u_2 inst✝² : CommRing A inst✝¹ : TopologicalSpace A inst✝ : TopologicalRing A a✝ : DiscreteTopology A ⊢ ∀ (n : ℕ), IsOpen ↑(⊥ ^ n) [PROOFSTEP] simp [GOAL] case mpr.right R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : TopologicalSpace R inst✝³ : TopologicalRing R A : Type u_2 inst✝² : CommRing A inst✝¹ : TopologicalSpace A inst✝ : TopologicalRing A a✝ : DiscreteTopology A ⊢ ∀ (s : Set A), s ∈ 𝓝 0 → ∃ n, ↑(⊥ ^ n) ⊆ s [PROOFSTEP] intro U U_nhds [GOAL] case mpr.right R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : TopologicalSpace R inst✝³ : TopologicalRing R A : Type u_2 inst✝² : CommRing A inst✝¹ : TopologicalSpace A inst✝ : TopologicalRing A a✝ : DiscreteTopology A U : Set A U_nhds : U ∈ 𝓝 0 ⊢ ∃ n, ↑(⊥ ^ n) ⊆ U [PROOFSTEP] use 1 [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R inst✝⁴ : TopologicalSpace R inst✝³ : TopologicalRing R A : Type u_2 inst✝² : CommRing A inst✝¹ : TopologicalSpace A inst✝ : TopologicalRing A a✝ : DiscreteTopology A U : Set A U_nhds : U ∈ 𝓝 0 ⊢ ↑(⊥ ^ 1) ⊆ U [PROOFSTEP] simp [mem_of_mem_nhds U_nhds] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : WithIdeal R ⊢ NonarchimedeanRing R [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : WithIdeal R ⊢ TopologicalRing (UniformSpace.Completion R) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝³ : CommRing R inst✝² : WithIdeal R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ TopologicalAddGroup M [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝³ : CommRing R inst✝² : WithIdeal R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ ContinuousSMul R M [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Topology.Algebra.Nonarchimedean.AdicTopology", "llama_tokens": 12644}
[GOAL] ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ inst✝³ : TopologicalSpace M inst✝² : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝¹ : RingHomInvPair σ σ' inst✝ : RingHomInvPair σ' σ f : ι → M φ : M →SL[σ] M₂ x : M hf : HasSum f x ⊢ HasSum (fun b => ↑φ (f b)) (↑φ x) [PROOFSTEP] simpa only using hf.map φ.toLinearMap.toAddMonoidHom φ.continuous [GOAL] ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ inst✝³ : TopologicalSpace M inst✝² : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝¹ : RingHomInvPair σ σ' inst✝ : RingHomInvPair σ' σ f : ι → M e : M ≃SL[σ] M₂ y : M₂ h : HasSum (fun b => ↑e (f b)) y ⊢ HasSum f (↑(ContinuousLinearEquiv.symm e) y) [PROOFSTEP] simpa only [e.symm.coe_coe, e.symm_apply_apply] using h.mapL (e.symm : M₂ →SL[σ'] M) [GOAL] ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ inst✝³ : TopologicalSpace M inst✝² : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝¹ : RingHomInvPair σ σ' inst✝ : RingHomInvPair σ' σ f : ι → M e : M ≃SL[σ] M₂ y : M₂ h : HasSum f (↑(ContinuousLinearEquiv.symm e) y) ⊢ HasSum (fun b => ↑e (f b)) y [PROOFSTEP] simpa only [e.coe_coe, e.apply_symm_apply] using (e : M →SL[σ] M₂).hasSum h [GOAL] ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ inst✝³ : TopologicalSpace M inst✝² : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝¹ : RingHomInvPair σ σ' inst✝ : RingHomInvPair σ' σ f : ι → M e : M ≃SL[σ] M₂ x : M ⊢ HasSum (fun b => ↑e (f b)) (↑e x) ↔ HasSum f x [PROOFSTEP] rw [e.hasSum, ContinuousLinearEquiv.symm_apply_apply] [GOAL] ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ inst✝⁵ : TopologicalSpace M inst✝⁴ : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ inst✝¹ : T2Space M inst✝ : T2Space M₂ f : ι → M e : M ≃SL[σ] M₂ y : M₂ ⊢ ∑' (z : ι), ↑e (f z) = y ↔ ∑' (z : ι), f z = ↑(ContinuousLinearEquiv.symm e) y [PROOFSTEP] by_cases hf : Summable f [GOAL] case pos ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ inst✝⁵ : TopologicalSpace M inst✝⁴ : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ inst✝¹ : T2Space M inst✝ : T2Space M₂ f : ι → M e : M ≃SL[σ] M₂ y : M₂ hf : Summable f ⊢ ∑' (z : ι), ↑e (f z) = y ↔ ∑' (z : ι), f z = ↑(ContinuousLinearEquiv.symm e) y [PROOFSTEP] exact ⟨fun h => (e.hasSum.mp ((e.summable.mpr hf).hasSum_iff.mpr h)).tsum_eq, fun h => (e.hasSum.mpr (hf.hasSum_iff.mpr h)).tsum_eq⟩ [GOAL] case neg ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ inst✝⁵ : TopologicalSpace M inst✝⁴ : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ inst✝¹ : T2Space M inst✝ : T2Space M₂ f : ι → M e : M ≃SL[σ] M₂ y : M₂ hf : ¬Summable f ⊢ ∑' (z : ι), ↑e (f z) = y ↔ ∑' (z : ι), f z = ↑(ContinuousLinearEquiv.symm e) y [PROOFSTEP] have hf' : ¬Summable fun z => e (f z) := fun h => hf (e.summable.mp h) [GOAL] case neg ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ inst✝⁵ : TopologicalSpace M inst✝⁴ : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ inst✝¹ : T2Space M inst✝ : T2Space M₂ f : ι → M e : M ≃SL[σ] M₂ y : M₂ hf : ¬Summable f hf' : ¬Summable fun z => ↑e (f z) ⊢ ∑' (z : ι), ↑e (f z) = y ↔ ∑' (z : ι), f z = ↑(ContinuousLinearEquiv.symm e) y [PROOFSTEP] rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable hf'] [GOAL] case neg ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ inst✝⁵ : TopologicalSpace M inst✝⁴ : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ inst✝¹ : T2Space M inst✝ : T2Space M₂ f : ι → M e : M ≃SL[σ] M₂ y : M₂ hf : ¬Summable f hf' : ¬Summable fun z => ↑e (f z) ⊢ 0 = y ↔ 0 = ↑(ContinuousLinearEquiv.symm e) y [PROOFSTEP] refine ⟨?_, fun H => ?_⟩ [GOAL] case neg.refine_1 ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ inst✝⁵ : TopologicalSpace M inst✝⁴ : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ inst✝¹ : T2Space M inst✝ : T2Space M₂ f : ι → M e : M ≃SL[σ] M₂ y : M₂ hf : ¬Summable f hf' : ¬Summable fun z => ↑e (f z) ⊢ 0 = y → 0 = ↑(ContinuousLinearEquiv.symm e) y [PROOFSTEP] rintro rfl [GOAL] case neg.refine_1 ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ inst✝⁵ : TopologicalSpace M inst✝⁴ : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ inst✝¹ : T2Space M inst✝ : T2Space M₂ f : ι → M e : M ≃SL[σ] M₂ hf : ¬Summable f hf' : ¬Summable fun z => ↑e (f z) ⊢ 0 = ↑(ContinuousLinearEquiv.symm e) 0 [PROOFSTEP] simp [GOAL] case neg.refine_2 ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ inst✝⁵ : TopologicalSpace M inst✝⁴ : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ inst✝¹ : T2Space M inst✝ : T2Space M₂ f : ι → M e : M ≃SL[σ] M₂ y : M₂ hf : ¬Summable f hf' : ¬Summable fun z => ↑e (f z) H : 0 = ↑(ContinuousLinearEquiv.symm e) y ⊢ 0 = y [PROOFSTEP] simpa using congr_arg (fun z => e z) H [GOAL] ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ inst✝⁵ : TopologicalSpace M inst✝⁴ : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ inst✝¹ : T2Space M inst✝ : T2Space M₂ f : ι → M e : M ≃SL[σ] M₂ ⊢ ↑e (∑' (z : ι), f z) = ∑' (z : ι), ↑e (f z) [PROOFSTEP] refine' symm (e.tsum_eq_iff.mpr _) [GOAL] ι : Type u_1 R : Type u_2 R₂ : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ inst✝⁵ : TopologicalSpace M inst✝⁴ : TopologicalSpace M₂ σ : R →+* R₂ σ' : R₂ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ inst✝¹ : T2Space M inst✝ : T2Space M₂ f : ι → M e : M ≃SL[σ] M₂ ⊢ ∑' (z : ι), f z = ↑(ContinuousLinearEquiv.symm e) (↑e (∑' (z : ι), f z)) [PROOFSTEP] rw [e.symm_apply_apply _]
{"mathlib_filename": "Mathlib.Topology.Algebra.InfiniteSum.Module", "llama_tokens": 4318}
[GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β s t : Closeds α h : s.carrier = t.carrier ⊢ s = t [PROOFSTEP] cases s [GOAL] case mk ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β t : Closeds α carrier✝ : Set α closed'✝ : IsClosed carrier✝ h : { carrier := carrier✝, closed' := closed'✝ }.carrier = t.carrier ⊢ { carrier := carrier✝, closed' := closed'✝ } = t [PROOFSTEP] cases t [GOAL] case mk.mk ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β carrier✝¹ : Set α closed'✝¹ : IsClosed carrier✝¹ carrier✝ : Set α closed'✝ : IsClosed carrier✝ h : { carrier := carrier✝¹, closed' := closed'✝¹ }.carrier = { carrier := carrier✝, closed' := closed'✝ }.carrier ⊢ { carrier := carrier✝¹, closed' := closed'✝¹ } = { carrier := carrier✝, closed' := closed'✝ } [PROOFSTEP] congr [GOAL] ι✝ : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β ι : Sort u_4 x : α s : ι → Closeds α ⊢ x ∈ iInf s ↔ ∀ (i : ι), x ∈ s i [PROOFSTEP] simp [iInf] [GOAL] ι✝ : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β ι : Sort u_4 s : ι → Closeds α ⊢ ↑(⨅ (i : ι), s i) = ⋂ (i : ι), ↑(s i) [PROOFSTEP] ext [GOAL] case h ι✝ : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β ι : Sort u_4 s : ι → Closeds α x✝ : α ⊢ x✝ ∈ ↑(⨅ (i : ι), s i) ↔ x✝ ∈ ⋂ (i : ι), ↑(s i) [PROOFSTEP] simp [GOAL] ι✝ : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β ι : Sort u_4 s : ι → Closeds α ⊢ ⨅ (i : ι), s i = { carrier := ⋂ (i : ι), ↑(s i), closed' := (_ : IsClosed (⋂ (i : ι), ↑(s i))) } [PROOFSTEP] ext1 [GOAL] case h ι✝ : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β ι : Sort u_4 s : ι → Closeds α ⊢ ↑(⨅ (i : ι), s i) = ↑{ carrier := ⋂ (i : ι), ↑(s i), closed' := (_ : IsClosed (⋂ (i : ι), ↑(s i))) } [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β src✝ : CompleteLattice (Closeds α) := inferInstanceAs (CompleteLattice (Closeds α)) a : Closeds α s : Set (Closeds α) ⊢ ↑(⨅ (b : Closeds α) (_ : b ∈ s), a ⊔ b) = ↑(a ⊔ sInf s) [PROOFSTEP] simp only [coe_sup, coe_iInf, coe_sInf, Set.union_iInter₂] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β s : Closeds α ⊢ (Opens.compl ∘ ↑ofDual) ((↑toDual ∘ compl) s) = s [PROOFSTEP] simp [Closeds.compl_compl] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β s : (Opens α)ᵒᵈ ⊢ (↑toDual ∘ compl) ((Opens.compl ∘ ↑ofDual) s) = s [PROOFSTEP] simp [Opens.compl_compl] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β s : Opens α ⊢ (Closeds.compl ∘ ↑ofDual) ((↑toDual ∘ compl) s) = s [PROOFSTEP] simp [Opens.compl_compl] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β s : (Closeds α)ᵒᵈ ⊢ (↑toDual ∘ compl) ((Closeds.compl ∘ ↑ofDual) s) = s [PROOFSTEP] simp [Closeds.compl_compl] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : T1Space α s : Closeds α ⊢ IsAtom s ↔ ∃ x, s = singleton x [PROOFSTEP] have : IsAtom (s : Set α) ↔ IsAtom s := by refine' Closeds.gi.isAtom_iff' rfl (fun t ht => _) s obtain ⟨x, rfl⟩ := t.isAtom_iff.mp ht exact closure_singleton [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : T1Space α s : Closeds α ⊢ IsAtom ↑s ↔ IsAtom s [PROOFSTEP] refine' Closeds.gi.isAtom_iff' rfl (fun t ht => _) s [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : T1Space α s : Closeds α t : Set α ht : IsAtom t ⊢ ↑(Closeds.closure t) = t [PROOFSTEP] obtain ⟨x, rfl⟩ := t.isAtom_iff.mp ht [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : T1Space α s : Closeds α x : α ht : IsAtom {x} ⊢ ↑(Closeds.closure {x}) = {x} [PROOFSTEP] exact closure_singleton [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : T1Space α s : Closeds α this : IsAtom ↑s ↔ IsAtom s ⊢ IsAtom s ↔ ∃ x, s = singleton x [PROOFSTEP] simp only [← this, (s : Set α).isAtom_iff, SetLike.ext'_iff, Closeds.singleton_coe] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : T1Space α s : Opens α ⊢ IsCoatom s ↔ ∃ x, s = Closeds.compl (Closeds.singleton x) [PROOFSTEP] rw [← s.compl_compl, ← isAtom_dual_iff_isCoatom] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : T1Space α s : Opens α ⊢ IsAtom (↑toDual (Closeds.compl (compl s))) ↔ ∃ x, Closeds.compl (compl s) = Closeds.compl (Closeds.singleton x) [PROOFSTEP] change IsAtom (Closeds.complOrderIso α s.compl) ↔ _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : T1Space α s : Opens α ⊢ IsAtom (↑(Closeds.complOrderIso α) (compl s)) ↔ ∃ x, Closeds.compl (compl s) = Closeds.compl (Closeds.singleton x) [PROOFSTEP] simp only [(Closeds.complOrderIso α).isAtom_iff, Closeds.isAtom_iff, Closeds.compl_bijective.injective.eq_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β s t : Clopens α h : (fun s => s.carrier) s = (fun s => s.carrier) t ⊢ s = t [PROOFSTEP] cases s [GOAL] case mk ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β t : Clopens α carrier✝ : Set α clopen'✝ : IsClopen carrier✝ h : (fun s => s.carrier) { carrier := carrier✝, clopen' := clopen'✝ } = (fun s => s.carrier) t ⊢ { carrier := carrier✝, clopen' := clopen'✝ } = t [PROOFSTEP] cases t [GOAL] case mk.mk ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β carrier✝¹ : Set α clopen'✝¹ : IsClopen carrier✝¹ carrier✝ : Set α clopen'✝ : IsClopen carrier✝ h : (fun s => s.carrier) { carrier := carrier✝¹, clopen' := clopen'✝¹ } = (fun s => s.carrier) { carrier := carrier✝, clopen' := clopen'✝ } ⊢ { carrier := carrier✝¹, clopen' := clopen'✝¹ } = { carrier := carrier✝, clopen' := clopen'✝ } [PROOFSTEP] congr
{"mathlib_filename": "Mathlib.Topology.Sets.Closeds", "llama_tokens": 3277}
[GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : NonAssocRing α inst✝ : ContinuousMul α ⊢ Continuous fun a => -a [PROOFSTEP] simpa using (continuous_const.mul continuous_id : Continuous fun x : α => -1 * x) [GOAL] α : Type u_1 R : Type u_2 inst✝² : NonUnitalNonAssocRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) hmul_left : ∀ (x₀ : R), Tendsto (fun x => x₀ * x) (𝓝 0) (𝓝 0) hmul_right : ∀ (x₀ : R), Tendsto (fun x => x * x₀) (𝓝 0) (𝓝 0) ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] refine continuous_of_continuousAt_zero₂ (AddMonoidHom.mul (R := R)) ?_ ?_ ?_ [GOAL] case refine_1 α : Type u_1 R : Type u_2 inst✝² : NonUnitalNonAssocRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) hmul_left : ∀ (x₀ : R), Tendsto (fun x => x₀ * x) (𝓝 0) (𝓝 0) hmul_right : ∀ (x₀ : R), Tendsto (fun x => x * x₀) (𝓝 0) (𝓝 0) ⊢ ContinuousAt (fun x => ↑(↑AddMonoidHom.mul x.fst) x.snd) (0, 0) [PROOFSTEP] simpa only [ContinuousAt, mul_zero, zero_mul, nhds_prod_eq, AddMonoidHom.mul_apply] [GOAL] case refine_2 α : Type u_1 R : Type u_2 inst✝² : NonUnitalNonAssocRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) hmul_left : ∀ (x₀ : R), Tendsto (fun x => x₀ * x) (𝓝 0) (𝓝 0) hmul_right : ∀ (x₀ : R), Tendsto (fun x => x * x₀) (𝓝 0) (𝓝 0) ⊢ ∀ (x : R), ContinuousAt (↑(↑AddMonoidHom.mul x)) 0 [PROOFSTEP] simpa only [ContinuousAt, mul_zero, zero_mul, nhds_prod_eq, AddMonoidHom.mul_apply] [GOAL] case refine_3 α : Type u_1 R : Type u_2 inst✝² : NonUnitalNonAssocRing R inst✝¹ : TopologicalSpace R inst✝ : TopologicalAddGroup R hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) hmul_left : ∀ (x₀ : R), Tendsto (fun x => x₀ * x) (𝓝 0) (𝓝 0) hmul_right : ∀ (x₀ : R), Tendsto (fun x => x * x₀) (𝓝 0) (𝓝 0) ⊢ ∀ (y : R), ContinuousAt (fun x => ↑(↑AddMonoidHom.mul x) y) 0 [PROOFSTEP] simpa only [ContinuousAt, mul_zero, zero_mul, nhds_prod_eq, AddMonoidHom.mul_apply] [GOAL] α : Type u_1 inst✝ : Ring α ⊢ Injective toTopologicalSpace [PROOFSTEP] intro f g _ [GOAL] α : Type u_1 inst✝ : Ring α f g : RingTopology α a✝ : f.toTopologicalSpace = g.toTopologicalSpace ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk α : Type u_1 inst✝ : Ring α g : RingTopology α toTopologicalSpace✝ : TopologicalSpace α toTopologicalRing✝ : TopologicalRing α a✝ : { toTopologicalSpace := toTopologicalSpace✝, toTopologicalRing := toTopologicalRing✝ }.toTopologicalSpace = g.toTopologicalSpace ⊢ { toTopologicalSpace := toTopologicalSpace✝, toTopologicalRing := toTopologicalRing✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α toTopologicalSpace✝¹ : TopologicalSpace α toTopologicalRing✝¹ : TopologicalRing α toTopologicalSpace✝ : TopologicalSpace α toTopologicalRing✝ : TopologicalRing α a✝ : { toTopologicalSpace := toTopologicalSpace✝¹, toTopologicalRing := toTopologicalRing✝¹ }.toTopologicalSpace = { toTopologicalSpace := toTopologicalSpace✝, toTopologicalRing := toTopologicalRing✝ }.toTopologicalSpace ⊢ { toTopologicalSpace := toTopologicalSpace✝¹, toTopologicalRing := toTopologicalRing✝¹ } = { toTopologicalSpace := toTopologicalSpace✝, toTopologicalRing := toTopologicalRing✝ } [PROOFSTEP] congr
{"mathlib_filename": "Mathlib.Topology.Algebra.Ring.Basic", "llama_tokens": 1564}
[GOAL] R : Type u_1 inst✝² : TopologicalSpace R inst✝¹ : CommRing R N : Ideal R inst✝ : TopologicalRing R ⊢ IsOpenMap ↑(mk N) [PROOFSTEP] intro s s_op [GOAL] R : Type u_1 inst✝² : TopologicalSpace R inst✝¹ : CommRing R N : Ideal R inst✝ : TopologicalRing R s : Set R s_op : IsOpen s ⊢ IsOpen (↑(mk N) '' s) [PROOFSTEP] change IsOpen (mk N ⁻¹' (mk N '' s)) [GOAL] R : Type u_1 inst✝² : TopologicalSpace R inst✝¹ : CommRing R N : Ideal R inst✝ : TopologicalRing R s : Set R s_op : IsOpen s ⊢ IsOpen (↑(mk N) ⁻¹' (↑(mk N) '' s)) [PROOFSTEP] rw [quotient_ring_saturate] [GOAL] R : Type u_1 inst✝² : TopologicalSpace R inst✝¹ : CommRing R N : Ideal R inst✝ : TopologicalRing R s : Set R s_op : IsOpen s ⊢ IsOpen (⋃ (x : { x // x ∈ N }), (fun y => ↑x + y) '' s) [PROOFSTEP] exact isOpen_iUnion fun ⟨n, _⟩ => isOpenMap_add_left n s s_op [GOAL] R : Type u_1 inst✝² : TopologicalSpace R inst✝¹ : CommRing R N : Ideal R inst✝ : TopologicalRing R ⊢ Function.Surjective fun p => (↑(mk N) p.fst, ↑(mk N) p.snd) [PROOFSTEP] rintro ⟨⟨x⟩, ⟨y⟩⟩ [GOAL] case mk.mk.mk R : Type u_1 inst✝² : TopologicalSpace R inst✝¹ : CommRing R N : Ideal R inst✝ : TopologicalRing R fst✝ snd✝ : R ⧸ N x y : R ⊢ ∃ a, (fun p => (↑(mk N) p.fst, ↑(mk N) p.snd)) a = (Quot.mk Setoid.r x, Quot.mk Setoid.r y) [PROOFSTEP] exact ⟨(x, y), rfl⟩
{"mathlib_filename": "Mathlib.Topology.Algebra.Ring.Ideal", "llama_tokens": 673}
[GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) ⊢ ↑v (x⁻¹ - y⁻¹) < ↑γ [PROOFSTEP] have hyp1 : v (x - y) < γ * (v y * v y) := lt_of_lt_of_le h (min_le_left _ _) [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) ⊢ ↑v (x⁻¹ - y⁻¹) < ↑γ [PROOFSTEP] have hyp1' : v (x - y) * (v y * v y)⁻¹ < γ := mul_inv_lt_of_lt_mul₀ hyp1 [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ ⊢ ↑v (x⁻¹ - y⁻¹) < ↑γ [PROOFSTEP] have hyp2 : v (x - y) < v y := lt_of_lt_of_le h (min_le_right _ _) [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y ⊢ ↑v (x⁻¹ - y⁻¹) < ↑γ [PROOFSTEP] have key : v x = v y := Valuation.map_eq_of_sub_lt v hyp2 [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y ⊢ ↑v (x⁻¹ - y⁻¹) < ↑γ [PROOFSTEP] have x_ne : x ≠ 0 := by intro h apply y_ne rw [h, v.map_zero] at key exact v.zero_iff.1 key.symm [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y ⊢ x ≠ 0 [PROOFSTEP] intro h [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h✝ : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y h : x = 0 ⊢ False [PROOFSTEP] apply y_ne [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h✝ : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y h : x = 0 ⊢ y = 0 [PROOFSTEP] rw [h, v.map_zero] at key [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h✝ : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : 0 = ↑v y h : x = 0 ⊢ y = 0 [PROOFSTEP] exact v.zero_iff.1 key.symm [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y x_ne : x ≠ 0 ⊢ ↑v (x⁻¹ - y⁻¹) < ↑γ [PROOFSTEP] have decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹ := by rw [mul_sub_left_distrib, sub_mul, mul_assoc, show y * y⁻¹ = 1 from mul_inv_cancel y_ne, show x⁻¹ * x = 1 from inv_mul_cancel x_ne, mul_one, one_mul] [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y x_ne : x ≠ 0 ⊢ x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹ [PROOFSTEP] rw [mul_sub_left_distrib, sub_mul, mul_assoc, show y * y⁻¹ = 1 from mul_inv_cancel y_ne, show x⁻¹ * x = 1 from inv_mul_cancel x_ne, mul_one, one_mul] [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y x_ne : x ≠ 0 decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹ ⊢ ↑v (x⁻¹ - y⁻¹) < ↑γ [PROOFSTEP] calc v (x⁻¹ - y⁻¹) = v (x⁻¹ * (y - x) * y⁻¹) := by rw [decomp] _ = v x⁻¹ * (v <| y - x) * v y⁻¹ := by repeat' rw [Valuation.map_mul] _ = (v x)⁻¹ * (v <| y - x) * (v y)⁻¹ := by rw [map_inv₀, map_inv₀] _ = (v <| y - x) * (v y * v y)⁻¹ := by rw [mul_assoc, mul_comm, key, mul_assoc, mul_inv_rev] _ = (v <| y - x) * (v y * v y)⁻¹ := rfl _ = (v <| x - y) * (v y * v y)⁻¹ := by rw [Valuation.map_sub_swap] _ < γ := hyp1' [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y x_ne : x ≠ 0 decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹ ⊢ ↑v (x⁻¹ - y⁻¹) = ↑v (x⁻¹ * (y - x) * y⁻¹) [PROOFSTEP] rw [decomp] [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y x_ne : x ≠ 0 decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹ ⊢ ↑v (x⁻¹ * (y - x) * y⁻¹) = ↑v x⁻¹ * ↑v (y - x) * ↑v y⁻¹ [PROOFSTEP] repeat' rw [Valuation.map_mul] [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y x_ne : x ≠ 0 decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹ ⊢ ↑v (x⁻¹ * (y - x) * y⁻¹) = ↑v x⁻¹ * ↑v (y - x) * ↑v y⁻¹ [PROOFSTEP] rw [Valuation.map_mul] [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y x_ne : x ≠ 0 decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹ ⊢ ↑v (x⁻¹ * (y - x)) * ↑v y⁻¹ = ↑v x⁻¹ * ↑v (y - x) * ↑v y⁻¹ [PROOFSTEP] rw [Valuation.map_mul] [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y x_ne : x ≠ 0 decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹ ⊢ ↑v x⁻¹ * ↑v (y - x) * ↑v y⁻¹ = (↑v x)⁻¹ * ↑v (y - x) * (↑v y)⁻¹ [PROOFSTEP] rw [map_inv₀, map_inv₀] [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y x_ne : x ≠ 0 decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹ ⊢ (↑v x)⁻¹ * ↑v (y - x) * (↑v y)⁻¹ = ↑v (y - x) * (↑v y * ↑v y)⁻¹ [PROOFSTEP] rw [mul_assoc, mul_comm, key, mul_assoc, mul_inv_rev] [GOAL] K : Type u_1 inst✝¹ : DivisionRing K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation K Γ₀ x y : K γ : Γ₀ˣ y_ne : y ≠ 0 h : ↑v (x - y) < min (↑γ * (↑v y * ↑v y)) (↑v y) hyp1 : ↑v (x - y) < ↑γ * (↑v y * ↑v y) hyp1' : ↑v (x - y) * (↑v y * ↑v y)⁻¹ < ↑γ hyp2 : ↑v (x - y) < ↑v y key : ↑v x = ↑v y x_ne : x ≠ 0 decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹ ⊢ ↑v (y - x) * (↑v y * ↑v y)⁻¹ = ↑v (x - y) * (↑v y * ↑v y)⁻¹ [PROOFSTEP] rw [Valuation.map_sub_swap] [GOAL] K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ ⊢ TopologicalRing K [PROOFSTEP] infer_instance [GOAL] K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ src✝ : TopologicalRing K := inferInstance ⊢ ∀ ⦃x : K⦄, x ≠ 0 → ContinuousAt Inv.inv x [PROOFSTEP] intro x x_ne s s_in [GOAL] K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ src✝ : TopologicalRing K := inferInstance x : K x_ne : x ≠ 0 s : Set K s_in : s ∈ 𝓝 x⁻¹ ⊢ s ∈ map Inv.inv (𝓝 x) [PROOFSTEP] cases' Valued.mem_nhds.mp s_in with γ hs [GOAL] case intro K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ src✝ : TopologicalRing K := inferInstance x : K x_ne : x ≠ 0 s : Set K s_in : s ∈ 𝓝 x⁻¹ γ : Γ₀ˣ hs : {y | ↑v (y - x⁻¹) < ↑γ} ⊆ s ⊢ s ∈ map Inv.inv (𝓝 x) [PROOFSTEP] clear s_in [GOAL] case intro K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ src✝ : TopologicalRing K := inferInstance x : K x_ne : x ≠ 0 s : Set K γ : Γ₀ˣ hs : {y | ↑v (y - x⁻¹) < ↑γ} ⊆ s ⊢ s ∈ map Inv.inv (𝓝 x) [PROOFSTEP] rw [mem_map, Valued.mem_nhds] [GOAL] case intro K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ src✝ : TopologicalRing K := inferInstance x : K x_ne : x ≠ 0 s : Set K γ : Γ₀ˣ hs : {y | ↑v (y - x⁻¹) < ↑γ} ⊆ s ⊢ ∃ γ, {y | ↑v (y - x) < ↑γ} ⊆ Inv.inv ⁻¹' s [PROOFSTEP] change ∃ γ : Γ₀ˣ, {y : K | (v (y - x) : Γ₀) < γ} ⊆ {x : K | x⁻¹ ∈ s} [GOAL] case intro K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ src✝ : TopologicalRing K := inferInstance x : K x_ne : x ≠ 0 s : Set K γ : Γ₀ˣ hs : {y | ↑v (y - x⁻¹) < ↑γ} ⊆ s ⊢ ∃ γ, {y | ↑v (y - x) < ↑γ} ⊆ {x | x⁻¹ ∈ s} [PROOFSTEP] have vx_ne := (Valuation.ne_zero_iff <| v).mpr x_ne [GOAL] case intro K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ src✝ : TopologicalRing K := inferInstance x : K x_ne : x ≠ 0 s : Set K γ : Γ₀ˣ hs : {y | ↑v (y - x⁻¹) < ↑γ} ⊆ s vx_ne : ↑v x ≠ 0 ⊢ ∃ γ, {y | ↑v (y - x) < ↑γ} ⊆ {x | x⁻¹ ∈ s} [PROOFSTEP] let γ' := Units.mk0 _ vx_ne [GOAL] case intro K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ src✝ : TopologicalRing K := inferInstance x : K x_ne : x ≠ 0 s : Set K γ : Γ₀ˣ hs : {y | ↑v (y - x⁻¹) < ↑γ} ⊆ s vx_ne : ↑v x ≠ 0 γ' : ((fun x => Γ₀) x)ˣ := Units.mk0 (↑v x) vx_ne ⊢ ∃ γ, {y | ↑v (y - x) < ↑γ} ⊆ {x | x⁻¹ ∈ s} [PROOFSTEP] use min (γ * (γ' * γ')) γ' [GOAL] case h K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ src✝ : TopologicalRing K := inferInstance x : K x_ne : x ≠ 0 s : Set K γ : Γ₀ˣ hs : {y | ↑v (y - x⁻¹) < ↑γ} ⊆ s vx_ne : ↑v x ≠ 0 γ' : ((fun x => Γ₀) x)ˣ := Units.mk0 (↑v x) vx_ne ⊢ {y | ↑v (y - x) < ↑(min (γ * (γ' * γ')) γ')} ⊆ {x | x⁻¹ ∈ s} [PROOFSTEP] intro y y_in [GOAL] case h K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ src✝ : TopologicalRing K := inferInstance x : K x_ne : x ≠ 0 s : Set K γ : Γ₀ˣ hs : {y | ↑v (y - x⁻¹) < ↑γ} ⊆ s vx_ne : ↑v x ≠ 0 γ' : ((fun x => Γ₀) x)ˣ := Units.mk0 (↑v x) vx_ne y : K y_in : y ∈ {y | ↑v (y - x) < ↑(min (γ * (γ' * γ')) γ')} ⊢ y ∈ {x | x⁻¹ ∈ s} [PROOFSTEP] apply hs [GOAL] case h.a K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ src✝ : TopologicalRing K := inferInstance x : K x_ne : x ≠ 0 s : Set K γ : Γ₀ˣ hs : {y | ↑v (y - x⁻¹) < ↑γ} ⊆ s vx_ne : ↑v x ≠ 0 γ' : ((fun x => Γ₀) x)ˣ := Units.mk0 (↑v x) vx_ne y : K y_in : y ∈ {y | ↑v (y - x) < ↑(min (γ * (γ' * γ')) γ')} ⊢ y⁻¹ ∈ {y | ↑v (y - x⁻¹) < ↑γ} [PROOFSTEP] simp only [mem_setOf_eq] at y_in [GOAL] case h.a K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ src✝ : TopologicalRing K := inferInstance x : K x_ne : x ≠ 0 s : Set K γ : Γ₀ˣ hs : {y | ↑v (y - x⁻¹) < ↑γ} ⊆ s vx_ne : ↑v x ≠ 0 γ' : ((fun x => Γ₀) x)ˣ := Units.mk0 (↑v x) vx_ne y : K y_in : ↑v (y - x) < ↑(min (γ * (Units.mk0 (↑v x) vx_ne * Units.mk0 (↑v x) vx_ne)) (Units.mk0 (↑v x) vx_ne)) ⊢ y⁻¹ ∈ {y | ↑v (y - x⁻¹) < ↑γ} [PROOFSTEP] rw [Units.min_val, Units.val_mul, Units.val_mul] at y_in [GOAL] case h.a K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ src✝ : TopologicalRing K := inferInstance x : K x_ne : x ≠ 0 s : Set K γ : Γ₀ˣ hs : {y | ↑v (y - x⁻¹) < ↑γ} ⊆ s vx_ne : ↑v x ≠ 0 γ' : ((fun x => Γ₀) x)ˣ := Units.mk0 (↑v x) vx_ne y : K y_in : ↑v (y - x) < min (↑γ * (↑(Units.mk0 (↑v x) vx_ne) * ↑(Units.mk0 (↑v x) vx_ne))) ↑(Units.mk0 (↑v x) vx_ne) ⊢ y⁻¹ ∈ {y | ↑v (y - x⁻¹) < ↑γ} [PROOFSTEP] exact Valuation.inversion_estimate _ x_ne y_in [GOAL] K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ ⊢ SeparatedSpace K [PROOFSTEP] rw [separated_iff_t2] [GOAL] K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ ⊢ T2Space K [PROOFSTEP] apply TopologicalAddGroup.t2Space_of_zero_sep [GOAL] case H K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ ⊢ ∀ (x : K), x ≠ 0 → ∃ U, U ∈ 𝓝 0 ∧ ¬x ∈ U [PROOFSTEP] intro x x_ne [GOAL] case H K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ x : K x_ne : x ≠ 0 ⊢ ∃ U, U ∈ 𝓝 0 ∧ ¬x ∈ U [PROOFSTEP] refine' ⟨{k | v k < v x}, _, fun h => lt_irrefl _ h⟩ [GOAL] case H K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ x : K x_ne : x ≠ 0 ⊢ {k | ↑v k < ↑v x} ∈ 𝓝 0 [PROOFSTEP] rw [Valued.mem_nhds] [GOAL] case H K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ x : K x_ne : x ≠ 0 ⊢ ∃ γ, {y | ↑v (y - 0) < ↑γ} ⊆ {k | ↑v k < ↑v x} [PROOFSTEP] have vx_ne := (Valuation.ne_zero_iff <| v).mpr x_ne [GOAL] case H K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ x : K x_ne : x ≠ 0 vx_ne : ↑v x ≠ 0 ⊢ ∃ γ, {y | ↑v (y - 0) < ↑γ} ⊆ {k | ↑v k < ↑v x} [PROOFSTEP] let γ' := Units.mk0 _ vx_ne [GOAL] case H K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ x : K x_ne : x ≠ 0 vx_ne : ↑v x ≠ 0 γ' : ((fun x => Γ₀) x)ˣ := Units.mk0 (↑v x) vx_ne ⊢ ∃ γ, {y | ↑v (y - 0) < ↑γ} ⊆ {k | ↑v k < ↑v x} [PROOFSTEP] exact ⟨γ', fun y hy => by simpa using hy⟩ [GOAL] K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ x : K x_ne : x ≠ 0 vx_ne : ↑v x ≠ 0 γ' : ((fun x => Γ₀) x)ˣ := Units.mk0 (↑v x) vx_ne y : K hy : y ∈ {y | ↑v (y - 0) < ↑γ'} ⊢ y ∈ {k | ↑v k < ↑v x} [PROOFSTEP] simpa using hy [GOAL] K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ ⊢ Continuous ↑v [PROOFSTEP] rw [continuous_iff_continuousAt] [GOAL] K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ ⊢ ∀ (x : K), ContinuousAt (↑v) x [PROOFSTEP] intro x [GOAL] K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ x : K ⊢ ContinuousAt (↑v) x [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | h) [GOAL] case inl K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ ⊢ ContinuousAt (↑v) 0 [PROOFSTEP] rw [ContinuousAt, map_zero, WithZeroTopology.tendsto_zero] [GOAL] case inl K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ ⊢ ∀ (γ₀ : Γ₀), γ₀ ≠ 0 → ∀ᶠ (x : K) in 𝓝 0, ↑v x < γ₀ [PROOFSTEP] intro γ hγ [GOAL] case inl K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ γ : Γ₀ hγ : γ ≠ 0 ⊢ ∀ᶠ (x : K) in 𝓝 0, ↑v x < γ [PROOFSTEP] rw [Filter.Eventually, Valued.mem_nhds_zero] [GOAL] case inl K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ γ : Γ₀ hγ : γ ≠ 0 ⊢ ∃ γ_1, {x | ↑v x < ↑γ_1} ⊆ {x | ↑v x < γ} [PROOFSTEP] use Units.mk0 γ hγ [GOAL] case h K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ γ : Γ₀ hγ : γ ≠ 0 ⊢ {x | ↑v x < ↑(Units.mk0 γ hγ)} ⊆ {x | ↑v x < γ} [PROOFSTEP] rfl [GOAL] case inr K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ x : K h : x ≠ 0 ⊢ ContinuousAt (↑v) x [PROOFSTEP] have v_ne : (v x : Γ₀) ≠ 0 := (Valuation.ne_zero_iff _).mpr h [GOAL] case inr K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ x : K h : x ≠ 0 v_ne : ↑v x ≠ 0 ⊢ ContinuousAt (↑v) x [PROOFSTEP] rw [ContinuousAt, WithZeroTopology.tendsto_of_ne_zero v_ne] [GOAL] case inr K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ x : K h : x ≠ 0 v_ne : ↑v x ≠ 0 ⊢ ∀ᶠ (x_1 : K) in 𝓝 x, ↑v x_1 = ↑v x [PROOFSTEP] apply Valued.loc_const v_ne [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated ⊢ ∀ (F : Filter K), Cauchy F → 𝓝 0 ⊓ F = ⊥ → Cauchy (map (fun x => x⁻¹) F) [PROOFSTEP] rintro F hF h0 [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K hF : Cauchy F h0 : 𝓝 0 ⊓ F = ⊥ ⊢ Cauchy (map (fun x => x⁻¹) F) [PROOFSTEP] have : ∃ γ₀ : Γ₀ˣ, ∃ M ∈ F, ∀ x ∈ M, (γ₀ : Γ₀) ≤ v x := by rcases Filter.inf_eq_bot_iff.mp h0 with ⟨U, U_in, M, M_in, H⟩ rcases Valued.mem_nhds_zero.mp U_in with ⟨γ₀, hU⟩ exists γ₀, M, M_in intro x xM apply le_of_not_lt _ intro hyp have : x ∈ U ∩ M := ⟨hU hyp, xM⟩ rwa [H] at this [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K hF : Cauchy F h0 : 𝓝 0 ⊓ F = ⊥ ⊢ ∃ γ₀ M, M ∈ F ∧ ∀ (x : K), x ∈ M → ↑γ₀ ≤ ↑v x [PROOFSTEP] rcases Filter.inf_eq_bot_iff.mp h0 with ⟨U, U_in, M, M_in, H⟩ [GOAL] case intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K hF : Cauchy F h0 : 𝓝 0 ⊓ F = ⊥ U : Set K U_in : U ∈ 𝓝 0 M : Set K M_in : M ∈ F H : U ∩ M = ∅ ⊢ ∃ γ₀ M, M ∈ F ∧ ∀ (x : K), x ∈ M → ↑γ₀ ≤ ↑v x [PROOFSTEP] rcases Valued.mem_nhds_zero.mp U_in with ⟨γ₀, hU⟩ [GOAL] case intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K hF : Cauchy F h0 : 𝓝 0 ⊓ F = ⊥ U : Set K U_in : U ∈ 𝓝 0 M : Set K M_in : M ∈ F H : U ∩ M = ∅ γ₀ : Γ₀ˣ hU : {x | ↑v x < ↑γ₀} ⊆ U ⊢ ∃ γ₀ M, M ∈ F ∧ ∀ (x : K), x ∈ M → ↑γ₀ ≤ ↑v x [PROOFSTEP] exists γ₀, M, M_in [GOAL] case intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K hF : Cauchy F h0 : 𝓝 0 ⊓ F = ⊥ U : Set K U_in : U ∈ 𝓝 0 M : Set K M_in : M ∈ F H : U ∩ M = ∅ γ₀ : Γ₀ˣ hU : {x | ↑v x < ↑γ₀} ⊆ U ⊢ ∀ (x : K), x ∈ M → ↑γ₀ ≤ ↑v x [PROOFSTEP] intro x xM [GOAL] case intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K hF : Cauchy F h0 : 𝓝 0 ⊓ F = ⊥ U : Set K U_in : U ∈ 𝓝 0 M : Set K M_in : M ∈ F H : U ∩ M = ∅ γ₀ : Γ₀ˣ hU : {x | ↑v x < ↑γ₀} ⊆ U x : K xM : x ∈ M ⊢ ↑γ₀ ≤ ↑v x [PROOFSTEP] apply le_of_not_lt _ [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K hF : Cauchy F h0 : 𝓝 0 ⊓ F = ⊥ U : Set K U_in : U ∈ 𝓝 0 M : Set K M_in : M ∈ F H : U ∩ M = ∅ γ₀ : Γ₀ˣ hU : {x | ↑v x < ↑γ₀} ⊆ U x : K xM : x ∈ M ⊢ ¬↑v x < ↑γ₀ [PROOFSTEP] intro hyp [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K hF : Cauchy F h0 : 𝓝 0 ⊓ F = ⊥ U : Set K U_in : U ∈ 𝓝 0 M : Set K M_in : M ∈ F H : U ∩ M = ∅ γ₀ : Γ₀ˣ hU : {x | ↑v x < ↑γ₀} ⊆ U x : K xM : x ∈ M hyp : ↑v x < ↑γ₀ ⊢ False [PROOFSTEP] have : x ∈ U ∩ M := ⟨hU hyp, xM⟩ [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K hF : Cauchy F h0 : 𝓝 0 ⊓ F = ⊥ U : Set K U_in : U ∈ 𝓝 0 M : Set K M_in : M ∈ F H : U ∩ M = ∅ γ₀ : Γ₀ˣ hU : {x | ↑v x < ↑γ₀} ⊆ U x : K xM : x ∈ M hyp : ↑v x < ↑γ₀ this : x ∈ U ∩ M ⊢ False [PROOFSTEP] rwa [H] at this [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K hF : Cauchy F h0 : 𝓝 0 ⊓ F = ⊥ this : ∃ γ₀ M, M ∈ F ∧ ∀ (x : K), x ∈ M → ↑γ₀ ≤ ↑v x ⊢ Cauchy (map (fun x => x⁻¹) F) [PROOFSTEP] rcases this with ⟨γ₀, M₀, M₀_in, H₀⟩ [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K hF : Cauchy F h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x ⊢ Cauchy (map (fun x => x⁻¹) F) [PROOFSTEP] rw [Valued.cauchy_iff] at hF ⊢ [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K hF : NeBot F ∧ ∀ (γ : Γ₀ˣ), ∃ M, M ∈ F ∧ ∀ (x : K), x ∈ M → ∀ (y : K), y ∈ M → ↑v (y - x) < ↑γ h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x ⊢ NeBot (map (fun x => x⁻¹) F) ∧ ∀ (γ : Γ₀ˣ), ∃ M, M ∈ map (fun x => x⁻¹) F ∧ ∀ (x : K), x ∈ M → ∀ (y : K), y ∈ M → ↑v (y - x) < ↑γ [PROOFSTEP] refine' ⟨hF.1.map _, _⟩ [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K hF : NeBot F ∧ ∀ (γ : Γ₀ˣ), ∃ M, M ∈ F ∧ ∀ (x : K), x ∈ M → ∀ (y : K), y ∈ M → ↑v (y - x) < ↑γ h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x ⊢ ∀ (γ : Γ₀ˣ), ∃ M, M ∈ map (fun x => x⁻¹) F ∧ ∀ (x : K), x ∈ M → ∀ (y : K), y ∈ M → ↑v (y - x) < ↑γ [PROOFSTEP] replace hF := hF.2 [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x hF : ∀ (γ : Γ₀ˣ), ∃ M, M ∈ F ∧ ∀ (x : K), x ∈ M → ∀ (y : K), y ∈ M → ↑v (y - x) < ↑γ ⊢ ∀ (γ : Γ₀ˣ), ∃ M, M ∈ map (fun x => x⁻¹) F ∧ ∀ (x : K), x ∈ M → ∀ (y : K), y ∈ M → ↑v (y - x) < ↑γ [PROOFSTEP] intro γ [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x hF : ∀ (γ : Γ₀ˣ), ∃ M, M ∈ F ∧ ∀ (x : K), x ∈ M → ∀ (y : K), y ∈ M → ↑v (y - x) < ↑γ γ : Γ₀ˣ ⊢ ∃ M, M ∈ map (fun x => x⁻¹) F ∧ ∀ (x : K), x ∈ M → ∀ (y : K), y ∈ M → ↑v (y - x) < ↑γ [PROOFSTEP] rcases hF (min (γ * γ₀ * γ₀) γ₀) with ⟨M₁, M₁_in, H₁⟩ [GOAL] case intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x hF : ∀ (γ : Γ₀ˣ), ∃ M, M ∈ F ∧ ∀ (x : K), x ∈ M → ∀ (y : K), y ∈ M → ↑v (y - x) < ↑γ γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F H₁ : ∀ (x : K), x ∈ M₁ → ∀ (y : K), y ∈ M₁ → ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) ⊢ ∃ M, M ∈ map (fun x => x⁻¹) F ∧ ∀ (x : K), x ∈ M → ∀ (y : K), y ∈ M → ↑v (y - x) < ↑γ [PROOFSTEP] clear hF [GOAL] case intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F H₁ : ∀ (x : K), x ∈ M₁ → ∀ (y : K), y ∈ M₁ → ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) ⊢ ∃ M, M ∈ map (fun x => x⁻¹) F ∧ ∀ (x : K), x ∈ M → ∀ (y : K), y ∈ M → ↑v (y - x) < ↑γ [PROOFSTEP] use(fun x : K => x⁻¹) '' (M₀ ∩ M₁) [GOAL] case h K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F H₁ : ∀ (x : K), x ∈ M₁ → ∀ (y : K), y ∈ M₁ → ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) ⊢ (fun x => x⁻¹) '' (M₀ ∩ M₁) ∈ map (fun x => x⁻¹) F ∧ ∀ (x : K), x ∈ (fun x => x⁻¹) '' (M₀ ∩ M₁) → ∀ (y : K), y ∈ (fun x => x⁻¹) '' (M₀ ∩ M₁) → ↑v (y - x) < ↑γ [PROOFSTEP] constructor [GOAL] case h.left K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F H₁ : ∀ (x : K), x ∈ M₁ → ∀ (y : K), y ∈ M₁ → ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) ⊢ (fun x => x⁻¹) '' (M₀ ∩ M₁) ∈ map (fun x => x⁻¹) F [PROOFSTEP] rw [mem_map] [GOAL] case h.left K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F H₁ : ∀ (x : K), x ∈ M₁ → ∀ (y : K), y ∈ M₁ → ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) ⊢ (fun x => x⁻¹) ⁻¹' ((fun x => x⁻¹) '' (M₀ ∩ M₁)) ∈ F [PROOFSTEP] apply mem_of_superset (Filter.inter_mem M₀_in M₁_in) [GOAL] case h.left K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F H₁ : ∀ (x : K), x ∈ M₁ → ∀ (y : K), y ∈ M₁ → ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) ⊢ M₀ ∩ M₁ ⊆ (fun x => x⁻¹) ⁻¹' ((fun x => x⁻¹) '' (M₀ ∩ M₁)) [PROOFSTEP] exact subset_preimage_image _ _ [GOAL] case h.right K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F H₁ : ∀ (x : K), x ∈ M₁ → ∀ (y : K), y ∈ M₁ → ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) ⊢ ∀ (x : K), x ∈ (fun x => x⁻¹) '' (M₀ ∩ M₁) → ∀ (y : K), y ∈ (fun x => x⁻¹) '' (M₀ ∩ M₁) → ↑v (y - x) < ↑γ [PROOFSTEP] rintro _ ⟨x, ⟨x_in₀, x_in₁⟩, rfl⟩ _ ⟨y, ⟨y_in₀, y_in₁⟩, rfl⟩ [GOAL] case h.right.intro.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F H₁ : ∀ (x : K), x ∈ M₁ → ∀ (y : K), y ∈ M₁ → ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x : K x_in₀ : x ∈ M₀ x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ ⊢ ↑v ((fun x => x⁻¹) y - (fun x => x⁻¹) x) < ↑γ [PROOFSTEP] simp only [mem_setOf_eq] [GOAL] case h.right.intro.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F H₁ : ∀ (x : K), x ∈ M₁ → ∀ (y : K), y ∈ M₁ → ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x : K x_in₀ : x ∈ M₀ x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ ⊢ ↑v (y⁻¹ - x⁻¹) < ↑γ [PROOFSTEP] specialize H₁ x x_in₁ y y_in₁ [GOAL] case h.right.intro.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₀ : x ∈ M₀ x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) ⊢ ↑v (y⁻¹ - x⁻¹) < ↑γ [PROOFSTEP] replace x_in₀ := H₀ x x_in₀ [GOAL] case h.right.intro.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x ⊢ ↑v (y⁻¹ - x⁻¹) < ↑γ [PROOFSTEP] replace := H₀ y y_in₀ [GOAL] case h.right.intro.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F H₀ : ∀ (x : K), x ∈ M₀ → ↑γ₀ ≤ ↑v x γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x this : ↑γ₀ ≤ ↑v y ⊢ ↑v (y⁻¹ - x⁻¹) < ↑γ [PROOFSTEP] clear H₀ [GOAL] case h.right.intro.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x this : ↑γ₀ ≤ ↑v y ⊢ ↑v (y⁻¹ - x⁻¹) < ↑γ [PROOFSTEP] apply Valuation.inversion_estimate [GOAL] case h.right.intro.intro.intro.intro.intro.intro.y_ne K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x this : ↑γ₀ ≤ ↑v y ⊢ x ≠ 0 [PROOFSTEP] have : (v x : Γ₀) ≠ 0 := by intro h rw [h] at x_in₀ simp at x_in₀ [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x this : ↑γ₀ ≤ ↑v y ⊢ ↑v x ≠ 0 [PROOFSTEP] intro h [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x this : ↑γ₀ ≤ ↑v y h : ↑v x = 0 ⊢ False [PROOFSTEP] rw [h] at x_in₀ [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ 0 this : ↑γ₀ ≤ ↑v y h : ↑v x = 0 ⊢ False [PROOFSTEP] simp at x_in₀ [GOAL] case h.right.intro.intro.intro.intro.intro.intro.y_ne K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x this✝ : ↑γ₀ ≤ ↑v y this : ↑v x ≠ 0 ⊢ x ≠ 0 [PROOFSTEP] exact (Valuation.ne_zero_iff _).mp this [GOAL] case h.right.intro.intro.intro.intro.intro.intro.h K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x this : ↑γ₀ ≤ ↑v y ⊢ ↑v (y - x) < min (↑γ * (↑v x * ↑v x)) (↑v x) [PROOFSTEP] refine' lt_of_lt_of_le H₁ _ [GOAL] case h.right.intro.intro.intro.intro.intro.intro.h K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x this : ↑γ₀ ≤ ↑v y ⊢ ↑(min (γ * γ₀ * γ₀) γ₀) ≤ min (↑γ * (↑v x * ↑v x)) (↑v x) [PROOFSTEP] rw [Units.min_val] [GOAL] case h.right.intro.intro.intro.intro.intro.intro.h K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x this : ↑γ₀ ≤ ↑v y ⊢ min ↑(γ * γ₀ * γ₀) ↑γ₀ ≤ min (↑γ * (↑v x * ↑v x)) (↑v x) [PROOFSTEP] apply min_le_min _ x_in₀ [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x this : ↑γ₀ ≤ ↑v y ⊢ ↑(γ * γ₀ * γ₀) ≤ ↑γ * (↑v x * ↑v x) [PROOFSTEP] rw [mul_assoc] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x this : ↑γ₀ ≤ ↑v y ⊢ ↑(γ * (γ₀ * γ₀)) ≤ ↑γ * (↑v x * ↑v x) [PROOFSTEP] have : ((γ₀ * γ₀ : Γ₀ˣ) : Γ₀) ≤ v x * v x := calc ↑γ₀ * ↑γ₀ ≤ ↑γ₀ * v x := mul_le_mul_left' x_in₀ ↑γ₀ _ ≤ _ := mul_le_mul_right' x_in₀ (v x) [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x this✝ : ↑γ₀ ≤ ↑v y this : ↑(γ₀ * γ₀) ≤ ↑v x * ↑v x ⊢ ↑(γ * (γ₀ * γ₀)) ≤ ↑γ * (↑v x * ↑v x) [PROOFSTEP] rw [Units.val_mul] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ src✝ : SeparatedSpace K := ValuedRing.separated F : Filter K h0 : 𝓝 0 ⊓ F = ⊥ γ₀ : Γ₀ˣ M₀ : Set K M₀_in : M₀ ∈ F γ : Γ₀ˣ M₁ : Set K M₁_in : M₁ ∈ F x : K x_in₁ : x ∈ M₁ y : K y_in₀ : y ∈ M₀ y_in₁ : y ∈ M₁ H₁ : ↑v (y - x) < ↑(min (γ * γ₀ * γ₀) γ₀) x_in₀ : ↑γ₀ ≤ ↑v x this✝ : ↑γ₀ ≤ ↑v y this : ↑(γ₀ * γ₀) ≤ ↑v x * ↑v x ⊢ ↑γ * ↑(γ₀ * γ₀) ≤ ↑γ * (↑v x * ↑v x) [PROOFSTEP] exact mul_le_mul_left' this γ [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ ⊢ Continuous extension [PROOFSTEP] refine' Completion.denseInducing_coe.continuous_extend _ [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ ⊢ ∀ (b : hat K), ∃ c, Tendsto (↑v) (Filter.comap (↑K) (𝓝 b)) (𝓝 c) [PROOFSTEP] intro x₀ [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K ⊢ ∃ c, Tendsto (↑v) (Filter.comap (↑K) (𝓝 x₀)) (𝓝 c) [PROOFSTEP] rcases eq_or_ne x₀ 0 with (rfl | h) [GOAL] case inl K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ ⊢ ∃ c, Tendsto (↑v) (Filter.comap (↑K) (𝓝 0)) (𝓝 c) [PROOFSTEP] refine' ⟨0, _⟩ [GOAL] case inl K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ ⊢ Tendsto (↑v) (Filter.comap (↑K) (𝓝 0)) (𝓝 0) [PROOFSTEP] erw [← Completion.denseInducing_coe.toInducing.nhds_eq_comap] [GOAL] case inl K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ ⊢ Tendsto (↑v) (𝓝 0) (𝓝 0) [PROOFSTEP] exact Valued.continuous_valuation.tendsto' 0 0 (map_zero v) [GOAL] case inr K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 ⊢ ∃ c, Tendsto (↑v) (Filter.comap (↑K) (𝓝 x₀)) (𝓝 c) [PROOFSTEP] have preimage_one : v ⁻¹' {(1 : Γ₀)} ∈ 𝓝 (1 : K) := by have : (v (1 : K) : Γ₀) ≠ 0 := by rw [Valuation.map_one] exact zero_ne_one.symm convert Valued.loc_const this ext x rw [Valuation.map_one, mem_preimage, mem_singleton_iff, mem_setOf_eq] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 ⊢ ↑v ⁻¹' {1} ∈ 𝓝 1 [PROOFSTEP] have : (v (1 : K) : Γ₀) ≠ 0 := by rw [Valuation.map_one] exact zero_ne_one.symm [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 ⊢ ↑v 1 ≠ 0 [PROOFSTEP] rw [Valuation.map_one] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 ⊢ 1 ≠ 0 [PROOFSTEP] exact zero_ne_one.symm [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 this : ↑v 1 ≠ 0 ⊢ ↑v ⁻¹' {1} ∈ 𝓝 1 [PROOFSTEP] convert Valued.loc_const this [GOAL] case h.e'_4 K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 this : ↑v 1 ≠ 0 ⊢ ↑v ⁻¹' {1} = {y | ↑v y = ↑v 1} [PROOFSTEP] ext x [GOAL] case h.e'_4.h K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 this : ↑v 1 ≠ 0 x : K ⊢ x ∈ ↑v ⁻¹' {1} ↔ x ∈ {y | ↑v y = ↑v 1} [PROOFSTEP] rw [Valuation.map_one, mem_preimage, mem_singleton_iff, mem_setOf_eq] [GOAL] case inr K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 ⊢ ∃ c, Tendsto (↑v) (Filter.comap (↑K) (𝓝 x₀)) (𝓝 c) [PROOFSTEP] obtain ⟨V, V_in, hV⟩ : ∃ V ∈ 𝓝 (1 : hat K), ∀ x : K, (x : hat K) ∈ V → (v x : Γ₀) = 1 := by rwa [Completion.denseInducing_coe.nhds_eq_comap, mem_comap] at preimage_one [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 ⊢ ∃ V, V ∈ 𝓝 1 ∧ ∀ (x : K), ↑K x ∈ V → ↑v x = 1 [PROOFSTEP] rwa [Completion.denseInducing_coe.nhds_eq_comap, mem_comap] at preimage_one [GOAL] case inr.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 ⊢ ∃ c, Tendsto (↑v) (Filter.comap (↑K) (𝓝 x₀)) (𝓝 c) [PROOFSTEP] have : ∃ V' ∈ 𝓝 (1 : hat K), (0 : hat K) ∉ V' ∧ ∀ (x) (_ : x ∈ V') (y) (_ : y ∈ V'), x * y⁻¹ ∈ V := by have : Tendsto (fun p : hat K × hat K => p.1 * p.2⁻¹) ((𝓝 1) ×ˢ (𝓝 1)) (𝓝 1) := by rw [← nhds_prod_eq] conv => congr rfl rfl rw [← one_mul (1 : hat K)] refine' Tendsto.mul continuous_fst.continuousAt (Tendsto.comp _ continuous_snd.continuousAt) -- Porting note: Added `ContinuousAt.tendsto` convert (continuousAt_inv₀ (zero_ne_one.symm : 1 ≠ (0 : hat K))).tendsto exact inv_one.symm rcases tendsto_prod_self_iff.mp this V V_in with ⟨U, U_in, hU⟩ let hatKstar := ({0}ᶜ : Set <| hat K) have : hatKstar ∈ 𝓝 (1 : hat K) := compl_singleton_mem_nhds zero_ne_one.symm use U ∩ hatKstar, Filter.inter_mem U_in this constructor · rintro ⟨_, h'⟩ rw [mem_compl_singleton_iff] at h' exact h' rfl · rintro x ⟨hx, _⟩ y ⟨hy, _⟩ apply hU <;> assumption [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 ⊢ ∃ V', V' ∈ 𝓝 1 ∧ ¬0 ∈ V' ∧ ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V [PROOFSTEP] have : Tendsto (fun p : hat K × hat K => p.1 * p.2⁻¹) ((𝓝 1) ×ˢ (𝓝 1)) (𝓝 1) := by rw [← nhds_prod_eq] conv => congr rfl rfl rw [← one_mul (1 : hat K)] refine' Tendsto.mul continuous_fst.continuousAt (Tendsto.comp _ continuous_snd.continuousAt) -- Porting note: Added `ContinuousAt.tendsto` convert (continuousAt_inv₀ (zero_ne_one.symm : 1 ≠ (0 : hat K))).tendsto exact inv_one.symm [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 ⊢ Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) [PROOFSTEP] rw [← nhds_prod_eq] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 ⊢ Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 (1, 1)) (𝓝 1) [PROOFSTEP] conv => congr rfl rfl rw [← one_mul (1 : hat K)] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 | Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 (1, 1)) (𝓝 1) [PROOFSTEP] congr rfl rfl rw [← one_mul (1 : hat K)] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 | Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 (1, 1)) (𝓝 1) [PROOFSTEP] congr rfl rfl rw [← one_mul (1 : hat K)] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 | Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 (1, 1)) (𝓝 1) [PROOFSTEP] congr [GOAL] case f K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 | fun p => p.fst * p.snd⁻¹ case l₁ K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 | 𝓝 (1, 1) case l₂ K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 | 𝓝 1 [PROOFSTEP] rfl [GOAL] case l₁ K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 | 𝓝 (1, 1) case l₂ K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 | 𝓝 1 [PROOFSTEP] rfl [GOAL] case l₂ K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 | 𝓝 1 [PROOFSTEP] rw [← one_mul (1 : hat K)] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 ⊢ Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 (1, 1)) (𝓝 (1 * 1)) [PROOFSTEP] refine' Tendsto.mul continuous_fst.continuousAt (Tendsto.comp _ continuous_snd.continuousAt) -- Porting note: Added `ContinuousAt.tendsto` [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 ⊢ Tendsto Inv.inv (𝓝 (1, 1).snd) (𝓝 1) [PROOFSTEP] convert (continuousAt_inv₀ (zero_ne_one.symm : 1 ≠ (0 : hat K))).tendsto [GOAL] case h.e'_5.h.e'_3 K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 ⊢ 1 = 1⁻¹ [PROOFSTEP] exact inv_one.symm [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 this : Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) ⊢ ∃ V', V' ∈ 𝓝 1 ∧ ¬0 ∈ V' ∧ ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V [PROOFSTEP] rcases tendsto_prod_self_iff.mp this V V_in with ⟨U, U_in, hU⟩ [GOAL] case intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 this : Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) U : Set (hat K) U_in : U ∈ 𝓝 1 hU : ∀ (x x' : hat K), x ∈ U → x' ∈ U → (x, x').fst * (x, x').snd⁻¹ ∈ V ⊢ ∃ V', V' ∈ 𝓝 1 ∧ ¬0 ∈ V' ∧ ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V [PROOFSTEP] let hatKstar := ({0}ᶜ : Set <| hat K) [GOAL] case intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 this : Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) U : Set (hat K) U_in : U ∈ 𝓝 1 hU : ∀ (x x' : hat K), x ∈ U → x' ∈ U → (x, x').fst * (x, x').snd⁻¹ ∈ V hatKstar : Set (hat K) := {0}ᶜ ⊢ ∃ V', V' ∈ 𝓝 1 ∧ ¬0 ∈ V' ∧ ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V [PROOFSTEP] have : hatKstar ∈ 𝓝 (1 : hat K) := compl_singleton_mem_nhds zero_ne_one.symm [GOAL] case intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 this✝ : Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) U : Set (hat K) U_in : U ∈ 𝓝 1 hU : ∀ (x x' : hat K), x ∈ U → x' ∈ U → (x, x').fst * (x, x').snd⁻¹ ∈ V hatKstar : Set (hat K) := {0}ᶜ this : hatKstar ∈ 𝓝 1 ⊢ ∃ V', V' ∈ 𝓝 1 ∧ ¬0 ∈ V' ∧ ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V [PROOFSTEP] use U ∩ hatKstar, Filter.inter_mem U_in this [GOAL] case right K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 this✝ : Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) U : Set (hat K) U_in : U ∈ 𝓝 1 hU : ∀ (x x' : hat K), x ∈ U → x' ∈ U → (x, x').fst * (x, x').snd⁻¹ ∈ V hatKstar : Set (hat K) := {0}ᶜ this : hatKstar ∈ 𝓝 1 ⊢ ¬0 ∈ U ∩ hatKstar ∧ ∀ (x : hat K), x ∈ U ∩ hatKstar → ∀ (y : hat K), y ∈ U ∩ hatKstar → x * y⁻¹ ∈ V [PROOFSTEP] constructor [GOAL] case right.left K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 this✝ : Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) U : Set (hat K) U_in : U ∈ 𝓝 1 hU : ∀ (x x' : hat K), x ∈ U → x' ∈ U → (x, x').fst * (x, x').snd⁻¹ ∈ V hatKstar : Set (hat K) := {0}ᶜ this : hatKstar ∈ 𝓝 1 ⊢ ¬0 ∈ U ∩ hatKstar [PROOFSTEP] rintro ⟨_, h'⟩ [GOAL] case right.left.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 this✝ : Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) U : Set (hat K) U_in : U ∈ 𝓝 1 hU : ∀ (x x' : hat K), x ∈ U → x' ∈ U → (x, x').fst * (x, x').snd⁻¹ ∈ V hatKstar : Set (hat K) := {0}ᶜ this : hatKstar ∈ 𝓝 1 left✝ : 0 ∈ U h' : 0 ∈ hatKstar ⊢ False [PROOFSTEP] rw [mem_compl_singleton_iff] at h' [GOAL] case right.left.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 this✝ : Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) U : Set (hat K) U_in : U ∈ 𝓝 1 hU : ∀ (x x' : hat K), x ∈ U → x' ∈ U → (x, x').fst * (x, x').snd⁻¹ ∈ V hatKstar : Set (hat K) := {0}ᶜ this : hatKstar ∈ 𝓝 1 left✝ : 0 ∈ U h' : 0 ≠ 0 ⊢ False [PROOFSTEP] exact h' rfl [GOAL] case right.right K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 this✝ : Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) U : Set (hat K) U_in : U ∈ 𝓝 1 hU : ∀ (x x' : hat K), x ∈ U → x' ∈ U → (x, x').fst * (x, x').snd⁻¹ ∈ V hatKstar : Set (hat K) := {0}ᶜ this : hatKstar ∈ 𝓝 1 ⊢ ∀ (x : hat K), x ∈ U ∩ hatKstar → ∀ (y : hat K), y ∈ U ∩ hatKstar → x * y⁻¹ ∈ V [PROOFSTEP] rintro x ⟨hx, _⟩ y ⟨hy, _⟩ [GOAL] case right.right.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 this✝ : Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) U : Set (hat K) U_in : U ∈ 𝓝 1 hU : ∀ (x x' : hat K), x ∈ U → x' ∈ U → (x, x').fst * (x, x').snd⁻¹ ∈ V hatKstar : Set (hat K) := {0}ᶜ this : hatKstar ∈ 𝓝 1 x : hat K hx : x ∈ U right✝¹ : x ∈ hatKstar y : hat K hy : y ∈ U right✝ : y ∈ hatKstar ⊢ x * y⁻¹ ∈ V [PROOFSTEP] apply hU [GOAL] case right.right.intro.intro.a K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 this✝ : Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) U : Set (hat K) U_in : U ∈ 𝓝 1 hU : ∀ (x x' : hat K), x ∈ U → x' ∈ U → (x, x').fst * (x, x').snd⁻¹ ∈ V hatKstar : Set (hat K) := {0}ᶜ this : hatKstar ∈ 𝓝 1 x : hat K hx : x ∈ U right✝¹ : x ∈ hatKstar y : hat K hy : y ∈ U right✝ : y ∈ hatKstar ⊢ x ∈ U [PROOFSTEP] assumption [GOAL] case right.right.intro.intro.a K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 this✝ : Tendsto (fun p => p.fst * p.snd⁻¹) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) U : Set (hat K) U_in : U ∈ 𝓝 1 hU : ∀ (x x' : hat K), x ∈ U → x' ∈ U → (x, x').fst * (x, x').snd⁻¹ ∈ V hatKstar : Set (hat K) := {0}ᶜ this : hatKstar ∈ 𝓝 1 x : hat K hx : x ∈ U right✝¹ : x ∈ hatKstar y : hat K hy : y ∈ U right✝ : y ∈ hatKstar ⊢ y ∈ U [PROOFSTEP] assumption [GOAL] case inr.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 this : ∃ V', V' ∈ 𝓝 1 ∧ ¬0 ∈ V' ∧ ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V ⊢ ∃ c, Tendsto (↑v) (Filter.comap (↑K) (𝓝 x₀)) (𝓝 c) [PROOFSTEP] rcases this with ⟨V', V'_in, zeroV', hV'⟩ [GOAL] case inr.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V ⊢ ∃ c, Tendsto (↑v) (Filter.comap (↑K) (𝓝 x₀)) (𝓝 c) [PROOFSTEP] have nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ := by have l : Function.LeftInverse (fun x : hat K => x * x₀⁻¹) fun x : hat K => x * x₀ := by intro x simp only [mul_assoc, mul_inv_cancel h, mul_one] have r : Function.RightInverse (fun x : hat K => x * x₀⁻¹) fun x : hat K => x * x₀ := by intro x simp only [mul_assoc, inv_mul_cancel h, mul_one] have c : Continuous fun x : hat K => x * x₀⁻¹ := continuous_id.mul continuous_const rw [image_eq_preimage_of_inverse l r] rw [← mul_inv_cancel h] at V'_in exact c.continuousAt V'_in [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V ⊢ (fun x => x * x₀) '' V' ∈ 𝓝 x₀ [PROOFSTEP] have l : Function.LeftInverse (fun x : hat K => x * x₀⁻¹) fun x : hat K => x * x₀ := by intro x simp only [mul_assoc, mul_inv_cancel h, mul_one] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V ⊢ Function.LeftInverse (fun x => x * x₀⁻¹) fun x => x * x₀ [PROOFSTEP] intro x [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V x : hat K ⊢ (fun x => x * x₀⁻¹) ((fun x => x * x₀) x) = x [PROOFSTEP] simp only [mul_assoc, mul_inv_cancel h, mul_one] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V l : Function.LeftInverse (fun x => x * x₀⁻¹) fun x => x * x₀ ⊢ (fun x => x * x₀) '' V' ∈ 𝓝 x₀ [PROOFSTEP] have r : Function.RightInverse (fun x : hat K => x * x₀⁻¹) fun x : hat K => x * x₀ := by intro x simp only [mul_assoc, inv_mul_cancel h, mul_one] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V l : Function.LeftInverse (fun x => x * x₀⁻¹) fun x => x * x₀ ⊢ Function.RightInverse (fun x => x * x₀⁻¹) fun x => x * x₀ [PROOFSTEP] intro x [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V l : Function.LeftInverse (fun x => x * x₀⁻¹) fun x => x * x₀ x : hat K ⊢ (fun x => x * x₀) ((fun x => x * x₀⁻¹) x) = x [PROOFSTEP] simp only [mul_assoc, inv_mul_cancel h, mul_one] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V l : Function.LeftInverse (fun x => x * x₀⁻¹) fun x => x * x₀ r : Function.RightInverse (fun x => x * x₀⁻¹) fun x => x * x₀ ⊢ (fun x => x * x₀) '' V' ∈ 𝓝 x₀ [PROOFSTEP] have c : Continuous fun x : hat K => x * x₀⁻¹ := continuous_id.mul continuous_const [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V l : Function.LeftInverse (fun x => x * x₀⁻¹) fun x => x * x₀ r : Function.RightInverse (fun x => x * x₀⁻¹) fun x => x * x₀ c : Continuous fun x => x * x₀⁻¹ ⊢ (fun x => x * x₀) '' V' ∈ 𝓝 x₀ [PROOFSTEP] rw [image_eq_preimage_of_inverse l r] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V l : Function.LeftInverse (fun x => x * x₀⁻¹) fun x => x * x₀ r : Function.RightInverse (fun x => x * x₀⁻¹) fun x => x * x₀ c : Continuous fun x => x * x₀⁻¹ ⊢ (fun x => x * x₀⁻¹) ⁻¹' V' ∈ 𝓝 x₀ [PROOFSTEP] rw [← mul_inv_cancel h] at V'_in [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 (x₀ * x₀⁻¹) zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V l : Function.LeftInverse (fun x => x * x₀⁻¹) fun x => x * x₀ r : Function.RightInverse (fun x => x * x₀⁻¹) fun x => x * x₀ c : Continuous fun x => x * x₀⁻¹ ⊢ (fun x => x * x₀⁻¹) ⁻¹' V' ∈ 𝓝 x₀ [PROOFSTEP] exact c.continuousAt V'_in [GOAL] case inr.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ ⊢ ∃ c, Tendsto (↑v) (Filter.comap (↑K) (𝓝 x₀)) (𝓝 c) [PROOFSTEP] have : ∃ z₀ : K, ∃ y₀ ∈ V', ↑z₀ = y₀ * x₀ ∧ z₀ ≠ 0 := by rcases Completion.denseRange_coe.mem_nhds nhds_right with ⟨z₀, y₀, y₀_in, H : y₀ * x₀ = z₀⟩ refine' ⟨z₀, y₀, y₀_in, ⟨H.symm, _⟩⟩ rintro rfl exact mul_ne_zero (ne_of_mem_of_not_mem y₀_in zeroV') h H [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ ⊢ ∃ z₀ y₀, y₀ ∈ V' ∧ ↑K z₀ = y₀ * x₀ ∧ z₀ ≠ 0 [PROOFSTEP] rcases Completion.denseRange_coe.mem_nhds nhds_right with ⟨z₀, y₀, y₀_in, H : y₀ * x₀ = z₀⟩ [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' H : y₀ * x₀ = ↑K z₀ ⊢ ∃ z₀ y₀, y₀ ∈ V' ∧ ↑K z₀ = y₀ * x₀ ∧ z₀ ≠ 0 [PROOFSTEP] refine' ⟨z₀, y₀, y₀_in, ⟨H.symm, _⟩⟩ [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' H : y₀ * x₀ = ↑K z₀ ⊢ z₀ ≠ 0 [PROOFSTEP] rintro rfl [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ y₀ : hat K y₀_in : y₀ ∈ V' H : y₀ * x₀ = ↑K 0 ⊢ False [PROOFSTEP] exact mul_ne_zero (ne_of_mem_of_not_mem y₀_in zeroV') h H [GOAL] case inr.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ this : ∃ z₀ y₀, y₀ ∈ V' ∧ ↑K z₀ = y₀ * x₀ ∧ z₀ ≠ 0 ⊢ ∃ c, Tendsto (↑v) (Filter.comap (↑K) (𝓝 x₀)) (𝓝 c) [PROOFSTEP] rcases this with ⟨z₀, y₀, y₀_in, hz₀, z₀_ne⟩ [GOAL] case inr.intro.intro.intro.intro.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 ⊢ ∃ c, Tendsto (↑v) (Filter.comap (↑K) (𝓝 x₀)) (𝓝 c) [PROOFSTEP] have vz₀_ne : (v z₀ : Γ₀) ≠ 0 := by rwa [Valuation.ne_zero_iff] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 ⊢ ↑v z₀ ≠ 0 [PROOFSTEP] rwa [Valuation.ne_zero_iff] [GOAL] case inr.intro.intro.intro.intro.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 vz₀_ne : ↑v z₀ ≠ 0 ⊢ ∃ c, Tendsto (↑v) (Filter.comap (↑K) (𝓝 x₀)) (𝓝 c) [PROOFSTEP] refine' ⟨v z₀, _⟩ [GOAL] case inr.intro.intro.intro.intro.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 vz₀_ne : ↑v z₀ ≠ 0 ⊢ Tendsto (↑v) (Filter.comap (↑K) (𝓝 x₀)) (𝓝 (↑v z₀)) [PROOFSTEP] rw [WithZeroTopology.tendsto_of_ne_zero vz₀_ne, eventually_comap] [GOAL] case inr.intro.intro.intro.intro.intro.intro.intro.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 vz₀_ne : ↑v z₀ ≠ 0 ⊢ ∀ᶠ (b : hat K) in 𝓝 x₀, ∀ (a : K), ↑K a = b → ↑v a = ↑v z₀ [PROOFSTEP] filter_upwards [nhds_right] with x x_in a ha [GOAL] case h K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 vz₀_ne : ↑v z₀ ≠ 0 x : hat K x_in : x ∈ (fun x => x * x₀) '' V' a : K ha : ↑K a = x ⊢ ↑v a = ↑v z₀ [PROOFSTEP] rcases x_in with ⟨y, y_in, rfl⟩ [GOAL] case h.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 vz₀_ne : ↑v z₀ ≠ 0 a : K y : hat K y_in : y ∈ V' ha : ↑K a = (fun x => x * x₀) y ⊢ ↑v a = ↑v z₀ [PROOFSTEP] have : (v (a * z₀⁻¹) : Γ₀) = 1 := by apply hV have : (z₀⁻¹ : K) = (z₀ : hat K)⁻¹ := map_inv₀ (Completion.coeRingHom : K →+* hat K) z₀ rw [Completion.coe_mul, this, ha, hz₀, mul_inv, mul_comm y₀⁻¹, ← mul_assoc, mul_assoc y, mul_inv_cancel h, mul_one] solve_by_elim [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 vz₀_ne : ↑v z₀ ≠ 0 a : K y : hat K y_in : y ∈ V' ha : ↑K a = (fun x => x * x₀) y ⊢ ↑v (a * z₀⁻¹) = 1 [PROOFSTEP] apply hV [GOAL] case a K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 vz₀_ne : ↑v z₀ ≠ 0 a : K y : hat K y_in : y ∈ V' ha : ↑K a = (fun x => x * x₀) y ⊢ ↑K (a * z₀⁻¹) ∈ V [PROOFSTEP] have : (z₀⁻¹ : K) = (z₀ : hat K)⁻¹ := map_inv₀ (Completion.coeRingHom : K →+* hat K) z₀ [GOAL] case a K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 vz₀_ne : ↑v z₀ ≠ 0 a : K y : hat K y_in : y ∈ V' ha : ↑K a = (fun x => x * x₀) y this : ↑K z₀⁻¹ = (↑K z₀)⁻¹ ⊢ ↑K (a * z₀⁻¹) ∈ V [PROOFSTEP] rw [Completion.coe_mul, this, ha, hz₀, mul_inv, mul_comm y₀⁻¹, ← mul_assoc, mul_assoc y, mul_inv_cancel h, mul_one] [GOAL] case a K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 vz₀_ne : ↑v z₀ ≠ 0 a : K y : hat K y_in : y ∈ V' ha : ↑K a = (fun x => x * x₀) y this : ↑K z₀⁻¹ = (↑K z₀)⁻¹ ⊢ y * y₀⁻¹ ∈ V [PROOFSTEP] solve_by_elim [GOAL] case h.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 vz₀_ne : ↑v z₀ ≠ 0 a : K y : hat K y_in : y ∈ V' ha : ↑K a = (fun x => x * x₀) y this : ↑v (a * z₀⁻¹) = 1 ⊢ ↑v a = ↑v z₀ [PROOFSTEP] calc v a = v (a * z₀⁻¹ * z₀) := by rw [mul_assoc, inv_mul_cancel z₀_ne, mul_one] _ = v (a * z₀⁻¹) * v z₀ := (Valuation.map_mul _ _ _) _ = v z₀ := by rw [this, one_mul] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 vz₀_ne : ↑v z₀ ≠ 0 a : K y : hat K y_in : y ∈ V' ha : ↑K a = (fun x => x * x₀) y this : ↑v (a * z₀⁻¹) = 1 ⊢ ↑v a = ↑v (a * z₀⁻¹ * z₀) [PROOFSTEP] rw [mul_assoc, inv_mul_cancel z₀_ne, mul_one] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ↑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑K x ∈ V → ↑v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : ¬0 ∈ V' hV' : ∀ (x : hat K), x ∈ V' → ∀ (y : hat K), y ∈ V' → x * y⁻¹ ∈ V nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ z₀ : K y₀ : hat K y₀_in : y₀ ∈ V' hz₀ : ↑K z₀ = y₀ * x₀ z₀_ne : z₀ ≠ 0 vz₀_ne : ↑v z₀ ≠ 0 a : K y : hat K y_in : y ∈ V' ha : ↑K a = (fun x => x * x₀) y this : ↑v (a * z₀⁻¹) = 1 ⊢ ↑v (a * z₀⁻¹) * ↑v z₀ = ↑v z₀ [PROOFSTEP] rw [this, one_mul] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x : K ⊢ extension (↑K x) = ↑v x [PROOFSTEP] refine' Completion.denseInducing_coe.extend_eq_of_tendsto _ [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x : K ⊢ Tendsto (↑v) (Filter.comap (↑K) (𝓝 (↑K x))) (𝓝 (↑v x)) [PROOFSTEP] rw [← Completion.denseInducing_coe.nhds_eq_comap] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x : K ⊢ Tendsto (↑v) (𝓝 x) (𝓝 (↑v x)) [PROOFSTEP] exact Valued.continuous_valuation.continuousAt [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ ⊢ extension 0 = 0 [PROOFSTEP] rw [← v.map_zero (R := K), ← Valued.extension_extends (0 : K)] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ ⊢ extension 0 = extension (↑K 0) [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ ⊢ ZeroHom.toFun { toFun := extension, map_zero' := (_ : extension 0 = 0) } 1 = 1 [PROOFSTEP] simp [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ ⊢ extension 1 = 1 [PROOFSTEP] rw [← Completion.coe_one, Valued.extension_extends (1 : K)] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ ⊢ ↑v 1 = 1 [PROOFSTEP] exact Valuation.map_one _ [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x y : hat K ⊢ ZeroHom.toFun { toFun := extension, map_zero' := (_ : extension 0 = 0) } (x * y) = ZeroHom.toFun { toFun := extension, map_zero' := (_ : extension 0 = 0) } x * ZeroHom.toFun { toFun := extension, map_zero' := (_ : extension 0 = 0) } y [PROOFSTEP] apply Completion.induction_on₂ x y (p := fun x y => extension (x * y) = extension x * extension y) [GOAL] case hp K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x y : hat K ⊢ IsClosed {x | extension (x.fst * x.snd) = extension x.fst * extension x.snd} [PROOFSTEP] have c1 : Continuous fun x : hat K × hat K => Valued.extension (x.1 * x.2) := Valued.continuous_extension.comp (continuous_fst.mul continuous_snd) [GOAL] case hp K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x y : hat K c1 : Continuous fun x => extension (x.fst * x.snd) ⊢ IsClosed {x | extension (x.fst * x.snd) = extension x.fst * extension x.snd} [PROOFSTEP] have c2 : Continuous fun x : hat K × hat K => Valued.extension x.1 * Valued.extension x.2 := (Valued.continuous_extension.comp continuous_fst).mul (Valued.continuous_extension.comp continuous_snd) [GOAL] case hp K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x y : hat K c1 : Continuous fun x => extension (x.fst * x.snd) c2 : Continuous fun x => extension x.fst * extension x.snd ⊢ IsClosed {x | extension (x.fst * x.snd) = extension x.fst * extension x.snd} [PROOFSTEP] exact isClosed_eq c1 c2 [GOAL] case ih K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x y : hat K ⊢ ∀ (a b : K), extension (↑K a * ↑K b) = extension (↑K a) * extension (↑K b) [PROOFSTEP] intro x y [GOAL] case ih K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x✝ y✝ : hat K x y : K ⊢ extension (↑K x * ↑K y) = extension (↑K x) * extension (↑K y) [PROOFSTEP] norm_cast [GOAL] case ih K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x✝ y✝ : hat K x y : K ⊢ ↑v (x * y) = ↑v x * ↑v y [PROOFSTEP] exact Valuation.map_mul _ _ _ [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x y : hat K ⊢ ZeroHom.toFun (↑{ toZeroHom := { toFun := extension, map_zero' := (_ : extension 0 = 0) }, map_one' := (_ : ZeroHom.toFun { toFun := extension, map_zero' := (_ : extension 0 = 0) } 1 = 1), map_mul' := (_ : ∀ (x y : hat K), extension (x * y) = extension x * extension y) }) (x + y) ≤ max (ZeroHom.toFun (↑{ toZeroHom := { toFun := extension, map_zero' := (_ : extension 0 = 0) }, map_one' := (_ : ZeroHom.toFun { toFun := extension, map_zero' := (_ : extension 0 = 0) } 1 = 1), map_mul' := (_ : ∀ (x y : hat K), extension (x * y) = extension x * extension y) }) x) (ZeroHom.toFun (↑{ toZeroHom := { toFun := extension, map_zero' := (_ : extension 0 = 0) }, map_one' := (_ : ZeroHom.toFun { toFun := extension, map_zero' := (_ : extension 0 = 0) } 1 = 1), map_mul' := (_ : ∀ (x y : hat K), extension (x * y) = extension x * extension y) }) y) [PROOFSTEP] rw [le_max_iff] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x y : hat K ⊢ ZeroHom.toFun (↑{ toZeroHom := { toFun := extension, map_zero' := (_ : extension 0 = 0) }, map_one' := (_ : ZeroHom.toFun { toFun := extension, map_zero' := (_ : extension 0 = 0) } 1 = 1), map_mul' := (_ : ∀ (x y : hat K), extension (x * y) = extension x * extension y) }) (x + y) ≤ ZeroHom.toFun (↑{ toZeroHom := { toFun := extension, map_zero' := (_ : extension 0 = 0) }, map_one' := (_ : ZeroHom.toFun { toFun := extension, map_zero' := (_ : extension 0 = 0) } 1 = 1), map_mul' := (_ : ∀ (x y : hat K), extension (x * y) = extension x * extension y) }) x ∨ ZeroHom.toFun (↑{ toZeroHom := { toFun := extension, map_zero' := (_ : extension 0 = 0) }, map_one' := (_ : ZeroHom.toFun { toFun := extension, map_zero' := (_ : extension 0 = 0) } 1 = 1), map_mul' := (_ : ∀ (x y : hat K), extension (x * y) = extension x * extension y) }) (x + y) ≤ ZeroHom.toFun (↑{ toZeroHom := { toFun := extension, map_zero' := (_ : extension 0 = 0) }, map_one' := (_ : ZeroHom.toFun { toFun := extension, map_zero' := (_ : extension 0 = 0) } 1 = 1), map_mul' := (_ : ∀ (x y : hat K), extension (x * y) = extension x * extension y) }) y [PROOFSTEP] apply Completion.induction_on₂ x y (p := fun x y => extension (x + y) ≤ extension x ∨ extension (x + y) ≤ extension y) [GOAL] case hp K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x y : hat K ⊢ IsClosed {x | extension (x.fst + x.snd) ≤ extension x.fst ∨ extension (x.fst + x.snd) ≤ extension x.snd} [PROOFSTEP] have cont : Continuous (Valued.extension : hat K → Γ₀) := Valued.continuous_extension [GOAL] case hp K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x y : hat K cont : Continuous extension ⊢ IsClosed {x | extension (x.fst + x.snd) ≤ extension x.fst ∨ extension (x.fst + x.snd) ≤ extension x.snd} [PROOFSTEP] exact (isClosed_le (cont.comp continuous_add) <| cont.comp continuous_fst).union (isClosed_le (cont.comp continuous_add) <| cont.comp continuous_snd) [GOAL] case ih K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x y : hat K ⊢ ∀ (a b : K), extension (↑K a + ↑K b) ≤ extension (↑K a) ∨ extension (↑K a + ↑K b) ≤ extension (↑K b) [PROOFSTEP] intro x y [GOAL] case ih K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x✝ y✝ : hat K x y : K ⊢ extension (↑K x + ↑K y) ≤ extension (↑K x) ∨ extension (↑K x + ↑K y) ≤ extension (↑K y) [PROOFSTEP] norm_cast [GOAL] case ih K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x✝ y✝ : hat K x y : K ⊢ ↑v (x + y) ≤ ↑v x ∨ ↑v (x + y) ≤ ↑v y [PROOFSTEP] rw [← le_max_iff] [GOAL] case ih K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x✝ y✝ : hat K x y : K ⊢ ↑v (x + y) ≤ max (↑v x) (↑v y) [PROOFSTEP] exact v.map_add x y [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ ⊢ closure (↑K '' {x | ↑v x < ↑γ}) = {x | ↑extensionValuation x < ↑γ} [PROOFSTEP] ext x [GOAL] case h K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K ⊢ x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ x ∈ {x | ↑extensionValuation x < ↑γ} [PROOFSTEP] let γ₀ := extensionValuation x [GOAL] case h K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x ⊢ x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ x ∈ {x | ↑extensionValuation x < ↑γ} [PROOFSTEP] suffices γ₀ ≠ 0 → (x ∈ closure ((↑) '' {x : K | v x < (γ : Γ₀)}) ↔ γ₀ < (γ : Γ₀)) by cases' eq_or_ne γ₀ 0 with h h · simp only [h, (Valuation.zero_iff _).mp h, mem_setOf_eq, Valuation.map_zero, Units.zero_lt, iff_true_iff] apply subset_closure exact ⟨0, by simp only [mem_setOf_eq, Valuation.map_zero, Units.zero_lt, true_and_iff]; rfl⟩ · exact this h [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x this : γ₀ ≠ 0 → (x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ γ₀ < ↑γ) ⊢ x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ x ∈ {x | ↑extensionValuation x < ↑γ} [PROOFSTEP] cases' eq_or_ne γ₀ 0 with h h [GOAL] case inl K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x this : γ₀ ≠ 0 → (x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ γ₀ < ↑γ) h : γ₀ = 0 ⊢ x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ x ∈ {x | ↑extensionValuation x < ↑γ} [PROOFSTEP] simp only [h, (Valuation.zero_iff _).mp h, mem_setOf_eq, Valuation.map_zero, Units.zero_lt, iff_true_iff] [GOAL] case inl K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x this : γ₀ ≠ 0 → (x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ γ₀ < ↑γ) h : γ₀ = 0 ⊢ 0 ∈ closure (↑K '' {x | ↑v x < ↑γ}) [PROOFSTEP] apply subset_closure [GOAL] case inl.a K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x this : γ₀ ≠ 0 → (x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ γ₀ < ↑γ) h : γ₀ = 0 ⊢ 0 ∈ ↑K '' {x | ↑v x < ↑γ} [PROOFSTEP] exact ⟨0, by simp only [mem_setOf_eq, Valuation.map_zero, Units.zero_lt, true_and_iff]; rfl⟩ [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x this : γ₀ ≠ 0 → (x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ γ₀ < ↑γ) h : γ₀ = 0 ⊢ 0 ∈ {x | ↑v x < ↑γ} ∧ ↑K 0 = 0 [PROOFSTEP] simp only [mem_setOf_eq, Valuation.map_zero, Units.zero_lt, true_and_iff] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x this : γ₀ ≠ 0 → (x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ γ₀ < ↑γ) h : γ₀ = 0 ⊢ ↑K 0 = 0 [PROOFSTEP] rfl [GOAL] case inr K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x this : γ₀ ≠ 0 → (x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ γ₀ < ↑γ) h : γ₀ ≠ 0 ⊢ x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ x ∈ {x | ↑extensionValuation x < ↑γ} [PROOFSTEP] exact this h [GOAL] case h K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x ⊢ γ₀ ≠ 0 → (x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ γ₀ < ↑γ) [PROOFSTEP] intro h [GOAL] case h K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x h : γ₀ ≠ 0 ⊢ x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ γ₀ < ↑γ [PROOFSTEP] have hγ₀ : extension ⁻¹' { γ₀ } ∈ 𝓝 x := continuous_extension.continuousAt.preimage_mem_nhds (WithZeroTopology.singleton_mem_nhds_of_ne_zero h) [GOAL] case h K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x h : γ₀ ≠ 0 hγ₀ : extension ⁻¹' {γ₀} ∈ 𝓝 x ⊢ x ∈ closure (↑K '' {x | ↑v x < ↑γ}) ↔ γ₀ < ↑γ [PROOFSTEP] rw [mem_closure_iff_nhds'] [GOAL] case h K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x h : γ₀ ≠ 0 hγ₀ : extension ⁻¹' {γ₀} ∈ 𝓝 x ⊢ (∀ (t : Set (hat K)), t ∈ 𝓝 x → ∃ y, ↑y ∈ t) ↔ γ₀ < ↑γ [PROOFSTEP] refine' ⟨fun hx => _, fun hx s hs => _⟩ [GOAL] case h.refine'_1 K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x h : γ₀ ≠ 0 hγ₀ : extension ⁻¹' {γ₀} ∈ 𝓝 x hx : ∀ (t : Set (hat K)), t ∈ 𝓝 x → ∃ y, ↑y ∈ t ⊢ γ₀ < ↑γ [PROOFSTEP] obtain ⟨⟨-, y, hy₁ : v y < (γ : Γ₀), rfl⟩, hy₂⟩ := hx _ hγ₀ [GOAL] case h.refine'_1.intro.mk.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x h : γ₀ ≠ 0 hγ₀ : extension ⁻¹' {γ₀} ∈ 𝓝 x hx : ∀ (t : Set (hat K)), t ∈ 𝓝 x → ∃ y, ↑y ∈ t y : K hy₁ : ↑v y < ↑γ hy₂ : ↑{ val := ↑K y, property := (_ : ∃ a, a ∈ {x | ↑v x < ↑γ} ∧ ↑K a = ↑K y) } ∈ extension ⁻¹' {γ₀} ⊢ γ₀ < ↑γ [PROOFSTEP] replace hy₂ : v y = γ₀ [GOAL] case hy₂ K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x h : γ₀ ≠ 0 hγ₀ : extension ⁻¹' {γ₀} ∈ 𝓝 x hx : ∀ (t : Set (hat K)), t ∈ 𝓝 x → ∃ y, ↑y ∈ t y : K hy₁ : ↑v y < ↑γ hy₂ : ↑{ val := ↑K y, property := (_ : ∃ a, a ∈ {x | ↑v x < ↑γ} ∧ ↑K a = ↑K y) } ∈ extension ⁻¹' {γ₀} ⊢ ↑v y = γ₀ [PROOFSTEP] simpa using hy₂ [GOAL] case h.refine'_1.intro.mk.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x h : γ₀ ≠ 0 hγ₀ : extension ⁻¹' {γ₀} ∈ 𝓝 x hx : ∀ (t : Set (hat K)), t ∈ 𝓝 x → ∃ y, ↑y ∈ t y : K hy₁ : ↑v y < ↑γ hy₂ : ↑v y = γ₀ ⊢ γ₀ < ↑γ [PROOFSTEP] rwa [← hy₂] [GOAL] case h.refine'_2 K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x h : γ₀ ≠ 0 hγ₀ : extension ⁻¹' {γ₀} ∈ 𝓝 x hx : γ₀ < ↑γ s : Set (hat K) hs : s ∈ 𝓝 x ⊢ ∃ y, ↑y ∈ s [PROOFSTEP] obtain ⟨y, hy₁, hy₂⟩ := Completion.denseRange_coe.mem_nhds (inter_mem hγ₀ hs) [GOAL] case h.refine'_2.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x h : γ₀ ≠ 0 hγ₀ : extension ⁻¹' {γ₀} ∈ 𝓝 x hx : γ₀ < ↑γ s : Set (hat K) hs : s ∈ 𝓝 x y : K hy₁ : ↑K y ∈ extension ⁻¹' {γ₀} hy₂ : ↑K y ∈ s ⊢ ∃ y, ↑y ∈ s [PROOFSTEP] replace hy₁ : v y = γ₀ [GOAL] case hy₁ K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x h : γ₀ ≠ 0 hγ₀ : extension ⁻¹' {γ₀} ∈ 𝓝 x hx : γ₀ < ↑γ s : Set (hat K) hs : s ∈ 𝓝 x y : K hy₁ : ↑K y ∈ extension ⁻¹' {γ₀} hy₂ : ↑K y ∈ s ⊢ ↑v y = γ₀ [PROOFSTEP] simpa using hy₁ [GOAL] case h.refine'_2.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x h : γ₀ ≠ 0 hγ₀ : extension ⁻¹' {γ₀} ∈ 𝓝 x hx : γ₀ < ↑γ s : Set (hat K) hs : s ∈ 𝓝 x y : K hy₂ : ↑K y ∈ s hy₁ : ↑v y = γ₀ ⊢ ∃ y, ↑y ∈ s [PROOFSTEP] rw [← hy₁] at hx [GOAL] case h.refine'_2.intro.intro K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ γ : Γ₀ˣ x : hat K γ₀ : (fun x => Γ₀) x := ↑extensionValuation x h : γ₀ ≠ 0 hγ₀ : extension ⁻¹' {γ₀} ∈ 𝓝 x s : Set (hat K) hs : s ∈ 𝓝 x y : K hx : ↑v y < ↑γ hy₂ : ↑K y ∈ s hy₁ : ↑v y = γ₀ ⊢ ∃ y, ↑y ∈ s [PROOFSTEP] exact ⟨⟨y, ⟨y, hx, rfl⟩⟩, hy₂⟩ [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ s : Set (hat K) ⊢ s ∈ 𝓝 0 ↔ ∃ γ, {x | ↑extensionValuation x < ↑γ} ⊆ s [PROOFSTEP] suffices HasBasis (𝓝 (0 : hat K)) (fun _ => True) fun γ : Γ₀ˣ => {x | extensionValuation x < γ} by rw [this.mem_iff] exact exists_congr fun γ => by simp [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ s : Set (hat K) this : HasBasis (𝓝 0) (fun x => True) fun γ => {x | ↑extensionValuation x < ↑γ} ⊢ s ∈ 𝓝 0 ↔ ∃ γ, {x | ↑extensionValuation x < ↑γ} ⊆ s [PROOFSTEP] rw [this.mem_iff] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ s : Set (hat K) this : HasBasis (𝓝 0) (fun x => True) fun γ => {x | ↑extensionValuation x < ↑γ} ⊢ (∃ i, True ∧ {x | ↑extensionValuation x < ↑i} ⊆ s) ↔ ∃ γ, {x | ↑extensionValuation x < ↑γ} ⊆ s [PROOFSTEP] exact exists_congr fun γ => by simp [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ s : Set (hat K) this : HasBasis (𝓝 0) (fun x => True) fun γ => {x | ↑extensionValuation x < ↑γ} γ : Γ₀ˣ ⊢ True ∧ {x | ↑extensionValuation x < ↑γ} ⊆ s ↔ {x | ↑extensionValuation x < ↑γ} ⊆ s [PROOFSTEP] simp [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ s : Set (hat K) ⊢ HasBasis (𝓝 0) (fun x => True) fun γ => {x | ↑extensionValuation x < ↑γ} [PROOFSTEP] simp_rw [← closure_coe_completion_v_lt] [GOAL] K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ s : Set (hat K) ⊢ HasBasis (𝓝 0) (fun x => True) fun γ => closure (↑K '' {x | ↑v x < ↑γ}) [PROOFSTEP] exact (hasBasis_nhds_zero K Γ₀).hasBasis_of_denseInducing Completion.denseInducing_coe
{"mathlib_filename": "Mathlib.Topology.Algebra.ValuedField", "llama_tokens": 52847}
{"mathlib_filename": "Mathlib.Topology.Sheaves.Init", "llama_tokens": 0}
[GOAL] X : Type u_1 s : Set X ⊢ (some '' s)ᶜ = some '' sᶜ ∪ {∞} [PROOFSTEP] rw [coe_injective.compl_image_eq, compl_range_coe] [GOAL] X : Type u_1 x : OnePoint X ⊢ x ≠ ∞ ↔ ∃ y, ↑y = x [PROOFSTEP] induction x using OnePoint.rec [GOAL] case h₁ X : Type u_1 ⊢ ∞ ≠ ∞ ↔ ∃ y, ↑y = ∞ [PROOFSTEP] simp [GOAL] case h₂ X : Type u_1 x✝ : X ⊢ ↑x✝ ≠ ∞ ↔ ∃ y, ↑y = ↑x✝ [PROOFSTEP] simp [GOAL] X : Type u_1 x : OnePoint X ⊢ ¬x ∈ range some ↔ x = ∞ [PROOFSTEP] rw [← mem_compl_iff, compl_range_coe, mem_singleton_iff] [GOAL] X : Type u_1 ⊢ some ⁻¹' {∞} = ∅ [PROOFSTEP] ext [GOAL] case h X : Type u_1 x✝ : X ⊢ x✝ ∈ some ⁻¹' {∞} ↔ x✝ ∈ ∅ [PROOFSTEP] simp [GOAL] X : Type u_1 inst✝ : TopologicalSpace X ⊢ (fun s => (∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ) ∧ IsOpen (some ⁻¹' s)) univ [PROOFSTEP] simp [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s t : Set (OnePoint X) ⊢ (fun s => (∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ) ∧ IsOpen (some ⁻¹' s)) s → (fun s => (∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ) ∧ IsOpen (some ⁻¹' s)) t → (fun s => (∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ) ∧ IsOpen (some ⁻¹' s)) (s ∩ t) [PROOFSTEP] rintro ⟨hms, hs⟩ ⟨hmt, ht⟩ [GOAL] case intro.intro X : Type u_1 inst✝ : TopologicalSpace X s t : Set (OnePoint X) hms : ∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ hs : IsOpen (some ⁻¹' s) hmt : ∞ ∈ t → IsCompact (some ⁻¹' t)ᶜ ht : IsOpen (some ⁻¹' t) ⊢ (∞ ∈ s ∩ t → IsCompact (some ⁻¹' (s ∩ t))ᶜ) ∧ IsOpen (some ⁻¹' (s ∩ t)) [PROOFSTEP] refine' ⟨_, hs.inter ht⟩ [GOAL] case intro.intro X : Type u_1 inst✝ : TopologicalSpace X s t : Set (OnePoint X) hms : ∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ hs : IsOpen (some ⁻¹' s) hmt : ∞ ∈ t → IsCompact (some ⁻¹' t)ᶜ ht : IsOpen (some ⁻¹' t) ⊢ ∞ ∈ s ∩ t → IsCompact (some ⁻¹' (s ∩ t))ᶜ [PROOFSTEP] rintro ⟨hms', hmt'⟩ [GOAL] case intro.intro.intro X : Type u_1 inst✝ : TopologicalSpace X s t : Set (OnePoint X) hms : ∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ hs : IsOpen (some ⁻¹' s) hmt : ∞ ∈ t → IsCompact (some ⁻¹' t)ᶜ ht : IsOpen (some ⁻¹' t) hms' : ∞ ∈ s hmt' : ∞ ∈ t ⊢ IsCompact (some ⁻¹' (s ∩ t))ᶜ [PROOFSTEP] simpa [compl_inter] using (hms hms').union (hmt hmt') [GOAL] X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set (OnePoint X)) ho : ∀ (t : Set (OnePoint X)), t ∈ S → (fun s => (∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ) ∧ IsOpen (some ⁻¹' s)) t ⊢ (fun s => (∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ) ∧ IsOpen (some ⁻¹' s)) (⋃₀ S) [PROOFSTEP] suffices IsOpen ((↑) ⁻¹' ⋃₀ S : Set X) by refine' ⟨_, this⟩ rintro ⟨s, hsS : s ∈ S, hs : ∞ ∈ s⟩ refine' isCompact_of_isClosed_subset ((ho s hsS).1 hs) this.isClosed_compl _ exact compl_subset_compl.mpr (preimage_mono <| subset_sUnion_of_mem hsS) [GOAL] X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set (OnePoint X)) ho : ∀ (t : Set (OnePoint X)), t ∈ S → (fun s => (∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ) ∧ IsOpen (some ⁻¹' s)) t this : IsOpen (some ⁻¹' ⋃₀ S) ⊢ (fun s => (∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ) ∧ IsOpen (some ⁻¹' s)) (⋃₀ S) [PROOFSTEP] refine' ⟨_, this⟩ [GOAL] X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set (OnePoint X)) ho : ∀ (t : Set (OnePoint X)), t ∈ S → (fun s => (∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ) ∧ IsOpen (some ⁻¹' s)) t this : IsOpen (some ⁻¹' ⋃₀ S) ⊢ ∞ ∈ ⋃₀ S → IsCompact (some ⁻¹' ⋃₀ S)ᶜ [PROOFSTEP] rintro ⟨s, hsS : s ∈ S, hs : ∞ ∈ s⟩ [GOAL] case intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set (OnePoint X)) ho : ∀ (t : Set (OnePoint X)), t ∈ S → (fun s => (∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ) ∧ IsOpen (some ⁻¹' s)) t this : IsOpen (some ⁻¹' ⋃₀ S) s : Set (OnePoint X) hsS : s ∈ S hs : ∞ ∈ s ⊢ IsCompact (some ⁻¹' ⋃₀ S)ᶜ [PROOFSTEP] refine' isCompact_of_isClosed_subset ((ho s hsS).1 hs) this.isClosed_compl _ [GOAL] case intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set (OnePoint X)) ho : ∀ (t : Set (OnePoint X)), t ∈ S → (fun s => (∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ) ∧ IsOpen (some ⁻¹' s)) t this : IsOpen (some ⁻¹' ⋃₀ S) s : Set (OnePoint X) hsS : s ∈ S hs : ∞ ∈ s ⊢ (some ⁻¹' ⋃₀ S)ᶜ ⊆ (some ⁻¹' s)ᶜ [PROOFSTEP] exact compl_subset_compl.mpr (preimage_mono <| subset_sUnion_of_mem hsS) [GOAL] X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set (OnePoint X)) ho : ∀ (t : Set (OnePoint X)), t ∈ S → (fun s => (∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ) ∧ IsOpen (some ⁻¹' s)) t ⊢ IsOpen (some ⁻¹' ⋃₀ S) [PROOFSTEP] rw [preimage_sUnion] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set (OnePoint X)) ho : ∀ (t : Set (OnePoint X)), t ∈ S → (fun s => (∞ ∈ s → IsCompact (some ⁻¹' s)ᶜ) ∧ IsOpen (some ⁻¹' s)) t ⊢ IsOpen (⋃ (t : Set (OnePoint X)) (_ : t ∈ S), some ⁻¹' t) [PROOFSTEP] exact isOpen_biUnion fun s hs => (ho s hs).2 [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X h : ∞ ∈ s ⊢ IsOpen s ↔ IsCompact (some ⁻¹' s)ᶜ ∧ IsOpen (some ⁻¹' s) [PROOFSTEP] simp [isOpen_def, h] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X h : ∞ ∈ s ⊢ IsOpen s ↔ IsClosed (some ⁻¹' s)ᶜ ∧ IsCompact (some ⁻¹' s)ᶜ [PROOFSTEP] simp only [isOpen_iff_of_mem' h, isClosed_compl_iff, and_comm] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X h : ¬∞ ∈ s ⊢ IsOpen s ↔ IsOpen (some ⁻¹' s) [PROOFSTEP] simp [isOpen_def, h] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X h : ∞ ∈ s ⊢ IsClosed s ↔ IsClosed (some ⁻¹' s) [PROOFSTEP] have : ∞ ∉ sᶜ := fun H => H h [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X h : ∞ ∈ s this : ¬∞ ∈ sᶜ ⊢ IsClosed s ↔ IsClosed (some ⁻¹' s) [PROOFSTEP] rw [← isOpen_compl_iff, isOpen_iff_of_not_mem this, ← isOpen_compl_iff, preimage_compl] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X h : ¬∞ ∈ s ⊢ IsClosed s ↔ IsClosed (some ⁻¹' s) ∧ IsCompact (some ⁻¹' s) [PROOFSTEP] rw [← isOpen_compl_iff, isOpen_iff_of_mem (mem_compl h), ← preimage_compl, compl_compl] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s✝ : Set (OnePoint X) t s : Set X ⊢ IsOpen (some '' s) ↔ IsOpen s [PROOFSTEP] rw [isOpen_iff_of_not_mem infty_not_mem_image_coe, preimage_image_eq _ coe_injective] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s✝ : Set (OnePoint X) t s : Set X ⊢ IsOpen (some '' s)ᶜ ↔ IsClosed s ∧ IsCompact s [PROOFSTEP] rw [isOpen_iff_of_mem, ← preimage_compl, compl_compl, preimage_image_eq _ coe_injective] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s✝ : Set (OnePoint X) t s : Set X ⊢ ∞ ∈ (some '' s)ᶜ [PROOFSTEP] exact infty_not_mem_image_coe [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s✝ : Set (OnePoint X) t s : Set X ⊢ IsClosed (some '' s) ↔ IsClosed s ∧ IsCompact s [PROOFSTEP] rw [← isOpen_compl_iff, isOpen_compl_image_coe] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X ⊢ IsClosed {∞} [PROOFSTEP] rw [← compl_range_coe, isClosed_compl_iff] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X ⊢ IsOpen (range some) [PROOFSTEP] exact isOpen_range_coe [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X x : X h : NeBot (𝓝[{x}ᶜ] x) ⊢ NeBot (𝓝[{↑x}ᶜ] ↑x) [PROOFSTEP] simpa [nhdsWithin_coe, preimage, coe_eq_coe] using h.map some [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X ⊢ 𝓝[{∞}ᶜ] ∞ = map some (coclosedCompact X) [PROOFSTEP] refine' (nhdsWithin_basis_open ∞ _).ext (hasBasis_coclosedCompact.map _) _ _ [GOAL] case refine'_1 X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X ⊢ ∀ (i : Set (OnePoint X)), ∞ ∈ i ∧ IsOpen i → ∃ i', (IsClosed i' ∧ IsCompact i') ∧ some '' i'ᶜ ⊆ i ∩ {∞}ᶜ [PROOFSTEP] rintro s ⟨hs, hso⟩ [GOAL] case refine'_1.intro X : Type u_1 inst✝ : TopologicalSpace X s✝ : Set (OnePoint X) t : Set X s : Set (OnePoint X) hs : ∞ ∈ s hso : IsOpen s ⊢ ∃ i', (IsClosed i' ∧ IsCompact i') ∧ some '' i'ᶜ ⊆ s ∩ {∞}ᶜ [PROOFSTEP] refine' ⟨_, (isOpen_iff_of_mem hs).mp hso, _⟩ [GOAL] case refine'_1.intro X : Type u_1 inst✝ : TopologicalSpace X s✝ : Set (OnePoint X) t : Set X s : Set (OnePoint X) hs : ∞ ∈ s hso : IsOpen s ⊢ some '' (some ⁻¹' s)ᶜᶜ ⊆ s ∩ {∞}ᶜ [PROOFSTEP] simp [Subset.rfl] [GOAL] case refine'_2 X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X ⊢ ∀ (i' : Set X), IsClosed i' ∧ IsCompact i' → ∃ i, (∞ ∈ i ∧ IsOpen i) ∧ i ∩ {∞}ᶜ ⊆ some '' i'ᶜ [PROOFSTEP] rintro s ⟨h₁, h₂⟩ [GOAL] case refine'_2.intro X : Type u_1 inst✝ : TopologicalSpace X s✝ : Set (OnePoint X) t s : Set X h₁ : IsClosed s h₂ : IsCompact s ⊢ ∃ i, (∞ ∈ i ∧ IsOpen i) ∧ i ∩ {∞}ᶜ ⊆ some '' sᶜ [PROOFSTEP] refine' ⟨_, ⟨mem_compl infty_not_mem_image_coe, isOpen_compl_image_coe.2 ⟨h₁, h₂⟩⟩, _⟩ [GOAL] case refine'_2.intro X : Type u_1 inst✝ : TopologicalSpace X s✝ : Set (OnePoint X) t s : Set X h₁ : IsClosed s h₂ : IsCompact s ⊢ (some '' s)ᶜ ∩ {∞}ᶜ ⊆ some '' sᶜ [PROOFSTEP] simp [compl_image_coe, ← diff_eq, subset_preimage_image] [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝ : NoncompactSpace X ⊢ NeBot (𝓝[{∞}ᶜ] ∞) [PROOFSTEP] rw [nhdsWithin_compl_infty_eq] [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝ : NoncompactSpace X ⊢ NeBot (map some (coclosedCompact X)) [PROOFSTEP] infer_instance [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X ⊢ 𝓝 ∞ = map some (coclosedCompact X) ⊔ pure ∞ [PROOFSTEP] rw [← nhdsWithin_compl_infty_eq, nhdsWithin_compl_singleton_sup_pure] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X ⊢ HasBasis (𝓝 ∞) (fun s => IsClosed s ∧ IsCompact s) fun s => some '' sᶜ ∪ {∞} [PROOFSTEP] rw [nhds_infty_eq] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X ⊢ HasBasis (map some (coclosedCompact X) ⊔ pure ∞) (fun s => IsClosed s ∧ IsCompact s) fun s => some '' sᶜ ∪ {∞} [PROOFSTEP] exact (hasBasis_coclosedCompact.map _).sup_pure _ [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X ⊢ comap some (𝓝 ∞) = coclosedCompact X [PROOFSTEP] simp [nhds_infty_eq, comap_sup, comap_map coe_injective] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X f : Filter (OnePoint X) ⊢ f ≤ 𝓝 ∞ ↔ ∀ (s : Set X), IsClosed s → IsCompact s → some '' sᶜ ∪ {∞} ∈ f [PROOFSTEP] simp only [hasBasis_nhds_infty.ge_iff, and_imp] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X f : Ultrafilter (OnePoint X) ⊢ ↑f ≤ 𝓝 ∞ ↔ ∀ (s : Set X), IsClosed s → IsCompact s → ¬some '' s ∈ f [PROOFSTEP] simp only [le_nhds_infty, ← compl_image_coe, Ultrafilter.mem_coe, Ultrafilter.compl_mem_iff_not_mem] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X α : Type u_2 f : OnePoint X → α l : Filter α ⊢ Tendsto f (𝓝 ∞) l ↔ Tendsto f (pure ∞) l ∧ Tendsto (f ∘ some) (coclosedCompact X) l [PROOFSTEP] simp [nhds_infty_eq, and_comm] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X α : Type u_2 f : OnePoint X → α l : Filter α ⊢ Tendsto f (pure ∞) l ∧ Tendsto (f ∘ some) (coclosedCompact X) l ↔ ∀ (s : Set α), s ∈ l → f ∞ ∈ s ∧ ∃ t, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ some) tᶜ s [PROOFSTEP] simp only [tendsto_pure_left, hasBasis_coclosedCompact.tendsto_left_iff, forall_and, and_assoc, exists_prop] [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X Y : Type u_2 inst✝ : TopologicalSpace Y f : OnePoint X → Y ⊢ Tendsto (f ∘ some) (coclosedCompact X) (𝓝 (f ∞)) ↔ ∀ (s : Set Y), s ∈ 𝓝 (f ∞) → ∃ t, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ some) tᶜ s [PROOFSTEP] simp only [hasBasis_coclosedCompact.tendsto_left_iff, and_assoc] [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X Y : Type u_2 inst✝ : TopologicalSpace Y f : OnePoint X → Y x : X ⊢ ContinuousAt f ↑x ↔ ContinuousAt (f ∘ some) x [PROOFSTEP] rw [ContinuousAt, nhds_coe_eq, tendsto_map'_iff, ContinuousAt] [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X Y : Type u_2 inst✝ : TopologicalSpace Y f : OnePoint X → Y x : X ⊢ Tendsto (f ∘ some) (𝓝 x) (𝓝 (f ↑x)) ↔ Tendsto (f ∘ some) (𝓝 x) (𝓝 ((f ∘ some) x)) [PROOFSTEP] rfl [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝ : NoncompactSpace X ⊢ DenseRange some [PROOFSTEP] rw [DenseRange, ← compl_infty] [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝ : NoncompactSpace X ⊢ Dense {∞}ᶜ [PROOFSTEP] exact dense_compl_singleton _ [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X x y : OnePoint X ⊢ Inseparable x y ↔ x = ∞ ∧ y = ∞ ∨ ∃ x', x = ↑x' ∧ ∃ y', y = ↑y' ∧ Inseparable x' y' [PROOFSTEP] induction x using OnePoint.rec [GOAL] case h₁ X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X y : OnePoint X ⊢ Inseparable ∞ y ↔ ∞ = ∞ ∧ y = ∞ ∨ ∃ x', ∞ = ↑x' ∧ ∃ y', y = ↑y' ∧ Inseparable x' y' [PROOFSTEP] induction y using OnePoint.rec [GOAL] case h₂ X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X y : OnePoint X x✝ : X ⊢ Inseparable (↑x✝) y ↔ ↑x✝ = ∞ ∧ y = ∞ ∨ ∃ x', ↑x✝ = ↑x' ∧ ∃ y', y = ↑y' ∧ Inseparable x' y' [PROOFSTEP] induction y using OnePoint.rec [GOAL] case h₁.h₁ X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X ⊢ Inseparable ∞ ∞ ↔ ∞ = ∞ ∧ ∞ = ∞ ∨ ∃ x', ∞ = ↑x' ∧ ∃ y', ∞ = ↑y' ∧ Inseparable x' y' [PROOFSTEP] simp [not_inseparable_infty_coe, not_inseparable_coe_infty, coe_eq_coe, Inseparable.refl] [GOAL] case h₁.h₂ X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X x✝ : X ⊢ Inseparable ∞ ↑x✝ ↔ ∞ = ∞ ∧ ↑x✝ = ∞ ∨ ∃ x', ∞ = ↑x' ∧ ∃ y', ↑x✝ = ↑y' ∧ Inseparable x' y' [PROOFSTEP] simp [not_inseparable_infty_coe, not_inseparable_coe_infty, coe_eq_coe, Inseparable.refl] [GOAL] case h₂.h₁ X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X x✝ : X ⊢ Inseparable ↑x✝ ∞ ↔ ↑x✝ = ∞ ∧ ∞ = ∞ ∨ ∃ x', ↑x✝ = ↑x' ∧ ∃ y', ∞ = ↑y' ∧ Inseparable x' y' [PROOFSTEP] simp [not_inseparable_infty_coe, not_inseparable_coe_infty, coe_eq_coe, Inseparable.refl] [GOAL] case h₂.h₂ X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X x✝¹ x✝ : X ⊢ Inseparable ↑x✝¹ ↑x✝ ↔ ↑x✝¹ = ∞ ∧ ↑x✝ = ∞ ∨ ∃ x', ↑x✝¹ = ↑x' ∧ ∃ y', ↑x✝ = ↑y' ∧ Inseparable x' y' [PROOFSTEP] simp [not_inseparable_infty_coe, not_inseparable_coe_infty, coe_eq_coe, Inseparable.refl] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X ⊢ IsCompact univ [PROOFSTEP] have : Tendsto ((↑) : X → OnePoint X) (cocompact X) (𝓝 ∞) := by rw [nhds_infty_eq] exact (tendsto_map.mono_left cocompact_le_coclosedCompact).mono_right le_sup_left [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X ⊢ Tendsto some (cocompact X) (𝓝 ∞) [PROOFSTEP] rw [nhds_infty_eq] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X ⊢ Tendsto some (cocompact X) (map some (coclosedCompact X) ⊔ pure ∞) [PROOFSTEP] exact (tendsto_map.mono_left cocompact_le_coclosedCompact).mono_right le_sup_left [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X this : Tendsto some (cocompact X) (𝓝 ∞) ⊢ IsCompact univ [PROOFSTEP] rw [← insert_none_range_some X] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X s : Set (OnePoint X) t : Set X this : Tendsto some (cocompact X) (𝓝 ∞) ⊢ IsCompact (insert none (range Option.some)) [PROOFSTEP] exact this.isCompact_insert_range_of_cocompact continuous_coe [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝ : T0Space X ⊢ T0Space (OnePoint X) [PROOFSTEP] refine' ⟨fun x y hxy => _⟩ [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝ : T0Space X x y : OnePoint X hxy : Inseparable x y ⊢ x = y [PROOFSTEP] rcases inseparable_iff.1 hxy with (⟨rfl, rfl⟩ | ⟨x, rfl, y, rfl, h⟩) [GOAL] case inl.intro X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝ : T0Space X hxy : Inseparable ∞ ∞ ⊢ ∞ = ∞ case inr.intro.intro.intro.intro X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝ : T0Space X x y : X h : Inseparable x y hxy : Inseparable ↑x ↑y ⊢ ↑x = ↑y [PROOFSTEP] exacts [rfl, congr_arg some h.eq] [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝ : T1Space X z : OnePoint X ⊢ IsClosed {z} [PROOFSTEP] induction z using OnePoint.rec [GOAL] case h₁ X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝ : T1Space X ⊢ IsClosed {∞} [PROOFSTEP] exact isClosed_infty [GOAL] case h₂ X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝ : T1Space X x✝ : X ⊢ IsClosed {↑x✝} [PROOFSTEP] rw [← image_singleton, isClosed_image_coe] [GOAL] case h₂ X : Type u_1 inst✝¹ : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝ : T1Space X x✝ : X ⊢ IsClosed {x✝} ∧ IsCompact {x✝} [PROOFSTEP] exact ⟨isClosed_singleton, isCompact_singleton⟩ [GOAL] X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X ⊢ NormalSpace (OnePoint X) [PROOFSTEP] have key : ∀ z : X, Disjoint (𝓝 (some z)) (𝓝 ∞) := fun z => by rw [nhds_infty_eq, disjoint_sup_right, nhds_coe_eq, coclosedCompact_eq_cocompact, disjoint_map coe_injective, ← principal_singleton, disjoint_principal_right, compl_infty] exact ⟨disjoint_nhds_cocompact z, range_mem_map⟩ [GOAL] X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X z : X ⊢ Disjoint (𝓝 ↑z) (𝓝 ∞) [PROOFSTEP] rw [nhds_infty_eq, disjoint_sup_right, nhds_coe_eq, coclosedCompact_eq_cocompact, disjoint_map coe_injective, ← principal_singleton, disjoint_principal_right, compl_infty] [GOAL] X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X z : X ⊢ Disjoint (𝓝 z) (cocompact X) ∧ range some ∈ map some (𝓝 z) [PROOFSTEP] exact ⟨disjoint_nhds_cocompact z, range_mem_map⟩ [GOAL] X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X key : ∀ (z : X), Disjoint (𝓝 ↑z) (𝓝 ∞) ⊢ NormalSpace (OnePoint X) [PROOFSTEP] suffices : T2Space (OnePoint X) [GOAL] X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X key : ∀ (z : X), Disjoint (𝓝 ↑z) (𝓝 ∞) this : T2Space (OnePoint X) ⊢ NormalSpace (OnePoint X) case this X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X key : ∀ (z : X), Disjoint (𝓝 ↑z) (𝓝 ∞) ⊢ T2Space (OnePoint X) [PROOFSTEP] exact normalOfCompactT2 [GOAL] case this X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X key : ∀ (z : X), Disjoint (𝓝 ↑z) (𝓝 ∞) ⊢ T2Space (OnePoint X) [PROOFSTEP] refine t2Space_iff_disjoint_nhds.2 fun x y hxy => ?_ [GOAL] case this X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X key : ∀ (z : X), Disjoint (𝓝 ↑z) (𝓝 ∞) x y : OnePoint X hxy : x ≠ y ⊢ Disjoint (𝓝 x) (𝓝 y) [PROOFSTEP] induction x using OnePoint.rec [GOAL] case this.h₁ X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X key : ∀ (z : X), Disjoint (𝓝 ↑z) (𝓝 ∞) y : OnePoint X hxy : ∞ ≠ y ⊢ Disjoint (𝓝 ∞) (𝓝 y) [PROOFSTEP] induction y using OnePoint.rec [GOAL] case this.h₂ X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X key : ∀ (z : X), Disjoint (𝓝 ↑z) (𝓝 ∞) y : OnePoint X x✝ : X hxy : ↑x✝ ≠ y ⊢ Disjoint (𝓝 ↑x✝) (𝓝 y) [PROOFSTEP] induction y using OnePoint.rec [GOAL] case this.h₁.h₁ X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X key : ∀ (z : X), Disjoint (𝓝 ↑z) (𝓝 ∞) hxy : ∞ ≠ ∞ ⊢ Disjoint (𝓝 ∞) (𝓝 ∞) [PROOFSTEP] exact (hxy rfl).elim [GOAL] case this.h₁.h₂ X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X key : ∀ (z : X), Disjoint (𝓝 ↑z) (𝓝 ∞) x✝ : X hxy : ∞ ≠ ↑x✝ ⊢ Disjoint (𝓝 ∞) (𝓝 ↑x✝) [PROOFSTEP] exact (key _).symm [GOAL] case this.h₂.h₁ X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X key : ∀ (z : X), Disjoint (𝓝 ↑z) (𝓝 ∞) x✝ : X hxy : ↑x✝ ≠ ∞ ⊢ Disjoint (𝓝 ↑x✝) (𝓝 ∞) [PROOFSTEP] exact key _ [GOAL] case this.h₂.h₂ X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X key : ∀ (z : X), Disjoint (𝓝 ↑z) (𝓝 ∞) x✝¹ x✝ : X hxy : ↑x✝¹ ≠ ↑x✝ ⊢ Disjoint (𝓝 ↑x✝¹) (𝓝 ↑x✝) [PROOFSTEP] rwa [nhds_coe_eq, nhds_coe_eq, disjoint_map coe_injective, disjoint_nhds_nhds, ← coe_injective.ne_iff] [GOAL] X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : Infinite X inst✝ : DiscreteTopology X ⊢ ¬Continuous ↑CofiniteTopology.of.symm [PROOFSTEP] inhabit X [GOAL] X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : Infinite X inst✝ : DiscreteTopology X inhabited_h : Inhabited X ⊢ ¬Continuous ↑CofiniteTopology.of.symm [PROOFSTEP] simp only [continuous_iff_continuousAt, ContinuousAt, not_forall] [GOAL] X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : Infinite X inst✝ : DiscreteTopology X inhabited_h : Inhabited X ⊢ ∃ x, ¬Tendsto (↑CofiniteTopology.of.symm) (𝓝 x) (𝓝 (↑CofiniteTopology.of.symm x)) [PROOFSTEP] use CofiniteTopology.of ↑(default : X) [GOAL] case h X : Type u_1 inst✝² : TopologicalSpace X s : Set (OnePoint X) t : Set X inst✝¹ : Infinite X inst✝ : DiscreteTopology X inhabited_h : Inhabited X ⊢ ¬Tendsto (↑CofiniteTopology.of.symm) (𝓝 (↑CofiniteTopology.of ↑default)) (𝓝 (↑CofiniteTopology.of.symm (↑CofiniteTopology.of ↑default))) [PROOFSTEP] simpa [nhds_coe_eq, nhds_discrete, CofiniteTopology.nhds_eq] using (finite_singleton ((default : X) : OnePoint X)).infinite_compl
{"mathlib_filename": "Mathlib.Topology.Compactification.OnePoint", "llama_tokens": 11057}
[GOAL] C : Type u inst✝² : Category.{v, u} C J : Type v inst✝¹ : SmallCategory J inst✝ : HasLimits C X : TopCat F : J ⥤ Presheaf C X H : ∀ (j : J), Presheaf.IsSheaf (F.obj j) c : Cone F hc : IsLimit c ⊢ Presheaf.IsSheaf c.pt [PROOFSTEP] let F' : J ⥤ Sheaf C X := { obj := fun j => ⟨F.obj j, H j⟩ map := fun f => ⟨F.map f⟩ } [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type v inst✝¹ : SmallCategory J inst✝ : HasLimits C X : TopCat F : J ⥤ Presheaf C X H : ∀ (j : J), Presheaf.IsSheaf (F.obj j) c : Cone F hc : IsLimit c F' : J ⥤ Sheaf C X := CategoryTheory.Functor.mk { obj := fun j => { val := F.obj j, cond := (_ : Presheaf.IsSheaf (F.obj j)) }, map := fun {X_1 Y} f => { val := F.map f } } ⊢ Presheaf.IsSheaf c.pt [PROOFSTEP] let e : F' ⋙ Sheaf.forget C X ≅ F := NatIso.ofComponents fun _ => Iso.refl _ [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type v inst✝¹ : SmallCategory J inst✝ : HasLimits C X : TopCat F : J ⥤ Presheaf C X H : ∀ (j : J), Presheaf.IsSheaf (F.obj j) c : Cone F hc : IsLimit c F' : J ⥤ Sheaf C X := CategoryTheory.Functor.mk { obj := fun j => { val := F.obj j, cond := (_ : Presheaf.IsSheaf (F.obj j)) }, map := fun {X_1 Y} f => { val := F.map f } } e : F' ⋙ Sheaf.forget C X ≅ F := NatIso.ofComponents fun x => Iso.refl ((F' ⋙ Sheaf.forget C X).obj x) ⊢ Presheaf.IsSheaf c.pt [PROOFSTEP] exact Presheaf.isSheaf_of_iso ((isLimitOfPreserves (Sheaf.forget C X) (limit.isLimit F')).conePointsIsoOfNatIso hc e) (limit F').2
{"mathlib_filename": "Mathlib.Topology.Sheaves.Limits", "llama_tokens": 720}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s t : Compacts α h : s.carrier = t.carrier ⊢ s = t [PROOFSTEP] cases s [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ t : Compacts α carrier✝ : Set α isCompact'✝ : IsCompact carrier✝ h : { carrier := carrier✝, isCompact' := isCompact'✝ }.carrier = t.carrier ⊢ { carrier := carrier✝, isCompact' := isCompact'✝ } = t [PROOFSTEP] cases t [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ carrier✝¹ : Set α isCompact'✝¹ : IsCompact carrier✝¹ carrier✝ : Set α isCompact'✝ : IsCompact carrier✝ h : { carrier := carrier✝¹, isCompact' := isCompact'✝¹ }.carrier = { carrier := carrier✝, isCompact' := isCompact'✝ }.carrier ⊢ { carrier := carrier✝¹, isCompact' := isCompact'✝¹ } = { carrier := carrier✝, isCompact' := isCompact'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ ι : Type u_4 s : Finset ι f : ι → Compacts α ⊢ ↑(Finset.sup s f) = Finset.sup s fun i => ↑(f i) [PROOFSTEP] refine Finset.cons_induction_on s rfl fun a s _ h => ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ ι : Type u_4 s✝ : Finset ι f : ι → Compacts α a : ι s : Finset ι x✝ : ¬a ∈ s h : ↑(Finset.sup s f) = Finset.sup s fun i => ↑(f i) ⊢ ↑(Finset.sup (Finset.cons a s x✝) f) = Finset.sup (Finset.cons a s x✝) fun i => ↑(f i) [PROOFSTEP] simp_rw [Finset.sup_cons, coe_sup, sup_eq_union] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ ι : Type u_4 s✝ : Finset ι f : ι → Compacts α a : ι s : Finset ι x✝ : ¬a ∈ s h : ↑(Finset.sup s f) = Finset.sup s fun i => ↑(f i) ⊢ ↑(f a) ∪ ↑(Finset.sup s f) = ↑(f a) ∪ Finset.sup s fun i => ↑(f i) [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : α ≃ₜ β s : Compacts α ⊢ Compacts.map ↑(Homeomorph.symm f) (_ : Continuous ↑(Homeomorph.symm f)) (Compacts.map ↑f (_ : Continuous ↑f) s) = s [PROOFSTEP] ext1 [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : α ≃ₜ β s : Compacts α ⊢ ↑(Compacts.map ↑(Homeomorph.symm f) (_ : Continuous ↑(Homeomorph.symm f)) (Compacts.map ↑f (_ : Continuous ↑f) s)) = ↑s [PROOFSTEP] simp only [coe_map, ← image_comp, f.symm_comp_self, image_id] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : α ≃ₜ β s : Compacts β ⊢ Compacts.map ↑f (_ : Continuous ↑f) (Compacts.map ↑(Homeomorph.symm f) (_ : Continuous ↑(Homeomorph.symm f)) s) = s [PROOFSTEP] ext1 [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : α ≃ₜ β s : Compacts β ⊢ ↑(Compacts.map ↑f (_ : Continuous ↑f) (Compacts.map ↑(Homeomorph.symm f) (_ : Continuous ↑(Homeomorph.symm f)) s)) = ↑s [PROOFSTEP] simp only [coe_map, ← image_comp, f.self_comp_symm, image_id] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s t : NonemptyCompacts α h : (fun s => s.carrier) s = (fun s => s.carrier) t ⊢ s = t [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := s [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ t : NonemptyCompacts α carrier✝ : Set α isCompact'✝ : IsCompact carrier✝ nonempty'✝ : Set.Nonempty { carrier := carrier✝, isCompact' := isCompact'✝ }.carrier h : (fun s => s.carrier) { toCompacts := { carrier := carrier✝, isCompact' := isCompact'✝ }, nonempty' := nonempty'✝ } = (fun s => s.carrier) t ⊢ { toCompacts := { carrier := carrier✝, isCompact' := isCompact'✝ }, nonempty' := nonempty'✝ } = t [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := t [GOAL] case mk.mk.mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ carrier✝¹ : Set α isCompact'✝¹ : IsCompact carrier✝¹ nonempty'✝¹ : Set.Nonempty { carrier := carrier✝¹, isCompact' := isCompact'✝¹ }.carrier carrier✝ : Set α isCompact'✝ : IsCompact carrier✝ nonempty'✝ : Set.Nonempty { carrier := carrier✝, isCompact' := isCompact'✝ }.carrier h : (fun s => s.carrier) { toCompacts := { carrier := carrier✝¹, isCompact' := isCompact'✝¹ }, nonempty' := nonempty'✝¹ } = (fun s => s.carrier) { toCompacts := { carrier := carrier✝, isCompact' := isCompact'✝ }, nonempty' := nonempty'✝ } ⊢ { toCompacts := { carrier := carrier✝¹, isCompact' := isCompact'✝¹ }, nonempty' := nonempty'✝¹ } = { toCompacts := { carrier := carrier✝, isCompact' := isCompact'✝ }, nonempty' := nonempty'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s t : PositiveCompacts α h : (fun s => s.carrier) s = (fun s => s.carrier) t ⊢ s = t [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := s [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ t : PositiveCompacts α carrier✝ : Set α isCompact'✝ : IsCompact carrier✝ interior_nonempty'✝ : Set.Nonempty (interior { carrier := carrier✝, isCompact' := isCompact'✝ }.carrier) h : (fun s => s.carrier) { toCompacts := { carrier := carrier✝, isCompact' := isCompact'✝ }, interior_nonempty' := interior_nonempty'✝ } = (fun s => s.carrier) t ⊢ { toCompacts := { carrier := carrier✝, isCompact' := isCompact'✝ }, interior_nonempty' := interior_nonempty'✝ } = t [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := t [GOAL] case mk.mk.mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ carrier✝¹ : Set α isCompact'✝¹ : IsCompact carrier✝¹ interior_nonempty'✝¹ : Set.Nonempty (interior { carrier := carrier✝¹, isCompact' := isCompact'✝¹ }.carrier) carrier✝ : Set α isCompact'✝ : IsCompact carrier✝ interior_nonempty'✝ : Set.Nonempty (interior { carrier := carrier✝, isCompact' := isCompact'✝ }.carrier) h : (fun s => s.carrier) { toCompacts := { carrier := carrier✝¹, isCompact' := isCompact'✝¹ }, interior_nonempty' := interior_nonempty'✝¹ } = (fun s => s.carrier) { toCompacts := { carrier := carrier✝, isCompact' := isCompact'✝ }, interior_nonempty' := interior_nonempty'✝ } ⊢ { toCompacts := { carrier := carrier✝¹, isCompact' := isCompact'✝¹ }, interior_nonempty' := interior_nonempty'✝¹ } = { toCompacts := { carrier := carrier✝, isCompact' := isCompact'✝ }, interior_nonempty' := interior_nonempty'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ K : PositiveCompacts α L : PositiveCompacts β ⊢ Set.Nonempty (interior (Compacts.prod K.toCompacts L.toCompacts).carrier) [PROOFSTEP] simp only [Compacts.carrier_eq_coe, Compacts.coe_prod, interior_prod_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ K : PositiveCompacts α L : PositiveCompacts β ⊢ Set.Nonempty (interior ↑K.toCompacts ×ˢ interior ↑L.toCompacts) [PROOFSTEP] exact K.interior_nonempty.prod L.interior_nonempty [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s t : CompactOpens α h : (fun s => s.carrier) s = (fun s => s.carrier) t ⊢ s = t [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := s [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ t : CompactOpens α carrier✝ : Set α isCompact'✝ : IsCompact carrier✝ isOpen'✝ : IsOpen { carrier := carrier✝, isCompact' := isCompact'✝ }.carrier h : (fun s => s.carrier) { toCompacts := { carrier := carrier✝, isCompact' := isCompact'✝ }, isOpen' := isOpen'✝ } = (fun s => s.carrier) t ⊢ { toCompacts := { carrier := carrier✝, isCompact' := isCompact'✝ }, isOpen' := isOpen'✝ } = t [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := t [GOAL] case mk.mk.mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ carrier✝¹ : Set α isCompact'✝¹ : IsCompact carrier✝¹ isOpen'✝¹ : IsOpen { carrier := carrier✝¹, isCompact' := isCompact'✝¹ }.carrier carrier✝ : Set α isCompact'✝ : IsCompact carrier✝ isOpen'✝ : IsOpen { carrier := carrier✝, isCompact' := isCompact'✝ }.carrier h : (fun s => s.carrier) { toCompacts := { carrier := carrier✝¹, isCompact' := isCompact'✝¹ }, isOpen' := isOpen'✝¹ } = (fun s => s.carrier) { toCompacts := { carrier := carrier✝, isCompact' := isCompact'✝ }, isOpen' := isOpen'✝ } ⊢ { toCompacts := { carrier := carrier✝¹, isCompact' := isCompact'✝¹ }, isOpen' := isOpen'✝¹ } = { toCompacts := { carrier := carrier✝, isCompact' := isCompact'✝ }, isOpen' := isOpen'✝ } [PROOFSTEP] congr
{"mathlib_filename": "Mathlib.Topology.Sets.Compacts", "llama_tokens": 4424}
[GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommSemiring 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : NonUnitalNonAssocSemiring A inst✝¹ : TopologicalSpace A inst✝ : Module 𝕜 A φ ψ : ↑(characterSpace 𝕜 A) h : (fun φ => ↑↑φ) φ = (fun φ => ↑↑φ) ψ ⊢ φ = ψ [PROOFSTEP] ext1 [GOAL] case a 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommSemiring 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : NonUnitalNonAssocSemiring A inst✝¹ : TopologicalSpace A inst✝ : Module 𝕜 A φ ψ : ↑(characterSpace 𝕜 A) h : (fun φ => ↑↑φ) φ = (fun φ => ↑↑φ) ψ ⊢ ↑φ = ↑ψ [PROOFSTEP] apply FunLike.ext [GOAL] case a.h 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommSemiring 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : NonUnitalNonAssocSemiring A inst✝¹ : TopologicalSpace A inst✝ : Module 𝕜 A φ ψ : ↑(characterSpace 𝕜 A) h : (fun φ => ↑↑φ) φ = (fun φ => ↑↑φ) ψ ⊢ ∀ (x : A), ↑↑φ x = ↑↑ψ x [PROOFSTEP] exact congr_fun h [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommSemiring 𝕜 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : ContinuousAdd 𝕜 inst✝⁴ : ContinuousConstSMul 𝕜 𝕜 inst✝³ : NonUnitalNonAssocSemiring A inst✝² : TopologicalSpace A inst✝¹ : Module 𝕜 A inst✝ : Subsingleton A φ : ↑(characterSpace 𝕜 A) x : A ⊢ ↑↑φ x = ↑0 x [PROOFSTEP] rw [show x = 0 from Subsingleton.elim x 0, map_zero, map_zero] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommSemiring 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : NonUnitalNonAssocSemiring A inst✝¹ : TopologicalSpace A inst✝ : Module 𝕜 A ⊢ characterSpace 𝕜 A ∪ {0} ≤ {φ | ∀ (x y : A), ↑φ (x * y) = ↑φ x * ↑φ y} [PROOFSTEP] rintro φ (hφ | rfl) [GOAL] case inl 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommSemiring 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : NonUnitalNonAssocSemiring A inst✝¹ : TopologicalSpace A inst✝ : Module 𝕜 A φ : WeakDual 𝕜 A hφ : φ ∈ characterSpace 𝕜 A ⊢ φ ∈ {φ | ∀ (x y : A), ↑φ (x * y) = ↑φ x * ↑φ y} [PROOFSTEP] exact hφ.2 [GOAL] case inr 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommSemiring 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : NonUnitalNonAssocSemiring A inst✝¹ : TopologicalSpace A inst✝ : Module 𝕜 A ⊢ 0 ∈ {φ | ∀ (x y : A), ↑φ (x * y) = ↑φ x * ↑φ y} [PROOFSTEP] exact fun _ _ => by exact (zero_mul (0 : 𝕜)).symm [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommSemiring 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : NonUnitalNonAssocSemiring A inst✝¹ : TopologicalSpace A inst✝ : Module 𝕜 A x✝¹ x✝ : A ⊢ ↑0 (x✝¹ * x✝) = ↑0 x✝¹ * ↑0 x✝ [PROOFSTEP] exact (zero_mul (0 : 𝕜)).symm [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁸ : CommSemiring 𝕜 inst✝⁷ : TopologicalSpace 𝕜 inst✝⁶ : ContinuousAdd 𝕜 inst✝⁵ : ContinuousConstSMul 𝕜 𝕜 inst✝⁴ : NonUnitalNonAssocSemiring A inst✝³ : TopologicalSpace A inst✝² : Module 𝕜 A inst✝¹ : T2Space 𝕜 inst✝ : ContinuousMul 𝕜 ⊢ IsClosed (characterSpace 𝕜 A ∪ {0}) [PROOFSTEP] simp only [union_zero, Set.setOf_forall] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁸ : CommSemiring 𝕜 inst✝⁷ : TopologicalSpace 𝕜 inst✝⁶ : ContinuousAdd 𝕜 inst✝⁵ : ContinuousConstSMul 𝕜 𝕜 inst✝⁴ : NonUnitalNonAssocSemiring A inst✝³ : TopologicalSpace A inst✝² : Module 𝕜 A inst✝¹ : T2Space 𝕜 inst✝ : ContinuousMul 𝕜 ⊢ IsClosed (⋂ (i : A) (i_1 : A), {x | ↑x (i * i_1) = ↑x i * ↑x i_1}) [PROOFSTEP] exact isClosed_iInter fun x => isClosed_iInter fun y => isClosed_eq (eval_continuous _) <| (eval_continuous _).mul (eval_continuous _) [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A φ : ↑(characterSpace 𝕜 A) ⊢ ↑φ 1 = 1 [PROOFSTEP] have h₁ : φ 1 * (1 - φ 1) = 0 := by rw [mul_sub, sub_eq_zero, mul_one, ← map_mul φ, one_mul] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A φ : ↑(characterSpace 𝕜 A) ⊢ ↑φ 1 * (1 - ↑φ 1) = 0 [PROOFSTEP] rw [mul_sub, sub_eq_zero, mul_one, ← map_mul φ, one_mul] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A φ : ↑(characterSpace 𝕜 A) h₁ : ↑φ 1 * (1 - ↑φ 1) = 0 ⊢ ↑φ 1 = 1 [PROOFSTEP] rcases mul_eq_zero.mp h₁ with (h₂ | h₂) [GOAL] case inl 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A φ : ↑(characterSpace 𝕜 A) h₁ : ↑φ 1 * (1 - ↑φ 1) = 0 h₂ : ↑φ 1 = 0 ⊢ ↑φ 1 = 1 [PROOFSTEP] have : ∀ a, φ (a * 1) = 0 := fun a => by simp only [map_mul φ, h₂, mul_zero] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A φ : ↑(characterSpace 𝕜 A) h₁ : ↑φ 1 * (1 - ↑φ 1) = 0 h₂ : ↑φ 1 = 0 a : A ⊢ ↑φ (a * 1) = 0 [PROOFSTEP] simp only [map_mul φ, h₂, mul_zero] [GOAL] case inl 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A φ : ↑(characterSpace 𝕜 A) h₁ : ↑φ 1 * (1 - ↑φ 1) = 0 h₂ : ↑φ 1 = 0 this : ∀ (a : A), ↑φ (a * 1) = 0 ⊢ ↑φ 1 = 1 [PROOFSTEP] exact False.elim (φ.prop.1 <| ContinuousLinearMap.ext <| by simpa only [mul_one] using this) [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A φ : ↑(characterSpace 𝕜 A) h₁ : ↑φ 1 * (1 - ↑φ 1) = 0 h₂ : ↑φ 1 = 0 this : ∀ (a : A), ↑φ (a * 1) = 0 ⊢ ∀ (x : A), ↑↑φ x = ↑0 x [PROOFSTEP] simpa only [mul_one] using this [GOAL] case inr 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A φ : ↑(characterSpace 𝕜 A) h₁ : ↑φ 1 * (1 - ↑φ 1) = 0 h₂ : 1 - ↑φ 1 = 0 ⊢ ↑φ 1 = 1 [PROOFSTEP] exact (sub_eq_zero.mp h₂).symm [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A map_one' : ∀ (φ : ↑(characterSpace 𝕜 A)), ↑φ 1 = 1 src✝ : NonUnitalAlgHomClass (↑(characterSpace 𝕜 A)) 𝕜 A 𝕜 := instNonUnitalAlgHomClass φ : ↑(characterSpace 𝕜 A) r : 𝕜 ⊢ ↑φ (↑(algebraMap 𝕜 A) r) = ↑(algebraMap 𝕜 𝕜) r [PROOFSTEP] rw [Algebra.algebraMap_eq_smul_one, Algebra.id.map_eq_id, RingHom.id_apply] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A map_one' : ∀ (φ : ↑(characterSpace 𝕜 A)), ↑φ 1 = 1 src✝ : NonUnitalAlgHomClass (↑(characterSpace 𝕜 A)) 𝕜 A 𝕜 := instNonUnitalAlgHomClass φ : ↑(characterSpace 𝕜 A) r : 𝕜 ⊢ ↑φ (r • 1) = r [PROOFSTEP] rw [map_smul, Algebra.id.smul_eq_mul, map_one' φ, mul_one] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁸ : CommRing 𝕜 inst✝⁷ : NoZeroDivisors 𝕜 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : ContinuousAdd 𝕜 inst✝⁴ : ContinuousConstSMul 𝕜 𝕜 inst✝³ : TopologicalSpace A inst✝² : Semiring A inst✝¹ : Algebra 𝕜 A inst✝ : Nontrivial 𝕜 ⊢ characterSpace 𝕜 A = {φ | ↑φ 1 = 1 ∧ ∀ (x y : A), ↑φ (x * y) = ↑φ x * ↑φ y} [PROOFSTEP] ext φ [GOAL] case h 𝕜 : Type u_1 A : Type u_2 inst✝⁸ : CommRing 𝕜 inst✝⁷ : NoZeroDivisors 𝕜 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : ContinuousAdd 𝕜 inst✝⁴ : ContinuousConstSMul 𝕜 𝕜 inst✝³ : TopologicalSpace A inst✝² : Semiring A inst✝¹ : Algebra 𝕜 A inst✝ : Nontrivial 𝕜 φ : WeakDual 𝕜 A ⊢ φ ∈ characterSpace 𝕜 A ↔ φ ∈ {φ | ↑φ 1 = 1 ∧ ∀ (x y : A), ↑φ (x * y) = ↑φ x * ↑φ y} [PROOFSTEP] refine' ⟨_, _⟩ [GOAL] case h.refine'_1 𝕜 : Type u_1 A : Type u_2 inst✝⁸ : CommRing 𝕜 inst✝⁷ : NoZeroDivisors 𝕜 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : ContinuousAdd 𝕜 inst✝⁴ : ContinuousConstSMul 𝕜 𝕜 inst✝³ : TopologicalSpace A inst✝² : Semiring A inst✝¹ : Algebra 𝕜 A inst✝ : Nontrivial 𝕜 φ : WeakDual 𝕜 A ⊢ φ ∈ characterSpace 𝕜 A → φ ∈ {φ | ↑φ 1 = 1 ∧ ∀ (x y : A), ↑φ (x * y) = ↑φ x * ↑φ y} [PROOFSTEP] rintro hφ [GOAL] case h.refine'_1 𝕜 : Type u_1 A : Type u_2 inst✝⁸ : CommRing 𝕜 inst✝⁷ : NoZeroDivisors 𝕜 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : ContinuousAdd 𝕜 inst✝⁴ : ContinuousConstSMul 𝕜 𝕜 inst✝³ : TopologicalSpace A inst✝² : Semiring A inst✝¹ : Algebra 𝕜 A inst✝ : Nontrivial 𝕜 φ : WeakDual 𝕜 A hφ : φ ∈ characterSpace 𝕜 A ⊢ φ ∈ {φ | ↑φ 1 = 1 ∧ ∀ (x y : A), ↑φ (x * y) = ↑φ x * ↑φ y} [PROOFSTEP] lift φ to characterSpace 𝕜 A using hφ [GOAL] case h.refine'_1.intro 𝕜 : Type u_1 A : Type u_2 inst✝⁸ : CommRing 𝕜 inst✝⁷ : NoZeroDivisors 𝕜 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : ContinuousAdd 𝕜 inst✝⁴ : ContinuousConstSMul 𝕜 𝕜 inst✝³ : TopologicalSpace A inst✝² : Semiring A inst✝¹ : Algebra 𝕜 A inst✝ : Nontrivial 𝕜 φ : { x // x ∈ characterSpace 𝕜 A } ⊢ ↑φ ∈ {φ | ↑φ 1 = 1 ∧ ∀ (x y : A), ↑φ (x * y) = ↑φ x * ↑φ y} [PROOFSTEP] exact ⟨map_one φ, map_mul φ⟩ [GOAL] case h.refine'_2 𝕜 : Type u_1 A : Type u_2 inst✝⁸ : CommRing 𝕜 inst✝⁷ : NoZeroDivisors 𝕜 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : ContinuousAdd 𝕜 inst✝⁴ : ContinuousConstSMul 𝕜 𝕜 inst✝³ : TopologicalSpace A inst✝² : Semiring A inst✝¹ : Algebra 𝕜 A inst✝ : Nontrivial 𝕜 φ : WeakDual 𝕜 A ⊢ φ ∈ {φ | ↑φ 1 = 1 ∧ ∀ (x y : A), ↑φ (x * y) = ↑φ x * ↑φ y} → φ ∈ characterSpace 𝕜 A [PROOFSTEP] rintro ⟨hφ₁, hφ₂⟩ [GOAL] case h.refine'_2.intro 𝕜 : Type u_1 A : Type u_2 inst✝⁸ : CommRing 𝕜 inst✝⁷ : NoZeroDivisors 𝕜 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : ContinuousAdd 𝕜 inst✝⁴ : ContinuousConstSMul 𝕜 𝕜 inst✝³ : TopologicalSpace A inst✝² : Semiring A inst✝¹ : Algebra 𝕜 A inst✝ : Nontrivial 𝕜 φ : WeakDual 𝕜 A hφ₁ : ↑φ 1 = 1 hφ₂ : ∀ (x y : A), ↑φ (x * y) = ↑φ x * ↑φ y ⊢ φ ∈ characterSpace 𝕜 A [PROOFSTEP] refine' ⟨_, hφ₂⟩ [GOAL] case h.refine'_2.intro 𝕜 : Type u_1 A : Type u_2 inst✝⁸ : CommRing 𝕜 inst✝⁷ : NoZeroDivisors 𝕜 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : ContinuousAdd 𝕜 inst✝⁴ : ContinuousConstSMul 𝕜 𝕜 inst✝³ : TopologicalSpace A inst✝² : Semiring A inst✝¹ : Algebra 𝕜 A inst✝ : Nontrivial 𝕜 φ : WeakDual 𝕜 A hφ₁ : ↑φ 1 = 1 hφ₂ : ∀ (x y : A), ↑φ (x * y) = ↑φ x * ↑φ y ⊢ φ ≠ 0 [PROOFSTEP] rintro rfl [GOAL] case h.refine'_2.intro 𝕜 : Type u_1 A : Type u_2 inst✝⁸ : CommRing 𝕜 inst✝⁷ : NoZeroDivisors 𝕜 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : ContinuousAdd 𝕜 inst✝⁴ : ContinuousConstSMul 𝕜 𝕜 inst✝³ : TopologicalSpace A inst✝² : Semiring A inst✝¹ : Algebra 𝕜 A inst✝ : Nontrivial 𝕜 hφ₁ : ↑0 1 = 1 hφ₂ : ∀ (x y : A), ↑0 (x * y) = ↑0 x * ↑0 y ⊢ False [PROOFSTEP] exact zero_ne_one hφ₁ [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝¹⁰ : CommRing 𝕜 inst✝⁹ : NoZeroDivisors 𝕜 inst✝⁸ : TopologicalSpace 𝕜 inst✝⁷ : ContinuousAdd 𝕜 inst✝⁶ : ContinuousConstSMul 𝕜 𝕜 inst✝⁵ : TopologicalSpace A inst✝⁴ : Semiring A inst✝³ : Algebra 𝕜 A inst✝² : Nontrivial 𝕜 inst✝¹ : T2Space 𝕜 inst✝ : ContinuousMul 𝕜 ⊢ IsClosed (characterSpace 𝕜 A) [PROOFSTEP] rw [eq_set_map_one_map_mul, Set.setOf_and] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝¹⁰ : CommRing 𝕜 inst✝⁹ : NoZeroDivisors 𝕜 inst✝⁸ : TopologicalSpace 𝕜 inst✝⁷ : ContinuousAdd 𝕜 inst✝⁶ : ContinuousConstSMul 𝕜 𝕜 inst✝⁵ : TopologicalSpace A inst✝⁴ : Semiring A inst✝³ : Algebra 𝕜 A inst✝² : Nontrivial 𝕜 inst✝¹ : T2Space 𝕜 inst✝ : ContinuousMul 𝕜 ⊢ IsClosed ({a | ↑a 1 = 1} ∩ {a | ∀ (x y : A), ↑a (x * y) = ↑a x * ↑a y}) [PROOFSTEP] refine' IsClosed.inter (isClosed_eq (eval_continuous _) continuous_const) _ [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝¹⁰ : CommRing 𝕜 inst✝⁹ : NoZeroDivisors 𝕜 inst✝⁸ : TopologicalSpace 𝕜 inst✝⁷ : ContinuousAdd 𝕜 inst✝⁶ : ContinuousConstSMul 𝕜 𝕜 inst✝⁵ : TopologicalSpace A inst✝⁴ : Semiring A inst✝³ : Algebra 𝕜 A inst✝² : Nontrivial 𝕜 inst✝¹ : T2Space 𝕜 inst✝ : ContinuousMul 𝕜 ⊢ IsClosed {a | ∀ (x y : A), ↑a (x * y) = ↑a x * ↑a y} [PROOFSTEP] simpa only [(union_zero 𝕜 A).symm] using union_zero_isClosed _ _ [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Ring A inst✝ : Algebra 𝕜 A φ ψ : ↑(characterSpace 𝕜 A) h : RingHom.ker φ = RingHom.ker ψ ⊢ φ = ψ [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Ring A inst✝ : Algebra 𝕜 A φ ψ : ↑(characterSpace 𝕜 A) h : RingHom.ker φ = RingHom.ker ψ x : A ⊢ ↑φ x = ↑ψ x [PROOFSTEP] have : x - algebraMap 𝕜 A (ψ x) ∈ RingHom.ker φ := by simpa only [h, RingHom.mem_ker, map_sub, AlgHomClass.commutes] using sub_self (ψ x) [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Ring A inst✝ : Algebra 𝕜 A φ ψ : ↑(characterSpace 𝕜 A) h : RingHom.ker φ = RingHom.ker ψ x : A ⊢ x - ↑(algebraMap 𝕜 A) (↑ψ x) ∈ RingHom.ker φ [PROOFSTEP] simpa only [h, RingHom.mem_ker, map_sub, AlgHomClass.commutes] using sub_self (ψ x) [GOAL] case h 𝕜 : Type u_1 A : Type u_2 inst✝⁷ : CommRing 𝕜 inst✝⁶ : NoZeroDivisors 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Ring A inst✝ : Algebra 𝕜 A φ ψ : ↑(characterSpace 𝕜 A) h : RingHom.ker φ = RingHom.ker ψ x : A this : x - ↑(algebraMap 𝕜 A) (↑ψ x) ∈ RingHom.ker φ ⊢ ↑φ x = ↑ψ x [PROOFSTEP] rwa [RingHom.mem_ker, map_sub, AlgHomClass.commutes, sub_eq_zero] at this [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : Field 𝕜 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : ContinuousAdd 𝕜 inst✝³ : ContinuousConstSMul 𝕜 𝕜 inst✝² : Ring A inst✝¹ : TopologicalSpace A inst✝ : Algebra 𝕜 A φ : ↑(characterSpace 𝕜 A) z : 𝕜 ⊢ ↑φ (↑(algebraMap 𝕜 A) z) = z [PROOFSTEP] simp only [AlgHomClass.commutes, Algebra.id.map_eq_id, RingHom.id_apply] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommRing 𝕜 inst✝⁵ : NoZeroDivisors 𝕜 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A ⊢ (fun a => mk fun φ => ↑φ a) 1 = 1 [PROOFSTEP] ext a [GOAL] case h 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommRing 𝕜 inst✝⁵ : NoZeroDivisors 𝕜 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A a : ↑(characterSpace 𝕜 A) ⊢ ↑((fun a => mk fun φ => ↑φ a) 1) a = ↑1 a [PROOFSTEP] simp only [coe_mk, coe_one, Pi.one_apply, map_one a] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommRing 𝕜 inst✝⁵ : NoZeroDivisors 𝕜 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A a b : A ⊢ OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b [PROOFSTEP] ext [GOAL] case h 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommRing 𝕜 inst✝⁵ : NoZeroDivisors 𝕜 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A a b : A a✝ : ↑(characterSpace 𝕜 A) ⊢ ↑(OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b)) a✝ = ↑(OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) a✝ [PROOFSTEP] simp only [map_mul, coe_mk, coe_mul, Pi.mul_apply] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommRing 𝕜 inst✝⁵ : NoZeroDivisors 𝕜 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) 0 = 0 [PROOFSTEP] ext [GOAL] case h 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommRing 𝕜 inst✝⁵ : NoZeroDivisors 𝕜 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A a✝ : ↑(characterSpace 𝕜 A) ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) 0) a✝ = ↑0 a✝ [PROOFSTEP] simp only [map_zero, coe_mk, coe_mul, coe_zero, Pi.zero_apply] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommRing 𝕜 inst✝⁵ : NoZeroDivisors 𝕜 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A a b : A ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) (a + b) = OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) a + OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) b [PROOFSTEP] ext [GOAL] case h 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommRing 𝕜 inst✝⁵ : NoZeroDivisors 𝕜 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A a b : A a✝ : ↑(characterSpace 𝕜 A) ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) (a + b)) a✝ = ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) a + OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) b) a✝ [PROOFSTEP] simp only [map_add, coe_mk, coe_add, Pi.add_apply] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommRing 𝕜 inst✝⁵ : NoZeroDivisors 𝕜 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A k : 𝕜 ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) 0 = 0), map_add' := (_ : ∀ (a b : A), OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) (a + b) = OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) a + OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) b) }) (↑(algebraMap 𝕜 A) k) = ↑(algebraMap 𝕜 C(↑(characterSpace 𝕜 A), 𝕜)) k [PROOFSTEP] ext [GOAL] case h 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : CommRing 𝕜 inst✝⁵ : NoZeroDivisors 𝕜 inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace A inst✝¹ : Semiring A inst✝ : Algebra 𝕜 A k : 𝕜 a✝ : ↑(characterSpace 𝕜 A) ⊢ ↑(OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) 0 = 0), map_add' := (_ : ∀ (a b : A), OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) (a + b) = OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) a + OneHom.toFun (↑{ toOneHom := { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } a * OneHom.toFun { toFun := fun a => mk fun φ => ↑φ a, map_one' := (_ : (fun a => mk fun φ => ↑φ a) 1 = 1) } b) }) b) }) (↑(algebraMap 𝕜 A) k)) a✝ = ↑(↑(algebraMap 𝕜 C(↑(characterSpace 𝕜 A), 𝕜)) k) a✝ [PROOFSTEP] simp [AlgHomClass.commutes]
{"mathlib_filename": "Mathlib.Topology.Algebra.Module.CharacterSpace", "llama_tokens": 14849}
[GOAL] C : Type u inst✝² : Category.{v, u} C D : Type w inst✝¹ : Category.{max v u, w} D inst✝ : Abelian D J : GrothendieckTopology C j : ℕ F : Discrete (Fin j) ⥤ Sheaf J D ⊢ HasLimit F [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Topology.Sheaves.Abelian", "llama_tokens": 103}
[GOAL] X : TopCat T : ↑X → Type u ι : Type u U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj ((presheafToTypes X T).obj (Opposite.op (U i))) hsf : IsCompatible (presheafToTypes X T) U sf ⊢ ∃! s, IsGluing (presheafToTypes X T) U sf s [PROOFSTEP] choose index index_spec using fun x : ↑(iSup U) => Opens.mem_iSup.mp x.2 -- Using this data, we can glue our functions together to a single section [GOAL] X : TopCat T : ↑X → Type u ι : Type u U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj ((presheafToTypes X T).obj (Opposite.op (U i))) hsf : IsCompatible (presheafToTypes X T) U sf index : { x // x ∈ iSup U } → ι index_spec : ∀ (x : { x // x ∈ iSup U }), ↑x ∈ U (index x) ⊢ ∃! s, IsGluing (presheafToTypes X T) U sf s [PROOFSTEP] let s : ∀ x : ↑(iSup U), T x := fun x => sf (index x) ⟨x.1, index_spec x⟩ [GOAL] X : TopCat T : ↑X → Type u ι : Type u U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj ((presheafToTypes X T).obj (Opposite.op (U i))) hsf : IsCompatible (presheafToTypes X T) U sf index : { x // x ∈ iSup U } → ι index_spec : ∀ (x : { x // x ∈ iSup U }), ↑x ∈ U (index x) s : (x : { x // x ∈ iSup U }) → T ↑x := fun x => sf (index x) { val := ↑x, property := (_ : ↑x ∈ U (index x)) } ⊢ ∃! s, IsGluing (presheafToTypes X T) U sf s [PROOFSTEP] refine' ⟨s, _, _⟩ [GOAL] case refine'_1 X : TopCat T : ↑X → Type u ι : Type u U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj ((presheafToTypes X T).obj (Opposite.op (U i))) hsf : IsCompatible (presheafToTypes X T) U sf index : { x // x ∈ iSup U } → ι index_spec : ∀ (x : { x // x ∈ iSup U }), ↑x ∈ U (index x) s : (x : { x // x ∈ iSup U }) → T ↑x := fun x => sf (index x) { val := ↑x, property := (_ : ↑x ∈ U (index x)) } ⊢ (fun s => IsGluing (presheafToTypes X T) U sf s) s [PROOFSTEP] intro i [GOAL] case refine'_1 X : TopCat T : ↑X → Type u ι : Type u U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj ((presheafToTypes X T).obj (Opposite.op (U i))) hsf : IsCompatible (presheafToTypes X T) U sf index : { x // x ∈ iSup U } → ι index_spec : ∀ (x : { x // x ∈ iSup U }), ↑x ∈ U (index x) s : (x : { x // x ∈ iSup U }) → T ↑x := fun x => sf (index x) { val := ↑x, property := (_ : ↑x ∈ U (index x)) } i : ι ⊢ ↑((presheafToTypes X T).map (leSupr U i).op) s = sf i [PROOFSTEP] funext x [GOAL] case refine'_1.h X : TopCat T : ↑X → Type u ι : Type u U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj ((presheafToTypes X T).obj (Opposite.op (U i))) hsf : IsCompatible (presheafToTypes X T) U sf index : { x // x ∈ iSup U } → ι index_spec : ∀ (x : { x // x ∈ iSup U }), ↑x ∈ U (index x) s : (x : { x // x ∈ iSup U }) → T ↑x := fun x => sf (index x) { val := ↑x, property := (_ : ↑x ∈ U (index x)) } i : ι x : { x // x ∈ (Opposite.op (U i)).unop } ⊢ ↑((presheafToTypes X T).map (leSupr U i).op) s x = sf i x [PROOFSTEP] exact congr_fun (hsf (index ⟨x, _⟩) i) ⟨x, ⟨index_spec ⟨x.1, _⟩, x.2⟩⟩ [GOAL] case refine'_2 X : TopCat T : ↑X → Type u ι : Type u U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj ((presheafToTypes X T).obj (Opposite.op (U i))) hsf : IsCompatible (presheafToTypes X T) U sf index : { x // x ∈ iSup U } → ι index_spec : ∀ (x : { x // x ∈ iSup U }), ↑x ∈ U (index x) s : (x : { x // x ∈ iSup U }) → T ↑x := fun x => sf (index x) { val := ↑x, property := (_ : ↑x ∈ U (index x)) } ⊢ ∀ (y : (forget (Type u)).obj ((presheafToTypes X T).obj (Opposite.op (iSup U)))), (fun s => IsGluing (presheafToTypes X T) U sf s) y → y = s [PROOFSTEP] intro t ht [GOAL] case refine'_2 X : TopCat T : ↑X → Type u ι : Type u U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj ((presheafToTypes X T).obj (Opposite.op (U i))) hsf : IsCompatible (presheafToTypes X T) U sf index : { x // x ∈ iSup U } → ι index_spec : ∀ (x : { x // x ∈ iSup U }), ↑x ∈ U (index x) s : (x : { x // x ∈ iSup U }) → T ↑x := fun x => sf (index x) { val := ↑x, property := (_ : ↑x ∈ U (index x)) } t : (forget (Type u)).obj ((presheafToTypes X T).obj (Opposite.op (iSup U))) ht : IsGluing (presheafToTypes X T) U sf t ⊢ t = s [PROOFSTEP] funext x [GOAL] case refine'_2.h X : TopCat T : ↑X → Type u ι : Type u U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj ((presheafToTypes X T).obj (Opposite.op (U i))) hsf : IsCompatible (presheafToTypes X T) U sf index : { x // x ∈ iSup U } → ι index_spec : ∀ (x : { x // x ∈ iSup U }), ↑x ∈ U (index x) s : (x : { x // x ∈ iSup U }) → T ↑x := fun x => sf (index x) { val := ↑x, property := (_ : ↑x ∈ U (index x)) } t : (forget (Type u)).obj ((presheafToTypes X T).obj (Opposite.op (iSup U))) ht : IsGluing (presheafToTypes X T) U sf t x : { x // x ∈ (Opposite.op (iSup U)).unop } ⊢ t x = s x [PROOFSTEP] exact congr_fun (ht (index x)) ⟨x.1, index_spec x⟩
{"mathlib_filename": "Mathlib.Topology.Sheaves.SheafOfFunctions", "llama_tokens": 2273}
[GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F✝ : Presheaf C X ι : Type v U✝ : ι → Opens ↑X F : Presheaf (Discrete Unit) X x✝² : Discrete Unit U : Opens ↑X S : Sieve U x✝¹ : S ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U x : Presieve.FamilyOfElements (F ⋙ coyoneda.obj (op x✝²)) S.arrows x✝ : Presieve.FamilyOfElements.Compatible x ⊢ (fun t => Presieve.FamilyOfElements.IsAmalgamation x t) (eqToHom (_ : (op x✝²).unop = F.obj (op U))) [PROOFSTEP] aesop_cat [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F✝ : Presheaf C X ι : Type v U✝ : ι → Opens ↑X F : Presheaf (Discrete Unit) X x✝³ : Discrete Unit U : Opens ↑X S : Sieve U x✝² : S ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U x : Presieve.FamilyOfElements (F ⋙ coyoneda.obj (op x✝³)) S.arrows x✝¹ : Presieve.FamilyOfElements.Compatible x x✝ : (F ⋙ coyoneda.obj (op x✝³)).obj (op U) ⊢ (fun t => Presieve.FamilyOfElements.IsAmalgamation x t) x✝ → x✝ = eqToHom (_ : (op x✝³).unop = F.obj (op U)) [PROOFSTEP] aesop_cat
{"mathlib_filename": "Mathlib.Topology.Sheaves.Sheaf", "llama_tokens": 512}
[GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C U : TopologicalSpace.Opens ↑X s : Sieve U hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U ⊢ Presieve.IsSheafFor (F ⋙ coyoneda.obj (op c)) s.arrows [PROOFSTEP] obtain rfl | hne := eq_or_ne U ⊥ [GOAL] case inl C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C s : Sieve ⊥ hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) ⊥ ⊢ Presieve.IsSheafFor (F ⋙ coyoneda.obj (op c)) s.arrows [PROOFSTEP] intro _ _ [GOAL] case inl C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C s : Sieve ⊥ hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) ⊥ x✝ : Presieve.FamilyOfElements (F ⋙ coyoneda.obj (op c)) s.arrows a✝ : Presieve.FamilyOfElements.Compatible x✝ ⊢ ∃! t, Presieve.FamilyOfElements.IsAmalgamation x✝ t [PROOFSTEP] rw [@exists_unique_iff_exists _ ⟨fun _ _ => _⟩] [GOAL] case inl C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C s : Sieve ⊥ hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) ⊥ x✝ : Presieve.FamilyOfElements (F ⋙ coyoneda.obj (op c)) s.arrows a✝ : Presieve.FamilyOfElements.Compatible x✝ ⊢ ∃ x, Presieve.FamilyOfElements.IsAmalgamation x✝ x [PROOFSTEP] refine' ⟨it.from _, fun U hU hs => IsTerminal.hom_ext _ _ _⟩ [GOAL] case inl C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C s : Sieve ⊥ hs✝ : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) ⊥ x✝ : Presieve.FamilyOfElements (F ⋙ coyoneda.obj (op c)) s.arrows a✝ : Presieve.FamilyOfElements.Compatible x✝ U : TopologicalSpace.Opens ↑X hU : U ⟶ ⊥ hs : s.arrows hU ⊢ IsTerminal (F.obj (op U)) [PROOFSTEP] rwa [le_bot_iff.1 hU.le] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C s : Sieve ⊥ hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) ⊥ x✝ : Presieve.FamilyOfElements (F ⋙ coyoneda.obj (op c)) s.arrows a✝ : Presieve.FamilyOfElements.Compatible x✝ ⊢ ∀ (x x_1 : (F ⋙ coyoneda.obj (op c)).obj (op ⊥)), x = x_1 [PROOFSTEP] apply it.hom_ext [GOAL] case inr C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C U : TopologicalSpace.Opens ↑X s : Sieve U hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U hne : U ≠ ⊥ ⊢ Presieve.IsSheafFor (F ⋙ coyoneda.obj (op c)) s.arrows [PROOFSTEP] convert Presieve.isSheafFor_top_sieve (F ⋙ coyoneda.obj (@op C c)) [GOAL] case h.e'_5.h.h.e'_4 C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C U : TopologicalSpace.Opens ↑X s : Sieve U hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U hne : U ≠ ⊥ ⊢ s = ⊤ [PROOFSTEP] rw [← Sieve.id_mem_iff_eq_top] [GOAL] case h.e'_5.h.h.e'_4 C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C U : TopologicalSpace.Opens ↑X s : Sieve U hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U hne : U ≠ ⊥ ⊢ s.arrows (𝟙 U) [PROOFSTEP] have := (U.eq_bot_or_top hind).resolve_left hne [GOAL] case h.e'_5.h.h.e'_4 C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C U : TopologicalSpace.Opens ↑X s : Sieve U hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U hne : U ≠ ⊥ this : U = ⊤ ⊢ s.arrows (𝟙 U) [PROOFSTEP] subst this [GOAL] case h.e'_5.h.h.e'_4 C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C s : Sieve ⊤ hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) ⊤ hne : ⊤ ≠ ⊥ ⊢ s.arrows (𝟙 ⊤) [PROOFSTEP] obtain he | ⟨⟨x⟩⟩ := isEmpty_or_nonempty X [GOAL] case h.e'_5.h.h.e'_4.inl C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C s : Sieve ⊤ hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) ⊤ hne : ⊤ ≠ ⊥ he : IsEmpty ↑X ⊢ s.arrows (𝟙 ⊤) [PROOFSTEP] exact (hne <| SetLike.ext'_iff.2 <| Set.univ_eq_empty_iff.2 he).elim [GOAL] case h.e'_5.h.h.e'_4.inr.intro C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C s : Sieve ⊤ hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) ⊤ hne : ⊤ ≠ ⊥ x : ↑X ⊢ s.arrows (𝟙 ⊤) [PROOFSTEP] obtain ⟨U, f, hf, hm⟩ := hs x _root_.trivial [GOAL] case h.e'_5.h.h.e'_4.inr.intro.intro.intro.intro C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C s : Sieve ⊤ hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) ⊤ hne : ⊤ ≠ ⊥ x : ↑X U : TopologicalSpace.Opens ↑X f : U ⟶ ⊤ hf : s.arrows f hm : x ∈ U ⊢ s.arrows (𝟙 ⊤) [PROOFSTEP] obtain rfl | rfl := U.eq_bot_or_top hind [GOAL] case h.e'_5.h.h.e'_4.inr.intro.intro.intro.intro.inl C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C s : Sieve ⊤ hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) ⊤ hne : ⊤ ≠ ⊥ x : ↑X f : ⊥ ⟶ ⊤ hf : s.arrows f hm : x ∈ ⊥ ⊢ s.arrows (𝟙 ⊤) [PROOFSTEP] cases hm [GOAL] case h.e'_5.h.h.e'_4.inr.intro.intro.intro.intro.inr C : Type u inst✝ : Category.{v, u} C X : TopCat hind : X.str = ⊤ F : Presheaf C X it : IsTerminal (F.obj (op ⊥)) c : C s : Sieve ⊤ hs : s ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) ⊤ hne : ⊤ ≠ ⊥ x : ↑X f : ⊤ ⟶ ⊤ hf : s.arrows f hm : x ∈ ⊤ ⊢ s.arrows (𝟙 ⊤) [PROOFSTEP] convert hf
{"mathlib_filename": "Mathlib.Topology.Sheaves.PUnit", "llama_tokens": 3045}
[GOAL] X : TopCat T : ↑X → Type v U : (Opens ↑X)ᵒᵖ ⊢ { obj := fun U => (x : { x // x ∈ U.unop }) → T ↑x, map := fun {U V} i g x => g ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) }.map (𝟙 U) = 𝟙 ({ obj := fun U => (x : { x // x ∈ U.unop }) → T ↑x, map := fun {U V} i g x => g ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) }.obj U) [PROOFSTEP] ext g [GOAL] case h X : TopCat T : ↑X → Type v U : (Opens ↑X)ᵒᵖ g : { obj := fun U => (x : { x // x ∈ U.unop }) → T ↑x, map := fun {U V} i g x => g ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) }.obj U ⊢ { obj := fun U => (x : { x // x ∈ U.unop }) → T ↑x, map := fun {U V} i g x => g ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) }.map (𝟙 U) g = 𝟙 ({ obj := fun U => (x : { x // x ∈ U.unop }) → T ↑x, map := fun {U V} i g x => g ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) }.obj U) g [PROOFSTEP] rfl [GOAL] X : TopCat T : Type v U : (Opens ↑X)ᵒᵖ ⊢ { obj := fun U => { x // x ∈ U.unop } → T, map := fun {U V} i g => g ∘ fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) } }.map (𝟙 U) = 𝟙 ({ obj := fun U => { x // x ∈ U.unop } → T, map := fun {U V} i g => g ∘ fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) } }.obj U) [PROOFSTEP] ext g [GOAL] case h X : TopCat T : Type v U : (Opens ↑X)ᵒᵖ g : { obj := fun U => { x // x ∈ U.unop } → T, map := fun {U V} i g => g ∘ fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) } }.obj U ⊢ { obj := fun U => { x // x ∈ U.unop } → T, map := fun {U V} i g => g ∘ fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) } }.map (𝟙 U) g = 𝟙 ({ obj := fun U => { x // x ∈ U.unop } → T, map := fun {U V} i g => g ∘ fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) } }.obj U) g [PROOFSTEP] rfl [GOAL] X✝ : TopCat X : TopCatᵒᵖ R : TopCommRingCat ⊢ CommRing C(↑X.unop, ↑((forget₂ TopCommRingCat TopCat).obj R)) [PROOFSTEP] infer_instance [GOAL] X✝ : TopCat X Y : TopCatᵒᵖ f : X ⟶ Y R : TopCommRingCat ⊢ ∀ (x y : ↑(continuousFunctions X R)), OneHom.toFun { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) } (x * y) = OneHom.toFun { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) } x * OneHom.toFun { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) } y [PROOFSTEP] aesop_cat [GOAL] X✝ : TopCat X Y : TopCatᵒᵖ f : X ⟶ Y R : TopCommRingCat ⊢ ∀ (x y : ↑(continuousFunctions X R)), OneHom.toFun (↑{ toOneHom := { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) }, map_mul' := (_ : ∀ (x y : ↑(continuousFunctions X R)), OneHom.toFun { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) } (x * y) = OneHom.toFun { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) } x * OneHom.toFun { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) }, map_mul' := (_ : ∀ (x y : ↑(continuousFunctions X R)), OneHom.toFun { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) } (x * y) = OneHom.toFun { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) } x * OneHom.toFun { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) }, map_mul' := (_ : ∀ (x y : ↑(continuousFunctions X R)), OneHom.toFun { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) } (x * y) = OneHom.toFun { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) } x * OneHom.toFun { toFun := fun g => f.unop ≫ g, map_one' := (_ : (fun g => f.unop ≫ g) 1 = (fun g => f.unop ≫ g) 1) } y) }) y [PROOFSTEP] aesop_cat [GOAL] X✝ : TopCat R : TopCommRingCat X : TopCatᵒᵖ ⊢ { obj := fun X => continuousFunctions X R, map := fun {X Y} f => continuousFunctions.pullback f R }.map (𝟙 X) = 𝟙 ({ obj := fun X => continuousFunctions X R, map := fun {X Y} f => continuousFunctions.pullback f R }.obj X) [PROOFSTEP] ext [GOAL] case w X✝ : TopCat R : TopCommRingCat X : TopCatᵒᵖ x✝ : (forget CommRingCat).obj ({ obj := fun X => continuousFunctions X R, map := fun {X Y} f => continuousFunctions.pullback f R }.obj X) ⊢ ↑({ obj := fun X => continuousFunctions X R, map := fun {X Y} f => continuousFunctions.pullback f R }.map (𝟙 X)) x✝ = ↑(𝟙 ({ obj := fun X => continuousFunctions X R, map := fun {X Y} f => continuousFunctions.pullback f R }.obj X)) x✝ [PROOFSTEP] rfl [GOAL] X✝ : TopCat X : TopCommRingCat ⊢ { obj := fun R => CategoryTheory.Functor.mk { obj := fun X => continuousFunctions X R, map := fun {X Y} f => continuousFunctions.pullback f R }, map := fun {R S} φ => NatTrans.mk fun X => continuousFunctions.map X φ }.map (𝟙 X) = 𝟙 ({ obj := fun R => CategoryTheory.Functor.mk { obj := fun X => continuousFunctions X R, map := fun {X Y} f => continuousFunctions.pullback f R }, map := fun {R S} φ => NatTrans.mk fun X => continuousFunctions.map X φ }.obj X) [PROOFSTEP] ext [GOAL] case w.h.w X✝ : TopCat X : TopCommRingCat x✝¹ : TopCatᵒᵖ x✝ : (forget CommRingCat).obj (({ obj := fun R => CategoryTheory.Functor.mk { obj := fun X => continuousFunctions X R, map := fun {X Y} f => continuousFunctions.pullback f R }, map := fun {R S} φ => NatTrans.mk fun X => continuousFunctions.map X φ }.obj X).obj x✝¹) ⊢ ↑(NatTrans.app ({ obj := fun R => CategoryTheory.Functor.mk { obj := fun X => continuousFunctions X R, map := fun {X Y} f => continuousFunctions.pullback f R }, map := fun {R S} φ => NatTrans.mk fun X => continuousFunctions.map X φ }.map (𝟙 X)) x✝¹) x✝ = ↑(NatTrans.app (𝟙 ({ obj := fun R => CategoryTheory.Functor.mk { obj := fun X => continuousFunctions X R, map := fun {X Y} f => continuousFunctions.pullback f R }, map := fun {R S} φ => NatTrans.mk fun X => continuousFunctions.map X φ }.obj X)) x✝¹) x✝ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Topology.Sheaves.PresheafOfFunctions", "llama_tokens": 3317}
[GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ Pairwise.diagram U ⋙ Opens.map f = Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U) [PROOFSTEP] have obj_eq : ∀ (j : Pairwise ι), (Pairwise.diagram U ⋙ Opens.map f).obj j = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).obj j [GOAL] case obj_eq C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ ∀ (j : CategoryTheory.Pairwise ι), (Pairwise.diagram U ⋙ Opens.map f).obj j = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).obj j [PROOFSTEP] rintro ⟨i⟩ [GOAL] case obj_eq.single C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y i : ι ⊢ (Pairwise.diagram U ⋙ Opens.map f).obj (Pairwise.single i) = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).obj (Pairwise.single i) [PROOFSTEP] rfl [GOAL] case obj_eq.pair C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y a✝¹ a✝ : ι ⊢ (Pairwise.diagram U ⋙ Opens.map f).obj (Pairwise.pair a✝¹ a✝) = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).obj (Pairwise.pair a✝¹ a✝) [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y obj_eq : ∀ (j : CategoryTheory.Pairwise ι), (Pairwise.diagram U ⋙ Opens.map f).obj j = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).obj j ⊢ Pairwise.diagram U ⋙ Opens.map f = Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U) [PROOFSTEP] refine Functor.hext obj_eq ?_ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y obj_eq : ∀ (j : CategoryTheory.Pairwise ι), (Pairwise.diagram U ⋙ Opens.map f).obj j = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).obj j ⊢ ∀ (X_1 Y_1 : CategoryTheory.Pairwise ι) (f_1 : X_1 ⟶ Y_1), HEq ((Pairwise.diagram U ⋙ Opens.map f).map f_1) ((Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).map f_1) [PROOFSTEP] intro i j g [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y obj_eq : ∀ (j : CategoryTheory.Pairwise ι), (Pairwise.diagram U ⋙ Opens.map f).obj j = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).obj j i j : CategoryTheory.Pairwise ι g : i ⟶ j ⊢ HEq ((Pairwise.diagram U ⋙ Opens.map f).map g) ((Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).map g) [PROOFSTEP] apply Subsingleton.helim [GOAL] case h₂ C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y obj_eq : ∀ (j : CategoryTheory.Pairwise ι), (Pairwise.diagram U ⋙ Opens.map f).obj j = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).obj j i j : CategoryTheory.Pairwise ι g : i ⟶ j ⊢ ((Pairwise.diagram U ⋙ Opens.map f).obj i ⟶ (Pairwise.diagram U ⋙ Opens.map f).obj j) = ((Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).obj i ⟶ (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).obj j) [PROOFSTEP] rw [obj_eq, obj_eq] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq ((Opens.map f).mapCocone (Pairwise.cocone U)) (Pairwise.cocone ((Opens.map f).toPrefunctor.obj ∘ U)) [PROOFSTEP] unfold Functor.mapCocone Cocones.functoriality [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq ((CategoryTheory.Functor.mk { obj := fun A => { pt := (Opens.map f).obj A.pt, ι := NatTrans.mk fun j => (Opens.map f).map (NatTrans.app A.ι j) }, map := fun {X_1 Y_1} f_1 => CoconeMorphism.mk ((Opens.map f).map f_1.Hom) }).obj (Pairwise.cocone U)) (Pairwise.cocone ((Opens.map f).toPrefunctor.obj ∘ U)) [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq { pt := (Opens.map f).obj (iSup U), ι := NatTrans.mk fun j => (Opens.map f).map (Pairwise.coconeιApp U j) } (Pairwise.cocone ((Opens.map f).toPrefunctor.obj ∘ U)) [PROOFSTEP] congr [GOAL] case e_5.h C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ Pairwise.diagram U ⋙ Opens.map f = Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U) case e_6.h C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ (Opens.map f).obj (iSup U) = iSup ((Opens.map f).toPrefunctor.obj ∘ U) case e_7.e_5.h C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ Pairwise.diagram U ⋙ Opens.map f = Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U) case e_7.e_6.h.e_a C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ (Opens.map f).obj (iSup U) = iSup ((Opens.map f).toPrefunctor.obj ∘ U) case e_7.e_7 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (fun j => (Opens.map f).map (Pairwise.coconeιApp U j)) (Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U)) case e_7.e_8 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram U ⋙ Opens.map f).map f_1 ≫ (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) Y_1 = (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) X_1 ≫ ((Functor.const (CategoryTheory.Pairwise ι)).obj ((Opens.map f).obj (Pairwise.cocone U).pt)).map f_1) (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).map f_1 ≫ Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) Y_1 = Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) X_1 ≫ 𝟙 (iSup ((Opens.map f).toPrefunctor.obj ∘ U))) [PROOFSTEP] iterate 2 rw [map_diagram]; rw [Opens.map_iSup] [GOAL] case e_5.h C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ Pairwise.diagram U ⋙ Opens.map f = Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U) case e_6.h C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ (Opens.map f).obj (iSup U) = iSup ((Opens.map f).toPrefunctor.obj ∘ U) case e_7.e_5.h C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ Pairwise.diagram U ⋙ Opens.map f = Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U) case e_7.e_6.h.e_a C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ (Opens.map f).obj (iSup U) = iSup ((Opens.map f).toPrefunctor.obj ∘ U) case e_7.e_7 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (fun j => (Opens.map f).map (Pairwise.coconeιApp U j)) (Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U)) case e_7.e_8 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram U ⋙ Opens.map f).map f_1 ≫ (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) Y_1 = (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) X_1 ≫ ((Functor.const (CategoryTheory.Pairwise ι)).obj ((Opens.map f).obj (Pairwise.cocone U).pt)).map f_1) (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).map f_1 ≫ Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) Y_1 = Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) X_1 ≫ 𝟙 (iSup ((Opens.map f).toPrefunctor.obj ∘ U))) [PROOFSTEP] rw [map_diagram] [GOAL] case e_6.h C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ (Opens.map f).obj (iSup U) = iSup ((Opens.map f).toPrefunctor.obj ∘ U) case e_7.e_5.h C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ Pairwise.diagram U ⋙ Opens.map f = Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U) case e_7.e_6.h.e_a C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ (Opens.map f).obj (iSup U) = iSup ((Opens.map f).toPrefunctor.obj ∘ U) case e_7.e_7 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (fun j => (Opens.map f).map (Pairwise.coconeιApp U j)) (Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U)) case e_7.e_8 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram U ⋙ Opens.map f).map f_1 ≫ (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) Y_1 = (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) X_1 ≫ ((Functor.const (CategoryTheory.Pairwise ι)).obj ((Opens.map f).obj (Pairwise.cocone U).pt)).map f_1) (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).map f_1 ≫ Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) Y_1 = Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) X_1 ≫ 𝟙 (iSup ((Opens.map f).toPrefunctor.obj ∘ U))) [PROOFSTEP] rw [Opens.map_iSup] [GOAL] case e_7.e_5.h C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ Pairwise.diagram U ⋙ Opens.map f = Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U) case e_7.e_6.h.e_a C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ (Opens.map f).obj (iSup U) = iSup ((Opens.map f).toPrefunctor.obj ∘ U) case e_7.e_7 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (fun j => (Opens.map f).map (Pairwise.coconeιApp U j)) (Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U)) case e_7.e_8 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram U ⋙ Opens.map f).map f_1 ≫ (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) Y_1 = (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) X_1 ≫ ((Functor.const (CategoryTheory.Pairwise ι)).obj ((Opens.map f).obj (Pairwise.cocone U).pt)).map f_1) (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).map f_1 ≫ Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) Y_1 = Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) X_1 ≫ 𝟙 (iSup ((Opens.map f).toPrefunctor.obj ∘ U))) [PROOFSTEP] rw [map_diagram] [GOAL] case e_7.e_6.h.e_a C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ (Opens.map f).obj (iSup U) = iSup ((Opens.map f).toPrefunctor.obj ∘ U) case e_7.e_7 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (fun j => (Opens.map f).map (Pairwise.coconeιApp U j)) (Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U)) case e_7.e_8 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram U ⋙ Opens.map f).map f_1 ≫ (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) Y_1 = (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) X_1 ≫ ((Functor.const (CategoryTheory.Pairwise ι)).obj ((Opens.map f).obj (Pairwise.cocone U).pt)).map f_1) (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).map f_1 ≫ Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) Y_1 = Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) X_1 ≫ 𝟙 (iSup ((Opens.map f).toPrefunctor.obj ∘ U))) [PROOFSTEP] rw [Opens.map_iSup] [GOAL] case e_7.e_7 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (fun j => (Opens.map f).map (Pairwise.coconeιApp U j)) (Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U)) case e_7.e_8 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram U ⋙ Opens.map f).map f_1 ≫ (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) Y_1 = (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) X_1 ≫ ((Functor.const (CategoryTheory.Pairwise ι)).obj ((Opens.map f).obj (Pairwise.cocone U).pt)).map f_1) (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).map f_1 ≫ Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) Y_1 = Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) X_1 ≫ 𝟙 (iSup ((Opens.map f).toPrefunctor.obj ∘ U))) [PROOFSTEP] apply Subsingleton.helim [GOAL] case e_7.e_7.h₂ C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ ((X_1 : CategoryTheory.Pairwise ι) → (Pairwise.diagram U ⋙ Opens.map f).obj X_1 ⟶ ((Functor.const (CategoryTheory.Pairwise ι)).obj ((Opens.map f).obj (iSup U))).obj X_1) = ((X_1 : CategoryTheory.Pairwise ι) → (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).obj X_1 ⟶ ((Functor.const (CategoryTheory.Pairwise ι)).obj (iSup ((Opens.map f).toPrefunctor.obj ∘ U))).obj X_1) case e_7.e_8 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram U ⋙ Opens.map f).map f_1 ≫ (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) Y_1 = (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) X_1 ≫ ((Functor.const (CategoryTheory.Pairwise ι)).obj ((Opens.map f).obj (Pairwise.cocone U).pt)).map f_1) (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).map f_1 ≫ Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) Y_1 = Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) X_1 ≫ 𝟙 (iSup ((Opens.map f).toPrefunctor.obj ∘ U))) [PROOFSTEP] rw [map_diagram, Opens.map_iSup] [GOAL] case e_7.e_8 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y ⊢ HEq (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram U ⋙ Opens.map f).map f_1 ≫ (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) Y_1 = (fun j => (Opens.map f).map (NatTrans.app (Pairwise.cocone U).ι j)) X_1 ≫ ((Functor.const (CategoryTheory.Pairwise ι)).obj ((Opens.map f).obj (Pairwise.cocone U).pt)).map f_1) (_ : ∀ ⦃X_1 Y_1 : CategoryTheory.Pairwise ι⦄ (f_1 : X_1 ⟶ Y_1), (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).map f_1 ≫ Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) Y_1 = Pairwise.coconeιApp ((Opens.map f).toPrefunctor.obj ∘ U) X_1 ≫ 𝟙 (iSup ((Opens.map f).toPrefunctor.obj ∘ U))) [PROOFSTEP] apply proof_irrel_heq [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y ⊢ Nonempty (IsLimit ((f _* F).mapCone (Cocone.op (Pairwise.cocone U)))) [PROOFSTEP] convert h ((Opens.map f).obj ∘ U) using 2 [GOAL] case h.e'_1.h.e'_5 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y ⊢ (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F case h.e'_1.h.e'_6 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y e_5✝ : (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F ⊢ HEq ((f _* F).mapCone (Cocone.op (Pairwise.cocone U))) (F.mapCone (Cocone.op (Pairwise.cocone ((Opens.map f).toPrefunctor.obj ∘ U)))) [PROOFSTEP] rw [← map_diagram] [GOAL] case h.e'_1.h.e'_5 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y ⊢ (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram U ⋙ Opens.map f).op ⋙ F case h.e'_1.h.e'_6 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y e_5✝ : (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F ⊢ HEq ((f _* F).mapCone (Cocone.op (Pairwise.cocone U))) (F.mapCone (Cocone.op (Pairwise.cocone ((Opens.map f).toPrefunctor.obj ∘ U)))) [PROOFSTEP] rfl [GOAL] case h.e'_1.h.e'_6 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y e_5✝ : (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F ⊢ HEq ((f _* F).mapCone (Cocone.op (Pairwise.cocone U))) (F.mapCone (Cocone.op (Pairwise.cocone ((Opens.map f).toPrefunctor.obj ∘ U)))) [PROOFSTEP] change HEq (Functor.mapCone F ((Opens.map f).mapCocone (Pairwise.cocone U)).op) _ [GOAL] case h.e'_1.h.e'_6 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y e_5✝ : (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F ⊢ HEq (F.mapCone (Cocone.op ((Opens.map f).mapCocone (Pairwise.cocone U)))) (F.mapCone (Cocone.op (Pairwise.cocone ((Opens.map f).toPrefunctor.obj ∘ U)))) [PROOFSTEP] congr [GOAL] case h.e'_1.h.e'_6.e_8.h.e_F C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y e_5✝ : (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F ⊢ Pairwise.diagram U ⋙ Opens.map f = Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U) case h.e'_1.h.e'_6.e_9.e_5.h C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y e_5✝ : (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F ⊢ Pairwise.diagram U ⋙ Opens.map f = Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U) case h.e'_1.h.e'_6.e_9.e_6 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y e_5✝ : (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F ⊢ HEq ((Opens.map f).mapCocone (Pairwise.cocone U)) (Pairwise.cocone ((Opens.map f).toPrefunctor.obj ∘ U)) [PROOFSTEP] iterate 2 rw [map_diagram] [GOAL] case h.e'_1.h.e'_6.e_8.h.e_F C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y e_5✝ : (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F ⊢ Pairwise.diagram U ⋙ Opens.map f = Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U) case h.e'_1.h.e'_6.e_9.e_5.h C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y e_5✝ : (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F ⊢ Pairwise.diagram U ⋙ Opens.map f = Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U) case h.e'_1.h.e'_6.e_9.e_6 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y e_5✝ : (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F ⊢ HEq ((Opens.map f).mapCocone (Pairwise.cocone U)) (Pairwise.cocone ((Opens.map f).toPrefunctor.obj ∘ U)) [PROOFSTEP] rw [map_diagram] [GOAL] case h.e'_1.h.e'_6.e_9.e_5.h C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y e_5✝ : (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F ⊢ Pairwise.diagram U ⋙ Opens.map f = Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U) case h.e'_1.h.e'_6.e_9.e_6 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y e_5✝ : (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F ⊢ HEq ((Opens.map f).mapCocone (Pairwise.cocone U)) (Pairwise.cocone ((Opens.map f).toPrefunctor.obj ∘ U)) [PROOFSTEP] rw [map_diagram] [GOAL] case h.e'_1.h.e'_6.e_9.e_6 C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι✝ : Type w U✝ : ι✝ → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑Y e_5✝ : (Pairwise.diagram U).op ⋙ f _* F = (Pairwise.diagram ((Opens.map f).toPrefunctor.obj ∘ U)).op ⋙ F ⊢ HEq ((Opens.map f).mapCocone (Pairwise.cocone U)) (Pairwise.cocone ((Opens.map f).toPrefunctor.obj ∘ U)) [PROOFSTEP] apply mapCocone [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y F : Presheaf C X h : Presheaf.IsSheaf F ⊢ Presheaf.IsSheaf (f _* F) [PROOFSTEP] rw [isSheaf_iff_isSheafPairwiseIntersections] at h ⊢ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ι : Type w U : ι → Opens ↑Y F : Presheaf C X h : IsSheafPairwiseIntersections F ⊢ IsSheafPairwiseIntersections (f _* F) [PROOFSTEP] exact SheafConditionPairwiseIntersections.pushforward_sheaf_of_sheaf f h
{"mathlib_filename": "Mathlib.Topology.Sheaves.Functors", "llama_tokens": 11489}
[GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ x✝² x✝¹ : Opens α carrier✝¹ : Set α is_open'✝¹ : IsOpen carrier✝¹ carrier✝ : Set α is_open'✝ : IsOpen carrier✝ x✝ : { carrier := carrier✝¹, is_open' := is_open'✝¹ }.carrier = { carrier := carrier✝, is_open' := is_open'✝ }.carrier ⊢ { carrier := carrier✝¹, is_open' := is_open'✝¹ } = { carrier := carrier✝, is_open' := is_open'✝ } [PROOFSTEP] congr [GOAL] ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ ι : Sort u_5 s : ι → Opens α ⊢ ↑(⨆ (i : ι), s i) = ⋃ (i : ι), ↑(s i) [PROOFSTEP] simp [iSup] [GOAL] ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ ι : Sort u_5 x : α s : ι → Opens α ⊢ x ∈ iSup s ↔ ∃ i, x ∈ s i [PROOFSTEP] rw [← SetLike.mem_coe] [GOAL] ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ ι : Sort u_5 x : α s : ι → Opens α ⊢ x ∈ ↑(iSup s) ↔ ∃ i, x ∈ s i [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ Us : Set (Opens α) x : α ⊢ x ∈ sSup Us ↔ ∃ u, u ∈ Us ∧ x ∈ u [PROOFSTEP] simp_rw [sSup_eq_iSup, mem_iSup, exists_prop] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ src✝ : CompleteLattice (Opens α) := inferInstanceAs (CompleteLattice (Opens α)) a : Opens α s : Set (Opens α) ⊢ ↑(a ⊓ sSup s) = ↑(⨆ (b : Opens α) (_ : b ∈ s), a ⊓ b) [PROOFSTEP] simp only [coe_inf, coe_iSup, coe_sSup, Set.inter_iUnion₂] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ U V : Opens α i : U ≤ V ⊢ IsOpen (range (inclusion (_ : ↑U ⊆ ↑V))) [PROOFSTEP] rw [Set.range_inclusion i] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ U V : Opens α i : U ≤ V ⊢ IsOpen {x | ↑x ∈ ↑U} [PROOFSTEP] exact U.isOpen.preimage continuous_subtype_val [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ U : Opens α ⊢ ¬Set.Nonempty ↑U ↔ U = ⊥ [PROOFSTEP] rw [← coe_inj, coe_bot, ← Set.not_nonempty_iff_eq_empty] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ U : Opens α ⊢ U ≠ ⊥ ↔ Set.Nonempty ↑U [PROOFSTEP] rw [Ne.def, ← not_nonempty_iff_eq_bot, not_not] [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α✝ inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ α : Type u_5 t : TopologicalSpace α h : t = ⊤ U : Opens α ⊢ U = ⊥ ∨ U = ⊤ [PROOFSTEP] subst h [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α✝ inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ α : Type u_5 U : Opens α ⊢ U = ⊥ ∨ U = ⊤ [PROOFSTEP] letI : TopologicalSpace α := ⊤ [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α✝ inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ α : Type u_5 U : Opens α this : TopologicalSpace α := ⊤ ⊢ U = ⊥ ∨ U = ⊤ [PROOFSTEP] rw [← coe_eq_empty, ← coe_eq_univ, ← isOpen_top_iff] [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α✝ inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ α : Type u_5 U : Opens α this : TopologicalSpace α := ⊤ ⊢ IsOpen ↑U [PROOFSTEP] exact U.2 [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) ⊢ IsBasis B ↔ ∀ {U : Opens α} {x : α}, x ∈ U → ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ U [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) ⊢ IsBasis B → ∀ {U : Opens α} {x : α}, x ∈ U → ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ U [PROOFSTEP] intro h [GOAL] case mpr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) ⊢ (∀ {U : Opens α} {x : α}, x ∈ U → ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ U) → IsBasis B [PROOFSTEP] intro h [GOAL] case mp ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : IsBasis B ⊢ ∀ {U : Opens α} {x : α}, x ∈ U → ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ U [PROOFSTEP] rintro ⟨sU, hU⟩ x hx [GOAL] case mp.mk ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : IsBasis B sU : Set α hU : IsOpen sU x : α hx : x ∈ { carrier := sU, is_open' := hU } ⊢ ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ { carrier := sU, is_open' := hU } [PROOFSTEP] rcases h.mem_nhds_iff.mp (IsOpen.mem_nhds hU hx) with ⟨sV, ⟨⟨V, H₁, H₂⟩, hsV⟩⟩ [GOAL] case mp.mk.intro.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : IsBasis B sU : Set α hU : IsOpen sU x : α hx : x ∈ { carrier := sU, is_open' := hU } sV : Set α hsV : x ∈ sV ∧ sV ⊆ sU V : Opens α H₁ : V ∈ B H₂ : ↑V = sV ⊢ ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ { carrier := sU, is_open' := hU } [PROOFSTEP] refine' ⟨V, H₁, _⟩ [GOAL] case mp.mk.intro.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : IsBasis B sU : Set α hU : IsOpen sU x : α hx : x ∈ { carrier := sU, is_open' := hU } sV : Set α hsV : x ∈ sV ∧ sV ⊆ sU V : Opens α H₁ : V ∈ B H₂ : ↑V = sV ⊢ x ∈ V ∧ V ≤ { carrier := sU, is_open' := hU } [PROOFSTEP] cases V [GOAL] case mp.mk.intro.intro.intro.intro.mk ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : IsBasis B sU : Set α hU : IsOpen sU x : α hx : x ∈ { carrier := sU, is_open' := hU } sV : Set α hsV : x ∈ sV ∧ sV ⊆ sU carrier✝ : Set α is_open'✝ : IsOpen carrier✝ H₁ : { carrier := carrier✝, is_open' := is_open'✝ } ∈ B H₂ : ↑{ carrier := carrier✝, is_open' := is_open'✝ } = sV ⊢ x ∈ { carrier := carrier✝, is_open' := is_open'✝ } ∧ { carrier := carrier✝, is_open' := is_open'✝ } ≤ { carrier := sU, is_open' := hU } [PROOFSTEP] dsimp at H₂ [GOAL] case mp.mk.intro.intro.intro.intro.mk ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : IsBasis B sU : Set α hU : IsOpen sU x : α hx : x ∈ { carrier := sU, is_open' := hU } sV : Set α hsV : x ∈ sV ∧ sV ⊆ sU carrier✝ : Set α is_open'✝ : IsOpen carrier✝ H₁ : { carrier := carrier✝, is_open' := is_open'✝ } ∈ B H₂ : carrier✝ = sV ⊢ x ∈ { carrier := carrier✝, is_open' := is_open'✝ } ∧ { carrier := carrier✝, is_open' := is_open'✝ } ≤ { carrier := sU, is_open' := hU } [PROOFSTEP] subst H₂ [GOAL] case mp.mk.intro.intro.intro.intro.mk ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : IsBasis B sU : Set α hU : IsOpen sU x : α hx : x ∈ { carrier := sU, is_open' := hU } carrier✝ : Set α is_open'✝ : IsOpen carrier✝ H₁ : { carrier := carrier✝, is_open' := is_open'✝ } ∈ B hsV : x ∈ carrier✝ ∧ carrier✝ ⊆ sU ⊢ x ∈ { carrier := carrier✝, is_open' := is_open'✝ } ∧ { carrier := carrier✝, is_open' := is_open'✝ } ≤ { carrier := sU, is_open' := hU } [PROOFSTEP] exact hsV [GOAL] case mpr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : ∀ {U : Opens α} {x : α}, x ∈ U → ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ U ⊢ IsBasis B [PROOFSTEP] refine' isTopologicalBasis_of_open_of_nhds _ _ [GOAL] case mpr.refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : ∀ {U : Opens α} {x : α}, x ∈ U → ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ U ⊢ ∀ (u : Set α), u ∈ SetLike.coe '' B → IsOpen u [PROOFSTEP] rintro sU ⟨U, -, rfl⟩ [GOAL] case mpr.refine'_1.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : ∀ {U : Opens α} {x : α}, x ∈ U → ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ U U : Opens α ⊢ IsOpen ↑U [PROOFSTEP] exact U.2 [GOAL] case mpr.refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : ∀ {U : Opens α} {x : α}, x ∈ U → ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ U ⊢ ∀ (a : α) (u : Set α), a ∈ u → IsOpen u → ∃ v, v ∈ SetLike.coe '' B ∧ a ∈ v ∧ v ⊆ u [PROOFSTEP] intro x sU hx hsU [GOAL] case mpr.refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : ∀ {U : Opens α} {x : α}, x ∈ U → ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ U x : α sU : Set α hx : x ∈ sU hsU : IsOpen sU ⊢ ∃ v, v ∈ SetLike.coe '' B ∧ x ∈ v ∧ v ⊆ sU [PROOFSTEP] rcases@h ⟨sU, hsU⟩ x hx with ⟨V, hV, H⟩ [GOAL] case mpr.refine'_2.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : ∀ {U : Opens α} {x : α}, x ∈ U → ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ U x : α sU : Set α hx : x ∈ sU hsU : IsOpen sU V : Opens α hV : V ∈ B H : x ∈ V ∧ V ≤ { carrier := sU, is_open' := hsU } ⊢ ∃ v, v ∈ SetLike.coe '' B ∧ x ∈ v ∧ v ⊆ sU [PROOFSTEP] exact ⟨V, ⟨V, hV, rfl⟩, H⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) ⊢ IsBasis B ↔ ∀ (U : Opens α), ∃ Us, Us ⊆ B ∧ U = sSup Us [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) ⊢ IsBasis B → ∀ (U : Opens α), ∃ Us, Us ⊆ B ∧ U = sSup Us [PROOFSTEP] intro hB U [GOAL] case mp ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) hB : IsBasis B U : Opens α ⊢ ∃ Us, Us ⊆ B ∧ U = sSup Us [PROOFSTEP] refine ⟨{V : Opens α | V ∈ B ∧ V ≤ U}, fun U hU => hU.left, ext ?_⟩ [GOAL] case mp ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) hB : IsBasis B U : Opens α ⊢ ↑U = ↑(sSup {V | V ∈ B ∧ V ≤ U}) [PROOFSTEP] rw [coe_sSup, hB.open_eq_sUnion' U.isOpen] [GOAL] case mp ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) hB : IsBasis B U : Opens α ⊢ ⋃₀ {s | s ∈ SetLike.coe '' B ∧ s ⊆ ↑U} = ⋃ (i : Opens α) (_ : i ∈ {V | V ∈ B ∧ V ≤ U}), ↑i [PROOFSTEP] simp_rw [sUnion_eq_biUnion, iUnion, mem_setOf_eq, iSup_and, iSup_image] [GOAL] case mp ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) hB : IsBasis B U : Opens α ⊢ ⨆ (b : Opens α) (_ : b ∈ B) (_ : ↑b ⊆ ↑U), ↑b = ⨆ (i : Opens α) (_ : i ∈ B) (_ : i ≤ U), ↑i [PROOFSTEP] rfl [GOAL] case mpr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) ⊢ (∀ (U : Opens α), ∃ Us, Us ⊆ B ∧ U = sSup Us) → IsBasis B [PROOFSTEP] intro h [GOAL] case mpr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : ∀ (U : Opens α), ∃ Us, Us ⊆ B ∧ U = sSup Us ⊢ IsBasis B [PROOFSTEP] rw [isBasis_iff_nbhd] [GOAL] case mpr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : ∀ (U : Opens α), ∃ Us, Us ⊆ B ∧ U = sSup Us ⊢ ∀ {U : Opens α} {x : α}, x ∈ U → ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ U [PROOFSTEP] intro U x hx [GOAL] case mpr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : ∀ (U : Opens α), ∃ Us, Us ⊆ B ∧ U = sSup Us U : Opens α x : α hx : x ∈ U ⊢ ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ U [PROOFSTEP] rcases h U with ⟨Us, hUs, rfl⟩ [GOAL] case mpr.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : ∀ (U : Opens α), ∃ Us, Us ⊆ B ∧ U = sSup Us x : α Us : Set (Opens α) hUs : Us ⊆ B hx : x ∈ sSup Us ⊢ ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ sSup Us [PROOFSTEP] rcases mem_sSup.1 hx with ⟨U, Us, xU⟩ [GOAL] case mpr.intro.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ B : Set (Opens α) h : ∀ (U : Opens α), ∃ Us, Us ⊆ B ∧ U = sSup Us x : α Us✝ : Set (Opens α) hUs : Us✝ ⊆ B hx : x ∈ sSup Us✝ U : Opens α Us : U ∈ Us✝ xU : x ∈ U ⊢ ∃ U', U' ∈ B ∧ x ∈ U' ∧ U' ≤ sSup Us✝ [PROOFSTEP] exact ⟨U, hUs Us, xU, le_sSup Us⟩ [GOAL] ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ ι : Type u_5 b : ι → Opens α hb : IsBasis (range b) hb' : ∀ (i : ι), IsCompact ↑(b i) U : Set α ⊢ IsCompact U ∧ IsOpen U ↔ ∃ s, Set.Finite s ∧ U = ⋃ (i : ι) (_ : i ∈ s), ↑(b i) [PROOFSTEP] apply isCompact_open_iff_eq_finite_iUnion_of_isTopologicalBasis fun i : ι => (b i).1 [GOAL] case hb ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ ι : Type u_5 b : ι → Opens α hb : IsBasis (range b) hb' : ∀ (i : ι), IsCompact ↑(b i) U : Set α ⊢ IsTopologicalBasis (range fun i => (b i).carrier) [PROOFSTEP] convert (config := { transparency := .default }) hb [GOAL] case h.e'_3 ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ ι : Type u_5 b : ι → Opens α hb : IsBasis (range b) hb' : ∀ (i : ι), IsCompact ↑(b i) U : Set α ⊢ (range fun i => (b i).carrier) = SetLike.coe '' range b [PROOFSTEP] ext [GOAL] case h.e'_3.h ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ ι : Type u_5 b : ι → Opens α hb : IsBasis (range b) hb' : ∀ (i : ι), IsCompact ↑(b i) U x✝ : Set α ⊢ (x✝ ∈ range fun i => (b i).carrier) ↔ x✝ ∈ SetLike.coe '' range b [PROOFSTEP] simp [GOAL] case hb' ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ ι : Type u_5 b : ι → Opens α hb : IsBasis (range b) hb' : ∀ (i : ι), IsCompact ↑(b i) U : Set α ⊢ ∀ (i : ι), IsCompact (b i).carrier [PROOFSTEP] exact hb' [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α ⊢ CompleteLattice.IsCompactElement s ↔ IsCompact ↑s [PROOFSTEP] rw [isCompact_iff_finite_subcover, CompleteLattice.isCompactElement_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α ⊢ (∀ (ι : Type u_2) (s_1 : ι → Opens α), s ≤ iSup s_1 → ∃ t, s ≤ Finset.sup t s_1) ↔ ∀ {ι : Type u_2} (U : ι → Set α), (∀ (i : ι), IsOpen (U i)) → ↑s ⊆ ⋃ (i : ι), U i → ∃ t, ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), U i [PROOFSTEP] refine' ⟨_, fun H ι U hU => _⟩ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α ⊢ (∀ (ι : Type u_2) (s_1 : ι → Opens α), s ≤ iSup s_1 → ∃ t, s ≤ Finset.sup t s_1) → ∀ {ι : Type u_2} (U : ι → Set α), (∀ (i : ι), IsOpen (U i)) → ↑s ⊆ ⋃ (i : ι), U i → ∃ t, ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), U i [PROOFSTEP] introv H hU hU' [GOAL] case refine'_1 ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α H : ∀ (ι : Type u_2) (s_1 : ι → Opens α), s ≤ iSup s_1 → ∃ t, s ≤ Finset.sup t s_1 ι : Type u_2 U : ι → Set α hU : ∀ (i : ι), IsOpen (U i) hU' : ↑s ⊆ ⋃ (i : ι), U i ⊢ ∃ t, ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), U i [PROOFSTEP] obtain ⟨t, ht⟩ := H ι (fun i => ⟨U i, hU i⟩) (by simpa) [GOAL] ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α H : ∀ (ι : Type u_2) (s_1 : ι → Opens α), s ≤ iSup s_1 → ∃ t, s ≤ Finset.sup t s_1 ι : Type u_2 U : ι → Set α hU : ∀ (i : ι), IsOpen (U i) hU' : ↑s ⊆ ⋃ (i : ι), U i ⊢ s ≤ ⨆ (i : ι), { carrier := U i, is_open' := (_ : IsOpen (U i)) } [PROOFSTEP] simpa [GOAL] case refine'_1.intro ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α H : ∀ (ι : Type u_2) (s_1 : ι → Opens α), s ≤ iSup s_1 → ∃ t, s ≤ Finset.sup t s_1 ι : Type u_2 U : ι → Set α hU : ∀ (i : ι), IsOpen (U i) hU' : ↑s ⊆ ⋃ (i : ι), U i t : Finset ι ht : s ≤ Finset.sup t fun i => { carrier := U i, is_open' := (_ : IsOpen (U i)) } ⊢ ∃ t, ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), U i [PROOFSTEP] refine' ⟨t, Set.Subset.trans ht _⟩ [GOAL] case refine'_1.intro ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α H : ∀ (ι : Type u_2) (s_1 : ι → Opens α), s ≤ iSup s_1 → ∃ t, s ≤ Finset.sup t s_1 ι : Type u_2 U : ι → Set α hU : ∀ (i : ι), IsOpen (U i) hU' : ↑s ⊆ ⋃ (i : ι), U i t : Finset ι ht : s ≤ Finset.sup t fun i => { carrier := U i, is_open' := (_ : IsOpen (U i)) } ⊢ ↑(Finset.sup t fun i => { carrier := U i, is_open' := (_ : IsOpen (U i)) }) ⊆ ⋃ (i : ι) (_ : i ∈ t), U i [PROOFSTEP] rw [coe_finset_sup, Finset.sup_eq_iSup] [GOAL] case refine'_1.intro ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α H : ∀ (ι : Type u_2) (s_1 : ι → Opens α), s ≤ iSup s_1 → ∃ t, s ≤ Finset.sup t s_1 ι : Type u_2 U : ι → Set α hU : ∀ (i : ι), IsOpen (U i) hU' : ↑s ⊆ ⋃ (i : ι), U i t : Finset ι ht : s ≤ Finset.sup t fun i => { carrier := U i, is_open' := (_ : IsOpen (U i)) } ⊢ ⨆ (a : ι) (_ : a ∈ t), (SetLike.coe ∘ fun i => { carrier := U i, is_open' := (_ : IsOpen (U i)) }) a ⊆ ⋃ (i : ι) (_ : i ∈ t), U i [PROOFSTEP] rfl [GOAL] case refine'_2 ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α H : ∀ {ι : Type u_2} (U : ι → Set α), (∀ (i : ι), IsOpen (U i)) → ↑s ⊆ ⋃ (i : ι), U i → ∃ t, ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), U i ι : Type u_2 U : ι → Opens α hU : s ≤ iSup U ⊢ ∃ t, s ≤ Finset.sup t U [PROOFSTEP] obtain ⟨t, ht⟩ := H (fun i => U i) (fun i => (U i).isOpen) (by simpa using show (s : Set α) ⊆ ↑(iSup U) from hU) [GOAL] ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α H : ∀ {ι : Type u_2} (U : ι → Set α), (∀ (i : ι), IsOpen (U i)) → ↑s ⊆ ⋃ (i : ι), U i → ∃ t, ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), U i ι : Type u_2 U : ι → Opens α hU : s ≤ iSup U ⊢ ↑s ⊆ ⋃ (i : ι), (fun i => ↑(U i)) i [PROOFSTEP] simpa using show (s : Set α) ⊆ ↑(iSup U) from hU [GOAL] case refine'_2.intro ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α H : ∀ {ι : Type u_2} (U : ι → Set α), (∀ (i : ι), IsOpen (U i)) → ↑s ⊆ ⋃ (i : ι), U i → ∃ t, ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), U i ι : Type u_2 U : ι → Opens α hU : s ≤ iSup U t : Finset ι ht : ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(U i) ⊢ ∃ t, s ≤ Finset.sup t U [PROOFSTEP] refine' ⟨t, Set.Subset.trans ht _⟩ [GOAL] case refine'_2.intro ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α H : ∀ {ι : Type u_2} (U : ι → Set α), (∀ (i : ι), IsOpen (U i)) → ↑s ⊆ ⋃ (i : ι), U i → ∃ t, ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), U i ι : Type u_2 U : ι → Opens α hU : s ≤ iSup U t : Finset ι ht : ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(U i) ⊢ ⋃ (i : ι) (_ : i ∈ t), ↑(U i) ⊆ ↑(Finset.sup t U) [PROOFSTEP] simp only [Set.iUnion_subset_iff] [GOAL] case refine'_2.intro ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α H : ∀ {ι : Type u_2} (U : ι → Set α), (∀ (i : ι), IsOpen (U i)) → ↑s ⊆ ⋃ (i : ι), U i → ∃ t, ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), U i ι : Type u_2 U : ι → Opens α hU : s ≤ iSup U t : Finset ι ht : ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(U i) ⊢ ∀ (i : ι), i ∈ t → ↑(U i) ⊆ ↑(Finset.sup t U) [PROOFSTEP] show ∀ i ∈ t, U i ≤ t.sup U [GOAL] case refine'_2.intro ι✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ s : Opens α H : ∀ {ι : Type u_2} (U : ι → Set α), (∀ (i : ι), IsOpen (U i)) → ↑s ⊆ ⋃ (i : ι), U i → ∃ t, ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), U i ι : Type u_2 U : ι → Opens α hU : s ≤ iSup U t : Finset ι ht : ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(U i) ⊢ ∀ (i : ι), i ∈ t → U i ≤ Finset.sup t U [PROOFSTEP] exact fun i => Finset.le_sup [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : C(α, β) s : Set (Opens β) ⊢ ↑(InfHom.toFun { toInfHom := { toFun := fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }, map_inf' := (_ : ∀ (a b : Opens β), (fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }) (a ⊓ b) = (fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }) (a ⊓ b)) }, map_top' := (_ : InfHom.toFun { toFun := fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }, map_inf' := (_ : ∀ (a b : Opens β), (fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }) (a ⊓ b) = (fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }) (a ⊓ b)) } ⊤ = InfHom.toFun { toFun := fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }, map_inf' := (_ : ∀ (a b : Opens β), (fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }) (a ⊓ b) = (fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }) (a ⊓ b)) } ⊤) }.toInfHom (sSup s)) = ↑(sSup ({ toInfHom := { toFun := fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }, map_inf' := (_ : ∀ (a b : Opens β), (fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }) (a ⊓ b) = (fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }) (a ⊓ b)) }, map_top' := (_ : InfHom.toFun { toFun := fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }, map_inf' := (_ : ∀ (a b : Opens β), (fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }) (a ⊓ b) = (fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }) (a ⊓ b)) } ⊤ = InfHom.toFun { toFun := fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }, map_inf' := (_ : ∀ (a b : Opens β), (fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }) (a ⊓ b) = (fun s => { carrier := ↑f ⁻¹' ↑s, is_open' := (_ : IsOpen (↑f ⁻¹' s.carrier)) }) (a ⊓ b)) } ⊤) }.toInfHom.toFun '' s)) [PROOFSTEP] simp only [coe_sSup, preimage_iUnion, biUnion_image, coe_mk] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : α ≃ₜ β ⊢ ∀ {a b : Opens α}, ↑{ toFun := ↑(comap (Homeomorph.toContinuousMap (Homeomorph.symm f))), invFun := ↑(comap (Homeomorph.toContinuousMap f)), left_inv := (_ : ∀ (U : Opens α), ↑(comap (Homeomorph.toContinuousMap f)) (↑(comap (Homeomorph.toContinuousMap (Homeomorph.symm f))) U) = U), right_inv := (_ : ∀ (U : Opens β), ↑(comap (Homeomorph.toContinuousMap (Homeomorph.symm f))) (↑(comap (Homeomorph.toContinuousMap f)) U) = U) } a ≤ ↑{ toFun := ↑(comap (Homeomorph.toContinuousMap (Homeomorph.symm f))), invFun := ↑(comap (Homeomorph.toContinuousMap f)), left_inv := (_ : ∀ (U : Opens α), ↑(comap (Homeomorph.toContinuousMap f)) (↑(comap (Homeomorph.toContinuousMap (Homeomorph.symm f))) U) = U), right_inv := (_ : ∀ (U : Opens β), ↑(comap (Homeomorph.toContinuousMap (Homeomorph.symm f))) (↑(comap (Homeomorph.toContinuousMap f)) U) = U) } b ↔ a ≤ b [PROOFSTEP] simp only [← SetLike.coe_subset_coe] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : α ≃ₜ β ⊢ ∀ {a b : Opens α}, ↑(↑{ toFun := ↑(comap (Homeomorph.toContinuousMap (Homeomorph.symm f))), invFun := ↑(comap (Homeomorph.toContinuousMap f)), left_inv := (_ : ∀ (U : Opens α), ↑(comap (Homeomorph.toContinuousMap f)) (↑(comap (Homeomorph.toContinuousMap (Homeomorph.symm f))) U) = U), right_inv := (_ : ∀ (U : Opens β), ↑(comap (Homeomorph.toContinuousMap (Homeomorph.symm f))) (↑(comap (Homeomorph.toContinuousMap f)) U) = U) } a) ⊆ ↑(↑{ toFun := ↑(comap (Homeomorph.toContinuousMap (Homeomorph.symm f))), invFun := ↑(comap (Homeomorph.toContinuousMap f)), left_inv := (_ : ∀ (U : Opens α), ↑(comap (Homeomorph.toContinuousMap f)) (↑(comap (Homeomorph.toContinuousMap (Homeomorph.symm f))) U) = U), right_inv := (_ : ∀ (U : Opens β), ↑(comap (Homeomorph.toContinuousMap (Homeomorph.symm f))) (↑(comap (Homeomorph.toContinuousMap f)) U) = U) } b) ↔ ↑a ⊆ ↑b [PROOFSTEP] exact f.symm.surjective.preimage_subset_preimage_iff
{"mathlib_filename": "Mathlib.Topology.Sets.Opens", "llama_tokens": 14218}
[GOAL] R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ inst✝¹⁸ : Semiring R inst✝¹⁷ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁵ : (i : ι) → AddCommMonoid (M₁' i) inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : (i : ι) → Module R (M₁' i) inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : (i : Fin (Nat.succ n)) → TopologicalSpace (M i) inst✝⁴ : (i : ι) → TopologicalSpace (M₁ i) inst✝³ : (i : ι) → TopologicalSpace (M₁' i) inst✝² : TopologicalSpace M₂ inst✝¹ : TopologicalSpace M₃ inst✝ : TopologicalSpace M₄ f✝ f' : ContinuousMultilinearMap R M₁ M₂ f : MultilinearMap R M₁ M₂ hf : Continuous f.toFun g : MultilinearMap R M₁ M₂ hg : Continuous g.toFun h : { toMultilinearMap := f, cont := hf }.toMultilinearMap = { toMultilinearMap := g, cont := hg }.toMultilinearMap ⊢ { toMultilinearMap := f, cont := hf } = { toMultilinearMap := g, cont := hg } [PROOFSTEP] subst h [GOAL] R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ inst✝¹⁸ : Semiring R inst✝¹⁷ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁵ : (i : ι) → AddCommMonoid (M₁' i) inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : (i : ι) → Module R (M₁' i) inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : (i : Fin (Nat.succ n)) → TopologicalSpace (M i) inst✝⁴ : (i : ι) → TopologicalSpace (M₁ i) inst✝³ : (i : ι) → TopologicalSpace (M₁' i) inst✝² : TopologicalSpace M₂ inst✝¹ : TopologicalSpace M₃ inst✝ : TopologicalSpace M₄ f✝ f' : ContinuousMultilinearMap R M₁ M₂ f : MultilinearMap R M₁ M₂ hf : Continuous f.toFun hg : Continuous { toMultilinearMap := f, cont := hf }.toMultilinearMap.toFun ⊢ { toMultilinearMap := f, cont := hf } = { toMultilinearMap := { toMultilinearMap := f, cont := hf }.toMultilinearMap, cont := hg } [PROOFSTEP] rfl [GOAL] R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ inst✝¹⁸ : Semiring R inst✝¹⁷ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁵ : (i : ι) → AddCommMonoid (M₁' i) inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : (i : ι) → Module R (M₁' i) inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : (i : Fin (Nat.succ n)) → TopologicalSpace (M i) inst✝⁴ : (i : ι) → TopologicalSpace (M₁ i) inst✝³ : (i : ι) → TopologicalSpace (M₁' i) inst✝² : TopologicalSpace M₂ inst✝¹ : TopologicalSpace M₃ inst✝ : TopologicalSpace M₄ f✝ f'✝ f f' : ContinuousMultilinearMap R M₁ M₂ ⊢ f = f' ↔ ∀ (x : (i : ι) → M₁ i), ↑f x = ↑f' x [PROOFSTEP] rw [← toMultilinearMap_injective.eq_iff, MultilinearMap.ext_iff] [GOAL] R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ inst✝¹⁸ : Semiring R inst✝¹⁷ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁵ : (i : ι) → AddCommMonoid (M₁' i) inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : (i : ι) → Module R (M₁' i) inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : (i : Fin (Nat.succ n)) → TopologicalSpace (M i) inst✝⁴ : (i : ι) → TopologicalSpace (M₁ i) inst✝³ : (i : ι) → TopologicalSpace (M₁' i) inst✝² : TopologicalSpace M₂ inst✝¹ : TopologicalSpace M₃ inst✝ : TopologicalSpace M₄ f✝ f'✝ f f' : ContinuousMultilinearMap R M₁ M₂ ⊢ (∀ (x : (i : ι) → M₁ i), ↑f.toMultilinearMap x = ↑f'.toMultilinearMap x) ↔ ∀ (x : (i : ι) → M₁ i), ↑f x = ↑f' x [PROOFSTEP] rfl [GOAL] R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ inst✝¹⁸ : Semiring R inst✝¹⁷ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁵ : (i : ι) → AddCommMonoid (M₁' i) inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : (i : ι) → Module R (M₁' i) inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : (i : Fin (Nat.succ n)) → TopologicalSpace (M i) inst✝⁴ : (i : ι) → TopologicalSpace (M₁ i) inst✝³ : (i : ι) → TopologicalSpace (M₁' i) inst✝² : TopologicalSpace M₂ inst✝¹ : TopologicalSpace M₃ inst✝ : TopologicalSpace M₄ f✝ f' : ContinuousMultilinearMap R M₁ M₂ g : M₂ →L[R] M₃ f : ContinuousMultilinearMap R M₁ M₂ ⊢ ↑(ContinuousLinearMap.compContinuousMultilinearMap g f) = ↑g ∘ ↑f [PROOFSTEP] ext m [GOAL] case h R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ inst✝¹⁸ : Semiring R inst✝¹⁷ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁵ : (i : ι) → AddCommMonoid (M₁' i) inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : (i : ι) → Module R (M₁' i) inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : (i : Fin (Nat.succ n)) → TopologicalSpace (M i) inst✝⁴ : (i : ι) → TopologicalSpace (M₁ i) inst✝³ : (i : ι) → TopologicalSpace (M₁' i) inst✝² : TopologicalSpace M₂ inst✝¹ : TopologicalSpace M₃ inst✝ : TopologicalSpace M₄ f✝ f' : ContinuousMultilinearMap R M₁ M₂ g : M₂ →L[R] M₃ f : ContinuousMultilinearMap R M₁ M₂ m : (i : ι) → M₁ i ⊢ ↑(ContinuousLinearMap.compContinuousMultilinearMap g f) m = (↑g ∘ ↑f) m [PROOFSTEP] rfl [GOAL] R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ inst✝²¹ : Semiring R inst✝²⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁸ : (i : ι) → AddCommMonoid (M₁' i) inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : AddCommMonoid M₃ inst✝¹⁵ : AddCommMonoid M₄ inst✝¹⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹³ : (i : ι) → Module R (M₁ i) inst✝¹² : (i : ι) → Module R (M₁' i) inst✝¹¹ : Module R M₂ inst✝¹⁰ : Module R M₃ inst✝⁹ : Module R M₄ inst✝⁸ : (i : Fin (Nat.succ n)) → TopologicalSpace (M i) inst✝⁷ : (i : ι) → TopologicalSpace (M₁ i) inst✝⁶ : (i : ι) → TopologicalSpace (M₁' i) inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : TopologicalSpace M₃ inst✝³ : TopologicalSpace M₄ f✝ f' : ContinuousMultilinearMap R M₁ M₂ ι' : Type u_1 M' : ι' → Type u_2 inst✝² : (i : ι') → AddCommMonoid (M' i) inst✝¹ : (i : ι') → TopologicalSpace (M' i) inst✝ : (i : ι') → Module R (M' i) f : (i : ι') → ContinuousMultilinearMap R M₁ (M' i) ⊢ (fun f i => ContinuousLinearMap.compContinuousMultilinearMap (ContinuousLinearMap.proj i) f) (pi f) = f [PROOFSTEP] ext [GOAL] case h.H R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ inst✝²¹ : Semiring R inst✝²⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁸ : (i : ι) → AddCommMonoid (M₁' i) inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : AddCommMonoid M₃ inst✝¹⁵ : AddCommMonoid M₄ inst✝¹⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹³ : (i : ι) → Module R (M₁ i) inst✝¹² : (i : ι) → Module R (M₁' i) inst✝¹¹ : Module R M₂ inst✝¹⁰ : Module R M₃ inst✝⁹ : Module R M₄ inst✝⁸ : (i : Fin (Nat.succ n)) → TopologicalSpace (M i) inst✝⁷ : (i : ι) → TopologicalSpace (M₁ i) inst✝⁶ : (i : ι) → TopologicalSpace (M₁' i) inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : TopologicalSpace M₃ inst✝³ : TopologicalSpace M₄ f✝ f' : ContinuousMultilinearMap R M₁ M₂ ι' : Type u_1 M' : ι' → Type u_2 inst✝² : (i : ι') → AddCommMonoid (M' i) inst✝¹ : (i : ι') → TopologicalSpace (M' i) inst✝ : (i : ι') → Module R (M' i) f : (i : ι') → ContinuousMultilinearMap R M₁ (M' i) x✝¹ : ι' x✝ : (i : ι) → M₁ i ⊢ ↑((fun f i => ContinuousLinearMap.compContinuousMultilinearMap (ContinuousLinearMap.proj i) f) (pi f) x✝¹) x✝ = ↑(f x✝¹) x✝ [PROOFSTEP] rfl [GOAL] R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ inst✝²¹ : Semiring R inst✝²⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁸ : (i : ι) → AddCommMonoid (M₁' i) inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : AddCommMonoid M₃ inst✝¹⁵ : AddCommMonoid M₄ inst✝¹⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹³ : (i : ι) → Module R (M₁ i) inst✝¹² : (i : ι) → Module R (M₁' i) inst✝¹¹ : Module R M₂ inst✝¹⁰ : Module R M₃ inst✝⁹ : Module R M₄ inst✝⁸ : (i : Fin (Nat.succ n)) → TopologicalSpace (M i) inst✝⁷ : (i : ι) → TopologicalSpace (M₁ i) inst✝⁶ : (i : ι) → TopologicalSpace (M₁' i) inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : TopologicalSpace M₃ inst✝³ : TopologicalSpace M₄ f✝ f' : ContinuousMultilinearMap R M₁ M₂ ι' : Type u_1 M' : ι' → Type u_2 inst✝² : (i : ι') → AddCommMonoid (M' i) inst✝¹ : (i : ι') → TopologicalSpace (M' i) inst✝ : (i : ι') → Module R (M' i) f : ContinuousMultilinearMap R M₁ ((i : ι') → M' i) ⊢ pi ((fun f i => ContinuousLinearMap.compContinuousMultilinearMap (ContinuousLinearMap.proj i) f) f) = f [PROOFSTEP] ext [GOAL] case H.h R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ inst✝²¹ : Semiring R inst✝²⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁸ : (i : ι) → AddCommMonoid (M₁' i) inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : AddCommMonoid M₃ inst✝¹⁵ : AddCommMonoid M₄ inst✝¹⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹³ : (i : ι) → Module R (M₁ i) inst✝¹² : (i : ι) → Module R (M₁' i) inst✝¹¹ : Module R M₂ inst✝¹⁰ : Module R M₃ inst✝⁹ : Module R M₄ inst✝⁸ : (i : Fin (Nat.succ n)) → TopologicalSpace (M i) inst✝⁷ : (i : ι) → TopologicalSpace (M₁ i) inst✝⁶ : (i : ι) → TopologicalSpace (M₁' i) inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : TopologicalSpace M₃ inst✝³ : TopologicalSpace M₄ f✝ f' : ContinuousMultilinearMap R M₁ M₂ ι' : Type u_1 M' : ι' → Type u_2 inst✝² : (i : ι') → AddCommMonoid (M' i) inst✝¹ : (i : ι') → TopologicalSpace (M' i) inst✝ : (i : ι') → Module R (M' i) f : ContinuousMultilinearMap R M₁ ((i : ι') → M' i) x✝¹ : (i : ι) → M₁ i x✝ : ι' ⊢ ↑(pi ((fun f i => ContinuousLinearMap.compContinuousMultilinearMap (ContinuousLinearMap.proj i) f) f)) x✝¹ x✝ = ↑f x✝¹ x✝ [PROOFSTEP] rfl [GOAL] R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ inst✝¹⁸ : Semiring R inst✝¹⁷ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁵ : (i : ι) → AddCommMonoid (M₁' i) inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : (i : ι) → Module R (M₁' i) inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : (i : Fin (Nat.succ n)) → TopologicalSpace (M i) inst✝⁴ : (i : ι) → TopologicalSpace (M₁ i) inst✝³ : (i : ι) → TopologicalSpace (M₁' i) inst✝² : TopologicalSpace M₂ inst✝¹ : TopologicalSpace M₃ inst✝ : TopologicalSpace M₄ f f' : ContinuousMultilinearMap R M₁ M₂ ι' : Type u_1 e : ι ≃ ι' x✝¹ : ContinuousMultilinearMap R (fun x => M₂) M₃ x✝ : ι → M₂ ⊢ ↑(domDomCongr e.symm (domDomCongr e x✝¹)) x✝ = ↑x✝¹ x✝ [PROOFSTEP] simp [GOAL] R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ inst✝¹⁸ : Semiring R inst✝¹⁷ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁵ : (i : ι) → AddCommMonoid (M₁' i) inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : (i : ι) → Module R (M₁' i) inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : (i : Fin (Nat.succ n)) → TopologicalSpace (M i) inst✝⁴ : (i : ι) → TopologicalSpace (M₁ i) inst✝³ : (i : ι) → TopologicalSpace (M₁' i) inst✝² : TopologicalSpace M₂ inst✝¹ : TopologicalSpace M₃ inst✝ : TopologicalSpace M₄ f f' : ContinuousMultilinearMap R M₁ M₂ ι' : Type u_1 e : ι ≃ ι' x✝¹ : ContinuousMultilinearMap R (fun x => M₂) M₃ x✝ : ι' → M₂ ⊢ ↑(domDomCongr e (domDomCongr e.symm x✝¹)) x✝ = ↑x✝¹ x✝ [PROOFSTEP] simp [GOAL] R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ A : Type u_1 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : TopologicalSpace A inst✝ : ContinuousMul A ⊢ Continuous (MultilinearMap.mkPiAlgebraFin R n A).toFun [PROOFSTEP] change Continuous fun m => (List.ofFn m).prod [GOAL] R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ A : Type u_1 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : TopologicalSpace A inst✝ : ContinuousMul A ⊢ Continuous fun m => List.prod (List.ofFn m) [PROOFSTEP] simp_rw [List.ofFn_eq_map] [GOAL] R : Type u ι : Type v n : ℕ M : Fin (Nat.succ n) → Type w M₁ : ι → Type w₁ M₁' : ι → Type w₁' M₂ : Type w₂ M₃ : Type w₃ M₄ : Type w₄ A : Type u_1 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Algebra R A inst✝¹ : TopologicalSpace A inst✝ : ContinuousMul A ⊢ Continuous fun m => List.prod (List.map m (List.finRange n)) [PROOFSTEP] exact continuous_list_prod _ fun i _ => continuous_apply _
{"mathlib_filename": "Mathlib.Topology.Algebra.Module.Multilinear", "llama_tokens": 7474}
[GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : UniformSpace F inst✝ : UniformAddGroup F 𝔖 : Set (Set E) ⊢ strongTopology σ F 𝔖 = UniformSpace.toTopologicalSpace [PROOFSTEP] rw [strongTopology, UniformAddGroup.toUniformSpace_eq] [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : UniformSpace F inst✝ : UniformAddGroup F 𝔖 : Set (Set E) ⊢ TopologicalSpace.induced FunLike.coe (UniformOnFun.topologicalSpace E F 𝔖) = UniformSpace.toTopologicalSpace [PROOFSTEP] rfl [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : UniformSpace F inst✝ : UniformAddGroup F 𝔖 : Set (Set E) ⊢ UniformAddGroup (E →SL[σ] F) [PROOFSTEP] letI : UniformSpace (E →SL[σ] F) := strongUniformity σ F 𝔖 [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : UniformSpace F inst✝ : UniformAddGroup F 𝔖 : Set (Set E) this : UniformSpace (E →SL[σ] F) := strongUniformity σ F 𝔖 ⊢ UniformAddGroup (E →SL[σ] F) [PROOFSTEP] rw [strongUniformity, UniformSpace.replaceTopology_eq] [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : UniformSpace F inst✝ : UniformAddGroup F 𝔖 : Set (Set E) this : UniformSpace (E →SL[σ] F) := strongUniformity σ F 𝔖 ⊢ UniformAddGroup (E →SL[σ] F) [PROOFSTEP] let φ : (E →SL[σ] F) →+ E →ᵤ[𝔖] F := ⟨⟨(FunLike.coe : (E →SL[σ] F) → E →ᵤ[𝔖] F), rfl⟩, fun _ _ => rfl⟩ [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : UniformSpace F inst✝ : UniformAddGroup F 𝔖 : Set (Set E) this : UniformSpace (E →SL[σ] F) := strongUniformity σ F 𝔖 φ : (E →SL[σ] F) →+ E →ᵤ[𝔖] F := { toZeroHom := { toFun := FunLike.coe, map_zero' := (_ : ↑0 = ↑0) }, map_add' := (_ : ∀ (x x_1 : E →SL[σ] F), ZeroHom.toFun { toFun := FunLike.coe, map_zero' := (_ : ↑0 = ↑0) } (x + x_1) = ZeroHom.toFun { toFun := FunLike.coe, map_zero' := (_ : ↑0 = ↑0) } (x + x_1)) } ⊢ UniformAddGroup (E →SL[σ] F) [PROOFSTEP] exact uniformAddGroup_comap φ [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : TopologicalSpace F inst✝ : TopologicalAddGroup F 𝔖 : Set (Set E) ⊢ TopologicalAddGroup (E →SL[σ] F) [PROOFSTEP] letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : TopologicalSpace F inst✝ : TopologicalAddGroup F 𝔖 : Set (Set E) this : UniformSpace F := TopologicalAddGroup.toUniformSpace F ⊢ TopologicalAddGroup (E →SL[σ] F) [PROOFSTEP] haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : TopologicalSpace F inst✝ : TopologicalAddGroup F 𝔖 : Set (Set E) this✝ : UniformSpace F := TopologicalAddGroup.toUniformSpace F this : UniformAddGroup F ⊢ TopologicalAddGroup (E →SL[σ] F) [PROOFSTEP] letI : UniformSpace (E →SL[σ] F) := strongUniformity σ F 𝔖 [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : TopologicalSpace F inst✝ : TopologicalAddGroup F 𝔖 : Set (Set E) this✝¹ : UniformSpace F := TopologicalAddGroup.toUniformSpace F this✝ : UniformAddGroup F this : UniformSpace (E →SL[σ] F) := strongUniformity σ F 𝔖 ⊢ TopologicalAddGroup (E →SL[σ] F) [PROOFSTEP] haveI : UniformAddGroup (E →SL[σ] F) := strongUniformity.uniformAddGroup σ F 𝔖 [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : TopologicalSpace F inst✝ : TopologicalAddGroup F 𝔖 : Set (Set E) this✝² : UniformSpace F := TopologicalAddGroup.toUniformSpace F this✝¹ : UniformAddGroup F this✝ : UniformSpace (E →SL[σ] F) := strongUniformity σ F 𝔖 this : UniformAddGroup (E →SL[σ] F) ⊢ TopologicalAddGroup (E →SL[σ] F) [PROOFSTEP] infer_instance [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹⁴ : NormedField 𝕜₁ inst✝¹³ : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹² : AddCommGroup E inst✝¹¹ : Module 𝕜₁ E inst✝¹⁰ : AddCommGroup E' inst✝⁹ : Module ℝ E' inst✝⁸ : AddCommGroup F inst✝⁷ : Module 𝕜₂ F inst✝⁶ : AddCommGroup F' inst✝⁵ : Module ℝ F' inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace E' inst✝² : TopologicalSpace F inst✝¹ : TopologicalAddGroup F inst✝ : T2Space F 𝔖 : Set (Set E) h𝔖 : ⋃₀ 𝔖 = Set.univ ⊢ T2Space (E →SL[σ] F) [PROOFSTEP] letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹⁴ : NormedField 𝕜₁ inst✝¹³ : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹² : AddCommGroup E inst✝¹¹ : Module 𝕜₁ E inst✝¹⁰ : AddCommGroup E' inst✝⁹ : Module ℝ E' inst✝⁸ : AddCommGroup F inst✝⁷ : Module 𝕜₂ F inst✝⁶ : AddCommGroup F' inst✝⁵ : Module ℝ F' inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace E' inst✝² : TopologicalSpace F inst✝¹ : TopologicalAddGroup F inst✝ : T2Space F 𝔖 : Set (Set E) h𝔖 : ⋃₀ 𝔖 = Set.univ this : UniformSpace F := TopologicalAddGroup.toUniformSpace F ⊢ T2Space (E →SL[σ] F) [PROOFSTEP] haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹⁴ : NormedField 𝕜₁ inst✝¹³ : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹² : AddCommGroup E inst✝¹¹ : Module 𝕜₁ E inst✝¹⁰ : AddCommGroup E' inst✝⁹ : Module ℝ E' inst✝⁸ : AddCommGroup F inst✝⁷ : Module 𝕜₂ F inst✝⁶ : AddCommGroup F' inst✝⁵ : Module ℝ F' inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace E' inst✝² : TopologicalSpace F inst✝¹ : TopologicalAddGroup F inst✝ : T2Space F 𝔖 : Set (Set E) h𝔖 : ⋃₀ 𝔖 = Set.univ this✝ : UniformSpace F := TopologicalAddGroup.toUniformSpace F this : UniformAddGroup F ⊢ T2Space (E →SL[σ] F) [PROOFSTEP] letI : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖 [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹⁴ : NormedField 𝕜₁ inst✝¹³ : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹² : AddCommGroup E inst✝¹¹ : Module 𝕜₁ E inst✝¹⁰ : AddCommGroup E' inst✝⁹ : Module ℝ E' inst✝⁸ : AddCommGroup F inst✝⁷ : Module 𝕜₂ F inst✝⁶ : AddCommGroup F' inst✝⁵ : Module ℝ F' inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace E' inst✝² : TopologicalSpace F inst✝¹ : TopologicalAddGroup F inst✝ : T2Space F 𝔖 : Set (Set E) h𝔖 : ⋃₀ 𝔖 = Set.univ this✝¹ : UniformSpace F := TopologicalAddGroup.toUniformSpace F this✝ : UniformAddGroup F this : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖 ⊢ T2Space (E →SL[σ] F) [PROOFSTEP] haveI : T2Space (E →ᵤ[𝔖] F) := UniformOnFun.t2Space_of_covering h𝔖 [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹⁴ : NormedField 𝕜₁ inst✝¹³ : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹² : AddCommGroup E inst✝¹¹ : Module 𝕜₁ E inst✝¹⁰ : AddCommGroup E' inst✝⁹ : Module ℝ E' inst✝⁸ : AddCommGroup F inst✝⁷ : Module 𝕜₂ F inst✝⁶ : AddCommGroup F' inst✝⁵ : Module ℝ F' inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace E' inst✝² : TopologicalSpace F inst✝¹ : TopologicalAddGroup F inst✝ : T2Space F 𝔖 : Set (Set E) h𝔖 : ⋃₀ 𝔖 = Set.univ this✝² : UniformSpace F := TopologicalAddGroup.toUniformSpace F this✝¹ : UniformAddGroup F this✝ : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖 this : T2Space (E →ᵤ[𝔖] F) ⊢ T2Space (E →SL[σ] F) [PROOFSTEP] exact (strongTopology.embedding_coeFn σ F 𝔖).t2Space [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹⁶ : NormedField 𝕜₁ inst✝¹⁵ : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜₁ E inst✝¹² : AddCommGroup E' inst✝¹¹ : Module ℝ E' inst✝¹⁰ : AddCommGroup F inst✝⁹ : Module 𝕜₂ F inst✝⁸ : AddCommGroup F' inst✝⁷ : Module ℝ F' inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace E' inst✝⁴ : RingHomSurjective σ inst✝³ : RingHomIsometric σ inst✝² : TopologicalSpace F inst✝¹ : TopologicalAddGroup F inst✝ : ContinuousSMul 𝕜₂ F 𝔖 : Set (Set E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 h𝔖₃ : ∀ (S : Set E), S ∈ 𝔖 → Bornology.IsVonNBounded 𝕜₁ S ⊢ ContinuousSMul 𝕜₂ (E →SL[σ] F) [PROOFSTEP] letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹⁶ : NormedField 𝕜₁ inst✝¹⁵ : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜₁ E inst✝¹² : AddCommGroup E' inst✝¹¹ : Module ℝ E' inst✝¹⁰ : AddCommGroup F inst✝⁹ : Module 𝕜₂ F inst✝⁸ : AddCommGroup F' inst✝⁷ : Module ℝ F' inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace E' inst✝⁴ : RingHomSurjective σ inst✝³ : RingHomIsometric σ inst✝² : TopologicalSpace F inst✝¹ : TopologicalAddGroup F inst✝ : ContinuousSMul 𝕜₂ F 𝔖 : Set (Set E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 h𝔖₃ : ∀ (S : Set E), S ∈ 𝔖 → Bornology.IsVonNBounded 𝕜₁ S this : UniformSpace F := TopologicalAddGroup.toUniformSpace F ⊢ ContinuousSMul 𝕜₂ (E →SL[σ] F) [PROOFSTEP] haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹⁶ : NormedField 𝕜₁ inst✝¹⁵ : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜₁ E inst✝¹² : AddCommGroup E' inst✝¹¹ : Module ℝ E' inst✝¹⁰ : AddCommGroup F inst✝⁹ : Module 𝕜₂ F inst✝⁸ : AddCommGroup F' inst✝⁷ : Module ℝ F' inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace E' inst✝⁴ : RingHomSurjective σ inst✝³ : RingHomIsometric σ inst✝² : TopologicalSpace F inst✝¹ : TopologicalAddGroup F inst✝ : ContinuousSMul 𝕜₂ F 𝔖 : Set (Set E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 h𝔖₃ : ∀ (S : Set E), S ∈ 𝔖 → Bornology.IsVonNBounded 𝕜₁ S this✝ : UniformSpace F := TopologicalAddGroup.toUniformSpace F this : UniformAddGroup F ⊢ ContinuousSMul 𝕜₂ (E →SL[σ] F) [PROOFSTEP] letI : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖 [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹⁶ : NormedField 𝕜₁ inst✝¹⁵ : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜₁ E inst✝¹² : AddCommGroup E' inst✝¹¹ : Module ℝ E' inst✝¹⁰ : AddCommGroup F inst✝⁹ : Module 𝕜₂ F inst✝⁸ : AddCommGroup F' inst✝⁷ : Module ℝ F' inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace E' inst✝⁴ : RingHomSurjective σ inst✝³ : RingHomIsometric σ inst✝² : TopologicalSpace F inst✝¹ : TopologicalAddGroup F inst✝ : ContinuousSMul 𝕜₂ F 𝔖 : Set (Set E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 h𝔖₃ : ∀ (S : Set E), S ∈ 𝔖 → Bornology.IsVonNBounded 𝕜₁ S this✝¹ : UniformSpace F := TopologicalAddGroup.toUniformSpace F this✝ : UniformAddGroup F this : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖 ⊢ ContinuousSMul 𝕜₂ (E →SL[σ] F) [PROOFSTEP] let φ : (E →SL[σ] F) →ₗ[𝕜₂] E →ᵤ[𝔖] F := ⟨⟨(FunLike.coe : (E →SL[σ] F) → E → F), fun _ _ => rfl⟩, fun _ _ => rfl⟩ [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹⁶ : NormedField 𝕜₁ inst✝¹⁵ : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜₁ E inst✝¹² : AddCommGroup E' inst✝¹¹ : Module ℝ E' inst✝¹⁰ : AddCommGroup F inst✝⁹ : Module 𝕜₂ F inst✝⁸ : AddCommGroup F' inst✝⁷ : Module ℝ F' inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace E' inst✝⁴ : RingHomSurjective σ inst✝³ : RingHomIsometric σ inst✝² : TopologicalSpace F inst✝¹ : TopologicalAddGroup F inst✝ : ContinuousSMul 𝕜₂ F 𝔖 : Set (Set E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 h𝔖₃ : ∀ (S : Set E), S ∈ 𝔖 → Bornology.IsVonNBounded 𝕜₁ S this✝¹ : UniformSpace F := TopologicalAddGroup.toUniformSpace F this✝ : UniformAddGroup F this : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖 φ : (E →SL[σ] F) →ₗ[𝕜₂] E →ᵤ[𝔖] F := { toAddHom := { toFun := FunLike.coe, map_add' := (_ : ∀ (x x_1 : E →SL[σ] F), ↑(x + x_1) = ↑(x + x_1)) }, map_smul' := (_ : ∀ (x : 𝕜₂) (x_1 : E →SL[σ] F), AddHom.toFun { toFun := FunLike.coe, map_add' := (_ : ∀ (x x_2 : E →SL[σ] F), ↑(x + x_2) = ↑(x + x_2)) } (x • x_1) = AddHom.toFun { toFun := FunLike.coe, map_add' := (_ : ∀ (x x_2 : E →SL[σ] F), ↑(x + x_2) = ↑(x + x_2)) } (x • x_1)) } ⊢ ContinuousSMul 𝕜₂ (E →SL[σ] F) [PROOFSTEP] exact UniformOnFun.continuousSMul_induced_of_image_bounded 𝕜₂ E F (E →SL[σ] F) h𝔖₁ h𝔖₂ φ ⟨rfl⟩ fun u s hs => (h𝔖₃ s hs).image u [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : TopologicalSpace F inst✝ : TopologicalAddGroup F ι : Type u_7 𝔖 : Set (Set E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 p : ι → Prop b : ι → Set F h : Filter.HasBasis (𝓝 0) p b ⊢ Filter.HasBasis (𝓝 0) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd} [PROOFSTEP] letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : TopologicalSpace F inst✝ : TopologicalAddGroup F ι : Type u_7 𝔖 : Set (Set E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 p : ι → Prop b : ι → Set F h : Filter.HasBasis (𝓝 0) p b this : UniformSpace F := TopologicalAddGroup.toUniformSpace F ⊢ Filter.HasBasis (𝓝 0) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd} [PROOFSTEP] haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : TopologicalSpace F inst✝ : TopologicalAddGroup F ι : Type u_7 𝔖 : Set (Set E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 p : ι → Prop b : ι → Set F h : Filter.HasBasis (𝓝 0) p b this✝ : UniformSpace F := TopologicalAddGroup.toUniformSpace F this : UniformAddGroup F ⊢ Filter.HasBasis (𝓝 0) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd} [PROOFSTEP] letI : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖 [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : TopologicalSpace F inst✝ : TopologicalAddGroup F ι : Type u_7 𝔖 : Set (Set E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 p : ι → Prop b : ι → Set F h : Filter.HasBasis (𝓝 0) p b this✝¹ : UniformSpace F := TopologicalAddGroup.toUniformSpace F this✝ : UniformAddGroup F this : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖 ⊢ Filter.HasBasis (𝓝 0) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd} [PROOFSTEP] rw [(strongTopology.embedding_coeFn σ F 𝔖).toInducing.nhds_eq_comap] [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝¹³ : NormedField 𝕜₁ inst✝¹² : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 E' : Type u_4 F : Type u_5 F' : Type u_6 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module 𝕜₁ E inst✝⁹ : AddCommGroup E' inst✝⁸ : Module ℝ E' inst✝⁷ : AddCommGroup F inst✝⁶ : Module 𝕜₂ F inst✝⁵ : AddCommGroup F' inst✝⁴ : Module ℝ F' inst✝³ : TopologicalSpace E inst✝² : TopologicalSpace E' inst✝¹ : TopologicalSpace F inst✝ : TopologicalAddGroup F ι : Type u_7 𝔖 : Set (Set E) h𝔖₁ : Set.Nonempty 𝔖 h𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 p : ι → Prop b : ι → Set F h : Filter.HasBasis (𝓝 0) p b this✝¹ : UniformSpace F := TopologicalAddGroup.toUniformSpace F this✝ : UniformAddGroup F this : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖 ⊢ Filter.HasBasis (Filter.comap (↑(UniformOnFun.ofFun 𝔖) ∘ FunLike.coe) (𝓝 ((↑(UniformOnFun.ofFun 𝔖) ∘ FunLike.coe) 0))) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd} [PROOFSTEP] exact (UniformOnFun.hasBasis_nhds_zero_of_basis 𝔖 h𝔖₁ h𝔖₂ h).comap FunLike.coe [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 inst✝²⁰ : NormedField 𝕜₁ inst✝¹⁹ : NormedField 𝕜₂ inst✝¹⁸ : NormedField 𝕜₃ σ : 𝕜₁ →+* 𝕜₂ τ : 𝕜₂ →+* 𝕜₃ ρ : 𝕜₁ →+* 𝕜₃ inst✝¹⁷ : RingHomCompTriple σ τ ρ E : Type u_4 E' : Type u_5 F : Type u_6 F' : Type u_7 G : Type u_8 inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜₁ E inst✝¹⁴ : AddCommGroup E' inst✝¹³ : Module ℝ E' inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜₂ F inst✝¹⁰ : AddCommGroup F' inst✝⁹ : Module ℝ F' inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜₃ G inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalAddGroup G inst✝² : ContinuousConstSMul 𝕜₃ G inst✝¹ : RingHomSurjective σ inst✝ : RingHomIsometric σ L : E →SL[σ] F ⊢ Continuous { toAddHom := { toFun := fun f => comp f L, map_add' := (_ : ∀ (f g : F →SL[τ] G), comp (f + g) L = comp f L + comp g L) }, map_smul' := (_ : ∀ (a : 𝕜₃) (f : F →SL[τ] G), comp (a • f) L = a • comp f L) }.toAddHom.toFun [PROOFSTEP] letI : UniformSpace G := TopologicalAddGroup.toUniformSpace G [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 inst✝²⁰ : NormedField 𝕜₁ inst✝¹⁹ : NormedField 𝕜₂ inst✝¹⁸ : NormedField 𝕜₃ σ : 𝕜₁ →+* 𝕜₂ τ : 𝕜₂ →+* 𝕜₃ ρ : 𝕜₁ →+* 𝕜₃ inst✝¹⁷ : RingHomCompTriple σ τ ρ E : Type u_4 E' : Type u_5 F : Type u_6 F' : Type u_7 G : Type u_8 inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜₁ E inst✝¹⁴ : AddCommGroup E' inst✝¹³ : Module ℝ E' inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜₂ F inst✝¹⁰ : AddCommGroup F' inst✝⁹ : Module ℝ F' inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜₃ G inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalAddGroup G inst✝² : ContinuousConstSMul 𝕜₃ G inst✝¹ : RingHomSurjective σ inst✝ : RingHomIsometric σ L : E →SL[σ] F this : UniformSpace G := TopologicalAddGroup.toUniformSpace G ⊢ Continuous { toAddHom := { toFun := fun f => comp f L, map_add' := (_ : ∀ (f g : F →SL[τ] G), comp (f + g) L = comp f L + comp g L) }, map_smul' := (_ : ∀ (a : 𝕜₃) (f : F →SL[τ] G), comp (a • f) L = a • comp f L) }.toAddHom.toFun [PROOFSTEP] haveI : UniformAddGroup G := comm_topologicalAddGroup_is_uniform [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 inst✝²⁰ : NormedField 𝕜₁ inst✝¹⁹ : NormedField 𝕜₂ inst✝¹⁸ : NormedField 𝕜₃ σ : 𝕜₁ →+* 𝕜₂ τ : 𝕜₂ →+* 𝕜₃ ρ : 𝕜₁ →+* 𝕜₃ inst✝¹⁷ : RingHomCompTriple σ τ ρ E : Type u_4 E' : Type u_5 F : Type u_6 F' : Type u_7 G : Type u_8 inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜₁ E inst✝¹⁴ : AddCommGroup E' inst✝¹³ : Module ℝ E' inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜₂ F inst✝¹⁰ : AddCommGroup F' inst✝⁹ : Module ℝ F' inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜₃ G inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalAddGroup G inst✝² : ContinuousConstSMul 𝕜₃ G inst✝¹ : RingHomSurjective σ inst✝ : RingHomIsometric σ L : E →SL[σ] F this✝ : UniformSpace G := TopologicalAddGroup.toUniformSpace G this : UniformAddGroup G ⊢ Continuous { toAddHom := { toFun := fun f => comp f L, map_add' := (_ : ∀ (f g : F →SL[τ] G), comp (f + g) L = comp f L + comp g L) }, map_smul' := (_ : ∀ (a : 𝕜₃) (f : F →SL[τ] G), comp (a • f) L = a • comp f L) }.toAddHom.toFun [PROOFSTEP] rw [(strongTopology.embedding_coeFn _ _ _).continuous_iff] -- Porting note: without this, the following doesn't work [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 inst✝²⁰ : NormedField 𝕜₁ inst✝¹⁹ : NormedField 𝕜₂ inst✝¹⁸ : NormedField 𝕜₃ σ : 𝕜₁ →+* 𝕜₂ τ : 𝕜₂ →+* 𝕜₃ ρ : 𝕜₁ →+* 𝕜₃ inst✝¹⁷ : RingHomCompTriple σ τ ρ E : Type u_4 E' : Type u_5 F : Type u_6 F' : Type u_7 G : Type u_8 inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜₁ E inst✝¹⁴ : AddCommGroup E' inst✝¹³ : Module ℝ E' inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜₂ F inst✝¹⁰ : AddCommGroup F' inst✝⁹ : Module ℝ F' inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜₃ G inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalAddGroup G inst✝² : ContinuousConstSMul 𝕜₃ G inst✝¹ : RingHomSurjective σ inst✝ : RingHomIsometric σ L : E →SL[σ] F this✝ : UniformSpace G := TopologicalAddGroup.toUniformSpace G this : UniformAddGroup G ⊢ Continuous ((↑(UniformOnFun.ofFun {S | Bornology.IsVonNBounded 𝕜₁ S}) ∘ FunLike.coe) ∘ { toAddHom := { toFun := fun f => comp f L, map_add' := (_ : ∀ (f g : F →SL[τ] G), comp (f + g) L = comp f L + comp g L) }, map_smul' := (_ : ∀ (a : 𝕜₃) (f : F →SL[τ] G), comp (a • f) L = a • comp f L) }.toAddHom.toFun) [PROOFSTEP] change Continuous ((λ f ↦ UniformOnFun.ofFun _ (f ∘ L)) ∘ FunLike.coe) [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 inst✝²⁰ : NormedField 𝕜₁ inst✝¹⁹ : NormedField 𝕜₂ inst✝¹⁸ : NormedField 𝕜₃ σ : 𝕜₁ →+* 𝕜₂ τ : 𝕜₂ →+* 𝕜₃ ρ : 𝕜₁ →+* 𝕜₃ inst✝¹⁷ : RingHomCompTriple σ τ ρ E : Type u_4 E' : Type u_5 F : Type u_6 F' : Type u_7 G : Type u_8 inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜₁ E inst✝¹⁴ : AddCommGroup E' inst✝¹³ : Module ℝ E' inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜₂ F inst✝¹⁰ : AddCommGroup F' inst✝⁹ : Module ℝ F' inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜₃ G inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalAddGroup G inst✝² : ContinuousConstSMul 𝕜₃ G inst✝¹ : RingHomSurjective σ inst✝ : RingHomIsometric σ L : E →SL[σ] F this✝ : UniformSpace G := TopologicalAddGroup.toUniformSpace G this : UniformAddGroup G ⊢ Continuous ((fun f => ↑(UniformOnFun.ofFun {S | Bornology.IsVonNBounded 𝕜₁ S}) (f ∘ ↑L)) ∘ FunLike.coe) [PROOFSTEP] exact (UniformOnFun.precomp_uniformContinuous fun S hS => hS.image L).continuous.comp (strongTopology.embedding_coeFn _ _ _).continuous [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 inst✝²⁰ : NormedField 𝕜₁ inst✝¹⁹ : NormedField 𝕜₂ inst✝¹⁸ : NormedField 𝕜₃ σ : 𝕜₁ →+* 𝕜₂ τ : 𝕜₂ →+* 𝕜₃ ρ : 𝕜₁ →+* 𝕜₃ inst✝¹⁷ : RingHomCompTriple σ τ ρ E : Type u_4 E' : Type u_5 F : Type u_6 F' : Type u_7 G : Type u_8 inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜₁ E inst✝¹⁴ : AddCommGroup E' inst✝¹³ : Module ℝ E' inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜₂ F inst✝¹⁰ : AddCommGroup F' inst✝⁹ : Module ℝ F' inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜₃ G inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalAddGroup F inst✝² : TopologicalAddGroup G inst✝¹ : ContinuousConstSMul 𝕜₃ G inst✝ : ContinuousConstSMul 𝕜₂ F L : F →SL[τ] G ⊢ Continuous { toAddHom := { toFun := fun f => comp L f, map_add' := (_ : ∀ (f₁ f₂ : E →SL[σ] F), comp L (f₁ + f₂) = comp L f₁ + comp L f₂) }, map_smul' := (_ : ∀ (c : 𝕜₂) (f : E →SL[σ] F), comp L (c • f) = ↑τ c • comp L f) }.toAddHom.toFun [PROOFSTEP] letI : UniformSpace G := TopologicalAddGroup.toUniformSpace G [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 inst✝²⁰ : NormedField 𝕜₁ inst✝¹⁹ : NormedField 𝕜₂ inst✝¹⁸ : NormedField 𝕜₃ σ : 𝕜₁ →+* 𝕜₂ τ : 𝕜₂ →+* 𝕜₃ ρ : 𝕜₁ →+* 𝕜₃ inst✝¹⁷ : RingHomCompTriple σ τ ρ E : Type u_4 E' : Type u_5 F : Type u_6 F' : Type u_7 G : Type u_8 inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜₁ E inst✝¹⁴ : AddCommGroup E' inst✝¹³ : Module ℝ E' inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜₂ F inst✝¹⁰ : AddCommGroup F' inst✝⁹ : Module ℝ F' inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜₃ G inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalAddGroup F inst✝² : TopologicalAddGroup G inst✝¹ : ContinuousConstSMul 𝕜₃ G inst✝ : ContinuousConstSMul 𝕜₂ F L : F →SL[τ] G this : UniformSpace G := TopologicalAddGroup.toUniformSpace G ⊢ Continuous { toAddHom := { toFun := fun f => comp L f, map_add' := (_ : ∀ (f₁ f₂ : E →SL[σ] F), comp L (f₁ + f₂) = comp L f₁ + comp L f₂) }, map_smul' := (_ : ∀ (c : 𝕜₂) (f : E →SL[σ] F), comp L (c • f) = ↑τ c • comp L f) }.toAddHom.toFun [PROOFSTEP] haveI : UniformAddGroup G := comm_topologicalAddGroup_is_uniform [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 inst✝²⁰ : NormedField 𝕜₁ inst✝¹⁹ : NormedField 𝕜₂ inst✝¹⁸ : NormedField 𝕜₃ σ : 𝕜₁ →+* 𝕜₂ τ : 𝕜₂ →+* 𝕜₃ ρ : 𝕜₁ →+* 𝕜₃ inst✝¹⁷ : RingHomCompTriple σ τ ρ E : Type u_4 E' : Type u_5 F : Type u_6 F' : Type u_7 G : Type u_8 inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜₁ E inst✝¹⁴ : AddCommGroup E' inst✝¹³ : Module ℝ E' inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜₂ F inst✝¹⁰ : AddCommGroup F' inst✝⁹ : Module ℝ F' inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜₃ G inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalAddGroup F inst✝² : TopologicalAddGroup G inst✝¹ : ContinuousConstSMul 𝕜₃ G inst✝ : ContinuousConstSMul 𝕜₂ F L : F →SL[τ] G this✝ : UniformSpace G := TopologicalAddGroup.toUniformSpace G this : UniformAddGroup G ⊢ Continuous { toAddHom := { toFun := fun f => comp L f, map_add' := (_ : ∀ (f₁ f₂ : E →SL[σ] F), comp L (f₁ + f₂) = comp L f₁ + comp L f₂) }, map_smul' := (_ : ∀ (c : 𝕜₂) (f : E →SL[σ] F), comp L (c • f) = ↑τ c • comp L f) }.toAddHom.toFun [PROOFSTEP] letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 inst✝²⁰ : NormedField 𝕜₁ inst✝¹⁹ : NormedField 𝕜₂ inst✝¹⁸ : NormedField 𝕜₃ σ : 𝕜₁ →+* 𝕜₂ τ : 𝕜₂ →+* 𝕜₃ ρ : 𝕜₁ →+* 𝕜₃ inst✝¹⁷ : RingHomCompTriple σ τ ρ E : Type u_4 E' : Type u_5 F : Type u_6 F' : Type u_7 G : Type u_8 inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜₁ E inst✝¹⁴ : AddCommGroup E' inst✝¹³ : Module ℝ E' inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜₂ F inst✝¹⁰ : AddCommGroup F' inst✝⁹ : Module ℝ F' inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜₃ G inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalAddGroup F inst✝² : TopologicalAddGroup G inst✝¹ : ContinuousConstSMul 𝕜₃ G inst✝ : ContinuousConstSMul 𝕜₂ F L : F →SL[τ] G this✝¹ : UniformSpace G := TopologicalAddGroup.toUniformSpace G this✝ : UniformAddGroup G this : UniformSpace F := TopologicalAddGroup.toUniformSpace F ⊢ Continuous { toAddHom := { toFun := fun f => comp L f, map_add' := (_ : ∀ (f₁ f₂ : E →SL[σ] F), comp L (f₁ + f₂) = comp L f₁ + comp L f₂) }, map_smul' := (_ : ∀ (c : 𝕜₂) (f : E →SL[σ] F), comp L (c • f) = ↑τ c • comp L f) }.toAddHom.toFun [PROOFSTEP] haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 inst✝²⁰ : NormedField 𝕜₁ inst✝¹⁹ : NormedField 𝕜₂ inst✝¹⁸ : NormedField 𝕜₃ σ : 𝕜₁ →+* 𝕜₂ τ : 𝕜₂ →+* 𝕜₃ ρ : 𝕜₁ →+* 𝕜₃ inst✝¹⁷ : RingHomCompTriple σ τ ρ E : Type u_4 E' : Type u_5 F : Type u_6 F' : Type u_7 G : Type u_8 inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜₁ E inst✝¹⁴ : AddCommGroup E' inst✝¹³ : Module ℝ E' inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜₂ F inst✝¹⁰ : AddCommGroup F' inst✝⁹ : Module ℝ F' inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜₃ G inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalAddGroup F inst✝² : TopologicalAddGroup G inst✝¹ : ContinuousConstSMul 𝕜₃ G inst✝ : ContinuousConstSMul 𝕜₂ F L : F →SL[τ] G this✝² : UniformSpace G := TopologicalAddGroup.toUniformSpace G this✝¹ : UniformAddGroup G this✝ : UniformSpace F := TopologicalAddGroup.toUniformSpace F this : UniformAddGroup F ⊢ Continuous { toAddHom := { toFun := fun f => comp L f, map_add' := (_ : ∀ (f₁ f₂ : E →SL[σ] F), comp L (f₁ + f₂) = comp L f₁ + comp L f₂) }, map_smul' := (_ : ∀ (c : 𝕜₂) (f : E →SL[σ] F), comp L (c • f) = ↑τ c • comp L f) }.toAddHom.toFun [PROOFSTEP] rw [(strongTopology.embedding_coeFn _ _ _).continuous_iff] [GOAL] 𝕜₁ : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 inst✝²⁰ : NormedField 𝕜₁ inst✝¹⁹ : NormedField 𝕜₂ inst✝¹⁸ : NormedField 𝕜₃ σ : 𝕜₁ →+* 𝕜₂ τ : 𝕜₂ →+* 𝕜₃ ρ : 𝕜₁ →+* 𝕜₃ inst✝¹⁷ : RingHomCompTriple σ τ ρ E : Type u_4 E' : Type u_5 F : Type u_6 F' : Type u_7 G : Type u_8 inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜₁ E inst✝¹⁴ : AddCommGroup E' inst✝¹³ : Module ℝ E' inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜₂ F inst✝¹⁰ : AddCommGroup F' inst✝⁹ : Module ℝ F' inst✝⁸ : AddCommGroup G inst✝⁷ : Module 𝕜₃ G inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalAddGroup F inst✝² : TopologicalAddGroup G inst✝¹ : ContinuousConstSMul 𝕜₃ G inst✝ : ContinuousConstSMul 𝕜₂ F L : F →SL[τ] G this✝² : UniformSpace G := TopologicalAddGroup.toUniformSpace G this✝¹ : UniformAddGroup G this✝ : UniformSpace F := TopologicalAddGroup.toUniformSpace F this : UniformAddGroup F ⊢ Continuous ((↑(UniformOnFun.ofFun {S | Bornology.IsVonNBounded 𝕜₁ S}) ∘ FunLike.coe) ∘ { toAddHom := { toFun := fun f => comp L f, map_add' := (_ : ∀ (f₁ f₂ : E →SL[σ] F), comp L (f₁ + f₂) = comp L f₁ + comp L f₂) }, map_smul' := (_ : ∀ (c : 𝕜₂) (f : E →SL[σ] F), comp L (c • f) = ↑τ c • comp L f) }.toAddHom.toFun) [PROOFSTEP] exact (UniformOnFun.postcomp_uniformContinuous L.uniformContinuous).continuous.comp (strongTopology.embedding_coeFn _ _ _).continuous [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 𝕜₄ : Type u_4 E : Type u_5 F : Type u_6 G : Type u_7 H : Type u_8 inst✝³¹ : AddCommGroup E inst✝³⁰ : AddCommGroup F inst✝²⁹ : AddCommGroup G inst✝²⁸ : AddCommGroup H inst✝²⁷ : NontriviallyNormedField 𝕜 inst✝²⁶ : NontriviallyNormedField 𝕜₂ inst✝²⁵ : NontriviallyNormedField 𝕜₃ inst✝²⁴ : NontriviallyNormedField 𝕜₄ inst✝²³ : Module 𝕜 E inst✝²² : Module 𝕜₂ F inst✝²¹ : Module 𝕜₃ G inst✝²⁰ : Module 𝕜₄ H inst✝¹⁹ : TopologicalSpace E inst✝¹⁸ : TopologicalSpace F inst✝¹⁷ : TopologicalSpace G inst✝¹⁶ : TopologicalSpace H inst✝¹⁵ : TopologicalAddGroup G inst✝¹⁴ : TopologicalAddGroup H inst✝¹³ : ContinuousConstSMul 𝕜₃ G inst✝¹² : ContinuousConstSMul 𝕜₄ H σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ σ₃₄ : 𝕜₃ →+* 𝕜₄ σ₄₃ : 𝕜₄ →+* 𝕜₃ σ₂₄ : 𝕜₂ →+* 𝕜₄ σ₁₄ : 𝕜 →+* 𝕜₄ inst✝¹¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝¹⁰ : RingHomInvPair σ₂₁ σ₁₂ inst✝⁹ : RingHomInvPair σ₃₄ σ₄₃ inst✝⁸ : RingHomInvPair σ₄₃ σ₃₄ inst✝⁷ : RingHomCompTriple σ₂₁ σ₁₄ σ₂₄ inst✝⁶ : RingHomCompTriple σ₂₄ σ₄₃ σ₂₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝³ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₁ e₁₂ : E ≃SL[σ₁₂] F e₄₃ : H ≃SL[σ₄₃] G src✝ : (E →SL[σ₁₄] H) ≃ (F →SL[σ₂₃] G) := arrowCongrEquiv e₁₂ e₄₃ f g : E →SL[σ₁₄] H ⊢ (fun L => comp (↑e₄₃) (comp L ↑(ContinuousLinearEquiv.symm e₁₂))) (f + g) = (fun L => comp (↑e₄₃) (comp L ↑(ContinuousLinearEquiv.symm e₁₂))) f + (fun L => comp (↑e₄₃) (comp L ↑(ContinuousLinearEquiv.symm e₁₂))) g [PROOFSTEP] simp only [add_comp, comp_add] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 𝕜₄ : Type u_4 E : Type u_5 F : Type u_6 G : Type u_7 H : Type u_8 inst✝³¹ : AddCommGroup E inst✝³⁰ : AddCommGroup F inst✝²⁹ : AddCommGroup G inst✝²⁸ : AddCommGroup H inst✝²⁷ : NontriviallyNormedField 𝕜 inst✝²⁶ : NontriviallyNormedField 𝕜₂ inst✝²⁵ : NontriviallyNormedField 𝕜₃ inst✝²⁴ : NontriviallyNormedField 𝕜₄ inst✝²³ : Module 𝕜 E inst✝²² : Module 𝕜₂ F inst✝²¹ : Module 𝕜₃ G inst✝²⁰ : Module 𝕜₄ H inst✝¹⁹ : TopologicalSpace E inst✝¹⁸ : TopologicalSpace F inst✝¹⁷ : TopologicalSpace G inst✝¹⁶ : TopologicalSpace H inst✝¹⁵ : TopologicalAddGroup G inst✝¹⁴ : TopologicalAddGroup H inst✝¹³ : ContinuousConstSMul 𝕜₃ G inst✝¹² : ContinuousConstSMul 𝕜₄ H σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ σ₃₄ : 𝕜₃ →+* 𝕜₄ σ₄₃ : 𝕜₄ →+* 𝕜₃ σ₂₄ : 𝕜₂ →+* 𝕜₄ σ₁₄ : 𝕜 →+* 𝕜₄ inst✝¹¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝¹⁰ : RingHomInvPair σ₂₁ σ₁₂ inst✝⁹ : RingHomInvPair σ₃₄ σ₄₃ inst✝⁸ : RingHomInvPair σ₄₃ σ₃₄ inst✝⁷ : RingHomCompTriple σ₂₁ σ₁₄ σ₂₄ inst✝⁶ : RingHomCompTriple σ₂₄ σ₄₃ σ₂₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝³ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₁ e₁₂ : E ≃SL[σ₁₂] F e₄₃ : H ≃SL[σ₄₃] G src✝ : (E →SL[σ₁₄] H) ≃ (F →SL[σ₂₃] G) := arrowCongrEquiv e₁₂ e₄₃ t : 𝕜₄ f : E →SL[σ₁₄] H ⊢ AddHom.toFun { toFun := fun L => comp (↑e₄₃) (comp L ↑(ContinuousLinearEquiv.symm e₁₂)), map_add' := (_ : ∀ (f g : E →SL[σ₁₄] H), comp (↑e₄₃) (comp (f + g) ↑(ContinuousLinearEquiv.symm e₁₂)) = comp (↑e₄₃) (comp f ↑(ContinuousLinearEquiv.symm e₁₂)) + comp (↑e₄₃) (comp g ↑(ContinuousLinearEquiv.symm e₁₂))) } (t • f) = ↑σ₄₃ t • AddHom.toFun { toFun := fun L => comp (↑e₄₃) (comp L ↑(ContinuousLinearEquiv.symm e₁₂)), map_add' := (_ : ∀ (f g : E →SL[σ₁₄] H), comp (↑e₄₃) (comp (f + g) ↑(ContinuousLinearEquiv.symm e₁₂)) = comp (↑e₄₃) (comp f ↑(ContinuousLinearEquiv.symm e₁₂)) + comp (↑e₄₃) (comp g ↑(ContinuousLinearEquiv.symm e₁₂))) } f [PROOFSTEP] simp only [smul_comp, comp_smulₛₗ]
{"mathlib_filename": "Mathlib.Topology.Algebra.Module.StrongTopology", "llama_tokens": 18902}
[GOAL] X : TopCat F : Presheaf (Type v) X U U' : (Opens ↑X)ᵒᵖ f : U ⟶ U' ⊢ F.map f ≫ (fun U f => { val := fun x => germ F x f, property := (_ : PrelocalPredicate.pred (PrelocalPredicate.sheafify (Sheafify.isGerm F)).toPrelocalPredicate fun x => germ F x f) }) U' = (fun U f => { val := fun x => germ F x f, property := (_ : PrelocalPredicate.pred (PrelocalPredicate.sheafify (Sheafify.isGerm F)).toPrelocalPredicate fun x => germ F x f) }) U ≫ (sheafify F).val.map f [PROOFSTEP] ext x [GOAL] case h X : TopCat F : Presheaf (Type v) X U U' : (Opens ↑X)ᵒᵖ f : U ⟶ U' x : F.obj U ⊢ (F.map f ≫ (fun U f => { val := fun x => germ F x f, property := (_ : PrelocalPredicate.pred (PrelocalPredicate.sheafify (Sheafify.isGerm F)).toPrelocalPredicate fun x => germ F x f) }) U') x = ((fun U f => { val := fun x => germ F x f, property := (_ : PrelocalPredicate.pred (PrelocalPredicate.sheafify (Sheafify.isGerm F)).toPrelocalPredicate fun x => germ F x f) }) U ≫ (sheafify F).val.map f) x [PROOFSTEP] apply Subtype.ext [GOAL] case h.a X : TopCat F : Presheaf (Type v) X U U' : (Opens ↑X)ᵒᵖ f : U ⟶ U' x : F.obj U ⊢ ↑((F.map f ≫ (fun U f => { val := fun x => germ F x f, property := (_ : PrelocalPredicate.pred (PrelocalPredicate.sheafify (Sheafify.isGerm F)).toPrelocalPredicate fun x => germ F x f) }) U') x) = ↑(((fun U f => { val := fun x => germ F x f, property := (_ : PrelocalPredicate.pred (PrelocalPredicate.sheafify (Sheafify.isGerm F)).toPrelocalPredicate fun x => germ F x f) }) U ≫ (sheafify F).val.map f) x) [PROOFSTEP] ext ⟨u, m⟩ [GOAL] case h.a.h.mk X : TopCat F : Presheaf (Type v) X U U' : (Opens ↑X)ᵒᵖ f : U ⟶ U' x : F.obj U u : ↑X m : u ∈ U'.unop ⊢ ↑((F.map f ≫ (fun U f => { val := fun x => germ F x f, property := (_ : PrelocalPredicate.pred (PrelocalPredicate.sheafify (Sheafify.isGerm F)).toPrelocalPredicate fun x => germ F x f) }) U') x) { val := u, property := m } = ↑(((fun U f => { val := fun x => germ F x f, property := (_ : PrelocalPredicate.pred (PrelocalPredicate.sheafify (Sheafify.isGerm F)).toPrelocalPredicate fun x => germ F x f) }) U ≫ (sheafify F).val.map f) x) { val := u, property := m } [PROOFSTEP] exact germ_res_apply F f.unop ⟨u, m⟩ x [GOAL] X : TopCat F : Presheaf (Type v) X x : ↑X ⊢ Function.Surjective (stalkToFiber F x) [PROOFSTEP] apply TopCat.stalkToFiber_surjective [GOAL] case w X : TopCat F : Presheaf (Type v) X x : ↑X ⊢ ∀ (t : stalk F x), ∃ U f x_1, f { val := x, property := (_ : x ∈ U.obj) } = t [PROOFSTEP] intro t [GOAL] case w X : TopCat F : Presheaf (Type v) X x : ↑X t : stalk F x ⊢ ∃ U f x_1, f { val := x, property := (_ : x ∈ U.obj) } = t [PROOFSTEP] obtain ⟨U, m, s, rfl⟩ := F.germ_exist _ t [GOAL] case w.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U : Opens ↑X m : x ∈ U s : (forget (Type v)).obj (F.obj (op U)) ⊢ ∃ U_1 f x_1, f { val := x, property := (_ : x ∈ U_1.obj) } = ↑(germ F { val := x, property := m }) s [PROOFSTEP] use⟨U, m⟩ [GOAL] case h X : TopCat F : Presheaf (Type v) X x : ↑X U : Opens ↑X m : x ∈ U s : (forget (Type v)).obj (F.obj (op U)) ⊢ ∃ f x_1, f { val := x, property := (_ : x ∈ { obj := U, property := m }.obj) } = ↑(germ F { val := x, property := m }) s [PROOFSTEP] fconstructor [GOAL] case h.w X : TopCat F : Presheaf (Type v) X x : ↑X U : Opens ↑X m : x ∈ U s : (forget (Type v)).obj (F.obj (op U)) ⊢ (y : { x_1 // x_1 ∈ { obj := U, property := m }.obj }) → stalk F ↑y [PROOFSTEP] exact fun y => F.germ y s [GOAL] case h.h X : TopCat F : Presheaf (Type v) X x : ↑X U : Opens ↑X m : x ∈ U s : (forget (Type v)).obj (F.obj (op U)) ⊢ ∃ x_1, germ F { val := x, property := (_ : x ∈ { obj := U, property := m }.obj) } s = ↑(germ F { val := x, property := m }) s [PROOFSTEP] exact ⟨PrelocalPredicate.sheafifyOf ⟨s, fun _ => rfl⟩, rfl⟩ [GOAL] X : TopCat F : Presheaf (Type v) X x : ↑X ⊢ Function.Injective (stalkToFiber F x) [PROOFSTEP] apply TopCat.stalkToFiber_injective [GOAL] case w X : TopCat F : Presheaf (Type v) X x : ↑X ⊢ ∀ (U V : OpenNhds x) (fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y), PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU → ∀ (fV : (y : { x_2 // x_2 ∈ V.obj }) → stalk F ↑y), PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV → fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } → ∃ W iU iV, ∀ (w : { x_4 // x_4 ∈ W.obj }), fU ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑U.obj) }) w) = fV ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑V.obj) }) w) [PROOFSTEP] intro U V fU hU fV hV e [GOAL] case w X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV e : fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } ⊢ ∃ W iU iV, ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] rcases hU ⟨x, U.2⟩ with ⟨U', mU, iU, gU, wU⟩ [GOAL] case w.intro.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV e : fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU ⊢ ∃ W iU iV, ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] rcases hV ⟨x, V.2⟩ with ⟨V', mV, iV, gV, wV⟩ [GOAL] case w.intro.intro.intro.intro.intro.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV e : fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV ⊢ ∃ W iU iV, ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] have wUx := wU ⟨x, mU⟩ [GOAL] case w.intro.intro.intro.intro.intro.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV e : fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV wUx : (fun x_1 => fU ((fun x_2 => { val := ↑x_2, property := (_ : ↑x_2 ∈ ↑U.obj) }) x_1)) { val := x, property := mU } = germ F { val := x, property := mU } gU ⊢ ∃ W iU iV, ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] dsimp at wUx [GOAL] case w.intro.intro.intro.intro.intro.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV e : fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV wUx : fU { val := x, property := (_ : ↑{ val := x, property := mU } ∈ ↑U.obj) } = germ F { val := x, property := mU } gU ⊢ ∃ W iU iV, ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] erw [wUx] at e [GOAL] case w.intro.intro.intro.intro.intro.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') e : germ F { val := x, property := mU } gU = fV { val := x, property := (_ : x ∈ V.obj) } wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV wUx : fU { val := x, property := (_ : ↑{ val := x, property := mU } ∈ ↑U.obj) } = germ F { val := x, property := mU } gU ⊢ ∃ W iU iV, ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] clear wUx [GOAL] case w.intro.intro.intro.intro.intro.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') e : germ F { val := x, property := mU } gU = fV { val := x, property := (_ : x ∈ V.obj) } wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV ⊢ ∃ W iU iV, ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] have wVx := wV ⟨x, mV⟩ [GOAL] case w.intro.intro.intro.intro.intro.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') e : germ F { val := x, property := mU } gU = fV { val := x, property := (_ : x ∈ V.obj) } wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV wVx : (fun x_1 => fV ((fun x_2 => { val := ↑x_2, property := (_ : ↑x_2 ∈ ↑V.obj) }) x_1)) { val := x, property := mV } = germ F { val := x, property := mV } gV ⊢ ∃ W iU iV, ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] dsimp at wVx [GOAL] case w.intro.intro.intro.intro.intro.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') e : germ F { val := x, property := mU } gU = fV { val := x, property := (_ : x ∈ V.obj) } wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV wVx : fV { val := x, property := (_ : ↑{ val := x, property := mV } ∈ ↑V.obj) } = germ F { val := x, property := mV } gV ⊢ ∃ W iU iV, ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] erw [wVx] at e [GOAL] case w.intro.intro.intro.intro.intro.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') e : germ F { val := x, property := mU } gU = germ F { val := x, property := mV } gV wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV wVx : fV { val := x, property := (_ : ↑{ val := x, property := mV } ∈ ↑V.obj) } = germ F { val := x, property := mV } gV ⊢ ∃ W iU iV, ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] clear wVx [GOAL] case w.intro.intro.intro.intro.intro.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') e : germ F { val := x, property := mU } gU = germ F { val := x, property := mV } gV wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV ⊢ ∃ W iU iV, ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] rcases F.germ_eq x mU mV gU gV e with ⟨W, mW, iU', iV', (e' : F.map iU'.op gU = F.map iV'.op gV)⟩ [GOAL] case w.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') e : germ F { val := x, property := mU } gU = germ F { val := x, property := mV } gV wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV W : Opens ↑X mW : x ∈ W iU' : W ⟶ U' iV' : W ⟶ V' e' : F.map iU'.op gU = F.map iV'.op gV ⊢ ∃ W iU iV, ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] use⟨W ⊓ (U' ⊓ V'), ⟨mW, mU, mV⟩⟩ [GOAL] case h X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') e : germ F { val := x, property := mU } gU = germ F { val := x, property := mV } gV wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV W : Opens ↑X mW : x ∈ W iU' : W ⟶ U' iV' : W ⟶ V' e' : F.map iU'.op gU = F.map iV'.op gV ⊢ ∃ iU iV, ∀ (w : { x_1 // x_1 ∈ { obj := W ⊓ (U' ⊓ V'), property := (_ : x ∈ ↑W ∧ x ∈ ↑(U' ⊓ V')) }.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] refine' ⟨_, _, _⟩ [GOAL] case h.refine'_1 X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') e : germ F { val := x, property := mU } gU = germ F { val := x, property := mV } gV wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV W : Opens ↑X mW : x ∈ W iU' : W ⟶ U' iV' : W ⟶ V' e' : F.map iU'.op gU = F.map iV'.op gV ⊢ { obj := W ⊓ (U' ⊓ V'), property := (_ : x ∈ ↑W ∧ x ∈ ↑(U' ⊓ V')) } ⟶ U [PROOFSTEP] change W ⊓ (U' ⊓ V') ⟶ U.obj [GOAL] case h.refine'_1 X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') e : germ F { val := x, property := mU } gU = germ F { val := x, property := mV } gV wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV W : Opens ↑X mW : x ∈ W iU' : W ⟶ U' iV' : W ⟶ V' e' : F.map iU'.op gU = F.map iV'.op gV ⊢ W ⊓ (U' ⊓ V') ⟶ U.obj [PROOFSTEP] exact Opens.infLERight _ _ ≫ Opens.infLELeft _ _ ≫ iU [GOAL] case h.refine'_2 X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') e : germ F { val := x, property := mU } gU = germ F { val := x, property := mV } gV wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV W : Opens ↑X mW : x ∈ W iU' : W ⟶ U' iV' : W ⟶ V' e' : F.map iU'.op gU = F.map iV'.op gV ⊢ { obj := W ⊓ (U' ⊓ V'), property := (_ : x ∈ ↑W ∧ x ∈ ↑(U' ⊓ V')) } ⟶ V [PROOFSTEP] change W ⊓ (U' ⊓ V') ⟶ V.obj [GOAL] case h.refine'_2 X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') e : germ F { val := x, property := mU } gU = germ F { val := x, property := mV } gV wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV W : Opens ↑X mW : x ∈ W iU' : W ⟶ U' iV' : W ⟶ V' e' : F.map iU'.op gU = F.map iV'.op gV ⊢ W ⊓ (U' ⊓ V') ⟶ V.obj [PROOFSTEP] exact Opens.infLERight _ _ ≫ Opens.infLERight _ _ ≫ iV [GOAL] case h.refine'_3 X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') e : germ F { val := x, property := mU } gU = germ F { val := x, property := mV } gV wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV W : Opens ↑X mW : x ∈ W iU' : W ⟶ U' iV' : W ⟶ V' e' : F.map iU'.op gU = F.map iV'.op gV ⊢ ∀ (w : { x_1 // x_1 ∈ { obj := W ⊓ (U' ⊓ V'), property := (_ : x ∈ ↑W ∧ x ∈ ↑(U' ⊓ V')) }.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] intro w [GOAL] case h.refine'_3 X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') wU : ∀ (x_1 : { x // x ∈ U' }), (fun x_2 => fU ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑U.obj) }) x_2)) x_1 = germ F x_1 gU V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') e : germ F { val := x, property := mU } gU = germ F { val := x, property := mV } gV wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV W : Opens ↑X mW : x ∈ W iU' : W ⟶ U' iV' : W ⟶ V' e' : F.map iU'.op gU = F.map iV'.op gV w : { x_1 // x_1 ∈ { obj := W ⊓ (U' ⊓ V'), property := (_ : x ∈ ↑W ∧ x ∈ ↑(U' ⊓ V')) }.obj } ⊢ fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] specialize wU ⟨w.1, w.2.2.1⟩ [GOAL] case h.refine'_3 X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') e : germ F { val := x, property := mU } gU = germ F { val := x, property := mV } gV wV : ∀ (x_1 : { x // x ∈ V' }), (fun x_2 => fV ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑V.obj) }) x_2)) x_1 = germ F x_1 gV W : Opens ↑X mW : x ∈ W iU' : W ⟶ U' iV' : W ⟶ V' e' : F.map iU'.op gU = F.map iV'.op gV w : { x_1 // x_1 ∈ { obj := W ⊓ (U' ⊓ V'), property := (_ : x ∈ ↑W ∧ x ∈ ↑(U' ⊓ V')) }.obj } wU : (fun x_1 => fU ((fun x_2 => { val := ↑x_2, property := (_ : ↑x_2 ∈ ↑U.obj) }) x_1)) { val := ↑w, property := (_ : ↑w ∈ ↑U') } = germ F { val := ↑w, property := (_ : ↑w ∈ ↑U') } gU ⊢ fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] specialize wV ⟨w.1, w.2.2.2⟩ [GOAL] case h.refine'_3 X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') e : germ F { val := x, property := mU } gU = germ F { val := x, property := mV } gV W : Opens ↑X mW : x ∈ W iU' : W ⟶ U' iV' : W ⟶ V' e' : F.map iU'.op gU = F.map iV'.op gV w : { x_1 // x_1 ∈ { obj := W ⊓ (U' ⊓ V'), property := (_ : x ∈ ↑W ∧ x ∈ ↑(U' ⊓ V')) }.obj } wU : (fun x_1 => fU ((fun x_2 => { val := ↑x_2, property := (_ : ↑x_2 ∈ ↑U.obj) }) x_1)) { val := ↑w, property := (_ : ↑w ∈ ↑U') } = germ F { val := ↑w, property := (_ : ↑w ∈ ↑U') } gU wV : (fun x_1 => fV ((fun x_2 => { val := ↑x_2, property := (_ : ↑x_2 ∈ ↑V.obj) }) x_1)) { val := ↑w, property := (_ : ↑w ∈ ↑V') } = germ F { val := ↑w, property := (_ : ↑w ∈ ↑V') } gV ⊢ fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.obj) }) w) [PROOFSTEP] dsimp at wU wV ⊢ [GOAL] case h.refine'_3 X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : { x_1 // x_1 ∈ U.obj }) → stalk F ↑y hU : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fU fV : (y : { x_1 // x_1 ∈ V.obj }) → stalk F ↑y hV : PrelocalPredicate.pred (Sheafify.isLocallyGerm F).toPrelocalPredicate fV U' : Opens ↑X mU : ↑{ val := x, property := (_ : x ∈ U.obj) } ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') V' : Opens ↑X mV : ↑{ val := x, property := (_ : x ∈ V.obj) } ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') e : germ F { val := x, property := mU } gU = germ F { val := x, property := mV } gV W : Opens ↑X mW : x ∈ W iU' : W ⟶ U' iV' : W ⟶ V' e' : F.map iU'.op gU = F.map iV'.op gV w : { x_1 // x_1 ∈ { obj := W ⊓ (U' ⊓ V'), property := (_ : x ∈ ↑W ∧ x ∈ ↑(U' ⊓ V')) }.obj } wU : fU { val := ↑w, property := (_ : ↑{ val := ↑w, property := (_ : ↑w ∈ ↑U') } ∈ ↑U.obj) } = germ F { val := ↑w, property := (_ : ↑w ∈ ↑U') } gU wV : fV { val := ↑w, property := (_ : ↑{ val := ↑w, property := (_ : ↑w ∈ ↑V') } ∈ ↑V.obj) } = germ F { val := ↑w, property := (_ : ↑w ∈ ↑V') } gV ⊢ fU { val := ↑w, property := (_ : ↑w ∈ ↑U.obj) } = fV { val := ↑w, property := (_ : ↑w ∈ ↑V.obj) } [PROOFSTEP] erw [wU, ← F.germ_res iU' ⟨w, w.2.1⟩, wV, ← F.germ_res iV' ⟨w, w.2.1⟩, CategoryTheory.types_comp_apply, CategoryTheory.types_comp_apply, e']
{"mathlib_filename": "Mathlib.Topology.Sheaves.Sheafify", "llama_tokens": 16241}
[GOAL] 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B b : B ⊢ Trivialization.coordChangeL 𝕜 (trivialization B F) (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F [PROOFSTEP] ext v [GOAL] case h.h 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B b : B v : F ⊢ ↑(Trivialization.coordChangeL 𝕜 (trivialization B F) (trivialization B F) b) v = ↑(ContinuousLinearEquiv.refl 𝕜 F) v [PROOFSTEP] rw [Trivialization.coordChangeL_apply'] [GOAL] case h.h 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B b : B v : F ⊢ (↑(trivialization B F) (↑(LocalHomeomorph.symm (trivialization B F).toLocalHomeomorph) (b, v))).snd = ↑(ContinuousLinearEquiv.refl 𝕜 F) v case h.h.hb 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B b : B v : F ⊢ b ∈ (trivialization B F).baseSet ∩ (trivialization B F).baseSet [PROOFSTEP] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] [GOAL] 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e ⊢ Trivialization.IsLinear 𝕜 e [PROOFSTEP] rw [eq_trivialization B F e] [GOAL] 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e ⊢ Trivialization.IsLinear 𝕜 (trivialization B F) [PROOFSTEP] infer_instance [GOAL] 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B e e' : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e he' : MemTrivializationAtlas e' ⊢ ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜 e e' b)) (e.baseSet ∩ e'.baseSet) [PROOFSTEP] obtain rfl := eq_trivialization B F e [GOAL] 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B e' : Trivialization F TotalSpace.proj he' : MemTrivializationAtlas e' he : MemTrivializationAtlas (trivialization B F) ⊢ ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜 (trivialization B F) e' b)) ((trivialization B F).baseSet ∩ e'.baseSet) [PROOFSTEP] obtain rfl := eq_trivialization B F e' [GOAL] 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B he he' : MemTrivializationAtlas (trivialization B F) ⊢ ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜 (trivialization B F) (trivialization B F) b)) ((trivialization B F).baseSet ∩ (trivialization B F).baseSet) [PROOFSTEP] simp only [trivialization.coordChangeL] [GOAL] 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B he he' : MemTrivializationAtlas (trivialization B F) ⊢ ContinuousOn (fun b => ↑(ContinuousLinearEquiv.refl 𝕜 F)) ((trivialization B F).baseSet ∩ (trivialization B F).baseSet) [PROOFSTEP] exact continuous_const.continuousOn [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet ⊢ ↑(coordChangeL 𝕜 (prod e₁ e₂) (prod e₁' e₂') b) = ContinuousLinearMap.prodMap ↑(coordChangeL 𝕜 e₁ e₁' b) ↑(coordChangeL 𝕜 e₂ e₂' b) [PROOFSTEP] rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet ⊢ ∀ (x : F₁ × F₂), ↑↑(coordChangeL 𝕜 (prod e₁ e₂) (prod e₁' e₂') b) x = Prod.map (↑↑(coordChangeL 𝕜 e₁ e₁' b)) (↑↑(coordChangeL 𝕜 e₂ e₂' b)) x [PROOFSTEP] rintro ⟨v₁, v₂⟩ [GOAL] case mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet v₁ : F₁ v₂ : F₂ ⊢ ↑↑(coordChangeL 𝕜 (prod e₁ e₂) (prod e₁' e₂') b) (v₁, v₂) = Prod.map ↑↑(coordChangeL 𝕜 e₁ e₁' b) ↑↑(coordChangeL 𝕜 e₂ e₂' b) (v₁, v₂) [PROOFSTEP] show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) [GOAL] case mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet v₁ : F₁ v₂ : F₂ ⊢ ↑(coordChangeL 𝕜 (prod e₁ e₂) (prod e₁' e₂') b) (v₁, v₂) = (↑(coordChangeL 𝕜 e₁ e₁' b) v₁, ↑(coordChangeL 𝕜 e₂ e₂' b) v₂) [PROOFSTEP] rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] [GOAL] case mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet v₁ : F₁ v₂ : F₂ ⊢ (↑(prod e₁' e₂') (↑(LocalHomeomorph.symm (prod e₁ e₂).toLocalHomeomorph) (b, v₁, v₂))).snd = ((↑e₁' { proj := b, snd := Trivialization.symm e₁ b v₁ }).snd, (↑e₂' { proj := b, snd := Trivialization.symm e₂ b v₂ }).snd) case mk.hb 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet v₁ : F₁ v₂ : F₂ ⊢ b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet case mk.hb 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet v₁ : F₁ v₂ : F₂ ⊢ b ∈ e₂.baseSet ∩ e₂'.baseSet case mk.hb 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet v₁ : F₁ v₂ : F₂ ⊢ b ∈ e₁.baseSet ∩ e₁'.baseSet [PROOFSTEP] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ ⊢ ∀ (e : Trivialization (F₁ × F₂) TotalSpace.proj) [inst : MemTrivializationAtlas e], Trivialization.IsLinear 𝕜 e [PROOFSTEP] rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩ [GOAL] case mk.intro.intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ ⊢ Trivialization.IsLinear 𝕜 (Trivialization.prod e₁ e₂) [PROOFSTEP] skip [GOAL] case mk.intro.intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ ⊢ Trivialization.IsLinear 𝕜 (Trivialization.prod e₁ e₂) [PROOFSTEP] infer_instance [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ ⊢ ∀ (e e' : Trivialization (F₁ × F₂) TotalSpace.proj) [inst : MemTrivializationAtlas e] [inst_1 : MemTrivializationAtlas e'], ContinuousOn (fun b => ↑(coordChangeL 𝕜 e e' b)) (e.baseSet ∩ e'.baseSet) [PROOFSTEP] rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩ [GOAL] case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ ContinuousOn (fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) ((Trivialization.prod e₁ e₂).baseSet ∩ (Trivialization.prod e₁' e₂').baseSet) [PROOFSTEP] skip [GOAL] case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ ContinuousOn (fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) ((Trivialization.prod e₁ e₂).baseSet ∩ (Trivialization.prod e₁' e₂').baseSet) [PROOFSTEP] refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ [GOAL] case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ (Trivialization.prod e₁ e₂).baseSet ∩ (Trivialization.prod e₁' e₂').baseSet ⊆ e₁.baseSet ∩ e₁'.baseSet [PROOFSTEP] dsimp only [baseSet_prod, mfld_simps] [GOAL] case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ (Trivialization.prod e₁ e₂).baseSet ∩ (Trivialization.prod e₁' e₂').baseSet ⊆ e₂.baseSet ∩ e₂'.baseSet [PROOFSTEP] dsimp only [baseSet_prod, mfld_simps] [GOAL] case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ EqOn (fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) (fun x => ContinuousLinearMap.prodMap ↑(coordChangeL 𝕜 e₁ e₁' x) ↑(coordChangeL 𝕜 e₂ e₂' x)) ((Trivialization.prod e₁ e₂).baseSet ∩ (Trivialization.prod e₁' e₂').baseSet) [PROOFSTEP] dsimp only [baseSet_prod, mfld_simps] [GOAL] case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) ⊆ e₁.baseSet ∩ e₁'.baseSet [PROOFSTEP] mfld_set_tac [GOAL] case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) ⊆ e₂.baseSet ∩ e₂'.baseSet [PROOFSTEP] mfld_set_tac [GOAL] case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ EqOn (fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) (fun x => ContinuousLinearMap.prodMap ↑(coordChangeL 𝕜 e₁ e₁' x) ↑(coordChangeL 𝕜 e₂ e₂' x)) (e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet)) [PROOFSTEP] rintro b hb [GOAL] case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) ⊢ (fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) b = (fun x => ContinuousLinearMap.prodMap ↑(coordChangeL 𝕜 e₁ e₁' x) ↑(coordChangeL 𝕜 e₂ e₂' x)) b [PROOFSTEP] rw [ContinuousLinearMap.ext_iff] [GOAL] case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) ⊢ ∀ (x : F₁ × F₂), ↑((fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) b) x = ↑((fun x => ContinuousLinearMap.prodMap ↑(coordChangeL 𝕜 e₁ e₁' x) ↑(coordChangeL 𝕜 e₂ e₂' x)) b) x [PROOFSTEP] rintro ⟨v₁, v₂⟩ [GOAL] case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3.mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) v₁ : F₁ v₂ : F₂ ⊢ ↑((fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) b) (v₁, v₂) = ↑((fun x => ContinuousLinearMap.prodMap ↑(coordChangeL 𝕜 e₁ e₁' x) ↑(coordChangeL 𝕜 e₂ e₂' x)) b) (v₁, v₂) [PROOFSTEP] show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) [GOAL] case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3.mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) v₁ : F₁ v₂ : F₂ ⊢ ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b) (v₁, v₂) = (↑(coordChangeL 𝕜 e₁ e₁' b) v₁, ↑(coordChangeL 𝕜 e₂ e₂' b) v₂) [PROOFSTEP] rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] [GOAL] case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3.mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) v₁ : F₁ v₂ : F₂ ⊢ (↑(Trivialization.prod e₁' e₂') (↑(LocalHomeomorph.symm (Trivialization.prod e₁ e₂).toLocalHomeomorph) (b, v₁, v₂))).snd = ((↑e₁' { proj := b, snd := Trivialization.symm e₁ b v₁ }).snd, (↑e₂' { proj := b, snd := Trivialization.symm e₂ b v₂ }).snd) case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3.mk.hb 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) v₁ : F₁ v₂ : F₂ ⊢ b ∈ (Trivialization.prod e₁ e₂).baseSet ∩ (Trivialization.prod e₁' e₂').baseSet case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3.mk.hb 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) v₁ : F₁ v₂ : F₂ ⊢ b ∈ e₂.baseSet ∩ e₂'.baseSet case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3.mk.hb 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) v₁ : F₁ v₂ : F₂ ⊢ b ∈ e₁.baseSet ∩ e₁'.baseSet [PROOFSTEP] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : Trivialization.IsLinear 𝕜 e₁ inst✝ : Trivialization.IsLinear 𝕜 e₂ x : B hx : x ∈ (prod e₁ e₂).baseSet ⊢ continuousLinearEquivAt 𝕜 (prod e₁ e₂) x hx = ContinuousLinearEquiv.prod (continuousLinearEquivAt 𝕜 e₁ x (_ : x ∈ e₁.baseSet)) (continuousLinearEquivAt 𝕜 e₂ x (_ : x ∈ e₂.baseSet)) [PROOFSTEP] ext v : 2 [GOAL] case h.h 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : Trivialization.IsLinear 𝕜 e₁ inst✝ : Trivialization.IsLinear 𝕜 e₂ x : B hx : x ∈ (prod e₁ e₂).baseSet v : E₁ x × E₂ x ⊢ ↑(continuousLinearEquivAt 𝕜 (prod e₁ e₂) x hx) v = ↑(ContinuousLinearEquiv.prod (continuousLinearEquivAt 𝕜 e₁ x (_ : x ∈ e₁.baseSet)) (continuousLinearEquivAt 𝕜 e₂ x (_ : x ∈ e₂.baseSet))) v [PROOFSTEP] obtain ⟨v₁, v₂⟩ := v [GOAL] case h.h.mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : Trivialization.IsLinear 𝕜 e₁ inst✝ : Trivialization.IsLinear 𝕜 e₂ x : B hx : x ∈ (prod e₁ e₂).baseSet v₁ : E₁ x v₂ : E₂ x ⊢ ↑(continuousLinearEquivAt 𝕜 (prod e₁ e₂) x hx) (v₁, v₂) = ↑(ContinuousLinearEquiv.prod (continuousLinearEquivAt 𝕜 e₁ x (_ : x ∈ e₁.baseSet)) (continuousLinearEquivAt 𝕜 e₂ x (_ : x ∈ e₂.baseSet))) (v₁, v₂) [PROOFSTEP] rw [(e₁.prod e₂).continuousLinearEquivAt_apply 𝕜, Trivialization.prod] [GOAL] case h.h.mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : Trivialization.IsLinear 𝕜 e₁ inst✝ : Trivialization.IsLinear 𝕜 e₂ x : B hx : x ∈ (prod e₁ e₂).baseSet v₁ : E₁ x v₂ : E₂ x ⊢ (fun y => (↑{ toLocalHomeomorph := { toLocalEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuous_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuous_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) }, baseSet := e₁.baseSet ∩ e₂.baseSet, open_baseSet := (_ : IsOpen (e₁.baseSet ∩ e₂.baseSet)), source_eq := (_ : { toLocalEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuous_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuous_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) }.toLocalEquiv.source = { toLocalEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuous_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuous_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) }.toLocalEquiv.source), target_eq := (_ : { toLocalEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuous_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuous_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) }.toLocalEquiv.target = { toLocalEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuous_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuous_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) }.toLocalEquiv.target), proj_toFun := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ { toLocalEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuous_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuous_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) }.toLocalEquiv.source → (↑{ toLocalEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuous_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuous_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) } x).fst = (↑{ toLocalEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuous_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuous_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) } x).fst) } { proj := x, snd := y }).snd) (v₁, v₂) = ↑(ContinuousLinearEquiv.prod (continuousLinearEquivAt 𝕜 e₁ x (_ : x ∈ e₁.baseSet)) (continuousLinearEquivAt 𝕜 e₂ x (_ : x ∈ e₂.baseSet))) (v₁, v₂) [PROOFSTEP] exact (congr_arg Prod.snd (prod_apply 𝕜 hx.1 hx.2 v₁ v₂) : _) [GOAL] R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K ⊢ ∀ (e : Trivialization F TotalSpace.proj) [inst : MemTrivializationAtlas e], Trivialization.IsLinear 𝕜 e [PROOFSTEP] rintro _ ⟨e, he, rfl⟩ [GOAL] case mk.intro.intro R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e ⊢ Trivialization.IsLinear 𝕜 (Trivialization.pullback e f) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K ⊢ ∀ (e e' : Trivialization F TotalSpace.proj) [inst : MemTrivializationAtlas e] [inst_1 : MemTrivializationAtlas e'], ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜 e e' b)) (e.baseSet ∩ e'.baseSet) [PROOFSTEP] rintro _ _ ⟨e, he, rfl⟩ ⟨e', he', rfl⟩ [GOAL] case mk.intro.intro.mk.intro.intro R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e e' : Trivialization F TotalSpace.proj he' : MemTrivializationAtlas e' ⊢ ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜 (Trivialization.pullback e f) (Trivialization.pullback e' f) b)) ((Trivialization.pullback e f).baseSet ∩ (Trivialization.pullback e' f).baseSet) [PROOFSTEP] refine' ((continuousOn_coordChange 𝕜 e e').comp (map_continuous f).continuousOn fun b hb => hb).congr _ [GOAL] case mk.intro.intro.mk.intro.intro R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e e' : Trivialization F TotalSpace.proj he' : MemTrivializationAtlas e' ⊢ EqOn (fun b => ↑(Trivialization.coordChangeL 𝕜 (Trivialization.pullback e f) (Trivialization.pullback e' f) b)) ((fun b => ↑(Trivialization.coordChangeL 𝕜 e e' b)) ∘ ↑f) fun b => (e.baseSet ∩ e'.baseSet) (↑f b) [PROOFSTEP] rintro b (hb : f b ∈ e.baseSet ∩ e'.baseSet) [GOAL] case mk.intro.intro.mk.intro.intro R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e e' : Trivialization F TotalSpace.proj he' : MemTrivializationAtlas e' b : B' hb : ↑f b ∈ e.baseSet ∩ e'.baseSet ⊢ (fun b => ↑(Trivialization.coordChangeL 𝕜 (Trivialization.pullback e f) (Trivialization.pullback e' f) b)) b = ((fun b => ↑(Trivialization.coordChangeL 𝕜 e e' b)) ∘ ↑f) b [PROOFSTEP] ext v [GOAL] case mk.intro.intro.mk.intro.intro.h R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e e' : Trivialization F TotalSpace.proj he' : MemTrivializationAtlas e' b : B' hb : ↑f b ∈ e.baseSet ∩ e'.baseSet v : F ⊢ ↑((fun b => ↑(Trivialization.coordChangeL 𝕜 (Trivialization.pullback e f) (Trivialization.pullback e' f) b)) b) v = ↑(((fun b => ↑(Trivialization.coordChangeL 𝕜 e e' b)) ∘ ↑f) b) v [PROOFSTEP] show ((e.pullback f).coordChangeL 𝕜 (e'.pullback f) b) v = (e.coordChangeL 𝕜 e' (f b)) v [GOAL] case mk.intro.intro.mk.intro.intro.h R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e e' : Trivialization F TotalSpace.proj he' : MemTrivializationAtlas e' b : B' hb : ↑f b ∈ e.baseSet ∩ e'.baseSet v : F ⊢ ↑(Trivialization.coordChangeL 𝕜 (Trivialization.pullback e f) (Trivialization.pullback e' f) b) v = ↑(Trivialization.coordChangeL 𝕜 e e' (↑f b)) v [PROOFSTEP] rw [e.coordChangeL_apply e' hb, (e.pullback f).coordChangeL_apply' _] [GOAL] case mk.intro.intro.mk.intro.intro.h R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e e' : Trivialization F TotalSpace.proj he' : MemTrivializationAtlas e' b : B' hb : ↑f b ∈ e.baseSet ∩ e'.baseSet v : F ⊢ (↑(Trivialization.pullback e' f) (↑(LocalHomeomorph.symm (Trivialization.pullback e f).toLocalHomeomorph) (b, v))).snd = (↑e' { proj := ↑f b, snd := Trivialization.symm e (↑f b) v }).snd case mk.intro.intro.mk.intro.intro.h.hb R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e e' : Trivialization F TotalSpace.proj he' : MemTrivializationAtlas e' b : B' hb : ↑f b ∈ e.baseSet ∩ e'.baseSet v : F ⊢ b ∈ (Trivialization.pullback e f).baseSet ∩ (Trivialization.pullback e' f).baseSet [PROOFSTEP] exacts [rfl, hb]
{"mathlib_filename": "Mathlib.Topology.VectorBundle.Constructions", "llama_tokens": 32904}
[GOAL] X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F : Presheaf CommRingCat X G : SubmonoidPresheaf F U : (Opens ↑X)ᵒᵖ ⊢ { obj := fun U => CommRingCat.of (Localization (obj G U)), map := fun {U V} i => CommRingCat.ofHom (IsLocalization.map (Localization (obj G V)) (F.map i) (_ : obj G U ≤ Submonoid.comap (F.map i) (obj G V))) }.map (𝟙 U) = 𝟙 ({ obj := fun U => CommRingCat.of (Localization (obj G U)), map := fun {U V} i => CommRingCat.ofHom (IsLocalization.map (Localization (obj G V)) (F.map i) (_ : obj G U ≤ Submonoid.comap (F.map i) (obj G V))) }.obj U) [PROOFSTEP] simp_rw [F.map_id] [GOAL] X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F : Presheaf CommRingCat X G : SubmonoidPresheaf F U : (Opens ↑X)ᵒᵖ ⊢ CommRingCat.ofHom (IsLocalization.map (Localization (obj G U)) (𝟙 (F.obj U)) (_ : obj G U ≤ Submonoid.comap (𝟙 (F.obj U)) (obj G U))) = 𝟙 (CommRingCat.of (Localization (obj G U))) [PROOFSTEP] ext x [GOAL] case w X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F : Presheaf CommRingCat X G : SubmonoidPresheaf F U : (Opens ↑X)ᵒᵖ x : (forget CommRingCat).obj (CommRingCat.of (Localization (obj G U))) ⊢ ↑(CommRingCat.ofHom (IsLocalization.map (Localization (obj G U)) (𝟙 (F.obj U)) (_ : obj G U ≤ Submonoid.comap (𝟙 (F.obj U)) (obj G U)))) x = ↑(𝟙 (CommRingCat.of (Localization (obj G U)))) x [PROOFSTEP] exact IsLocalization.map_id (M := G.obj U) (S := Localization (G.obj U)) x [GOAL] X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F : Presheaf CommRingCat X G : SubmonoidPresheaf F U V W : (Opens ↑X)ᵒᵖ i : U ⟶ V j : V ⟶ W ⊢ { obj := fun U => CommRingCat.of (Localization (obj G U)), map := fun {U V} i => CommRingCat.ofHom (IsLocalization.map (Localization (obj G V)) (F.map i) (_ : obj G U ≤ Submonoid.comap (F.map i) (obj G V))) }.map (i ≫ j) = { obj := fun U => CommRingCat.of (Localization (obj G U)), map := fun {U V} i => CommRingCat.ofHom (IsLocalization.map (Localization (obj G V)) (F.map i) (_ : obj G U ≤ Submonoid.comap (F.map i) (obj G V))) }.map i ≫ { obj := fun U => CommRingCat.of (Localization (obj G U)), map := fun {U V} i => CommRingCat.ofHom (IsLocalization.map (Localization (obj G V)) (F.map i) (_ : obj G U ≤ Submonoid.comap (F.map i) (obj G V))) }.map j [PROOFSTEP] delta CommRingCat.ofHom CommRingCat.of Bundled.of [GOAL] X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F : Presheaf CommRingCat X G : SubmonoidPresheaf F U V W : (Opens ↑X)ᵒᵖ i : U ⟶ V j : V ⟶ W ⊢ { obj := fun U => Bundled.mk (Localization (obj G U)), map := fun {U V} i => IsLocalization.map (Localization (obj G V)) (F.map i) (_ : obj G U ≤ Submonoid.comap (F.map i) (obj G V)) }.map (i ≫ j) = { obj := fun U => Bundled.mk (Localization (obj G U)), map := fun {U V} i => IsLocalization.map (Localization (obj G V)) (F.map i) (_ : obj G U ≤ Submonoid.comap (F.map i) (obj G V)) }.map i ≫ { obj := fun U => Bundled.mk (Localization (obj G U)), map := fun {U V} i => IsLocalization.map (Localization (obj G V)) (F.map i) (_ : obj G U ≤ Submonoid.comap (F.map i) (obj G V)) }.map j [PROOFSTEP] simp_rw [F.map_comp, CommRingCat.comp_eq_ring_hom_comp] [GOAL] X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F : Presheaf CommRingCat X G : SubmonoidPresheaf F U V W : (Opens ↑X)ᵒᵖ i : U ⟶ V j : V ⟶ W ⊢ IsLocalization.map (Localization (obj G W)) (RingHom.comp (F.map j) (F.map i)) (_ : obj G U ≤ Submonoid.comap (RingHom.comp (F.map j) (F.map i)) (obj G W)) = RingHom.comp (IsLocalization.map (Localization (obj G W)) (F.map j) (_ : obj G V ≤ Submonoid.comap (F.map j) (obj G W))) (IsLocalization.map (Localization (obj G V)) (F.map i) (_ : obj G U ≤ Submonoid.comap (F.map i) (obj G V))) [PROOFSTEP] rw [IsLocalization.map_comp_map] [GOAL] X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F : Presheaf CommRingCat X G : SubmonoidPresheaf F S : (x : ↑X) → Submonoid ↑(stalk F x) U V : (Opens ↑X)ᵒᵖ i : U ⟶ V ⊢ (fun U => ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ F x) (S ↑x)) U ≤ Submonoid.comap (F.map i) ((fun U => ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ F x) (S ↑x)) V) [PROOFSTEP] intro s hs [GOAL] X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F : Presheaf CommRingCat X G : SubmonoidPresheaf F S : (x : ↑X) → Submonoid ↑(stalk F x) U V : (Opens ↑X)ᵒᵖ i : U ⟶ V s : (forget CommRingCat).obj (F.obj U) hs : s ∈ (fun U => ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ F x) (S ↑x)) U ⊢ s ∈ Submonoid.comap (F.map i) ((fun U => ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ F x) (S ↑x)) V) [PROOFSTEP] simp only [Submonoid.mem_comap, Submonoid.mem_iInf] at hs ⊢ [GOAL] X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F : Presheaf CommRingCat X G : SubmonoidPresheaf F S : (x : ↑X) → Submonoid ↑(stalk F x) U V : (Opens ↑X)ᵒᵖ i : U ⟶ V s : (forget CommRingCat).obj (F.obj U) hs : ∀ (i : { x // x ∈ U.unop }), ↑(germ F i) s ∈ S ↑i ⊢ ∀ (i_1 : { x // x ∈ V.unop }), ↑(germ F i_1) (↑(F.map i) s) ∈ S ↑i_1 [PROOFSTEP] intro x [GOAL] X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F : Presheaf CommRingCat X G : SubmonoidPresheaf F S : (x : ↑X) → Submonoid ↑(stalk F x) U V : (Opens ↑X)ᵒᵖ i : U ⟶ V s : (forget CommRingCat).obj (F.obj U) hs : ∀ (i : { x // x ∈ U.unop }), ↑(germ F i) s ∈ S ↑i x : { x // x ∈ V.unop } ⊢ ↑(germ F x) (↑(F.map i) s) ∈ S ↑x [PROOFSTEP] change (F.map i.unop.op ≫ F.germ x) s ∈ _ [GOAL] X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F : Presheaf CommRingCat X G : SubmonoidPresheaf F S : (x : ↑X) → Submonoid ↑(stalk F x) U V : (Opens ↑X)ᵒᵖ i : U ⟶ V s : (forget CommRingCat).obj (F.obj U) hs : ∀ (i : { x // x ∈ U.unop }), ↑(germ F i) s ∈ S ↑i x : { x // x ∈ V.unop } ⊢ ↑(F.map i.unop.op ≫ germ F x) s ∈ S ↑x [PROOFSTEP] rw [F.germ_res] [GOAL] X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F : Presheaf CommRingCat X G : SubmonoidPresheaf F S : (x : ↑X) → Submonoid ↑(stalk F x) U V : (Opens ↑X)ᵒᵖ i : U ⟶ V s : (forget CommRingCat).obj (F.obj U) hs : ∀ (i : { x // x ∈ U.unop }), ↑(germ F i) s ∈ S ↑i x : { x // x ∈ V.unop } ⊢ ↑(germ F ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) s ∈ S ↑x [PROOFSTEP] exact hs _ [GOAL] X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X ⊢ Mono (toTotalQuotientPresheaf (Sheaf.presheaf F)) [PROOFSTEP] suffices : ∀ (U : (Opens ↑X)ᵒᵖ), Mono (F.presheaf.toTotalQuotientPresheaf.app U) [GOAL] X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X this : ∀ (U : (Opens ↑X)ᵒᵖ), Mono (NatTrans.app (toTotalQuotientPresheaf (Sheaf.presheaf F)) U) ⊢ Mono (toTotalQuotientPresheaf (Sheaf.presheaf F)) [PROOFSTEP] apply NatTrans.mono_of_mono_app [GOAL] case this X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X ⊢ ∀ (U : (Opens ↑X)ᵒᵖ), Mono (NatTrans.app (toTotalQuotientPresheaf (Sheaf.presheaf F)) U) [PROOFSTEP] intro U [GOAL] case this X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ ⊢ Mono (NatTrans.app (toTotalQuotientPresheaf (Sheaf.presheaf F)) U) [PROOFSTEP] apply ConcreteCategory.mono_of_injective [GOAL] case this.i X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ ⊢ Function.Injective ↑(NatTrans.app (toTotalQuotientPresheaf (Sheaf.presheaf F)) U) [PROOFSTEP] dsimp [toTotalQuotientPresheaf, CommRingCat.ofHom] -- Porting note : this is a hack to make the `refine` below works [GOAL] case this.i X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ ⊢ Function.Injective ↑(algebraMap (↑((Sheaf.presheaf F).obj U)) (Localization (⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ (Sheaf.presheaf F) x) (↑(stalk (Sheaf.presheaf F) ↑x))⁰))) [PROOFSTEP] set m := _ [GOAL] case this.i X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ m : ?m.65485 := ?m.65486 ⊢ Function.Injective ↑(algebraMap (↑((Sheaf.presheaf F).obj U)) (Localization (⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ (Sheaf.presheaf F) x) (↑(stalk (Sheaf.presheaf F) ↑x))⁰))) [PROOFSTEP] change Function.Injective (algebraMap _ (Localization m)) [GOAL] case this.i X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ m : Submonoid ((forget CommRingCat).obj ((Sheaf.presheaf F).obj U)) := ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ (Sheaf.presheaf F) x) (↑(stalk (Sheaf.presheaf F) ↑x))⁰ ⊢ Function.Injective ↑(algebraMap ((forget CommRingCat).obj ((Sheaf.presheaf F).obj U)) (Localization m)) [PROOFSTEP] change Function.Injective (algebraMap (F.presheaf.obj U) _) [GOAL] case this.i X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ m : Submonoid ((forget CommRingCat).obj ((Sheaf.presheaf F).obj U)) := ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ (Sheaf.presheaf F) x) (↑(stalk (Sheaf.presheaf F) ↑x))⁰ ⊢ Function.Injective ↑(algebraMap (↑((Sheaf.presheaf F).obj U)) (Localization m)) [PROOFSTEP] haveI : IsLocalization _ (Localization m) := Localization.isLocalization [GOAL] case this.i X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ m : Submonoid ((forget CommRingCat).obj ((Sheaf.presheaf F).obj U)) := ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ (Sheaf.presheaf F) x) (↑(stalk (Sheaf.presheaf F) ↑x))⁰ this : IsLocalization m (Localization m) ⊢ Function.Injective ↑(algebraMap (↑((Sheaf.presheaf F).obj U)) (Localization m)) [PROOFSTEP] refine IsLocalization.injective (M := m) (S := Localization m) ?_ [GOAL] case this.i X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ m : Submonoid ((forget CommRingCat).obj ((Sheaf.presheaf F).obj U)) := ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ (Sheaf.presheaf F) x) (↑(stalk (Sheaf.presheaf F) ↑x))⁰ this : IsLocalization m (Localization m) ⊢ m ≤ ((forget CommRingCat).obj ((Sheaf.presheaf F).obj U))⁰ [PROOFSTEP] intro s hs t e [GOAL] case this.i X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ m : Submonoid ((forget CommRingCat).obj ((Sheaf.presheaf F).obj U)) := ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ (Sheaf.presheaf F) x) (↑(stalk (Sheaf.presheaf F) ↑x))⁰ this : IsLocalization m (Localization m) s : (forget CommRingCat).obj ((Sheaf.presheaf F).obj U) hs : s ∈ m t : (forget CommRingCat).obj ((Sheaf.presheaf F).obj U) e : t * s = 0 ⊢ t = 0 [PROOFSTEP] apply section_ext F (unop U) [GOAL] case this.i.h X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ m : Submonoid ((forget CommRingCat).obj ((Sheaf.presheaf F).obj U)) := ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ (Sheaf.presheaf F) x) (↑(stalk (Sheaf.presheaf F) ↑x))⁰ this : IsLocalization m (Localization m) s : (forget CommRingCat).obj ((Sheaf.presheaf F).obj U) hs : s ∈ m t : (forget CommRingCat).obj ((Sheaf.presheaf F).obj U) e : t * s = 0 ⊢ ∀ (x : { x // x ∈ U.unop }), ↑(germ (Sheaf.presheaf F) x) t = ↑(germ (Sheaf.presheaf F) x) 0 [PROOFSTEP] intro x [GOAL] case this.i.h X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ m : Submonoid ((forget CommRingCat).obj ((Sheaf.presheaf F).obj U)) := ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ (Sheaf.presheaf F) x) (↑(stalk (Sheaf.presheaf F) ↑x))⁰ this : IsLocalization m (Localization m) s : (forget CommRingCat).obj ((Sheaf.presheaf F).obj U) hs : s ∈ m t : (forget CommRingCat).obj ((Sheaf.presheaf F).obj U) e : t * s = 0 x : { x // x ∈ U.unop } ⊢ ↑(germ (Sheaf.presheaf F) x) t = ↑(germ (Sheaf.presheaf F) x) 0 [PROOFSTEP] rw [map_zero] [GOAL] case this.i.h X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ m : Submonoid ((forget CommRingCat).obj ((Sheaf.presheaf F).obj U)) := ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ (Sheaf.presheaf F) x) (↑(stalk (Sheaf.presheaf F) ↑x))⁰ this : IsLocalization m (Localization m) s : (forget CommRingCat).obj ((Sheaf.presheaf F).obj U) hs : s ∈ m t : (forget CommRingCat).obj ((Sheaf.presheaf F).obj U) e : t * s = 0 x : { x // x ∈ U.unop } ⊢ ↑(germ (Sheaf.presheaf F) x) t = 0 [PROOFSTEP] apply Submonoid.mem_iInf.mp hs x [GOAL] case this.i.h.a X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ m : Submonoid ((forget CommRingCat).obj ((Sheaf.presheaf F).obj U)) := ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ (Sheaf.presheaf F) x) (↑(stalk (Sheaf.presheaf F) ↑x))⁰ this : IsLocalization m (Localization m) s : (forget CommRingCat).obj ((Sheaf.presheaf F).obj U) hs : s ∈ m t : (forget CommRingCat).obj ((Sheaf.presheaf F).obj U) e : t * s = 0 x : { x // x ∈ U.unop } ⊢ ↑(germ (Sheaf.presheaf F) x) t * ↑(germ (Sheaf.presheaf F) x) s = 0 [PROOFSTEP] dsimp [GOAL] case this.i.h.a X : TopCat C : Type u inst✝¹ : Category.{v, u} C inst✝ : ConcreteCategory C F✝ : Presheaf CommRingCat X G : SubmonoidPresheaf F✝ F : Sheaf CommRingCat X U : (Opens ↑X)ᵒᵖ m : Submonoid ((forget CommRingCat).obj ((Sheaf.presheaf F).obj U)) := ⨅ (x : { x // x ∈ U.unop }), Submonoid.comap (germ (Sheaf.presheaf F) x) (↑(stalk (Sheaf.presheaf F) ↑x))⁰ this : IsLocalization m (Localization m) s : (forget CommRingCat).obj ((Sheaf.presheaf F).obj U) hs : s ∈ m t : (forget CommRingCat).obj ((Sheaf.presheaf F).obj U) e : t * s = 0 x : { x // x ∈ U.unop } ⊢ ↑(germ (Sheaf.presheaf F) x) t * ↑(germ (Sheaf.presheaf F) x) s = 0 [PROOFSTEP] rw [← map_mul, e, map_zero]
{"mathlib_filename": "Mathlib.Topology.Sheaves.Operations", "llama_tokens": 7412}
[GOAL] X : TopCat T✝ : ↑X → Type v T : TopCat src✝ : PrelocalPredicate fun x => ↑T := continuousPrelocal X T U : Opens ↑X f : { x // x ∈ U } → ↑T w : ∀ (x : { x // x ∈ U }), ∃ V x i, PrelocalPredicate.pred { pred := fun {U} => PrelocalPredicate.pred src✝, res := (_ : ∀ {U V : Opens ↑X} (i : U ⟶ V) (f : { x // x ∈ V } → ↑T), PrelocalPredicate.pred src✝ f → PrelocalPredicate.pred src✝ fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) } fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) ⊢ PrelocalPredicate.pred { pred := fun {U} => PrelocalPredicate.pred src✝, res := (_ : ∀ {U V : Opens ↑X} (i : U ⟶ V) (f : { x // x ∈ V } → ↑T), PrelocalPredicate.pred src✝ f → PrelocalPredicate.pred src✝ fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) } f [PROOFSTEP] apply continuous_iff_continuousAt.2 [GOAL] X : TopCat T✝ : ↑X → Type v T : TopCat src✝ : PrelocalPredicate fun x => ↑T := continuousPrelocal X T U : Opens ↑X f : { x // x ∈ U } → ↑T w : ∀ (x : { x // x ∈ U }), ∃ V x i, PrelocalPredicate.pred { pred := fun {U} => PrelocalPredicate.pred src✝, res := (_ : ∀ {U V : Opens ↑X} (i : U ⟶ V) (f : { x // x ∈ V } → ↑T), PrelocalPredicate.pred src✝ f → PrelocalPredicate.pred src✝ fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) } fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) ⊢ ∀ (x : { x // x ∈ U }), ContinuousAt f x [PROOFSTEP] intro x [GOAL] X : TopCat T✝ : ↑X → Type v T : TopCat src✝ : PrelocalPredicate fun x => ↑T := continuousPrelocal X T U : Opens ↑X f : { x // x ∈ U } → ↑T w : ∀ (x : { x // x ∈ U }), ∃ V x i, PrelocalPredicate.pred { pred := fun {U} => PrelocalPredicate.pred src✝, res := (_ : ∀ {U V : Opens ↑X} (i : U ⟶ V) (f : { x // x ∈ V } → ↑T), PrelocalPredicate.pred src✝ f → PrelocalPredicate.pred src✝ fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) } fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) x : { x // x ∈ U } ⊢ ContinuousAt f x [PROOFSTEP] specialize w x [GOAL] X : TopCat T✝ : ↑X → Type v T : TopCat src✝ : PrelocalPredicate fun x => ↑T := continuousPrelocal X T U : Opens ↑X f : { x // x ∈ U } → ↑T x : { x // x ∈ U } w : ∃ V x i, PrelocalPredicate.pred { pred := fun {U} => PrelocalPredicate.pred src✝, res := (_ : ∀ {U V : Opens ↑X} (i : U ⟶ V) (f : { x // x ∈ V } → ↑T), PrelocalPredicate.pred src✝ f → PrelocalPredicate.pred src✝ fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) } fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) ⊢ ContinuousAt f x [PROOFSTEP] rcases w with ⟨V, m, i, w⟩ [GOAL] case intro.intro.intro X : TopCat T✝ : ↑X → Type v T : TopCat src✝ : PrelocalPredicate fun x => ↑T := continuousPrelocal X T U : Opens ↑X f : { x // x ∈ U } → ↑T x : { x // x ∈ U } V : Opens ↑X m : ↑x ∈ V i : V ⟶ U w : PrelocalPredicate.pred { pred := fun {U} => PrelocalPredicate.pred src✝, res := (_ : ∀ {U V : Opens ↑X} (i : U ⟶ V) (f : { x // x ∈ V } → ↑T), PrelocalPredicate.pred src✝ f → PrelocalPredicate.pred src✝ fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) } fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) ⊢ ContinuousAt f x [PROOFSTEP] dsimp at w [GOAL] case intro.intro.intro X : TopCat T✝ : ↑X → Type v T : TopCat src✝ : PrelocalPredicate fun x => ↑T := continuousPrelocal X T U : Opens ↑X f : { x // x ∈ U } → ↑T x : { x // x ∈ U } V : Opens ↑X m : ↑x ∈ V i : V ⟶ U w : Continuous fun x => f { val := ↑x, property := (_ : ↑x ∈ ↑U) } ⊢ ContinuousAt f x [PROOFSTEP] rw [continuous_iff_continuousAt] at w [GOAL] case intro.intro.intro X : TopCat T✝ : ↑X → Type v T : TopCat src✝ : PrelocalPredicate fun x => ↑T := continuousPrelocal X T U : Opens ↑X f : { x // x ∈ U } → ↑T x : { x // x ∈ U } V : Opens ↑X m : ↑x ∈ V i : V ⟶ U w : ∀ (x : { x // x ∈ V }), ContinuousAt (fun x => f { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x ⊢ ContinuousAt f x [PROOFSTEP] specialize w ⟨x, m⟩ [GOAL] case intro.intro.intro X : TopCat T✝ : ↑X → Type v T : TopCat src✝ : PrelocalPredicate fun x => ↑T := continuousPrelocal X T U : Opens ↑X f : { x // x ∈ U } → ↑T x : { x // x ∈ U } V : Opens ↑X m : ↑x ∈ V i : V ⟶ U w : ContinuousAt (fun x => f { val := ↑x, property := (_ : ↑x ∈ ↑U) }) { val := ↑x, property := m } ⊢ ContinuousAt f x [PROOFSTEP] simpa using (Opens.openEmbedding_of_le i.le).continuousAt_iff.1 w [GOAL] X : TopCat T✝ T : ↑X → Type v P : PrelocalPredicate T V U : Opens ↑X i : V ⟶ U f : (x : { x // x ∈ U }) → T ↑x w : (fun {U} f => ∀ (x : { x // x ∈ U }), ∃ V x i, pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) f x : { x // x ∈ V } ⊢ ∃ V_1 x i_1, pred P fun x => (fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x) [PROOFSTEP] specialize w (i x) [GOAL] X : TopCat T✝ T : ↑X → Type v P : PrelocalPredicate T V U : Opens ↑X i : V ⟶ U f : (x : { x // x ∈ U }) → T ↑x x : { x // x ∈ V } w : ∃ V_1 x i, pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) ⊢ ∃ V_1 x i_1, pred P fun x => (fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x) [PROOFSTEP] rcases w with ⟨V', m', i', p⟩ [GOAL] case intro.intro.intro X : TopCat T✝ T : ↑X → Type v P : PrelocalPredicate T V U : Opens ↑X i : V ⟶ U f : (x : { x // x ∈ U }) → T ↑x x : { x // x ∈ V } V' : Opens ↑X m' : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) ∈ V' i' : V' ⟶ U p : pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) ⊢ ∃ V_1 x i_1, pred P fun x => (fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x) [PROOFSTEP] refine' ⟨V ⊓ V', ⟨x.2, m'⟩, Opens.infLELeft _ _, _⟩ [GOAL] case intro.intro.intro X : TopCat T✝ T : ↑X → Type v P : PrelocalPredicate T V U : Opens ↑X i : V ⟶ U f : (x : { x // x ∈ U }) → T ↑x x : { x // x ∈ V } V' : Opens ↑X m' : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) ∈ V' i' : V' ⟶ U p : pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) ⊢ pred P fun x => (fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x) [PROOFSTEP] convert P.res (Opens.infLERight V V') _ p [GOAL] X : TopCat T✝ T : ↑X → Type v P : PrelocalPredicate T U : Opens ↑X f : (x : { x // x ∈ U }) → T ↑x w : ∀ (x : { x // x ∈ U }), ∃ V x i, pred { pred := fun {U} f => ∀ (x : { x // x ∈ U }), ∃ V x i, pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x), res := (_ : ∀ {V U : Opens ↑X} (i : V ⟶ U) (f : (x : { x // x ∈ U }) → T ↑x), (∀ (x : { x // x ∈ U }), ∃ V x i, pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) → ∀ (x : { x // x ∈ V }), ∃ V_1 x i_1, pred P fun x => (fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) } fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) x : { x // x ∈ U } ⊢ ∃ V x i, pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) [PROOFSTEP] specialize w x [GOAL] X : TopCat T✝ T : ↑X → Type v P : PrelocalPredicate T U : Opens ↑X f : (x : { x // x ∈ U }) → T ↑x x : { x // x ∈ U } w : ∃ V x i, pred { pred := fun {U} f => ∀ (x : { x // x ∈ U }), ∃ V x i, pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x), res := (_ : ∀ {V U : Opens ↑X} (i : V ⟶ U) (f : (x : { x // x ∈ U }) → T ↑x), (∀ (x : { x // x ∈ U }), ∃ V x i, pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) → ∀ (x : { x // x ∈ V }), ∃ V_1 x i_1, pred P fun x => (fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) } fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) ⊢ ∃ V x i, pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) [PROOFSTEP] rcases w with ⟨V, m, i, p⟩ [GOAL] case intro.intro.intro X : TopCat T✝ T : ↑X → Type v P : PrelocalPredicate T U : Opens ↑X f : (x : { x // x ∈ U }) → T ↑x x : { x // x ∈ U } V : Opens ↑X m : ↑x ∈ V i : V ⟶ U p : pred { pred := fun {U} f => ∀ (x : { x // x ∈ U }), ∃ V x i, pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x), res := (_ : ∀ {V U : Opens ↑X} (i : V ⟶ U) (f : (x : { x // x ∈ U }) → T ↑x), (∀ (x : { x // x ∈ U }), ∃ V x i, pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) → ∀ (x : { x // x ∈ V }), ∃ V_1 x i_1, pred P fun x => (fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) } fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) ⊢ ∃ V x i, pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) [PROOFSTEP] specialize p ⟨x.1, m⟩ [GOAL] case intro.intro.intro X : TopCat T✝ T : ↑X → Type v P : PrelocalPredicate T U : Opens ↑X f : (x : { x // x ∈ U }) → T ↑x x : { x // x ∈ U } V : Opens ↑X m : ↑x ∈ V i : V ⟶ U p : ∃ V_1 x i_1, pred P fun x => (fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x) ⊢ ∃ V x i, pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) [PROOFSTEP] rcases p with ⟨V', m', i', p'⟩ [GOAL] case intro.intro.intro.intro.intro.intro X : TopCat T✝ T : ↑X → Type v P : PrelocalPredicate T U : Opens ↑X f : (x : { x // x ∈ U }) → T ↑x x : { x // x ∈ U } V : Opens ↑X m : ↑x ∈ V i : V ⟶ U V' : Opens ↑X m' : ↑{ val := ↑x, property := m } ∈ V' i' : V' ⟶ V p' : pred P fun x => (fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x) ⊢ ∃ V x i, pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) [PROOFSTEP] exact ⟨V', m', i' ≫ i, p'⟩ [GOAL] X : TopCat T✝ T : ↑X → Type v P : PrelocalPredicate T U : Opens ↑X f : (x : { x // x ∈ U }) → T ↑x h : pred P f x : { x // x ∈ U } ⊢ pred P fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) [PROOFSTEP] convert h [GOAL] X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf ⊢ ∃! s, IsGluing (subpresheafToTypes P.toPrelocalPredicate) U sf s [PROOFSTEP] let sf' : ∀ i : ι, (presheafToTypes X T).obj (op (U i)) := fun i => (sf i).val [GOAL] X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf sf' : (i : ι) → (presheafToTypes X T).obj (op (U i)) := fun i => ↑(sf i) ⊢ ∃! s, IsGluing (subpresheafToTypes P.toPrelocalPredicate) U sf s [PROOFSTEP] have sf'_comp : (presheafToTypes X T).IsCompatible U sf' := fun i j => congr_arg Subtype.val (sf_comp i j) -- So, we can obtain a unique gluing [GOAL] X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf sf' : (i : ι) → (presheafToTypes X T).obj (op (U i)) := fun i => ↑(sf i) sf'_comp : IsCompatible (presheafToTypes X T) U sf' ⊢ ∃! s, IsGluing (subpresheafToTypes P.toPrelocalPredicate) U sf s [PROOFSTEP] obtain ⟨gl, gl_spec, gl_uniq⟩ := (sheafToTypes X T).existsUnique_gluing U sf' sf'_comp [GOAL] case intro.intro X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf sf' : (i : ι) → (presheafToTypes X T).obj (op (U i)) := fun i => ↑(sf i) sf'_comp : IsCompatible (presheafToTypes X T) U sf' gl : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U))) gl_spec : IsGluing (sheafToTypes X T).val U sf' gl gl_uniq : ∀ (y : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U)))), (fun s => IsGluing (sheafToTypes X T).val U sf' s) y → y = gl ⊢ ∃! s, IsGluing (subpresheafToTypes P.toPrelocalPredicate) U sf s [PROOFSTEP] refine' ⟨⟨gl, _⟩, _, _⟩ [GOAL] case intro.intro.refine'_1 X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf sf' : (i : ι) → (presheafToTypes X T).obj (op (U i)) := fun i => ↑(sf i) sf'_comp : IsCompatible (presheafToTypes X T) U sf' gl : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U))) gl_spec : IsGluing (sheafToTypes X T).val U sf' gl gl_uniq : ∀ (y : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U)))), (fun s => IsGluing (sheafToTypes X T).val U sf' s) y → y = gl ⊢ PrelocalPredicate.pred P.toPrelocalPredicate gl [PROOFSTEP] apply P.locality [GOAL] case intro.intro.refine'_1.x X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf sf' : (i : ι) → (presheafToTypes X T).obj (op (U i)) := fun i => ↑(sf i) sf'_comp : IsCompatible (presheafToTypes X T) U sf' gl : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U))) gl_spec : IsGluing (sheafToTypes X T).val U sf' gl gl_uniq : ∀ (y : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U)))), (fun s => IsGluing (sheafToTypes X T).val U sf' s) y → y = gl ⊢ ∀ (x : { x // x ∈ (op (iSup U)).unop }), ∃ V x i, PrelocalPredicate.pred P.toPrelocalPredicate fun x => gl ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op (iSup U)).unop) }) x) [PROOFSTEP] rintro ⟨x, mem⟩ -- Once we're at a particular point `x`, we can select some open set `x ∈ U i`. [GOAL] case intro.intro.refine'_1.x.mk X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf sf' : (i : ι) → (presheafToTypes X T).obj (op (U i)) := fun i => ↑(sf i) sf'_comp : IsCompatible (presheafToTypes X T) U sf' gl : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U))) gl_spec : IsGluing (sheafToTypes X T).val U sf' gl gl_uniq : ∀ (y : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U)))), (fun s => IsGluing (sheafToTypes X T).val U sf' s) y → y = gl x : ↑X mem : x ∈ (op (iSup U)).unop ⊢ ∃ V x i, PrelocalPredicate.pred P.toPrelocalPredicate fun x => gl ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op (iSup U)).unop) }) x) [PROOFSTEP] choose i hi using Opens.mem_iSup.mp mem [GOAL] case intro.intro.refine'_1.x.mk X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf sf' : (i : ι) → (presheafToTypes X T).obj (op (U i)) := fun i => ↑(sf i) sf'_comp : IsCompatible (presheafToTypes X T) U sf' gl : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U))) gl_spec : IsGluing (sheafToTypes X T).val U sf' gl gl_uniq : ∀ (y : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U)))), (fun s => IsGluing (sheafToTypes X T).val U sf' s) y → y = gl x : ↑X mem : x ∈ (op (iSup U)).unop i : ι hi : x ∈ U i ⊢ ∃ V x i, PrelocalPredicate.pred P.toPrelocalPredicate fun x => gl ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op (iSup U)).unop) }) x) [PROOFSTEP] use U i, hi, Opens.leSupr U i [GOAL] case h X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf sf' : (i : ι) → (presheafToTypes X T).obj (op (U i)) := fun i => ↑(sf i) sf'_comp : IsCompatible (presheafToTypes X T) U sf' gl : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U))) gl_spec : IsGluing (sheafToTypes X T).val U sf' gl gl_uniq : ∀ (y : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U)))), (fun s => IsGluing (sheafToTypes X T).val U sf' s) y → y = gl x : ↑X mem : x ∈ (op (iSup U)).unop i : ι hi : x ∈ U i ⊢ PrelocalPredicate.pred P.toPrelocalPredicate fun x => gl ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op (iSup U)).unop) }) x) [PROOFSTEP] convert (sf i).property using 1 [GOAL] case h.e'_5.h X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf sf' : (i : ι) → (presheafToTypes X T).obj (op (U i)) := fun i => ↑(sf i) sf'_comp : IsCompatible (presheafToTypes X T) U sf' gl : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U))) gl_spec : IsGluing (sheafToTypes X T).val U sf' gl gl_uniq : ∀ (y : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U)))), (fun s => IsGluing (sheafToTypes X T).val U sf' s) y → y = gl x : ↑X mem : x ∈ (op (iSup U)).unop i : ι hi : x ∈ U i e_4✝ : U i = (op (U i)).unop ⊢ (fun x => gl ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op (iSup U)).unop) }) x)) = ↑(sf i) [PROOFSTEP] exact gl_spec i [GOAL] case intro.intro.refine'_2 X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf sf' : (i : ι) → (presheafToTypes X T).obj (op (U i)) := fun i => ↑(sf i) sf'_comp : IsCompatible (presheafToTypes X T) U sf' gl : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U))) gl_spec : IsGluing (sheafToTypes X T).val U sf' gl gl_uniq : ∀ (y : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U)))), (fun s => IsGluing (sheafToTypes X T).val U sf' s) y → y = gl ⊢ (fun s => IsGluing (subpresheafToTypes P.toPrelocalPredicate) U sf s) { val := gl, property := (_ : PrelocalPredicate.pred P.toPrelocalPredicate gl) } [PROOFSTEP] exact fun i => Subtype.ext (gl_spec i) [GOAL] case intro.intro.refine'_3 X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf sf' : (i : ι) → (presheafToTypes X T).obj (op (U i)) := fun i => ↑(sf i) sf'_comp : IsCompatible (presheafToTypes X T) U sf' gl : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U))) gl_spec : IsGluing (sheafToTypes X T).val U sf' gl gl_uniq : ∀ (y : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U)))), (fun s => IsGluing (sheafToTypes X T).val U sf' s) y → y = gl ⊢ ∀ (y : (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (iSup U)))), (fun s => IsGluing (subpresheafToTypes P.toPrelocalPredicate) U sf s) y → y = { val := gl, property := (_ : PrelocalPredicate.pred P.toPrelocalPredicate gl) } [PROOFSTEP] intro gl' hgl' [GOAL] case intro.intro.refine'_3 X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf sf' : (i : ι) → (presheafToTypes X T).obj (op (U i)) := fun i => ↑(sf i) sf'_comp : IsCompatible (presheafToTypes X T) U sf' gl : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U))) gl_spec : IsGluing (sheafToTypes X T).val U sf' gl gl_uniq : ∀ (y : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U)))), (fun s => IsGluing (sheafToTypes X T).val U sf' s) y → y = gl gl' : (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (iSup U))) hgl' : IsGluing (subpresheafToTypes P.toPrelocalPredicate) U sf gl' ⊢ gl' = { val := gl, property := (_ : PrelocalPredicate.pred P.toPrelocalPredicate gl) } [PROOFSTEP] refine Subtype.ext ?_ [GOAL] case intro.intro.refine'_3 X : TopCat T : ↑X → Type v P✝ : PrelocalPredicate T P : LocalPredicate T ι : Type v U : ι → Opens ↑X sf : (i : ι) → (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (U i))) sf_comp : IsCompatible (subpresheafToTypes P.toPrelocalPredicate) U sf sf' : (i : ι) → (presheafToTypes X T).obj (op (U i)) := fun i => ↑(sf i) sf'_comp : IsCompatible (presheafToTypes X T) U sf' gl : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U))) gl_spec : IsGluing (sheafToTypes X T).val U sf' gl gl_uniq : ∀ (y : (forget (Type v)).obj ((sheafToTypes X T).val.obj (op (iSup U)))), (fun s => IsGluing (sheafToTypes X T).val U sf' s) y → y = gl gl' : (forget (Type v)).obj ((subpresheafToTypes P.toPrelocalPredicate).obj (op (iSup U))) hgl' : IsGluing (subpresheafToTypes P.toPrelocalPredicate) U sf gl' ⊢ ↑gl' = ↑{ val := gl, property := (_ : PrelocalPredicate.pred P.toPrelocalPredicate gl) } [PROOFSTEP] exact gl_uniq gl'.1 fun i => congr_arg Subtype.val (hgl' i) [GOAL] X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X ⊢ Presheaf.stalk (Sheaf.presheaf (subsheafToTypes P)) x ⟶ T x [PROOFSTEP] refine' colimit.desc _ { pt := T x ι := { app := fun U f => _ naturality := _ } } [GOAL] case refine'_1 X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X U : (OpenNhds x)ᵒᵖ f : (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ (Type v)).obj (OpenNhds.inclusion x).op).obj (Sheaf.presheaf (subsheafToTypes P))).obj U ⊢ ((Functor.const (OpenNhds x)ᵒᵖ).obj (T x)).obj U [PROOFSTEP] exact f.1 ⟨x, (unop U).2⟩ [GOAL] case refine'_2 X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X ⊢ ∀ ⦃X_1 Y : (OpenNhds x)ᵒᵖ⦄ (f : X_1 ⟶ Y), (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ (Type v)).obj (OpenNhds.inclusion x).op).obj (Sheaf.presheaf (subsheafToTypes P))).map f ≫ (fun U f => ↑f { val := x, property := (_ : x ∈ U.unop.obj) }) Y = (fun U f => ↑f { val := x, property := (_ : x ∈ U.unop.obj) }) X_1 ≫ ((Functor.const (OpenNhds x)ᵒᵖ).obj (T x)).map f [PROOFSTEP] aesop [GOAL] X : TopCat T : ↑X → Type v P : LocalPredicate T U : Opens ↑X x : { x // x ∈ U } f : (Sheaf.presheaf (subsheafToTypes P)).obj (op U) ⊢ stalkToFiber P (↑x) (Presheaf.germ (Sheaf.presheaf (subsheafToTypes P)) x f) = ↑f x [PROOFSTEP] dsimp [Presheaf.germ, stalkToFiber] [GOAL] X : TopCat T : ↑X → Type v P : LocalPredicate T U : Opens ↑X x : { x // x ∈ U } f : (Sheaf.presheaf (subsheafToTypes P)).obj (op U) ⊢ colimit.desc ((OpenNhds.inclusion ↑x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) { pt := T ↑x, ι := NatTrans.mk fun U_1 f => ↑f { val := ↑x, property := (_ : ↑x ∈ U_1.unop.obj) } } (colimit.ι ((OpenNhds.inclusion ↑x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) (op { obj := U, property := (_ : ↑x ∈ U) }) f) = ↑f x [PROOFSTEP] cases x [GOAL] case mk X : TopCat T : ↑X → Type v P : LocalPredicate T U : Opens ↑X f : (Sheaf.presheaf (subsheafToTypes P)).obj (op U) val✝ : ↑X property✝ : val✝ ∈ U ⊢ colimit.desc ((OpenNhds.inclusion ↑{ val := val✝, property := property✝ }).op ⋙ subpresheafToTypes P.toPrelocalPredicate) { pt := T ↑{ val := val✝, property := property✝ }, ι := NatTrans.mk fun U_1 f => ↑f { val := ↑{ val := val✝, property := property✝ }, property := (_ : ↑{ val := val✝, property := property✝ } ∈ U_1.unop.obj) } } (colimit.ι ((OpenNhds.inclusion ↑{ val := val✝, property := property✝ }).op ⋙ subpresheafToTypes P.toPrelocalPredicate) (op { obj := U, property := (_ : ↑{ val := val✝, property := property✝ } ∈ U) }) f) = ↑f { val := val✝, property := property✝ } [PROOFSTEP] simp [GOAL] X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X w : ∀ (t : T x), ∃ U f x_1, f { val := x, property := (_ : x ∈ U.obj) } = t t : T x ⊢ ∃ a, stalkToFiber P x a = t [PROOFSTEP] rcases w t with ⟨U, f, h, rfl⟩ [GOAL] case intro.intro.intro X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X w : ∀ (t : T x), ∃ U f x_1, f { val := x, property := (_ : x ∈ U.obj) } = t U : OpenNhds x f : (y : { x_1 // x_1 ∈ U.obj }) → T ↑y h : PrelocalPredicate.pred P.toPrelocalPredicate f ⊢ ∃ a, stalkToFiber P x a = f { val := x, property := (_ : x ∈ U.obj) } [PROOFSTEP] fconstructor [GOAL] case intro.intro.intro.w X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X w : ∀ (t : T x), ∃ U f x_1, f { val := x, property := (_ : x ∈ U.obj) } = t U : OpenNhds x f : (y : { x_1 // x_1 ∈ U.obj }) → T ↑y h : PrelocalPredicate.pred P.toPrelocalPredicate f ⊢ Presheaf.stalk (Sheaf.presheaf (subsheafToTypes P)) x [PROOFSTEP] exact (subsheafToTypes P).presheaf.germ ⟨x, U.2⟩ ⟨f, h⟩ [GOAL] case intro.intro.intro.h X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X w : ∀ (t : T x), ∃ U f x_1, f { val := x, property := (_ : x ∈ U.obj) } = t U : OpenNhds x f : (y : { x_1 // x_1 ∈ U.obj }) → T ↑y h : PrelocalPredicate.pred P.toPrelocalPredicate f ⊢ stalkToFiber P x (Presheaf.germ (Sheaf.presheaf (subsheafToTypes P)) { val := x, property := (_ : x ∈ U.obj) } { val := f, property := h }) = f { val := x, property := (_ : x ∈ U.obj) } [PROOFSTEP] exact stalkToFiber_germ _ U.1 ⟨x, U.2⟩ ⟨f, h⟩ [GOAL] X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X w : ∀ (U V : OpenNhds x) (fU : (y : { x_1 // x_1 ∈ U.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fU → ∀ (fV : (y : { x_2 // x_2 ∈ V.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fV → fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } → ∃ W iU iV, ∀ (w : { x_4 // x_4 ∈ W.obj }), fU ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑U.obj) }) w) = fV ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑V.obj) }) w) tU tV : Presheaf.stalk (Sheaf.presheaf (subsheafToTypes P)) x h : stalkToFiber P x tU = stalkToFiber P x tV ⊢ tU = tV [PROOFSTEP] let Q : ∃ (W : (OpenNhds x)ᵒᵖ) (s : ∀ w : (unop W).1, T w) (hW : P.pred s), tU = (subsheafToTypes P).presheaf.germ ⟨x, (unop W).2⟩ ⟨s, hW⟩ ∧ tV = (subsheafToTypes P).presheaf.germ ⟨x, (unop W).2⟩ ⟨s, hW⟩ := ?_ [GOAL] case refine_2 X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X w : ∀ (U V : OpenNhds x) (fU : (y : { x_1 // x_1 ∈ U.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fU → ∀ (fV : (y : { x_2 // x_2 ∈ V.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fV → fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } → ∃ W iU iV, ∀ (w : { x_4 // x_4 ∈ W.obj }), fU ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑U.obj) }) w) = fV ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑V.obj) }) w) tU tV : Presheaf.stalk (Sheaf.presheaf (subsheafToTypes P)) x h : stalkToFiber P x tU = stalkToFiber P x tV Q : ∃ W s hW, tU = Presheaf.germ (Sheaf.presheaf (subsheafToTypes P)) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } ∧ tV = Presheaf.germ (Sheaf.presheaf (subsheafToTypes P)) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } := ?refine_1 ⊢ tU = tV [PROOFSTEP] choose W s hW e using Q [GOAL] case refine_2 X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X w : ∀ (U V : OpenNhds x) (fU : (y : { x_1 // x_1 ∈ U.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fU → ∀ (fV : (y : { x_2 // x_2 ∈ V.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fV → fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } → ∃ W iU iV, ∀ (w : { x_4 // x_4 ∈ W.obj }), fU ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑U.obj) }) w) = fV ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑V.obj) }) w) tU tV : Presheaf.stalk (Sheaf.presheaf (subsheafToTypes P)) x h : stalkToFiber P x tU = stalkToFiber P x tV W : (OpenNhds x)ᵒᵖ s : (w : { x_1 // x_1 ∈ W.unop.obj }) → T ↑w hW : PrelocalPredicate.pred P.toPrelocalPredicate s e : tU = Presheaf.germ (Sheaf.presheaf (subsheafToTypes P)) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } ∧ tV = Presheaf.germ (Sheaf.presheaf (subsheafToTypes P)) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } ⊢ tU = tV [PROOFSTEP] exact e.1.trans e.2.symm [GOAL] case refine_1 X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X w : ∀ (U V : OpenNhds x) (fU : (y : { x_1 // x_1 ∈ U.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fU → ∀ (fV : (y : { x_2 // x_2 ∈ V.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fV → fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } → ∃ W iU iV, ∀ (w : { x_4 // x_4 ∈ W.obj }), fU ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑U.obj) }) w) = fV ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑V.obj) }) w) tU tV : Presheaf.stalk (Sheaf.presheaf (subsheafToTypes P)) x h : stalkToFiber P x tU = stalkToFiber P x tV ⊢ ∃ W s hW, tU = Presheaf.germ (Sheaf.presheaf (subsheafToTypes P)) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } ∧ tV = Presheaf.germ (Sheaf.presheaf (subsheafToTypes P)) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } [PROOFSTEP] obtain ⟨U, ⟨fU, hU⟩, rfl⟩ := jointly_surjective'.{v, v} tU [GOAL] case refine_1.intro.intro.mk X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X w : ∀ (U V : OpenNhds x) (fU : (y : { x_1 // x_1 ∈ U.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fU → ∀ (fV : (y : { x_2 // x_2 ∈ V.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fV → fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } → ∃ W iU iV, ∀ (w : { x_4 // x_4 ∈ W.obj }), fU ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑U.obj) }) w) = fV ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑V.obj) }) w) tV : Presheaf.stalk (Sheaf.presheaf (subsheafToTypes P)) x U : (OpenNhds x)ᵒᵖ fU : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj U).unop }) → T ↑x_1 hU : PrelocalPredicate.pred P.toPrelocalPredicate fU h : stalkToFiber P x (colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ (Type v)).obj (OpenNhds.inclusion x).op).obj (Sheaf.presheaf (subsheafToTypes P))) U { val := fU, property := hU }) = stalkToFiber P x tV ⊢ ∃ W s hW, colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ (Type v)).obj (OpenNhds.inclusion x).op).obj (Sheaf.presheaf (subsheafToTypes P))) U { val := fU, property := hU } = Presheaf.germ (Sheaf.presheaf (subsheafToTypes P)) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } ∧ tV = Presheaf.germ (Sheaf.presheaf (subsheafToTypes P)) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } [PROOFSTEP] obtain ⟨V, ⟨fV, hV⟩, rfl⟩ := jointly_surjective'.{v, v} tV [GOAL] case refine_1.intro.intro.mk.intro.intro.mk X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X w : ∀ (U V : OpenNhds x) (fU : (y : { x_1 // x_1 ∈ U.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fU → ∀ (fV : (y : { x_2 // x_2 ∈ V.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fV → fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } → ∃ W iU iV, ∀ (w : { x_4 // x_4 ∈ W.obj }), fU ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑U.obj) }) w) = fV ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑V.obj) }) w) U : (OpenNhds x)ᵒᵖ fU : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj U).unop }) → T ↑x_1 hU : PrelocalPredicate.pred P.toPrelocalPredicate fU V : (OpenNhds x)ᵒᵖ fV : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj V).unop }) → T ↑x_1 hV : PrelocalPredicate.pred P.toPrelocalPredicate fV h : stalkToFiber P x (colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ (Type v)).obj (OpenNhds.inclusion x).op).obj (Sheaf.presheaf (subsheafToTypes P))) U { val := fU, property := hU }) = stalkToFiber P x (colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ (Type v)).obj (OpenNhds.inclusion x).op).obj (Sheaf.presheaf (subsheafToTypes P))) V { val := fV, property := hV }) ⊢ ∃ W s hW, colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ (Type v)).obj (OpenNhds.inclusion x).op).obj (Sheaf.presheaf (subsheafToTypes P))) U { val := fU, property := hU } = Presheaf.germ (Sheaf.presheaf (subsheafToTypes P)) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } ∧ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ (Type v)).obj (OpenNhds.inclusion x).op).obj (Sheaf.presheaf (subsheafToTypes P))) V { val := fV, property := hV } = Presheaf.germ (Sheaf.presheaf (subsheafToTypes P)) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } [PROOFSTEP] dsimp [GOAL] case refine_1.intro.intro.mk.intro.intro.mk X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X w : ∀ (U V : OpenNhds x) (fU : (y : { x_1 // x_1 ∈ U.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fU → ∀ (fV : (y : { x_2 // x_2 ∈ V.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fV → fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } → ∃ W iU iV, ∀ (w : { x_4 // x_4 ∈ W.obj }), fU ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑U.obj) }) w) = fV ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑V.obj) }) w) U : (OpenNhds x)ᵒᵖ fU : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj U).unop }) → T ↑x_1 hU : PrelocalPredicate.pred P.toPrelocalPredicate fU V : (OpenNhds x)ᵒᵖ fV : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj V).unop }) → T ↑x_1 hV : PrelocalPredicate.pred P.toPrelocalPredicate fV h : stalkToFiber P x (colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ (Type v)).obj (OpenNhds.inclusion x).op).obj (Sheaf.presheaf (subsheafToTypes P))) U { val := fU, property := hU }) = stalkToFiber P x (colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ (Type v)).obj (OpenNhds.inclusion x).op).obj (Sheaf.presheaf (subsheafToTypes P))) V { val := fV, property := hV }) ⊢ ∃ W s hW, colimit.ι ((OpenNhds.inclusion x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) U { val := fU, property := hU } = Presheaf.germ (subpresheafToTypes P.toPrelocalPredicate) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } ∧ colimit.ι ((OpenNhds.inclusion x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) V { val := fV, property := hV } = Presheaf.germ (subpresheafToTypes P.toPrelocalPredicate) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } [PROOFSTEP] simp only [stalkToFiber, Types.Colimit.ι_desc_apply'] at h [GOAL] case refine_1.intro.intro.mk.intro.intro.mk X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X w : ∀ (U V : OpenNhds x) (fU : (y : { x_1 // x_1 ∈ U.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fU → ∀ (fV : (y : { x_2 // x_2 ∈ V.obj }) → T ↑y), PrelocalPredicate.pred P.toPrelocalPredicate fV → fU { val := x, property := (_ : x ∈ U.obj) } = fV { val := x, property := (_ : x ∈ V.obj) } → ∃ W iU iV, ∀ (w : { x_4 // x_4 ∈ W.obj }), fU ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑U.obj) }) w) = fV ((fun x_4 => { val := ↑x_4, property := (_ : ↑x_4 ∈ ↑V.obj) }) w) U : (OpenNhds x)ᵒᵖ fU : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj U).unop }) → T ↑x_1 hU : PrelocalPredicate.pred P.toPrelocalPredicate fU V : (OpenNhds x)ᵒᵖ fV : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj V).unop }) → T ↑x_1 hV : PrelocalPredicate.pred P.toPrelocalPredicate fV h : fU { val := x, property := (_ : x ∈ U.unop.obj) } = fV { val := x, property := (_ : x ∈ V.unop.obj) } ⊢ ∃ W s hW, colimit.ι ((OpenNhds.inclusion x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) U { val := fU, property := hU } = Presheaf.germ (subpresheafToTypes P.toPrelocalPredicate) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } ∧ colimit.ι ((OpenNhds.inclusion x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) V { val := fV, property := hV } = Presheaf.germ (subpresheafToTypes P.toPrelocalPredicate) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } [PROOFSTEP] specialize w (unop U) (unop V) fU hU fV hV h [GOAL] case refine_1.intro.intro.mk.intro.intro.mk X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X U : (OpenNhds x)ᵒᵖ fU : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj U).unop }) → T ↑x_1 hU : PrelocalPredicate.pred P.toPrelocalPredicate fU V : (OpenNhds x)ᵒᵖ fV : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj V).unop }) → T ↑x_1 hV : PrelocalPredicate.pred P.toPrelocalPredicate fV h : fU { val := x, property := (_ : x ∈ U.unop.obj) } = fV { val := x, property := (_ : x ∈ V.unop.obj) } w : ∃ W iU iV, ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.unop.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.unop.obj) }) w) ⊢ ∃ W s hW, colimit.ι ((OpenNhds.inclusion x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) U { val := fU, property := hU } = Presheaf.germ (subpresheafToTypes P.toPrelocalPredicate) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } ∧ colimit.ι ((OpenNhds.inclusion x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) V { val := fV, property := hV } = Presheaf.germ (subpresheafToTypes P.toPrelocalPredicate) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } [PROOFSTEP] rcases w with ⟨W, iU, iV, w⟩ -- and put it back together again in the correct order. [GOAL] case refine_1.intro.intro.mk.intro.intro.mk.intro.intro.intro X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X U : (OpenNhds x)ᵒᵖ fU : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj U).unop }) → T ↑x_1 hU : PrelocalPredicate.pred P.toPrelocalPredicate fU V : (OpenNhds x)ᵒᵖ fV : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj V).unop }) → T ↑x_1 hV : PrelocalPredicate.pred P.toPrelocalPredicate fV h : fU { val := x, property := (_ : x ∈ U.unop.obj) } = fV { val := x, property := (_ : x ∈ V.unop.obj) } W : OpenNhds x iU : W ⟶ U.unop iV : W ⟶ V.unop w : ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.unop.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.unop.obj) }) w) ⊢ ∃ W s hW, colimit.ι ((OpenNhds.inclusion x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) U { val := fU, property := hU } = Presheaf.germ (subpresheafToTypes P.toPrelocalPredicate) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } ∧ colimit.ι ((OpenNhds.inclusion x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) V { val := fV, property := hV } = Presheaf.germ (subpresheafToTypes P.toPrelocalPredicate) { val := x, property := (_ : x ∈ W.unop.obj) } { val := s, property := hW } [PROOFSTEP] refine' ⟨op W, fun w => fU (iU w : (unop U).1), P.res _ _ hU, _⟩ [GOAL] case refine_1.intro.intro.mk.intro.intro.mk.intro.intro.intro.refine'_1 X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X U : (OpenNhds x)ᵒᵖ fU : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj U).unop }) → T ↑x_1 hU : PrelocalPredicate.pred P.toPrelocalPredicate fU V : (OpenNhds x)ᵒᵖ fV : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj V).unop }) → T ↑x_1 hV : PrelocalPredicate.pred P.toPrelocalPredicate fV h : fU { val := x, property := (_ : x ∈ U.unop.obj) } = fV { val := x, property := (_ : x ∈ V.unop.obj) } W : OpenNhds x iU : W ⟶ U.unop iV : W ⟶ V.unop w : ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.unop.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.unop.obj) }) w) ⊢ (op W).unop.obj ⟶ U.unop.obj case refine_1.intro.intro.mk.intro.intro.mk.intro.intro.intro.refine'_2 X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X U : (OpenNhds x)ᵒᵖ fU : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj U).unop }) → T ↑x_1 hU : PrelocalPredicate.pred P.toPrelocalPredicate fU V : (OpenNhds x)ᵒᵖ fV : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj V).unop }) → T ↑x_1 hV : PrelocalPredicate.pred P.toPrelocalPredicate fV h : fU { val := x, property := (_ : x ∈ U.unop.obj) } = fV { val := x, property := (_ : x ∈ V.unop.obj) } W : OpenNhds x iU : W ⟶ U.unop iV : W ⟶ V.unop w : ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.unop.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.unop.obj) }) w) ⊢ colimit.ι ((OpenNhds.inclusion x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) U { val := fU, property := hU } = Presheaf.germ (subpresheafToTypes P.toPrelocalPredicate) { val := x, property := (_ : x ∈ (op W).unop.obj) } { val := fun w => fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.unop.obj) }) w), property := (_ : PrelocalPredicate.pred P.toPrelocalPredicate fun x_1 => fU ((fun x_2 => { val := ↑x_2, property := (_ : ↑x_2 ∈ ↑U.unop.obj) }) x_1)) } ∧ colimit.ι ((OpenNhds.inclusion x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) V { val := fV, property := hV } = Presheaf.germ (subpresheafToTypes P.toPrelocalPredicate) { val := x, property := (_ : x ∈ (op W).unop.obj) } { val := fun w => fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.unop.obj) }) w), property := (_ : PrelocalPredicate.pred P.toPrelocalPredicate fun x_1 => fU ((fun x_2 => { val := ↑x_2, property := (_ : ↑x_2 ∈ ↑U.unop.obj) }) x_1)) } [PROOFSTEP] rcases W with ⟨W, m⟩ [GOAL] case refine_1.intro.intro.mk.intro.intro.mk.intro.intro.intro.refine'_1.mk X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X U : (OpenNhds x)ᵒᵖ fU : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj U).unop }) → T ↑x_1 hU : PrelocalPredicate.pred P.toPrelocalPredicate fU V : (OpenNhds x)ᵒᵖ fV : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj V).unop }) → T ↑x_1 hV : PrelocalPredicate.pred P.toPrelocalPredicate fV h : fU { val := x, property := (_ : x ∈ U.unop.obj) } = fV { val := x, property := (_ : x ∈ V.unop.obj) } W : Opens ↑X m : x ∈ W iU : { obj := W, property := m } ⟶ U.unop iV : { obj := W, property := m } ⟶ V.unop w : ∀ (w : { x_1 // x_1 ∈ { obj := W, property := m }.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.unop.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.unop.obj) }) w) ⊢ (op { obj := W, property := m }).unop.obj ⟶ U.unop.obj [PROOFSTEP] exact iU [GOAL] case refine_1.intro.intro.mk.intro.intro.mk.intro.intro.intro.refine'_2 X : TopCat T : ↑X → Type v P : LocalPredicate T x : ↑X U : (OpenNhds x)ᵒᵖ fU : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj U).unop }) → T ↑x_1 hU : PrelocalPredicate.pred P.toPrelocalPredicate fU V : (OpenNhds x)ᵒᵖ fV : (x_1 : { x_1 // x_1 ∈ ((OpenNhds.inclusion x).op.obj V).unop }) → T ↑x_1 hV : PrelocalPredicate.pred P.toPrelocalPredicate fV h : fU { val := x, property := (_ : x ∈ U.unop.obj) } = fV { val := x, property := (_ : x ∈ V.unop.obj) } W : OpenNhds x iU : W ⟶ U.unop iV : W ⟶ V.unop w : ∀ (w : { x_1 // x_1 ∈ W.obj }), fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.unop.obj) }) w) = fV ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑V.unop.obj) }) w) ⊢ colimit.ι ((OpenNhds.inclusion x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) U { val := fU, property := hU } = Presheaf.germ (subpresheafToTypes P.toPrelocalPredicate) { val := x, property := (_ : x ∈ (op W).unop.obj) } { val := fun w => fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.unop.obj) }) w), property := (_ : PrelocalPredicate.pred P.toPrelocalPredicate fun x_1 => fU ((fun x_2 => { val := ↑x_2, property := (_ : ↑x_2 ∈ ↑U.unop.obj) }) x_1)) } ∧ colimit.ι ((OpenNhds.inclusion x).op ⋙ subpresheafToTypes P.toPrelocalPredicate) V { val := fV, property := hV } = Presheaf.germ (subpresheafToTypes P.toPrelocalPredicate) { val := x, property := (_ : x ∈ (op W).unop.obj) } { val := fun w => fU ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑U.unop.obj) }) w), property := (_ : PrelocalPredicate.pred P.toPrelocalPredicate fun x_1 => fU ((fun x_2 => { val := ↑x_2, property := (_ : ↑x_2 ∈ ↑U.unop.obj) }) x_1)) } [PROOFSTEP] exact ⟨colimit_sound iU.op (Subtype.eq rfl), colimit_sound iV.op (Subtype.eq (funext w).symm)⟩ [GOAL] X✝ : TopCat T✝ : ↑X✝ → Type v T : TopCat X : (Opens ↑X✝)ᵒᵖ ⊢ (subpresheafToTypes (continuousPrelocal X✝ T)).obj X ⟶ (presheafToTop X✝ T).obj X [PROOFSTEP] rintro ⟨f, c⟩ [GOAL] case mk X✝ : TopCat T✝ : ↑X✝ → Type v T : TopCat X : (Opens ↑X✝)ᵒᵖ f : (x : { x // x ∈ X.unop }) → (fun x => ↑T) ↑x c : PrelocalPredicate.pred (continuousPrelocal X✝ T) f ⊢ (presheafToTop X✝ T).obj X [PROOFSTEP] exact ⟨f, c⟩ [GOAL] X✝ : TopCat T✝ : ↑X✝ → Type v T : TopCat X : (Opens ↑X✝)ᵒᵖ ⊢ (presheafToTop X✝ T).obj X ⟶ (subpresheafToTypes (continuousPrelocal X✝ T)).obj X [PROOFSTEP] rintro ⟨f, c⟩ [GOAL] case mk X✝ : TopCat T✝ : ↑X✝ → Type v T : TopCat X : (Opens ↑X✝)ᵒᵖ f : ↑((Opens.toTopCat X✝).op.obj X).unop → ↑T c : Continuous f ⊢ (subpresheafToTypes (continuousPrelocal X✝ T)).obj X [PROOFSTEP] exact ⟨f, c⟩
{"mathlib_filename": "Mathlib.Topology.Sheaves.LocalPredicate", "llama_tokens": 22318}
[GOAL] C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ diagram F U ⋙ G ≅ diagram (F ⋙ G) U [PROOFSTEP] fapply NatIso.ofComponents [GOAL] case app C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ (X_1 : WalkingParallelPair) → (diagram F U ⋙ G).obj X_1 ≅ (diagram (F ⋙ G) U).obj X_1 case naturality C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ autoParam (∀ {X_1 Y : WalkingParallelPair} (f : X_1 ⟶ Y), (diagram F U ⋙ G).map f ≫ (?app Y).hom = (?app X_1).hom ≫ (diagram (F ⋙ G) U).map f) _auto✝ [PROOFSTEP] rintro ⟨j⟩ [GOAL] case app.zero C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ (diagram F U ⋙ G).obj WalkingParallelPair.zero ≅ (diagram (F ⋙ G) U).obj WalkingParallelPair.zero case app.one C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ (diagram F U ⋙ G).obj WalkingParallelPair.one ≅ (diagram (F ⋙ G) U).obj WalkingParallelPair.one case naturality C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ autoParam (∀ {X_1 Y : WalkingParallelPair} (f : X_1 ⟶ Y), (diagram F U ⋙ G).map f ≫ (?m.6024 Y).hom = (?m.6024 X_1).hom ≫ (diagram (F ⋙ G) U).map f) _auto✝ [PROOFSTEP] exact PreservesProduct.iso _ _ [GOAL] case app.one C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ (diagram F U ⋙ G).obj WalkingParallelPair.one ≅ (diagram (F ⋙ G) U).obj WalkingParallelPair.one case naturality C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ autoParam (∀ {X_1 Y : WalkingParallelPair} (f : X_1 ⟶ Y), (diagram F U ⋙ G).map f ≫ (?m.6024 Y).hom = (?m.6024 X_1).hom ≫ (diagram (F ⋙ G) U).map f) _auto✝ [PROOFSTEP] exact PreservesProduct.iso _ _ [GOAL] case naturality C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ autoParam (∀ {X_1 Y : WalkingParallelPair} (f : X_1 ⟶ Y), (diagram F U ⋙ G).map f ≫ (WalkingParallelPair.casesOn Y (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom = (WalkingParallelPair.casesOn X_1 (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom ≫ (diagram (F ⋙ G) U).map f) _auto✝ [PROOFSTEP] rintro ⟨⟩ ⟨⟩ ⟨⟩ [GOAL] case naturality.zero.zero.id C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ (diagram F U ⋙ G).map (WalkingParallelPairHom.id WalkingParallelPair.zero) ≫ (WalkingParallelPair.casesOn WalkingParallelPair.zero (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom = (WalkingParallelPair.casesOn WalkingParallelPair.zero (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom ≫ (diagram (F ⋙ G) U).map (WalkingParallelPairHom.id WalkingParallelPair.zero) [PROOFSTEP] refine limit.hom_ext (fun j => ?_) [GOAL] case naturality.zero.zero.id C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X j : Discrete ι ⊢ ((diagram F U ⋙ G).map (WalkingParallelPairHom.id WalkingParallelPair.zero) ≫ (WalkingParallelPair.casesOn WalkingParallelPair.zero (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom) ≫ limit.π (Discrete.functor fun i => (F ⋙ G).obj (op (U i))) j = ((WalkingParallelPair.casesOn WalkingParallelPair.zero (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom ≫ (diagram (F ⋙ G) U).map (WalkingParallelPairHom.id WalkingParallelPair.zero)) ≫ limit.π (Discrete.functor fun i => (F ⋙ G).obj (op (U i))) j [PROOFSTEP] simp [GOAL] case naturality.zero.one.left C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ (diagram F U ⋙ G).map WalkingParallelPairHom.left ≫ (WalkingParallelPair.casesOn WalkingParallelPair.one (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom = (WalkingParallelPair.casesOn WalkingParallelPair.zero (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom ≫ (diagram (F ⋙ G) U).map WalkingParallelPairHom.left [PROOFSTEP] refine limit.hom_ext (fun j => ?_) -- Porting note : `attribute [local reducible]` doesn't work, this is its replacement [GOAL] case naturality.zero.one.left C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X j : Discrete (ι × ι) ⊢ ((diagram F U ⋙ G).map WalkingParallelPairHom.left ≫ (WalkingParallelPair.casesOn WalkingParallelPair.one (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom) ≫ limit.π (Discrete.functor fun p => (F ⋙ G).obj (op (U p.fst ⊓ U p.snd))) j = ((WalkingParallelPair.casesOn WalkingParallelPair.zero (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom ≫ (diagram (F ⋙ G) U).map WalkingParallelPairHom.left) ≫ limit.π (Discrete.functor fun p => (F ⋙ G).obj (op (U p.fst ⊓ U p.snd))) j [PROOFSTEP] dsimp [diagram, leftRes, rightRes] [GOAL] case naturality.zero.one.left C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X j : Discrete (ι × ι) ⊢ (G.map (Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (Opens.infLELeft (U p.fst) (U p.snd)).op) ≫ piComparison G fun p => F.obj (op (U p.fst ⊓ U p.snd))) ≫ limit.π (Discrete.functor fun p => G.obj (F.obj (op (U p.fst ⊓ U p.snd)))) j = ((piComparison G fun i => F.obj (op (U i))) ≫ Pi.lift fun p => Pi.π (fun i => G.obj (F.obj (op (U i)))) p.fst ≫ G.map (F.map (Opens.infLELeft (U p.fst) (U p.snd)).op)) ≫ limit.π (Discrete.functor fun p => G.obj (F.obj (op (U p.fst ⊓ U p.snd)))) j [PROOFSTEP] simp [limit.lift_π, Functor.comp_map, map_lift_piComparison, Fan.mk_π_app, PreservesProduct.iso_hom, parallelPair_map_left, Functor.map_comp, Category.assoc] [GOAL] case naturality.zero.one.right C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ (diagram F U ⋙ G).map WalkingParallelPairHom.right ≫ (WalkingParallelPair.casesOn WalkingParallelPair.one (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom = (WalkingParallelPair.casesOn WalkingParallelPair.zero (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom ≫ (diagram (F ⋙ G) U).map WalkingParallelPairHom.right [PROOFSTEP] refine limit.hom_ext (fun j => ?_) -- Porting note : `attribute [local reducible]` doesn't work, this is its replacement [GOAL] case naturality.zero.one.right C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X j : Discrete (ι × ι) ⊢ ((diagram F U ⋙ G).map WalkingParallelPairHom.right ≫ (WalkingParallelPair.casesOn WalkingParallelPair.one (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom) ≫ limit.π (Discrete.functor fun p => (F ⋙ G).obj (op (U p.fst ⊓ U p.snd))) j = ((WalkingParallelPair.casesOn WalkingParallelPair.zero (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom ≫ (diagram (F ⋙ G) U).map WalkingParallelPairHom.right) ≫ limit.π (Discrete.functor fun p => (F ⋙ G).obj (op (U p.fst ⊓ U p.snd))) j [PROOFSTEP] dsimp [diagram, leftRes, rightRes] [GOAL] case naturality.zero.one.right C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X j : Discrete (ι × ι) ⊢ (G.map (Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.snd ≫ F.map (Opens.infLERight (U p.fst) (U p.snd)).op) ≫ piComparison G fun p => F.obj (op (U p.fst ⊓ U p.snd))) ≫ limit.π (Discrete.functor fun p => G.obj (F.obj (op (U p.fst ⊓ U p.snd)))) j = ((piComparison G fun i => F.obj (op (U i))) ≫ Pi.lift fun p => Pi.π (fun i => G.obj (F.obj (op (U i)))) p.snd ≫ G.map (F.map (Opens.infLERight (U p.fst) (U p.snd)).op)) ≫ limit.π (Discrete.functor fun p => G.obj (F.obj (op (U p.fst ⊓ U p.snd)))) j [PROOFSTEP] simp [limit.lift_π, Functor.comp_map, map_lift_piComparison, Fan.mk_π_app, PreservesProduct.iso_hom, parallelPair_map_left, Functor.map_comp, Category.assoc] [GOAL] case naturality.one.one.id C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ (diagram F U ⋙ G).map (WalkingParallelPairHom.id WalkingParallelPair.one) ≫ (WalkingParallelPair.casesOn WalkingParallelPair.one (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom = (WalkingParallelPair.casesOn WalkingParallelPair.one (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom ≫ (diagram (F ⋙ G) U).map (WalkingParallelPairHom.id WalkingParallelPair.one) [PROOFSTEP] refine limit.hom_ext (fun j => ?_) [GOAL] case naturality.one.one.id C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X j : Discrete (ι × ι) ⊢ ((diagram F U ⋙ G).map (WalkingParallelPairHom.id WalkingParallelPair.one) ≫ (WalkingParallelPair.casesOn WalkingParallelPair.one (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom) ≫ limit.π (Discrete.functor fun p => (F ⋙ G).obj (op (U p.fst ⊓ U p.snd))) j = ((WalkingParallelPair.casesOn WalkingParallelPair.one (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd)))).hom ≫ (diagram (F ⋙ G) U).map (WalkingParallelPairHom.id WalkingParallelPair.one)) ≫ limit.π (Discrete.functor fun p => (F ⋙ G).obj (op (U p.fst ⊓ U p.snd))) j [PROOFSTEP] simp [diagram, leftRes, rightRes] [GOAL] C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X j : WalkingParallelPair ⊢ NatTrans.app (G.mapCone (fork F U)).π j = (Iso.refl (G.mapCone (fork F U)).pt).hom ≫ NatTrans.app ((Cones.postcompose (diagramCompPreservesLimits G F U).inv).obj (fork (F ⋙ G) U)).π j [PROOFSTEP] dsimp [GOAL] C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X j : WalkingParallelPair ⊢ G.map (NatTrans.app (fork F U).π j) = 𝟙 (G.obj (F.obj (op (iSup U)))) ≫ NatTrans.app (fork (F ⋙ G) U).π j ≫ NatTrans.app (diagramCompPreservesLimits G F U).inv j [PROOFSTEP] simp [diagramCompPreservesLimits] [GOAL] C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X j : WalkingParallelPair ⊢ G.map (NatTrans.app (fork F U).π j) = NatTrans.app (fork (F ⋙ G) U).π j ≫ (WalkingParallelPair.rec (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd))) j).inv [PROOFSTEP] cases j [GOAL] case zero C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ G.map (NatTrans.app (fork F U).π WalkingParallelPair.zero) = NatTrans.app (fork (F ⋙ G) U).π WalkingParallelPair.zero ≫ (WalkingParallelPair.rec (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd))) WalkingParallelPair.zero).inv [PROOFSTEP] dsimp [GOAL] case one C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ G.map (NatTrans.app (fork F U).π WalkingParallelPair.one) = NatTrans.app (fork (F ⋙ G) U).π WalkingParallelPair.one ≫ (WalkingParallelPair.rec (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd))) WalkingParallelPair.one).inv [PROOFSTEP] dsimp [GOAL] case zero C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ G.map (res F U) = res (F ⋙ G) U ≫ (PreservesProduct.iso G fun i => F.obj (op (U i))).inv [PROOFSTEP] rw [Iso.eq_comp_inv] -- Porting note : `ext` can't see `limit.hom_ext` applies here: -- See https://github.com/leanprover-community/mathlib4/issues/5229 [GOAL] case zero C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ G.map (res F U) ≫ (PreservesProduct.iso G fun i => F.obj (op (U i))).hom = res (F ⋙ G) U [PROOFSTEP] refine limit.hom_ext (fun j => ?_) -- Porting note : `attribute [local reducible]` doesn't work, this is its replacement [GOAL] case zero C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X j : Discrete ι ⊢ (G.map (res F U) ≫ (PreservesProduct.iso G fun i => F.obj (op (U i))).hom) ≫ limit.π (Discrete.functor fun i => (F ⋙ G).obj (op (U i))) j = res (F ⋙ G) U ≫ limit.π (Discrete.functor fun i => (F ⋙ G).obj (op (U i))) j [PROOFSTEP] simp [diagram, leftRes, rightRes, res] [GOAL] case one C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ G.map (res F U ≫ leftRes F U) = (res (F ⋙ G) U ≫ leftRes (F ⋙ G) U) ≫ (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd))).inv [PROOFSTEP] rw [Iso.eq_comp_inv] -- Porting note : `ext` can't see `limit.hom_ext` applies here: -- See https://github.com/leanprover-community/mathlib4/issues/5229 [GOAL] case one C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X ⊢ G.map (res F U ≫ leftRes F U) ≫ (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd))).hom = res (F ⋙ G) U ≫ leftRes (F ⋙ G) U [PROOFSTEP] refine limit.hom_ext (fun j => ?_) -- Porting note : `attribute [local reducible]` doesn't work, this is its replacement [GOAL] case one C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X j : Discrete (ι × ι) ⊢ (G.map (res F U ≫ leftRes F U) ≫ (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd))).hom) ≫ limit.π (Discrete.functor fun p => (F ⋙ G).obj (op (U p.fst ⊓ U p.snd))) j = (res (F ⋙ G) U ≫ leftRes (F ⋙ G) U) ≫ limit.π (Discrete.functor fun p => (F ⋙ G).obj (op (U p.fst ⊓ U p.snd))) j [PROOFSTEP] dsimp [diagram, leftRes, rightRes, res] -- Porting note : there used to be a non-terminal `simp` for `squeeze_simp` did not work, -- however, `simp?` works fine now, but in both mathlib3 and mathlib4, two `simp`s are -- required to close goal [GOAL] case one C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X j : Discrete (ι × ι) ⊢ (G.map ((Pi.lift fun i => F.map (Opens.leSupr U i).op) ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (Opens.infLELeft (U p.fst) (U p.snd)).op) ≫ piComparison G fun p => F.obj (op (U p.fst ⊓ U p.snd))) ≫ limit.π (Discrete.functor fun p => G.obj (F.obj (op (U p.fst ⊓ U p.snd)))) j = ((Pi.lift fun i => G.map (F.map (Opens.leSupr U i).op)) ≫ Pi.lift fun p => Pi.π (fun i => G.obj (F.obj (op (U i)))) p.fst ≫ G.map (F.map (Opens.infLELeft (U p.fst) (U p.snd)).op)) ≫ limit.π (Discrete.functor fun p => G.obj (F.obj (op (U p.fst ⊓ U p.snd)))) j [PROOFSTEP] simp only [Functor.map_comp, Category.assoc, map_lift_piComparison, limit.lift_π, Fan.mk_pt, Fan.mk_π_app, limit.lift_π_assoc, Discrete.functor_obj] [GOAL] case one C : Type u₁ inst✝⁴ : Category.{v, u₁} C inst✝³ : HasLimits C D : Type u₂ inst✝² : Category.{v, u₂} D inst✝¹ : HasLimits D G : C ⥤ D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ι : Type v U : ι → Opens ↑X j : Discrete (ι × ι) ⊢ G.map (Pi.lift fun i => F.map (Opens.leSupr U i).op) ≫ G.map (Pi.π (fun i => F.obj (op (U i))) j.as.fst) ≫ G.map (F.map (Opens.infLELeft (U j.as.fst) (U j.as.snd)).op) = G.map (F.map (Opens.leSupr U j.as.fst).op) ≫ G.map (F.map (Opens.infLELeft (U j.as.fst) (U j.as.snd)).op) [PROOFSTEP] simp only [limit.lift_π, Fan.mk_π_app, ← G.map_comp, limit.lift_π_assoc, Fan.mk_π_app] [GOAL] C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ⊢ IsSheaf F ↔ IsSheaf (F ⋙ G) [PROOFSTEP] rw [Presheaf.isSheaf_iff_isSheafEqualizerProducts, Presheaf.isSheaf_iff_isSheafEqualizerProducts] [GOAL] C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ⊢ IsSheafEqualizerProducts F ↔ IsSheafEqualizerProducts (F ⋙ G) [PROOFSTEP] constructor [GOAL] case mp C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ⊢ IsSheafEqualizerProducts F → IsSheafEqualizerProducts (F ⋙ G) [PROOFSTEP] intro S ι U [GOAL] case mp C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts F ι : Type v U : ι → Opens ↑X ⊢ Nonempty (IsLimit (fork (F ⋙ G) U)) [PROOFSTEP] obtain ⟨t₁⟩ := S U [GOAL] case mp.intro C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts F ι : Type v U : ι → Opens ↑X t₁ : IsLimit (fork F U) ⊢ Nonempty (IsLimit (fork (F ⋙ G) U)) [PROOFSTEP] letI := preservesSmallestLimitsOfPreservesLimits G [GOAL] case mp.intro C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts F ι : Type v U : ι → Opens ↑X t₁ : IsLimit (fork F U) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G ⊢ Nonempty (IsLimit (fork (F ⋙ G) U)) [PROOFSTEP] have t₂ := @PreservesLimit.preserves _ _ _ _ _ _ _ G _ _ t₁ [GOAL] case mp.intro C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts F ι : Type v U : ι → Opens ↑X t₁ : IsLimit (fork F U) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G t₂ : IsLimit (G.mapCone (fork F U)) ⊢ Nonempty (IsLimit (fork (F ⋙ G) U)) [PROOFSTEP] have t₃ := IsLimit.ofIsoLimit t₂ (mapConeFork G F U) -- and as postcomposing by a natural isomorphism preserves limit cones, [GOAL] case mp.intro C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts F ι : Type v U : ι → Opens ↑X t₁ : IsLimit (fork F U) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G t₂ : IsLimit (G.mapCone (fork F U)) t₃ : IsLimit ((Cones.postcompose (diagramCompPreservesLimits G F U).inv).obj (fork (F ⋙ G) U)) ⊢ Nonempty (IsLimit (fork (F ⋙ G) U)) [PROOFSTEP] have t₄ := IsLimit.postcomposeInvEquiv _ _ t₃ [GOAL] case mp.intro C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts F ι : Type v U : ι → Opens ↑X t₁ : IsLimit (fork F U) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G t₂ : IsLimit (G.mapCone (fork F U)) t₃ : IsLimit ((Cones.postcompose (diagramCompPreservesLimits G F U).inv).obj (fork (F ⋙ G) U)) t₄ : (fun x => IsLimit (fork (F ⋙ G) U)) t₃ ⊢ Nonempty (IsLimit (fork (F ⋙ G) U)) [PROOFSTEP] exact ⟨t₄⟩ [GOAL] case mpr C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X ⊢ IsSheafEqualizerProducts (F ⋙ G) → IsSheafEqualizerProducts F [PROOFSTEP] intro S ι U [GOAL] case mpr C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X ⊢ Nonempty (IsLimit (fork F U)) [PROOFSTEP] refine' ⟨_⟩ -- Let `f` be the universal morphism from `F.obj U` to the equalizer -- of the sheaf condition fork, whatever it is. -- Our goal is to show that this is an isomorphism. [GOAL] case mpr C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X ⊢ IsLimit (fork F U) [PROOFSTEP] let f := equalizer.lift _ (w F U) -- If we can do that, [GOAL] case mpr C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) ⊢ IsLimit (fork F U) [PROOFSTEP] suffices IsIso (G.map f) by skip -- we have that `f` itself is an isomorphism, since `G` reflects isomorphisms haveI : IsIso f := isIso_of_reflects_iso f G apply IsLimit.ofIsoLimit (limit.isLimit _) apply Iso.symm fapply Cones.ext exact asIso f rintro ⟨_ | _⟩ <;> · simp [GOAL] C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) this : IsIso (G.map f) ⊢ IsLimit (fork F U) [PROOFSTEP] skip -- we have that `f` itself is an isomorphism, since `G` reflects isomorphisms [GOAL] C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) this : IsIso (G.map f) ⊢ IsLimit (fork F U) [PROOFSTEP] haveI : IsIso f := isIso_of_reflects_iso f G [GOAL] C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) this✝ : IsIso (G.map f) this : IsIso f ⊢ IsLimit (fork F U) [PROOFSTEP] apply IsLimit.ofIsoLimit (limit.isLimit _) [GOAL] C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) this✝ : IsIso (G.map f) this : IsIso f ⊢ limit.cone (parallelPair (leftRes F U) (rightRes F U)) ≅ fork F U [PROOFSTEP] apply Iso.symm [GOAL] case I C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) this✝ : IsIso (G.map f) this : IsIso f ⊢ fork F U ≅ limit.cone (parallelPair (leftRes F U) (rightRes F U)) [PROOFSTEP] fapply Cones.ext [GOAL] case I.φ C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) this✝ : IsIso (G.map f) this : IsIso f ⊢ (fork F U).pt ≅ (limit.cone (parallelPair (leftRes F U) (rightRes F U))).pt case I.w C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) this✝ : IsIso (G.map f) this : IsIso f ⊢ autoParam (∀ (j : WalkingParallelPair), NatTrans.app (fork F U).π j = ?I.φ.hom ≫ NatTrans.app (limit.cone (parallelPair (leftRes F U) (rightRes F U))).π j) _auto✝ [PROOFSTEP] exact asIso f [GOAL] case I.w C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) this✝ : IsIso (G.map f) this : IsIso f ⊢ autoParam (∀ (j : WalkingParallelPair), NatTrans.app (fork F U).π j = (asIso f).hom ≫ NatTrans.app (limit.cone (parallelPair (leftRes F U) (rightRes F U))).π j) _auto✝ [PROOFSTEP] rintro ⟨_ | _⟩ [GOAL] case I.w.zero C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) this✝ : IsIso (G.map f) this : IsIso f ⊢ NatTrans.app (fork F U).π WalkingParallelPair.zero = (asIso f).hom ≫ NatTrans.app (limit.cone (parallelPair (leftRes F U) (rightRes F U))).π WalkingParallelPair.zero [PROOFSTEP] simp [GOAL] case I.w.one C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) this✝ : IsIso (G.map f) this : IsIso f ⊢ NatTrans.app (fork F U).π WalkingParallelPair.one = (asIso f).hom ≫ NatTrans.app (limit.cone (parallelPair (leftRes F U) (rightRes F U))).π WalkingParallelPair.one [PROOFSTEP] simp [GOAL] case mpr C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) ⊢ IsIso (G.map f) [PROOFSTEP] let c := fork (F ⋙ G) U [GOAL] case mpr C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U ⊢ IsIso (G.map f) [PROOFSTEP] obtain ⟨hc⟩ := S U [GOAL] case mpr.intro C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) ⊢ IsIso (G.map f) [PROOFSTEP] let d := G.mapCone (equalizer.fork (leftRes.{v} F U) (rightRes F U)) [GOAL] case mpr.intro C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) d : Cone (parallelPair (leftRes F U) (rightRes F U) ⋙ G) := G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)) ⊢ IsIso (G.map f) [PROOFSTEP] letI := preservesSmallestLimitsOfPreservesLimits G [GOAL] case mpr.intro C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) d : Cone (parallelPair (leftRes F U) (rightRes F U) ⋙ G) := G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G ⊢ IsIso (G.map f) [PROOFSTEP] have hd : IsLimit d := PreservesLimit.preserves (limit.isLimit _) -- Since both of these are limit cones -- (`c` by our hypothesis `S`, and `d` because `G` preserves limits), -- we hope to be able to conclude that `f` is an isomorphism. -- We say "not quite" above because `c` and `d` don't quite have the same shape: -- we need to postcompose by the natural isomorphism `diagramCompPreservesLimits` -- introduced above. [GOAL] case mpr.intro C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) d : Cone (parallelPair (leftRes F U) (rightRes F U) ⋙ G) := G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G hd : IsLimit d ⊢ IsIso (G.map f) [PROOFSTEP] let d' := (Cones.postcompose (diagramCompPreservesLimits G F U).hom).obj d [GOAL] case mpr.intro C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) d : Cone (parallelPair (leftRes F U) (rightRes F U) ⋙ G) := G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G hd : IsLimit d d' : Cone (diagram (F ⋙ G) U) := (Cones.postcompose (diagramCompPreservesLimits G F U).hom).obj d ⊢ IsIso (G.map f) [PROOFSTEP] have hd' : IsLimit d' := (IsLimit.postcomposeHomEquiv (diagramCompPreservesLimits G F U : _) d).symm hd [GOAL] case mpr.intro C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) d : Cone (parallelPair (leftRes F U) (rightRes F U) ⋙ G) := G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G hd : IsLimit d d' : Cone (diagram (F ⋙ G) U) := (Cones.postcompose (diagramCompPreservesLimits G F U).hom).obj d hd' : IsLimit d' ⊢ IsIso (G.map f) [PROOFSTEP] let f' : c ⟶ d' := Fork.mkHom (G.map f) (by dsimp only [diagramCompPreservesLimits, res] dsimp only [Fork.ι] -- Porting note : `ext` can't see `limit.hom_ext` applies here: -- See https://github.com/leanprover-community/mathlib4/issues/5229 refine limit.hom_ext fun j => ?_ dsimp simp only [Category.assoc, ← Functor.map_comp_assoc, equalizer.lift_ι, map_lift_piComparison_assoc] dsimp [res]) -- conclude that it is an isomorphism, -- just because it's a morphism between two limit cones. [GOAL] C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) d : Cone (parallelPair (leftRes F U) (rightRes F U) ⋙ G) := G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G hd : IsLimit d d' : Cone (diagram (F ⋙ G) U) := (Cones.postcompose (diagramCompPreservesLimits G F U).hom).obj d hd' : IsLimit d' ⊢ G.map f ≫ Fork.ι d' = Fork.ι c [PROOFSTEP] dsimp only [diagramCompPreservesLimits, res] [GOAL] C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) d : Cone (parallelPair (leftRes F U) (rightRes F U) ⋙ G) := G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G hd : IsLimit d d' : Cone (diagram (F ⋙ G) U) := (Cones.postcompose (diagramCompPreservesLimits G F U).hom).obj d hd' : IsLimit d' ⊢ G.map (equalizer.lift (Pi.lift fun i => F.map (Opens.leSupr U i).op) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U)) ≫ Fork.ι ((Cones.postcompose (NatIso.ofComponents fun X_1 => WalkingParallelPair.rec (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd))) X_1).hom).obj (G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)))) = Fork.ι (fork (F ⋙ G) U) [PROOFSTEP] dsimp only [Fork.ι] -- Porting note : `ext` can't see `limit.hom_ext` applies here: -- See https://github.com/leanprover-community/mathlib4/issues/5229 [GOAL] C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) d : Cone (parallelPair (leftRes F U) (rightRes F U) ⋙ G) := G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G hd : IsLimit d d' : Cone (diagram (F ⋙ G) U) := (Cones.postcompose (diagramCompPreservesLimits G F U).hom).obj d hd' : IsLimit d' ⊢ G.map (equalizer.lift (Pi.lift fun i => F.map (Opens.leSupr U i).op) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U)) ≫ NatTrans.app ((Cones.postcompose (NatIso.ofComponents fun X_1 => WalkingParallelPair.rec (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd))) X_1).hom).obj (G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)))).π WalkingParallelPair.zero = NatTrans.app (fork (F ⋙ G) U).π WalkingParallelPair.zero [PROOFSTEP] refine limit.hom_ext fun j => ?_ [GOAL] C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) d : Cone (parallelPair (leftRes F U) (rightRes F U) ⋙ G) := G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G hd : IsLimit d d' : Cone (diagram (F ⋙ G) U) := (Cones.postcompose (diagramCompPreservesLimits G F U).hom).obj d hd' : IsLimit d' j : Discrete ι ⊢ (G.map (equalizer.lift (Pi.lift fun i => F.map (Opens.leSupr U i).op) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U)) ≫ NatTrans.app ((Cones.postcompose (NatIso.ofComponents fun X_1 => WalkingParallelPair.rec (PreservesProduct.iso G fun i => F.obj (op (U i))) (PreservesProduct.iso G fun p => F.obj (op (U p.fst ⊓ U p.snd))) X_1).hom).obj (G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)))).π WalkingParallelPair.zero) ≫ limit.π (Discrete.functor fun i => (F ⋙ G).obj (op (U i))) j = NatTrans.app (fork (F ⋙ G) U).π WalkingParallelPair.zero ≫ limit.π (Discrete.functor fun i => (F ⋙ G).obj (op (U i))) j [PROOFSTEP] dsimp [GOAL] C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) d : Cone (parallelPair (leftRes F U) (rightRes F U) ⋙ G) := G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G hd : IsLimit d d' : Cone (diagram (F ⋙ G) U) := (Cones.postcompose (diagramCompPreservesLimits G F U).hom).obj d hd' : IsLimit d' j : Discrete ι ⊢ (G.map (equalizer.lift (Pi.lift fun i => F.map (Opens.leSupr U i).op) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U)) ≫ G.map (equalizer.ι (leftRes F U) (rightRes F U)) ≫ piComparison G fun i => F.obj (op (U i))) ≫ limit.π (Discrete.functor fun i => G.obj (F.obj (op (U i)))) j = res (F ⋙ G) U ≫ limit.π (Discrete.functor fun i => G.obj (F.obj (op (U i)))) j [PROOFSTEP] simp only [Category.assoc, ← Functor.map_comp_assoc, equalizer.lift_ι, map_lift_piComparison_assoc] [GOAL] C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) d : Cone (parallelPair (leftRes F U) (rightRes F U) ⋙ G) := G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G hd : IsLimit d d' : Cone (diagram (F ⋙ G) U) := (Cones.postcompose (diagramCompPreservesLimits G F U).hom).obj d hd' : IsLimit d' j : Discrete ι ⊢ (Pi.lift fun j => G.map (F.map (Opens.leSupr U j).op)) ≫ limit.π (Discrete.functor fun i => G.obj (F.obj (op (U i)))) j = res (F ⋙ G) U ≫ limit.π (Discrete.functor fun i => G.obj (F.obj (op (U i)))) j [PROOFSTEP] dsimp [res] [GOAL] case mpr.intro C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) d : Cone (parallelPair (leftRes F U) (rightRes F U) ⋙ G) := G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)) this : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G hd : IsLimit d d' : Cone (diagram (F ⋙ G) U) := (Cones.postcompose (diagramCompPreservesLimits G F U).hom).obj d hd' : IsLimit d' f' : c ⟶ d' := Fork.mkHom (G.map f) (_ : G.map f ≫ Fork.ι d' = Fork.ι c) ⊢ IsIso (G.map f) [PROOFSTEP] haveI : IsIso f' := IsLimit.hom_isIso hc hd' f' [GOAL] case mpr.intro C : Type u₁ inst✝⁵ : Category.{v, u₁} C D : Type u₂ inst✝⁴ : Category.{v, u₂} D G : C ⥤ D inst✝³ : ReflectsIsomorphisms G inst✝² : HasLimits C inst✝¹ : HasLimits D inst✝ : PreservesLimits G X : TopCat F : Presheaf C X S : IsSheafEqualizerProducts (F ⋙ G) ι : Type v U : ι → Opens ↑X f : F.obj (op (iSup U)) ⟶ equalizer (leftRes F U) (rightRes F U) := equalizer.lift (res F U) (_ : res F U ≫ leftRes F U = res F U ≫ rightRes F U) c : Fork (leftRes (F ⋙ G) U) (rightRes (F ⋙ G) U) := fork (F ⋙ G) U hc : IsLimit (fork (F ⋙ G) U) d : Cone (parallelPair (leftRes F U) (rightRes F U) ⋙ G) := G.mapCone (equalizer.fork (leftRes F U) (rightRes F U)) this✝ : PreservesLimitsOfSize.{0, 0, v, v, u₁, u₂} G := preservesSmallestLimitsOfPreservesLimits G hd : IsLimit d d' : Cone (diagram (F ⋙ G) U) := (Cones.postcompose (diagramCompPreservesLimits G F U).hom).obj d hd' : IsLimit d' f' : c ⟶ d' := Fork.mkHom (G.map f) (_ : G.map f ≫ Fork.ι d' = Fork.ι c) this : IsIso f' ⊢ IsIso (G.map f) [PROOFSTEP] exact IsIso.of_iso ((Cones.forget _).mapIso (asIso f'))
{"mathlib_filename": "Mathlib.Topology.Sheaves.Forget", "llama_tokens": 24031}
[GOAL] X : Type u_1 ι : Type u_2 Y : ι → Type u_3 inst✝² : TopologicalSpace X inst✝¹ : (i : ι) → TopologicalSpace (Y i) inst✝ : Nonempty X ⊢ Function.Injective fun g => comp (sigmaMk g.fst) g.snd [PROOFSTEP] rintro ⟨i, g⟩ ⟨i', g'⟩ h [GOAL] case mk.mk X : Type u_1 ι : Type u_2 Y : ι → Type u_3 inst✝² : TopologicalSpace X inst✝¹ : (i : ι) → TopologicalSpace (Y i) inst✝ : Nonempty X i : ι g : C(X, Y i) i' : ι g' : C(X, Y i') h : (fun g => comp (sigmaMk g.fst) g.snd) { fst := i, snd := g } = (fun g => comp (sigmaMk g.fst) g.snd) { fst := i', snd := g' } ⊢ { fst := i, snd := g } = { fst := i', snd := g' } [PROOFSTEP] obtain ⟨rfl, hg⟩ : i = i' ∧ HEq (⇑g) (⇑g') := Function.eq_of_sigmaMk_comp <| congr_arg FunLike.coe h [GOAL] case mk.mk.intro X : Type u_1 ι : Type u_2 Y : ι → Type u_3 inst✝² : TopologicalSpace X inst✝¹ : (i : ι) → TopologicalSpace (Y i) inst✝ : Nonempty X i : ι g g' : C(X, Y i) h : (fun g => comp (sigmaMk g.fst) g.snd) { fst := i, snd := g } = (fun g => comp (sigmaMk g.fst) g.snd) { fst := i, snd := g' } hg : HEq ↑g ↑g' ⊢ { fst := i, snd := g } = { fst := i, snd := g' } [PROOFSTEP] simpa using hg
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.Sigma", "llama_tokens": 597}
[GOAL] X : TopCat U : Opens ↑X R : Presieve U hR : Sieve.generate R ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U ⊢ iSup (coveringOfPresieve U R) = U [PROOFSTEP] apply le_antisymm [GOAL] case a X : TopCat U : Opens ↑X R : Presieve U hR : Sieve.generate R ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U ⊢ iSup (coveringOfPresieve U R) ≤ U [PROOFSTEP] refine' iSup_le _ [GOAL] case a X : TopCat U : Opens ↑X R : Presieve U hR : Sieve.generate R ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U ⊢ ∀ (i : (V : Opens ↑X) × { f // R f }), coveringOfPresieve U R i ≤ U [PROOFSTEP] intro f [GOAL] case a X : TopCat U : Opens ↑X R : Presieve U hR : Sieve.generate R ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U f : (V : Opens ↑X) × { f // R f } ⊢ coveringOfPresieve U R f ≤ U [PROOFSTEP] exact f.2.1.le [GOAL] case a X : TopCat U : Opens ↑X R : Presieve U hR : Sieve.generate R ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U ⊢ U ≤ iSup (coveringOfPresieve U R) [PROOFSTEP] intro x hxU [GOAL] case a X : TopCat U : Opens ↑X R : Presieve U hR : Sieve.generate R ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U x : ↑X hxU : x ∈ ↑U ⊢ x ∈ ↑(iSup (coveringOfPresieve U R)) [PROOFSTEP] rw [Opens.coe_iSup, Set.mem_iUnion] [GOAL] case a X : TopCat U : Opens ↑X R : Presieve U hR : Sieve.generate R ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U x : ↑X hxU : x ∈ ↑U ⊢ ∃ i, x ∈ ↑(coveringOfPresieve U R i) [PROOFSTEP] obtain ⟨V, iVU, ⟨W, iVW, iWU, hiWU, -⟩, hxV⟩ := hR x hxU [GOAL] case a.intro.intro.intro.intro.intro.intro.intro X : TopCat U : Opens ↑X R : Presieve U hR : Sieve.generate R ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U x : ↑X hxU : x ∈ ↑U V : Opens ↑X iVU : V ⟶ U hxV : x ∈ V W : Opens ↑X iVW : V ⟶ W iWU : W ⟶ U hiWU : R iWU ⊢ ∃ i, x ∈ ↑(coveringOfPresieve U R i) [PROOFSTEP] exact ⟨⟨W, ⟨iWU, hiWU⟩⟩, iVW.le hxV⟩ [GOAL] X : TopCat Y : Opens ↑X R : Presieve Y ⊢ presieveOfCoveringAux (coveringOfPresieve Y R) Y = R [PROOFSTEP] funext Z [GOAL] case h X : TopCat Y : Opens ↑X R : Presieve Y Z : Opens ↑X ⊢ presieveOfCoveringAux (coveringOfPresieve Y R) Y = R [PROOFSTEP] ext f [GOAL] case h.h X : TopCat Y : Opens ↑X R : Presieve Y Z : Opens ↑X f : Z ⟶ Y ⊢ f ∈ presieveOfCoveringAux (coveringOfPresieve Y R) Y ↔ f ∈ R [PROOFSTEP] exact ⟨fun ⟨⟨_, f', h⟩, rfl⟩ => by rwa [Subsingleton.elim f f'], fun h => ⟨⟨Z, f, h⟩, rfl⟩⟩ [GOAL] X : TopCat Y : Opens ↑X R : Presieve Y Z : Opens ↑X f : Z ⟶ Y x✝ : f ∈ presieveOfCoveringAux (coveringOfPresieve Y R) Y f' : Z ⟶ Y h : R f' ⊢ f ∈ R [PROOFSTEP] rwa [Subsingleton.elim f f'] [GOAL] X : TopCat ι : Type v U : ι → Opens ↑X ⊢ Sieve.generate (presieveOfCovering U) ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) (iSup U) [PROOFSTEP] intro x hx [GOAL] X : TopCat ι : Type v U : ι → Opens ↑X x : ↑X hx : x ∈ iSup U ⊢ ∃ U_1 f, (Sieve.generate (presieveOfCovering U)).arrows f ∧ x ∈ U_1 [PROOFSTEP] obtain ⟨i, hxi⟩ := Opens.mem_iSup.mp hx [GOAL] case intro X : TopCat ι : Type v U : ι → Opens ↑X x : ↑X hx : x ∈ iSup U i : ι hxi : x ∈ U i ⊢ ∃ U_1 f, (Sieve.generate (presieveOfCovering U)).arrows f ∧ x ∈ U_1 [PROOFSTEP] exact ⟨U i, Opens.leSupr U i, ⟨U i, 𝟙 _, Opens.leSupr U i, ⟨i, rfl⟩, Category.id_comp _⟩, hxi⟩ [GOAL] X : TopCat ι : Type u_1 inst✝ : Category.{u_2, u_1} ι B : ι ⥤ Opens ↑X ⊢ CoverDense (Opens.grothendieckTopology ↑X) B ↔ Opens.IsBasis (Set.range B.obj) [PROOFSTEP] rw [Opens.isBasis_iff_nbhd] [GOAL] X : TopCat ι : Type u_1 inst✝ : Category.{u_2, u_1} ι B : ι ⥤ Opens ↑X ⊢ CoverDense (Opens.grothendieckTopology ↑X) B ↔ ∀ {U : Opens ↑X} {x : ↑X}, x ∈ U → ∃ U', U' ∈ Set.range B.obj ∧ x ∈ U' ∧ U' ≤ U [PROOFSTEP] constructor [GOAL] case mp X : TopCat ι : Type u_1 inst✝ : Category.{u_2, u_1} ι B : ι ⥤ Opens ↑X ⊢ CoverDense (Opens.grothendieckTopology ↑X) B → ∀ {U : Opens ↑X} {x : ↑X}, x ∈ U → ∃ U', U' ∈ Set.range B.obj ∧ x ∈ U' ∧ U' ≤ U case mpr X : TopCat ι : Type u_1 inst✝ : Category.{u_2, u_1} ι B : ι ⥤ Opens ↑X ⊢ (∀ {U : Opens ↑X} {x : ↑X}, x ∈ U → ∃ U', U' ∈ Set.range B.obj ∧ x ∈ U' ∧ U' ≤ U) → CoverDense (Opens.grothendieckTopology ↑X) B [PROOFSTEP] intro hd U x hx [GOAL] case mp X : TopCat ι : Type u_1 inst✝ : Category.{u_2, u_1} ι B : ι ⥤ Opens ↑X hd : CoverDense (Opens.grothendieckTopology ↑X) B U : Opens ↑X x : ↑X hx : x ∈ U ⊢ ∃ U', U' ∈ Set.range B.obj ∧ x ∈ U' ∧ U' ≤ U case mpr X : TopCat ι : Type u_1 inst✝ : Category.{u_2, u_1} ι B : ι ⥤ Opens ↑X ⊢ (∀ {U : Opens ↑X} {x : ↑X}, x ∈ U → ∃ U', U' ∈ Set.range B.obj ∧ x ∈ U' ∧ U' ≤ U) → CoverDense (Opens.grothendieckTopology ↑X) B [PROOFSTEP] rcases hd.1 U x hx with ⟨V, f, ⟨i, f₁, f₂, _⟩, hV⟩ [GOAL] case mp.intro.intro.intro.intro.mk X : TopCat ι : Type u_1 inst✝ : Category.{u_2, u_1} ι B : ι ⥤ Opens ↑X hd : CoverDense (Opens.grothendieckTopology ↑X) B U : Opens ↑X x : ↑X hx : x ∈ U V : Opens ↑X f : V ⟶ U hV : x ∈ V i : ι f₁ : V ⟶ B.obj i f₂ : B.obj i ⟶ U fac✝ : f₁ ≫ f₂ = f ⊢ ∃ U', U' ∈ Set.range B.obj ∧ x ∈ U' ∧ U' ≤ U case mpr X : TopCat ι : Type u_1 inst✝ : Category.{u_2, u_1} ι B : ι ⥤ Opens ↑X ⊢ (∀ {U : Opens ↑X} {x : ↑X}, x ∈ U → ∃ U', U' ∈ Set.range B.obj ∧ x ∈ U' ∧ U' ≤ U) → CoverDense (Opens.grothendieckTopology ↑X) B [PROOFSTEP] exact ⟨B.obj i, ⟨i, rfl⟩, f₁.le hV, f₂.le⟩ [GOAL] case mpr X : TopCat ι : Type u_1 inst✝ : Category.{u_2, u_1} ι B : ι ⥤ Opens ↑X ⊢ (∀ {U : Opens ↑X} {x : ↑X}, x ∈ U → ∃ U', U' ∈ Set.range B.obj ∧ x ∈ U' ∧ U' ≤ U) → CoverDense (Opens.grothendieckTopology ↑X) B [PROOFSTEP] intro hb [GOAL] case mpr X : TopCat ι : Type u_1 inst✝ : Category.{u_2, u_1} ι B : ι ⥤ Opens ↑X hb : ∀ {U : Opens ↑X} {x : ↑X}, x ∈ U → ∃ U', U' ∈ Set.range B.obj ∧ x ∈ U' ∧ U' ≤ U ⊢ CoverDense (Opens.grothendieckTopology ↑X) B [PROOFSTEP] constructor [GOAL] case mpr.is_cover X : TopCat ι : Type u_1 inst✝ : Category.{u_2, u_1} ι B : ι ⥤ Opens ↑X hb : ∀ {U : Opens ↑X} {x : ↑X}, x ∈ U → ∃ U', U' ∈ Set.range B.obj ∧ x ∈ U' ∧ U' ≤ U ⊢ ∀ (U : Opens ↑X), Sieve.coverByImage B U ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U [PROOFSTEP] intro U x hx [GOAL] case mpr.is_cover X : TopCat ι : Type u_1 inst✝ : Category.{u_2, u_1} ι B : ι ⥤ Opens ↑X hb : ∀ {U : Opens ↑X} {x : ↑X}, x ∈ U → ∃ U', U' ∈ Set.range B.obj ∧ x ∈ U' ∧ U' ≤ U U : Opens ↑X x : ↑X hx : x ∈ U ⊢ ∃ U_1 f, (Sieve.coverByImage B U).arrows f ∧ x ∈ U_1 [PROOFSTEP] rcases hb hx with ⟨_, ⟨i, rfl⟩, hx, hi⟩ [GOAL] case mpr.is_cover.intro.intro.intro.intro X : TopCat ι : Type u_1 inst✝ : Category.{u_2, u_1} ι B : ι ⥤ Opens ↑X hb : ∀ {U : Opens ↑X} {x : ↑X}, x ∈ U → ∃ U', U' ∈ Set.range B.obj ∧ x ∈ U' ∧ U' ≤ U U : Opens ↑X x : ↑X hx✝ : x ∈ U i : ι hx : x ∈ B.obj i hi : B.obj i ≤ U ⊢ ∃ U_1 f, (Sieve.coverByImage B U).arrows f ∧ x ∈ U_1 [PROOFSTEP] exact ⟨B.obj i, ⟨⟨hi⟩⟩, ⟨⟨i, 𝟙 _, ⟨⟨hi⟩⟩, rfl⟩⟩, hx⟩ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y F : TopCat.Presheaf C Y hf : OpenEmbedding ↑f ⊢ CompatiblePreserving (Opens.grothendieckTopology ↑Y) (IsOpenMap.functor (_ : IsOpenMap ↑f)) [PROOFSTEP] haveI : Mono f := (TopCat.mono_iff_injective f).mpr hf.inj [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y F : TopCat.Presheaf C Y hf : OpenEmbedding ↑f this : Mono f ⊢ CompatiblePreserving (Opens.grothendieckTopology ↑Y) (IsOpenMap.functor (_ : IsOpenMap ↑f)) [PROOFSTEP] apply compatiblePreservingOfDownwardsClosed [GOAL] case hF C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y F : TopCat.Presheaf C Y hf : OpenEmbedding ↑f this : Mono f ⊢ {c : Opens ↑X} → {d : Opens ↑Y} → (d ⟶ (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj c) → (c' : Opens ↑X) × ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj c' ≅ d) [PROOFSTEP] intro U V i [GOAL] case hF C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y F : TopCat.Presheaf C Y hf : OpenEmbedding ↑f this : Mono f U : Opens ↑X V : Opens ↑Y i : V ⟶ (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U ⊢ (c' : Opens ↑X) × ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj c' ≅ V) [PROOFSTEP] refine' ⟨(Opens.map f).obj V, eqToIso <| Opens.ext <| Set.image_preimage_eq_of_subset fun x h ↦ _⟩ [GOAL] case hF C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y F : TopCat.Presheaf C Y hf : OpenEmbedding ↑f this : Mono f U : Opens ↑X V : Opens ↑Y i : V ⟶ (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U x : ↑Y h : x ∈ V.1 ⊢ x ∈ Set.range fun x => ↑f x [PROOFSTEP] obtain ⟨_, _, rfl⟩ := i.le h [GOAL] case hF.intro.intro C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y F : TopCat.Presheaf C Y hf : OpenEmbedding ↑f this : Mono f U : Opens ↑X V : Opens ↑Y i : V ⟶ (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U w✝ : (forget TopCat).obj X left✝ : w✝ ∈ ↑U h : ↑f w✝ ∈ V.1 ⊢ ↑f w✝ ∈ Set.range fun x => ↑f x [PROOFSTEP] exact ⟨_, rfl⟩ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y F : TopCat.Presheaf C Y hf : IsOpenMap ↑f ⊢ CoverPreserving (Opens.grothendieckTopology ↑X) (Opens.grothendieckTopology ↑Y) (functor hf) [PROOFSTEP] constructor [GOAL] case cover_preserve C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y F : TopCat.Presheaf C Y hf : IsOpenMap ↑f ⊢ ∀ {U : Opens ↑X} {S : Sieve U}, S ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U → Sieve.functorPushforward (functor hf) S ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑Y) ((functor hf).obj U) [PROOFSTEP] rintro U S hU _ ⟨x, hx, rfl⟩ [GOAL] case cover_preserve.intro.intro C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y F : TopCat.Presheaf C Y hf : IsOpenMap ↑f U : Opens ↑X S : Sieve U hU : S ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U x : (forget TopCat).obj X hx : x ∈ ↑U ⊢ ∃ U_1 f_1, (Sieve.functorPushforward (functor hf) S).arrows f_1 ∧ ↑f x ∈ U_1 [PROOFSTEP] obtain ⟨V, i, hV, hxV⟩ := hU x hx [GOAL] case cover_preserve.intro.intro.intro.intro.intro C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y F : TopCat.Presheaf C Y hf : IsOpenMap ↑f U : Opens ↑X S : Sieve U hU : S ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) U x : (forget TopCat).obj X hx : x ∈ ↑U V : Opens ↑X i : V ⟶ U hV : S.arrows i hxV : x ∈ V ⊢ ∃ U_1 f_1, (Sieve.functorPushforward (functor hf) S).arrows f_1 ∧ ↑f x ∈ U_1 [PROOFSTEP] exact ⟨_, hf.functor.map i, ⟨_, i, 𝟙 _, hV, rfl⟩, Set.mem_image_of_mem f hxV⟩ [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type u_1 B : ι → Opens ↑X F✝ : Presheaf C X F' : Sheaf C X h✝ : Opens.IsBasis (Set.range B) F : Sheaf C X U : Opens ↑X h : U = ⊥ ⊢ Limits.IsTerminal (F.val.obj (op U)) [PROOFSTEP] convert F.isTerminalOfEmpty [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type u_1 B : ι → Opens ↑X F : Presheaf C X F' : Sheaf C X h : Opens.IsBasis (Set.range B) α : (inducedFunctor B).op ⋙ F ⟶ (inducedFunctor B).op ⋙ F'.val i : ι ⊢ NatTrans.app (↑(restrictHomEquivHom F F' h) α) (op (B i)) = NatTrans.app α (op i) [PROOFSTEP] nth_rw 2 [← (restrictHomEquivHom F F' h).left_inv α] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type u_1 B : ι → Opens ↑X F : Presheaf C X F' : Sheaf C X h : Opens.IsBasis (Set.range B) α : (inducedFunctor B).op ⋙ F ⟶ (inducedFunctor B).op ⋙ F'.val i : ι ⊢ NatTrans.app (↑(restrictHomEquivHom F F' h) α) (op (B i)) = NatTrans.app (Equiv.invFun (restrictHomEquivHom F F' h) (Equiv.toFun (restrictHomEquivHom F F' h) α)) (op i) [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type u_1 B : ι → Opens ↑X F : Presheaf C X F' : Sheaf C X h : Opens.IsBasis (Set.range B) α β : F ⟶ F'.val he : ∀ (i : ι), NatTrans.app α (op (B i)) = NatTrans.app β (op (B i)) ⊢ α = β [PROOFSTEP] apply (restrictHomEquivHom F F' h).symm.injective [GOAL] case a C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type u_1 B : ι → Opens ↑X F : Presheaf C X F' : Sheaf C X h : Opens.IsBasis (Set.range B) α β : F ⟶ F'.val he : ∀ (i : ι), NatTrans.app α (op (B i)) = NatTrans.app β (op (B i)) ⊢ ↑(restrictHomEquivHom F F' h).symm α = ↑(restrictHomEquivHom F F' h).symm β [PROOFSTEP] ext i [GOAL] case a.w.h C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type u_1 B : ι → Opens ↑X F : Presheaf C X F' : Sheaf C X h : Opens.IsBasis (Set.range B) α β : F ⟶ F'.val he : ∀ (i : ι), NatTrans.app α (op (B i)) = NatTrans.app β (op (B i)) i : (InducedCategory (Opens ↑X) B)ᵒᵖ ⊢ NatTrans.app (↑(restrictHomEquivHom F F' h).symm α) i = NatTrans.app (↑(restrictHomEquivHom F F' h).symm β) i [PROOFSTEP] exact he i.unop
{"mathlib_filename": "Mathlib.Topology.Sheaves.SheafCondition.Sites", "llama_tokens": 6546}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : CocompactMap α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ g : CocompactMap α β toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ cocompact_tendsto'✝ : Tendsto (ContinuousMap.mk toFun✝).toFun (cocompact α) (cocompact β) h : (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝, cocompact_tendsto' := cocompact_tendsto'✝ } = (fun f => f.toFun) g ⊢ { toContinuousMap := ContinuousMap.mk toFun✝, cocompact_tendsto' := cocompact_tendsto'✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ toFun✝¹ : α → β continuous_toFun✝¹ : Continuous toFun✝¹ cocompact_tendsto'✝¹ : Tendsto (ContinuousMap.mk toFun✝¹).toFun (cocompact α) (cocompact β) toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ cocompact_tendsto'✝ : Tendsto (ContinuousMap.mk toFun✝).toFun (cocompact α) (cocompact β) h : (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝¹, cocompact_tendsto' := cocompact_tendsto'✝¹ } = (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝, cocompact_tendsto' := cocompact_tendsto'✝ } ⊢ { toContinuousMap := ContinuousMap.mk toFun✝¹, cocompact_tendsto' := cocompact_tendsto'✝¹ } = { toContinuousMap := ContinuousMap.mk toFun✝, cocompact_tendsto' := cocompact_tendsto'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f : CocompactMap α β f' : α → β h : f' = ↑f ⊢ Continuous f' [PROOFSTEP] rw [h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f : CocompactMap α β f' : α → β h : f' = ↑f ⊢ Continuous ↑f [PROOFSTEP] exact f.continuous_toFun [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f : CocompactMap α β f' : α → β h : f' = ↑f ⊢ Tendsto (ContinuousMap.mk f').toFun (cocompact α) (cocompact β) [PROOFSTEP] simp_rw [h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f : CocompactMap α β f' : α → β h : f' = ↑f ⊢ Tendsto (↑f) (cocompact α) (cocompact β) [PROOFSTEP] exact f.cocompact_tendsto' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f : α → β h : ∀ (s : Set β), IsCompact s → IsCompact (f ⁻¹' s) s : Set β hs : s ∈ cocompact β t : Set β ht : IsCompact t hts : tᶜ ⊆ s ⊢ (f ⁻¹' t)ᶜ ⊆ f ⁻¹' s [PROOFSTEP] simpa using preimage_mono hts [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : TopologicalSpace δ inst✝ : T2Space β f : CocompactMap α β s : Set β hs : IsCompact s ⊢ IsCompact (↑f ⁻¹' s) [PROOFSTEP] obtain ⟨t, ht, hts⟩ := mem_cocompact'.mp (by simpa only [preimage_image_preimage, preimage_compl] using mem_map.mp (cocompact_tendsto f <| mem_cocompact.mpr ⟨s, hs, compl_subset_compl.mpr (image_preimage_subset f _)⟩)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : TopologicalSpace δ inst✝ : T2Space β f : CocompactMap α β s : Set β hs : IsCompact s ⊢ ?m.10429 ∈ cocompact ?m.10404 [PROOFSTEP] simpa only [preimage_image_preimage, preimage_compl] using mem_map.mp (cocompact_tendsto f <| mem_cocompact.mpr ⟨s, hs, compl_subset_compl.mpr (image_preimage_subset f _)⟩) [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : TopologicalSpace δ inst✝ : T2Space β f : CocompactMap α β s : Set β hs : IsCompact s t : Set α ht : IsCompact t hts : (↑f ⁻¹' s)ᶜᶜ ⊆ t ⊢ IsCompact (↑f ⁻¹' s) [PROOFSTEP] exact isCompact_of_isClosed_subset ht (hs.isClosed.preimage <| map_continuous f) (by simpa using hts) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : TopologicalSpace δ inst✝ : T2Space β f : CocompactMap α β s : Set β hs : IsCompact s t : Set α ht : IsCompact t hts : (↑f ⁻¹' s)ᶜᶜ ⊆ t ⊢ ↑f ⁻¹' s ⊆ t [PROOFSTEP] simpa using hts [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : α ≃ₜ β ⊢ Tendsto (ContinuousMap.mk ↑f).toFun (cocompact α) (cocompact β) [PROOFSTEP] refine' CocompactMap.tendsto_of_forall_preimage fun K hK => _ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : α ≃ₜ β K : Set β hK : IsCompact K ⊢ IsCompact ((ContinuousMap.mk ↑f).toFun ⁻¹' K) [PROOFSTEP] erw [K.preimage_equiv_eq_image_symm] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : α ≃ₜ β K : Set β hK : IsCompact K ⊢ IsCompact (↑f.symm '' K) [PROOFSTEP] exact hK.image f.symm.continuous
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.CocompactMap", "llama_tokens": 2805}
[GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 ⊢ IsLocallySurjective T ↔ ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) [PROOFSTEP] constructor [GOAL] case mp C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 ⊢ IsLocallySurjective T → ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) [PROOFSTEP] intro hT [GOAL] case mpr C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 ⊢ (∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T)) → IsLocallySurjective T [PROOFSTEP] intro hT [GOAL] case mp C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : IsLocallySurjective T ⊢ ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) [PROOFSTEP] intro x g [GOAL] case mp C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : IsLocallySurjective T x : ↑X g : (forget C).obj ((stalkFunctor C x).obj 𝒢) ⊢ ∃ a, ↑((stalkFunctor C x).map T) a = g [PROOFSTEP] obtain ⟨U, hxU, t, rfl⟩ := 𝒢.germ_exist x g [GOAL] case mp.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : IsLocallySurjective T x : ↑X U : Opens ↑X hxU : x ∈ U t : (forget C).obj (𝒢.obj (op U)) ⊢ ∃ a, ↑((stalkFunctor C x).map T) a = ↑(germ 𝒢 { val := x, property := hxU }) t [PROOFSTEP] rcases hT U t x hxU with ⟨V, ι, ⟨s, h_eq⟩, hxV⟩ -- Then the germ of s maps to g. [GOAL] case mp.intro.intro.intro.intro.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : IsLocallySurjective T x : ↑X U : Opens ↑X hxU : x ∈ U t : (forget C).obj (𝒢.obj (op U)) V : Opens ↑X ι : V ⟶ U hxV : x ∈ V s : (forget C).obj (ℱ.obj (op V)) h_eq : ↑(NatTrans.app T (op V)) s = ↑(𝒢.map ι.op) t ⊢ ∃ a, ↑((stalkFunctor C x).map T) a = ↑(germ 𝒢 { val := x, property := hxU }) t [PROOFSTEP] use ℱ.germ ⟨x, hxV⟩ s [GOAL] case h C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : IsLocallySurjective T x : ↑X U : Opens ↑X hxU : x ∈ U t : (forget C).obj (𝒢.obj (op U)) V : Opens ↑X ι : V ⟶ U hxV : x ∈ V s : (forget C).obj (ℱ.obj (op V)) h_eq : ↑(NatTrans.app T (op V)) s = ↑(𝒢.map ι.op) t ⊢ ↑((stalkFunctor C x).map T) (↑(germ ℱ { val := x, property := hxV }) s) = ↑(germ 𝒢 { val := x, property := hxU }) t [PROOFSTEP] convert stalkFunctor_map_germ_apply V ⟨x, hxV⟩ T s using 1 [GOAL] case h.e'_3.h C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : IsLocallySurjective T x : ↑X U : Opens ↑X hxU : x ∈ U t : (forget C).obj (𝒢.obj (op U)) V : Opens ↑X ι : V ⟶ U hxV : x ∈ V s : (forget C).obj (ℱ.obj (op V)) h_eq : ↑(NatTrans.app T (op V)) s = ↑(𝒢.map ι.op) t e_1✝ : (forget C).obj ((stalkFunctor C x).obj 𝒢) = (forget C).obj (Limits.colim.obj ((OpenNhds.inclusion ↑{ val := x, property := hxV }).op ⋙ 𝒢)) ⊢ ↑(germ 𝒢 { val := x, property := hxU }) t = ↑(Limits.colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxV }).op ⋙ 𝒢) (op { obj := V, property := (_ : ↑{ val := x, property := hxV } ∈ V) })) (↑(NatTrans.app T (op V)) s) [PROOFSTEP] simpa [h_eq] using (germ_res_apply 𝒢 ι ⟨x, hxV⟩ t).symm [GOAL] case mpr C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) ⊢ IsLocallySurjective T [PROOFSTEP] intro U t x hxU [GOAL] case mpr C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) U : Opens ↑X t : (forget C).obj (𝒢.obj (op U)) x : ↑X hxU : x ∈ U ⊢ ∃ U_1 f, (imageSieve T t).arrows f ∧ x ∈ U_1 [PROOFSTEP] set t_x := 𝒢.germ ⟨x, hxU⟩ t with ht_x [GOAL] case mpr C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) U : Opens ↑X t : (forget C).obj (𝒢.obj (op U)) x : ↑X hxU : x ∈ U t_x : (forget C).obj (stalk 𝒢 ↑{ val := x, property := hxU }) := ↑(germ 𝒢 { val := x, property := hxU }) t ht_x : t_x = ↑(germ 𝒢 { val := x, property := hxU }) t ⊢ ∃ U_1 f, (imageSieve T t).arrows f ∧ x ∈ U_1 [PROOFSTEP] obtain ⟨s_x, hs_x : ((stalkFunctor C x).map T) s_x = t_x⟩ := hT x t_x [GOAL] case mpr.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) U : Opens ↑X t : (forget C).obj (𝒢.obj (op U)) x : ↑X hxU : x ∈ U t_x : (forget C).obj (stalk 𝒢 ↑{ val := x, property := hxU }) := ↑(germ 𝒢 { val := x, property := hxU }) t ht_x : t_x = ↑(germ 𝒢 { val := x, property := hxU }) t s_x : (forget C).obj ((stalkFunctor C x).obj ℱ) hs_x : ↑((stalkFunctor C x).map T) s_x = t_x ⊢ ∃ U_1 f, (imageSieve T t).arrows f ∧ x ∈ U_1 [PROOFSTEP] obtain ⟨V, hxV, s, rfl⟩ := ℱ.germ_exist x s_x [GOAL] case mpr.intro.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) U : Opens ↑X t : (forget C).obj (𝒢.obj (op U)) x : ↑X hxU : x ∈ U t_x : (forget C).obj (stalk 𝒢 ↑{ val := x, property := hxU }) := ↑(germ 𝒢 { val := x, property := hxU }) t ht_x : t_x = ↑(germ 𝒢 { val := x, property := hxU }) t V : Opens ↑X hxV : x ∈ V s : (forget C).obj (ℱ.obj (op V)) hs_x : ↑((stalkFunctor C x).map T) (↑(germ ℱ { val := x, property := hxV }) s) = t_x ⊢ ∃ U_1 f, (imageSieve T t).arrows f ∧ x ∈ U_1 [PROOFSTEP] have key_W := 𝒢.germ_eq x hxV hxU (T.app _ s) t <| by convert hs_x using 1 symm convert stalkFunctor_map_germ_apply _ _ _ s [GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) U : Opens ↑X t : (forget C).obj (𝒢.obj (op U)) x : ↑X hxU : x ∈ U t_x : (forget C).obj (stalk 𝒢 ↑{ val := x, property := hxU }) := ↑(germ 𝒢 { val := x, property := hxU }) t ht_x : t_x = ↑(germ 𝒢 { val := x, property := hxU }) t V : Opens ↑X hxV : x ∈ V s : (forget C).obj (ℱ.obj (op V)) hs_x : ↑((stalkFunctor C x).map T) (↑(germ ℱ { val := x, property := hxV }) s) = t_x ⊢ ↑(germ 𝒢 { val := x, property := hxV }) (↑(NatTrans.app T (op V)) s) = ↑(germ 𝒢 { val := x, property := hxU }) t [PROOFSTEP] convert hs_x using 1 [GOAL] case h.e'_2.h C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) U : Opens ↑X t : (forget C).obj (𝒢.obj (op U)) x : ↑X hxU : x ∈ U t_x : (forget C).obj (stalk 𝒢 ↑{ val := x, property := hxU }) := ↑(germ 𝒢 { val := x, property := hxU }) t ht_x : t_x = ↑(germ 𝒢 { val := x, property := hxU }) t V : Opens ↑X hxV : x ∈ V s : (forget C).obj (ℱ.obj (op V)) hs_x : ↑((stalkFunctor C x).map T) (↑(germ ℱ { val := x, property := hxV }) s) = t_x e_1✝ : (fun x_1 => (forget C).obj (stalk 𝒢 ↑{ val := x, property := hxV })) (↑(NatTrans.app T (op V)) s) = (fun x_1 => (forget C).obj ((stalkFunctor C x).obj 𝒢)) (↑(germ ℱ { val := x, property := hxV }) s) ⊢ ↑(germ 𝒢 { val := x, property := hxV }) (↑(NatTrans.app T (op V)) s) = ↑((stalkFunctor C x).map T) (↑(germ ℱ { val := x, property := hxV }) s) [PROOFSTEP] symm [GOAL] case h.e'_2.h C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) U : Opens ↑X t : (forget C).obj (𝒢.obj (op U)) x : ↑X hxU : x ∈ U t_x : (forget C).obj (stalk 𝒢 ↑{ val := x, property := hxU }) := ↑(germ 𝒢 { val := x, property := hxU }) t ht_x : t_x = ↑(germ 𝒢 { val := x, property := hxU }) t V : Opens ↑X hxV : x ∈ V s : (forget C).obj (ℱ.obj (op V)) hs_x : ↑((stalkFunctor C x).map T) (↑(germ ℱ { val := x, property := hxV }) s) = t_x e_1✝ : (fun x_1 => (forget C).obj (stalk 𝒢 ↑{ val := x, property := hxV })) (↑(NatTrans.app T (op V)) s) = (fun x_1 => (forget C).obj ((stalkFunctor C x).obj 𝒢)) (↑(germ ℱ { val := x, property := hxV }) s) ⊢ ↑((stalkFunctor C x).map T) (↑(germ ℱ { val := x, property := hxV }) s) = ↑(germ 𝒢 { val := x, property := hxV }) (↑(NatTrans.app T (op V)) s) [PROOFSTEP] convert stalkFunctor_map_germ_apply _ _ _ s [GOAL] case mpr.intro.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) U : Opens ↑X t : (forget C).obj (𝒢.obj (op U)) x : ↑X hxU : x ∈ U t_x : (forget C).obj (stalk 𝒢 ↑{ val := x, property := hxU }) := ↑(germ 𝒢 { val := x, property := hxU }) t ht_x : t_x = ↑(germ 𝒢 { val := x, property := hxU }) t V : Opens ↑X hxV : x ∈ V s : (forget C).obj (ℱ.obj (op V)) hs_x : ↑((stalkFunctor C x).map T) (↑(germ ℱ { val := x, property := hxV }) s) = t_x key_W : ∃ W _m iU iV, ↑(𝒢.map iU.op) (↑(NatTrans.app T (op V)) s) = ↑(𝒢.map iV.op) t ⊢ ∃ U_1 f, (imageSieve T t).arrows f ∧ x ∈ U_1 [PROOFSTEP] obtain ⟨W, hxW, hWV, hWU, h_eq⟩ := key_W [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) U : Opens ↑X t : (forget C).obj (𝒢.obj (op U)) x : ↑X hxU : x ∈ U t_x : (forget C).obj (stalk 𝒢 ↑{ val := x, property := hxU }) := ↑(germ 𝒢 { val := x, property := hxU }) t ht_x : t_x = ↑(germ 𝒢 { val := x, property := hxU }) t V : Opens ↑X hxV : x ∈ V s : (forget C).obj (ℱ.obj (op V)) hs_x : ↑((stalkFunctor C x).map T) (↑(germ ℱ { val := x, property := hxV }) s) = t_x W : Opens ↑X hxW : x ∈ W hWV : W ⟶ V hWU : W ⟶ U h_eq : ↑(𝒢.map hWV.op) (↑(NatTrans.app T (op V)) s) = ↑(𝒢.map hWU.op) t ⊢ ∃ U_1 f, (imageSieve T t).arrows f ∧ x ∈ U_1 [PROOFSTEP] refine' ⟨W, hWU, ⟨ℱ.map hWV.op s, _⟩, hxW⟩ [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) U : Opens ↑X t : (forget C).obj (𝒢.obj (op U)) x : ↑X hxU : x ∈ U t_x : (forget C).obj (stalk 𝒢 ↑{ val := x, property := hxU }) := ↑(germ 𝒢 { val := x, property := hxU }) t ht_x : t_x = ↑(germ 𝒢 { val := x, property := hxU }) t V : Opens ↑X hxV : x ∈ V s : (forget C).obj (ℱ.obj (op V)) hs_x : ↑((stalkFunctor C x).map T) (↑(germ ℱ { val := x, property := hxV }) s) = t_x W : Opens ↑X hxW : x ∈ W hWV : W ⟶ V hWU : W ⟶ U h_eq : ↑(𝒢.map hWV.op) (↑(NatTrans.app T (op V)) s) = ↑(𝒢.map hWU.op) t ⊢ ↑(NatTrans.app T (op W)) (↑(ℱ.map hWV.op) s) = ↑(𝒢.map hWU.op) t [PROOFSTEP] convert h_eq using 1 [GOAL] case h.e'_2 C : Type u inst✝³ : Category.{v, u} C inst✝² : ConcreteCategory C X : TopCat ℱ 𝒢 : Presheaf C X inst✝¹ : Limits.HasColimits C inst✝ : Limits.PreservesFilteredColimits (forget C) T : ℱ ⟶ 𝒢 hT : ∀ (x : ↑X), Function.Surjective ↑((stalkFunctor C x).map T) U : Opens ↑X t : (forget C).obj (𝒢.obj (op U)) x : ↑X hxU : x ∈ U t_x : (forget C).obj (stalk 𝒢 ↑{ val := x, property := hxU }) := ↑(germ 𝒢 { val := x, property := hxU }) t ht_x : t_x = ↑(germ 𝒢 { val := x, property := hxU }) t V : Opens ↑X hxV : x ∈ V s : (forget C).obj (ℱ.obj (op V)) hs_x : ↑((stalkFunctor C x).map T) (↑(germ ℱ { val := x, property := hxV }) s) = t_x W : Opens ↑X hxW : x ∈ W hWV : W ⟶ V hWU : W ⟶ U h_eq : ↑(𝒢.map hWV.op) (↑(NatTrans.app T (op V)) s) = ↑(𝒢.map hWU.op) t ⊢ ↑(NatTrans.app T (op W)) (↑(ℱ.map hWV.op) s) = ↑(𝒢.map hWV.op) (↑(NatTrans.app T (op V)) s) [PROOFSTEP] simp only [← comp_apply, T.naturality]
{"mathlib_filename": "Mathlib.Topology.Sheaves.LocallySurjective", "llama_tokens": 7398}
[GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝¹ : UniformSpace α inst✝ : Group α h₁ : UniformContinuous fun p => p.fst * p.snd h₂ : UniformContinuous fun p => p⁻¹ ⊢ UniformContinuous fun p => p.fst / p.snd [PROOFSTEP] simpa only [div_eq_mul_inv] using h₁.comp (uniformContinuous_fst.prod_mk (h₂.comp uniformContinuous_snd)) [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f : β → α hf : UniformContinuous f ⊢ UniformContinuous fun x => (f x)⁻¹ [PROOFSTEP] have : UniformContinuous fun x => 1 / f x := uniformContinuous_const.div hf [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f : β → α hf : UniformContinuous f this : UniformContinuous fun x => 1 / f x ⊢ UniformContinuous fun x => (f x)⁻¹ [PROOFSTEP] simp_all [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f g : β → α hf : UniformContinuous f hg : UniformContinuous g ⊢ UniformContinuous fun x => f x * g x [PROOFSTEP] have : UniformContinuous fun x => f x / (g x)⁻¹ := hf.div hg.inv [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f g : β → α hf : UniformContinuous f hg : UniformContinuous g this : UniformContinuous fun x => f x / (g x)⁻¹ ⊢ UniformContinuous fun x => f x * g x [PROOFSTEP] simp_all [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f : β → α hf : UniformContinuous f ⊢ UniformContinuous fun x => f x ^ 0 [PROOFSTEP] simp_rw [pow_zero] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f : β → α hf : UniformContinuous f ⊢ UniformContinuous fun x => 1 [PROOFSTEP] exact uniformContinuous_const [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f : β → α hf : UniformContinuous f n : ℕ ⊢ UniformContinuous fun x => f x ^ (n + 1) [PROOFSTEP] simp_rw [pow_succ] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f : β → α hf : UniformContinuous f n : ℕ ⊢ UniformContinuous fun x => f x * f x ^ n [PROOFSTEP] exact hf.mul (hf.pow_const n) [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f : β → α hf : UniformContinuous f n : ℕ ⊢ UniformContinuous fun x => f x ^ ↑n [PROOFSTEP] simp_rw [zpow_ofNat] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f : β → α hf : UniformContinuous f n : ℕ ⊢ UniformContinuous fun x => f x ^ n [PROOFSTEP] exact hf.pow_const _ [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f : β → α hf : UniformContinuous f n : ℕ ⊢ UniformContinuous fun x => f x ^ Int.negSucc n [PROOFSTEP] simp_rw [zpow_negSucc] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f : β → α hf : UniformContinuous f n : ℕ ⊢ UniformContinuous fun x => (f x ^ (n + 1))⁻¹ [PROOFSTEP] exact (hf.pow_const _).inv [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α a : α ⊢ 𝓤 α = map (fun x => (x.fst * a, x.snd * a)) (map (fun x => (x.fst * a⁻¹, x.snd * a⁻¹)) (𝓤 α)) [PROOFSTEP] simp [Filter.map_map, (· ∘ ·)] [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α a : α ⊢ comap (fun x => (x.fst * a, x.snd * a)) (𝓤 α) = 𝓤 α [PROOFSTEP] nth_rewrite 1 [← uniformity_translate_mul a, comap_map] [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α a : α ⊢ 𝓤 α = 𝓤 α α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α a : α ⊢ Function.Injective fun x => (x.fst * a, x.snd * a) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α a : α ⊢ Function.Injective fun x => (x.fst * a, x.snd * a) [PROOFSTEP] rintro ⟨p₁, p₂⟩ ⟨q₁, q₂⟩ [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α a p₁ p₂ q₁ q₂ : α ⊢ (fun x => (x.fst * a, x.snd * a)) (p₁, p₂) = (fun x => (x.fst * a, x.snd * a)) (q₁, q₂) → (p₁, p₂) = (q₁, q₂) [PROOFSTEP] simp only [Prod.mk.injEq, mul_left_inj, imp_self] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : Group β ι : Sort u_3 us' : ι → UniformSpace β h' : ∀ (i : ι), UniformGroup β ⊢ UniformGroup β [PROOFSTEP] rw [← sInf_range] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : Group β ι : Sort u_3 us' : ι → UniformSpace β h' : ∀ (i : ι), UniformGroup β ⊢ UniformGroup β [PROOFSTEP] exact uniformGroup_sInf (Set.forall_range_iff.mpr h') [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : Group β u₁ u₂ : UniformSpace β h₁ : UniformGroup β h₂ : UniformGroup β ⊢ UniformGroup β [PROOFSTEP] rw [inf_eq_iInf] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : Group β u₁ u₂ : UniformSpace β h₁ : UniformGroup β h₂ : UniformGroup β ⊢ UniformGroup β [PROOFSTEP] refine' uniformGroup_iInf fun b => _ [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : Group β u₁ u₂ : UniformSpace β h₁ : UniformGroup β h₂ : UniformGroup β b : Bool ⊢ UniformGroup β [PROOFSTEP] cases b [GOAL] case false α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : Group β u₁ u₂ : UniformSpace β h₁ : UniformGroup β h₂ : UniformGroup β ⊢ UniformGroup β [PROOFSTEP] assumption [GOAL] case true α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : Group β u₁ u₂ : UniformSpace β h₁ : UniformGroup β h₂ : UniformGroup β ⊢ UniformGroup β [PROOFSTEP] assumption [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : UniformSpace α inst✝⁵ : Group α inst✝⁴ : UniformGroup α inst✝³ : Group β γ : Type u_3 inst✝² : Group γ u : UniformSpace γ inst✝¹ : UniformGroup γ F : Type u_4 inst✝ : MonoidHomClass F β γ f : F ⊢ UniformContinuous fun p => p.fst / p.snd [PROOFSTEP] letI : UniformSpace β := u.comap f [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : UniformSpace α inst✝⁵ : Group α inst✝⁴ : UniformGroup α inst✝³ : Group β γ : Type u_3 inst✝² : Group γ u : UniformSpace γ inst✝¹ : UniformGroup γ F : Type u_4 inst✝ : MonoidHomClass F β γ f : F this : UniformSpace β := UniformSpace.comap (↑f) u ⊢ UniformContinuous fun p => p.fst / p.snd [PROOFSTEP] refine' uniformContinuous_comap' _ [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : UniformSpace α inst✝⁵ : Group α inst✝⁴ : UniformGroup α inst✝³ : Group β γ : Type u_3 inst✝² : Group γ u : UniformSpace γ inst✝¹ : UniformGroup γ F : Type u_4 inst✝ : MonoidHomClass F β γ f : F this : UniformSpace β := UniformSpace.comap (↑f) u ⊢ UniformContinuous (↑f ∘ fun p => p.fst / p.snd) [PROOFSTEP] simp_rw [Function.comp, map_div] [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : UniformSpace α inst✝⁵ : Group α inst✝⁴ : UniformGroup α inst✝³ : Group β γ : Type u_3 inst✝² : Group γ u : UniformSpace γ inst✝¹ : UniformGroup γ F : Type u_4 inst✝ : MonoidHomClass F β γ f : F this : UniformSpace β := UniformSpace.comap (↑f) u ⊢ UniformContinuous fun x => ↑f x.fst / ↑f x.snd [PROOFSTEP] change UniformContinuous ((fun p : γ × γ => p.1 / p.2) ∘ Prod.map f f) [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : UniformSpace α inst✝⁵ : Group α inst✝⁴ : UniformGroup α inst✝³ : Group β γ : Type u_3 inst✝² : Group γ u : UniformSpace γ inst✝¹ : UniformGroup γ F : Type u_4 inst✝ : MonoidHomClass F β γ f : F this : UniformSpace β := UniformSpace.comap (↑f) u ⊢ UniformContinuous ((fun p => p.fst / p.snd) ∘ Prod.map ↑f ↑f) [PROOFSTEP] exact uniformContinuous_div.comp (uniformContinuous_comap.prod_map uniformContinuous_comap) [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ⊢ 𝓤 α = comap (fun x => x.snd / x.fst) (𝓝 1) [PROOFSTEP] rw [nhds_eq_comap_uniformity, Filter.comap_comap] [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ⊢ 𝓤 α = comap (Prod.mk 1 ∘ fun x => x.snd / x.fst) (𝓤 α) [PROOFSTEP] refine' le_antisymm (Filter.map_le_iff_le_comap.1 _) _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ⊢ map (Prod.mk 1 ∘ fun x => x.snd / x.fst) (𝓤 α) ≤ 𝓤 α [PROOFSTEP] intro s hs [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α s : Set (α × α) hs : s ∈ 𝓤 α ⊢ s ∈ map (Prod.mk 1 ∘ fun x => x.snd / x.fst) (𝓤 α) [PROOFSTEP] rcases mem_uniformity_of_uniformContinuous_invariant uniformContinuous_div hs with ⟨t, ht, hts⟩ [GOAL] case refine'_1.intro.intro α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α s : Set (α × α) hs : s ∈ 𝓤 α t : Set (α × α) ht : t ∈ 𝓤 α hts : ∀ (a b c : α), (a, b) ∈ t → (a / c, b / c) ∈ s ⊢ s ∈ map (Prod.mk 1 ∘ fun x => x.snd / x.fst) (𝓤 α) [PROOFSTEP] refine' mem_map.2 (mem_of_superset ht _) [GOAL] case refine'_1.intro.intro α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α s : Set (α × α) hs : s ∈ 𝓤 α t : Set (α × α) ht : t ∈ 𝓤 α hts : ∀ (a b c : α), (a, b) ∈ t → (a / c, b / c) ∈ s ⊢ t ⊆ (Prod.mk 1 ∘ fun x => x.snd / x.fst) ⁻¹' s [PROOFSTEP] rintro ⟨a, b⟩ [GOAL] case refine'_1.intro.intro.mk α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α s : Set (α × α) hs : s ∈ 𝓤 α t : Set (α × α) ht : t ∈ 𝓤 α hts : ∀ (a b c : α), (a, b) ∈ t → (a / c, b / c) ∈ s a b : α ⊢ (a, b) ∈ t → (a, b) ∈ (Prod.mk 1 ∘ fun x => x.snd / x.fst) ⁻¹' s [PROOFSTEP] simpa [subset_def] using hts a b a [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ⊢ comap (Prod.mk 1 ∘ fun x => x.snd / x.fst) (𝓤 α) ≤ 𝓤 α [PROOFSTEP] intro s hs [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α s : Set (α × α) hs : s ∈ 𝓤 α ⊢ s ∈ comap (Prod.mk 1 ∘ fun x => x.snd / x.fst) (𝓤 α) [PROOFSTEP] rcases mem_uniformity_of_uniformContinuous_invariant uniformContinuous_mul hs with ⟨t, ht, hts⟩ [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α s : Set (α × α) hs : s ∈ 𝓤 α t : Set (α × α) ht : t ∈ 𝓤 α hts : ∀ (a b c : α), (a, b) ∈ t → (a * c, b * c) ∈ s ⊢ s ∈ comap (Prod.mk 1 ∘ fun x => x.snd / x.fst) (𝓤 α) [PROOFSTEP] refine' ⟨_, ht, _⟩ [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α s : Set (α × α) hs : s ∈ 𝓤 α t : Set (α × α) ht : t ∈ 𝓤 α hts : ∀ (a b c : α), (a, b) ∈ t → (a * c, b * c) ∈ s ⊢ (Prod.mk 1 ∘ fun x => x.snd / x.fst) ⁻¹' t ⊆ s [PROOFSTEP] rintro ⟨a, b⟩ [GOAL] case refine'_2.intro.intro.mk α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α s : Set (α × α) hs : s ∈ 𝓤 α t : Set (α × α) ht : t ∈ 𝓤 α hts : ∀ (a b c : α), (a, b) ∈ t → (a * c, b * c) ∈ s a b : α ⊢ (a, b) ∈ (Prod.mk 1 ∘ fun x => x.snd / x.fst) ⁻¹' t → (a, b) ∈ s [PROOFSTEP] simpa [subset_def] using hts 1 (b / a) a [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ⊢ 𝓤 α = comap (fun x => x.fst / x.snd) (𝓝 1) [PROOFSTEP] rw [← comap_swap_uniformity, uniformity_eq_comap_nhds_one, comap_comap] [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ⊢ comap ((fun x => x.snd / x.fst) ∘ Prod.swap) (𝓝 1) = comap (fun x => x.fst / x.snd) (𝓝 1) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α G : Type u_3 inst✝ : Group G u v : UniformSpace G hu : UniformGroup G hv : UniformGroup G h : 𝓝 1 = 𝓝 1 ⊢ 𝓤 G = 𝓤 G [PROOFSTEP] rw [@uniformity_eq_comap_nhds_one _ u _ hu, @uniformity_eq_comap_nhds_one _ v _ hv, h] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : IsCountablyGenerated (𝓝 1) ⊢ IsCountablyGenerated (𝓤 α) [PROOFSTEP] rw [uniformity_eq_comap_nhds_one] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : IsCountablyGenerated (𝓝 1) ⊢ IsCountablyGenerated (comap (fun x => x.snd / x.fst) (𝓝 1)) [PROOFSTEP] exact Filter.comap.isCountablyGenerated _ _ [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ⊢ 𝓤 α = comap (fun x => x.fst⁻¹ * x.snd) (𝓝 1) [PROOFSTEP] rw [← comap_uniformity_mulOpposite, uniformity_eq_comap_nhds_one, ← op_one, ← comap_unop_nhds, comap_comap, comap_comap] [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ⊢ comap (unop ∘ (fun x => x.snd / x.fst) ∘ fun p => (op p.fst, op p.snd)) (𝓝 1) = comap (fun x => x.fst⁻¹ * x.snd) (𝓝 1) [PROOFSTEP] simp [(· ∘ ·)] [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ⊢ 𝓤 α = comap (fun x => x.snd⁻¹ * x.fst) (𝓝 1) [PROOFSTEP] rw [← comap_swap_uniformity, uniformity_eq_comap_inv_mul_nhds_one, comap_comap] [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ⊢ comap ((fun x => x.fst⁻¹ * x.snd) ∘ Prod.swap) (𝓝 1) = comap (fun x => x.snd⁻¹ * x.fst) (𝓝 1) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ι : Sort u_3 p : ι → Prop U : ι → Set α h : HasBasis (𝓝 1) p U ⊢ HasBasis (𝓤 α) p fun i => {x | x.snd / x.fst ∈ U i} [PROOFSTEP] rw [uniformity_eq_comap_nhds_one] [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ι : Sort u_3 p : ι → Prop U : ι → Set α h : HasBasis (𝓝 1) p U ⊢ HasBasis (Filter.comap (fun x => x.snd / x.fst) (𝓝 1)) p fun i => {x | x.snd / x.fst ∈ U i} [PROOFSTEP] exact h.comap _ [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ι : Sort u_3 p : ι → Prop U : ι → Set α h : HasBasis (𝓝 1) p U ⊢ HasBasis (𝓤 α) p fun i => {x | x.fst⁻¹ * x.snd ∈ U i} [PROOFSTEP] rw [uniformity_eq_comap_inv_mul_nhds_one] [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ι : Sort u_3 p : ι → Prop U : ι → Set α h : HasBasis (𝓝 1) p U ⊢ HasBasis (Filter.comap (fun x => x.fst⁻¹ * x.snd) (𝓝 1)) p fun i => {x | x.fst⁻¹ * x.snd ∈ U i} [PROOFSTEP] exact h.comap _ [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ι : Sort u_3 p : ι → Prop U : ι → Set α h : HasBasis (𝓝 1) p U ⊢ HasBasis (𝓤 α) p fun i => {x | x.fst / x.snd ∈ U i} [PROOFSTEP] rw [uniformity_eq_comap_nhds_one_swapped] [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ι : Sort u_3 p : ι → Prop U : ι → Set α h : HasBasis (𝓝 1) p U ⊢ HasBasis (Filter.comap (fun x => x.fst / x.snd) (𝓝 1)) p fun i => {x | x.fst / x.snd ∈ U i} [PROOFSTEP] exact h.comap _ [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ι : Sort u_3 p : ι → Prop U : ι → Set α h : HasBasis (𝓝 1) p U ⊢ HasBasis (𝓤 α) p fun i => {x | x.snd⁻¹ * x.fst ∈ U i} [PROOFSTEP] rw [uniformity_eq_comap_inv_mul_nhds_one_swapped] [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ι : Sort u_3 p : ι → Prop U : ι → Set α h : HasBasis (𝓝 1) p U ⊢ HasBasis (Filter.comap (fun x => x.snd⁻¹ * x.fst) (𝓝 1)) p fun i => {x | x.snd⁻¹ * x.fst ∈ U i} [PROOFSTEP] exact h.comap _ [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α x y : α this : Embedding fun a => a * (y / x) ⊢ (x, y) ∈ ⋂₀ (𝓤 α).sets ↔ x / y ∈ closure {1} [PROOFSTEP] rw [this.closure_eq_preimage_closure_image, uniformity_eq_comap_nhds_one α, sInter_comap_sets] [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α x y : α this : Embedding fun a => a * (y / x) ⊢ (x, y) ∈ ⋂ (U : Set α) (_ : U ∈ 𝓝 1), (fun x => x.snd / x.fst) ⁻¹' U ↔ x / y ∈ (fun a => a * (y / x)) ⁻¹' closure ((fun a => a * (y / x)) '' {1}) [PROOFSTEP] simp [mem_closure_iff_nhds, inter_singleton_nonempty, sub_eq_add_neg, add_assoc] [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : UniformSpace α inst✝⁵ : Group α inst✝⁴ : UniformGroup α hom : Type u_3 inst✝³ : UniformSpace β inst✝² : Group β inst✝¹ : UniformGroup β inst✝ : MonoidHomClass hom α β f : hom h : Tendsto (↑f) (𝓝 1) (𝓝 1) ⊢ UniformContinuous ↑f [PROOFSTEP] have : ((fun x : β × β => x.2 / x.1) ∘ fun x : α × α => (f x.1, f x.2)) = fun x : α × α => f (x.2 / x.1) := by ext; simp only [Function.comp_apply, map_div] [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : UniformSpace α inst✝⁵ : Group α inst✝⁴ : UniformGroup α hom : Type u_3 inst✝³ : UniformSpace β inst✝² : Group β inst✝¹ : UniformGroup β inst✝ : MonoidHomClass hom α β f : hom h : Tendsto (↑f) (𝓝 1) (𝓝 1) ⊢ ((fun x => x.snd / x.fst) ∘ fun x => (↑f x.fst, ↑f x.snd)) = fun x => ↑f (x.snd / x.fst) [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 inst✝⁶ : UniformSpace α inst✝⁵ : Group α inst✝⁴ : UniformGroup α hom : Type u_3 inst✝³ : UniformSpace β inst✝² : Group β inst✝¹ : UniformGroup β inst✝ : MonoidHomClass hom α β f : hom h : Tendsto (↑f) (𝓝 1) (𝓝 1) x✝ : α × α ⊢ ((fun x => x.snd / x.fst) ∘ fun x => (↑f x.fst, ↑f x.snd)) x✝ = ↑f (x✝.snd / x✝.fst) [PROOFSTEP] simp only [Function.comp_apply, map_div] [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : UniformSpace α inst✝⁵ : Group α inst✝⁴ : UniformGroup α hom : Type u_3 inst✝³ : UniformSpace β inst✝² : Group β inst✝¹ : UniformGroup β inst✝ : MonoidHomClass hom α β f : hom h : Tendsto (↑f) (𝓝 1) (𝓝 1) this : ((fun x => x.snd / x.fst) ∘ fun x => (↑f x.fst, ↑f x.snd)) = fun x => ↑f (x.snd / x.fst) ⊢ UniformContinuous ↑f [PROOFSTEP] rw [UniformContinuous, uniformity_eq_comap_nhds_one α, uniformity_eq_comap_nhds_one β, tendsto_comap_iff, this] [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : UniformSpace α inst✝⁵ : Group α inst✝⁴ : UniformGroup α hom : Type u_3 inst✝³ : UniformSpace β inst✝² : Group β inst✝¹ : UniformGroup β inst✝ : MonoidHomClass hom α β f : hom h : Tendsto (↑f) (𝓝 1) (𝓝 1) this : ((fun x => x.snd / x.fst) ∘ fun x => (↑f x.fst, ↑f x.snd)) = fun x => ↑f (x.snd / x.fst) ⊢ Tendsto (fun x => ↑f (x.snd / x.fst)) (comap (fun x => x.snd / x.fst) (𝓝 1)) (𝓝 1) [PROOFSTEP] exact Tendsto.comp h tendsto_comap [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : UniformSpace α inst✝⁵ : Group α inst✝⁴ : UniformGroup α hom : Type u_3 inst✝³ : UniformSpace β inst✝² : Group β inst✝¹ : UniformGroup β inst✝ : MonoidHomClass hom α β f : hom hf : ContinuousAt (↑f) 1 ⊢ Tendsto (↑f) (𝓝 1) (𝓝 1) [PROOFSTEP] simpa using hf.tendsto [GOAL] α : Type u_1 β : Type u_2 inst✝⁷ : UniformSpace α inst✝⁶ : Group α inst✝⁵ : UniformGroup α hom : Type u_3 inst✝⁴ : UniformSpace β inst✝³ : DiscreteTopology β inst✝² : Group β inst✝¹ : UniformGroup β inst✝ : MonoidHomClass hom α β f : hom ⊢ UniformContinuous ↑f ↔ IsOpen ↑(MonoidHom.ker ↑f) [PROOFSTEP] refine' ⟨fun hf => _, fun hf => _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁷ : UniformSpace α inst✝⁶ : Group α inst✝⁵ : UniformGroup α hom : Type u_3 inst✝⁴ : UniformSpace β inst✝³ : DiscreteTopology β inst✝² : Group β inst✝¹ : UniformGroup β inst✝ : MonoidHomClass hom α β f : hom hf : UniformContinuous ↑f ⊢ IsOpen ↑(MonoidHom.ker ↑f) [PROOFSTEP] apply (isOpen_discrete ({1} : Set β)).preimage hf.continuous [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁷ : UniformSpace α inst✝⁶ : Group α inst✝⁵ : UniformGroup α hom : Type u_3 inst✝⁴ : UniformSpace β inst✝³ : DiscreteTopology β inst✝² : Group β inst✝¹ : UniformGroup β inst✝ : MonoidHomClass hom α β f : hom hf : IsOpen ↑(MonoidHom.ker ↑f) ⊢ UniformContinuous ↑f [PROOFSTEP] apply uniformContinuous_of_continuousAt_one [GOAL] case refine'_2.hf α : Type u_1 β : Type u_2 inst✝⁷ : UniformSpace α inst✝⁶ : Group α inst✝⁵ : UniformGroup α hom : Type u_3 inst✝⁴ : UniformSpace β inst✝³ : DiscreteTopology β inst✝² : Group β inst✝¹ : UniformGroup β inst✝ : MonoidHomClass hom α β f : hom hf : IsOpen ↑(MonoidHom.ker ↑f) ⊢ ContinuousAt (↑f) 1 [PROOFSTEP] rw [ContinuousAt, nhds_discrete β, map_one, tendsto_pure] [GOAL] case refine'_2.hf α : Type u_1 β : Type u_2 inst✝⁷ : UniformSpace α inst✝⁶ : Group α inst✝⁵ : UniformGroup α hom : Type u_3 inst✝⁴ : UniformSpace β inst✝³ : DiscreteTopology β inst✝² : Group β inst✝¹ : UniformGroup β inst✝ : MonoidHomClass hom α β f : hom hf : IsOpen ↑(MonoidHom.ker ↑f) ⊢ ∀ᶠ (x : α) in 𝓝 1, ↑f x = 1 [PROOFSTEP] exact hf.mem_nhds (map_one f) [GOAL] α : Type u_1 β : Type u_2 inst✝⁶ : UniformSpace α inst✝⁵ : Group α inst✝⁴ : UniformGroup α hom : Type u_3 inst✝³ : UniformSpace β inst✝² : Group β inst✝¹ : UniformGroup β inst✝ : MonoidHomClass hom α β f : hom h : Continuous ↑f this : Tendsto (↑f) (𝓝 1) (𝓝 (↑f 1)) ⊢ Tendsto (↑f) (𝓝 1) (𝓝 1) [PROOFSTEP] rwa [map_one] at this [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α s : Set α ⊢ (∀ (i : Set α), i ∈ 𝓝 1 → ∃ t, Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ {x | x.snd⁻¹ * x.fst ∈ id i}}) ↔ ∀ (U : Set α), U ∈ 𝓝 1 → ∃ t, Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), y • U [PROOFSTEP] simp [← preimage_smul_inv, preimage] [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ι : Type u_3 l : Filter ι l' : Filter β f f' : ι → β → α g g' : β → α s : Set β hf : UniformCauchySeqOn f l s hf' : UniformCauchySeqOn f' l s u : Set (α × α) hu : u ∈ 𝓤 α ⊢ ∀ᶠ (m : ι × ι) in l ×ˢ l, ∀ (x : β), x ∈ s → ((f * f') m.fst x, (f * f') m.snd x) ∈ u [PROOFSTEP] simpa using (uniformContinuous_mul.comp_uniformCauchySeqOn (hf.prod' hf')) u hu [GOAL] α : Type u_1 β : Type u_2 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ι : Type u_3 l : Filter ι l' : Filter β f f' : ι → β → α g g' : β → α s : Set β hf : UniformCauchySeqOn f l s hf' : UniformCauchySeqOn f' l s u : Set (α × α) hu : u ∈ 𝓤 α ⊢ ∀ᶠ (m : ι × ι) in l ×ˢ l, ∀ (x : β), x ∈ s → ((f / f') m.fst x, (f / f') m.snd x) ∈ u [PROOFSTEP] simpa using (uniformContinuous_div.comp_uniformCauchySeqOn (hf.prod' hf')) u hu [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G ⊢ Tendsto (fun p => p.snd / p.fst) (𝓟 idRel) (pure 1) [PROOFSTEP] simp [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : Tendsto (fun p => (p.snd / p.fst)⁻¹) (comap (fun p => p.snd / p.fst) (𝓝 1)) (𝓝 1⁻¹) ⊢ Tendsto Prod.swap (comap (fun p => p.snd / p.fst) (𝓝 1)) (comap (fun p => p.snd / p.fst) (𝓝 1)) [PROOFSTEP] simpa [tendsto_comap_iff] [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G U : Set G H : U ∈ 𝓝 1 ⊢ U ∈ map (fun p => p.snd / p.fst) (Filter.lift' (comap (fun p => p.snd / p.fst) (𝓝 1)) fun s => s ○ s) [PROOFSTEP] rcases exists_nhds_one_split H with ⟨V, V_nhds, V_mul⟩ [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G U : Set G H : U ∈ 𝓝 1 V : Set G V_nhds : V ∈ 𝓝 1 V_mul : ∀ (v : G), v ∈ V → ∀ (w : G), w ∈ V → v * w ∈ U ⊢ U ∈ map (fun p => p.snd / p.fst) (Filter.lift' (comap (fun p => p.snd / p.fst) (𝓝 1)) fun s => s ○ s) [PROOFSTEP] refine mem_map.2 (mem_of_superset (mem_lift' <| preimage_mem_comap V_nhds) ?_) [GOAL] case intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G U : Set G H : U ∈ 𝓝 1 V : Set G V_nhds : V ∈ 𝓝 1 V_mul : ∀ (v : G), v ∈ V → ∀ (w : G), w ∈ V → v * w ∈ U ⊢ (fun p => p.snd / p.fst) ⁻¹' V ○ (fun p => p.snd / p.fst) ⁻¹' V ⊆ (fun p => p.snd / p.fst) ⁻¹' U [PROOFSTEP] rintro ⟨x, y⟩ ⟨z, hz₁, hz₂⟩ [GOAL] case intro.intro.mk.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G U : Set G H : U ∈ 𝓝 1 V : Set G V_nhds : V ∈ 𝓝 1 V_mul : ∀ (v : G), v ∈ V → ∀ (w : G), w ∈ V → v * w ∈ U x y z : G hz₁ : ((x, y).fst, z) ∈ (fun p => p.snd / p.fst) ⁻¹' V hz₂ : (z, (x, y).snd) ∈ (fun p => p.snd / p.fst) ⁻¹' V ⊢ (x, y) ∈ (fun p => p.snd / p.fst) ⁻¹' U [PROOFSTEP] simpa using V_mul _ hz₂ _ hz₁ [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G S : Set G ⊢ IsOpen S ↔ ∀ (x : G), x ∈ S → {p | p.fst = x → p.snd ∈ S} ∈ { uniformity := comap (fun p => p.snd / p.fst) (𝓝 1), refl := (_ : 𝓟 idRel ≤ comap (fun p => p.snd / p.fst) (𝓝 1)), symm := (_ : Tendsto Prod.swap (comap (fun p => p.snd / p.fst) (𝓝 1)) (comap (fun p => p.snd / p.fst) (𝓝 1))), comp := (_ : (Filter.lift' (comap (fun p => p.snd / p.fst) (𝓝 1)) fun s => s ○ s) ≤ comap (fun p => p.snd / p.fst) (𝓝 1)) }.uniformity [PROOFSTEP] simp only [isOpen_iff_mem_nhds, ← mem_comap_prod_mk, comap_comap, (· ∘ ·), nhds_translation_div] [GOAL] G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : CompactSpace G ⊢ UniformContinuous fun p => p.fst / p.snd [PROOFSTEP] apply CompactSpace.uniformContinuous_of_continuous [GOAL] case h G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : CompactSpace G ⊢ Continuous fun p => p.fst / p.snd [PROOFSTEP] exact continuous_div' [GOAL] G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Subgroup G inst✝ : DiscreteTopology { x // x ∈ H } ⊢ IsClosed ↑H [PROOFSTEP] obtain ⟨V, V_in, VH⟩ : ∃ (V : Set G), V ∈ 𝓝 (1 : G) ∧ V ∩ (H : Set G) = {1} [GOAL] G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Subgroup G inst✝ : DiscreteTopology { x // x ∈ H } ⊢ ∃ V, V ∈ 𝓝 1 ∧ V ∩ ↑H = {1} case intro.intro G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Subgroup G inst✝ : DiscreteTopology { x // x ∈ H } V : Set G V_in : V ∈ 𝓝 1 VH : V ∩ ↑H = {1} ⊢ IsClosed ↑H [PROOFSTEP] exact nhds_inter_eq_singleton_of_mem_discrete H.one_mem [GOAL] case intro.intro G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Subgroup G inst✝ : DiscreteTopology { x // x ∈ H } V : Set G V_in : V ∈ 𝓝 1 VH : V ∩ ↑H = {1} ⊢ IsClosed ↑H [PROOFSTEP] haveI : SeparatedSpace G := separated_iff_t2.mpr ‹_› [GOAL] case intro.intro G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Subgroup G inst✝ : DiscreteTopology { x // x ∈ H } V : Set G V_in : V ∈ 𝓝 1 VH : V ∩ ↑H = {1} this : SeparatedSpace G ⊢ IsClosed ↑H [PROOFSTEP] have : (fun p : G × G => p.2 / p.1) ⁻¹' V ∈ 𝓤 G := preimage_mem_comap V_in [GOAL] case intro.intro G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Subgroup G inst✝ : DiscreteTopology { x // x ∈ H } V : Set G V_in : V ∈ 𝓝 1 VH : V ∩ ↑H = {1} this✝ : SeparatedSpace G this : (fun p => p.snd / p.fst) ⁻¹' V ∈ 𝓤 G ⊢ IsClosed ↑H [PROOFSTEP] apply isClosed_of_spaced_out this [GOAL] case intro.intro G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Subgroup G inst✝ : DiscreteTopology { x // x ∈ H } V : Set G V_in : V ∈ 𝓝 1 VH : V ∩ ↑H = {1} this✝ : SeparatedSpace G this : (fun p => p.snd / p.fst) ⁻¹' V ∈ 𝓤 G ⊢ Set.Pairwise ↑H fun x y => ¬(x, y) ∈ (fun p => p.snd / p.fst) ⁻¹' V [PROOFSTEP] intro h h_in h' h'_in [GOAL] case intro.intro G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Subgroup G inst✝ : DiscreteTopology { x // x ∈ H } V : Set G V_in : V ∈ 𝓝 1 VH : V ∩ ↑H = {1} this✝ : SeparatedSpace G this : (fun p => p.snd / p.fst) ⁻¹' V ∈ 𝓤 G h : G h_in : h ∈ ↑H h' : G h'_in : h' ∈ ↑H ⊢ h ≠ h' → (fun x y => ¬(x, y) ∈ (fun p => p.snd / p.fst) ⁻¹' V) h h' [PROOFSTEP] contrapose! [GOAL] case intro.intro G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Subgroup G inst✝ : DiscreteTopology { x // x ∈ H } V : Set G V_in : V ∈ 𝓝 1 VH : V ∩ ↑H = {1} this✝ : SeparatedSpace G this : (fun p => p.snd / p.fst) ⁻¹' V ∈ 𝓤 G h : G h_in : h ∈ ↑H h' : G h'_in : h' ∈ ↑H ⊢ ¬¬(h, h') ∈ (fun p => p.snd / p.fst) ⁻¹' V → h = h' [PROOFSTEP] simp only [Set.mem_preimage, not_not] [GOAL] case intro.intro G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Subgroup G inst✝ : DiscreteTopology { x // x ∈ H } V : Set G V_in : V ∈ 𝓝 1 VH : V ∩ ↑H = {1} this✝ : SeparatedSpace G this : (fun p => p.snd / p.fst) ⁻¹' V ∈ 𝓤 G h : G h_in : h ∈ ↑H h' : G h'_in : h' ∈ ↑H ⊢ h' / h ∈ V → h = h' [PROOFSTEP] rintro (hyp : h' / h ∈ V) [GOAL] case intro.intro G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Subgroup G inst✝ : DiscreteTopology { x // x ∈ H } V : Set G V_in : V ∈ 𝓝 1 VH : V ∩ ↑H = {1} this✝ : SeparatedSpace G this : (fun p => p.snd / p.fst) ⁻¹' V ∈ 𝓤 G h : G h_in : h ∈ ↑H h' : G h'_in : h' ∈ ↑H hyp : h' / h ∈ V ⊢ h = h' [PROOFSTEP] have : h' / h ∈ ({1} : Set G) := VH ▸ Set.mem_inter hyp (H.div_mem h'_in h_in) [GOAL] case intro.intro G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Subgroup G inst✝ : DiscreteTopology { x // x ∈ H } V : Set G V_in : V ∈ 𝓝 1 VH : V ∩ ↑H = {1} this✝¹ : SeparatedSpace G this✝ : (fun p => p.snd / p.fst) ⁻¹' V ∈ 𝓤 G h : G h_in : h ∈ ↑H h' : G h'_in : h' ∈ ↑H hyp : h' / h ∈ V this : h' / h ∈ {1} ⊢ h = h' [PROOFSTEP] exact (eq_of_div_eq_one this).symm [GOAL] G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Type u_2 inst✝ : Group H f : H →* G hf : Function.Injective ↑f hf' : DiscreteTopology { x // x ∈ range f } ⊢ Tendsto (↑f) cofinite (cocompact G) [PROOFSTEP] replace hf : Function.Injective f.rangeRestrict := by simpa [GOAL] G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Type u_2 inst✝ : Group H f : H →* G hf : Function.Injective ↑f hf' : DiscreteTopology { x // x ∈ range f } ⊢ Function.Injective ↑(rangeRestrict f) [PROOFSTEP] simpa [GOAL] G : Type u_1 inst✝⁴ : Group G inst✝³ : TopologicalSpace G inst✝² : TopologicalGroup G inst✝¹ : T2Space G H : Type u_2 inst✝ : Group H f : H →* G hf' : DiscreteTopology { x // x ∈ range f } hf : Function.Injective ↑(rangeRestrict f) ⊢ Tendsto (↑f) cofinite (cocompact G) [PROOFSTEP] exact f.range.tendsto_coe_cofinite_of_discrete.comp hf.tendsto_cofinite [GOAL] G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G ⊢ UniformGroup G [PROOFSTEP] have : Tendsto ((fun p : G × G => p.1 / p.2) ∘ fun p : (G × G) × G × G => (p.1.2 / p.1.1, p.2.2 / p.2.1)) (comap (fun p : (G × G) × G × G => (p.1.2 / p.1.1, p.2.2 / p.2.1)) ((𝓝 1).prod (𝓝 1))) (𝓝 (1 / 1)) := (tendsto_fst.div' tendsto_snd).comp tendsto_comap [GOAL] G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : Tendsto ((fun p => p.fst / p.snd) ∘ fun p => (p.fst.snd / p.fst.fst, p.snd.snd / p.snd.fst)) (comap (fun p => (p.fst.snd / p.fst.fst, p.snd.snd / p.snd.fst)) (Filter.prod (𝓝 1) (𝓝 1))) (𝓝 (1 / 1)) ⊢ UniformGroup G [PROOFSTEP] constructor [GOAL] case uniformContinuous_div G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : Tendsto ((fun p => p.fst / p.snd) ∘ fun p => (p.fst.snd / p.fst.fst, p.snd.snd / p.snd.fst)) (comap (fun p => (p.fst.snd / p.fst.fst, p.snd.snd / p.snd.fst)) (Filter.prod (𝓝 1) (𝓝 1))) (𝓝 (1 / 1)) ⊢ UniformContinuous fun p => p.fst / p.snd [PROOFSTEP] rw [UniformContinuous, uniformity_prod_eq_prod, tendsto_map'_iff, uniformity_eq_comap_nhds_one' G, tendsto_comap_iff, prod_comap_comap_eq] [GOAL] case uniformContinuous_div G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : Tendsto ((fun p => p.fst / p.snd) ∘ fun p => (p.fst.snd / p.fst.fst, p.snd.snd / p.snd.fst)) (comap (fun p => (p.fst.snd / p.fst.fst, p.snd.snd / p.snd.fst)) (Filter.prod (𝓝 1) (𝓝 1))) (𝓝 (1 / 1)) ⊢ Tendsto ((fun p => p.snd / p.fst) ∘ (fun x => (x.fst.fst / x.fst.snd, x.snd.fst / x.snd.snd)) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) (comap (fun p => (p.fst.snd / p.fst.fst, p.snd.snd / p.snd.fst)) (𝓝 1 ×ˢ 𝓝 1)) (𝓝 1) [PROOFSTEP] simp only [Function.comp, div_eq_mul_inv, mul_inv_rev, inv_inv, mul_comm, mul_left_comm] at * [GOAL] case uniformContinuous_div G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : Tendsto (fun x => x.snd.fst * (x.fst.snd * x.fst.fst⁻¹ * x.snd.snd⁻¹)) (comap (fun p => (p.fst.snd * p.fst.fst⁻¹, p.snd.snd * p.snd.fst⁻¹)) (Filter.prod (𝓝 1) (𝓝 1))) (𝓝 (1 * 1⁻¹)) ⊢ Tendsto (fun x => x.fst.snd * (x.snd.fst * x.fst.fst⁻¹ * x.snd.snd⁻¹)) (comap (fun p => (p.fst.snd * p.fst.fst⁻¹, p.snd.snd * p.snd.fst⁻¹)) (𝓝 1 ×ˢ 𝓝 1)) (𝓝 1) [PROOFSTEP] simp only [inv_one, mul_one, ← mul_assoc] at this [GOAL] case uniformContinuous_div G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : Tendsto (fun x => x.snd.fst * x.fst.snd * x.fst.fst⁻¹ * x.snd.snd⁻¹) (comap (fun p => (p.fst.snd * p.fst.fst⁻¹, p.snd.snd * p.snd.fst⁻¹)) (Filter.prod (𝓝 1) (𝓝 1))) (𝓝 1) ⊢ Tendsto (fun x => x.fst.snd * (x.snd.fst * x.fst.fst⁻¹ * x.snd.snd⁻¹)) (comap (fun p => (p.fst.snd * p.fst.fst⁻¹, p.snd.snd * p.snd.fst⁻¹)) (𝓝 1 ×ˢ 𝓝 1)) (𝓝 1) [PROOFSTEP] simp_rw [← mul_assoc, mul_comm] [GOAL] case uniformContinuous_div G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : Tendsto (fun x => x.snd.fst * x.fst.snd * x.fst.fst⁻¹ * x.snd.snd⁻¹) (comap (fun p => (p.fst.snd * p.fst.fst⁻¹, p.snd.snd * p.snd.fst⁻¹)) (Filter.prod (𝓝 1) (𝓝 1))) (𝓝 1) ⊢ Tendsto (fun x => x.snd.fst * x.fst.snd * x.fst.fst⁻¹ * x.snd.snd⁻¹) (comap (fun p => (p.fst.snd * p.fst.fst⁻¹, p.snd.snd * p.snd.fst⁻¹)) (𝓝 1 ×ˢ 𝓝 1)) (𝓝 1) [PROOFSTEP] assumption [GOAL] G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G ⊢ T2Space G ↔ IsClosed {1} [PROOFSTEP] haveI : UniformGroup G := comm_topologicalGroup_is_uniform [GOAL] G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : UniformGroup G ⊢ T2Space G ↔ IsClosed {1} [PROOFSTEP] rw [← separated_iff_t2, separatedSpace_iff, ← closure_eq_iff_isClosed] [GOAL] G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : UniformGroup G ⊢ 𝓢 G = idRel ↔ closure {1} = {1} [PROOFSTEP] constructor [GOAL] case mp G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : UniformGroup G ⊢ 𝓢 G = idRel → closure {1} = {1} [PROOFSTEP] intro h [GOAL] case mpr G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : UniformGroup G ⊢ closure {1} = {1} → 𝓢 G = idRel [PROOFSTEP] intro h [GOAL] case mp G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : UniformGroup G h : 𝓢 G = idRel ⊢ closure {1} = {1} [PROOFSTEP] apply Subset.antisymm [GOAL] case mp.h₁ G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : UniformGroup G h : 𝓢 G = idRel ⊢ closure {1} ⊆ {1} [PROOFSTEP] intro x x_in [GOAL] case mp.h₁ G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : UniformGroup G h : 𝓢 G = idRel x : G x_in : x ∈ closure {1} ⊢ x ∈ {1} [PROOFSTEP] have := group_separationRel x 1 [GOAL] case mp.h₁ G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this✝ : UniformGroup G h : 𝓢 G = idRel x : G x_in : x ∈ closure {1} this : (x, 1) ∈ 𝓢 G ↔ x / 1 ∈ closure {1} ⊢ x ∈ {1} [PROOFSTEP] rw [div_one] at this [GOAL] case mp.h₁ G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this✝ : UniformGroup G h : 𝓢 G = idRel x : G x_in : x ∈ closure {1} this : (x, 1) ∈ 𝓢 G ↔ x ∈ closure {1} ⊢ x ∈ {1} [PROOFSTEP] rw [← this, h] at x_in [GOAL] case mp.h₁ G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this✝ : UniformGroup G h : 𝓢 G = idRel x : G x_in : (x, 1) ∈ idRel this : (x, 1) ∈ 𝓢 G ↔ x ∈ closure {1} ⊢ x ∈ {1} [PROOFSTEP] rwa [mem_singleton_iff] [GOAL] case mp.h₂ G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : UniformGroup G h : 𝓢 G = idRel ⊢ {1} ⊆ closure {1} [PROOFSTEP] exact subset_closure [GOAL] case mpr G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : UniformGroup G h : closure {1} = {1} ⊢ 𝓢 G = idRel [PROOFSTEP] ext p [GOAL] case mpr.h G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : UniformGroup G h : closure {1} = {1} p : G × G ⊢ p ∈ 𝓢 G ↔ p ∈ idRel [PROOFSTEP] cases' p with x y [GOAL] case mpr.h.mk G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : UniformGroup G h : closure {1} = {1} x y : G ⊢ (x, y) ∈ 𝓢 G ↔ (x, y) ∈ idRel [PROOFSTEP] rw [group_separationRel x, h, mem_singleton_iff, div_eq_one] [GOAL] case mpr.h.mk G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G this : UniformGroup G h : closure {1} = {1} x y : G ⊢ x = y ↔ (x, y) ∈ idRel [PROOFSTEP] rfl [GOAL] G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G H : ∀ (x : G), x ≠ 1 → ∃ U, U ∈ 𝓝 1 ∧ ¬x ∈ U ⊢ T2Space G [PROOFSTEP] rw [TopologicalGroup.t2Space_iff_one_closed, ← isOpen_compl_iff, isOpen_iff_mem_nhds] [GOAL] G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G H : ∀ (x : G), x ≠ 1 → ∃ U, U ∈ 𝓝 1 ∧ ¬x ∈ U ⊢ ∀ (a : G), a ∈ {1}ᶜ → {1}ᶜ ∈ 𝓝 a [PROOFSTEP] intro x x_not [GOAL] G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G H : ∀ (x : G), x ≠ 1 → ∃ U, U ∈ 𝓝 1 ∧ ¬x ∈ U x : G x_not : x ∈ {1}ᶜ ⊢ {1}ᶜ ∈ 𝓝 x [PROOFSTEP] have : x ≠ 1 := mem_compl_singleton_iff.mp x_not [GOAL] G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G H : ∀ (x : G), x ≠ 1 → ∃ U, U ∈ 𝓝 1 ∧ ¬x ∈ U x : G x_not : x ∈ {1}ᶜ this : x ≠ 1 ⊢ {1}ᶜ ∈ 𝓝 x [PROOFSTEP] rcases H x this with ⟨U, U_in, xU⟩ [GOAL] case intro.intro G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G H : ∀ (x : G), x ≠ 1 → ∃ U, U ∈ 𝓝 1 ∧ ¬x ∈ U x : G x_not : x ∈ {1}ᶜ this : x ≠ 1 U : Set G U_in : U ∈ 𝓝 1 xU : ¬x ∈ U ⊢ {1}ᶜ ∈ 𝓝 x [PROOFSTEP] rw [← nhds_one_symm G] at U_in [GOAL] case intro.intro G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G H : ∀ (x : G), x ≠ 1 → ∃ U, U ∈ 𝓝 1 ∧ ¬x ∈ U x : G x_not : x ∈ {1}ᶜ this : x ≠ 1 U : Set G U_in : U ∈ comap Inv.inv (𝓝 1) xU : ¬x ∈ U ⊢ {1}ᶜ ∈ 𝓝 x [PROOFSTEP] rcases U_in with ⟨W, W_in, UW⟩ [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G H : ∀ (x : G), x ≠ 1 → ∃ U, U ∈ 𝓝 1 ∧ ¬x ∈ U x : G x_not : x ∈ {1}ᶜ this : x ≠ 1 U : Set G xU : ¬x ∈ U W : Set G W_in : W ∈ 𝓝 1 UW : Inv.inv ⁻¹' W ⊆ U ⊢ {1}ᶜ ∈ 𝓝 x [PROOFSTEP] rw [← nhds_translation_mul_inv] [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G H : ∀ (x : G), x ≠ 1 → ∃ U, U ∈ 𝓝 1 ∧ ¬x ∈ U x : G x_not : x ∈ {1}ᶜ this : x ≠ 1 U : Set G xU : ¬x ∈ U W : Set G W_in : W ∈ 𝓝 1 UW : Inv.inv ⁻¹' W ⊆ U ⊢ {1}ᶜ ∈ comap (fun y => y * x⁻¹) (𝓝 1) [PROOFSTEP] use W, W_in [GOAL] case right G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G H : ∀ (x : G), x ≠ 1 → ∃ U, U ∈ 𝓝 1 ∧ ¬x ∈ U x : G x_not : x ∈ {1}ᶜ this : x ≠ 1 U : Set G xU : ¬x ∈ U W : Set G W_in : W ∈ 𝓝 1 UW : Inv.inv ⁻¹' W ⊆ U ⊢ (fun y => y * x⁻¹) ⁻¹' W ⊆ {1}ᶜ [PROOFSTEP] rw [subset_compl_comm] [GOAL] case right G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G H : ∀ (x : G), x ≠ 1 → ∃ U, U ∈ 𝓝 1 ∧ ¬x ∈ U x : G x_not : x ∈ {1}ᶜ this : x ≠ 1 U : Set G xU : ¬x ∈ U W : Set G W_in : W ∈ 𝓝 1 UW : Inv.inv ⁻¹' W ⊆ U ⊢ {1} ⊆ ((fun y => y * x⁻¹) ⁻¹' W)ᶜ [PROOFSTEP] suffices x⁻¹ ∉ W by simpa [GOAL] G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G H : ∀ (x : G), x ≠ 1 → ∃ U, U ∈ 𝓝 1 ∧ ¬x ∈ U x : G x_not : x ∈ {1}ᶜ this✝ : x ≠ 1 U : Set G xU : ¬x ∈ U W : Set G W_in : W ∈ 𝓝 1 UW : Inv.inv ⁻¹' W ⊆ U this : ¬x⁻¹ ∈ W ⊢ {1} ⊆ ((fun y => y * x⁻¹) ⁻¹' W)ᶜ [PROOFSTEP] simpa [GOAL] case right G : Type u_1 inst✝² : CommGroup G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G H : ∀ (x : G), x ≠ 1 → ∃ U, U ∈ 𝓝 1 ∧ ¬x ∈ U x : G x_not : x ∈ {1}ᶜ this : x ≠ 1 U : Set G xU : ¬x ∈ U W : Set G W_in : W ∈ 𝓝 1 UW : Inv.inv ⁻¹' W ⊆ U ⊢ ¬x⁻¹ ∈ W [PROOFSTEP] exact fun h => xU (UW h) [GOAL] G✝ : Type u_1 inst✝⁴ : CommGroup G✝ inst✝³ : TopologicalSpace G✝ inst✝² : TopologicalGroup G✝ G : Type u_2 u : UniformSpace G inst✝¹ : Group G inst✝ : UniformGroup G ⊢ TopologicalGroup.toUniformSpace G = u [PROOFSTEP] ext : 1 [GOAL] case a G✝ : Type u_1 inst✝⁴ : CommGroup G✝ inst✝³ : TopologicalSpace G✝ inst✝² : TopologicalGroup G✝ G : Type u_2 u : UniformSpace G inst✝¹ : Group G inst✝ : UniformGroup G ⊢ 𝓤 G = 𝓤 G [PROOFSTEP] rw [uniformity_eq_comap_nhds_one' G, uniformity_eq_comap_nhds_one G] [GOAL] α : Type u_1 β : Type u_2 hom : Type u_3 inst✝⁵ : TopologicalSpace α inst✝⁴ : Group α inst✝³ : TopologicalGroup α inst✝² : TopologicalSpace β inst✝¹ : Group β inst✝ : MonoidHomClass hom β α e : hom de : DenseInducing ↑e x₀ : α ⊢ Tendsto (fun t => t.snd / t.fst) (comap (fun p => (↑e p.fst, ↑e p.snd)) (𝓝 (x₀, x₀))) (𝓝 1) [PROOFSTEP] have comm : ((fun x : α × α => x.2 / x.1) ∘ fun t : β × β => (e t.1, e t.2)) = e ∘ fun t : β × β => t.2 / t.1 := by ext t change e t.2 / e t.1 = e (t.2 / t.1) rw [← map_div e t.2 t.1] [GOAL] α : Type u_1 β : Type u_2 hom : Type u_3 inst✝⁵ : TopologicalSpace α inst✝⁴ : Group α inst✝³ : TopologicalGroup α inst✝² : TopologicalSpace β inst✝¹ : Group β inst✝ : MonoidHomClass hom β α e : hom de : DenseInducing ↑e x₀ : α ⊢ ((fun x => x.snd / x.fst) ∘ fun t => (↑e t.fst, ↑e t.snd)) = ↑e ∘ fun t => t.snd / t.fst [PROOFSTEP] ext t [GOAL] case h α : Type u_1 β : Type u_2 hom : Type u_3 inst✝⁵ : TopologicalSpace α inst✝⁴ : Group α inst✝³ : TopologicalGroup α inst✝² : TopologicalSpace β inst✝¹ : Group β inst✝ : MonoidHomClass hom β α e : hom de : DenseInducing ↑e x₀ : α t : β × β ⊢ ((fun x => x.snd / x.fst) ∘ fun t => (↑e t.fst, ↑e t.snd)) t = (↑e ∘ fun t => t.snd / t.fst) t [PROOFSTEP] change e t.2 / e t.1 = e (t.2 / t.1) [GOAL] case h α : Type u_1 β : Type u_2 hom : Type u_3 inst✝⁵ : TopologicalSpace α inst✝⁴ : Group α inst✝³ : TopologicalGroup α inst✝² : TopologicalSpace β inst✝¹ : Group β inst✝ : MonoidHomClass hom β α e : hom de : DenseInducing ↑e x₀ : α t : β × β ⊢ ↑e t.snd / ↑e t.fst = ↑e (t.snd / t.fst) [PROOFSTEP] rw [← map_div e t.2 t.1] [GOAL] α : Type u_1 β : Type u_2 hom : Type u_3 inst✝⁵ : TopologicalSpace α inst✝⁴ : Group α inst✝³ : TopologicalGroup α inst✝² : TopologicalSpace β inst✝¹ : Group β inst✝ : MonoidHomClass hom β α e : hom de : DenseInducing ↑e x₀ : α comm : ((fun x => x.snd / x.fst) ∘ fun t => (↑e t.fst, ↑e t.snd)) = ↑e ∘ fun t => t.snd / t.fst ⊢ Tendsto (fun t => t.snd / t.fst) (comap (fun p => (↑e p.fst, ↑e p.snd)) (𝓝 (x₀, x₀))) (𝓝 1) [PROOFSTEP] have lim : Tendsto (fun x : α × α => x.2 / x.1) (𝓝 (x₀, x₀)) (𝓝 (e 1)) := by simpa using (continuous_div'.comp (@continuous_swap α α _ _)).tendsto (x₀, x₀) [GOAL] α : Type u_1 β : Type u_2 hom : Type u_3 inst✝⁵ : TopologicalSpace α inst✝⁴ : Group α inst✝³ : TopologicalGroup α inst✝² : TopologicalSpace β inst✝¹ : Group β inst✝ : MonoidHomClass hom β α e : hom de : DenseInducing ↑e x₀ : α comm : ((fun x => x.snd / x.fst) ∘ fun t => (↑e t.fst, ↑e t.snd)) = ↑e ∘ fun t => t.snd / t.fst ⊢ Tendsto (fun x => x.snd / x.fst) (𝓝 (x₀, x₀)) (𝓝 (↑e 1)) [PROOFSTEP] simpa using (continuous_div'.comp (@continuous_swap α α _ _)).tendsto (x₀, x₀) [GOAL] α : Type u_1 β : Type u_2 hom : Type u_3 inst✝⁵ : TopologicalSpace α inst✝⁴ : Group α inst✝³ : TopologicalGroup α inst✝² : TopologicalSpace β inst✝¹ : Group β inst✝ : MonoidHomClass hom β α e : hom de : DenseInducing ↑e x₀ : α comm : ((fun x => x.snd / x.fst) ∘ fun t => (↑e t.fst, ↑e t.snd)) = ↑e ∘ fun t => t.snd / t.fst lim : Tendsto (fun x => x.snd / x.fst) (𝓝 (x₀, x₀)) (𝓝 (↑e 1)) ⊢ Tendsto (fun t => t.snd / t.fst) (comap (fun p => (↑e p.fst, ↑e p.snd)) (𝓝 (x₀, x₀))) (𝓝 1) [PROOFSTEP] simpa using de.tendsto_comap_nhds_nhds lim comm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ ⊢ ∃ U₂, U₂ ∈ comap (↑e) (𝓝 x₀) ∧ ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W' [PROOFSTEP] let Nx := 𝓝 x₀ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ Nx : Filter α := 𝓝 x₀ ⊢ ∃ U₂, U₂ ∈ comap (↑e) (𝓝 x₀) ∧ ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W' [PROOFSTEP] let ee := fun u : β × β => (e u.1, e u.2) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ Nx : Filter α := 𝓝 x₀ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ⊢ ∃ U₂, U₂ ∈ comap (↑e) (𝓝 x₀) ∧ ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W' [PROOFSTEP] have lim1 : Tendsto (fun a : β × β => (a.2 - a.1, y₁)) (comap e Nx ×ˢ comap e Nx) (𝓝 (0, y₁)) := by have := Tendsto.prod_mk (tendsto_sub_comap_self de x₀) (tendsto_const_nhds : Tendsto (fun _ : β × β => y₁) (comap ee <| 𝓝 (x₀, x₀)) (𝓝 y₁)) rw [nhds_prod_eq, prod_comap_comap_eq, ← nhds_prod_eq] exact (this : _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ Nx : Filter α := 𝓝 x₀ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ⊢ Tendsto (fun a => (a.snd - a.fst, y₁)) (comap (↑e) Nx ×ˢ comap (↑e) Nx) (𝓝 (0, y₁)) [PROOFSTEP] have := Tendsto.prod_mk (tendsto_sub_comap_self de x₀) (tendsto_const_nhds : Tendsto (fun _ : β × β => y₁) (comap ee <| 𝓝 (x₀, x₀)) (𝓝 y₁)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ Nx : Filter α := 𝓝 x₀ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) this : Tendsto (fun x => (x.snd - x.fst, y₁)) (comap (fun p => (↑e p.fst, ↑e p.snd)) (𝓝 (x₀, x₀))) (𝓝 0 ×ˢ 𝓝 y₁) ⊢ Tendsto (fun a => (a.snd - a.fst, y₁)) (comap (↑e) Nx ×ˢ comap (↑e) Nx) (𝓝 (0, y₁)) [PROOFSTEP] rw [nhds_prod_eq, prod_comap_comap_eq, ← nhds_prod_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ Nx : Filter α := 𝓝 x₀ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) this : Tendsto (fun x => (x.snd - x.fst, y₁)) (comap (fun p => (↑e p.fst, ↑e p.snd)) (𝓝 (x₀, x₀))) (𝓝 0 ×ˢ 𝓝 y₁) ⊢ Tendsto (fun a => (a.snd - a.fst, y₁)) (comap (fun p => (↑e p.fst, ↑e p.snd)) (𝓝 (x₀, x₀))) (𝓝 0 ×ˢ 𝓝 y₁) [PROOFSTEP] exact (this : _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ Nx : Filter α := 𝓝 x₀ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) lim1 : Tendsto (fun a => (a.snd - a.fst, y₁)) (comap (↑e) Nx ×ˢ comap (↑e) Nx) (𝓝 (0, y₁)) ⊢ ∃ U₂, U₂ ∈ comap (↑e) (𝓝 x₀) ∧ ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W' [PROOFSTEP] have lim2 : Tendsto (fun p : β × δ => φ p.1 p.2) (𝓝 (0, y₁)) (𝓝 0) := by simpa using hφ.tendsto (0, y₁) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ Nx : Filter α := 𝓝 x₀ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) lim1 : Tendsto (fun a => (a.snd - a.fst, y₁)) (comap (↑e) Nx ×ˢ comap (↑e) Nx) (𝓝 (0, y₁)) ⊢ Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, y₁)) (𝓝 0) [PROOFSTEP] simpa using hφ.tendsto (0, y₁) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ Nx : Filter α := 𝓝 x₀ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) lim1 : Tendsto (fun a => (a.snd - a.fst, y₁)) (comap (↑e) Nx ×ˢ comap (↑e) Nx) (𝓝 (0, y₁)) lim2 : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, y₁)) (𝓝 0) ⊢ ∃ U₂, U₂ ∈ comap (↑e) (𝓝 x₀) ∧ ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W' [PROOFSTEP] have lim := lim2.comp lim1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ Nx : Filter α := 𝓝 x₀ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) lim1 : Tendsto (fun a => (a.snd - a.fst, y₁)) (comap (↑e) Nx ×ˢ comap (↑e) Nx) (𝓝 (0, y₁)) lim2 : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, y₁)) (𝓝 0) lim : Tendsto ((fun p => ↑(↑φ p.fst) p.snd) ∘ fun a => (a.snd - a.fst, y₁)) (comap (↑e) Nx ×ˢ comap (↑e) Nx) (𝓝 0) ⊢ ∃ U₂, U₂ ∈ comap (↑e) (𝓝 x₀) ∧ ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W' [PROOFSTEP] rw [tendsto_prod_self_iff] at lim [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ Nx : Filter α := 𝓝 x₀ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) lim1 : Tendsto (fun a => (a.snd - a.fst, y₁)) (comap (↑e) Nx ×ˢ comap (↑e) Nx) (𝓝 (0, y₁)) lim2 : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, y₁)) (𝓝 0) lim : ∀ (W : Set G), W ∈ 𝓝 0 → ∃ U, U ∈ comap (↑e) Nx ∧ ∀ (x x' : β), x ∈ U → x' ∈ U → ((fun p => ↑(↑φ p.fst) p.snd) ∘ fun a => (a.snd - a.fst, y₁)) (x, x') ∈ W ⊢ ∃ U₂, U₂ ∈ comap (↑e) (𝓝 x₀) ∧ ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W' [PROOFSTEP] simp_rw [ball_mem_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₁ : δ Nx : Filter α := 𝓝 x₀ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) lim1 : Tendsto (fun a => (a.snd - a.fst, y₁)) (comap (↑e) Nx ×ˢ comap (↑e) Nx) (𝓝 (0, y₁)) lim2 : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, y₁)) (𝓝 0) lim : ∀ (W : Set G), W ∈ 𝓝 0 → ∃ U, U ∈ comap (↑e) Nx ∧ ∀ (x x' : β), x ∈ U → x' ∈ U → ((fun p => ↑(↑φ p.fst) p.snd) ∘ fun a => (a.snd - a.fst, y₁)) (x, x') ∈ W ⊢ ∃ U₂, U₂ ∈ comap (↑e) (𝓝 x₀) ∧ ∀ (a b : β), a ∈ U₂ → b ∈ U₂ → ↑(↑φ (b - a)) y₁ ∈ W' [PROOFSTEP] exact lim W' W'_nhd [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ⊢ ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] let ee := fun u : β × β => (e u.1, e u.2) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ⊢ ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] let ff := fun u : δ × δ => (f u.1, f u.2) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) ⊢ ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] have lim_φ : Filter.Tendsto (fun p : β × δ => φ p.1 p.2) (𝓝 (0, 0)) (𝓝 0) := by simpa using hφ.tendsto (0, 0) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) ⊢ Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) [PROOFSTEP] simpa using hφ.tendsto (0, 0) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) ⊢ ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] have lim_φ_sub_sub : Tendsto (fun p : (β × β) × δ × δ => (fun p : β × δ => φ p.1 p.2) (p.1.2 - p.1.1, p.2.2 - p.2.1)) ((comap ee <| 𝓝 (x₀, x₀)) ×ˢ (comap ff <| 𝓝 (y₀, y₀))) (𝓝 0) := by have lim_sub_sub : Tendsto (fun p : (β × β) × δ × δ => (p.1.2 - p.1.1, p.2.2 - p.2.1)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0 ×ˢ 𝓝 0) := by have := Filter.prod_mono (tendsto_sub_comap_self de x₀) (tendsto_sub_comap_self df y₀) rwa [prod_map_map_eq] at this rw [← nhds_prod_eq] at lim_sub_sub exact Tendsto.comp lim_φ lim_sub_sub [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) ⊢ Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) [PROOFSTEP] have lim_sub_sub : Tendsto (fun p : (β × β) × δ × δ => (p.1.2 - p.1.1, p.2.2 - p.2.1)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0 ×ˢ 𝓝 0) := by have := Filter.prod_mono (tendsto_sub_comap_self de x₀) (tendsto_sub_comap_self df y₀) rwa [prod_map_map_eq] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) ⊢ Tendsto (fun p => (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0 ×ˢ 𝓝 0) [PROOFSTEP] have := Filter.prod_mono (tendsto_sub_comap_self de x₀) (tendsto_sub_comap_self df y₀) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) this : map (fun t => t.snd - t.fst) (comap (fun p => (↑e p.fst, ↑e p.snd)) (𝓝 (x₀, x₀))) ×ˢ map (fun t => t.snd - t.fst) (comap (fun p => (↑f p.fst, ↑f p.snd)) (𝓝 (y₀, y₀))) ≤ 𝓝 0 ×ˢ 𝓝 0 ⊢ Tendsto (fun p => (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0 ×ˢ 𝓝 0) [PROOFSTEP] rwa [prod_map_map_eq] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_sub_sub : Tendsto (fun p => (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0 ×ˢ 𝓝 0) ⊢ Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) [PROOFSTEP] rw [← nhds_prod_eq] at lim_sub_sub [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_sub_sub : Tendsto (fun p => (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 (0, 0)) ⊢ Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) [PROOFSTEP] exact Tendsto.comp lim_φ lim_sub_sub [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) ⊢ ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] rcases exists_nhds_zero_quarter W'_nhd with ⟨W, W_nhd, W4⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' ⊢ ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] have : ∃ U₁ ∈ comap e (𝓝 x₀), ∃ V₁ ∈ comap f (𝓝 y₀), ∀ (x) (_ : x ∈ U₁) (x') (_ : x' ∈ U₁), ∀ (y) (_ : y ∈ V₁) (y') (_ : y' ∈ V₁), (fun p : β × δ => φ p.1 p.2) (x' - x, y' - y) ∈ W := by rcases tendsto_prod_iff.1 lim_φ_sub_sub W W_nhd with ⟨U, U_in, V, V_in, H⟩ rw [nhds_prod_eq, ← prod_comap_comap_eq, mem_prod_same_iff] at U_in V_in rcases U_in with ⟨U₁, U₁_in, HU₁⟩ rcases V_in with ⟨V₁, V₁_in, HV₁⟩ exists U₁, U₁_in, V₁, V₁_in intro x x_in x' x'_in y y_in y' y'_in exact H _ _ (HU₁ (mk_mem_prod x_in x'_in)) (HV₁ (mk_mem_prod y_in y'_in)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' ⊢ ∃ U₁, U₁ ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V₁, V₁ ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W [PROOFSTEP] rcases tendsto_prod_iff.1 lim_φ_sub_sub W W_nhd with ⟨U, U_in, V, V_in, H⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U : Set (β × β) U_in : U ∈ comap ee (𝓝 (x₀, x₀)) V : Set (δ × δ) V_in : V ∈ comap ff (𝓝 (y₀, y₀)) H : ∀ (x : β × β) (y : δ × δ), x ∈ U → y ∈ V → (fun p => ↑(↑φ p.fst) p.snd) ((x, y).fst.snd - (x, y).fst.fst, (x, y).snd.snd - (x, y).snd.fst) ∈ W ⊢ ∃ U₁, U₁ ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V₁, V₁ ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W [PROOFSTEP] rw [nhds_prod_eq, ← prod_comap_comap_eq, mem_prod_same_iff] at U_in V_in [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U : Set (β × β) U_in : ∃ t, t ∈ comap (↑e) (𝓝 x₀) ∧ t ×ˢ t ⊆ U V : Set (δ × δ) V_in : ∃ t, t ∈ comap (↑f) (𝓝 y₀) ∧ t ×ˢ t ⊆ V H : ∀ (x : β × β) (y : δ × δ), x ∈ U → y ∈ V → (fun p => ↑(↑φ p.fst) p.snd) ((x, y).fst.snd - (x, y).fst.fst, (x, y).snd.snd - (x, y).snd.fst) ∈ W ⊢ ∃ U₁, U₁ ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V₁, V₁ ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W [PROOFSTEP] rcases U_in with ⟨U₁, U₁_in, HU₁⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U : Set (β × β) V : Set (δ × δ) V_in : ∃ t, t ∈ comap (↑f) (𝓝 y₀) ∧ t ×ˢ t ⊆ V H : ∀ (x : β × β) (y : δ × δ), x ∈ U → y ∈ V → (fun p => ↑(↑φ p.fst) p.snd) ((x, y).fst.snd - (x, y).fst.fst, (x, y).snd.snd - (x, y).snd.fst) ∈ W U₁ : Set β U₁_in : U₁ ∈ comap (↑e) (𝓝 x₀) HU₁ : U₁ ×ˢ U₁ ⊆ U ⊢ ∃ U₁, U₁ ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V₁, V₁ ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W [PROOFSTEP] rcases V_in with ⟨V₁, V₁_in, HV₁⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U : Set (β × β) V : Set (δ × δ) H : ∀ (x : β × β) (y : δ × δ), x ∈ U → y ∈ V → (fun p => ↑(↑φ p.fst) p.snd) ((x, y).fst.snd - (x, y).fst.fst, (x, y).snd.snd - (x, y).snd.fst) ∈ W U₁ : Set β U₁_in : U₁ ∈ comap (↑e) (𝓝 x₀) HU₁ : U₁ ×ˢ U₁ ⊆ U V₁ : Set δ V₁_in : V₁ ∈ comap (↑f) (𝓝 y₀) HV₁ : V₁ ×ˢ V₁ ⊆ V ⊢ ∃ U₁, U₁ ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V₁, V₁ ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W [PROOFSTEP] exists U₁, U₁_in, V₁, V₁_in [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U : Set (β × β) V : Set (δ × δ) H : ∀ (x : β × β) (y : δ × δ), x ∈ U → y ∈ V → (fun p => ↑(↑φ p.fst) p.snd) ((x, y).fst.snd - (x, y).fst.fst, (x, y).snd.snd - (x, y).snd.fst) ∈ W U₁ : Set β U₁_in : U₁ ∈ comap (↑e) (𝓝 x₀) HU₁ : U₁ ×ˢ U₁ ⊆ U V₁ : Set δ V₁_in : V₁ ∈ comap (↑f) (𝓝 y₀) HV₁ : V₁ ×ˢ V₁ ⊆ V ⊢ ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W [PROOFSTEP] intro x x_in x' x'_in y y_in y' y'_in [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U : Set (β × β) V : Set (δ × δ) H : ∀ (x : β × β) (y : δ × δ), x ∈ U → y ∈ V → (fun p => ↑(↑φ p.fst) p.snd) ((x, y).fst.snd - (x, y).fst.fst, (x, y).snd.snd - (x, y).snd.fst) ∈ W U₁ : Set β U₁_in : U₁ ∈ comap (↑e) (𝓝 x₀) HU₁ : U₁ ×ˢ U₁ ⊆ U V₁ : Set δ V₁_in : V₁ ∈ comap (↑f) (𝓝 y₀) HV₁ : V₁ ×ˢ V₁ ⊆ V x : β x_in : x ∈ U₁ x' : β x'_in : x' ∈ U₁ y : δ y_in : y ∈ V₁ y' : δ y'_in : y' ∈ V₁ ⊢ (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W [PROOFSTEP] exact H _ _ (HU₁ (mk_mem_prod x_in x'_in)) (HV₁ (mk_mem_prod y_in y'_in)) [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' this : ∃ U₁, U₁ ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V₁, V₁ ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W ⊢ ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] rcases this with ⟨U₁, U₁_nhd, V₁, V₁_nhd, H⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W ⊢ ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] obtain ⟨x₁, x₁_in⟩ : U₁.Nonempty := (de.comap_nhds_neBot _).nonempty_of_mem U₁_nhd [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ ⊢ ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] obtain ⟨y₁, y₁_in⟩ : V₁.Nonempty := (df.comap_nhds_neBot _).nonempty_of_mem V₁_nhd [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ ⊢ ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] have cont_flip : Continuous fun p : δ × β => φ.flip p.1 p.2 := by show Continuous ((fun p : β × δ => φ p.1 p.2) ∘ Prod.swap) exact hφ.comp continuous_swap [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ ⊢ Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd [PROOFSTEP] show Continuous ((fun p : β × δ => φ p.1 p.2) ∘ Prod.swap) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ ⊢ Continuous ((fun p => ↑(↑φ p.fst) p.snd) ∘ Prod.swap) [PROOFSTEP] exact hφ.comp continuous_swap [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd ⊢ ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] rcases extend_Z_bilin_aux de hφ W_nhd x₀ y₁ with ⟨U₂, U₂_nhd, HU⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd U₂ : Set β U₂_nhd : U₂ ∈ comap (↑e) (𝓝 x₀) HU : ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W ⊢ ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] rcases extend_Z_bilin_aux df cont_flip W_nhd y₀ x₁ with ⟨V₂, V₂_nhd, HV⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd U₂ : Set β U₂_nhd : U₂ ∈ comap (↑e) (𝓝 x₀) HU : ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W V₂ : Set δ V₂_nhd : V₂ ∈ comap (↑f) (𝓝 y₀) HV : ∀ (x : δ), x ∈ V₂ → ∀ (x' : δ), x' ∈ V₂ → (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (x' - x, x₁) ∈ W ⊢ ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] exists U₁ ∩ U₂, inter_mem U₁_nhd U₂_nhd, V₁ ∩ V₂, inter_mem V₁_nhd V₂_nhd [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd U₂ : Set β U₂_nhd : U₂ ∈ comap (↑e) (𝓝 x₀) HU : ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W V₂ : Set δ V₂_nhd : V₂ ∈ comap (↑f) (𝓝 y₀) HV : ∀ (x : δ), x ∈ V₂ → ∀ (x' : δ), x' ∈ V₂ → (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (x' - x, x₁) ∈ W ⊢ ∀ (x : β), x ∈ U₁ ∩ U₂ → ∀ (x' : β), x' ∈ U₁ ∩ U₂ → ∀ (y : δ), y ∈ V₁ ∩ V₂ → ∀ (y' : δ), y' ∈ V₁ ∩ V₂ → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] rintro x ⟨xU₁, xU₂⟩ x' ⟨x'U₁, x'U₂⟩ y ⟨yV₁, yV₂⟩ y' ⟨y'V₁, y'V₂⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd U₂ : Set β U₂_nhd : U₂ ∈ comap (↑e) (𝓝 x₀) HU : ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W V₂ : Set δ V₂_nhd : V₂ ∈ comap (↑f) (𝓝 y₀) HV : ∀ (x : δ), x ∈ V₂ → ∀ (x' : δ), x' ∈ V₂ → (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (x' - x, x₁) ∈ W x : β xU₁ : x ∈ U₁ xU₂ : x ∈ U₂ x' : β x'U₁ : x' ∈ U₁ x'U₂ : x' ∈ U₂ y : δ yV₁ : y ∈ V₁ yV₂ : y ∈ V₂ y' : δ y'V₁ : y' ∈ V₁ y'V₂ : y' ∈ V₂ ⊢ (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] have key_formula : φ x' y' - φ x y = φ (x' - x) y₁ + φ (x' - x) (y' - y₁) + φ x₁ (y' - y) + φ (x - x₁) (y' - y) := by simp; abel [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd U₂ : Set β U₂_nhd : U₂ ∈ comap (↑e) (𝓝 x₀) HU : ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W V₂ : Set δ V₂_nhd : V₂ ∈ comap (↑f) (𝓝 y₀) HV : ∀ (x : δ), x ∈ V₂ → ∀ (x' : δ), x' ∈ V₂ → (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (x' - x, x₁) ∈ W x : β xU₁ : x ∈ U₁ xU₂ : x ∈ U₂ x' : β x'U₁ : x' ∈ U₁ x'U₂ : x' ∈ U₂ y : δ yV₁ : y ∈ V₁ yV₂ : y ∈ V₂ y' : δ y'V₁ : y' ∈ V₁ y'V₂ : y' ∈ V₂ ⊢ ↑(↑φ x') y' - ↑(↑φ x) y = ↑(↑φ (x' - x)) y₁ + ↑(↑φ (x' - x)) (y' - y₁) + ↑(↑φ x₁) (y' - y) + ↑(↑φ (x - x₁)) (y' - y) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd U₂ : Set β U₂_nhd : U₂ ∈ comap (↑e) (𝓝 x₀) HU : ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W V₂ : Set δ V₂_nhd : V₂ ∈ comap (↑f) (𝓝 y₀) HV : ∀ (x : δ), x ∈ V₂ → ∀ (x' : δ), x' ∈ V₂ → (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (x' - x, x₁) ∈ W x : β xU₁ : x ∈ U₁ xU₂ : x ∈ U₂ x' : β x'U₁ : x' ∈ U₁ x'U₂ : x' ∈ U₂ y : δ yV₁ : y ∈ V₁ yV₂ : y ∈ V₂ y' : δ y'V₁ : y' ∈ V₁ y'V₂ : y' ∈ V₂ ⊢ ↑(↑φ x') y' - ↑(↑φ x) y = ↑(↑φ x') y' - ↑(↑φ x) y' + (↑(↑φ x₁) y' - ↑(↑φ x₁) y) + (↑(↑φ x) y' - ↑(↑φ x₁) y' - (↑(↑φ x) y - ↑(↑φ x₁) y)) [PROOFSTEP] abel [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd U₂ : Set β U₂_nhd : U₂ ∈ comap (↑e) (𝓝 x₀) HU : ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W V₂ : Set δ V₂_nhd : V₂ ∈ comap (↑f) (𝓝 y₀) HV : ∀ (x : δ), x ∈ V₂ → ∀ (x' : δ), x' ∈ V₂ → (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (x' - x, x₁) ∈ W x : β xU₁ : x ∈ U₁ xU₂ : x ∈ U₂ x' : β x'U₁ : x' ∈ U₁ x'U₂ : x' ∈ U₂ y : δ yV₁ : y ∈ V₁ yV₂ : y ∈ V₂ y' : δ y'V₁ : y' ∈ V₁ y'V₂ : y' ∈ V₂ ⊢ ↑(↑φ x') y' - ↑(↑φ x) y = ↑(↑φ x') y' - ↑(↑φ x) y' + (↑(↑φ x₁) y' - ↑(↑φ x₁) y) + (↑(↑φ x) y' - ↑(↑φ x₁) y' - (↑(↑φ x) y - ↑(↑φ x₁) y)) [PROOFSTEP] abel [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd U₂ : Set β U₂_nhd : U₂ ∈ comap (↑e) (𝓝 x₀) HU : ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W V₂ : Set δ V₂_nhd : V₂ ∈ comap (↑f) (𝓝 y₀) HV : ∀ (x : δ), x ∈ V₂ → ∀ (x' : δ), x' ∈ V₂ → (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (x' - x, x₁) ∈ W x : β xU₁ : x ∈ U₁ xU₂ : x ∈ U₂ x' : β x'U₁ : x' ∈ U₁ x'U₂ : x' ∈ U₂ y : δ yV₁ : y ∈ V₁ yV₂ : y ∈ V₂ y' : δ y'V₁ : y' ∈ V₁ y'V₂ : y' ∈ V₂ key_formula : ↑(↑φ x') y' - ↑(↑φ x) y = ↑(↑φ (x' - x)) y₁ + ↑(↑φ (x' - x)) (y' - y₁) + ↑(↑φ x₁) (y' - y) + ↑(↑φ (x - x₁)) (y' - y) ⊢ (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' [PROOFSTEP] rw [key_formula] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd U₂ : Set β U₂_nhd : U₂ ∈ comap (↑e) (𝓝 x₀) HU : ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W V₂ : Set δ V₂_nhd : V₂ ∈ comap (↑f) (𝓝 y₀) HV : ∀ (x : δ), x ∈ V₂ → ∀ (x' : δ), x' ∈ V₂ → (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (x' - x, x₁) ∈ W x : β xU₁ : x ∈ U₁ xU₂ : x ∈ U₂ x' : β x'U₁ : x' ∈ U₁ x'U₂ : x' ∈ U₂ y : δ yV₁ : y ∈ V₁ yV₂ : y ∈ V₂ y' : δ y'V₁ : y' ∈ V₁ y'V₂ : y' ∈ V₂ key_formula : ↑(↑φ x') y' - ↑(↑φ x) y = ↑(↑φ (x' - x)) y₁ + ↑(↑φ (x' - x)) (y' - y₁) + ↑(↑φ x₁) (y' - y) + ↑(↑φ (x - x₁)) (y' - y) ⊢ ↑(↑φ (x' - x)) y₁ + ↑(↑φ (x' - x)) (y' - y₁) + ↑(↑φ x₁) (y' - y) + ↑(↑φ (x - x₁)) (y' - y) ∈ W' [PROOFSTEP] have h₁ := HU x xU₂ x' x'U₂ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd U₂ : Set β U₂_nhd : U₂ ∈ comap (↑e) (𝓝 x₀) HU : ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W V₂ : Set δ V₂_nhd : V₂ ∈ comap (↑f) (𝓝 y₀) HV : ∀ (x : δ), x ∈ V₂ → ∀ (x' : δ), x' ∈ V₂ → (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (x' - x, x₁) ∈ W x : β xU₁ : x ∈ U₁ xU₂ : x ∈ U₂ x' : β x'U₁ : x' ∈ U₁ x'U₂ : x' ∈ U₂ y : δ yV₁ : y ∈ V₁ yV₂ : y ∈ V₂ y' : δ y'V₁ : y' ∈ V₁ y'V₂ : y' ∈ V₂ key_formula : ↑(↑φ x') y' - ↑(↑φ x) y = ↑(↑φ (x' - x)) y₁ + ↑(↑φ (x' - x)) (y' - y₁) + ↑(↑φ x₁) (y' - y) + ↑(↑φ (x - x₁)) (y' - y) h₁ : (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W ⊢ ↑(↑φ (x' - x)) y₁ + ↑(↑φ (x' - x)) (y' - y₁) + ↑(↑φ x₁) (y' - y) + ↑(↑φ (x - x₁)) (y' - y) ∈ W' [PROOFSTEP] have h₂ := H x xU₁ x' x'U₁ y₁ y₁_in y' y'V₁ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd U₂ : Set β U₂_nhd : U₂ ∈ comap (↑e) (𝓝 x₀) HU : ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W V₂ : Set δ V₂_nhd : V₂ ∈ comap (↑f) (𝓝 y₀) HV : ∀ (x : δ), x ∈ V₂ → ∀ (x' : δ), x' ∈ V₂ → (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (x' - x, x₁) ∈ W x : β xU₁ : x ∈ U₁ xU₂ : x ∈ U₂ x' : β x'U₁ : x' ∈ U₁ x'U₂ : x' ∈ U₂ y : δ yV₁ : y ∈ V₁ yV₂ : y ∈ V₂ y' : δ y'V₁ : y' ∈ V₁ y'V₂ : y' ∈ V₂ key_formula : ↑(↑φ x') y' - ↑(↑φ x) y = ↑(↑φ (x' - x)) y₁ + ↑(↑φ (x' - x)) (y' - y₁) + ↑(↑φ x₁) (y' - y) + ↑(↑φ (x - x₁)) (y' - y) h₁ : (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W h₂ : (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y₁) ∈ W ⊢ ↑(↑φ (x' - x)) y₁ + ↑(↑φ (x' - x)) (y' - y₁) + ↑(↑φ x₁) (y' - y) + ↑(↑φ (x - x₁)) (y' - y) ∈ W' [PROOFSTEP] have h₃ := HV y yV₂ y' y'V₂ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd U₂ : Set β U₂_nhd : U₂ ∈ comap (↑e) (𝓝 x₀) HU : ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W V₂ : Set δ V₂_nhd : V₂ ∈ comap (↑f) (𝓝 y₀) HV : ∀ (x : δ), x ∈ V₂ → ∀ (x' : δ), x' ∈ V₂ → (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (x' - x, x₁) ∈ W x : β xU₁ : x ∈ U₁ xU₂ : x ∈ U₂ x' : β x'U₁ : x' ∈ U₁ x'U₂ : x' ∈ U₂ y : δ yV₁ : y ∈ V₁ yV₂ : y ∈ V₂ y' : δ y'V₁ : y' ∈ V₁ y'V₂ : y' ∈ V₂ key_formula : ↑(↑φ x') y' - ↑(↑φ x) y = ↑(↑φ (x' - x)) y₁ + ↑(↑φ (x' - x)) (y' - y₁) + ↑(↑φ x₁) (y' - y) + ↑(↑φ (x - x₁)) (y' - y) h₁ : (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W h₂ : (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y₁) ∈ W h₃ : (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (y' - y, x₁) ∈ W ⊢ ↑(↑φ (x' - x)) y₁ + ↑(↑φ (x' - x)) (y' - y₁) + ↑(↑φ x₁) (y' - y) + ↑(↑φ (x - x₁)) (y' - y) ∈ W' [PROOFSTEP] have h₄ := H x₁ x₁_in x xU₁ y yV₁ y' y'V₁ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ee : (u : β × β) → (fun x => α) u.fst × (fun x => α) u.snd := fun u => (↑e u.fst, ↑e u.snd) ff : (u : δ × δ) → (fun x => γ) u.fst × (fun x => γ) u.snd := fun u => (↑f u.fst, ↑f u.snd) lim_φ : Tendsto (fun p => ↑(↑φ p.fst) p.snd) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => ↑(↑φ p.fst) p.snd) (p.fst.snd - p.fst.fst, p.snd.snd - p.snd.fst)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (↑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (↑f) (𝓝 y₀) H : ∀ (x : β), x ∈ U₁ → ∀ (x' : β), x' ∈ U₁ → ∀ (y : δ), y ∈ V₁ → ∀ (y' : δ), y' ∈ V₁ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ cont_flip : Continuous fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd U₂ : Set β U₂_nhd : U₂ ∈ comap (↑e) (𝓝 x₀) HU : ∀ (x : β), x ∈ U₂ → ∀ (x' : β), x' ∈ U₂ → (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W V₂ : Set δ V₂_nhd : V₂ ∈ comap (↑f) (𝓝 y₀) HV : ∀ (x : δ), x ∈ V₂ → ∀ (x' : δ), x' ∈ V₂ → (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (x' - x, x₁) ∈ W x : β xU₁ : x ∈ U₁ xU₂ : x ∈ U₂ x' : β x'U₁ : x' ∈ U₁ x'U₂ : x' ∈ U₂ y : δ yV₁ : y ∈ V₁ yV₂ : y ∈ V₂ y' : δ y'V₁ : y' ∈ V₁ y'V₂ : y' ∈ V₂ key_formula : ↑(↑φ x') y' - ↑(↑φ x) y = ↑(↑φ (x' - x)) y₁ + ↑(↑φ (x' - x)) (y' - y₁) + ↑(↑φ x₁) (y' - y) + ↑(↑φ (x - x₁)) (y' - y) h₁ : (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y₁) ∈ W h₂ : (fun p => ↑(↑φ p.fst) p.snd) (x' - x, y' - y₁) ∈ W h₃ : (fun p => ↑(↑(AddMonoidHom.flip φ) p.fst) p.snd) (y' - y, x₁) ∈ W h₄ : (fun p => ↑(↑φ p.fst) p.snd) (x - x₁, y' - y) ∈ W ⊢ ↑(↑φ (x' - x)) y₁ + ↑(↑φ (x' - x)) (y' - y₁) + ↑(↑φ x₁) (y' - y) + ↑(↑φ (x - x₁)) (y' - y) ∈ W' [PROOFSTEP] exact W4 h₁ h₂ h₃ h₄ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 ⊢ Continuous (extend (_ : DenseInducing fun p => (↑e p.fst, ↑f p.snd)) fun p => ↑(↑φ p.fst) p.snd) [PROOFSTEP] refine' continuous_extend_of_cauchy _ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 ⊢ ∀ (b : α × γ), Cauchy (map (fun p => ↑(↑φ p.fst) p.snd) (comap (fun p => (↑e p.fst, ↑f p.snd)) (𝓝 b))) [PROOFSTEP] rintro ⟨x₀, y₀⟩ [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ⊢ Cauchy (map (fun p => ↑(↑φ p.fst) p.snd) (comap (fun p => (↑e p.fst, ↑f p.snd)) (𝓝 (x₀, y₀)))) [PROOFSTEP] constructor [GOAL] case mk.left α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ⊢ NeBot (map (fun p => ↑(↑φ p.fst) p.snd) (comap (fun p => (↑e p.fst, ↑f p.snd)) (𝓝 (x₀, y₀)))) [PROOFSTEP] apply NeBot.map [GOAL] case mk.left.hf α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ⊢ NeBot (comap (fun p => (↑e p.fst, ↑f p.snd)) (𝓝 (x₀, y₀))) [PROOFSTEP] apply comap_neBot [GOAL] case mk.left.hf.hm α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ⊢ ∀ (t : Set (α × γ)), t ∈ 𝓝 (x₀, y₀) → ∃ a, (↑e a.fst, ↑f a.snd) ∈ t [PROOFSTEP] intro U h [GOAL] case mk.left.hf.hm α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ U : Set (α × γ) h : U ∈ 𝓝 (x₀, y₀) ⊢ ∃ a, (↑e a.fst, ↑f a.snd) ∈ U [PROOFSTEP] rcases mem_closure_iff_nhds.1 ((de.prod df).dense (x₀, y₀)) U h with ⟨x, x_in, ⟨z, z_x⟩⟩ [GOAL] case mk.left.hf.hm.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ U : Set (α × γ) h : U ∈ 𝓝 (x₀, y₀) x : α × γ x_in : x ∈ U z : β × δ z_x : (fun p => (↑e p.fst, ↑f p.snd)) z = x ⊢ ∃ a, (↑e a.fst, ↑f a.snd) ∈ U [PROOFSTEP] exists z [GOAL] case mk.left.hf.hm.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ U : Set (α × γ) h : U ∈ 𝓝 (x₀, y₀) x : α × γ x_in : x ∈ U z : β × δ z_x : (fun p => (↑e p.fst, ↑f p.snd)) z = x ⊢ (↑e z.fst, ↑f z.snd) ∈ U [PROOFSTEP] aesop [GOAL] case mk.right α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ⊢ map (fun p => ↑(↑φ p.fst) p.snd) (comap (fun p => (↑e p.fst, ↑f p.snd)) (𝓝 (x₀, y₀))) ×ˢ map (fun p => ↑(↑φ p.fst) p.snd) (comap (fun p => (↑e p.fst, ↑f p.snd)) (𝓝 (x₀, y₀))) ≤ 𝓤 G [PROOFSTEP] suffices map (fun p : (β × δ) × β × δ => (fun p : β × δ => φ p.1 p.2) p.2 - (fun p : β × δ => φ p.1 p.2) p.1) (comap (fun p : (β × δ) × β × δ => ((e p.1.1, f p.1.2), (e p.2.1, f p.2.2))) (𝓝 (x₀, y₀) ×ˢ 𝓝 (x₀, y₀))) ≤ 𝓝 0 by rwa [uniformity_eq_comap_nhds_zero G, prod_map_map_eq, ← map_le_iff_le_comap, Filter.map_map, prod_comap_comap_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ this : map (fun p => (fun p => ↑(↑φ p.fst) p.snd) p.snd - (fun p => ↑(↑φ p.fst) p.snd) p.fst) (comap (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) (𝓝 (x₀, y₀) ×ˢ 𝓝 (x₀, y₀))) ≤ 𝓝 0 ⊢ map (fun p => ↑(↑φ p.fst) p.snd) (comap (fun p => (↑e p.fst, ↑f p.snd)) (𝓝 (x₀, y₀))) ×ˢ map (fun p => ↑(↑φ p.fst) p.snd) (comap (fun p => (↑e p.fst, ↑f p.snd)) (𝓝 (x₀, y₀))) ≤ 𝓤 G [PROOFSTEP] rwa [uniformity_eq_comap_nhds_zero G, prod_map_map_eq, ← map_le_iff_le_comap, Filter.map_map, prod_comap_comap_eq] [GOAL] case mk.right α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W' : Set G W'_nhd : W' ∈ 𝓝 0 x₀ : α y₀ : γ ⊢ map (fun p => (fun p => ↑(↑φ p.fst) p.snd) p.snd - (fun p => ↑(↑φ p.fst) p.snd) p.fst) (comap (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) (𝓝 (x₀, y₀) ×ˢ 𝓝 (x₀, y₀))) ≤ 𝓝 0 [PROOFSTEP] intro W' W'_nhd [GOAL] case mk.right α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 ⊢ W' ∈ map (fun p => (fun p => ↑(↑φ p.fst) p.snd) p.snd - (fun p => ↑(↑φ p.fst) p.snd) p.fst) (comap (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) (𝓝 (x₀, y₀) ×ˢ 𝓝 (x₀, y₀))) [PROOFSTEP] have key := extend_Z_bilin_key de df hφ W'_nhd x₀ y₀ [GOAL] case mk.right α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 key : ∃ U, U ∈ comap (↑e) (𝓝 x₀) ∧ ∃ V, V ∈ comap (↑f) (𝓝 y₀) ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' ⊢ W' ∈ map (fun p => (fun p => ↑(↑φ p.fst) p.snd) p.snd - (fun p => ↑(↑φ p.fst) p.snd) p.fst) (comap (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) (𝓝 (x₀, y₀) ×ˢ 𝓝 (x₀, y₀))) [PROOFSTEP] rcases key with ⟨U, U_nhd, V, V_nhd, h⟩ [GOAL] case mk.right.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β U_nhd : U ∈ comap (↑e) (𝓝 x₀) V : Set δ V_nhd : V ∈ comap (↑f) (𝓝 y₀) h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' ⊢ W' ∈ map (fun p => (fun p => ↑(↑φ p.fst) p.snd) p.snd - (fun p => ↑(↑φ p.fst) p.snd) p.fst) (comap (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) (𝓝 (x₀, y₀) ×ˢ 𝓝 (x₀, y₀))) [PROOFSTEP] rw [mem_comap] at U_nhd [GOAL] case mk.right.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β U_nhd : ∃ t, t ∈ 𝓝 x₀ ∧ ↑e ⁻¹' t ⊆ U V : Set δ V_nhd : V ∈ comap (↑f) (𝓝 y₀) h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' ⊢ W' ∈ map (fun p => (fun p => ↑(↑φ p.fst) p.snd) p.snd - (fun p => ↑(↑φ p.fst) p.snd) p.fst) (comap (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) (𝓝 (x₀, y₀) ×ˢ 𝓝 (x₀, y₀))) [PROOFSTEP] rcases U_nhd with ⟨U', U'_nhd, U'_sub⟩ [GOAL] case mk.right.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ V_nhd : V ∈ comap (↑f) (𝓝 y₀) h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U ⊢ W' ∈ map (fun p => (fun p => ↑(↑φ p.fst) p.snd) p.snd - (fun p => ↑(↑φ p.fst) p.snd) p.fst) (comap (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) (𝓝 (x₀, y₀) ×ˢ 𝓝 (x₀, y₀))) [PROOFSTEP] rw [mem_comap] at V_nhd [GOAL] case mk.right.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ V_nhd : ∃ t, t ∈ 𝓝 y₀ ∧ ↑f ⁻¹' t ⊆ V h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U ⊢ W' ∈ map (fun p => (fun p => ↑(↑φ p.fst) p.snd) p.snd - (fun p => ↑(↑φ p.fst) p.snd) p.fst) (comap (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) (𝓝 (x₀, y₀) ×ˢ 𝓝 (x₀, y₀))) [PROOFSTEP] rcases V_nhd with ⟨V', V'_nhd, V'_sub⟩ [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V ⊢ W' ∈ map (fun p => (fun p => ↑(↑φ p.fst) p.snd) p.snd - (fun p => ↑(↑φ p.fst) p.snd) p.fst) (comap (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) (𝓝 (x₀, y₀) ×ˢ 𝓝 (x₀, y₀))) [PROOFSTEP] rw [mem_map, mem_comap, nhds_prod_eq] [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V ⊢ ∃ t, t ∈ (𝓝 x₀ ×ˢ 𝓝 y₀) ×ˢ 𝓝 x₀ ×ˢ 𝓝 y₀ ∧ (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) ⁻¹' t ⊆ (fun p => (fun p => ↑(↑φ p.fst) p.snd) p.snd - (fun p => ↑(↑φ p.fst) p.snd) p.fst) ⁻¹' W' [PROOFSTEP] exists (U' ×ˢ V') ×ˢ U' ×ˢ V' [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V ⊢ (U' ×ˢ V') ×ˢ U' ×ˢ V' ∈ (𝓝 x₀ ×ˢ 𝓝 y₀) ×ˢ 𝓝 x₀ ×ˢ 𝓝 y₀ ∧ (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) ⁻¹' (U' ×ˢ V') ×ˢ U' ×ˢ V' ⊆ (fun p => (fun p => ↑(↑φ p.fst) p.snd) p.snd - (fun p => ↑(↑φ p.fst) p.snd) p.fst) ⁻¹' W' [PROOFSTEP] rw [mem_prod_same_iff] [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V ⊢ (∃ t, t ∈ 𝓝 x₀ ×ˢ 𝓝 y₀ ∧ t ×ˢ t ⊆ (U' ×ˢ V') ×ˢ U' ×ˢ V') ∧ (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) ⁻¹' (U' ×ˢ V') ×ˢ U' ×ˢ V' ⊆ (fun p => (fun p => ↑(↑φ p.fst) p.snd) p.snd - (fun p => ↑(↑φ p.fst) p.snd) p.fst) ⁻¹' W' [PROOFSTEP] simp only [exists_prop] [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V ⊢ (∃ t, t ∈ 𝓝 x₀ ×ˢ 𝓝 y₀ ∧ t ×ˢ t ⊆ (U' ×ˢ V') ×ˢ U' ×ˢ V') ∧ (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) ⁻¹' (U' ×ˢ V') ×ˢ U' ×ˢ V' ⊆ (fun p => ↑(↑φ p.snd.fst) p.snd.snd - ↑(↑φ p.fst.fst) p.fst.snd) ⁻¹' W' [PROOFSTEP] constructor [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro.left α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V ⊢ ∃ t, t ∈ 𝓝 x₀ ×ˢ 𝓝 y₀ ∧ t ×ˢ t ⊆ (U' ×ˢ V') ×ˢ U' ×ˢ V' [PROOFSTEP] have := prod_mem_prod U'_nhd V'_nhd [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro.left α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V this : U' ×ˢ V' ∈ 𝓝 x₀ ×ˢ 𝓝 y₀ ⊢ ∃ t, t ∈ 𝓝 x₀ ×ˢ 𝓝 y₀ ∧ t ×ˢ t ⊆ (U' ×ˢ V') ×ˢ U' ×ˢ V' [PROOFSTEP] tauto [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro.right α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V ⊢ (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) ⁻¹' (U' ×ˢ V') ×ˢ U' ×ˢ V' ⊆ (fun p => ↑(↑φ p.snd.fst) p.snd.snd - ↑(↑φ p.fst.fst) p.fst.snd) ⁻¹' W' [PROOFSTEP] intro p h' [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro.right α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V p : (β × δ) × β × δ h' : p ∈ (fun p => ((↑e p.fst.fst, ↑f p.fst.snd), ↑e p.snd.fst, ↑f p.snd.snd)) ⁻¹' (U' ×ˢ V') ×ˢ U' ×ˢ V' ⊢ p ∈ (fun p => ↑(↑φ p.snd.fst) p.snd.snd - ↑(↑φ p.fst.fst) p.fst.snd) ⁻¹' W' [PROOFSTEP] simp only [Set.mem_preimage, Set.prod_mk_mem_set_prod_eq] at h' [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro.right α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V p : (β × δ) × β × δ h' : (↑e p.fst.fst ∈ U' ∧ ↑f p.fst.snd ∈ V') ∧ ↑e p.snd.fst ∈ U' ∧ ↑f p.snd.snd ∈ V' ⊢ p ∈ (fun p => ↑(↑φ p.snd.fst) p.snd.snd - ↑(↑φ p.fst.fst) p.fst.snd) ⁻¹' W' [PROOFSTEP] rcases p with ⟨⟨x, y⟩, ⟨x', y'⟩⟩ [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro.right.mk.mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V x : β y : δ x' : β y' : δ h' : (↑e ((x, y), x', y').fst.fst ∈ U' ∧ ↑f ((x, y), x', y').fst.snd ∈ V') ∧ ↑e ((x, y), x', y').snd.fst ∈ U' ∧ ↑f ((x, y), x', y').snd.snd ∈ V' ⊢ ((x, y), x', y') ∈ (fun p => ↑(↑φ p.snd.fst) p.snd.snd - ↑(↑φ p.fst.fst) p.fst.snd) ⁻¹' W' [PROOFSTEP] apply h [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro.right.mk.mk.mk.x α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V x : β y : δ x' : β y' : δ h' : (↑e ((x, y), x', y').fst.fst ∈ U' ∧ ↑f ((x, y), x', y').fst.snd ∈ V') ∧ ↑e ((x, y), x', y').snd.fst ∈ U' ∧ ↑f ((x, y), x', y').snd.snd ∈ V' ⊢ x ∈ U [PROOFSTEP] tauto [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro.right.mk.mk.mk.x α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V x : β y : δ x' : β y' : δ h' : (↑e ((x, y), x', y').fst.fst ∈ U' ∧ ↑f ((x, y), x', y').fst.snd ∈ V') ∧ ↑e ((x, y), x', y').snd.fst ∈ U' ∧ ↑f ((x, y), x', y').snd.snd ∈ V' ⊢ x' ∈ U [PROOFSTEP] tauto [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro.right.mk.mk.mk.x α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V x : β y : δ x' : β y' : δ h' : (↑e ((x, y), x', y').fst.fst ∈ U' ∧ ↑f ((x, y), x', y').fst.snd ∈ V') ∧ ↑e ((x, y), x', y').snd.fst ∈ U' ∧ ↑f ((x, y), x', y').snd.snd ∈ V' ⊢ y ∈ V [PROOFSTEP] tauto [GOAL] case mk.right.intro.intro.intro.intro.intro.intro.intro.intro.right.mk.mk.mk.x α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : AddCommGroup α inst✝¹⁴ : TopologicalAddGroup α inst✝¹³ : TopologicalSpace β inst✝¹² : AddCommGroup β inst✝¹¹ : TopologicalAddGroup β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : AddCommGroup γ inst✝⁸ : TopologicalAddGroup γ inst✝⁷ : TopologicalSpace δ inst✝⁶ : AddCommGroup δ inst✝⁵ : TopologicalAddGroup δ inst✝⁴ : UniformSpace G inst✝³ : AddCommGroup G inst✝² : UniformAddGroup G inst✝¹ : SeparatedSpace G inst✝ : CompleteSpace G e : β →+ α de : DenseInducing ↑e f : δ →+ γ df : DenseInducing ↑f φ : β →+ δ →+ G hφ : Continuous fun p => ↑(↑φ p.fst) p.snd W'✝ : Set G W'_nhd✝ : W'✝ ∈ 𝓝 0 x₀ : α y₀ : γ W' : Set G W'_nhd : W' ∈ 𝓝 0 U : Set β V : Set δ h : ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (y : δ), y ∈ V → ∀ (y' : δ), y' ∈ V → (fun p => ↑(↑φ p.fst) p.snd) (x', y') - (fun p => ↑(↑φ p.fst) p.snd) (x, y) ∈ W' U' : Set α U'_nhd : U' ∈ 𝓝 x₀ U'_sub : ↑e ⁻¹' U' ⊆ U V' : Set γ V'_nhd : V' ∈ 𝓝 y₀ V'_sub : ↑f ⁻¹' V' ⊆ V x : β y : δ x' : β y' : δ h' : (↑e ((x, y), x', y').fst.fst ∈ U' ∧ ↑f ((x, y), x', y').fst.snd ∈ V') ∧ ↑e ((x, y), x', y').snd.fst ∈ U' ∧ ↑f ((x, y), x', y').snd.snd ∈ V' ⊢ y' ∈ V [PROOFSTEP] tauto [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G ⊢ CompleteSpace (G ⧸ N) [PROOFSTEP] letI : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) ⊢ CompleteSpace (G ⧸ N) [PROOFSTEP] letI : UniformSpace G := TopologicalGroup.toUniformSpace G [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this : UniformSpace G := TopologicalGroup.toUniformSpace G ⊢ CompleteSpace (G ⧸ N) [PROOFSTEP] haveI : (𝓤 (G ⧸ N)).IsCountablyGenerated := comap.isCountablyGenerated _ _ [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) ⊢ CompleteSpace (G ⧸ N) [PROOFSTEP] obtain ⟨u, hu, u_mul⟩ := TopologicalGroup.exists_antitone_basis_nhds_one G [GOAL] case intro.intro G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n ⊢ CompleteSpace (G ⧸ N) [PROOFSTEP] obtain ⟨hv, v_anti⟩ := @HasAntitoneBasis.map _ _ _ _ _ _ ((↑) : G → G ⧸ N) hu [GOAL] case intro.intro.mk G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (Filter.map mk (𝓝 1)) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n ⊢ CompleteSpace (G ⧸ N) [PROOFSTEP] rw [← QuotientGroup.nhds_eq N 1, QuotientGroup.mk_one] at hv [GOAL] case intro.intro.mk G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n ⊢ CompleteSpace (G ⧸ N) [PROOFSTEP] refine' UniformSpace.complete_of_cauchySeq_tendsto fun x hx => _ /- Given `n : ℕ`, for sufficiently large `a b : ℕ`, given any lift of `x b`, we can find a lift of `x a` such that the quotient of the lifts lies in `u n`. -/ [GOAL] case intro.intro.mk G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x ⊢ ∃ a, Tendsto x atTop (𝓝 a) [PROOFSTEP] have key₀ : ∀ i j : ℕ, ∃ M : ℕ, j < M ∧ ∀ a b : ℕ, M ≤ a → M ≤ b → ∀ g : G, x b = g → ∃ g' : G, g / g' ∈ u i ∧ x a = g' := by have h𝓤GN : (𝓤 (G ⧸ N)).HasBasis (fun _ => True) fun i => {x | x.snd / x.fst ∈ (↑) '' u i} := by simpa [uniformity_eq_comap_nhds_one'] using hv.comap _ rw [h𝓤GN.cauchySeq_iff] at hx simp only [ge_iff_le, mem_setOf_eq, forall_true_left, mem_image] at hx intro i j rcases hx i with ⟨M, hM⟩ refine' ⟨max j M + 1, (le_max_left _ _).trans_lt (lt_add_one _), fun a b ha hb g hg => _⟩ obtain ⟨y, y_mem, hy⟩ := hM a (((le_max_right j _).trans (lt_add_one _).le).trans ha) b (((le_max_right j _).trans (lt_add_one _).le).trans hb) refine' ⟨y⁻¹ * g, by simpa only [div_eq_mul_inv, mul_inv_rev, inv_inv, mul_inv_cancel_left] using y_mem, _⟩ rw [QuotientGroup.mk_mul, QuotientGroup.mk_inv, hy, hg, inv_div, div_mul_cancel'] /- Inductively construct a subsequence `φ : ℕ → ℕ` using `key₀` so that if `a b : ℕ` exceed `φ (n + 1)`, then we may find lifts whose quotients lie within `u n`. -/ [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x ⊢ ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' [PROOFSTEP] have h𝓤GN : (𝓤 (G ⧸ N)).HasBasis (fun _ => True) fun i => {x | x.snd / x.fst ∈ (↑) '' u i} := by simpa [uniformity_eq_comap_nhds_one'] using hv.comap _ [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x ⊢ HasBasis (𝓤 (G ⧸ N)) (fun x => True) fun i => {x | x.snd / x.fst ∈ mk '' u i} [PROOFSTEP] simpa [uniformity_eq_comap_nhds_one'] using hv.comap _ [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x h𝓤GN : HasBasis (𝓤 (G ⧸ N)) (fun x => True) fun i => {x | x.snd / x.fst ∈ mk '' u i} ⊢ ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' [PROOFSTEP] rw [h𝓤GN.cauchySeq_iff] at hx [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : ∀ (i : ℕ), True → ∃ N_1, ∀ (m : ℕ), N_1 ≤ m → ∀ (n : ℕ), N_1 ≤ n → (x m, x n) ∈ {x | x.snd / x.fst ∈ mk '' u i} h𝓤GN : HasBasis (𝓤 (G ⧸ N)) (fun x => True) fun i => {x | x.snd / x.fst ∈ mk '' u i} ⊢ ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' [PROOFSTEP] simp only [ge_iff_le, mem_setOf_eq, forall_true_left, mem_image] at hx [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N h𝓤GN : HasBasis (𝓤 (G ⧸ N)) (fun x => True) fun i => {x | x.snd / x.fst ∈ mk '' u i} hx : ∀ (i : ℕ), ∃ N_1, ∀ (m : ℕ), N_1 ≤ m → ∀ (n : ℕ), N_1 ≤ n → ∃ x_1, x_1 ∈ u i ∧ ↑x_1 = x n / x m ⊢ ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' [PROOFSTEP] intro i j [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N h𝓤GN : HasBasis (𝓤 (G ⧸ N)) (fun x => True) fun i => {x | x.snd / x.fst ∈ mk '' u i} hx : ∀ (i : ℕ), ∃ N_1, ∀ (m : ℕ), N_1 ≤ m → ∀ (n : ℕ), N_1 ≤ n → ∃ x_1, x_1 ∈ u i ∧ ↑x_1 = x n / x m i j : ℕ ⊢ ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' [PROOFSTEP] rcases hx i with ⟨M, hM⟩ [GOAL] case intro G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N h𝓤GN : HasBasis (𝓤 (G ⧸ N)) (fun x => True) fun i => {x | x.snd / x.fst ∈ mk '' u i} hx : ∀ (i : ℕ), ∃ N_1, ∀ (m : ℕ), N_1 ≤ m → ∀ (n : ℕ), N_1 ≤ n → ∃ x_1, x_1 ∈ u i ∧ ↑x_1 = x n / x m i j M : ℕ hM : ∀ (m : ℕ), M ≤ m → ∀ (n : ℕ), M ≤ n → ∃ x_1, x_1 ∈ u i ∧ ↑x_1 = x n / x m ⊢ ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' [PROOFSTEP] refine' ⟨max j M + 1, (le_max_left _ _).trans_lt (lt_add_one _), fun a b ha hb g hg => _⟩ [GOAL] case intro G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N h𝓤GN : HasBasis (𝓤 (G ⧸ N)) (fun x => True) fun i => {x | x.snd / x.fst ∈ mk '' u i} hx : ∀ (i : ℕ), ∃ N_1, ∀ (m : ℕ), N_1 ≤ m → ∀ (n : ℕ), N_1 ≤ n → ∃ x_1, x_1 ∈ u i ∧ ↑x_1 = x n / x m i j M : ℕ hM : ∀ (m : ℕ), M ≤ m → ∀ (n : ℕ), M ≤ n → ∃ x_1, x_1 ∈ u i ∧ ↑x_1 = x n / x m a b : ℕ ha : max j M + 1 ≤ a hb : max j M + 1 ≤ b g : G hg : x b = ↑g ⊢ ∃ g', g / g' ∈ u i ∧ x a = ↑g' [PROOFSTEP] obtain ⟨y, y_mem, hy⟩ := hM a (((le_max_right j _).trans (lt_add_one _).le).trans ha) b (((le_max_right j _).trans (lt_add_one _).le).trans hb) [GOAL] case intro.intro.intro G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N h𝓤GN : HasBasis (𝓤 (G ⧸ N)) (fun x => True) fun i => {x | x.snd / x.fst ∈ mk '' u i} hx : ∀ (i : ℕ), ∃ N_1, ∀ (m : ℕ), N_1 ≤ m → ∀ (n : ℕ), N_1 ≤ n → ∃ x_1, x_1 ∈ u i ∧ ↑x_1 = x n / x m i j M : ℕ hM : ∀ (m : ℕ), M ≤ m → ∀ (n : ℕ), M ≤ n → ∃ x_1, x_1 ∈ u i ∧ ↑x_1 = x n / x m a b : ℕ ha : max j M + 1 ≤ a hb : max j M + 1 ≤ b g : G hg : x b = ↑g y : G y_mem : y ∈ u i hy : ↑y = x b / x a ⊢ ∃ g', g / g' ∈ u i ∧ x a = ↑g' [PROOFSTEP] refine' ⟨y⁻¹ * g, by simpa only [div_eq_mul_inv, mul_inv_rev, inv_inv, mul_inv_cancel_left] using y_mem, _⟩ [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N h𝓤GN : HasBasis (𝓤 (G ⧸ N)) (fun x => True) fun i => {x | x.snd / x.fst ∈ mk '' u i} hx : ∀ (i : ℕ), ∃ N_1, ∀ (m : ℕ), N_1 ≤ m → ∀ (n : ℕ), N_1 ≤ n → ∃ x_1, x_1 ∈ u i ∧ ↑x_1 = x n / x m i j M : ℕ hM : ∀ (m : ℕ), M ≤ m → ∀ (n : ℕ), M ≤ n → ∃ x_1, x_1 ∈ u i ∧ ↑x_1 = x n / x m a b : ℕ ha : max j M + 1 ≤ a hb : max j M + 1 ≤ b g : G hg : x b = ↑g y : G y_mem : y ∈ u i hy : ↑y = x b / x a ⊢ g / (y⁻¹ * g) ∈ u i [PROOFSTEP] simpa only [div_eq_mul_inv, mul_inv_rev, inv_inv, mul_inv_cancel_left] using y_mem [GOAL] case intro.intro.intro G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N h𝓤GN : HasBasis (𝓤 (G ⧸ N)) (fun x => True) fun i => {x | x.snd / x.fst ∈ mk '' u i} hx : ∀ (i : ℕ), ∃ N_1, ∀ (m : ℕ), N_1 ≤ m → ∀ (n : ℕ), N_1 ≤ n → ∃ x_1, x_1 ∈ u i ∧ ↑x_1 = x n / x m i j M : ℕ hM : ∀ (m : ℕ), M ≤ m → ∀ (n : ℕ), M ≤ n → ∃ x_1, x_1 ∈ u i ∧ ↑x_1 = x n / x m a b : ℕ ha : max j M + 1 ≤ a hb : max j M + 1 ≤ b g : G hg : x b = ↑g y : G y_mem : y ∈ u i hy : ↑y = x b / x a ⊢ x a = ↑(y⁻¹ * g) [PROOFSTEP] rw [QuotientGroup.mk_mul, QuotientGroup.mk_inv, hy, hg, inv_div, div_mul_cancel'] /- Inductively construct a subsequence `φ : ℕ → ℕ` using `key₀` so that if `a b : ℕ` exceed `φ (n + 1)`, then we may find lifts whose quotients lie within `u n`. -/ [GOAL] case intro.intro.mk G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' ⊢ ∃ a, Tendsto x atTop (𝓝 a) [PROOFSTEP] set φ : ℕ → ℕ := fun n => Nat.recOn n (choose <| key₀ 0 0) fun k yk => choose <| key₀ (k + 1) yk [GOAL] case intro.intro.mk G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') ⊢ ∃ a, Tendsto x atTop (𝓝 a) [PROOFSTEP] have hφ : ∀ n : ℕ, φ n < φ (n + 1) ∧ ∀ a b : ℕ, φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ g : G, x b = g → ∃ g' : G, g / g' ∈ u (n + 1) ∧ x a = g' := fun n => choose_spec (key₀ (n + 1) (φ n)) /- Inductively construct a sequence `x' n : G` of lifts of `x (φ (n + 1))` such that quotients of successive terms lie in `x' n / x' (n + 1) ∈ u (n + 1)`. We actually need the proofs that each term is a lift to construct the next term, so we use a Σ-type. -/ [GOAL] case intro.intro.mk G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') hφ : ∀ (n : ℕ), φ n < φ (n + 1) ∧ ∀ (a b : ℕ), φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (n + 1) ∧ x a = ↑g' ⊢ ∃ a, Tendsto x atTop (𝓝 a) [PROOFSTEP] set x' : ∀ n, PSigma fun g : G => x (φ (n + 1)) = g := fun n => Nat.recOn n ⟨choose (QuotientGroup.mk_surjective (x (φ 1))), (choose_spec (QuotientGroup.mk_surjective (x (φ 1)))).symm⟩ fun k hk => ⟨choose <| (hφ k).2 _ _ (hφ (k + 1)).1.le le_rfl hk.fst hk.snd, (choose_spec <| (hφ k).2 _ _ (hφ (k + 1)).1.le le_rfl hk.fst hk.snd).2⟩ [GOAL] case intro.intro.mk G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') hφ : ∀ (n : ℕ), φ n < φ (n + 1) ∧ ∀ (a b : ℕ), φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (n + 1) ∧ x a = ↑g' x' : (n : ℕ) → (g : G) ×' x (φ (n + 1)) = ↑g := fun n => Nat.recOn n { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) } ⊢ ∃ a, Tendsto x atTop (𝓝 a) [PROOFSTEP] have hx' : ∀ n : ℕ, (x' n).fst / (x' (n + 1)).fst ∈ u (n + 1) := fun n => (choose_spec <| (hφ n).2 _ _ (hφ (n + 1)).1.le le_rfl (x' n).fst (x' n).snd).1 /- The sequence `x'` is Cauchy. This is where we exploit the condition on `u`. The key idea is to show by decreasing induction that `x' m / x' n ∈ u m` if `m ≤ n`. -/ [GOAL] case intro.intro.mk G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') hφ : ∀ (n : ℕ), φ n < φ (n + 1) ∧ ∀ (a b : ℕ), φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (n + 1) ∧ x a = ↑g' x' : (n : ℕ) → (g : G) ×' x (φ (n + 1)) = ↑g := fun n => Nat.recOn n { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) } hx' : ∀ (n : ℕ), (x' n).fst / (x' (n + 1)).fst ∈ u (n + 1) ⊢ ∃ a, Tendsto x atTop (𝓝 a) [PROOFSTEP] have x'_cauchy : CauchySeq fun n => (x' n).fst := by have h𝓤G : (𝓤 G).HasBasis (fun _ => True) fun i => {x | x.snd / x.fst ∈ u i} := by simpa [uniformity_eq_comap_nhds_one'] using hu.toHasBasis.comap _ rw [h𝓤G.cauchySeq_iff'] simp only [ge_iff_le, mem_setOf_eq, forall_true_left] exact fun m => ⟨m, fun n hmn => Nat.decreasingInduction' (fun k _ _ hk => u_mul k ⟨_, _, hx' k, hk, div_mul_div_cancel' _ _ _⟩) hmn (by simpa only [div_self'] using mem_of_mem_nhds (hu.mem _))⟩ /- Since `G` is complete, `x'` converges to some `x₀`, and so the image of this sequence under the quotient map converges to `↑x₀`. The image of `x'` is a convergent subsequence of `x`, and since `x` is Cauchy, this implies it converges. -/ [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') hφ : ∀ (n : ℕ), φ n < φ (n + 1) ∧ ∀ (a b : ℕ), φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (n + 1) ∧ x a = ↑g' x' : (n : ℕ) → (g : G) ×' x (φ (n + 1)) = ↑g := fun n => Nat.recOn n { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) } hx' : ∀ (n : ℕ), (x' n).fst / (x' (n + 1)).fst ∈ u (n + 1) ⊢ CauchySeq fun n => (x' n).fst [PROOFSTEP] have h𝓤G : (𝓤 G).HasBasis (fun _ => True) fun i => {x | x.snd / x.fst ∈ u i} := by simpa [uniformity_eq_comap_nhds_one'] using hu.toHasBasis.comap _ [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') hφ : ∀ (n : ℕ), φ n < φ (n + 1) ∧ ∀ (a b : ℕ), φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (n + 1) ∧ x a = ↑g' x' : (n : ℕ) → (g : G) ×' x (φ (n + 1)) = ↑g := fun n => Nat.recOn n { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) } hx' : ∀ (n : ℕ), (x' n).fst / (x' (n + 1)).fst ∈ u (n + 1) ⊢ HasBasis (𝓤 G) (fun x => True) fun i => {x | x.snd / x.fst ∈ u i} [PROOFSTEP] simpa [uniformity_eq_comap_nhds_one'] using hu.toHasBasis.comap _ [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') hφ : ∀ (n : ℕ), φ n < φ (n + 1) ∧ ∀ (a b : ℕ), φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (n + 1) ∧ x a = ↑g' x' : (n : ℕ) → (g : G) ×' x (φ (n + 1)) = ↑g := fun n => Nat.recOn n { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) } hx' : ∀ (n : ℕ), (x' n).fst / (x' (n + 1)).fst ∈ u (n + 1) h𝓤G : HasBasis (𝓤 G) (fun x => True) fun i => {x | x.snd / x.fst ∈ u i} ⊢ CauchySeq fun n => (x' n).fst [PROOFSTEP] rw [h𝓤G.cauchySeq_iff'] [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') hφ : ∀ (n : ℕ), φ n < φ (n + 1) ∧ ∀ (a b : ℕ), φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (n + 1) ∧ x a = ↑g' x' : (n : ℕ) → (g : G) ×' x (φ (n + 1)) = ↑g := fun n => Nat.recOn n { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) } hx' : ∀ (n : ℕ), (x' n).fst / (x' (n + 1)).fst ∈ u (n + 1) h𝓤G : HasBasis (𝓤 G) (fun x => True) fun i => {x | x.snd / x.fst ∈ u i} ⊢ ∀ (i : ℕ), True → ∃ N_1, ∀ (n : ℕ), n ≥ N_1 → ((x' n).fst, (x' N_1).fst) ∈ {x | x.snd / x.fst ∈ u i} [PROOFSTEP] simp only [ge_iff_le, mem_setOf_eq, forall_true_left] [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') hφ : ∀ (n : ℕ), φ n < φ (n + 1) ∧ ∀ (a b : ℕ), φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (n + 1) ∧ x a = ↑g' x' : (n : ℕ) → (g : G) ×' x (φ (n + 1)) = ↑g := fun n => Nat.recOn n { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) } hx' : ∀ (n : ℕ), (x' n).fst / (x' (n + 1)).fst ∈ u (n + 1) h𝓤G : HasBasis (𝓤 G) (fun x => True) fun i => {x | x.snd / x.fst ∈ u i} ⊢ ∀ (i : ℕ), ∃ N_1, ∀ (n : ℕ), N_1 ≤ n → (Nat.rec { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } (fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) }) N_1).fst / (Nat.rec { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } (fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) }) n).fst ∈ u i [PROOFSTEP] exact fun m => ⟨m, fun n hmn => Nat.decreasingInduction' (fun k _ _ hk => u_mul k ⟨_, _, hx' k, hk, div_mul_div_cancel' _ _ _⟩) hmn (by simpa only [div_self'] using mem_of_mem_nhds (hu.mem _))⟩ /- Since `G` is complete, `x'` converges to some `x₀`, and so the image of this sequence under the quotient map converges to `↑x₀`. The image of `x'` is a convergent subsequence of `x`, and since `x` is Cauchy, this implies it converges. -/ [GOAL] G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') hφ : ∀ (n : ℕ), φ n < φ (n + 1) ∧ ∀ (a b : ℕ), φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (n + 1) ∧ x a = ↑g' x' : (n : ℕ) → (g : G) ×' x (φ (n + 1)) = ↑g := fun n => Nat.recOn n { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) } hx' : ∀ (n : ℕ), (x' n).fst / (x' (n + 1)).fst ∈ u (n + 1) h𝓤G : HasBasis (𝓤 G) (fun x => True) fun i => {x | x.snd / x.fst ∈ u i} m n : ℕ hmn : m ≤ n ⊢ (Nat.rec { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } (fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) }) n).fst / (Nat.rec { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } (fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) }) n).fst ∈ u n [PROOFSTEP] simpa only [div_self'] using mem_of_mem_nhds (hu.mem _) [GOAL] case intro.intro.mk G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') hφ : ∀ (n : ℕ), φ n < φ (n + 1) ∧ ∀ (a b : ℕ), φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (n + 1) ∧ x a = ↑g' x' : (n : ℕ) → (g : G) ×' x (φ (n + 1)) = ↑g := fun n => Nat.recOn n { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) } hx' : ∀ (n : ℕ), (x' n).fst / (x' (n + 1)).fst ∈ u (n + 1) x'_cauchy : CauchySeq fun n => (x' n).fst ⊢ ∃ a, Tendsto x atTop (𝓝 a) [PROOFSTEP] rcases cauchySeq_tendsto_of_complete x'_cauchy with ⟨x₀, hx₀⟩ [GOAL] case intro.intro.mk.intro G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') hφ : ∀ (n : ℕ), φ n < φ (n + 1) ∧ ∀ (a b : ℕ), φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (n + 1) ∧ x a = ↑g' x' : (n : ℕ) → (g : G) ×' x (φ (n + 1)) = ↑g := fun n => Nat.recOn n { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) } hx' : ∀ (n : ℕ), (x' n).fst / (x' (n + 1)).fst ∈ u (n + 1) x'_cauchy : CauchySeq fun n => (x' n).fst x₀ : G hx₀ : Tendsto (fun n => (x' n).fst) atTop (𝓝 x₀) ⊢ ∃ a, Tendsto x atTop (𝓝 a) [PROOFSTEP] refine' ⟨↑x₀, tendsto_nhds_of_cauchySeq_of_subseq hx (strictMono_nat_of_lt_succ fun n => (hφ (n + 1)).1).tendsto_atTop _⟩ [GOAL] case intro.intro.mk.intro G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') hφ : ∀ (n : ℕ), φ n < φ (n + 1) ∧ ∀ (a b : ℕ), φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (n + 1) ∧ x a = ↑g' x' : (n : ℕ) → (g : G) ×' x (φ (n + 1)) = ↑g := fun n => Nat.recOn n { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) } hx' : ∀ (n : ℕ), (x' n).fst / (x' (n + 1)).fst ∈ u (n + 1) x'_cauchy : CauchySeq fun n => (x' n).fst x₀ : G hx₀ : Tendsto (fun n => (x' n).fst) atTop (𝓝 x₀) ⊢ Tendsto (x ∘ fun n => φ (n + 1)) atTop (𝓝 ↑x₀) [PROOFSTEP] convert ((continuous_coinduced_rng : Continuous ((↑) : G → G ⧸ N)).tendsto x₀).comp hx₀ [GOAL] case h.e'_3 G : Type u inst✝⁵ : Group G inst✝⁴ : TopologicalSpace G inst✝³ : TopologicalGroup G inst✝² : FirstCountableTopology G N : Subgroup G inst✝¹ : Subgroup.Normal N inst✝ : CompleteSpace G this✝¹ : UniformSpace (G ⧸ N) := TopologicalGroup.toUniformSpace (G ⧸ N) this✝ : UniformSpace G := TopologicalGroup.toUniformSpace G this : IsCountablyGenerated (𝓤 (G ⧸ N)) u : ℕ → Set G hu : HasAntitoneBasis (𝓝 1) u u_mul : ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n hv : HasBasis (𝓝 1) (fun x => True) fun n => mk '' u n v_anti : Antitone fun n => mk '' u n x : ℕ → G ⧸ N hx : CauchySeq x key₀ : ∀ (i j : ℕ), ∃ M, j < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u i ∧ x a = ↑g' φ : ℕ → ℕ := fun n => Nat.recOn n (choose (_ : ∃ M, 0 < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u 0 ∧ x a = ↑g')) fun k yk => choose (_ : ∃ M, yk < M ∧ ∀ (a b : ℕ), M ≤ a → M ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (k + 1) ∧ x a = ↑g') hφ : ∀ (n : ℕ), φ n < φ (n + 1) ∧ ∀ (a b : ℕ), φ (n + 1) ≤ a → φ (n + 1) ≤ b → ∀ (g : G), x b = ↑g → ∃ g', g / g' ∈ u (n + 1) ∧ x a = ↑g' x' : (n : ℕ) → (g : G) ×' x (φ (n + 1)) = ↑g := fun n => Nat.recOn n { fst := choose (_ : ∃ a, ↑a = x (φ 1)), snd := (_ : x (φ 1) = ↑(choose (_ : ∃ a, ↑a = x (φ 1)))) } fun k hk => { fst := choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'), snd := (_ : x (φ (k + 1 + 1)) = ↑(choose (_ : ∃ g', hk.fst / g' ∈ u (k + 1) ∧ x (φ (k + 1 + 1)) = ↑g'))) } hx' : ∀ (n : ℕ), (x' n).fst / (x' (n + 1)).fst ∈ u (n + 1) x'_cauchy : CauchySeq fun n => (x' n).fst x₀ : G hx₀ : Tendsto (fun n => (x' n).fst) atTop (𝓝 x₀) ⊢ (x ∘ fun n => φ (n + 1)) = mk ∘ fun n => (x' n).fst [PROOFSTEP] exact funext fun n => (x' n).snd [GOAL] G : Type u inst✝³ : Group G us : UniformSpace G inst✝² : UniformGroup G inst✝¹ : FirstCountableTopology G N : Subgroup G inst✝ : Subgroup.Normal N hG : CompleteSpace G ⊢ CompleteSpace (G ⧸ N) [PROOFSTEP] rw [← @UniformGroup.toUniformSpace_eq _ us _ _] at hG [GOAL] G : Type u inst✝³ : Group G us : UniformSpace G inst✝² : UniformGroup G inst✝¹ : FirstCountableTopology G N : Subgroup G inst✝ : Subgroup.Normal N hG : CompleteSpace G ⊢ CompleteSpace (G ⧸ N) [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Topology.Algebra.UniformGroup", "llama_tokens": 117750}
[GOAL] R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M' inst✝⁶ : TopologicalSpace M' inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : AddCommMonoid N' inst✝¹ : Module R N' inst✝ : TopologicalSpace N' n : ℕ f✝ g✝ f g : M[Λ^ι]→L[R]N h : toAlternatingMap f = toAlternatingMap g ⊢ ↑f = ↑g [PROOFSTEP] convert FunLike.ext'_iff.1 h [GOAL] R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M' inst✝⁶ : TopologicalSpace M' inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : AddCommMonoid N' inst✝¹ : Module R N' inst✝ : TopologicalSpace N' n : ℕ f✝ g : M[Λ^ι]→L[R]N e : M ≃L[R] M' f : M[Λ^ι]→L[R]N ⊢ (fun f => compContinuousLinearMap f ↑e) ((fun f => compContinuousLinearMap f ↑(ContinuousLinearEquiv.symm e)) f) = f [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M' inst✝⁶ : TopologicalSpace M' inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : AddCommMonoid N' inst✝¹ : Module R N' inst✝ : TopologicalSpace N' n : ℕ f✝ g : M[Λ^ι]→L[R]N e : M ≃L[R] M' f : M[Λ^ι]→L[R]N x✝ : ι → M ⊢ ↑((fun f => compContinuousLinearMap f ↑e) ((fun f => compContinuousLinearMap f ↑(ContinuousLinearEquiv.symm e)) f)) x✝ = ↑f x✝ [PROOFSTEP] simp [(· ∘ ·)] [GOAL] R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M' inst✝⁶ : TopologicalSpace M' inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : AddCommMonoid N' inst✝¹ : Module R N' inst✝ : TopologicalSpace N' n : ℕ f✝ g : M[Λ^ι]→L[R]N e : M ≃L[R] M' f : M'[Λ^ι]→L[R]N ⊢ (fun f => compContinuousLinearMap f ↑(ContinuousLinearEquiv.symm e)) ((fun f => compContinuousLinearMap f ↑e) f) = f [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M' inst✝⁶ : TopologicalSpace M' inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : AddCommMonoid N' inst✝¹ : Module R N' inst✝ : TopologicalSpace N' n : ℕ f✝ g : M[Λ^ι]→L[R]N e : M ≃L[R] M' f : M'[Λ^ι]→L[R]N x✝ : ι → M' ⊢ ↑((fun f => compContinuousLinearMap f ↑(ContinuousLinearEquiv.symm e)) ((fun f => compContinuousLinearMap f ↑e) f)) x✝ = ↑f x✝ [PROOFSTEP] simp [(· ∘ ·)] [GOAL] R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M' inst✝⁶ : TopologicalSpace M' inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : AddCommMonoid N' inst✝¹ : Module R N' inst✝ : TopologicalSpace N' n : ℕ f✝ g : M[Λ^ι]→L[R]N e : N ≃L[R] N' f : M[Λ^ι]→L[R]N ⊢ ContinuousLinearMap.compContinuousAlternatingMap (↑(ContinuousLinearEquiv.symm e)) (ContinuousLinearMap.compContinuousAlternatingMap (↑e) f) = f [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M' inst✝⁶ : TopologicalSpace M' inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : AddCommMonoid N' inst✝¹ : Module R N' inst✝ : TopologicalSpace N' n : ℕ f✝ g : M[Λ^ι]→L[R]N e : N ≃L[R] N' f : M[Λ^ι]→L[R]N x✝ : ι → M ⊢ ↑(ContinuousLinearMap.compContinuousAlternatingMap (↑(ContinuousLinearEquiv.symm e)) (ContinuousLinearMap.compContinuousAlternatingMap (↑e) f)) x✝ = ↑f x✝ [PROOFSTEP] simp [(· ∘ ·)] [GOAL] R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M' inst✝⁶ : TopologicalSpace M' inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : AddCommMonoid N' inst✝¹ : Module R N' inst✝ : TopologicalSpace N' n : ℕ f✝ g : M[Λ^ι]→L[R]N e : N ≃L[R] N' f : M[Λ^ι]→L[R]N' ⊢ ContinuousLinearMap.compContinuousAlternatingMap (↑e) (ContinuousLinearMap.compContinuousAlternatingMap (↑(ContinuousLinearEquiv.symm e)) f) = f [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M' inst✝⁶ : TopologicalSpace M' inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : AddCommMonoid N' inst✝¹ : Module R N' inst✝ : TopologicalSpace N' n : ℕ f✝ g : M[Λ^ι]→L[R]N e : N ≃L[R] N' f : M[Λ^ι]→L[R]N' x✝ : ι → M ⊢ ↑(ContinuousLinearMap.compContinuousAlternatingMap (↑e) (ContinuousLinearMap.compContinuousAlternatingMap (↑(ContinuousLinearEquiv.symm e)) f)) x✝ = ↑f x✝ [PROOFSTEP] simp [(· ∘ ·)] [GOAL] R : Type u_1 M : Type u_2 M' : Type u_3 N✝ : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹⁵ : Semiring R inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommMonoid M' inst✝¹⁰ : Module R M' inst✝⁹ : TopologicalSpace M' inst✝⁸ : AddCommMonoid N✝ inst✝⁷ : Module R N✝ inst✝⁶ : TopologicalSpace N✝ inst✝⁵ : AddCommMonoid N' inst✝⁴ : Module R N' inst✝³ : TopologicalSpace N' n : ℕ f✝ g : M[Λ^ι]→L[R]N✝ ι' : Type u_7 N : ι' → Type u_8 inst✝² : (i : ι') → AddCommMonoid (N i) inst✝¹ : (i : ι') → TopologicalSpace (N i) inst✝ : (i : ι') → Module R (N i) f : (i : ι') → M[Λ^ι]→L[R]N i ⊢ (fun f i => ContinuousLinearMap.compContinuousAlternatingMap (ContinuousLinearMap.proj i) f) (pi f) = f [PROOFSTEP] ext [GOAL] case h.H R : Type u_1 M : Type u_2 M' : Type u_3 N✝ : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹⁵ : Semiring R inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommMonoid M' inst✝¹⁰ : Module R M' inst✝⁹ : TopologicalSpace M' inst✝⁸ : AddCommMonoid N✝ inst✝⁷ : Module R N✝ inst✝⁶ : TopologicalSpace N✝ inst✝⁵ : AddCommMonoid N' inst✝⁴ : Module R N' inst✝³ : TopologicalSpace N' n : ℕ f✝ g : M[Λ^ι]→L[R]N✝ ι' : Type u_7 N : ι' → Type u_8 inst✝² : (i : ι') → AddCommMonoid (N i) inst✝¹ : (i : ι') → TopologicalSpace (N i) inst✝ : (i : ι') → Module R (N i) f : (i : ι') → M[Λ^ι]→L[R]N i x✝¹ : ι' x✝ : ι → M ⊢ ↑((fun f i => ContinuousLinearMap.compContinuousAlternatingMap (ContinuousLinearMap.proj i) f) (pi f) x✝¹) x✝ = ↑(f x✝¹) x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 M' : Type u_3 N✝ : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹⁵ : Semiring R inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommMonoid M' inst✝¹⁰ : Module R M' inst✝⁹ : TopologicalSpace M' inst✝⁸ : AddCommMonoid N✝ inst✝⁷ : Module R N✝ inst✝⁶ : TopologicalSpace N✝ inst✝⁵ : AddCommMonoid N' inst✝⁴ : Module R N' inst✝³ : TopologicalSpace N' n : ℕ f✝ g : M[Λ^ι]→L[R]N✝ ι' : Type u_7 N : ι' → Type u_8 inst✝² : (i : ι') → AddCommMonoid (N i) inst✝¹ : (i : ι') → TopologicalSpace (N i) inst✝ : (i : ι') → Module R (N i) f : M[Λ^ι]→L[R]((i : ι') → N i) ⊢ pi ((fun f i => ContinuousLinearMap.compContinuousAlternatingMap (ContinuousLinearMap.proj i) f) f) = f [PROOFSTEP] ext [GOAL] case H.h R : Type u_1 M : Type u_2 M' : Type u_3 N✝ : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹⁵ : Semiring R inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommMonoid M' inst✝¹⁰ : Module R M' inst✝⁹ : TopologicalSpace M' inst✝⁸ : AddCommMonoid N✝ inst✝⁷ : Module R N✝ inst✝⁶ : TopologicalSpace N✝ inst✝⁵ : AddCommMonoid N' inst✝⁴ : Module R N' inst✝³ : TopologicalSpace N' n : ℕ f✝ g : M[Λ^ι]→L[R]N✝ ι' : Type u_7 N : ι' → Type u_8 inst✝² : (i : ι') → AddCommMonoid (N i) inst✝¹ : (i : ι') → TopologicalSpace (N i) inst✝ : (i : ι') → Module R (N i) f : M[Λ^ι]→L[R]((i : ι') → N i) x✝¹ : ι → M x✝ : ι' ⊢ ↑(pi ((fun f i => ContinuousLinearMap.compContinuousAlternatingMap (ContinuousLinearMap.proj i) f) f)) x✝¹ x✝ = ↑f x✝¹ x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹⁶ : CommSemiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M inst✝¹³ : TopologicalSpace M inst✝¹² : AddCommMonoid M' inst✝¹¹ : Module R M' inst✝¹⁰ : TopologicalSpace M' inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N inst✝⁷ : TopologicalSpace N inst✝⁶ : ContinuousAdd N inst✝⁵ : ContinuousConstSMul R N inst✝⁴ : AddCommMonoid N' inst✝³ : Module R N' inst✝² : TopologicalSpace N' inst✝¹ : ContinuousAdd N' inst✝ : ContinuousConstSMul R N' f : M →L[R] M' g g' : M'[Λ^ι]→L[R]N ⊢ (fun g => compContinuousLinearMap g f) (g + g') = (fun g => compContinuousLinearMap g f) g + (fun g => compContinuousLinearMap g f) g' [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹⁶ : CommSemiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M inst✝¹³ : TopologicalSpace M inst✝¹² : AddCommMonoid M' inst✝¹¹ : Module R M' inst✝¹⁰ : TopologicalSpace M' inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N inst✝⁷ : TopologicalSpace N inst✝⁶ : ContinuousAdd N inst✝⁵ : ContinuousConstSMul R N inst✝⁴ : AddCommMonoid N' inst✝³ : Module R N' inst✝² : TopologicalSpace N' inst✝¹ : ContinuousAdd N' inst✝ : ContinuousConstSMul R N' f : M →L[R] M' g g' : M'[Λ^ι]→L[R]N x✝ : ι → M ⊢ ↑((fun g => compContinuousLinearMap g f) (g + g')) x✝ = ↑((fun g => compContinuousLinearMap g f) g + (fun g => compContinuousLinearMap g f) g') x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹⁶ : CommSemiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M inst✝¹³ : TopologicalSpace M inst✝¹² : AddCommMonoid M' inst✝¹¹ : Module R M' inst✝¹⁰ : TopologicalSpace M' inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N inst✝⁷ : TopologicalSpace N inst✝⁶ : ContinuousAdd N inst✝⁵ : ContinuousConstSMul R N inst✝⁴ : AddCommMonoid N' inst✝³ : Module R N' inst✝² : TopologicalSpace N' inst✝¹ : ContinuousAdd N' inst✝ : ContinuousConstSMul R N' f : M →L[R] M' c : R g : M'[Λ^ι]→L[R]N ⊢ AddHom.toFun { toFun := fun g => compContinuousLinearMap g f, map_add' := (_ : ∀ (g g' : M'[Λ^ι]→L[R]N), (fun g => compContinuousLinearMap g f) (g + g') = (fun g => compContinuousLinearMap g f) g + (fun g => compContinuousLinearMap g f) g') } (c • g) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun g => compContinuousLinearMap g f, map_add' := (_ : ∀ (g g' : M'[Λ^ι]→L[R]N), (fun g => compContinuousLinearMap g f) (g + g') = (fun g => compContinuousLinearMap g f) g + (fun g => compContinuousLinearMap g f) g') } g [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹⁶ : CommSemiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M inst✝¹³ : TopologicalSpace M inst✝¹² : AddCommMonoid M' inst✝¹¹ : Module R M' inst✝¹⁰ : TopologicalSpace M' inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N inst✝⁷ : TopologicalSpace N inst✝⁶ : ContinuousAdd N inst✝⁵ : ContinuousConstSMul R N inst✝⁴ : AddCommMonoid N' inst✝³ : Module R N' inst✝² : TopologicalSpace N' inst✝¹ : ContinuousAdd N' inst✝ : ContinuousConstSMul R N' f : M →L[R] M' c : R g : M'[Λ^ι]→L[R]N x✝ : ι → M ⊢ ↑(AddHom.toFun { toFun := fun g => compContinuousLinearMap g f, map_add' := (_ : ∀ (g g' : M'[Λ^ι]→L[R]N), (fun g => compContinuousLinearMap g f) (g + g') = (fun g => compContinuousLinearMap g f) g + (fun g => compContinuousLinearMap g f) g') } (c • g)) x✝ = ↑(↑(RingHom.id R) c • AddHom.toFun { toFun := fun g => compContinuousLinearMap g f, map_add' := (_ : ∀ (g g' : M'[Λ^ι]→L[R]N), (fun g => compContinuousLinearMap g f) (g + g') = (fun g => compContinuousLinearMap g f) g + (fun g => compContinuousLinearMap g f) g') } g) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹⁶ : CommSemiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M inst✝¹³ : TopologicalSpace M inst✝¹² : AddCommMonoid M' inst✝¹¹ : Module R M' inst✝¹⁰ : TopologicalSpace M' inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N inst✝⁷ : TopologicalSpace N inst✝⁶ : ContinuousAdd N inst✝⁵ : ContinuousConstSMul R N inst✝⁴ : AddCommMonoid N' inst✝³ : Module R N' inst✝² : TopologicalSpace N' inst✝¹ : ContinuousAdd N' inst✝ : ContinuousConstSMul R N' f : N →L[R] N' g₁ g₂ : M[Λ^ι]→L[R]N ⊢ ContinuousLinearMap.compContinuousAlternatingMap f (g₁ + g₂) = ContinuousLinearMap.compContinuousAlternatingMap f g₁ + ContinuousLinearMap.compContinuousAlternatingMap f g₂ [PROOFSTEP] ext1 [GOAL] case H R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹⁶ : CommSemiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M inst✝¹³ : TopologicalSpace M inst✝¹² : AddCommMonoid M' inst✝¹¹ : Module R M' inst✝¹⁰ : TopologicalSpace M' inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N inst✝⁷ : TopologicalSpace N inst✝⁶ : ContinuousAdd N inst✝⁵ : ContinuousConstSMul R N inst✝⁴ : AddCommMonoid N' inst✝³ : Module R N' inst✝² : TopologicalSpace N' inst✝¹ : ContinuousAdd N' inst✝ : ContinuousConstSMul R N' f : N →L[R] N' g₁ g₂ : M[Λ^ι]→L[R]N x✝ : ι → M ⊢ ↑(ContinuousLinearMap.compContinuousAlternatingMap f (g₁ + g₂)) x✝ = ↑(ContinuousLinearMap.compContinuousAlternatingMap f g₁ + ContinuousLinearMap.compContinuousAlternatingMap f g₂) x✝ [PROOFSTEP] apply f.map_add [GOAL] R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹⁶ : CommSemiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M inst✝¹³ : TopologicalSpace M inst✝¹² : AddCommMonoid M' inst✝¹¹ : Module R M' inst✝¹⁰ : TopologicalSpace M' inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N inst✝⁷ : TopologicalSpace N inst✝⁶ : ContinuousAdd N inst✝⁵ : ContinuousConstSMul R N inst✝⁴ : AddCommMonoid N' inst✝³ : Module R N' inst✝² : TopologicalSpace N' inst✝¹ : ContinuousAdd N' inst✝ : ContinuousConstSMul R N' c : R f : N →L[R] N' g : M[Λ^ι]→L[R]N ⊢ ContinuousLinearMap.compContinuousAlternatingMap f (c • g) = c • ContinuousLinearMap.compContinuousAlternatingMap f g [PROOFSTEP] ext1 [GOAL] case H R : Type u_1 M : Type u_2 M' : Type u_3 N : Type u_4 N' : Type u_5 ι : Type u_6 inst✝¹⁶ : CommSemiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M inst✝¹³ : TopologicalSpace M inst✝¹² : AddCommMonoid M' inst✝¹¹ : Module R M' inst✝¹⁰ : TopologicalSpace M' inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N inst✝⁷ : TopologicalSpace N inst✝⁶ : ContinuousAdd N inst✝⁵ : ContinuousConstSMul R N inst✝⁴ : AddCommMonoid N' inst✝³ : Module R N' inst✝² : TopologicalSpace N' inst✝¹ : ContinuousAdd N' inst✝ : ContinuousConstSMul R N' c : R f : N →L[R] N' g : M[Λ^ι]→L[R]N x✝ : ι → M ⊢ ↑(ContinuousLinearMap.compContinuousAlternatingMap f (c • g)) x✝ = ↑(c • ContinuousLinearMap.compContinuousAlternatingMap f g) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 ι : Type u_4 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : TopologicalSpace M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : TopologicalAddGroup N inst✝¹ : Fintype ι inst✝ : DecidableEq ι f✝ g f : ContinuousMultilinearMap R (fun x => M) N v : ι → M i j : ι hv : v i = v j hne : i ≠ j ⊢ MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0 [PROOFSTEP] simpa [MultilinearMap.alternatization_apply] using f.1.alternatization.map_eq_zero_of_eq' v i j hv hne [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 ι : Type u_4 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : TopologicalSpace M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : TopologicalAddGroup N inst✝¹ : Fintype ι inst✝ : DecidableEq ι f g : ContinuousMultilinearMap R (fun x => M) N ⊢ (fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }) 0 = 0 [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 N : Type u_3 ι : Type u_4 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : TopologicalSpace M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : TopologicalAddGroup N inst✝¹ : Fintype ι inst✝ : DecidableEq ι f g : ContinuousMultilinearMap R (fun x => M) N x✝ : ι → M ⊢ ↑((fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }) 0) x✝ = ↑0 x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 ι : Type u_4 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : TopologicalSpace M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : TopologicalAddGroup N inst✝¹ : Fintype ι inst✝ : DecidableEq ι f g x✝¹ x✝ : ContinuousMultilinearMap R (fun x => M) N ⊢ ZeroHom.toFun { toFun := fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }, map_zero' := (_ : (fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }) 0 = 0) } (x✝¹ + x✝) = ZeroHom.toFun { toFun := fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }, map_zero' := (_ : (fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }) 0 = 0) } x✝¹ + ZeroHom.toFun { toFun := fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }, map_zero' := (_ : (fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }) 0 = 0) } x✝ [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 N : Type u_3 ι : Type u_4 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : TopologicalSpace M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : TopologicalAddGroup N inst✝¹ : Fintype ι inst✝ : DecidableEq ι f g x✝² x✝¹ : ContinuousMultilinearMap R (fun x => M) N x✝ : ι → M ⊢ ↑(ZeroHom.toFun { toFun := fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }, map_zero' := (_ : (fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }) 0 = 0) } (x✝² + x✝¹)) x✝ = ↑(ZeroHom.toFun { toFun := fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }, map_zero' := (_ : (fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }) 0 = 0) } x✝² + ZeroHom.toFun { toFun := fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }, map_zero' := (_ : (fun f => { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun (∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • domDomCongr σ f).toMultilinearMap v = 0) }) 0 = 0) } x✝¹) x✝ [PROOFSTEP] simp [Finset.sum_add_distrib] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 ι : Type u_4 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : TopologicalSpace M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : TopologicalAddGroup N inst✝¹ : Fintype ι inst✝ : DecidableEq ι f g : ContinuousMultilinearMap R (fun x => M) N v : ι → M ⊢ ↑(↑alternatization f) v = ∑ σ : Equiv.Perm ι, ↑Equiv.Perm.sign σ • ↑f (v ∘ ↑σ) [PROOFSTEP] simp [alternatization, (· ∘ ·)] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 ι : Type u_4 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : TopologicalSpace M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : TopologicalAddGroup N inst✝¹ : Fintype ι inst✝ : DecidableEq ι f g : ContinuousMultilinearMap R (fun x => M) N ⊢ ContinuousAlternatingMap.toAlternatingMap (↑alternatization f) = ↑MultilinearMap.alternatization f.toMultilinearMap [PROOFSTEP] ext v [GOAL] case H R : Type u_1 M : Type u_2 N : Type u_3 ι : Type u_4 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : TopologicalSpace M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : TopologicalSpace N inst✝² : TopologicalAddGroup N inst✝¹ : Fintype ι inst✝ : DecidableEq ι f g : ContinuousMultilinearMap R (fun x => M) N v : ι → M ⊢ ↑(ContinuousAlternatingMap.toAlternatingMap (↑alternatization f)) v = ↑(↑MultilinearMap.alternatization f.toMultilinearMap) v [PROOFSTEP] simp [alternatization_apply_apply, MultilinearMap.alternatization_apply, (· ∘ ·)]
{"mathlib_filename": "Mathlib.Topology.Algebra.Module.Alternating", "llama_tokens": 12389}
[GOAL] X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y f : LocallyConstant X Y inst✝¹ : Monoid Y inst✝ : ContinuousMul Y ⊢ ↑1 = 1 [PROOFSTEP] ext [GOAL] case h X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y f : LocallyConstant X Y inst✝¹ : Monoid Y inst✝ : ContinuousMul Y a✝ : X ⊢ ↑↑1 a✝ = ↑1 a✝ [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y f : LocallyConstant X Y inst✝¹ : Monoid Y inst✝ : ContinuousMul Y x y : LocallyConstant X Y ⊢ OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y [PROOFSTEP] ext [GOAL] case h X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y f : LocallyConstant X Y inst✝¹ : Monoid Y inst✝ : ContinuousMul Y x y : LocallyConstant X Y a✝ : X ⊢ ↑(OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y)) a✝ = ↑(OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) a✝ [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝⁶ : TopologicalSpace X inst✝⁵ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid Y inst✝² : Module R Y inst✝¹ : ContinuousAdd Y inst✝ : ContinuousConstSMul R Y x y : LocallyConstant X Y ⊢ ↑(x + y) = ↑x + ↑y [PROOFSTEP] ext [GOAL] case h X : Type u_1 Y : Type u_2 inst✝⁶ : TopologicalSpace X inst✝⁵ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid Y inst✝² : Module R Y inst✝¹ : ContinuousAdd Y inst✝ : ContinuousConstSMul R Y x y : LocallyConstant X Y a✝ : X ⊢ ↑↑(x + y) a✝ = ↑(↑x + ↑y) a✝ [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝⁶ : TopologicalSpace X inst✝⁵ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid Y inst✝² : Module R Y inst✝¹ : ContinuousAdd Y inst✝ : ContinuousConstSMul R Y x : R y : LocallyConstant X Y ⊢ AddHom.toFun { toFun := toContinuousMap, map_add' := (_ : ∀ (x y : LocallyConstant X Y), ↑(x + y) = ↑x + ↑y) } (x • y) = ↑(RingHom.id R) x • AddHom.toFun { toFun := toContinuousMap, map_add' := (_ : ∀ (x y : LocallyConstant X Y), ↑(x + y) = ↑x + ↑y) } y [PROOFSTEP] ext [GOAL] case h X : Type u_1 Y : Type u_2 inst✝⁶ : TopologicalSpace X inst✝⁵ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid Y inst✝² : Module R Y inst✝¹ : ContinuousAdd Y inst✝ : ContinuousConstSMul R Y x : R y : LocallyConstant X Y a✝ : X ⊢ ↑(AddHom.toFun { toFun := toContinuousMap, map_add' := (_ : ∀ (x y : LocallyConstant X Y), ↑(x + y) = ↑x + ↑y) } (x • y)) a✝ = ↑(↑(RingHom.id R) x • AddHom.toFun { toFun := toContinuousMap, map_add' := (_ : ∀ (x y : LocallyConstant X Y), ↑(x + y) = ↑x + ↑y) } y) a✝ [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝³ : CommSemiring R inst✝² : Semiring Y inst✝¹ : Algebra R Y inst✝ : TopologicalSemiring Y ⊢ ↑1 = 1 [PROOFSTEP] ext [GOAL] case h X : Type u_1 Y : Type u_2 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝³ : CommSemiring R inst✝² : Semiring Y inst✝¹ : Algebra R Y inst✝ : TopologicalSemiring Y a✝ : X ⊢ ↑↑1 a✝ = ↑1 a✝ [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝³ : CommSemiring R inst✝² : Semiring Y inst✝¹ : Algebra R Y inst✝ : TopologicalSemiring Y x y : LocallyConstant X Y ⊢ OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y [PROOFSTEP] ext [GOAL] case h X : Type u_1 Y : Type u_2 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝³ : CommSemiring R inst✝² : Semiring Y inst✝¹ : Algebra R Y inst✝ : TopologicalSemiring Y x y : LocallyConstant X Y a✝ : X ⊢ ↑(OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y)) a✝ = ↑(OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) a✝ [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝³ : CommSemiring R inst✝² : Semiring Y inst✝¹ : Algebra R Y inst✝ : TopologicalSemiring Y ⊢ OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) 0 = 0 [PROOFSTEP] ext [GOAL] case h X : Type u_1 Y : Type u_2 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝³ : CommSemiring R inst✝² : Semiring Y inst✝¹ : Algebra R Y inst✝ : TopologicalSemiring Y a✝ : X ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) 0) a✝ = ↑0 a✝ [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝³ : CommSemiring R inst✝² : Semiring Y inst✝¹ : Algebra R Y inst✝ : TopologicalSemiring Y x y : LocallyConstant X Y ⊢ OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) y [PROOFSTEP] ext [GOAL] case h X : Type u_1 Y : Type u_2 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝³ : CommSemiring R inst✝² : Semiring Y inst✝¹ : Algebra R Y inst✝ : TopologicalSemiring Y x y : LocallyConstant X Y a✝ : X ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) (x + y)) a✝ = ↑(OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) y) a✝ [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝³ : CommSemiring R inst✝² : Semiring Y inst✝¹ : Algebra R Y inst✝ : TopologicalSemiring Y r : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) y) }) (↑(algebraMap R (LocallyConstant X Y)) r) = ↑(algebraMap R C(X, Y)) r [PROOFSTEP] ext x [GOAL] case h X : Type u_1 Y : Type u_2 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y f : LocallyConstant X Y R : Type u_3 inst✝³ : CommSemiring R inst✝² : Semiring Y inst✝¹ : Algebra R Y inst✝ : TopologicalSemiring Y r : R x : X ⊢ ↑(OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) }, map_mul' := (_ : ∀ (x y : LocallyConstant X Y), OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } (x * y) = OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } x * OneHom.toFun { toFun := toContinuousMap, map_one' := (_ : ↑1 = 1) } y) }) y) }) (↑(algebraMap R (LocallyConstant X Y)) r)) x = ↑(↑(algebraMap R C(X, Y)) r) x [PROOFSTEP] simp [Algebra.smul_def]
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.LocallyConstant", "llama_tokens": 6510}
[GOAL] X : Type u_1 t : TopologicalSpace X ⊢ t = ⨅ (u : Opens X), induced (fun x => x ∈ u) sierpinskiSpace [PROOFSTEP] apply le_antisymm [GOAL] case a X : Type u_1 t : TopologicalSpace X ⊢ t ≤ ⨅ (u : Opens X), induced (fun x => x ∈ u) sierpinskiSpace [PROOFSTEP] rw [le_iInf_iff] [GOAL] case a X : Type u_1 t : TopologicalSpace X ⊢ ∀ (i : Opens X), t ≤ induced (fun x => x ∈ i) sierpinskiSpace [PROOFSTEP] exact fun u => Continuous.le_induced (isOpen_iff_continuous_mem.mp u.2) [GOAL] case a X : Type u_1 t : TopologicalSpace X ⊢ ⨅ (u : Opens X), induced (fun x => x ∈ u) sierpinskiSpace ≤ t [PROOFSTEP] intro u h [GOAL] case a X : Type u_1 t : TopologicalSpace X u : Set X h : IsOpen u ⊢ IsOpen u [PROOFSTEP] rw [← generateFrom_iUnion_isOpen] [GOAL] case a X : Type u_1 t : TopologicalSpace X u : Set X h : IsOpen u ⊢ IsOpen u [PROOFSTEP] apply isOpen_generateFrom_of_mem [GOAL] case a.hs X : Type u_1 t : TopologicalSpace X u : Set X h : IsOpen u ⊢ u ∈ ⋃ (i : Opens X), {s | IsOpen s} [PROOFSTEP] simp only [Set.mem_iUnion, Set.mem_setOf_eq, isOpen_induced_iff] [GOAL] case a.hs X : Type u_1 t : TopologicalSpace X u : Set X h : IsOpen u ⊢ ∃ i t_1, IsOpen t_1 ∧ (fun x => x ∈ i) ⁻¹' t_1 = u [PROOFSTEP] exact ⟨⟨u, h⟩, { True }, isOpen_singleton_true, by simp [Set.preimage]⟩ [GOAL] X : Type u_1 t : TopologicalSpace X u : Set X h : IsOpen u ⊢ (fun x => x ∈ { carrier := u, is_open' := h }) ⁻¹' {True} = u [PROOFSTEP] simp [Set.preimage] [GOAL] X : Type u_1 inst✝ : TopologicalSpace X ⊢ Inducing ↑(productOfMemOpens X) [PROOFSTEP] convert inducing_iInf_to_pi fun (u : Opens X) (x : X) => x ∈ u [GOAL] case h.e'_3 X : Type u_1 inst✝ : TopologicalSpace X ⊢ inst✝ = ⨅ (i : Opens X), induced (fun x => x ∈ i) inferInstance [PROOFSTEP] apply eq_induced_by_maps_to_sierpinski [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : T0Space X ⊢ Function.Injective ↑(productOfMemOpens X) [PROOFSTEP] intro x1 x2 h [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : T0Space X x1 x2 : X h : ↑(productOfMemOpens X) x1 = ↑(productOfMemOpens X) x2 ⊢ x1 = x2 [PROOFSTEP] apply Inseparable.eq [GOAL] case h X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : T0Space X x1 x2 : X h : ↑(productOfMemOpens X) x1 = ↑(productOfMemOpens X) x2 ⊢ Inseparable x1 x2 [PROOFSTEP] rw [← Inducing.inseparable_iff (productOfMemOpens_inducing X), h]
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.T0Sierpinski", "llama_tokens": 1094}
[GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B ⊢ F →ₗ[R] E b [PROOFSTEP] refine' IsLinearMap.mk' (e.symm b) _ [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B ⊢ IsLinearMap R (Pretrivialization.symm e b) [PROOFSTEP] by_cases hb : b ∈ e.baseSet [GOAL] case pos R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B hb : b ∈ e.baseSet ⊢ IsLinearMap R (Pretrivialization.symm e b) [PROOFSTEP] exact (((e.linear R hb).mk' _).inverse (e.symm b) (e.symm_apply_apply_mk hb) fun v ↦ congr_arg Prod.snd <| e.apply_mk_symm hb v).isLinear [GOAL] case neg R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B hb : ¬b ∈ e.baseSet ⊢ IsLinearMap R (Pretrivialization.symm e b) [PROOFSTEP] rw [e.coe_symm_of_not_mem hb] [GOAL] case neg R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B hb : ¬b ∈ e.baseSet ⊢ IsLinearMap R 0 [PROOFSTEP] exact (0 : F →ₗ[R] E b).isLinear [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B hb : b ∈ e.baseSet v : F ⊢ AddHom.toFun { toAddHom := { toFun := fun y => (↑e { proj := b, snd := y }).snd, map_add' := (_ : ∀ (v w : E b), (↑e { proj := b, snd := v + w }).snd = (↑e { proj := b, snd := v }).snd + (↑e { proj := b, snd := w }).snd) }, map_smul' := (_ : ∀ (c : R) (v : E b), (↑e { proj := b, snd := c • v }).snd = c • (↑e { proj := b, snd := v }).snd) }.toAddHom (Pretrivialization.symm e b v) = v [PROOFSTEP] simp_rw [e.apply_mk_symm hb v] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B ⊢ ↑(Pretrivialization.linearMapAt R e b) = fun y => if b ∈ e.baseSet then (↑e { proj := b, snd := y }).snd else 0 [PROOFSTEP] rw [Pretrivialization.linearMapAt] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B ⊢ ↑(if hb : b ∈ e.baseSet then ↑(linearEquivAt R e b hb) else 0) = fun y => if b ∈ e.baseSet then (↑e { proj := b, snd := y }).snd else 0 [PROOFSTEP] split_ifs [GOAL] case pos R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B h✝ : b ∈ e.baseSet ⊢ ↑↑(linearEquivAt R e b h✝) = fun y => (↑e { proj := b, snd := y }).snd [PROOFSTEP] rfl [GOAL] case neg R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B h✝ : ¬b ∈ e.baseSet ⊢ ↑0 = fun y => 0 [PROOFSTEP] rfl [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B hb : b ∈ e.baseSet ⊢ ↑(Pretrivialization.linearMapAt R e b) = fun y => (↑e { proj := b, snd := y }).snd [PROOFSTEP] simp_rw [coe_linearMapAt, if_pos hb] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y✝ : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B y : E b ⊢ ↑(Pretrivialization.linearMapAt R e b) y = if b ∈ e.baseSet then (↑e { proj := b, snd := y }).snd else 0 [PROOFSTEP] rw [coe_linearMapAt] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y✝ : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B hb : b ∈ e.baseSet y : E b ⊢ ↑(Pretrivialization.symmₗ R e b) (↑(Pretrivialization.linearMapAt R e b) y) = y [PROOFSTEP] rw [e.linearMapAt_def_of_mem hb] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y✝ : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B hb : b ∈ e.baseSet y : E b ⊢ ↑(Pretrivialization.symmₗ R e b) (↑↑(linearEquivAt R e b hb) y) = y [PROOFSTEP] exact (e.linearEquivAt R b hb).left_inv y [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y✝ : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B hb : b ∈ e.baseSet y : F ⊢ ↑(Pretrivialization.linearMapAt R e b) (↑(Pretrivialization.symmₗ R e b) y) = y [PROOFSTEP] rw [e.linearMapAt_def_of_mem hb] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace F inst✝⁵ : TopologicalSpace B e✝ : Pretrivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y✝ : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Pretrivialization F TotalSpace.proj inst✝ : Pretrivialization.IsLinear R e b : B hb : b ∈ e.baseSet y : F ⊢ ↑↑(linearEquivAt R e b hb) (↑(Pretrivialization.symmₗ R e b) y) = y [PROOFSTEP] exact (e.linearEquivAt R b hb).right_inv y [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : Semiring R inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B hb : b ∈ e.baseSet ⊢ ↑(Trivialization.linearMapAt R e b) = fun y => (↑e { proj := b, snd := y }).snd [PROOFSTEP] simp_rw [coe_linearMapAt, if_pos hb] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : Semiring R inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y✝ : E b✝ inst✝⁴ : AddCommMonoid F inst✝³ : Module R F inst✝² : (x : B) → AddCommMonoid (E x) inst✝¹ : (x : B) → Module R (E x) e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B y : E b ⊢ ↑(Trivialization.linearMapAt R e b) y = if b ∈ e.baseSet then (↑e { proj := b, snd := y }).snd else 0 [PROOFSTEP] rw [coe_linearMapAt] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B ⊢ Continuous (↑(if hb : b ∈ e.baseSet ∩ e'.baseSet then LinearEquiv.trans (LinearEquiv.symm (linearEquivAt R e b (_ : b ∈ e.baseSet))) (linearEquivAt R e' b (_ : b ∈ e'.baseSet)) else LinearEquiv.refl R F)).toAddHom.toFun [PROOFSTEP] by_cases hb : b ∈ e.baseSet ∩ e'.baseSet [GOAL] case pos R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet ⊢ Continuous (↑(if hb : b ∈ e.baseSet ∩ e'.baseSet then LinearEquiv.trans (LinearEquiv.symm (linearEquivAt R e b (_ : b ∈ e.baseSet))) (linearEquivAt R e' b (_ : b ∈ e'.baseSet)) else LinearEquiv.refl R F)).toAddHom.toFun [PROOFSTEP] rw [dif_pos hb] [GOAL] case pos R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet ⊢ Continuous (↑(LinearEquiv.trans (LinearEquiv.symm (linearEquivAt R e b (_ : b ∈ e.baseSet))) (linearEquivAt R e' b (_ : b ∈ e'.baseSet)))).toAddHom.toFun [PROOFSTEP] refine' (e'.continuousOn.comp_continuous _ _).snd [GOAL] case pos.refine'_1 R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet ⊢ Continuous fun a => { proj := b, snd := ↑↑(LinearEquiv.symm (linearEquivAt R e b (_ : b ∈ e.baseSet))) a } [PROOFSTEP] exact e.continuousOn_symm.comp_continuous (Continuous.Prod.mk b) fun y => mk_mem_prod hb.1 (mem_univ y) [GOAL] case pos.refine'_2 R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet ⊢ ∀ (x : F), { proj := b, snd := ↑↑(LinearEquiv.symm (linearEquivAt R e b (_ : b ∈ e.baseSet))) x } ∈ e'.source [PROOFSTEP] exact fun y => e'.mem_source.mpr hb.2 [GOAL] case neg R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : ¬b ∈ e.baseSet ∩ e'.baseSet ⊢ Continuous (↑(if hb : b ∈ e.baseSet ∩ e'.baseSet then LinearEquiv.trans (LinearEquiv.symm (linearEquivAt R e b (_ : b ∈ e.baseSet))) (linearEquivAt R e' b (_ : b ∈ e'.baseSet)) else LinearEquiv.refl R F)).toAddHom.toFun [PROOFSTEP] rw [dif_neg hb] [GOAL] case neg R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : ¬b ∈ e.baseSet ∩ e'.baseSet ⊢ Continuous (↑(LinearEquiv.refl R F)).toAddHom.toFun [PROOFSTEP] exact continuous_id [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B ⊢ Continuous (if hb : b ∈ e.baseSet ∩ e'.baseSet then LinearEquiv.trans (LinearEquiv.symm (linearEquivAt R e b (_ : b ∈ e.baseSet))) (linearEquivAt R e' b (_ : b ∈ e'.baseSet)) else LinearEquiv.refl R F).invFun [PROOFSTEP] by_cases hb : b ∈ e.baseSet ∩ e'.baseSet [GOAL] case pos R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet ⊢ Continuous (if hb : b ∈ e.baseSet ∩ e'.baseSet then LinearEquiv.trans (LinearEquiv.symm (linearEquivAt R e b (_ : b ∈ e.baseSet))) (linearEquivAt R e' b (_ : b ∈ e'.baseSet)) else LinearEquiv.refl R F).invFun [PROOFSTEP] rw [dif_pos hb] [GOAL] case pos R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet ⊢ Continuous (LinearEquiv.trans (LinearEquiv.symm (linearEquivAt R e b (_ : b ∈ e.baseSet))) (linearEquivAt R e' b (_ : b ∈ e'.baseSet))).invFun [PROOFSTEP] refine' (e.continuousOn.comp_continuous _ _).snd [GOAL] case pos.refine'_1 R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet ⊢ Continuous fun a => { proj := b, snd := ↑(LinearEquiv.toEquiv (linearEquivAt R e' b (_ : b ∈ e'.baseSet))).symm a } case pos.refine'_2 R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet ⊢ ∀ (x : F), { proj := b, snd := ↑(LinearEquiv.toEquiv (linearEquivAt R e' b (_ : b ∈ e'.baseSet))).symm x } ∈ e.source [PROOFSTEP] exact e'.continuousOn_symm.comp_continuous (Continuous.Prod.mk b) fun y => mk_mem_prod hb.2 (mem_univ y) [GOAL] case pos.refine'_2 R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet ⊢ ∀ (x : F), { proj := b, snd := ↑(LinearEquiv.toEquiv (linearEquivAt R e' b (_ : b ∈ e'.baseSet))).symm x } ∈ e.source [PROOFSTEP] exact fun y => e.mem_source.mpr hb.1 [GOAL] case neg R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : ¬b ∈ e.baseSet ∩ e'.baseSet ⊢ Continuous (if hb : b ∈ e.baseSet ∩ e'.baseSet then LinearEquiv.trans (LinearEquiv.symm (linearEquivAt R e b (_ : b ∈ e.baseSet))) (linearEquivAt R e' b (_ : b ∈ e'.baseSet)) else LinearEquiv.refl R F).invFun [PROOFSTEP] rw [dif_neg hb] [GOAL] case neg R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : ¬b ∈ e.baseSet ∩ e'.baseSet ⊢ Continuous (LinearEquiv.refl R F).invFun [PROOFSTEP] exact continuous_id [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e'.baseSet ∩ e.baseSet ⊢ ContinuousLinearEquiv.symm (coordChangeL R e e' b) = coordChangeL R e' e b [PROOFSTEP] apply ContinuousLinearEquiv.toLinearEquiv_injective [GOAL] case a R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e'.baseSet ∩ e.baseSet ⊢ (ContinuousLinearEquiv.symm (coordChangeL R e e' b)).toLinearEquiv = (coordChangeL R e' e b).toLinearEquiv [PROOFSTEP] rw [coe_coordChangeL' e' e hb, (coordChangeL R e e' b).symm_toLinearEquiv, coe_coordChangeL' e e' hb.symm, LinearEquiv.trans_symm, LinearEquiv.symm_symm] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y✝ : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet y : F ⊢ (b, ↑(coordChangeL R e e' b) y) = ↑e' { proj := b, snd := Trivialization.symm e b y } [PROOFSTEP] ext [GOAL] case h₁ R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y✝ : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet y : F ⊢ (b, ↑(coordChangeL R e e' b) y).fst = (↑e' { proj := b, snd := Trivialization.symm e b y }).fst [PROOFSTEP] rw [e.mk_symm hb.1 y, e'.coe_fst', e.proj_symm_apply' hb.1] [GOAL] case h₁ R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y✝ : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet y : F ⊢ (↑(LocalHomeomorph.symm e.toLocalHomeomorph) (b, y)).proj ∈ e'.baseSet [PROOFSTEP] rw [e.proj_symm_apply' hb.1] [GOAL] case h₁ R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y✝ : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet y : F ⊢ b ∈ e'.baseSet [PROOFSTEP] exact hb.2 [GOAL] case h₂ R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y✝ : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet y : F ⊢ (b, ↑(coordChangeL R e e' b) y).snd = (↑e' { proj := b, snd := Trivialization.symm e b y }).snd [PROOFSTEP] exact e.coordChangeL_apply e' hb y [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F ⊢ ↑e' (↑(LocalHomeomorph.symm e.toLocalHomeomorph) (b, v)) = (b, ↑(coordChangeL R e e' b) v) [PROOFSTEP] rw [e.mk_coordChangeL e' hb, e.mk_symm hb.1] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : Semiring R inst✝⁸ : TopologicalSpace F inst✝⁷ : TopologicalSpace B inst✝⁶ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F TotalSpace.proj x : TotalSpace F E b✝ : B y✝ : E b✝ inst✝⁵ : AddCommMonoid F inst✝⁴ : Module R F inst✝³ : (x : B) → AddCommMonoid (E x) inst✝² : (x : B) → Module R (E x) e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet y : F ⊢ ↑(coordChangeL R e e' b) y = (↑e' (↑(LocalHomeomorph.symm e.toLocalHomeomorph) (b, y))).snd [PROOFSTEP] rw [e.coordChangeL_apply e' hb, e.mk_symm hb.1] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B src✝ : E b →ₗ[R] F := Trivialization.linearMapAt R e b ⊢ Continuous { toAddHom := { toFun := ↑(Trivialization.linearMapAt R e b), map_add' := (_ : ∀ (x y : E b), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : E b), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom.toFun [PROOFSTEP] dsimp [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B src✝ : E b →ₗ[R] F := Trivialization.linearMapAt R e b ⊢ Continuous ↑(Trivialization.linearMapAt R e b) [PROOFSTEP] rw [e.coe_linearMapAt b] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B src✝ : E b →ₗ[R] F := Trivialization.linearMapAt R e b ⊢ Continuous fun y => if b ∈ e.baseSet then (↑e { proj := b, snd := y }).snd else 0 [PROOFSTEP] refine' continuous_if_const _ (fun hb => _) fun _ => continuous_zero [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B src✝ : E b →ₗ[R] F := Trivialization.linearMapAt R e b hb : b ∈ e.baseSet ⊢ Continuous fun y => (↑e { proj := b, snd := y }).snd [PROOFSTEP] exact (e.continuousOn.comp_continuous (FiberBundle.totalSpaceMk_inducing F E b).continuous fun x => e.mem_source.mpr hb).snd [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B src✝ : F →ₗ[R] E b := Trivialization.symmₗ R e b ⊢ Continuous { toAddHom := { toFun := Trivialization.symm e b, map_add' := (_ : ∀ (x y : F), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : F), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom.toFun [PROOFSTEP] by_cases hb : b ∈ e.baseSet [GOAL] case pos R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B src✝ : F →ₗ[R] E b := Trivialization.symmₗ R e b hb : b ∈ e.baseSet ⊢ Continuous { toAddHom := { toFun := Trivialization.symm e b, map_add' := (_ : ∀ (x y : F), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : F), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom.toFun [PROOFSTEP] rw [(FiberBundle.totalSpaceMk_inducing F E b).continuous_iff] [GOAL] case pos R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B src✝ : F →ₗ[R] E b := Trivialization.symmₗ R e b hb : b ∈ e.baseSet ⊢ Continuous (TotalSpace.mk b ∘ { toAddHom := { toFun := Trivialization.symm e b, map_add' := (_ : ∀ (x y : F), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : F), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom.toFun) [PROOFSTEP] exact e.continuousOn_symm.comp_continuous (continuous_const.prod_mk continuous_id) fun x ↦ mk_mem_prod hb (mem_univ x) [GOAL] case neg R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B src✝ : F →ₗ[R] E b := Trivialization.symmₗ R e b hb : ¬b ∈ e.baseSet ⊢ Continuous { toAddHom := { toFun := Trivialization.symm e b, map_add' := (_ : ∀ (x y : F), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : F), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom.toFun [PROOFSTEP] refine' continuous_zero.congr fun x => (e.symm_apply_of_not_mem hb x).symm [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B hb : b ∈ e.baseSet z : E b ⊢ ↑e { proj := b, snd := z } = (b, ↑(continuousLinearEquivAt R e b hb) z) [PROOFSTEP] ext [GOAL] case h₁ R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B hb : b ∈ e.baseSet z : E b ⊢ (↑e { proj := b, snd := z }).fst = (b, ↑(continuousLinearEquivAt R e b hb) z).fst [PROOFSTEP] refine' e.coe_fst _ [GOAL] case h₁ R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B hb : b ∈ e.baseSet z : E b ⊢ { proj := b, snd := z } ∈ e.source [PROOFSTEP] rw [e.source_eq] [GOAL] case h₁ R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B hb : b ∈ e.baseSet z : E b ⊢ { proj := b, snd := z } ∈ TotalSpace.proj ⁻¹' e.baseSet [PROOFSTEP] exact hb [GOAL] case h₂ R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B hb : b ∈ e.baseSet z : E b ⊢ (↑e { proj := b, snd := z }).snd = (b, ↑(continuousLinearEquivAt R e b hb) z).snd [PROOFSTEP] simp only [coe_coe, continuousLinearEquivAt_apply] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e x : B hx : x ∈ e.baseSet ⊢ ↑e (zeroSection F E x) = (x, 0) [PROOFSTEP] simp_rw [zeroSection, e.apply_eq_prod_continuousLinearEquivAt R x hx 0, map_zero] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B hb : b ∈ e.baseSet z : F ⊢ ↑(LocalHomeomorph.symm e.toLocalHomeomorph) (b, z) = { proj := b, snd := ↑(ContinuousLinearEquiv.symm (continuousLinearEquivAt R e b hb)) z } [PROOFSTEP] have h : (b, z) ∈ e.target [GOAL] case h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B hb : b ∈ e.baseSet z : F ⊢ (b, z) ∈ e.target [PROOFSTEP] rw [e.target_eq] [GOAL] case h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B hb : b ∈ e.baseSet z : F ⊢ (b, z) ∈ e.baseSet ×ˢ univ [PROOFSTEP] exact ⟨hb, mem_univ _⟩ [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B hb : b ∈ e.baseSet z : F h : (b, z) ∈ e.target ⊢ ↑(LocalHomeomorph.symm e.toLocalHomeomorph) (b, z) = { proj := b, snd := ↑(ContinuousLinearEquiv.symm (continuousLinearEquivAt R e b hb)) z } [PROOFSTEP] apply e.injOn (e.map_target h) [GOAL] case a R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B hb : b ∈ e.baseSet z : F h : (b, z) ∈ e.target ⊢ { proj := b, snd := ↑(ContinuousLinearEquiv.symm (continuousLinearEquivAt R e b hb)) z } ∈ e.source [PROOFSTEP] simpa only [e.source_eq, mem_preimage] [GOAL] case a R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B hb : b ∈ e.baseSet z : F h : (b, z) ∈ e.target ⊢ ↑e.toLocalHomeomorph (↑(LocalHomeomorph.symm e.toLocalHomeomorph) (b, z)) = ↑e.toLocalHomeomorph { proj := b, snd := ↑(ContinuousLinearEquiv.symm (continuousLinearEquivAt R e b hb)) z } [PROOFSTEP] simp_rw [e.right_inv h, coe_coe, e.apply_eq_prod_continuousLinearEquivAt R b hb, ContinuousLinearEquiv.apply_symm_apply] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝¹⁰ : NontriviallyNormedField R inst✝⁹ : (x : B) → AddCommMonoid (E x) inst✝⁸ : (x : B) → Module R (E x) inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedSpace R F inst✝⁵ : TopologicalSpace B inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (x : B) → TopologicalSpace (E x) inst✝² : FiberBundle F E e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet ⊢ ContinuousLinearEquiv.trans (ContinuousLinearEquiv.symm (continuousLinearEquivAt R e b (_ : b ∈ e.baseSet))) (continuousLinearEquivAt R e' b (_ : b ∈ e'.baseSet)) = coordChangeL R e e' b [PROOFSTEP] ext v [GOAL] case h.h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝¹⁰ : NontriviallyNormedField R inst✝⁹ : (x : B) → AddCommMonoid (E x) inst✝⁸ : (x : B) → Module R (E x) inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedSpace R F inst✝⁵ : TopologicalSpace B inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (x : B) → TopologicalSpace (E x) inst✝² : FiberBundle F E e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F ⊢ ↑(ContinuousLinearEquiv.trans (ContinuousLinearEquiv.symm (continuousLinearEquivAt R e b (_ : b ∈ e.baseSet))) (continuousLinearEquivAt R e' b (_ : b ∈ e'.baseSet))) v = ↑(coordChangeL R e e' b) v [PROOFSTEP] rw [coordChangeL_apply e e' hb] [GOAL] case h.h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝¹⁰ : NontriviallyNormedField R inst✝⁹ : (x : B) → AddCommMonoid (E x) inst✝⁸ : (x : B) → Module R (E x) inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedSpace R F inst✝⁵ : TopologicalSpace B inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (x : B) → TopologicalSpace (E x) inst✝² : FiberBundle F E e e' : Trivialization F TotalSpace.proj inst✝¹ : Trivialization.IsLinear R e inst✝ : Trivialization.IsLinear R e' b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F ⊢ ↑(ContinuousLinearEquiv.trans (ContinuousLinearEquiv.symm (continuousLinearEquivAt R e b (_ : b ∈ e.baseSet))) (continuousLinearEquivAt R e' b (_ : b ∈ e'.baseSet))) v = (↑e' { proj := b, snd := Trivialization.symm e b v }).snd [PROOFSTEP] rfl [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι i j k : ι x : B hx : x ∈ baseSet Z i ∩ baseSet Z j ∩ baseSet Z k ⊢ ContinuousLinearMap.comp (coordChange Z j k x) (coordChange Z i j x) = coordChange Z i k x [PROOFSTEP] ext v [GOAL] case h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι i j k : ι x : B hx : x ∈ baseSet Z i ∩ baseSet Z j ∩ baseSet Z k v : F ⊢ ↑(ContinuousLinearMap.comp (coordChange Z j k x) (coordChange Z i j x)) v = ↑(coordChange Z i k x) v [PROOFSTEP] exact Z.coordChange_comp i j k x hx v [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b : B a : F i : ι x : B x✝² : x ∈ (localTriv Z i).baseSet x✝¹ x✝ : Fiber Z x ⊢ (↑(localTriv Z i) { proj := x, snd := x✝¹ + x✝ }).snd = (↑(localTriv Z i) { proj := x, snd := x✝¹ }).snd + (↑(localTriv Z i) { proj := x, snd := x✝ }).snd [PROOFSTEP] simp only [map_add, localTriv_apply, mfld_simps] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b : B a : F i : ι x : B x✝² : x ∈ (localTriv Z i).baseSet x✝¹ : R x✝ : Fiber Z x ⊢ (↑(localTriv Z i) { proj := x, snd := x✝¹ • x✝ }).snd = x✝¹ • (↑(localTriv Z i) { proj := x, snd := x✝ }).snd [PROOFSTEP] simp only [map_smul, localTriv_apply, mfld_simps] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i j : ι b : B hb : b ∈ baseSet Z i v : F ⊢ Trivialization.symm (localTriv Z i) b v = ↑(coordChange Z i (indexAt Z b) b) v [PROOFSTEP] apply (Z.localTriv i).symm_apply hb v [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i j : ι b : B hb : b ∈ baseSet Z i ∩ baseSet Z j v : F ⊢ ↑(Trivialization.coordChangeL R (localTriv Z i) (localTriv Z j) b) v = ↑(coordChange Z i j b) v [PROOFSTEP] rw [Trivialization.coordChangeL_apply', localTriv_symm_fst, localTriv_apply, coordChange_comp] [GOAL] case a R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i j : ι b : B hb : b ∈ baseSet Z i ∩ baseSet Z j v : F ⊢ { proj := (b, v).fst, snd := ↑(coordChange Z i (indexAt Z (b, v).fst) (b, v).fst) (b, v).snd }.proj ∈ baseSet Z i ∩ baseSet Z (indexAt Z { proj := (b, v).fst, snd := ↑(coordChange Z i (indexAt Z (b, v).fst) (b, v).fst) (b, v).snd }.proj) ∩ baseSet Z j case hb R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i j : ι b : B hb : b ∈ baseSet Z i ∩ baseSet Z j v : F ⊢ b ∈ (localTriv Z i).baseSet ∩ (localTriv Z j).baseSet [PROOFSTEP] exacts [⟨⟨hb.1, Z.mem_baseSet_at b⟩, hb.2⟩, hb] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b : B a : F i j : ι ⊢ { proj := b, snd := a } ∈ (localTrivAt Z b).toLocalHomeomorph.toLocalEquiv.source [PROOFSTEP] rw [localTrivAt, mem_localTriv_source] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b : B a : F i j : ι ⊢ { proj := b, snd := a }.proj ∈ baseSet Z (indexAt Z b) [PROOFSTEP] exact Z.mem_baseSet_at b [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b : B a : F i j : ι ⊢ ∀ (e : Trivialization F TotalSpace.proj) [inst : MemTrivializationAtlas e], Trivialization.IsLinear R e [PROOFSTEP] rintro _ ⟨i, rfl⟩ [GOAL] case mk.intro R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b : B a : F i✝ j i : ι ⊢ Trivialization.IsLinear R (FiberBundleCore.localTriv (toFiberBundleCore Z) i) [PROOFSTEP] apply localTriv.isLinear [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b : B a : F i j : ι ⊢ ∀ (e e' : Trivialization F TotalSpace.proj) [inst : MemTrivializationAtlas e] [inst_1 : MemTrivializationAtlas e'], ContinuousOn (fun b => ↑(Trivialization.coordChangeL R e e' b)) (e.baseSet ∩ e'.baseSet) [PROOFSTEP] rintro _ _ ⟨i, rfl⟩ ⟨i', rfl⟩ [GOAL] case mk.intro.mk.intro R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b : B a : F i✝ j i i' : ι ⊢ ContinuousOn (fun b => ↑(Trivialization.coordChangeL R (FiberBundleCore.localTriv (toFiberBundleCore Z) i) (FiberBundleCore.localTriv (toFiberBundleCore Z) i') b)) ((FiberBundleCore.localTriv (toFiberBundleCore Z) i).baseSet ∩ (FiberBundleCore.localTriv (toFiberBundleCore Z) i').baseSet) [PROOFSTEP] refine' (Z.continuousOn_coordChange i i').congr fun b hb => _ [GOAL] case mk.intro.mk.intro R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i✝ j i i' : ι b : B hb : b ∈ baseSet Z i ∩ baseSet Z i' ⊢ ↑(Trivialization.coordChangeL R (FiberBundleCore.localTriv (toFiberBundleCore Z) i) (FiberBundleCore.localTriv (toFiberBundleCore Z) i') b) = coordChange Z i i' b [PROOFSTEP] ext v [GOAL] case mk.intro.mk.intro.h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i✝ j i i' : ι b : B hb : b ∈ baseSet Z i ∩ baseSet Z i' v : F ⊢ ↑↑(Trivialization.coordChangeL R (FiberBundleCore.localTriv (toFiberBundleCore Z) i) (FiberBundleCore.localTriv (toFiberBundleCore Z) i') b) v = ↑(coordChange Z i i' b) v [PROOFSTEP] exact Z.localTriv_coordChange_eq i i' hb v [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i j : ι b : B hb : b ∈ baseSet Z i ⊢ Trivialization.continuousLinearMapAt R (localTriv Z i) b = coordChange Z (indexAt Z b) i b [PROOFSTEP] ext1 v [GOAL] case h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i j : ι b : B hb : b ∈ baseSet Z i v : Fiber Z b ⊢ ↑(Trivialization.continuousLinearMapAt R (localTriv Z i) b) v = ↑(coordChange Z (indexAt Z b) i b) v [PROOFSTEP] rw [(Z.localTriv i).continuousLinearMapAt_apply R, (Z.localTriv i).coe_linearMapAt_of_mem] [GOAL] case h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i j : ι b : B hb : b ∈ baseSet Z i v : Fiber Z b ⊢ (fun y => (↑(localTriv Z i) { proj := b, snd := y }).snd) v = ↑(coordChange Z (indexAt Z b) i b) v case h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i j : ι b : B hb : b ∈ baseSet Z i v : Fiber Z b ⊢ b ∈ (localTriv Z i).baseSet [PROOFSTEP] exacts [rfl, hb] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i j : ι b : B hb : b ∈ baseSet Z i ⊢ Trivialization.symmL R (localTriv Z i) b = coordChange Z i (indexAt Z b) b [PROOFSTEP] ext1 v [GOAL] case h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i j : ι b : B hb : b ∈ baseSet Z i v : F ⊢ ↑(Trivialization.symmL R (localTriv Z i) b) v = ↑(coordChange Z i (indexAt Z b) b) v [PROOFSTEP] rw [(Z.localTriv i).symmL_apply R, (Z.localTriv i).symm_apply] [GOAL] case h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i j : ι b : B hb : b ∈ baseSet Z i v : F ⊢ cast (_ : Fiber Z (↑(LocalHomeomorph.symm (localTriv Z i).toLocalHomeomorph) (b, v)).proj = Fiber Z b) (↑(LocalHomeomorph.symm (localTriv Z i).toLocalHomeomorph) (b, v)).snd = ↑(coordChange Z i (indexAt Z b) b) v case h.hb R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁸ : NontriviallyNormedField R inst✝⁷ : (x : B) → AddCommMonoid (E x) inst✝⁶ : (x : B) → Module R (E x) inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace R F inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace (TotalSpace F E) inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E ι : Type u_5 Z : VectorBundleCore R B F ι b✝ : B a : F i j : ι b : B hb : b ∈ baseSet Z i v : F ⊢ b ∈ (localTriv Z i).baseSet [PROOFSTEP] exacts [rfl, hb] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E e e' : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas he' : e' ∈ a.pretrivializationAtlas b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F ⊢ (b, ↑(coordChange a he he' b) v) = ↑e' { proj := b, snd := Pretrivialization.symm e b v } [PROOFSTEP] ext [GOAL] case h₁ R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E e e' : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas he' : e' ∈ a.pretrivializationAtlas b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F ⊢ (b, ↑(coordChange a he he' b) v).fst = (↑e' { proj := b, snd := Pretrivialization.symm e b v }).fst [PROOFSTEP] rw [e.mk_symm hb.1 v, e'.coe_fst', e.proj_symm_apply' hb.1] [GOAL] case h₁ R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E e e' : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas he' : e' ∈ a.pretrivializationAtlas b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F ⊢ (↑(LocalEquiv.symm e.toLocalEquiv) (b, v)).proj ∈ e'.baseSet [PROOFSTEP] rw [e.proj_symm_apply' hb.1] [GOAL] case h₁ R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E e e' : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas he' : e' ∈ a.pretrivializationAtlas b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F ⊢ b ∈ e'.baseSet [PROOFSTEP] exact hb.2 [GOAL] case h₂ R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E e e' : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas he' : e' ∈ a.pretrivializationAtlas b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F ⊢ (b, ↑(coordChange a he he' b) v).snd = (↑e' { proj := b, snd := Pretrivialization.symm e b v }).snd [PROOFSTEP] exact a.coordChange_apply he he' hb v [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas ⊢ ContinuousOn (↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv)) (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) [PROOFSTEP] have : ContinuousOn (fun x : B × F ↦ a.coordChange he' he x.1 x.2) ((e'.baseSet ∩ e.baseSet) ×ˢ univ) := isBoundedBilinearMapApply.continuous.comp_continuousOn ((a.continuousOn_coordChange he' he).prod_map continuousOn_id) [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas this : ContinuousOn (fun x => ↑(coordChange a he' he x.fst) x.snd) ((e'.baseSet ∩ e.baseSet) ×ˢ univ) ⊢ ContinuousOn (↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv)) (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) [PROOFSTEP] rw [e.target_inter_preimage_symm_source_eq e', inter_comm] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas this : ContinuousOn (fun x => ↑(coordChange a he' he x.fst) x.snd) ((e'.baseSet ∩ e.baseSet) ×ˢ univ) ⊢ ContinuousOn (↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv)) ((e'.baseSet ∩ e.baseSet) ×ˢ univ) [PROOFSTEP] refine' (continuousOn_fst.prod this).congr _ [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas this : ContinuousOn (fun x => ↑(coordChange a he' he x.fst) x.snd) ((e'.baseSet ∩ e.baseSet) ×ˢ univ) ⊢ EqOn (↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv)) (fun x => (x.fst, ↑(coordChange a he' he x.fst) x.snd)) ((e'.baseSet ∩ e.baseSet) ×ˢ univ) [PROOFSTEP] rintro ⟨b, f⟩ ⟨hb, -⟩ [GOAL] case mk.intro R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas this : ContinuousOn (fun x => ↑(coordChange a he' he x.fst) x.snd) ((e'.baseSet ∩ e.baseSet) ×ˢ univ) b : B f : F hb : (b, f).fst ∈ e'.baseSet ∩ e.baseSet ⊢ (↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv)) (b, f) = (fun x => (x.fst, ↑(coordChange a he' he x.fst) x.snd)) (b, f) [PROOFSTEP] dsimp only [Function.comp, Prod.map] [GOAL] case mk.intro R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas this : ContinuousOn (fun x => ↑(coordChange a he' he x.fst) x.snd) ((e'.baseSet ∩ e.baseSet) ×ˢ univ) b : B f : F hb : (b, f).fst ∈ e'.baseSet ∩ e.baseSet ⊢ ↑e (↑(LocalEquiv.symm e'.toLocalEquiv) (b, f)) = (b, ↑(coordChange a he' he b) f) [PROOFSTEP] rw [a.mk_coordChange _ _ hb, e'.mk_symm hb.1] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E this✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a this : FiberBundle F E := toFiberBundle a ⊢ ∀ (e : Trivialization F TotalSpace.proj) [inst : MemTrivializationAtlas e], Trivialization.IsLinear R e [PROOFSTEP] rintro _ ⟨e, he, rfl⟩ [GOAL] case mk.intro.intro R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E this✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a this : FiberBundle F E := toFiberBundle a e : Pretrivialization F TotalSpace.proj he : e ∈ (toFiberPrebundle a).pretrivializationAtlas ⊢ Trivialization.IsLinear R (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he) [PROOFSTEP] apply linear_trivializationOfMemPretrivializationAtlas [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E this✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a this : FiberBundle F E := toFiberBundle a ⊢ ∀ (e e' : Trivialization F TotalSpace.proj) [inst : MemTrivializationAtlas e] [inst_1 : MemTrivializationAtlas e'], ContinuousOn (fun b => ↑(Trivialization.coordChangeL R e e' b)) (e.baseSet ∩ e'.baseSet) [PROOFSTEP] rintro _ _ ⟨e, he, rfl⟩ ⟨e', he', rfl⟩ [GOAL] case mk.intro.intro.mk.intro.intro R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E this✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a this : FiberBundle F E := toFiberBundle a e : Pretrivialization F TotalSpace.proj he : e ∈ (toFiberPrebundle a).pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ (toFiberPrebundle a).pretrivializationAtlas ⊢ ContinuousOn (fun b => ↑(Trivialization.coordChangeL R (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he) (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he') b)) ((FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he).baseSet ∩ (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he').baseSet) [PROOFSTEP] refine (a.continuousOn_coordChange he he').congr fun b hb ↦ ?_ [GOAL] case mk.intro.intro.mk.intro.intro R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E this✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a this : FiberBundle F E := toFiberBundle a e : Pretrivialization F TotalSpace.proj he : e ∈ (toFiberPrebundle a).pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ (toFiberPrebundle a).pretrivializationAtlas b : B hb : b ∈ e.baseSet ∩ e'.baseSet ⊢ ↑(Trivialization.coordChangeL R (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he) (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he') b) = coordChange a he he' b [PROOFSTEP] ext v [GOAL] case mk.intro.intro.mk.intro.intro.h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E this✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a this : FiberBundle F E := toFiberBundle a e : Pretrivialization F TotalSpace.proj he : e ∈ (toFiberPrebundle a).pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ (toFiberPrebundle a).pretrivializationAtlas b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F ⊢ ↑↑(Trivialization.coordChangeL R (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he) (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he') b) v = ↑(coordChange a he he' b) v [PROOFSTEP] haveI h₁ := a.linear_trivializationOfMemPretrivializationAtlas he [GOAL] case mk.intro.intro.mk.intro.intro.h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E this✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a this : FiberBundle F E := toFiberBundle a e : Pretrivialization F TotalSpace.proj he : e ∈ (toFiberPrebundle a).pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ (toFiberPrebundle a).pretrivializationAtlas b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F h₁ : Trivialization.IsLinear R (trivializationOfMemPretrivializationAtlas a he) ⊢ ↑↑(Trivialization.coordChangeL R (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he) (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he') b) v = ↑(coordChange a he he' b) v [PROOFSTEP] haveI h₂ := a.linear_trivializationOfMemPretrivializationAtlas he' [GOAL] case mk.intro.intro.mk.intro.intro.h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E this✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a this : FiberBundle F E := toFiberBundle a e : Pretrivialization F TotalSpace.proj he : e ∈ (toFiberPrebundle a).pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ (toFiberPrebundle a).pretrivializationAtlas b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F h₁ : Trivialization.IsLinear R (trivializationOfMemPretrivializationAtlas a he) h₂ : Trivialization.IsLinear R (trivializationOfMemPretrivializationAtlas a he') ⊢ ↑↑(Trivialization.coordChangeL R (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he) (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he') b) v = ↑(coordChange a he he' b) v [PROOFSTEP] rw [trivializationOfMemPretrivializationAtlas] at h₁ h₂ [GOAL] case mk.intro.intro.mk.intro.intro.h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E this✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a this : FiberBundle F E := toFiberBundle a e : Pretrivialization F TotalSpace.proj he : e ∈ (toFiberPrebundle a).pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ (toFiberPrebundle a).pretrivializationAtlas b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F h₁ : Trivialization.IsLinear R (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he) h₂ : Trivialization.IsLinear R (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he') ⊢ ↑↑(Trivialization.coordChangeL R (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he) (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he') b) v = ↑(coordChange a he he' b) v [PROOFSTEP] rw [a.coordChange_apply he he' hb v, ContinuousLinearEquiv.coe_coe, Trivialization.coordChangeL_apply] [GOAL] case mk.intro.intro.mk.intro.intro.h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E this✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a this : FiberBundle F E := toFiberBundle a e : Pretrivialization F TotalSpace.proj he : e ∈ (toFiberPrebundle a).pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ (toFiberPrebundle a).pretrivializationAtlas b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F h₁ : Trivialization.IsLinear R (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he) h₂ : Trivialization.IsLinear R (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he') ⊢ (↑(FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he') { proj := b, snd := Trivialization.symm (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he) b v }).snd = (↑e' { proj := b, snd := Pretrivialization.symm e b v }).snd case mk.intro.intro.mk.intro.intro.h.hb R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁶ : NontriviallyNormedField R inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module R (E x) inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace R F inst✝¹ : TopologicalSpace B inst✝ : (x : B) → TopologicalSpace (E x) a : VectorPrebundle R F E this✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a this : FiberBundle F E := toFiberBundle a e : Pretrivialization F TotalSpace.proj he : e ∈ (toFiberPrebundle a).pretrivializationAtlas e' : Pretrivialization F TotalSpace.proj he' : e' ∈ (toFiberPrebundle a).pretrivializationAtlas b : B hb : b ∈ e.baseSet ∩ e'.baseSet v : F h₁ : Trivialization.IsLinear R (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he) h₂ : Trivialization.IsLinear R (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he') ⊢ b ∈ (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he).baseSet ∩ (FiberPrebundle.trivializationOfMemPretrivializationAtlas (toFiberPrebundle a) he').baseSet [PROOFSTEP] exacts [rfl, hb] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝²² : NontriviallyNormedField R inst✝²¹ : (x : B) → AddCommMonoid (E x) inst✝²⁰ : (x : B) → Module R (E x) inst✝¹⁹ : NormedAddCommGroup F inst✝¹⁸ : NormedSpace R F inst✝¹⁷ : TopologicalSpace B inst✝¹⁶ : (x : B) → TopologicalSpace (E x) 𝕜₁ : Type u_5 𝕜₂ : Type u_6 inst✝¹⁵ : NontriviallyNormedField 𝕜₁ inst✝¹⁴ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ B' : Type u_7 inst✝¹³ : TopologicalSpace B' inst✝¹² : NormedSpace 𝕜₁ F inst✝¹¹ : (x : B) → Module 𝕜₁ (E x) inst✝¹⁰ : TopologicalSpace (TotalSpace F E) F' : Type u_8 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂ F' E' : B' → Type u_9 inst✝⁷ : (x : B') → AddCommMonoid (E' x) inst✝⁶ : (x : B') → Module 𝕜₂ (E' x) inst✝⁵ : TopologicalSpace (TotalSpace F' E') inst✝⁴ : FiberBundle F E inst✝³ : VectorBundle 𝕜₁ F E inst✝² : (x : B') → TopologicalSpace (E' x) inst✝¹ : FiberBundle F' E' inst✝ : VectorBundle 𝕜₂ F' E' x₀ x : B y₀ y : B' ϕ : E x →SL[σ] E' y hx : x ∈ (trivializationAt F E x₀).baseSet hy : y ∈ (trivializationAt F' E' y₀).baseSet ⊢ inCoordinates F E F' E' x₀ x y₀ y ϕ = comp (↑(Trivialization.continuousLinearEquivAt 𝕜₂ (trivializationAt F' E' y₀) y hy)) (comp ϕ ↑(ContinuousLinearEquiv.symm (Trivialization.continuousLinearEquivAt 𝕜₁ (trivializationAt F E x₀) x hx))) [PROOFSTEP] ext [GOAL] case h R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝²² : NontriviallyNormedField R inst✝²¹ : (x : B) → AddCommMonoid (E x) inst✝²⁰ : (x : B) → Module R (E x) inst✝¹⁹ : NormedAddCommGroup F inst✝¹⁸ : NormedSpace R F inst✝¹⁷ : TopologicalSpace B inst✝¹⁶ : (x : B) → TopologicalSpace (E x) 𝕜₁ : Type u_5 𝕜₂ : Type u_6 inst✝¹⁵ : NontriviallyNormedField 𝕜₁ inst✝¹⁴ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ B' : Type u_7 inst✝¹³ : TopologicalSpace B' inst✝¹² : NormedSpace 𝕜₁ F inst✝¹¹ : (x : B) → Module 𝕜₁ (E x) inst✝¹⁰ : TopologicalSpace (TotalSpace F E) F' : Type u_8 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂ F' E' : B' → Type u_9 inst✝⁷ : (x : B') → AddCommMonoid (E' x) inst✝⁶ : (x : B') → Module 𝕜₂ (E' x) inst✝⁵ : TopologicalSpace (TotalSpace F' E') inst✝⁴ : FiberBundle F E inst✝³ : VectorBundle 𝕜₁ F E inst✝² : (x : B') → TopologicalSpace (E' x) inst✝¹ : FiberBundle F' E' inst✝ : VectorBundle 𝕜₂ F' E' x₀ x : B y₀ y : B' ϕ : E x →SL[σ] E' y hx : x ∈ (trivializationAt F E x₀).baseSet hy : y ∈ (trivializationAt F' E' y₀).baseSet x✝ : F ⊢ ↑(inCoordinates F E F' E' x₀ x y₀ y ϕ) x✝ = ↑(comp (↑(Trivialization.continuousLinearEquivAt 𝕜₂ (trivializationAt F' E' y₀) y hy)) (comp ϕ ↑(ContinuousLinearEquiv.symm (Trivialization.continuousLinearEquivAt 𝕜₁ (trivializationAt F E x₀) x hx)))) x✝ [PROOFSTEP] simp_rw [inCoordinates, ContinuousLinearMap.coe_comp', ContinuousLinearEquiv.coe_coe, Trivialization.coe_continuousLinearEquivAt_eq, Trivialization.symm_continuousLinearEquivAt_eq] [GOAL] R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝²² : NontriviallyNormedField R inst✝²¹ : (x : B) → AddCommMonoid (E x) inst✝²⁰ : (x : B) → Module R (E x) inst✝¹⁹ : NormedAddCommGroup F inst✝¹⁸ : NormedSpace R F inst✝¹⁷ : TopologicalSpace B inst✝¹⁶ : (x : B) → TopologicalSpace (E x) 𝕜₁ : Type u_5 𝕜₂ : Type u_6 inst✝¹⁵ : NontriviallyNormedField 𝕜₁ inst✝¹⁴ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ B' : Type u_7 inst✝¹³ : TopologicalSpace B' inst✝¹² : NormedSpace 𝕜₁ F inst✝¹¹ : (x : B) → Module 𝕜₁ (E x) inst✝¹⁰ : TopologicalSpace (TotalSpace F E) F' : Type u_8 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂ F' E' : B' → Type u_9 inst✝⁷ : (x : B') → AddCommMonoid (E' x) inst✝⁶ : (x : B') → Module 𝕜₂ (E' x) inst✝⁵ : TopologicalSpace (TotalSpace F' E') inst✝⁴ : FiberBundle F E inst✝³ : VectorBundle 𝕜₁ F E inst✝² : (x : B') → TopologicalSpace (E' x) inst✝¹ : FiberBundle F' E' inst✝ : VectorBundle 𝕜₂ F' E' ι : Type u_10 ι' : Type u_11 Z : VectorBundleCore 𝕜₁ B F ι Z' : VectorBundleCore 𝕜₂ B' F' ι' x₀ x : B y₀ y : B' ϕ : F →SL[σ] F' hx : x ∈ VectorBundleCore.baseSet Z (VectorBundleCore.indexAt Z x₀) hy : y ∈ VectorBundleCore.baseSet Z' (VectorBundleCore.indexAt Z' y₀) ⊢ inCoordinates F (VectorBundleCore.Fiber Z) F' (VectorBundleCore.Fiber Z') x₀ x y₀ y ϕ = comp (VectorBundleCore.coordChange Z' (VectorBundleCore.indexAt Z' y) (VectorBundleCore.indexAt Z' y₀) y) (comp ϕ (VectorBundleCore.coordChange Z (VectorBundleCore.indexAt Z x₀) (VectorBundleCore.indexAt Z x) x)) [PROOFSTEP] simp_rw [inCoordinates, Z'.trivializationAt_continuousLinearMapAt hy, Z.trivializationAt_symmL hx]
{"mathlib_filename": "Mathlib.Topology.VectorBundle.Basic", "llama_tokens": 38059}
[GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U i : ι ⊢ ↑(piOpensIsoSectionsFamily F U) sf i = Pi.π (fun i => F.obj (op (U i))) i sf [PROOFSTEP] simp [piOpensIsoSectionsFamily] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U ⊢ IsCompatible F U (↑(piOpensIsoSectionsFamily F U) sf) ↔ leftRes F U sf = rightRes F U sf [PROOFSTEP] constructor [GOAL] case mp C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U ⊢ IsCompatible F U (↑(piOpensIsoSectionsFamily F U) sf) → leftRes F U sf = rightRes F U sf [PROOFSTEP] intro h [GOAL] case mpr C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U ⊢ leftRes F U sf = rightRes F U sf → IsCompatible F U (↑(piOpensIsoSectionsFamily F U) sf) [PROOFSTEP] intro h [GOAL] case mp C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U h : IsCompatible F U (↑(piOpensIsoSectionsFamily F U) sf) ⊢ leftRes F U sf = rightRes F U sf [PROOFSTEP] refine Types.limit_ext _ _ _ fun ⟨i, j⟩ => ?_ [GOAL] case mp C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U h : IsCompatible F U (↑(piOpensIsoSectionsFamily F U) sf) x✝ : Discrete (ι × ι) i j : ι ⊢ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } (leftRes F U sf) = limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } (rightRes F U sf) [PROOFSTEP] rw [leftRes, Types.Limit.lift_π_apply, Fan.mk_π_app, rightRes, Types.Limit.lift_π_apply, Fan.mk_π_app] [GOAL] case mp C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U h : IsCompatible F U (↑(piOpensIsoSectionsFamily F U) sf) x✝ : Discrete (ι × ι) i j : ι ⊢ (Pi.π (fun i => F.obj (op (U i))) { as := (i, j) }.as.fst ≫ F.map (infLELeft (U { as := (i, j) }.as.fst) (U { as := (i, j) }.as.snd)).op) sf = (Pi.π (fun i => F.obj (op (U i))) { as := (i, j) }.as.snd ≫ F.map (infLERight (U { as := (i, j) }.as.fst) (U { as := (i, j) }.as.snd)).op) sf [PROOFSTEP] simpa using h i j [GOAL] case mpr C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U h : leftRes F U sf = rightRes F U sf ⊢ IsCompatible F U (↑(piOpensIsoSectionsFamily F U) sf) [PROOFSTEP] intro i j [GOAL] case mpr C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U h : leftRes F U sf = rightRes F U sf i j : ι ⊢ ↑(F.map (infLELeft (U i) (U j)).op) (↑(piOpensIsoSectionsFamily F U) sf i) = ↑(F.map (infLERight (U i) (U j)).op) (↑(piOpensIsoSectionsFamily F U) sf j) [PROOFSTEP] convert congr_arg (Limits.Pi.π (fun p : ι × ι => F.obj (op (U p.1 ⊓ U p.2))) (i, j)) h [GOAL] case h.e'_2.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U h : leftRes F U sf = rightRes F U sf i j : ι e_1✝ : (fun x => (forget (Type u)).obj (F.obj (op (U i ⊓ U j)))) (↑(piOpensIsoSectionsFamily F U) sf i) = F.obj (op (U (i, j).fst ⊓ U (i, j).snd)) ⊢ ↑(F.map (infLELeft (U i) (U j)).op) (↑(piOpensIsoSectionsFamily F U) sf i) = Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) (leftRes F U sf) [PROOFSTEP] rw [leftRes, Types.pi_lift_π_apply, piOpensIsoSectionsFamily_apply] [GOAL] case h.e'_2.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U h : leftRes F U sf = rightRes F U sf i j : ι e_1✝ : (fun x => (forget (Type u)).obj (F.obj (op (U i ⊓ U j)))) (↑(piOpensIsoSectionsFamily F U) sf i) = F.obj (op (U (i, j).fst ⊓ U (i, j).snd)) ⊢ ↑(F.map (infLELeft (U i) (U j)).op) (Pi.π (fun i => F.obj (op (U i))) i sf) = (Pi.π (fun i => F.obj (op (U i))) (i, j).fst ≫ F.map (infLELeft (U (i, j).fst) (U (i, j).snd)).op) sf [PROOFSTEP] rfl [GOAL] case h.e'_3.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U h : leftRes F U sf = rightRes F U sf i j : ι e_1✝ : (fun x => (forget (Type u)).obj (F.obj (op (U i ⊓ U j)))) (↑(piOpensIsoSectionsFamily F U) sf i) = F.obj (op (U (i, j).fst ⊓ U (i, j).snd)) ⊢ ↑(F.map (infLERight (U i) (U j)).op) (↑(piOpensIsoSectionsFamily F U) sf j) = Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) (rightRes F U sf) [PROOFSTEP] rw [rightRes, Types.pi_lift_π_apply] [GOAL] case h.e'_3.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U h : leftRes F U sf = rightRes F U sf i j : ι e_1✝ : (fun x => (forget (Type u)).obj (F.obj (op (U i ⊓ U j)))) (↑(piOpensIsoSectionsFamily F U) sf i) = F.obj (op (U (i, j).fst ⊓ U (i, j).snd)) ⊢ ↑(F.map (infLERight (U i) (U j)).op) (↑(piOpensIsoSectionsFamily F U) sf j) = (Pi.π (fun i => F.obj (op (U i))) (i, j).snd ≫ F.map (infLERight (U (i, j).fst) (U (i, j).snd)).op) sf [PROOFSTEP] simp only [piOpensIsoSectionsFamily_apply] [GOAL] case h.e'_3.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U h : leftRes F U sf = rightRes F U sf i j : ι e_1✝ : (fun x => (forget (Type u)).obj (F.obj (op (U i ⊓ U j)))) (↑(piOpensIsoSectionsFamily F U) sf i) = F.obj (op (U (i, j).fst ⊓ U (i, j).snd)) ⊢ ↑(F.map (infLERight (U i) (U j)).op) (Pi.π (fun i => F.obj (op (U i))) j sf) = (Pi.π (fun i => F.obj (op (U i))) j ≫ F.map (infLERight (U i) (U j)).op) sf [PROOFSTEP] rfl [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U s : F.obj (op (iSup U)) ⊢ IsGluing F U (↑(piOpensIsoSectionsFamily F U) sf) s ↔ res F U s = sf [PROOFSTEP] constructor [GOAL] case mp C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U s : F.obj (op (iSup U)) ⊢ IsGluing F U (↑(piOpensIsoSectionsFamily F U) sf) s → res F U s = sf [PROOFSTEP] intro h [GOAL] case mpr C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U s : F.obj (op (iSup U)) ⊢ res F U s = sf → IsGluing F U (↑(piOpensIsoSectionsFamily F U) sf) s [PROOFSTEP] intro h [GOAL] case mp C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U s : F.obj (op (iSup U)) h : IsGluing F U (↑(piOpensIsoSectionsFamily F U) sf) s ⊢ res F U s = sf [PROOFSTEP] refine Types.limit_ext _ _ _ fun ⟨i⟩ => ?_ [GOAL] case mp C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U s : F.obj (op (iSup U)) h : IsGluing F U (↑(piOpensIsoSectionsFamily F U) sf) s x✝ : Discrete ι i : ι ⊢ limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := i } (res F U s) = limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := i } sf [PROOFSTEP] rw [res, Types.Limit.lift_π_apply, Fan.mk_π_app] [GOAL] case mp C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U s : F.obj (op (iSup U)) h : IsGluing F U (↑(piOpensIsoSectionsFamily F U) sf) s x✝ : Discrete ι i : ι ⊢ F.map (leSupr U { as := i }.as).op s = limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := i } sf [PROOFSTEP] simpa using h i [GOAL] case mpr C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U s : F.obj (op (iSup U)) h : res F U s = sf ⊢ IsGluing F U (↑(piOpensIsoSectionsFamily F U) sf) s [PROOFSTEP] intro i [GOAL] case mpr C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U s : F.obj (op (iSup U)) h : res F U s = sf i : ι ⊢ ↑(F.map (leSupr U i).op) s = ↑(piOpensIsoSectionsFamily F U) sf i [PROOFSTEP] convert congr_arg (Limits.Pi.π (fun i : ι => F.obj (op (U i))) i) h [GOAL] case h.e'_2.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U s : F.obj (op (iSup U)) h : res F U s = sf i : ι e_1✝ : (fun x => (forget (Type u)).obj (F.obj (op (U i)))) s = F.obj (op (U i)) ⊢ ↑(F.map (leSupr U i).op) s = Pi.π (fun i => F.obj (op (U i))) i (res F U s) case h.e'_3.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U s : F.obj (op (iSup U)) h : res F U s = sf i : ι e_1✝ : (fun x => (forget (Type u)).obj (F.obj (op (U i)))) s = F.obj (op (U i)) ⊢ ↑(piOpensIsoSectionsFamily F U) sf i = Pi.π (fun i => F.obj (op (U i))) i sf [PROOFSTEP] rw [res, Types.pi_lift_π_apply] [GOAL] case h.e'_2.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U s : F.obj (op (iSup U)) h : res F U s = sf i : ι e_1✝ : (fun x => (forget (Type u)).obj (F.obj (op (U i)))) s = F.obj (op (U i)) ⊢ ↑(F.map (leSupr U i).op) s = F.map (leSupr U i).op s [PROOFSTEP] rfl [GOAL] case h.e'_3.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} sf : piOpens F U s : F.obj (op (iSup U)) h : res F U s = sf i : ι e_1✝ : (fun x => (forget (Type u)).obj (F.obj (op (U i)))) s = F.obj (op (U i)) ⊢ ↑(piOpensIsoSectionsFamily F U) sf i = Pi.π (fun i => F.obj (op (U i))) i sf [PROOFSTEP] simp [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ⊢ IsSheaf F [PROOFSTEP] rw [isSheaf_iff_isSheafEqualizerProducts] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ⊢ IsSheafEqualizerProducts F [PROOFSTEP] intro ι U [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X ⊢ Nonempty (IsLimit (fork F U)) [PROOFSTEP] refine' ⟨Fork.IsLimit.mk' _ _⟩ [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X ⊢ (s : Fork (leftRes F U) (rightRes F U)) → { l // l ≫ Fork.ι (fork F U) = Fork.ι s ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (fork F U).pt).obj WalkingParallelPair.zero}, m ≫ Fork.ι (fork F U) = Fork.ι s → m = l } [PROOFSTEP] intro s [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) ⊢ { l // l ≫ Fork.ι (fork F U) = Fork.ι s ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (fork F U).pt).obj WalkingParallelPair.zero}, m ≫ Fork.ι (fork F U) = Fork.ι s → m = l } [PROOFSTEP] have h_compatible : ∀ x : s.pt, F.IsCompatible U (piOpensIsoSectionsFamily F U (s.ι x)) := by intro x rw [compatible_iff_leftRes_eq_rightRes] convert congr_fun s.condition x [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) ⊢ ∀ (x : s.pt), IsCompatible F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) [PROOFSTEP] intro x [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) x : s.pt ⊢ IsCompatible F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) [PROOFSTEP] rw [compatible_iff_leftRes_eq_rightRes] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) x : s.pt ⊢ leftRes F U (Fork.ι s x) = rightRes F U (Fork.ι s x) [PROOFSTEP] convert congr_fun s.condition x [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) h_compatible : ∀ (x : s.pt), IsCompatible F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) ⊢ { l // l ≫ Fork.ι (fork F U) = Fork.ι s ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (fork F U).pt).obj WalkingParallelPair.zero}, m ≫ Fork.ι (fork F U) = Fork.ι s → m = l } [PROOFSTEP] choose m m_spec m_uniq using fun x : s.pt => Fsh U (piOpensIsoSectionsFamily F U (s.ι x)) (h_compatible x) [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) h_compatible : ∀ (x : s.pt), IsCompatible F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) m : s.pt → (forget (Type u)).obj (F.obj (op (iSup U))) m_spec : ∀ (x : s.pt), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) (m x) m_uniq : ∀ (x : s.pt) (y : (forget (Type u)).obj (F.obj (op (iSup U)))), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) y → y = m x ⊢ { l // l ≫ Fork.ι (fork F U) = Fork.ι s ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (fork F U).pt).obj WalkingParallelPair.zero}, m ≫ Fork.ι (fork F U) = Fork.ι s → m = l } [PROOFSTEP] refine' ⟨m, _, _⟩ [GOAL] case refine'_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) h_compatible : ∀ (x : s.pt), IsCompatible F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) m : s.pt → (forget (Type u)).obj (F.obj (op (iSup U))) m_spec : ∀ (x : s.pt), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) (m x) m_uniq : ∀ (x : s.pt) (y : (forget (Type u)).obj (F.obj (op (iSup U)))), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) y → y = m x ⊢ m ≫ Fork.ι (fork F U) = Fork.ι s [PROOFSTEP] refine limit.hom_ext fun ⟨i⟩ => funext fun x => ?_ [GOAL] case refine'_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) h_compatible : ∀ (x : s.pt), IsCompatible F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) m : s.pt → (forget (Type u)).obj (F.obj (op (iSup U))) m_spec : ∀ (x : s.pt), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) (m x) m_uniq : ∀ (x : s.pt) (y : (forget (Type u)).obj (F.obj (op (iSup U)))), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) y → y = m x x✝ : Discrete ι i : ι x : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⊢ ((m ≫ Fork.ι (fork F U)) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := i }) x = (Fork.ι s ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := i }) x [PROOFSTEP] simp [res] [GOAL] case refine'_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) h_compatible : ∀ (x : s.pt), IsCompatible F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) m : s.pt → (forget (Type u)).obj (F.obj (op (iSup U))) m_spec : ∀ (x : s.pt), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) (m x) m_uniq : ∀ (x : s.pt) (y : (forget (Type u)).obj (F.obj (op (iSup U)))), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) y → y = m x x✝ : Discrete ι i : ι x : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⊢ F.map (leSupr U i).op (m x) = limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := i } (Fork.ι s x) [PROOFSTEP] simpa using m_spec x i [GOAL] case refine'_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) h_compatible : ∀ (x : s.pt), IsCompatible F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) m : s.pt → (forget (Type u)).obj (F.obj (op (iSup U))) m_spec : ∀ (x : s.pt), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) (m x) m_uniq : ∀ (x : s.pt) (y : (forget (Type u)).obj (F.obj (op (iSup U)))), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) y → y = m x ⊢ ∀ {m_1 : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (fork F U).pt).obj WalkingParallelPair.zero}, m_1 ≫ Fork.ι (fork F U) = Fork.ι s → m_1 = m [PROOFSTEP] intro l hl [GOAL] case refine'_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) h_compatible : ∀ (x : s.pt), IsCompatible F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) m : s.pt → (forget (Type u)).obj (F.obj (op (iSup U))) m_spec : ∀ (x : s.pt), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) (m x) m_uniq : ∀ (x : s.pt) (y : (forget (Type u)).obj (F.obj (op (iSup U)))), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) y → y = m x l : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (fork F U).pt).obj WalkingParallelPair.zero hl : l ≫ Fork.ι (fork F U) = Fork.ι s ⊢ l = m [PROOFSTEP] ext x [GOAL] case refine'_2.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) h_compatible : ∀ (x : s.pt), IsCompatible F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) m : s.pt → (forget (Type u)).obj (F.obj (op (iSup U))) m_spec : ∀ (x : s.pt), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) (m x) m_uniq : ∀ (x : s.pt) (y : (forget (Type u)).obj (F.obj (op (iSup U)))), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) y → y = m x l : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (fork F U).pt).obj WalkingParallelPair.zero hl : l ≫ Fork.ι (fork F U) = Fork.ι s x : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⊢ l x = m x [PROOFSTEP] apply m_uniq [GOAL] case refine'_2.h.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) h_compatible : ∀ (x : s.pt), IsCompatible F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) m : s.pt → (forget (Type u)).obj (F.obj (op (iSup U))) m_spec : ∀ (x : s.pt), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) (m x) m_uniq : ∀ (x : s.pt) (y : (forget (Type u)).obj (F.obj (op (iSup U)))), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) y → y = m x l : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (fork F U).pt).obj WalkingParallelPair.zero hl : l ≫ Fork.ι (fork F U) = Fork.ι s x : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⊢ IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) (l x) [PROOFSTEP] rw [isGluing_iff_eq_res] [GOAL] case refine'_2.h.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheafUniqueGluing F ι : Type x U : ι → Opens ↑X s : Fork (leftRes F U) (rightRes F U) h_compatible : ∀ (x : s.pt), IsCompatible F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) m : s.pt → (forget (Type u)).obj (F.obj (op (iSup U))) m_spec : ∀ (x : s.pt), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) (m x) m_uniq : ∀ (x : s.pt) (y : (forget (Type u)).obj (F.obj (op (iSup U)))), (fun s_1 => IsGluing F U (↑(piOpensIsoSectionsFamily F U) (Fork.ι s x)) s_1) y → y = m x l : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (fork F U).pt).obj WalkingParallelPair.zero hl : l ≫ Fork.ι (fork F U) = Fork.ι s x : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⊢ res F U (l x) = Fork.ι s x [PROOFSTEP] exact congr_fun hl x [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} Fsh : IsSheaf F ⊢ IsSheafUniqueGluing F [PROOFSTEP] rw [isSheaf_iff_isSheafEqualizerProducts] at Fsh [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι : Type x U : ι → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ⊢ IsSheafUniqueGluing F [PROOFSTEP] intro ι U sf hsf [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf ⊢ ∃! s, IsGluing F U sf s [PROOFSTEP] let sf' := (piOpensIsoSectionsFamily F U).symm sf [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf sf' : (fun x => piOpens F U) sf := ↑(piOpensIsoSectionsFamily F U).symm sf ⊢ ∃! s, IsGluing F U sf s [PROOFSTEP] have hsf' : leftRes F U sf' = rightRes F U sf' := by rwa [← compatible_iff_leftRes_eq_rightRes F U sf', Equiv.apply_symm_apply] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf sf' : (fun x => piOpens F U) sf := ↑(piOpensIsoSectionsFamily F U).symm sf ⊢ leftRes F U sf' = rightRes F U sf' [PROOFSTEP] rwa [← compatible_iff_leftRes_eq_rightRes F U sf', Equiv.apply_symm_apply] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf sf' : (fun x => piOpens F U) sf := ↑(piOpensIsoSectionsFamily F U).symm sf hsf' : leftRes F U sf' = rightRes F U sf' ⊢ ∃! s, IsGluing F U sf s [PROOFSTEP] choose s s_spec s_uniq using Types.unique_of_type_equalizer _ _ (Fsh U).some sf' hsf' [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf sf' : (fun x => piOpens F U) sf := ↑(piOpensIsoSectionsFamily F U).symm sf hsf' : leftRes F U sf' = rightRes F U sf' s : F.obj (op (iSup U)) s_spec : res F U s = sf' s_uniq : ∀ (y : F.obj (op (iSup U))), (fun x => res F U x = sf') y → y = s ⊢ ∃! s, IsGluing F U sf s [PROOFSTEP] use s [GOAL] case h C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf sf' : (fun x => piOpens F U) sf := ↑(piOpensIsoSectionsFamily F U).symm sf hsf' : leftRes F U sf' = rightRes F U sf' s : F.obj (op (iSup U)) s_spec : res F U s = sf' s_uniq : ∀ (y : F.obj (op (iSup U))), (fun x => res F U x = sf') y → y = s ⊢ (fun s => IsGluing F U sf s) s ∧ ∀ (y : (forget (Type u)).obj (F.obj (op (iSup U)))), (fun s => IsGluing F U sf s) y → y = s [PROOFSTEP] dsimp [GOAL] case h C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf sf' : (fun x => piOpens F U) sf := ↑(piOpensIsoSectionsFamily F U).symm sf hsf' : leftRes F U sf' = rightRes F U sf' s : F.obj (op (iSup U)) s_spec : res F U s = sf' s_uniq : ∀ (y : F.obj (op (iSup U))), (fun x => res F U x = sf') y → y = s ⊢ IsGluing F U sf s ∧ ∀ (y : (forget (Type u)).obj (F.obj (op (iSup U)))), IsGluing F U sf y → y = s [PROOFSTEP] constructor [GOAL] case h.left C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf sf' : (fun x => piOpens F U) sf := ↑(piOpensIsoSectionsFamily F U).symm sf hsf' : leftRes F U sf' = rightRes F U sf' s : F.obj (op (iSup U)) s_spec : res F U s = sf' s_uniq : ∀ (y : F.obj (op (iSup U))), (fun x => res F U x = sf') y → y = s ⊢ IsGluing F U sf s [PROOFSTEP] convert (isGluing_iff_eq_res F U sf' _).mpr s_spec [GOAL] case h.e'_8 C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf sf' : (fun x => piOpens F U) sf := ↑(piOpensIsoSectionsFamily F U).symm sf hsf' : leftRes F U sf' = rightRes F U sf' s : F.obj (op (iSup U)) s_spec : res F U s = sf' s_uniq : ∀ (y : F.obj (op (iSup U))), (fun x => res F U x = sf') y → y = s ⊢ sf = ↑(piOpensIsoSectionsFamily F U) sf' [PROOFSTEP] simp only [Equiv.apply_symm_apply] [GOAL] case h.right C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf sf' : (fun x => piOpens F U) sf := ↑(piOpensIsoSectionsFamily F U).symm sf hsf' : leftRes F U sf' = rightRes F U sf' s : F.obj (op (iSup U)) s_spec : res F U s = sf' s_uniq : ∀ (y : F.obj (op (iSup U))), (fun x => res F U x = sf') y → y = s ⊢ ∀ (y : (forget (Type u)).obj (F.obj (op (iSup U)))), IsGluing F U sf y → y = s [PROOFSTEP] intro y hy [GOAL] case h.right C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf sf' : (fun x => piOpens F U) sf := ↑(piOpensIsoSectionsFamily F U).symm sf hsf' : leftRes F U sf' = rightRes F U sf' s : F.obj (op (iSup U)) s_spec : res F U s = sf' s_uniq : ∀ (y : F.obj (op (iSup U))), (fun x => res F U x = sf') y → y = s y : (forget (Type u)).obj (F.obj (op (iSup U))) hy : IsGluing F U sf y ⊢ y = s [PROOFSTEP] apply s_uniq [GOAL] case h.right.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf sf' : (fun x => piOpens F U) sf := ↑(piOpensIsoSectionsFamily F U).symm sf hsf' : leftRes F U sf' = rightRes F U sf' s : F.obj (op (iSup U)) s_spec : res F U s = sf' s_uniq : ∀ (y : F.obj (op (iSup U))), (fun x => res F U x = sf') y → y = s y : (forget (Type u)).obj (F.obj (op (iSup U))) hy : IsGluing F U sf y ⊢ res F U y = sf' [PROOFSTEP] rw [← isGluing_iff_eq_res F U] [GOAL] case h.right.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf sf' : (fun x => piOpens F U) sf := ↑(piOpensIsoSectionsFamily F U).symm sf hsf' : leftRes F U sf' = rightRes F U sf' s : F.obj (op (iSup U)) s_spec : res F U s = sf' s_uniq : ∀ (y : F.obj (op (iSup U))), (fun x => res F U x = sf') y → y = s y : (forget (Type u)).obj (F.obj (op (iSup U))) hy : IsGluing F U sf y ⊢ IsGluing F U (↑(piOpensIsoSectionsFamily F U) sf') y [PROOFSTEP] convert hy [GOAL] case h.e'_8 C : Type u inst✝² : Category.{v, u} C inst✝¹ : ConcreteCategory C X : TopCat F : Presheaf (Type u) X ι✝ : Type x U✝ : ι✝ → Opens ↑X inst✝ : UnivLE.{x, u} Fsh✝ : IsSheaf F Fsh : IsSheafEqualizerProducts F ι : Type x U : ι → Opens ↑X sf : (i : ι) → (forget (Type u)).obj (F.obj (op (U i))) hsf : IsCompatible F U sf sf' : (fun x => piOpens F U) sf := ↑(piOpensIsoSectionsFamily F U).symm sf hsf' : leftRes F U sf' = rightRes F U sf' s : F.obj (op (iSup U)) s_spec : res F U s = sf' s_uniq : ∀ (y : F.obj (op (iSup U))), (fun x => res F U x = sf') y → y = s y : (forget (Type u)).obj (F.obj (op (iSup U))) hy : IsGluing F U sf y ⊢ ↑(piOpensIsoSectionsFamily F U) sf' = sf [PROOFSTEP] simp only [Equiv.apply_symm_apply] [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) h : IsCompatible F.val U sf ⊢ ∃! s, ∀ (i : ι), ↑(F.val.map (iUV i).op) s = sf i [PROOFSTEP] have V_eq_supr_U : V = iSup U := le_antisymm hcover (iSup_le fun i => (iUV i).le) [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) h : IsCompatible F.val U sf V_eq_supr_U : V = iSup U ⊢ ∃! s, ∀ (i : ι), ↑(F.val.map (iUV i).op) s = sf i [PROOFSTEP] obtain ⟨gl, gl_spec, gl_uniq⟩ := F.existsUnique_gluing U sf h [GOAL] case intro.intro C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) h : IsCompatible F.val U sf V_eq_supr_U : V = iSup U gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_spec : IsGluing F.val U sf gl gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl ⊢ ∃! s, ∀ (i : ι), ↑(F.val.map (iUV i).op) s = sf i [PROOFSTEP] refine' ⟨F.1.map (eqToHom V_eq_supr_U).op gl, _, _⟩ [GOAL] case intro.intro.refine'_1 C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) h : IsCompatible F.val U sf V_eq_supr_U : V = iSup U gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_spec : IsGluing F.val U sf gl gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl ⊢ (fun s => ∀ (i : ι), ↑(F.val.map (iUV i).op) s = sf i) (↑(F.val.map (eqToHom V_eq_supr_U).op) gl) [PROOFSTEP] intro i [GOAL] case intro.intro.refine'_1 C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) h : IsCompatible F.val U sf V_eq_supr_U : V = iSup U gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_spec : IsGluing F.val U sf gl gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl i : ι ⊢ ↑(F.val.map (iUV i).op) (↑(F.val.map (eqToHom V_eq_supr_U).op) gl) = sf i [PROOFSTEP] rw [← comp_apply, ← F.1.map_comp] [GOAL] case intro.intro.refine'_1 C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) h : IsCompatible F.val U sf V_eq_supr_U : V = iSup U gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_spec : IsGluing F.val U sf gl gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl i : ι ⊢ ↑(F.val.map ((eqToHom V_eq_supr_U).op ≫ (iUV i).op)) gl = sf i [PROOFSTEP] exact gl_spec i [GOAL] case intro.intro.refine'_2 C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) h : IsCompatible F.val U sf V_eq_supr_U : V = iSup U gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_spec : IsGluing F.val U sf gl gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl ⊢ ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op V))), (fun s => ∀ (i : ι), ↑(F.val.map (iUV i).op) s = sf i) y → y = ↑(F.val.map (eqToHom V_eq_supr_U).op) gl [PROOFSTEP] intro gl' gl'_spec [GOAL] case intro.intro.refine'_2 C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) h : IsCompatible F.val U sf V_eq_supr_U : V = iSup U gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_spec : IsGluing F.val U sf gl gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl gl' : (CategoryTheory.forget C).obj (F.val.obj (op V)) gl'_spec : ∀ (i : ι), ↑(F.val.map (iUV i).op) gl' = sf i ⊢ gl' = ↑(F.val.map (eqToHom V_eq_supr_U).op) gl [PROOFSTEP] convert congr_arg _ (gl_uniq (F.1.map (eqToHom V_eq_supr_U.symm).op gl') fun i => _) [GOAL] case h.e'_2 C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) h : IsCompatible F.val U sf V_eq_supr_U : V = iSup U gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_spec : IsGluing F.val U sf gl gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl gl' : (CategoryTheory.forget C).obj (F.val.obj (op V)) gl'_spec : ∀ (i : ι), ↑(F.val.map (iUV i).op) gl' = sf i ⊢ gl' = ↑(F.val.map (eqToHom V_eq_supr_U).op) (↑(F.val.map (eqToHom (_ : iSup U = V)).op) gl') [PROOFSTEP] rw [← comp_apply, ← F.1.map_comp] [GOAL] case intro.intro.refine'_2.convert_3 C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) h : IsCompatible F.val U sf V_eq_supr_U : V = iSup U gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_spec : IsGluing F.val U sf gl gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl gl' : (CategoryTheory.forget C).obj (F.val.obj (op V)) gl'_spec : ∀ (i : ι), ↑(F.val.map (iUV i).op) gl' = sf i i : ι ⊢ ↑(F.val.map (leSupr U i).op) (↑(F.val.map (eqToHom (_ : iSup U = V)).op) gl') = sf i [PROOFSTEP] rw [← comp_apply, ← F.1.map_comp] [GOAL] case h.e'_2 C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) h : IsCompatible F.val U sf V_eq_supr_U : V = iSup U gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_spec : IsGluing F.val U sf gl gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl gl' : (CategoryTheory.forget C).obj (F.val.obj (op V)) gl'_spec : ∀ (i : ι), ↑(F.val.map (iUV i).op) gl' = sf i ⊢ gl' = ↑(F.val.map ((eqToHom (_ : iSup U = V)).op ≫ (eqToHom V_eq_supr_U).op)) gl' [PROOFSTEP] rw [eqToHom_op, eqToHom_op, eqToHom_trans, eqToHom_refl, F.1.map_id, id_apply] [GOAL] case intro.intro.refine'_2.convert_3 C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) h : IsCompatible F.val U sf V_eq_supr_U : V = iSup U gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_spec : IsGluing F.val U sf gl gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl gl' : (CategoryTheory.forget C).obj (F.val.obj (op V)) gl'_spec : ∀ (i : ι), ↑(F.val.map (iUV i).op) gl' = sf i i : ι ⊢ ↑(F.val.map ((eqToHom (_ : iSup U = V)).op ≫ (leSupr U i).op)) gl' = sf i [PROOFSTEP] convert gl'_spec i [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t ⊢ s = t [PROOFSTEP] let sf : ∀ i : ι, F.1.obj (op (U i)) := fun i => F.1.map (Opens.leSupr U i).op s [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) := fun i => ↑(F.val.map (leSupr U i).op) s ⊢ s = t [PROOFSTEP] have sf_compatible : IsCompatible _ U sf := by intro i j simp_rw [← comp_apply, ← F.1.map_comp] rfl [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) := fun i => ↑(F.val.map (leSupr U i).op) s ⊢ IsCompatible F.val U sf [PROOFSTEP] intro i j [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) := fun i => ↑(F.val.map (leSupr U i).op) s i j : ι ⊢ ↑(F.val.map (infLELeft (U i) (U j)).op) (sf i) = ↑(F.val.map (infLERight (U i) (U j)).op) (sf j) [PROOFSTEP] simp_rw [← comp_apply, ← F.1.map_comp] [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) := fun i => ↑(F.val.map (leSupr U i).op) s i j : ι ⊢ ↑(F.val.map ((leSupr U i).op ≫ (infLELeft (U i) (U j)).op)) s = ↑(F.val.map ((leSupr U j).op ≫ (infLERight (U i) (U j)).op)) s [PROOFSTEP] rfl [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) := fun i => ↑(F.val.map (leSupr U i).op) s sf_compatible : IsCompatible F.val U sf ⊢ s = t [PROOFSTEP] obtain ⟨gl, -, gl_uniq⟩ := F.existsUnique_gluing U sf sf_compatible [GOAL] case intro.intro C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) := fun i => ↑(F.val.map (leSupr U i).op) s sf_compatible : IsCompatible F.val U sf gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl ⊢ s = t [PROOFSTEP] trans gl [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) := fun i => ↑(F.val.map (leSupr U i).op) s sf_compatible : IsCompatible F.val U sf gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl ⊢ s = gl [PROOFSTEP] apply gl_uniq [GOAL] case a C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) := fun i => ↑(F.val.map (leSupr U i).op) s sf_compatible : IsCompatible F.val U sf gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl ⊢ IsGluing F.val U sf s [PROOFSTEP] intro i [GOAL] case a C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) := fun i => ↑(F.val.map (leSupr U i).op) s sf_compatible : IsCompatible F.val U sf gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl i : ι ⊢ ↑(F.val.map (leSupr U i).op) s = sf i [PROOFSTEP] rfl [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) := fun i => ↑(F.val.map (leSupr U i).op) s sf_compatible : IsCompatible F.val U sf gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl ⊢ gl = t [PROOFSTEP] symm [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) := fun i => ↑(F.val.map (leSupr U i).op) s sf_compatible : IsCompatible F.val U sf gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl ⊢ t = gl [PROOFSTEP] apply gl_uniq [GOAL] case a C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) := fun i => ↑(F.val.map (leSupr U i).op) s sf_compatible : IsCompatible F.val U sf gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl ⊢ IsGluing F.val U sf t [PROOFSTEP] intro i [GOAL] case a C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) h : ∀ (i : ι), ↑(F.val.map (leSupr U i).op) s = ↑(F.val.map (leSupr U i).op) t sf : (i : ι) → (CategoryTheory.forget C).obj (F.val.obj (op (U i))) := fun i => ↑(F.val.map (leSupr U i).op) s sf_compatible : IsCompatible F.val U sf gl : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U))) gl_uniq : ∀ (y : (CategoryTheory.forget C).obj (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl i : ι ⊢ ↑(F.val.map (leSupr U i).op) t = sf i [PROOFSTEP] rw [← h] [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h : ∀ (i : ι), ↑(F.val.map (iUV i).op) s = ↑(F.val.map (iUV i).op) t ⊢ s = t [PROOFSTEP] have V_eq_supr_U : V = iSup U := le_antisymm hcover (iSup_le fun i => (iUV i).le) [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h : ∀ (i : ι), ↑(F.val.map (iUV i).op) s = ↑(F.val.map (iUV i).op) t V_eq_supr_U : V = iSup U ⊢ s = t [PROOFSTEP] suffices F.1.map (eqToHom V_eq_supr_U.symm).op s = F.1.map (eqToHom V_eq_supr_U.symm).op t by convert congr_arg (F.1.map (eqToHom V_eq_supr_U).op) this <;> rw [← comp_apply, ← F.1.map_comp, eqToHom_op, eqToHom_op, eqToHom_trans, eqToHom_refl, F.1.map_id, id_apply] [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h : ∀ (i : ι), ↑(F.val.map (iUV i).op) s = ↑(F.val.map (iUV i).op) t V_eq_supr_U : V = iSup U this : ↑(F.val.map (eqToHom (_ : iSup U = V)).op) s = ↑(F.val.map (eqToHom (_ : iSup U = V)).op) t ⊢ s = t [PROOFSTEP] convert congr_arg (F.1.map (eqToHom V_eq_supr_U).op) this [GOAL] case h.e'_2 C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h : ∀ (i : ι), ↑(F.val.map (iUV i).op) s = ↑(F.val.map (iUV i).op) t V_eq_supr_U : V = iSup U this : ↑(F.val.map (eqToHom (_ : iSup U = V)).op) s = ↑(F.val.map (eqToHom (_ : iSup U = V)).op) t ⊢ s = ↑(F.val.map (eqToHom V_eq_supr_U).op) (↑(F.val.map (eqToHom (_ : iSup U = V)).op) s) [PROOFSTEP] rw [← comp_apply, ← F.1.map_comp, eqToHom_op, eqToHom_op, eqToHom_trans, eqToHom_refl, F.1.map_id, id_apply] [GOAL] case h.e'_3 C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h : ∀ (i : ι), ↑(F.val.map (iUV i).op) s = ↑(F.val.map (iUV i).op) t V_eq_supr_U : V = iSup U this : ↑(F.val.map (eqToHom (_ : iSup U = V)).op) s = ↑(F.val.map (eqToHom (_ : iSup U = V)).op) t ⊢ t = ↑(F.val.map (eqToHom V_eq_supr_U).op) (↑(F.val.map (eqToHom (_ : iSup U = V)).op) t) [PROOFSTEP] rw [← comp_apply, ← F.1.map_comp, eqToHom_op, eqToHom_op, eqToHom_trans, eqToHom_refl, F.1.map_id, id_apply] [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h : ∀ (i : ι), ↑(F.val.map (iUV i).op) s = ↑(F.val.map (iUV i).op) t V_eq_supr_U : V = iSup U ⊢ ↑(F.val.map (eqToHom (_ : iSup U = V)).op) s = ↑(F.val.map (eqToHom (_ : iSup U = V)).op) t [PROOFSTEP] apply eq_of_locally_eq [GOAL] case h C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h : ∀ (i : ι), ↑(F.val.map (iUV i).op) s = ↑(F.val.map (iUV i).op) t V_eq_supr_U : V = iSup U ⊢ ∀ (i : ι), ↑(F.val.map (leSupr U i).op) (↑(F.val.map (eqToHom (_ : iSup U = V)).op) s) = ↑(F.val.map (leSupr U i).op) (↑(F.val.map (eqToHom (_ : iSup U = V)).op) t) [PROOFSTEP] intro i [GOAL] case h C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h : ∀ (i : ι), ↑(F.val.map (iUV i).op) s = ↑(F.val.map (iUV i).op) t V_eq_supr_U : V = iSup U i : ι ⊢ ↑(F.val.map (leSupr U i).op) (↑(F.val.map (eqToHom (_ : iSup U = V)).op) s) = ↑(F.val.map (leSupr U i).op) (↑(F.val.map (eqToHom (_ : iSup U = V)).op) t) [PROOFSTEP] rw [← comp_apply, ← comp_apply, ← F.1.map_comp] [GOAL] case h C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X V : Opens ↑X iUV : (i : ι) → U i ⟶ V hcover : V ≤ iSup U s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h : ∀ (i : ι), ↑(F.val.map (iUV i).op) s = ↑(F.val.map (iUV i).op) t V_eq_supr_U : V = iSup U i : ι ⊢ ↑(F.val.map ((eqToHom (_ : iSup U = V)).op ≫ (leSupr U i).op)) s = ↑(F.val.map ((eqToHom (_ : iSup U = V)).op ≫ (leSupr U i).op)) t [PROOFSTEP] convert h i [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ s = t [PROOFSTEP] classical fapply F.eq_of_locally_eq' fun t : ULift Bool => if t.1 then U₁ else U₂ · exact fun i => if h : i.1 then eqToHom (if_pos h) ≫ i₁ else eqToHom (if_neg h) ≫ i₂ · refine' le_trans hcover _ rw [sup_le_iff] constructor · convert le_iSup (fun t : ULift Bool => if t.1 then U₁ else U₂) (ULift.up True) · convert le_iSup (fun t : ULift Bool => if t.1 then U₁ else U₂) (ULift.up False) · rintro ⟨_ | _⟩ any_goals exact h₁ any_goals exact h₂ [GOAL] C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ s = t [PROOFSTEP] fapply F.eq_of_locally_eq' fun t : ULift Bool => if t.1 then U₁ else U₂ [GOAL] case iUV C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ (i : ULift Bool) → (if i.down = true then U₁ else U₂) ⟶ V [PROOFSTEP] exact fun i => if h : i.1 then eqToHom (if_pos h) ≫ i₁ else eqToHom (if_neg h) ≫ i₂ [GOAL] case hcover C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ V ≤ ⨆ (t : ULift Bool), if t.down = true then U₁ else U₂ [PROOFSTEP] refine' le_trans hcover _ [GOAL] case hcover C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ U₁ ⊔ U₂ ≤ ⨆ (t : ULift Bool), if t.down = true then U₁ else U₂ [PROOFSTEP] rw [sup_le_iff] [GOAL] case hcover C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ (U₁ ≤ ⨆ (t : ULift Bool), if t.down = true then U₁ else U₂) ∧ U₂ ≤ ⨆ (t : ULift Bool), if t.down = true then U₁ else U₂ [PROOFSTEP] constructor [GOAL] case hcover.left C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ U₁ ≤ ⨆ (t : ULift Bool), if t.down = true then U₁ else U₂ [PROOFSTEP] convert le_iSup (fun t : ULift Bool => if t.1 then U₁ else U₂) (ULift.up True) [GOAL] case hcover.right C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ U₂ ≤ ⨆ (t : ULift Bool), if t.down = true then U₁ else U₂ [PROOFSTEP] convert le_iSup (fun t : ULift Bool => if t.1 then U₁ else U₂) (ULift.up False) [GOAL] case h C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ ∀ (i : ULift Bool), ↑(F.val.map (if h : i.down = true then eqToHom (_ : (if i.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if i.down = true then U₁ else U₂) = U₂) ≫ i₂).op) s = ↑(F.val.map (if h : i.down = true then eqToHom (_ : (if i.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if i.down = true then U₁ else U₂) = U₂) ≫ i₂).op) t [PROOFSTEP] rintro ⟨_ | _⟩ [GOAL] case h.up.false C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ ↑(F.val.map (if h : { down := false }.down = true then eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₂) ≫ i₂).op) s = ↑(F.val.map (if h : { down := false }.down = true then eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₂) ≫ i₂).op) t case h.up.true C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ ↑(F.val.map (if h : { down := true }.down = true then eqToHom (_ : (if { down := true }.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if { down := true }.down = true then U₁ else U₂) = U₂) ≫ i₂).op) s = ↑(F.val.map (if h : { down := true }.down = true then eqToHom (_ : (if { down := true }.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if { down := true }.down = true then U₁ else U₂) = U₂) ≫ i₂).op) t [PROOFSTEP] any_goals exact h₁ [GOAL] case h.up.false C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ ↑(F.val.map (if h : { down := false }.down = true then eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₂) ≫ i₂).op) s = ↑(F.val.map (if h : { down := false }.down = true then eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₂) ≫ i₂).op) t [PROOFSTEP] exact h₁ [GOAL] case h.up.true C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ ↑(F.val.map (if h : { down := true }.down = true then eqToHom (_ : (if { down := true }.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if { down := true }.down = true then U₁ else U₂) = U₂) ≫ i₂).op) s = ↑(F.val.map (if h : { down := true }.down = true then eqToHom (_ : (if { down := true }.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if { down := true }.down = true then U₁ else U₂) = U₂) ≫ i₂).op) t [PROOFSTEP] exact h₁ [GOAL] case h.up.false C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ ↑(F.val.map (if h : { down := false }.down = true then eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₂) ≫ i₂).op) s = ↑(F.val.map (if h : { down := false }.down = true then eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₂) ≫ i₂).op) t [PROOFSTEP] any_goals exact h₂ [GOAL] case h.up.false C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : ConcreteCategory C inst✝² : HasLimits C inst✝¹ : ReflectsIsomorphisms ConcreteCategory.forget inst✝ : PreservesLimits ConcreteCategory.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X U₁ U₂ V : Opens ↑X i₁ : U₁ ⟶ V i₂ : U₂ ⟶ V hcover : V ≤ U₁ ⊔ U₂ s t : (CategoryTheory.forget C).obj (F.val.obj (op V)) h₁ : ↑(F.val.map i₁.op) s = ↑(F.val.map i₁.op) t h₂ : ↑(F.val.map i₂.op) s = ↑(F.val.map i₂.op) t ⊢ ↑(F.val.map (if h : { down := false }.down = true then eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₂) ≫ i₂).op) s = ↑(F.val.map (if h : { down := false }.down = true then eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₁) ≫ i₁ else eqToHom (_ : (if { down := false }.down = true then U₁ else U₂) = U₂) ≫ i₂).op) t [PROOFSTEP] exact h₂
{"mathlib_filename": "Mathlib.Topology.Sheaves.SheafCondition.UniqueGluing", "llama_tokens": 34936}
[GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : ContinuousMul G a : G ⊢ Homeomorph.symm (Homeomorph.mulLeft a) = Homeomorph.mulLeft a⁻¹ [PROOFSTEP] ext [GOAL] case H α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : ContinuousMul G a x✝ : G ⊢ ↑(Homeomorph.symm (Homeomorph.mulLeft a)) x✝ = ↑(Homeomorph.mulLeft a⁻¹) x✝ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : ContinuousMul G a : G ⊢ Homeomorph.symm (Homeomorph.mulRight a) = Homeomorph.mulRight a⁻¹ [PROOFSTEP] ext [GOAL] case H α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : ContinuousMul G a x✝ : G ⊢ ↑(Homeomorph.symm (Homeomorph.mulRight a)) x✝ = ↑(Homeomorph.mulRight a⁻¹) x✝ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : ContinuousMul G h : IsOpen {1} ⊢ DiscreteTopology G [PROOFSTEP] rw [← singletons_open_iff_discrete] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : ContinuousMul G h : IsOpen {1} ⊢ ∀ (a : G), IsOpen {a} [PROOFSTEP] intro g [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : ContinuousMul G h : IsOpen {1} g : G ⊢ IsOpen {g} [PROOFSTEP] suffices { g } = (fun x : G => g⁻¹ * x) ⁻¹' {1} by rw [this] exact (continuous_mul_left g⁻¹).isOpen_preimage _ h [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : ContinuousMul G h : IsOpen {1} g : G this : {g} = (fun x => g⁻¹ * x) ⁻¹' {1} ⊢ IsOpen {g} [PROOFSTEP] rw [this] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : ContinuousMul G h : IsOpen {1} g : G this : {g} = (fun x => g⁻¹ * x) ⁻¹' {1} ⊢ IsOpen ((fun x => g⁻¹ * x) ⁻¹' {1}) [PROOFSTEP] exact (continuous_mul_left g⁻¹).isOpen_preimage _ h [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : ContinuousMul G h : IsOpen {1} g : G ⊢ {g} = (fun x => g⁻¹ * x) ⁻¹' {1} [PROOFSTEP] simp only [mul_one, Set.preimage_mul_left_singleton, eq_self_iff_true, inv_inv, Set.singleton_eq_singleton_iff] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁸ : TopologicalSpace G inst✝⁷ : Inv G inst✝⁶ : ContinuousInv G inst✝⁵ : TopologicalSpace α f : α → G s : Set α x : α ι : Type u_1 G₁ : Type u_2 G₂ : Type u_3 inst✝⁴ : TopologicalSpace G₂ inst✝³ : T2Space G₂ inst✝² : Inv G₁ inst✝¹ : Inv G₂ inst✝ : ContinuousInv G₂ ⊢ IsClosed {f | ∀ (x : G₁), f x⁻¹ = (f x)⁻¹} [PROOFSTEP] simp only [setOf_forall] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁸ : TopologicalSpace G inst✝⁷ : Inv G inst✝⁶ : ContinuousInv G inst✝⁵ : TopologicalSpace α f : α → G s : Set α x : α ι : Type u_1 G₁ : Type u_2 G₂ : Type u_3 inst✝⁴ : TopologicalSpace G₂ inst✝³ : T2Space G₂ inst✝² : Inv G₁ inst✝¹ : Inv G₂ inst✝ : ContinuousInv G₂ ⊢ IsClosed (⋂ (i : G₁), {x | x i⁻¹ = (x i)⁻¹}) [PROOFSTEP] refine' isClosed_iInter fun i => isClosed_eq (continuous_apply _) (continuous_apply _).inv [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : InvolutiveInv G inst✝ : ContinuousInv G s : Set G hs : IsCompact s ⊢ IsCompact s⁻¹ [PROOFSTEP] rw [← image_inv] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : InvolutiveInv G inst✝ : ContinuousInv G s : Set G hs : IsCompact s ⊢ IsCompact (Inv.inv '' s) [PROOFSTEP] exact hs.image continuous_inv [GOAL] α : Type u β : Type v G : Type w H : Type x ι' : Sort u_1 inst✝ : Inv G ts' : ι' → TopologicalSpace G h' : ∀ (i : ι'), ContinuousInv G ⊢ ContinuousInv G [PROOFSTEP] rw [← sInf_range] [GOAL] α : Type u β : Type v G : Type w H : Type x ι' : Sort u_1 inst✝ : Inv G ts' : ι' → TopologicalSpace G h' : ∀ (i : ι'), ContinuousInv G ⊢ ContinuousInv G [PROOFSTEP] exact continuousInv_sInf (Set.forall_range_iff.mpr h') [GOAL] α : Type u β : Type v G : Type w H : Type x ι' : Sort u_1 inst✝ : Inv G t₁ t₂ : TopologicalSpace G h₁ : ContinuousInv G h₂ : ContinuousInv G ⊢ ContinuousInv G [PROOFSTEP] rw [inf_eq_iInf] [GOAL] α : Type u β : Type v G : Type w H : Type x ι' : Sort u_1 inst✝ : Inv G t₁ t₂ : TopologicalSpace G h₁ : ContinuousInv G h₂ : ContinuousInv G ⊢ ContinuousInv G [PROOFSTEP] refine' continuousInv_iInf fun b => _ [GOAL] α : Type u β : Type v G : Type w H : Type x ι' : Sort u_1 inst✝ : Inv G t₁ t₂ : TopologicalSpace G h₁ : ContinuousInv G h₂ : ContinuousInv G b : Bool ⊢ ContinuousInv G [PROOFSTEP] cases b [GOAL] case false α : Type u β : Type v G : Type w H : Type x ι' : Sort u_1 inst✝ : Inv G t₁ t₂ : TopologicalSpace G h₁ : ContinuousInv G h₂ : ContinuousInv G ⊢ ContinuousInv G [PROOFSTEP] assumption [GOAL] case true α : Type u β : Type v G : Type w H : Type x ι' : Sort u_1 inst✝ : Inv G t₁ t₂ : TopologicalSpace G h₁ : ContinuousInv G h₂ : ContinuousInv G ⊢ ContinuousInv G [PROOFSTEP] assumption [GOAL] α : Type u β : Type v G✝ : Type w H✝ : Type x G : Type u_1 H : Type u_2 inst✝⁴ : Inv G inst✝³ : Inv H inst✝² : TopologicalSpace G inst✝¹ : TopologicalSpace H inst✝ : ContinuousInv H f : G → H hf : Inducing f hf_inv : ∀ (x : G), f x⁻¹ = (f x)⁻¹ ⊢ Continuous (f ∘ fun a => a⁻¹) [PROOFSTEP] simpa only [(· ∘ ·), hf_inv] using hf.continuous.inv [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s : Set α x : α n : ℕ ⊢ Continuous fun a => a ^ Int.ofNat n [PROOFSTEP] simpa using continuous_pow n [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s : Set α x : α n : ℕ ⊢ Continuous fun a => a ^ Int.negSucc n [PROOFSTEP] simpa using (continuous_pow (n + 1)).inv [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace G inst✝⁵ : Group G inst✝⁴ : TopologicalGroup G inst✝³ : TopologicalSpace α f : α → G s : Set α x : α inst✝² : TopologicalSpace H inst✝¹ : OrderedCommGroup H inst✝ : ContinuousInv H a : H ⊢ Tendsto (fun a => a⁻¹) (𝓟 (Ioi a)) (𝓟 (Iio a⁻¹)) [PROOFSTEP] simp [tendsto_principal_principal] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace G inst✝⁵ : Group G inst✝⁴ : TopologicalGroup G inst✝³ : TopologicalSpace α f : α → G s : Set α x : α inst✝² : TopologicalSpace H inst✝¹ : OrderedCommGroup H inst✝ : ContinuousInv H a : H ⊢ Tendsto (fun a => a⁻¹) (𝓟 (Iio a)) (𝓟 (Ioi a⁻¹)) [PROOFSTEP] simp [tendsto_principal_principal] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace G inst✝⁵ : Group G inst✝⁴ : TopologicalGroup G inst✝³ : TopologicalSpace α f : α → G s : Set α x : α inst✝² : TopologicalSpace H inst✝¹ : OrderedCommGroup H inst✝ : ContinuousInv H a : H ⊢ Tendsto Inv.inv (𝓝[Ioi a⁻¹] a⁻¹) (𝓝[Iio a] a) [PROOFSTEP] simpa only [inv_inv] using @tendsto_inv_nhdsWithin_Ioi _ _ _ _ a⁻¹ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace G inst✝⁵ : Group G inst✝⁴ : TopologicalGroup G inst✝³ : TopologicalSpace α f : α → G s : Set α x : α inst✝² : TopologicalSpace H inst✝¹ : OrderedCommGroup H inst✝ : ContinuousInv H a : H ⊢ Tendsto Inv.inv (𝓝[Iio a⁻¹] a⁻¹) (𝓝[Ioi a] a) [PROOFSTEP] simpa only [inv_inv] using @tendsto_inv_nhdsWithin_Iio _ _ _ _ a⁻¹ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace G inst✝⁵ : Group G inst✝⁴ : TopologicalGroup G inst✝³ : TopologicalSpace α f : α → G s : Set α x : α inst✝² : TopologicalSpace H inst✝¹ : OrderedCommGroup H inst✝ : ContinuousInv H a : H ⊢ Tendsto (fun a => a⁻¹) (𝓟 (Ici a)) (𝓟 (Iic a⁻¹)) [PROOFSTEP] simp [tendsto_principal_principal] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace G inst✝⁵ : Group G inst✝⁴ : TopologicalGroup G inst✝³ : TopologicalSpace α f : α → G s : Set α x : α inst✝² : TopologicalSpace H inst✝¹ : OrderedCommGroup H inst✝ : ContinuousInv H a : H ⊢ Tendsto (fun a => a⁻¹) (𝓟 (Iic a)) (𝓟 (Ici a⁻¹)) [PROOFSTEP] simp [tendsto_principal_principal] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace G inst✝⁵ : Group G inst✝⁴ : TopologicalGroup G inst✝³ : TopologicalSpace α f : α → G s : Set α x : α inst✝² : TopologicalSpace H inst✝¹ : OrderedCommGroup H inst✝ : ContinuousInv H a : H ⊢ Tendsto Inv.inv (𝓝[Ici a⁻¹] a⁻¹) (𝓝[Iic a] a) [PROOFSTEP] simpa only [inv_inv] using @tendsto_inv_nhdsWithin_Ici _ _ _ _ a⁻¹ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace G inst✝⁵ : Group G inst✝⁴ : TopologicalGroup G inst✝³ : TopologicalSpace α f : α → G s : Set α x : α inst✝² : TopologicalSpace H inst✝¹ : OrderedCommGroup H inst✝ : ContinuousInv H a : H ⊢ Tendsto Inv.inv (𝓝[Iic a⁻¹] a⁻¹) (𝓝[Ici a] a) [PROOFSTEP] simpa only [inv_inv] using @tendsto_inv_nhdsWithin_Iic _ _ _ _ a⁻¹ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s : Set α x : α S : Set G hS : S ∈ 𝓝 1 ⊢ S⁻¹ ∈ 𝓝 1 [PROOFSTEP] rwa [← nhds_one_symm'] at hS [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s✝ : Set α x : α s : Subgroup G src✝ : Submonoid G := Submonoid.topologicalClosure s.toSubmonoid g : G hg : g ∈ { toSubsemigroup := { carrier := _root_.closure ↑s, mul_mem' := (_ : ∀ {a b : G}, a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) }, one_mem' := (_ : 1 ∈ src✝.carrier) }.toSubsemigroup.carrier ⊢ g⁻¹ ∈ { toSubsemigroup := { carrier := _root_.closure ↑s, mul_mem' := (_ : ∀ {a b : G}, a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) }, one_mem' := (_ : 1 ∈ src✝.carrier) }.toSubsemigroup.carrier [PROOFSTEP] simpa only [← Set.mem_inv, inv_closure, inv_coe_set] using hg [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace G inst✝⁵ : Group G inst✝⁴ : TopologicalGroup G inst✝³ : TopologicalSpace α f✝ : α → G s✝ : Set α x : α inst✝² : Group H inst✝¹ : TopologicalSpace H inst✝ : TopologicalGroup H f : G →* H hf : Continuous ↑f hf' : DenseRange ↑f s : Subgroup G hs : Subgroup.topologicalClosure s = ⊤ ⊢ Subgroup.topologicalClosure (Subgroup.map f s) = ⊤ [PROOFSTEP] rw [SetLike.ext'_iff] at hs ⊢ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace G inst✝⁵ : Group G inst✝⁴ : TopologicalGroup G inst✝³ : TopologicalSpace α f✝ : α → G s✝ : Set α x : α inst✝² : Group H inst✝¹ : TopologicalSpace H inst✝ : TopologicalGroup H f : G →* H hf : Continuous ↑f hf' : DenseRange ↑f s : Subgroup G hs✝ : Subgroup.topologicalClosure s = ⊤ hs : ↑(Subgroup.topologicalClosure s) = ↑⊤ ⊢ ↑(Subgroup.topologicalClosure (Subgroup.map f s)) = ↑⊤ [PROOFSTEP] simp only [Subgroup.topologicalClosure_coe, Subgroup.coe_top, ← dense_iff_closure_eq] at hs ⊢ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace G inst✝⁵ : Group G inst✝⁴ : TopologicalGroup G inst✝³ : TopologicalSpace α f✝ : α → G s✝ : Set α x : α inst✝² : Group H inst✝¹ : TopologicalSpace H inst✝ : TopologicalGroup H f : G →* H hf : Continuous ↑f hf' : DenseRange ↑f s : Subgroup G hs✝ : Subgroup.topologicalClosure s = ⊤ hs : Dense ↑s ⊢ Dense ↑(Subgroup.map f s) [PROOFSTEP] exact hf'.dense_image hf hs [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁷ : TopologicalSpace G✝ inst✝⁶ : Group G✝ inst✝⁵ : TopologicalGroup G✝ inst✝⁴ : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G inst✝ : Normal N n : G hn : n ∈ topologicalClosure N g : G ⊢ g * n * g⁻¹ ∈ topologicalClosure N [PROOFSTEP] apply map_mem_closure (TopologicalGroup.continuous_conj g) hn [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁷ : TopologicalSpace G✝ inst✝⁶ : Group G✝ inst✝⁵ : TopologicalGroup G✝ inst✝⁴ : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G inst✝ : Normal N n : G hn : n ∈ topologicalClosure N g : G ⊢ MapsTo (fun h => g * h * g⁻¹) ↑N ↑N [PROOFSTEP] exact fun m hm => Subgroup.Normal.conj_mem inferInstance m hm g [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁶ : TopologicalSpace G✝ inst✝⁵ : Group G✝ inst✝⁴ : TopologicalGroup G✝ inst✝³ : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G g h : G hg : g ∈ connectedComponent 1 hh : h ∈ connectedComponent 1 ⊢ g * h ∈ connectedComponent 1 [PROOFSTEP] rw [connectedComponent_eq hg] [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁶ : TopologicalSpace G✝ inst✝⁵ : Group G✝ inst✝⁴ : TopologicalGroup G✝ inst✝³ : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G g h : G hg : g ∈ connectedComponent 1 hh : h ∈ connectedComponent 1 ⊢ g * h ∈ connectedComponent g [PROOFSTEP] have hmul : g ∈ connectedComponent (g * h) := by apply Continuous.image_connectedComponent_subset (continuous_mul_left g) rw [← connectedComponent_eq hh] exact ⟨(1 : G), mem_connectedComponent, by simp only [mul_one]⟩ [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁶ : TopologicalSpace G✝ inst✝⁵ : Group G✝ inst✝⁴ : TopologicalGroup G✝ inst✝³ : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G g h : G hg : g ∈ connectedComponent 1 hh : h ∈ connectedComponent 1 ⊢ g ∈ connectedComponent (g * h) [PROOFSTEP] apply Continuous.image_connectedComponent_subset (continuous_mul_left g) [GOAL] case a α : Type u β : Type v G✝ : Type w H : Type x inst✝⁶ : TopologicalSpace G✝ inst✝⁵ : Group G✝ inst✝⁴ : TopologicalGroup G✝ inst✝³ : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G g h : G hg : g ∈ connectedComponent 1 hh : h ∈ connectedComponent 1 ⊢ g ∈ (fun b => g * b) '' connectedComponent h [PROOFSTEP] rw [← connectedComponent_eq hh] [GOAL] case a α : Type u β : Type v G✝ : Type w H : Type x inst✝⁶ : TopologicalSpace G✝ inst✝⁵ : Group G✝ inst✝⁴ : TopologicalGroup G✝ inst✝³ : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G g h : G hg : g ∈ connectedComponent 1 hh : h ∈ connectedComponent 1 ⊢ g ∈ (fun b => g * b) '' connectedComponent 1 [PROOFSTEP] exact ⟨(1 : G), mem_connectedComponent, by simp only [mul_one]⟩ [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁶ : TopologicalSpace G✝ inst✝⁵ : Group G✝ inst✝⁴ : TopologicalGroup G✝ inst✝³ : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G g h : G hg : g ∈ connectedComponent 1 hh : h ∈ connectedComponent 1 ⊢ (fun b => g * b) 1 = g [PROOFSTEP] simp only [mul_one] [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁶ : TopologicalSpace G✝ inst✝⁵ : Group G✝ inst✝⁴ : TopologicalGroup G✝ inst✝³ : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G g h : G hg : g ∈ connectedComponent 1 hh : h ∈ connectedComponent 1 hmul : g ∈ connectedComponent (g * h) ⊢ g * h ∈ connectedComponent g [PROOFSTEP] simpa [← connectedComponent_eq hmul] using mem_connectedComponent [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁶ : TopologicalSpace G✝ inst✝⁵ : Group G✝ inst✝⁴ : TopologicalGroup G✝ inst✝³ : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G g : G hg : g ∈ connectedComponent 1 ⊢ g⁻¹ ∈ connectedComponent 1 [PROOFSTEP] rw [← inv_one] [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁶ : TopologicalSpace G✝ inst✝⁵ : Group G✝ inst✝⁴ : TopologicalGroup G✝ inst✝³ : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G g : G hg : g ∈ connectedComponent 1 ⊢ g⁻¹ ∈ connectedComponent 1⁻¹ [PROOFSTEP] exact Continuous.image_connectedComponent_subset continuous_inv _ ((Set.mem_image _ _ _).mp ⟨g, hg, rfl⟩) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s✝ : Set α x : α s : Set G hs : s ∈ 𝓝 1 ⊢ ∃ V, V ∈ 𝓝 1 ∧ ∀ (v : G), v ∈ V → ∀ (w : G), w ∈ V → v / w ∈ s [PROOFSTEP] have : (fun p : G × G => p.1 * p.2⁻¹) ⁻¹' s ∈ 𝓝 ((1, 1) : G × G) := continuousAt_fst.mul continuousAt_snd.inv (by simpa) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s✝ : Set α x : α s : Set G hs : s ∈ 𝓝 1 ⊢ s ∈ 𝓝 ((fun x => x.fst * x.snd⁻¹) (1, 1)) [PROOFSTEP] simpa [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s✝ : Set α x : α s : Set G hs : s ∈ 𝓝 1 this : (fun p => p.fst * p.snd⁻¹) ⁻¹' s ∈ 𝓝 (1, 1) ⊢ ∃ V, V ∈ 𝓝 1 ∧ ∀ (v : G), v ∈ V → ∀ (w : G), w ∈ V → v / w ∈ s [PROOFSTEP] simpa only [div_eq_mul_inv, nhds_prod_eq, mem_prod_self_iff, prod_subset_iff, mem_preimage] using this [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s : Set α x✝ : α x : G ⊢ 𝓝 (1 * x⁻¹⁻¹) = 𝓝 x [PROOFSTEP] simp [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s : Set α x✝ : α x : G ⊢ map ((fun x x_1 => x * x_1) x) (𝓝 1) = 𝓝 x [PROOFSTEP] simp [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s : Set α x✝ : α x : G ⊢ map (fun y => y * x) (𝓝 1) = 𝓝 x [PROOFSTEP] simp [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s✝ : Set α x✝ : α ι : Sort u_1 p : ι → Prop s : ι → Set G hb : HasBasis (𝓝 1) p s x : G ⊢ HasBasis (𝓝 x) p fun i => {y | y / x ∈ s i} [PROOFSTEP] rw [← nhds_translation_mul_inv] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s✝ : Set α x✝ : α ι : Sort u_1 p : ι → Prop s : ι → Set G hb : HasBasis (𝓝 1) p s x : G ⊢ HasBasis (Filter.comap (fun y => y * x⁻¹) (𝓝 1)) p fun i => {y | y / x ∈ s i} [PROOFSTEP] simp_rw [div_eq_mul_inv] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s✝ : Set α x✝ : α ι : Sort u_1 p : ι → Prop s : ι → Set G hb : HasBasis (𝓝 1) p s x : G ⊢ HasBasis (Filter.comap (fun y => y * x⁻¹) (𝓝 1)) p fun i => {y | y * x⁻¹ ∈ s i} [PROOFSTEP] exact hb.comap _ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s✝ : Set α x✝ : α x : G s : Set G ⊢ x ∈ closure s ↔ ∀ (U : Set G), U ∈ 𝓝 1 → ∃ y, y ∈ s ∧ y / x ∈ U [PROOFSTEP] rw [mem_closure_iff_nhds_basis ((𝓝 1 : Filter G).basis_sets.nhds_of_one x)] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : TopologicalSpace α f : α → G s✝ : Set α x✝ : α x : G s : Set G ⊢ (∀ (i : Set G), i ∈ 𝓝 1 → ∃ y, y ∈ s ∧ y ∈ {y | y / x ∈ id i}) ↔ ∀ (U : Set G), U ∈ 𝓝 1 → ∃ y, y ∈ s ∧ y / x ∈ U [PROOFSTEP] simp_rw [Set.mem_setOf, id] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁷ : TopologicalSpace G inst✝⁶ : Group G inst✝⁵ : TopologicalGroup G inst✝⁴ : TopologicalSpace α f✝ : α → G s : Set α x✝ : α M : Type u_1 hom : Type u_2 inst✝³ : MulOneClass M inst✝² : TopologicalSpace M inst✝¹ : ContinuousMul M inst✝ : MonoidHomClass hom G M f : hom hf : ContinuousAt (↑f) 1 x : G ⊢ ContinuousAt (↑f) x [PROOFSTEP] simpa only [ContinuousAt, ← map_mul_left_nhds_one x, tendsto_map'_iff, (· ∘ ·), map_mul, map_one, mul_one] using hf.tendsto.const_mul (f x) [GOAL] α : Type u β : Type v G : Type w H✝ : Type x inst✝⁹ : TopologicalSpace G inst✝⁸ : Group G inst✝⁷ : TopologicalGroup G inst✝⁶ : TopologicalSpace α f✝ : α → G s : Set α x✝¹ : α H : Type u_1 M : Type u_2 inst✝⁵ : CommMonoid M inst✝⁴ : TopologicalSpace M inst✝³ : ContinuousMul M inst✝² : Group H inst✝¹ : TopologicalSpace H inst✝ : TopologicalGroup H f : G →* H →* M hf : ContinuousAt (fun x => ↑(↑f x.fst) x.snd) (1, 1) hl : ∀ (x : G), ContinuousAt (↑(↑f x)) 1 hr : ∀ (y : H), ContinuousAt (fun x => ↑(↑f x) y) 1 x✝ : G × H x : G y : H ⊢ ContinuousAt (fun x => ↑(↑f x.fst) x.snd) (x, y) [PROOFSTEP] simp only [ContinuousAt, nhds_prod_eq, ← map_mul_left_nhds_one x, ← map_mul_left_nhds_one y, prod_map_map_eq, tendsto_map'_iff, (· ∘ ·), map_mul, MonoidHom.mul_apply] at * [GOAL] α : Type u β : Type v G : Type w H✝ : Type x inst✝⁹ : TopologicalSpace G inst✝⁸ : Group G inst✝⁷ : TopologicalGroup G inst✝⁶ : TopologicalSpace α f✝ : α → G s : Set α x✝¹ : α H : Type u_1 M : Type u_2 inst✝⁵ : CommMonoid M inst✝⁴ : TopologicalSpace M inst✝³ : ContinuousMul M inst✝² : Group H inst✝¹ : TopologicalSpace H inst✝ : TopologicalGroup H f : G →* H →* M hl : ∀ (x : G), Tendsto (↑(↑f x)) (𝓝 1) (𝓝 (↑(↑f x) 1)) hr : ∀ (y : H), Tendsto (fun x => ↑(↑f x) y) (𝓝 1) (𝓝 (↑(↑f 1) y)) x✝ : G × H x : G y : H hf : Tendsto (fun x => ↑(↑f x.fst) x.snd) (𝓝 1 ×ˢ 𝓝 1) (𝓝 (↑(↑f 1) 1)) ⊢ Tendsto (fun x_1 => ↑(↑f x) y * ↑(↑f x_1.fst) y * (↑(↑f x) x_1.snd * ↑(↑f x_1.fst) x_1.snd)) (𝓝 1 ×ˢ 𝓝 1) (𝓝 (↑(↑f x) y)) [PROOFSTEP] refine ((tendsto_const_nhds.mul ((hr y).comp tendsto_fst)).mul (((hl x).comp tendsto_snd).mul hf)).mono_right (le_of_eq ?_) [GOAL] α : Type u β : Type v G : Type w H✝ : Type x inst✝⁹ : TopologicalSpace G inst✝⁸ : Group G inst✝⁷ : TopologicalGroup G inst✝⁶ : TopologicalSpace α f✝ : α → G s : Set α x✝¹ : α H : Type u_1 M : Type u_2 inst✝⁵ : CommMonoid M inst✝⁴ : TopologicalSpace M inst✝³ : ContinuousMul M inst✝² : Group H inst✝¹ : TopologicalSpace H inst✝ : TopologicalGroup H f : G →* H →* M hl : ∀ (x : G), Tendsto (↑(↑f x)) (𝓝 1) (𝓝 (↑(↑f x) 1)) hr : ∀ (y : H), Tendsto (fun x => ↑(↑f x) y) (𝓝 1) (𝓝 (↑(↑f 1) y)) x✝ : G × H x : G y : H hf : Tendsto (fun x => ↑(↑f x.fst) x.snd) (𝓝 1 ×ˢ 𝓝 1) (𝓝 (↑(↑f 1) 1)) ⊢ 𝓝 (↑(↑f x) y * ↑(↑f 1) y * (↑(↑f x) 1 * ↑(↑f 1) 1)) = 𝓝 (↑(↑f x) y) [PROOFSTEP] simp only [map_one, mul_one, MonoidHom.one_apply] [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁴ : TopologicalSpace G✝ inst✝³ : Group G✝ inst✝² : TopologicalGroup G✝ inst✝¹ : TopologicalSpace α f : α → G✝ s : Set α x✝ : α G : Type u_1 inst✝ : Group G t t' : TopologicalSpace G tg : TopologicalGroup G tg' : TopologicalGroup G h : 𝓝 1 = 𝓝 1 x : G ⊢ 𝓝 x = 𝓝 x [PROOFSTEP] rw [← @nhds_translation_mul_inv G t _ _ x, ← @nhds_translation_mul_inv G t' _ _ x, ← h] [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁵ : TopologicalSpace G✝ inst✝⁴ : Group G✝ inst✝³ : TopologicalGroup G✝ inst✝² : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝¹ : Group G inst✝ : TopologicalSpace G hinv : Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) hleft : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hconj : ∀ (x₀ : G), Tendsto (fun x => x₀ * x * x₀⁻¹) (𝓝 1) (𝓝 1) ⊢ ContinuousInv G [PROOFSTEP] refine' ⟨continuous_iff_continuousAt.2 fun x₀ => _⟩ [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁵ : TopologicalSpace G✝ inst✝⁴ : Group G✝ inst✝³ : TopologicalGroup G✝ inst✝² : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝¹ : Group G inst✝ : TopologicalSpace G hinv : Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) hleft : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hconj : ∀ (x₀ : G), Tendsto (fun x => x₀ * x * x₀⁻¹) (𝓝 1) (𝓝 1) x₀ : G ⊢ ContinuousAt (fun a => a⁻¹) x₀ [PROOFSTEP] have : Tendsto (fun x => x₀⁻¹ * (x₀ * x⁻¹ * x₀⁻¹)) (𝓝 1) (map ((· * ·) x₀⁻¹) (𝓝 1)) := (tendsto_map.comp <| hconj x₀).comp hinv [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁵ : TopologicalSpace G✝ inst✝⁴ : Group G✝ inst✝³ : TopologicalGroup G✝ inst✝² : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u_1 inst✝¹ : Group G inst✝ : TopologicalSpace G hinv : Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) hleft : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hconj : ∀ (x₀ : G), Tendsto (fun x => x₀ * x * x₀⁻¹) (𝓝 1) (𝓝 1) x₀ : G this : Tendsto (fun x => x₀⁻¹ * (x₀ * x⁻¹ * x₀⁻¹)) (𝓝 1) (map ((fun x x_1 => x * x_1) x₀⁻¹) (𝓝 1)) ⊢ ContinuousAt (fun a => a⁻¹) x₀ [PROOFSTEP] simpa only [ContinuousAt, hleft x₀, hleft x₀⁻¹, tendsto_map'_iff, (· ∘ ·), mul_assoc, mul_inv_rev, inv_mul_cancel_left] using this [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁵ : TopologicalSpace G✝ inst✝⁴ : Group G✝ inst✝³ : TopologicalGroup G✝ inst✝² : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u inst✝¹ : Group G inst✝ : TopologicalSpace G hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hinv : Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) hleft : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) x₀ : G ⊢ map (fun x => x₀ * x * x₀⁻¹) (𝓝 1) = 𝓝 1 [PROOFSTEP] rw [show (fun x => x₀ * x * x₀⁻¹) = (fun x => x * x₀⁻¹) ∘ fun x => x₀ * x from rfl, ← map_map, ← hleft, hright, map_map] [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁵ : TopologicalSpace G✝ inst✝⁴ : Group G✝ inst✝³ : TopologicalGroup G✝ inst✝² : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u inst✝¹ : Group G inst✝ : TopologicalSpace G hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hinv : Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) hleft : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hright : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) x₀ : G ⊢ map ((fun x => x * x₀⁻¹) ∘ fun x => x * x₀) (𝓝 1) = 𝓝 1 [PROOFSTEP] simp [(· ∘ ·)] [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁵ : TopologicalSpace G✝ inst✝⁴ : Group G✝ inst✝³ : TopologicalGroup G✝ inst✝² : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u inst✝¹ : Group G inst✝ : TopologicalSpace G hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hinv : Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) hleft : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hconj : ∀ (x₀ : G), Tendsto (fun x => x₀ * x * x₀⁻¹) (𝓝 1) (𝓝 1) ⊢ TopologicalGroup G [PROOFSTEP] refine' TopologicalGroup.of_nhds_one' hmul hinv hleft fun x₀ => _ [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁵ : TopologicalSpace G✝ inst✝⁴ : Group G✝ inst✝³ : TopologicalGroup G✝ inst✝² : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u inst✝¹ : Group G inst✝ : TopologicalSpace G hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hinv : Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) hleft : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hconj : ∀ (x₀ : G), Tendsto (fun x => x₀ * x * x₀⁻¹) (𝓝 1) (𝓝 1) x₀ : G ⊢ 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) [PROOFSTEP] replace hconj : ∀ x₀ : G, map (fun x => x₀ * x * x₀⁻¹) (𝓝 1) = 𝓝 1 [GOAL] case hconj α : Type u β : Type v G✝ : Type w H : Type x inst✝⁵ : TopologicalSpace G✝ inst✝⁴ : Group G✝ inst✝³ : TopologicalGroup G✝ inst✝² : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u inst✝¹ : Group G inst✝ : TopologicalSpace G hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hinv : Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) hleft : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hconj : ∀ (x₀ : G), Tendsto (fun x => x₀ * x * x₀⁻¹) (𝓝 1) (𝓝 1) x₀ : G ⊢ ∀ (x₀ : G), map (fun x => x₀ * x * x₀⁻¹) (𝓝 1) = 𝓝 1 [PROOFSTEP] exact fun x₀ => map_eq_of_inverse (fun x => x₀⁻¹ * x * x₀⁻¹⁻¹) (by ext; simp [mul_assoc]) (hconj _) (hconj _) [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁵ : TopologicalSpace G✝ inst✝⁴ : Group G✝ inst✝³ : TopologicalGroup G✝ inst✝² : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u inst✝¹ : Group G inst✝ : TopologicalSpace G hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hinv : Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) hleft : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hconj : ∀ (x₀ : G), Tendsto (fun x => x₀ * x * x₀⁻¹) (𝓝 1) (𝓝 1) x₀✝ x₀ : G ⊢ ((fun x => x₀ * x * x₀⁻¹) ∘ fun x => x₀⁻¹ * x * x₀⁻¹⁻¹) = id [PROOFSTEP] ext [GOAL] case h α : Type u β : Type v G✝ : Type w H : Type x inst✝⁵ : TopologicalSpace G✝ inst✝⁴ : Group G✝ inst✝³ : TopologicalGroup G✝ inst✝² : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u inst✝¹ : Group G inst✝ : TopologicalSpace G hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hinv : Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) hleft : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) hconj : ∀ (x₀ : G), Tendsto (fun x => x₀ * x * x₀⁻¹) (𝓝 1) (𝓝 1) x₀✝ x₀ x✝ : G ⊢ ((fun x => x₀ * x * x₀⁻¹) ∘ fun x => x₀⁻¹ * x * x₀⁻¹⁻¹) x✝ = id x✝ [PROOFSTEP] simp [mul_assoc] [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁵ : TopologicalSpace G✝ inst✝⁴ : Group G✝ inst✝³ : TopologicalGroup G✝ inst✝² : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u inst✝¹ : Group G inst✝ : TopologicalSpace G hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hinv : Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) hleft : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) x₀ : G hconj : ∀ (x₀ : G), map (fun x => x₀ * x * x₀⁻¹) (𝓝 1) = 𝓝 1 ⊢ 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1) [PROOFSTEP] rw [← hconj x₀] [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁵ : TopologicalSpace G✝ inst✝⁴ : Group G✝ inst✝³ : TopologicalGroup G✝ inst✝² : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u inst✝¹ : Group G inst✝ : TopologicalSpace G hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hinv : Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) hleft : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) x₀ : G hconj : ∀ (x₀ : G), map (fun x => x₀ * x * x₀⁻¹) (𝓝 1) = 𝓝 1 ⊢ 𝓝 x₀ = map (fun x => x * x₀) (map (fun x => x₀ * x * x₀⁻¹) (𝓝 1)) [PROOFSTEP] simpa [(· ∘ ·)] using hleft _ [GOAL] α : Type u β : Type v G✝ : Type w H : Type x inst✝⁵ : TopologicalSpace G✝ inst✝⁴ : Group G✝ inst✝³ : TopologicalGroup G✝ inst✝² : TopologicalSpace α f : α → G✝ s : Set α x : α G : Type u inst✝¹ : CommGroup G inst✝ : TopologicalSpace G hmul : Tendsto (uncurry fun x x_1 => x * x_1) (𝓝 1 ×ˢ 𝓝 1) (𝓝 1) hinv : Tendsto (fun x => x⁻¹) (𝓝 1) (𝓝 1) hleft : ∀ (x₀ : G), 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1) ⊢ ∀ (x₀ : G), Tendsto (fun x => x₀ * x * x₀⁻¹) (𝓝 1) (𝓝 1) [PROOFSTEP] simpa using tendsto_id [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G N : Subgroup G n : Subgroup.Normal N ⊢ IsOpenMap mk [PROOFSTEP] intro s s_op [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G N : Subgroup G n : Subgroup.Normal N s : Set G s_op : IsOpen s ⊢ IsOpen (mk '' s) [PROOFSTEP] change IsOpen (((↑) : G → G ⧸ N) ⁻¹' ((↑) '' s)) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G N : Subgroup G n : Subgroup.Normal N s : Set G s_op : IsOpen s ⊢ IsOpen (mk ⁻¹' (mk '' s)) [PROOFSTEP] rw [QuotientGroup.preimage_image_mk N s] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G N : Subgroup G n : Subgroup.Normal N s : Set G s_op : IsOpen s ⊢ IsOpen (⋃ (x : { x // x ∈ N }), (fun x_1 => x_1 * ↑x) ⁻¹' s) [PROOFSTEP] exact isOpen_iUnion fun n => (continuous_mul_right _).isOpen_preimage s s_op [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n inst✝ : Subgroup.Normal N ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] have cont : Continuous (((↑) : G → G ⧸ N) ∘ fun p : G × G ↦ p.fst * p.snd) := continuous_quot_mk.comp continuous_mul [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n inst✝ : Subgroup.Normal N cont : Continuous (QuotientGroup.mk ∘ fun p => p.fst * p.snd) ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] have quot : QuotientMap fun p : G × G ↦ ((p.1 : G ⧸ N), (p.2 : G ⧸ N)) := by apply IsOpenMap.to_quotientMap · exact (QuotientGroup.isOpenMap_coe N).prod (QuotientGroup.isOpenMap_coe N) · exact continuous_quot_mk.prod_map continuous_quot_mk · exact (surjective_quot_mk _).Prod_map (surjective_quot_mk _) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n inst✝ : Subgroup.Normal N cont : Continuous (QuotientGroup.mk ∘ fun p => p.fst * p.snd) ⊢ QuotientMap fun p => (↑p.fst, ↑p.snd) [PROOFSTEP] apply IsOpenMap.to_quotientMap [GOAL] case open_map α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n inst✝ : Subgroup.Normal N cont : Continuous (QuotientGroup.mk ∘ fun p => p.fst * p.snd) ⊢ IsOpenMap fun p => (↑p.fst, ↑p.snd) [PROOFSTEP] exact (QuotientGroup.isOpenMap_coe N).prod (QuotientGroup.isOpenMap_coe N) [GOAL] case cont α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n inst✝ : Subgroup.Normal N cont : Continuous (QuotientGroup.mk ∘ fun p => p.fst * p.snd) ⊢ Continuous fun p => (↑p.fst, ↑p.snd) [PROOFSTEP] exact continuous_quot_mk.prod_map continuous_quot_mk [GOAL] case surj α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n inst✝ : Subgroup.Normal N cont : Continuous (QuotientGroup.mk ∘ fun p => p.fst * p.snd) ⊢ Surjective fun p => (↑p.fst, ↑p.snd) [PROOFSTEP] exact (surjective_quot_mk _).Prod_map (surjective_quot_mk _) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n inst✝ : Subgroup.Normal N cont : Continuous (QuotientGroup.mk ∘ fun p => p.fst * p.snd) quot : QuotientMap fun p => (↑p.fst, ↑p.snd) ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] exact quot.continuous_iff.2 cont [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n inst✝ : Subgroup.Normal N ⊢ Continuous fun a => a⁻¹ [PROOFSTEP] have quot := IsOpenMap.to_quotientMap (QuotientGroup.isOpenMap_coe N) continuous_quot_mk (surjective_quot_mk _) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n inst✝ : Subgroup.Normal N quot : QuotientMap QuotientGroup.mk ⊢ Continuous fun a => a⁻¹ [PROOFSTEP] rw [quot.continuous_iff] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n inst✝ : Subgroup.Normal N quot : QuotientMap QuotientGroup.mk ⊢ Continuous ((fun a => a⁻¹) ∘ QuotientGroup.mk) [PROOFSTEP] exact continuous_quot_mk.comp continuous_inv [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n : Subgroup.Normal N inst✝ : FirstCountableTopology G ⊢ ∃ u, HasAntitoneBasis (𝓝 1) u ∧ ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n [PROOFSTEP] rcases(𝓝 (1 : G)).exists_antitone_basis with ⟨u, hu, u_anti⟩ [GOAL] case intro.mk α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n : Subgroup.Normal N inst✝ : FirstCountableTopology G u : ℕ → Set G hu : HasBasis (𝓝 1) (fun x => True) u u_anti : Antitone u ⊢ ∃ u, HasAntitoneBasis (𝓝 1) u ∧ ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n [PROOFSTEP] have := ((hu.prod_nhds hu).tendsto_iff hu).mp (by simpa only [mul_one] using continuous_mul.tendsto ((1, 1) : G × G)) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n : Subgroup.Normal N inst✝ : FirstCountableTopology G u : ℕ → Set G hu : HasBasis (𝓝 1) (fun x => True) u u_anti : Antitone u ⊢ Tendsto ?m.498154 (𝓝 (1, 1)) (𝓝 1) [PROOFSTEP] simpa only [mul_one] using continuous_mul.tendsto ((1, 1) : G × G) [GOAL] case intro.mk α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n : Subgroup.Normal N inst✝ : FirstCountableTopology G u : ℕ → Set G hu : HasBasis (𝓝 1) (fun x => True) u u_anti : Antitone u this : ∀ (ib : ℕ), True → ∃ ia, (True ∧ True) ∧ ∀ (x : G × G), x ∈ u ia.fst ×ˢ u ia.snd → x.fst * x.snd ∈ u ib ⊢ ∃ u, HasAntitoneBasis (𝓝 1) u ∧ ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n [PROOFSTEP] simp only [and_self_iff, mem_prod, and_imp, Prod.forall, exists_true_left, Prod.exists, forall_true_left] at this [GOAL] case intro.mk α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n : Subgroup.Normal N inst✝ : FirstCountableTopology G u : ℕ → Set G hu : HasBasis (𝓝 1) (fun x => True) u u_anti : Antitone u this : ∀ (ib : ℕ), ∃ a b, True ∧ ∀ (a_1 b_1 : G), a_1 ∈ u a → b_1 ∈ u b → a_1 * b_1 ∈ u ib ⊢ ∃ u, HasAntitoneBasis (𝓝 1) u ∧ ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n [PROOFSTEP] have event_mul : ∀ n : ℕ, ∀ᶠ m in atTop, u m * u m ⊆ u n := by intro n rcases this n with ⟨j, k, -, h⟩ refine' atTop_basis.eventually_iff.mpr ⟨max j k, True.intro, fun m hm => _⟩ rintro - ⟨a, b, ha, hb, rfl⟩ exact h a b (u_anti ((le_max_left _ _).trans hm) ha) (u_anti ((le_max_right _ _).trans hm) hb) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n : Subgroup.Normal N inst✝ : FirstCountableTopology G u : ℕ → Set G hu : HasBasis (𝓝 1) (fun x => True) u u_anti : Antitone u this : ∀ (ib : ℕ), ∃ a b, True ∧ ∀ (a_1 b_1 : G), a_1 ∈ u a → b_1 ∈ u b → a_1 * b_1 ∈ u ib ⊢ ∀ (n : ℕ), ∀ᶠ (m : ℕ) in atTop, u m * u m ⊆ u n [PROOFSTEP] intro n [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n✝ : Subgroup.Normal N inst✝ : FirstCountableTopology G u : ℕ → Set G hu : HasBasis (𝓝 1) (fun x => True) u u_anti : Antitone u this : ∀ (ib : ℕ), ∃ a b, True ∧ ∀ (a_1 b_1 : G), a_1 ∈ u a → b_1 ∈ u b → a_1 * b_1 ∈ u ib n : ℕ ⊢ ∀ᶠ (m : ℕ) in atTop, u m * u m ⊆ u n [PROOFSTEP] rcases this n with ⟨j, k, -, h⟩ [GOAL] case intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n✝ : Subgroup.Normal N inst✝ : FirstCountableTopology G u : ℕ → Set G hu : HasBasis (𝓝 1) (fun x => True) u u_anti : Antitone u this : ∀ (ib : ℕ), ∃ a b, True ∧ ∀ (a_1 b_1 : G), a_1 ∈ u a → b_1 ∈ u b → a_1 * b_1 ∈ u ib n j k : ℕ h : ∀ (a b : G), a ∈ u j → b ∈ u k → a * b ∈ u n ⊢ ∀ᶠ (m : ℕ) in atTop, u m * u m ⊆ u n [PROOFSTEP] refine' atTop_basis.eventually_iff.mpr ⟨max j k, True.intro, fun m hm => _⟩ [GOAL] case intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n✝ : Subgroup.Normal N inst✝ : FirstCountableTopology G u : ℕ → Set G hu : HasBasis (𝓝 1) (fun x => True) u u_anti : Antitone u this : ∀ (ib : ℕ), ∃ a b, True ∧ ∀ (a_1 b_1 : G), a_1 ∈ u a → b_1 ∈ u b → a_1 * b_1 ∈ u ib n j k : ℕ h : ∀ (a b : G), a ∈ u j → b ∈ u k → a * b ∈ u n m : ℕ hm : m ∈ Ici (max j k) ⊢ u m * u m ⊆ u n [PROOFSTEP] rintro - ⟨a, b, ha, hb, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n✝ : Subgroup.Normal N inst✝ : FirstCountableTopology G u : ℕ → Set G hu : HasBasis (𝓝 1) (fun x => True) u u_anti : Antitone u this : ∀ (ib : ℕ), ∃ a b, True ∧ ∀ (a_1 b_1 : G), a_1 ∈ u a → b_1 ∈ u b → a_1 * b_1 ∈ u ib n j k : ℕ h : ∀ (a b : G), a ∈ u j → b ∈ u k → a * b ∈ u n m : ℕ hm : m ∈ Ici (max j k) a b : G ha : a ∈ u m hb : b ∈ u m ⊢ (fun x x_1 => x * x_1) a b ∈ u n [PROOFSTEP] exact h a b (u_anti ((le_max_left _ _).trans hm) ha) (u_anti ((le_max_right _ _).trans hm) hb) [GOAL] case intro.mk α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n : Subgroup.Normal N inst✝ : FirstCountableTopology G u : ℕ → Set G hu : HasBasis (𝓝 1) (fun x => True) u u_anti : Antitone u this : ∀ (ib : ℕ), ∃ a b, True ∧ ∀ (a_1 b_1 : G), a_1 ∈ u a → b_1 ∈ u b → a_1 * b_1 ∈ u ib event_mul : ∀ (n : ℕ), ∀ᶠ (m : ℕ) in atTop, u m * u m ⊆ u n ⊢ ∃ u, HasAntitoneBasis (𝓝 1) u ∧ ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n [PROOFSTEP] obtain ⟨φ, -, hφ, φ_anti_basis⟩ := HasAntitoneBasis.subbasis_with_rel ⟨hu, u_anti⟩ event_mul [GOAL] case intro.mk.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G N : Subgroup G n : Subgroup.Normal N inst✝ : FirstCountableTopology G u : ℕ → Set G hu : HasBasis (𝓝 1) (fun x => True) u u_anti : Antitone u this : ∀ (ib : ℕ), ∃ a b, True ∧ ∀ (a_1 b_1 : G), a_1 ∈ u a → b_1 ∈ u b → a_1 * b_1 ∈ u ib event_mul : ∀ (n : ℕ), ∀ᶠ (m : ℕ) in atTop, u m * u m ⊆ u n φ : ℕ → ℕ hφ : ∀ ⦃m n : ℕ⦄, m < n → u (φ n) * u (φ n) ⊆ u (φ m) φ_anti_basis : HasAntitoneBasis (𝓝 1) (u ∘ φ) ⊢ ∃ u, HasAntitoneBasis (𝓝 1) u ∧ ∀ (n : ℕ), u (n + 1) * u (n + 1) ⊆ u n [PROOFSTEP] exact ⟨u ∘ φ, φ_anti_basis, fun n => hφ n.lt_succ_self⟩ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G ⊢ Continuous fun p => p.fst / p.snd [PROOFSTEP] simp only [div_eq_mul_inv] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G ⊢ Continuous fun p => p.fst * p.snd⁻¹ [PROOFSTEP] exact continuous_fst.mul continuous_snd.inv [GOAL] α✝ : Type u β : Type v G : Type w H : Type x inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G α : Type u_1 l : Filter α x : G u : α → G A : Tendsto (fun x_1 => x) l (𝓝 x) h : Tendsto (fun n => u n / x) l (𝓝 1) ⊢ Tendsto u l (𝓝 x) [PROOFSTEP] simpa using h.mul A [GOAL] α✝ : Type u β : Type v G : Type w H : Type x inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G α : Type u_1 l : Filter α x : G u : α → G A : Tendsto (fun x_1 => x) l (𝓝 x) h : Tendsto u l (𝓝 x) ⊢ Tendsto (fun n => u n / x) l (𝓝 1) [PROOFSTEP] simpa using h.div' A [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : TopologicalGroup G x : G ⊢ comap (fun x_1 => x_1 / x) (𝓝 1) = 𝓝 x [PROOFSTEP] simpa only [div_eq_mul_inv] using nhds_translation_mul_inv x [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace β inst✝² : Group α inst✝¹ : MulAction α β inst✝ : ContinuousConstSMul α β s : Set α t : Set β ht : IsOpen t ⊢ IsOpen (s • t) [PROOFSTEP] rw [← iUnion_smul_set] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace β inst✝² : Group α inst✝¹ : MulAction α β inst✝ : ContinuousConstSMul α β s : Set α t : Set β ht : IsOpen t ⊢ IsOpen (⋃ (a : α) (_ : a ∈ s), a • t) [PROOFSTEP] exact isOpen_biUnion fun a _ => ht.smul _ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace β inst✝² : Group α inst✝¹ : MulAction α β inst✝ : ContinuousConstSMul α β s : Set α t : Set β a : α x : β ht : t ∈ 𝓝 x ⊢ a • t ∈ 𝓝 (a • x) [PROOFSTEP] rcases mem_nhds_iff.1 ht with ⟨u, ut, u_open, hu⟩ [GOAL] case intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace β inst✝² : Group α inst✝¹ : MulAction α β inst✝ : ContinuousConstSMul α β s : Set α t : Set β a : α x : β ht : t ∈ 𝓝 x u : Set β ut : u ⊆ t u_open : IsOpen u hu : x ∈ u ⊢ a • t ∈ 𝓝 (a • x) [PROOFSTEP] exact mem_nhds_iff.2 ⟨a • u, smul_set_mono ut, u_open.smul a, smul_mem_smul_set hu⟩ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : Group α inst✝² : MulAction α β inst✝¹ : ContinuousInv α inst✝ : ContinuousSMul α β s : Set α t : Set β ht : IsClosed t hs : IsCompact s ⊢ IsClosed (s • t) [PROOFSTEP] have : ∀ x ∈ s • t, ∃ g ∈ s, g⁻¹ • x ∈ t := by intro x ⟨g, y, hgs, hyt, hgyx⟩ refine ⟨g, hgs, ?_⟩ convert hyt rwa [inv_smul_eq_iff, eq_comm] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : Group α inst✝² : MulAction α β inst✝¹ : ContinuousInv α inst✝ : ContinuousSMul α β s : Set α t : Set β ht : IsClosed t hs : IsCompact s ⊢ ∀ (x : β), x ∈ s • t → ∃ g, g ∈ s ∧ g⁻¹ • x ∈ t [PROOFSTEP] intro x ⟨g, y, hgs, hyt, hgyx⟩ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : Group α inst✝² : MulAction α β inst✝¹ : ContinuousInv α inst✝ : ContinuousSMul α β s : Set α t : Set β ht : IsClosed t hs : IsCompact s x : β g : α y : β hgs : g ∈ s hyt : y ∈ t hgyx : (fun x x_1 => x • x_1) g y = x ⊢ ∃ g, g ∈ s ∧ g⁻¹ • x ∈ t [PROOFSTEP] refine ⟨g, hgs, ?_⟩ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : Group α inst✝² : MulAction α β inst✝¹ : ContinuousInv α inst✝ : ContinuousSMul α β s : Set α t : Set β ht : IsClosed t hs : IsCompact s x : β g : α y : β hgs : g ∈ s hyt : y ∈ t hgyx : (fun x x_1 => x • x_1) g y = x ⊢ g⁻¹ • x ∈ t [PROOFSTEP] convert hyt [GOAL] case h.e'_4 α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : Group α inst✝² : MulAction α β inst✝¹ : ContinuousInv α inst✝ : ContinuousSMul α β s : Set α t : Set β ht : IsClosed t hs : IsCompact s x : β g : α y : β hgs : g ∈ s hyt : y ∈ t hgyx : (fun x x_1 => x • x_1) g y = x ⊢ g⁻¹ • x = y [PROOFSTEP] rwa [inv_smul_eq_iff, eq_comm] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : Group α inst✝² : MulAction α β inst✝¹ : ContinuousInv α inst✝ : ContinuousSMul α β s : Set α t : Set β ht : IsClosed t hs : IsCompact s this : ∀ (x : β), x ∈ s • t → ∃ g, g ∈ s ∧ g⁻¹ • x ∈ t ⊢ IsClosed (s • t) [PROOFSTEP] choose! f hf using this [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : Group α inst✝² : MulAction α β inst✝¹ : ContinuousInv α inst✝ : ContinuousSMul α β s : Set α t : Set β ht : IsClosed t hs : IsCompact s f : β → α hf : ∀ (x : β), x ∈ s • t → f x ∈ s ∧ (f x)⁻¹ • x ∈ t ⊢ IsClosed (s • t) [PROOFSTEP] refine isClosed_of_closure_subset (fun x hx ↦ ?_) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : Group α inst✝² : MulAction α β inst✝¹ : ContinuousInv α inst✝ : ContinuousSMul α β s : Set α t : Set β ht : IsClosed t hs : IsCompact s f : β → α hf : ∀ (x : β), x ∈ s • t → f x ∈ s ∧ (f x)⁻¹ • x ∈ t x : β hx : x ∈ closure (s • t) ⊢ x ∈ s • t [PROOFSTEP] rcases mem_closure_iff_ultrafilter.mp hx with ⟨u, hust, hux⟩ [GOAL] case intro.intro α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : Group α inst✝² : MulAction α β inst✝¹ : ContinuousInv α inst✝ : ContinuousSMul α β s : Set α t : Set β ht : IsClosed t hs : IsCompact s f : β → α hf : ∀ (x : β), x ∈ s • t → f x ∈ s ∧ (f x)⁻¹ • x ∈ t x : β hx : x ∈ closure (s • t) u : Ultrafilter β hust : s • t ∈ u hux : ↑u ≤ 𝓝 x ⊢ x ∈ s • t [PROOFSTEP] have : Ultrafilter.map f u ≤ 𝓟 s := calc Ultrafilter.map f u ≤ map f (𝓟 (s • t)) := map_mono (le_principal_iff.mpr hust) _ = 𝓟 (f '' (s • t)) := map_principal _ ≤ 𝓟 s := principal_mono.mpr (image_subset_iff.mpr (fun x hx ↦ (hf x hx).1)) [GOAL] case intro.intro α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : Group α inst✝² : MulAction α β inst✝¹ : ContinuousInv α inst✝ : ContinuousSMul α β s : Set α t : Set β ht : IsClosed t hs : IsCompact s f : β → α hf : ∀ (x : β), x ∈ s • t → f x ∈ s ∧ (f x)⁻¹ • x ∈ t x : β hx : x ∈ closure (s • t) u : Ultrafilter β hust : s • t ∈ u hux : ↑u ≤ 𝓝 x this : ↑(Ultrafilter.map f u) ≤ 𝓟 s ⊢ x ∈ s • t [PROOFSTEP] rcases hs.ultrafilter_le_nhds (Ultrafilter.map f u) this with ⟨g, hg, hug⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : Group α inst✝² : MulAction α β inst✝¹ : ContinuousInv α inst✝ : ContinuousSMul α β s : Set α t : Set β ht : IsClosed t hs : IsCompact s f : β → α hf : ∀ (x : β), x ∈ s • t → f x ∈ s ∧ (f x)⁻¹ • x ∈ t x : β hx : x ∈ closure (s • t) u : Ultrafilter β hust : s • t ∈ u hux : ↑u ≤ 𝓝 x this : ↑(Ultrafilter.map f u) ≤ 𝓟 s g : α hg : g ∈ s hug : ↑(Ultrafilter.map f u) ≤ 𝓝 g ⊢ x ∈ s • t [PROOFSTEP] suffices g⁻¹ • x ∈ t from ⟨g, g⁻¹ • x, hg, this, smul_inv_smul _ _⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : Group α inst✝² : MulAction α β inst✝¹ : ContinuousInv α inst✝ : ContinuousSMul α β s : Set α t : Set β ht : IsClosed t hs : IsCompact s f : β → α hf : ∀ (x : β), x ∈ s • t → f x ∈ s ∧ (f x)⁻¹ • x ∈ t x : β hx : x ∈ closure (s • t) u : Ultrafilter β hust : s • t ∈ u hux : ↑u ≤ 𝓝 x this : ↑(Ultrafilter.map f u) ≤ 𝓟 s g : α hg : g ∈ s hug : ↑(Ultrafilter.map f u) ≤ 𝓝 g ⊢ g⁻¹ • x ∈ t [PROOFSTEP] exact ht.mem_of_tendsto ((Tendsto.inv hug).smul hux) (Eventually.mono hust (fun y hy ↦ (hf y hy).2)) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : Group α inst✝³ : MulAction α β inst✝² : ContinuousInv α inst✝¹ : ContinuousSMul α β s : Set α t : Set β inst✝ : CompactSpace α ⊢ IsClosedMap Quotient.mk' [PROOFSTEP] intro t ht [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : Group α inst✝³ : MulAction α β inst✝² : ContinuousInv α inst✝¹ : ContinuousSMul α β s : Set α t✝ : Set β inst✝ : CompactSpace α t : Set β ht : IsClosed t ⊢ IsClosed (Quotient.mk' '' t) [PROOFSTEP] rw [← quotientMap_quotient_mk'.isClosed_preimage, MulAction.quotient_preimage_image_eq_union_mul] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : Group α inst✝³ : MulAction α β inst✝² : ContinuousInv α inst✝¹ : ContinuousSMul α β s : Set α t✝ : Set β inst✝ : CompactSpace α t : Set β ht : IsClosed t ⊢ IsClosed (⋃ (g : α), (fun x x_1 => x • x_1) g '' t) [PROOFSTEP] convert ht.smul_left_of_isCompact (isCompact_univ (α := α)) [GOAL] case h.e'_3 α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : Group α inst✝³ : MulAction α β inst✝² : ContinuousInv α inst✝¹ : ContinuousSMul α β s : Set α t✝ : Set β inst✝ : CompactSpace α t : Set β ht : IsClosed t ⊢ ⋃ (g : α), (fun x x_1 => x • x_1) g '' t = univ • t [PROOFSTEP] rw [← biUnion_univ, ← iUnion_smul_left_image] [GOAL] case h.e'_3 α : Type u β : Type v G : Type w H : Type x inst✝⁶ : TopologicalSpace α inst✝⁵ : TopologicalSpace β inst✝⁴ : Group α inst✝³ : MulAction α β inst✝² : ContinuousInv α inst✝¹ : ContinuousSMul α β s : Set α t✝ : Set β inst✝ : CompactSpace α t : Set β ht : IsClosed t ⊢ ⋃ (x : α) (_ : x ∈ univ), (fun x x_1 => x • x_1) x '' t = ⋃ (a : α) (_ : a ∈ univ), a • t [PROOFSTEP] rfl [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : ContinuousConstSMul α α s t : Set α a b : α h : s ∈ 𝓝 b ⊢ {a} * s ∈ 𝓝 (a * b) [PROOFSTEP] have := smul_mem_nhds a h [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : ContinuousConstSMul α α s t : Set α a b : α h : s ∈ 𝓝 b this : a • s ∈ 𝓝 (a • b) ⊢ {a} * s ∈ 𝓝 (a * b) [PROOFSTEP] rwa [← singleton_smul] at this [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : ContinuousConstSMul α α s t : Set α a : α h : s ∈ 𝓝 1 ⊢ {a} * s ∈ 𝓝 a [PROOFSTEP] simpa only [mul_one] using singleton_mul_mem_nhds a h [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : ContinuousConstSMul αᵐᵒᵖ α s t : Set α hs : IsOpen s ⊢ IsOpen (s * t) [PROOFSTEP] rw [← iUnion_op_smul_set] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : ContinuousConstSMul αᵐᵒᵖ α s t : Set α hs : IsOpen s ⊢ IsOpen (⋃ (a : α) (_ : a ∈ t), op a • s) [PROOFSTEP] exact isOpen_biUnion fun a _ => hs.smul _ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : ContinuousConstSMul αᵐᵒᵖ α s t : Set α a b : α h : s ∈ 𝓝 b ⊢ s * {a} ∈ 𝓝 (b * a) [PROOFSTEP] simp only [← iUnion_op_smul_set, mem_singleton_iff, iUnion_iUnion_eq_left] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : ContinuousConstSMul αᵐᵒᵖ α s t : Set α a b : α h : s ∈ 𝓝 b ⊢ op a • s ∈ 𝓝 (b * a) [PROOFSTEP] exact smul_mem_nhds _ h [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : ContinuousConstSMul αᵐᵒᵖ α s t : Set α a : α h : s ∈ 𝓝 1 ⊢ s * {a} ∈ 𝓝 a [PROOFSTEP] simpa only [one_mul] using mul_singleton_mem_nhds a h [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t : Set α ht : IsOpen t ⊢ IsOpen (s / t) [PROOFSTEP] rw [← iUnion_div_left_image] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t : Set α ht : IsOpen t ⊢ IsOpen (⋃ (a : α) (_ : a ∈ s), (fun x x_1 => x / x_1) a '' t) [PROOFSTEP] exact isOpen_biUnion fun a _ => isOpenMap_div_left a t ht [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t : Set α hs : IsOpen s ⊢ IsOpen (s / t) [PROOFSTEP] rw [← iUnion_div_right_image] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t : Set α hs : IsOpen s ⊢ IsOpen (⋃ (a : α) (_ : a ∈ t), (fun x => x / a) '' s) [PROOFSTEP] exact isOpen_biUnion fun a _ => isOpenMap_div_right a s hs [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t✝ : Set α hs : IsOpen s t : Set α ⊢ s * closure t = s * t [PROOFSTEP] refine' (mul_subset_iff.2 fun a ha b hb => _).antisymm (mul_subset_mul_left subset_closure) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t✝ : Set α hs : IsOpen s t : Set α a : α ha : a ∈ s b : α hb : b ∈ closure t ⊢ a * b ∈ s * t [PROOFSTEP] rw [mem_closure_iff] at hb [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t✝ : Set α hs : IsOpen s t : Set α a : α ha : a ∈ s b : α hb : ∀ (o : Set α), IsOpen o → b ∈ o → Set.Nonempty (o ∩ t) ⊢ a * b ∈ s * t [PROOFSTEP] have hbU : b ∈ s⁻¹ * {a * b} := ⟨a⁻¹, a * b, Set.inv_mem_inv.2 ha, rfl, inv_mul_cancel_left _ _⟩ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t✝ : Set α hs : IsOpen s t : Set α a : α ha : a ∈ s b : α hb : ∀ (o : Set α), IsOpen o → b ∈ o → Set.Nonempty (o ∩ t) hbU : b ∈ s⁻¹ * {a * b} ⊢ a * b ∈ s * t [PROOFSTEP] obtain ⟨_, ⟨c, d, hc, rfl : d = _, rfl⟩, hcs⟩ := hb _ hs.inv.mul_right hbU [GOAL] case intro.intro.intro.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t✝ : Set α hs : IsOpen s t : Set α a : α ha : a ∈ s b : α hb : ∀ (o : Set α), IsOpen o → b ∈ o → Set.Nonempty (o ∩ t) hbU : b ∈ s⁻¹ * {a * b} c : α hc : c ∈ s⁻¹ hcs : (fun x x_1 => x * x_1) c (a * b) ∈ t ⊢ a * b ∈ s * t [PROOFSTEP] exact ⟨c⁻¹, _, hc, hcs, inv_mul_cancel_left _ _⟩ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s✝ t : Set α ht : IsOpen t s : Set α ⊢ closure s * t = s * t [PROOFSTEP] rw [← inv_inv (closure s * t), mul_inv_rev, inv_closure, ht.inv.mul_closure, mul_inv_rev, inv_inv, inv_inv] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t✝ : Set α hs : IsOpen s t : Set α ⊢ s / closure t = s / t [PROOFSTEP] simp_rw [div_eq_mul_inv, inv_closure, hs.mul_closure] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s✝ t : Set α ht : IsOpen t s : Set α ⊢ closure s / t = s / t [PROOFSTEP] simp_rw [div_eq_mul_inv, ht.inv.closure_mul] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t : Set α ht : IsClosed t hs : IsCompact s ⊢ IsClosed (t * s) [PROOFSTEP] rw [← image_op_smul] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t : Set α ht : IsClosed t hs : IsCompact s ⊢ IsClosed (op '' s • t) [PROOFSTEP] exact IsClosed.smul_left_of_isCompact ht (hs.image continuous_op) [GOAL] α : Type u β : Type v G : Type w H✝ : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t : Set α H : Subgroup α hH : IsCompact ↑H ⊢ IsClosedMap mk [PROOFSTEP] intro t ht [GOAL] α : Type u β : Type v G : Type w H✝ : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t✝ : Set α H : Subgroup α hH : IsCompact ↑H t : Set α ht : IsClosed t ⊢ IsClosed (mk '' t) [PROOFSTEP] rw [← quotientMap_quotient_mk'.isClosed_preimage] [GOAL] α : Type u β : Type v G : Type w H✝ : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t✝ : Set α H : Subgroup α hH : IsCompact ↑H t : Set α ht : IsClosed t ⊢ IsClosed (Quotient.mk' ⁻¹' (mk '' t)) [PROOFSTEP] convert ht.mul_right_of_isCompact hH [GOAL] case h.e'_3 α : Type u β : Type v G : Type w H✝ : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t✝ : Set α H : Subgroup α hH : IsCompact ↑H t : Set α ht : IsClosed t ⊢ Quotient.mk' ⁻¹' (mk '' t) = t * ↑H [PROOFSTEP] refine (QuotientGroup.preimage_image_mk_eq_iUnion_image _ _).trans ?_ [GOAL] case h.e'_3 α : Type u β : Type v G : Type w H✝ : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t✝ : Set α H : Subgroup α hH : IsCompact ↑H t : Set α ht : IsClosed t ⊢ ⋃ (x : { x // x ∈ H }), (fun x_1 => x_1 * ↑x) '' t = t * ↑H [PROOFSTEP] rw [iUnion_subtype, ← iUnion_mul_right_image] [GOAL] case h.e'_3 α : Type u β : Type v G : Type w H✝ : Type x inst✝² : TopologicalSpace α inst✝¹ : Group α inst✝ : TopologicalGroup α s t✝ : Set α H : Subgroup α hH : IsCompact ↑H t : Set α ht : IsClosed t ⊢ ⋃ (x : α) (hx : x ∈ H), (fun x_1 => x_1 * ↑{ val := x, property := hx }) '' t = ⋃ (a : α) (_ : a ∈ ↑H), (fun x => x * a) '' t [PROOFSTEP] rfl [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : ContinuousMul G h : IsClosed {1} x : G ⊢ IsClosed {x} [PROOFSTEP] convert isClosedMap_mul_right x _ h [GOAL] case h.e'_3 α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : ContinuousMul G h : IsClosed {1} x : G ⊢ {x} = (fun x_1 => x_1 * x) '' {1} [PROOFSTEP] simp [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G ⊢ RegularSpace G [PROOFSTEP] refine' RegularSpace.ofExistsMemNhdsIsClosedSubset fun a s hs => _ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G a : G s : Set G hs : s ∈ 𝓝 a ⊢ ∃ t, t ∈ 𝓝 a ∧ IsClosed t ∧ t ⊆ s [PROOFSTEP] have : Tendsto (fun p : G × G => p.1 * p.2) (𝓝 (a, 1)) (𝓝 a) := continuous_mul.tendsto' _ _ (mul_one a) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G a : G s : Set G hs : s ∈ 𝓝 a this : Tendsto (fun p => p.fst * p.snd) (𝓝 (a, 1)) (𝓝 a) ⊢ ∃ t, t ∈ 𝓝 a ∧ IsClosed t ∧ t ⊆ s [PROOFSTEP] rcases mem_nhds_prod_iff.mp (this hs) with ⟨U, hU, V, hV, hUV⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G a : G s : Set G hs : s ∈ 𝓝 a this : Tendsto (fun p => p.fst * p.snd) (𝓝 (a, 1)) (𝓝 a) U : Set G hU : U ∈ 𝓝 a V : Set G hV : V ∈ 𝓝 1 hUV : U ×ˢ V ⊆ (fun p => p.fst * p.snd) ⁻¹' s ⊢ ∃ t, t ∈ 𝓝 a ∧ IsClosed t ∧ t ⊆ s [PROOFSTEP] rw [← image_subset_iff, image_prod] at hUV [GOAL] case intro.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G a : G s : Set G hs : s ∈ 𝓝 a this : Tendsto (fun p => p.fst * p.snd) (𝓝 (a, 1)) (𝓝 a) U : Set G hU : U ∈ 𝓝 a V : Set G hV : V ∈ 𝓝 1 hUV : image2 HMul.hMul U V ⊆ s ⊢ ∃ t, t ∈ 𝓝 a ∧ IsClosed t ∧ t ⊆ s [PROOFSTEP] refine' ⟨closure U, mem_of_superset hU subset_closure, isClosed_closure, _⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G a : G s : Set G hs : s ∈ 𝓝 a this : Tendsto (fun p => p.fst * p.snd) (𝓝 (a, 1)) (𝓝 a) U : Set G hU : U ∈ 𝓝 a V : Set G hV : V ∈ 𝓝 1 hUV : image2 HMul.hMul U V ⊆ s ⊢ closure U ⊆ s [PROOFSTEP] calc closure U ⊆ closure U * interior V := subset_mul_left _ (mem_interior_iff_mem_nhds.2 hV) _ = U * interior V := (isOpen_interior.closure_mul U) _ ⊆ U * V := (mul_subset_mul_left interior_subset) _ ⊆ s := hUV [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T0Space G ⊢ T2Space G [PROOFSTEP] haveI := TopologicalGroup.t3Space G [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : T0Space G this : T3Space G ⊢ T2Space G [PROOFSTEP] infer_instance [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace G inst✝⁴ : Group G inst✝³ : TopologicalGroup G S✝ : Subgroup G inst✝² : Normal S✝ inst✝¹ : IsClosed ↑S✝ S : Subgroup G inst✝ : Normal S hS : IsClosed ↑S ⊢ T3Space (G ⧸ S) [PROOFSTEP] rw [← QuotientGroup.ker_mk' S] at hS [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace G inst✝⁴ : Group G inst✝³ : TopologicalGroup G S✝ : Subgroup G inst✝² : Normal S✝ inst✝¹ : IsClosed ↑S✝ S : Subgroup G inst✝ : Normal S hS : IsClosed ↑(MonoidHom.ker (QuotientGroup.mk' S)) ⊢ T3Space (G ⧸ S) [PROOFSTEP] haveI := TopologicalGroup.t1Space (G ⧸ S) (quotientMap_quotient_mk'.isClosed_preimage.mp hS) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁵ : TopologicalSpace G inst✝⁴ : Group G inst✝³ : TopologicalGroup G S✝ : Subgroup G inst✝² : Normal S✝ inst✝¹ : IsClosed ↑S✝ S : Subgroup G inst✝ : Normal S hS : IsClosed ↑(MonoidHom.ker (QuotientGroup.mk' S)) this : T1Space (G ⧸ S) ⊢ T3Space (G ⧸ S) [PROOFSTEP] exact TopologicalGroup.t3Space _ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) ⊢ ∀ {K L : Set G}, IsCompact K → IsCompact L → Set.Finite {γ | (fun x => γ • x) '' K ∩ L ≠ ∅} [PROOFSTEP] intro K L hK hL [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L ⊢ Set.Finite {γ | (fun x => γ • x) '' K ∩ L ≠ ∅} [PROOFSTEP] have H : Set.Finite _ := hS ((hL.prod hK).image continuous_div').compl_mem_cocompact [GOAL] α : Type u β : Type v G : Type w H✝ : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L H : Set.Finite (↑(Subgroup.subtype S) ⁻¹' ((fun p => p.fst / p.snd) '' L ×ˢ K)ᶜ)ᶜ ⊢ Set.Finite {γ | (fun x => γ • x) '' K ∩ L ≠ ∅} [PROOFSTEP] rw [preimage_compl, compl_compl] at H [GOAL] α : Type u β : Type v G : Type w H✝ : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L H : Set.Finite (↑(Subgroup.subtype S) ⁻¹' ((fun p => p.fst / p.snd) '' L ×ˢ K)) ⊢ Set.Finite {γ | (fun x => γ • x) '' K ∩ L ≠ ∅} [PROOFSTEP] convert H [GOAL] case h.e'_2 α : Type u β : Type v G : Type w H✝ : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L H : Set.Finite (↑(Subgroup.subtype S) ⁻¹' ((fun p => p.fst / p.snd) '' L ×ˢ K)) ⊢ {γ | (fun x => γ • x) '' K ∩ L ≠ ∅} = ↑(Subgroup.subtype S) ⁻¹' ((fun p => p.fst / p.snd) '' L ×ˢ K) [PROOFSTEP] ext x [GOAL] case h.e'_2.h α : Type u β : Type v G : Type w H✝ : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L H : Set.Finite (↑(Subgroup.subtype S) ⁻¹' ((fun p => p.fst / p.snd) '' L ×ˢ K)) x : { x // x ∈ S } ⊢ x ∈ {γ | (fun x => γ • x) '' K ∩ L ≠ ∅} ↔ x ∈ ↑(Subgroup.subtype S) ⁻¹' ((fun p => p.fst / p.snd) '' L ×ˢ K) [PROOFSTEP] simp only [image_smul, mem_setOf_eq, coeSubtype, mem_preimage, mem_image, Prod.exists] [GOAL] case h.e'_2.h α : Type u β : Type v G : Type w H✝ : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L H : Set.Finite (↑(Subgroup.subtype S) ⁻¹' ((fun p => p.fst / p.snd) '' L ×ˢ K)) x : { x // x ∈ S } ⊢ x • K ∩ L ≠ ∅ ↔ ∃ a b, (a, b) ∈ L ×ˢ K ∧ a / b = ↑x [PROOFSTEP] exact Set.smul_inter_ne_empty_iff' [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) ⊢ ∀ {K L : Set G}, IsCompact K → IsCompact L → Set.Finite {γ | (fun x => γ • x) '' K ∩ L ≠ ∅} [PROOFSTEP] intro K L hK hL [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L ⊢ Set.Finite {γ | (fun x => γ • x) '' K ∩ L ≠ ∅} [PROOFSTEP] have : Continuous fun p : G × G => (p.1⁻¹, p.2) := continuous_inv.prod_map continuous_id [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L this : Continuous fun p => (p.fst⁻¹, p.snd) ⊢ Set.Finite {γ | (fun x => γ • x) '' K ∩ L ≠ ∅} [PROOFSTEP] have H : Set.Finite _ := hS ((hK.prod hL).image (continuous_mul.comp this)).compl_mem_cocompact [GOAL] α : Type u β : Type v G : Type w H✝ : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L this : Continuous fun p => (p.fst⁻¹, p.snd) H : Set.Finite (↑(Subgroup.subtype S) ⁻¹' (((fun p => p.fst * p.snd) ∘ fun p => (p.fst⁻¹, p.snd)) '' K ×ˢ L)ᶜ)ᶜ ⊢ Set.Finite {γ | (fun x => γ • x) '' K ∩ L ≠ ∅} [PROOFSTEP] simp only [preimage_compl, compl_compl, coeSubtype, comp_apply] at H [GOAL] α : Type u β : Type v G : Type w H✝ : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L this : Continuous fun p => (p.fst⁻¹, p.snd) H : Set.Finite (Subtype.val ⁻¹' ((fun a => a.fst⁻¹ * a.snd) '' K ×ˢ L)) ⊢ Set.Finite {γ | (fun x => γ • x) '' K ∩ L ≠ ∅} [PROOFSTEP] apply Finite.of_preimage _ (oppositeEquiv S).surjective [GOAL] α : Type u β : Type v G : Type w H✝ : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L this : Continuous fun p => (p.fst⁻¹, p.snd) H : Set.Finite (Subtype.val ⁻¹' ((fun a => a.fst⁻¹ * a.snd) '' K ×ˢ L)) ⊢ Set.Finite (↑(oppositeEquiv S) ⁻¹' {γ | (fun x => γ • x) '' K ∩ L ≠ ∅}) [PROOFSTEP] convert H using 1 [GOAL] case h.e'_2 α : Type u β : Type v G : Type w H✝ : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L this : Continuous fun p => (p.fst⁻¹, p.snd) H : Set.Finite (Subtype.val ⁻¹' ((fun a => a.fst⁻¹ * a.snd) '' K ×ˢ L)) ⊢ ↑(oppositeEquiv S) ⁻¹' {γ | (fun x => γ • x) '' K ∩ L ≠ ∅} = Subtype.val ⁻¹' ((fun a => a.fst⁻¹ * a.snd) '' K ×ˢ L) [PROOFSTEP] ext x [GOAL] case h.e'_2.h α : Type u β : Type v G : Type w H✝ : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L this : Continuous fun p => (p.fst⁻¹, p.snd) H : Set.Finite (Subtype.val ⁻¹' ((fun a => a.fst⁻¹ * a.snd) '' K ×ˢ L)) x : { x // x ∈ S } ⊢ x ∈ ↑(oppositeEquiv S) ⁻¹' {γ | (fun x => γ • x) '' K ∩ L ≠ ∅} ↔ x ∈ Subtype.val ⁻¹' ((fun a => a.fst⁻¹ * a.snd) '' K ×ˢ L) [PROOFSTEP] simp only [image_smul, mem_setOf_eq, coeSubtype, mem_preimage, mem_image, Prod.exists] [GOAL] case h.e'_2.h α : Type u β : Type v G : Type w H✝ : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G S✝ : Subgroup G inst✝¹ : Normal S✝ inst✝ : IsClosed ↑S✝ S : Subgroup G hS : Tendsto (↑(Subgroup.subtype S)) cofinite (cocompact G) K L : Set G hK : IsCompact K hL : IsCompact L this : Continuous fun p => (p.fst⁻¹, p.snd) H : Set.Finite (Subtype.val ⁻¹' ((fun a => a.fst⁻¹ * a.snd) '' K ×ˢ L)) x : { x // x ∈ S } ⊢ ↑(oppositeEquiv S) x • K ∩ L ≠ ∅ ↔ ∃ a b, (a, b) ∈ K ×ˢ L ∧ a⁻¹ * b = ↑x [PROOFSTEP] exact Set.op_smul_inter_ne_empty_iff [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U ⊢ ∃ V, V ∈ 𝓝 1 ∧ K * V ⊆ U [PROOFSTEP] refine hK.induction_on ?_ ?_ ?_ ?_ [GOAL] case refine_1 α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U ⊢ ∃ V, V ∈ 𝓝 1 ∧ ∅ * V ⊆ U [PROOFSTEP] exact ⟨univ, by simp⟩ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U ⊢ univ ∈ 𝓝 1 ∧ ∅ * univ ⊆ U [PROOFSTEP] simp [GOAL] case refine_2 α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U ⊢ ∀ ⦃s t : Set G⦄, s ⊆ t → (∃ V, V ∈ 𝓝 1 ∧ t * V ⊆ U) → ∃ V, V ∈ 𝓝 1 ∧ s * V ⊆ U [PROOFSTEP] rintro s t hst ⟨V, hV, hV'⟩ [GOAL] case refine_2.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U s t : Set G hst : s ⊆ t V : Set G hV : V ∈ 𝓝 1 hV' : t * V ⊆ U ⊢ ∃ V, V ∈ 𝓝 1 ∧ s * V ⊆ U [PROOFSTEP] exact ⟨V, hV, (mul_subset_mul_right hst).trans hV'⟩ [GOAL] case refine_3 α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U ⊢ ∀ ⦃s t : Set G⦄, (∃ V, V ∈ 𝓝 1 ∧ s * V ⊆ U) → (∃ V, V ∈ 𝓝 1 ∧ t * V ⊆ U) → ∃ V, V ∈ 𝓝 1 ∧ (s ∪ t) * V ⊆ U [PROOFSTEP] rintro s t ⟨V, V_in, hV'⟩ ⟨W, W_in, hW'⟩ [GOAL] case refine_3.intro.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U s t V : Set G V_in : V ∈ 𝓝 1 hV' : s * V ⊆ U W : Set G W_in : W ∈ 𝓝 1 hW' : t * W ⊆ U ⊢ ∃ V, V ∈ 𝓝 1 ∧ (s ∪ t) * V ⊆ U [PROOFSTEP] use V ∩ W, inter_mem V_in W_in [GOAL] case right α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U s t V : Set G V_in : V ∈ 𝓝 1 hV' : s * V ⊆ U W : Set G W_in : W ∈ 𝓝 1 hW' : t * W ⊆ U ⊢ (s ∪ t) * (V ∩ W) ⊆ U [PROOFSTEP] rw [union_mul] [GOAL] case right α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U s t V : Set G V_in : V ∈ 𝓝 1 hV' : s * V ⊆ U W : Set G W_in : W ∈ 𝓝 1 hW' : t * W ⊆ U ⊢ s * (V ∩ W) ∪ t * (V ∩ W) ⊆ U [PROOFSTEP] exact union_subset ((mul_subset_mul_left (V.inter_subset_left W)).trans hV') ((mul_subset_mul_left (V.inter_subset_right W)).trans hW') [GOAL] case refine_4 α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U ⊢ ∀ (x : G), x ∈ K → ∃ t, t ∈ 𝓝[K] x ∧ ∃ V, V ∈ 𝓝 1 ∧ t * V ⊆ U [PROOFSTEP] intro x hx [GOAL] case refine_4 α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U x : G hx : x ∈ K ⊢ ∃ t, t ∈ 𝓝[K] x ∧ ∃ V, V ∈ 𝓝 1 ∧ t * V ⊆ U [PROOFSTEP] have := tendsto_mul (show U ∈ 𝓝 (x * 1) by simpa using hU.mem_nhds (hKU hx)) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U x : G hx : x ∈ K ⊢ U ∈ 𝓝 (x * 1) [PROOFSTEP] simpa using hU.mem_nhds (hKU hx) [GOAL] case refine_4 α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U x : G hx : x ∈ K this : U ∈ map (fun p => p.fst * p.snd) (𝓝 (x, 1)) ⊢ ∃ t, t ∈ 𝓝[K] x ∧ ∃ V, V ∈ 𝓝 1 ∧ t * V ⊆ U [PROOFSTEP] rw [nhds_prod_eq, mem_map, mem_prod_iff] at this [GOAL] case refine_4 α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U x : G hx : x ∈ K this : ∃ t₁, t₁ ∈ 𝓝 x ∧ ∃ t₂, t₂ ∈ 𝓝 1 ∧ t₁ ×ˢ t₂ ⊆ (fun p => p.fst * p.snd) ⁻¹' U ⊢ ∃ t, t ∈ 𝓝[K] x ∧ ∃ V, V ∈ 𝓝 1 ∧ t * V ⊆ U [PROOFSTEP] rcases this with ⟨t, ht, s, hs, h⟩ [GOAL] case refine_4.intro.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U x : G hx : x ∈ K t : Set G ht : t ∈ 𝓝 x s : Set G hs : s ∈ 𝓝 1 h : t ×ˢ s ⊆ (fun p => p.fst * p.snd) ⁻¹' U ⊢ ∃ t, t ∈ 𝓝[K] x ∧ ∃ V, V ∈ 𝓝 1 ∧ t * V ⊆ U [PROOFSTEP] rw [← image_subset_iff, image_mul_prod] at h [GOAL] case refine_4.intro.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U x : G hx : x ∈ K t : Set G ht : t ∈ 𝓝 x s : Set G hs : s ∈ 𝓝 1 h : t * s ⊆ U ⊢ ∃ t, t ∈ 𝓝[K] x ∧ ∃ V, V ∈ 𝓝 1 ∧ t * V ⊆ U [PROOFSTEP] exact ⟨t, mem_nhdsWithin_of_mem_nhds ht, s, hs, h⟩ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U ⊢ ∃ V, V ∈ 𝓝 1 ∧ V * K ⊆ U [PROOFSTEP] rcases compact_open_separated_mul_right (hK.image continuous_op) (opHomeomorph.isOpenMap U hU) (image_subset op hKU) with ⟨V, hV : V ∈ 𝓝 (op (1 : G)), hV' : op '' K * V ⊆ op '' U⟩ [GOAL] case intro.intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U V : Set Gᵐᵒᵖ hV : V ∈ 𝓝 (op 1) hV' : op '' K * V ⊆ op '' U ⊢ ∃ V, V ∈ 𝓝 1 ∧ V * K ⊆ U [PROOFSTEP] refine' ⟨op ⁻¹' V, continuous_op.continuousAt hV, _⟩ [GOAL] case intro.intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : MulOneClass G inst✝ : ContinuousMul G K U : Set G hK : IsCompact K hU : IsOpen U hKU : K ⊆ U V : Set Gᵐᵒᵖ hV : V ∈ 𝓝 (op 1) hV' : op '' K * V ⊆ op '' U ⊢ op ⁻¹' V * K ⊆ U [PROOFSTEP] rwa [← image_preimage_eq V op_surjective, ← image_op_mul, image_subset_iff, preimage_image_eq _ op_injective] at hV' [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G K V : Set G hK : IsCompact K hV : Set.Nonempty (interior V) ⊢ ∃ t, K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V [PROOFSTEP] obtain ⟨t, ht⟩ : ∃ t : Finset G, K ⊆ ⋃ x ∈ t, interior ((· * ·) x ⁻¹' V) := by refine' hK.elim_finite_subcover (fun x => interior <| (· * ·) x ⁻¹' V) (fun x => isOpen_interior) _ cases' hV with g₀ hg₀ refine' fun g _ => mem_iUnion.2 ⟨g₀ * g⁻¹, _⟩ refine' preimage_interior_subset_interior_preimage (continuous_const.mul continuous_id) _ rwa [mem_preimage, id_def, inv_mul_cancel_right] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G K V : Set G hK : IsCompact K hV : Set.Nonempty (interior V) ⊢ ∃ t, K ⊆ ⋃ (x : G) (_ : x ∈ t), interior ((fun x x_1 => x * x_1) x ⁻¹' V) [PROOFSTEP] refine' hK.elim_finite_subcover (fun x => interior <| (· * ·) x ⁻¹' V) (fun x => isOpen_interior) _ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G K V : Set G hK : IsCompact K hV : Set.Nonempty (interior V) ⊢ K ⊆ ⋃ (i : G), (fun x => interior ((fun x x_1 => x * x_1) x ⁻¹' V)) i [PROOFSTEP] cases' hV with g₀ hg₀ [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G K V : Set G hK : IsCompact K g₀ : G hg₀ : g₀ ∈ interior V ⊢ K ⊆ ⋃ (i : G), (fun x => interior ((fun x x_1 => x * x_1) x ⁻¹' V)) i [PROOFSTEP] refine' fun g _ => mem_iUnion.2 ⟨g₀ * g⁻¹, _⟩ [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G K V : Set G hK : IsCompact K g₀ : G hg₀ : g₀ ∈ interior V g : G x✝ : g ∈ K ⊢ g ∈ (fun x => interior ((fun x x_1 => x * x_1) x ⁻¹' V)) (g₀ * g⁻¹) [PROOFSTEP] refine' preimage_interior_subset_interior_preimage (continuous_const.mul continuous_id) _ [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G K V : Set G hK : IsCompact K g₀ : G hg₀ : g₀ ∈ interior V g : G x✝ : g ∈ K ⊢ g ∈ (fun x => g₀ * g⁻¹ * id x) ⁻¹' interior V [PROOFSTEP] rwa [mem_preimage, id_def, inv_mul_cancel_right] [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G K V : Set G hK : IsCompact K hV : Set.Nonempty (interior V) t : Finset G ht : K ⊆ ⋃ (x : G) (_ : x ∈ t), interior ((fun x x_1 => x * x_1) x ⁻¹' V) ⊢ ∃ t, K ⊆ ⋃ (g : G) (_ : g ∈ t), (fun h => g * h) ⁻¹' V [PROOFSTEP] exact ⟨t, Subset.trans ht <| iUnion₂_mono fun g _ => interior_subset⟩ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G inst✝¹ : SeparableSpace G inst✝ : LocallyCompactSpace G ⊢ SigmaCompactSpace G [PROOFSTEP] obtain ⟨L, hLc, hL1⟩ := exists_compact_mem_nhds (1 : G) [GOAL] case intro.intro α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G inst✝¹ : SeparableSpace G inst✝ : LocallyCompactSpace G L : Set G hLc : IsCompact L hL1 : L ∈ 𝓝 1 ⊢ SigmaCompactSpace G [PROOFSTEP] refine' ⟨⟨fun n => (fun x => x * denseSeq G n) ⁻¹' L, _, _⟩⟩ [GOAL] case intro.intro.refine'_1 α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G inst✝¹ : SeparableSpace G inst✝ : LocallyCompactSpace G L : Set G hLc : IsCompact L hL1 : L ∈ 𝓝 1 ⊢ ∀ (n : ℕ), IsCompact ((fun n => (fun x => x * denseSeq G n) ⁻¹' L) n) [PROOFSTEP] intro n [GOAL] case intro.intro.refine'_1 α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G inst✝¹ : SeparableSpace G inst✝ : LocallyCompactSpace G L : Set G hLc : IsCompact L hL1 : L ∈ 𝓝 1 n : ℕ ⊢ IsCompact ((fun n => (fun x => x * denseSeq G n) ⁻¹' L) n) [PROOFSTEP] exact (Homeomorph.mulRight _).isCompact_preimage.mpr hLc [GOAL] case intro.intro.refine'_2 α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G inst✝¹ : SeparableSpace G inst✝ : LocallyCompactSpace G L : Set G hLc : IsCompact L hL1 : L ∈ 𝓝 1 ⊢ ⋃ (n : ℕ), (fun n => (fun x => x * denseSeq G n) ⁻¹' L) n = univ [PROOFSTEP] refine' iUnion_eq_univ_iff.2 fun x => _ [GOAL] case intro.intro.refine'_2 α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G inst✝¹ : SeparableSpace G inst✝ : LocallyCompactSpace G L : Set G hLc : IsCompact L hL1 : L ∈ 𝓝 1 x : G ⊢ ∃ i, x ∈ (fun n => (fun x => x * denseSeq G n) ⁻¹' L) i [PROOFSTEP] obtain ⟨_, ⟨n, rfl⟩, hn⟩ : (range (denseSeq G) ∩ (fun y => x * y) ⁻¹' L).Nonempty := by rw [← (Homeomorph.mulLeft x).apply_symm_apply 1] at hL1 exact (denseRange_denseSeq G).inter_nhds_nonempty ((Homeomorph.mulLeft x).continuous.continuousAt <| hL1) [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G inst✝¹ : SeparableSpace G inst✝ : LocallyCompactSpace G L : Set G hLc : IsCompact L hL1 : L ∈ 𝓝 1 x : G ⊢ Set.Nonempty (range (denseSeq G) ∩ (fun y => x * y) ⁻¹' L) [PROOFSTEP] rw [← (Homeomorph.mulLeft x).apply_symm_apply 1] at hL1 [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G inst✝¹ : SeparableSpace G inst✝ : LocallyCompactSpace G L : Set G hLc : IsCompact L x : G hL1 : L ∈ 𝓝 (↑(Homeomorph.mulLeft x) (↑(Homeomorph.symm (Homeomorph.mulLeft x)) 1)) ⊢ Set.Nonempty (range (denseSeq G) ∩ (fun y => x * y) ⁻¹' L) [PROOFSTEP] exact (denseRange_denseSeq G).inter_nhds_nonempty ((Homeomorph.mulLeft x).continuous.continuousAt <| hL1) [GOAL] case intro.intro.refine'_2.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝⁴ : TopologicalSpace G inst✝³ : Group G inst✝² : TopologicalGroup G inst✝¹ : SeparableSpace G inst✝ : LocallyCompactSpace G L : Set G hLc : IsCompact L hL1 : L ∈ 𝓝 1 x : G n : ℕ hn : denseSeq G n ∈ (fun y => x * y) ⁻¹' L ⊢ ∃ i, x ∈ (fun n => (fun x => x * denseSeq G n) ⁻¹' L) i [PROOFSTEP] exact ⟨n, hn⟩ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : NoncompactSpace G K L : Set G hK : IsCompact K hL : IsCompact L ⊢ ∃ g, Disjoint K (g • L) [PROOFSTEP] have A : ¬K * L⁻¹ = univ := (hK.mul hL.inv).ne_univ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : NoncompactSpace G K L : Set G hK : IsCompact K hL : IsCompact L A : ¬K * L⁻¹ = univ ⊢ ∃ g, Disjoint K (g • L) [PROOFSTEP] obtain ⟨g, hg⟩ : ∃ g, g ∉ K * L⁻¹ := by contrapose! A exact eq_univ_iff_forall.2 A [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : NoncompactSpace G K L : Set G hK : IsCompact K hL : IsCompact L A : ¬K * L⁻¹ = univ ⊢ ∃ g, ¬g ∈ K * L⁻¹ [PROOFSTEP] contrapose! A [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : NoncompactSpace G K L : Set G hK : IsCompact K hL : IsCompact L A : ∀ (g : G), g ∈ K * L⁻¹ ⊢ K * L⁻¹ = univ [PROOFSTEP] exact eq_univ_iff_forall.2 A [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : NoncompactSpace G K L : Set G hK : IsCompact K hL : IsCompact L A : ¬K * L⁻¹ = univ g : G hg : ¬g ∈ K * L⁻¹ ⊢ ∃ g, Disjoint K (g • L) [PROOFSTEP] refine' ⟨g, _⟩ [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : NoncompactSpace G K L : Set G hK : IsCompact K hL : IsCompact L A : ¬K * L⁻¹ = univ g : G hg : ¬g ∈ K * L⁻¹ ⊢ Disjoint K (g • L) [PROOFSTEP] refine disjoint_left.2 fun a ha h'a => hg ?_ [GOAL] case intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : NoncompactSpace G K L : Set G hK : IsCompact K hL : IsCompact L A : ¬K * L⁻¹ = univ g : G hg : ¬g ∈ K * L⁻¹ a : G ha : a ∈ K h'a : a ∈ g • L ⊢ g ∈ K * L⁻¹ [PROOFSTEP] rcases h'a with ⟨b, bL, rfl⟩ [GOAL] case intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : NoncompactSpace G K L : Set G hK : IsCompact K hL : IsCompact L A : ¬K * L⁻¹ = univ g : G hg : ¬g ∈ K * L⁻¹ b : G bL : b ∈ L ha : (fun x => g • x) b ∈ K ⊢ g ∈ K * L⁻¹ [PROOFSTEP] refine' ⟨g * b, b⁻¹, ha, by simpa only [Set.mem_inv, inv_inv] using bL, _⟩ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : NoncompactSpace G K L : Set G hK : IsCompact K hL : IsCompact L A : ¬K * L⁻¹ = univ g : G hg : ¬g ∈ K * L⁻¹ b : G bL : b ∈ L ha : (fun x => g • x) b ∈ K ⊢ b⁻¹ ∈ L⁻¹ [PROOFSTEP] simpa only [Set.mem_inv, inv_inv] using bL [GOAL] case intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : NoncompactSpace G K L : Set G hK : IsCompact K hL : IsCompact L A : ¬K * L⁻¹ = univ g : G hg : ¬g ∈ K * L⁻¹ b : G bL : b ∈ L ha : (fun x => g • x) b ∈ K ⊢ (fun x x_1 => x * x_1) (g * b) b⁻¹ = g [PROOFSTEP] simp only [smul_eq_mul, mul_inv_cancel_right] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : LocallyCompactSpace G U : Set G hU : U ∈ 𝓝 1 ⊢ ∃ K, IsCompact K ∧ IsClosed K ∧ K ⊆ U ∧ 1 ∈ interior K [PROOFSTEP] obtain ⟨L, Lint, LU, Lcomp⟩ : ∃ (L : Set G), L ∈ 𝓝 (1 : G) ∧ L ⊆ U ∧ IsCompact L := local_compact_nhds hU [GOAL] case intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : LocallyCompactSpace G U : Set G hU : U ∈ 𝓝 1 L : Set G Lint : L ∈ 𝓝 1 LU : L ⊆ U Lcomp : IsCompact L ⊢ ∃ K, IsCompact K ∧ IsClosed K ∧ K ⊆ U ∧ 1 ∈ interior K [PROOFSTEP] obtain ⟨V, Vnhds, hV⟩ : ∃ V ∈ 𝓝 (1 : G), ∀ v ∈ V, ∀ w ∈ V, v * w ∈ L := by have : (fun p : G × G => p.1 * p.2) ⁻¹' L ∈ 𝓝 ((1, 1) : G × G) := by refine' continuousAt_fst.mul continuousAt_snd _ simpa only [mul_one] using Lint simpa only [div_eq_mul_inv, nhds_prod_eq, mem_prod_self_iff, prod_subset_iff, mem_preimage] using this [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : LocallyCompactSpace G U : Set G hU : U ∈ 𝓝 1 L : Set G Lint : L ∈ 𝓝 1 LU : L ⊆ U Lcomp : IsCompact L ⊢ ∃ V, V ∈ 𝓝 1 ∧ ∀ (v : G), v ∈ V → ∀ (w : G), w ∈ V → v * w ∈ L [PROOFSTEP] have : (fun p : G × G => p.1 * p.2) ⁻¹' L ∈ 𝓝 ((1, 1) : G × G) := by refine' continuousAt_fst.mul continuousAt_snd _ simpa only [mul_one] using Lint [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : LocallyCompactSpace G U : Set G hU : U ∈ 𝓝 1 L : Set G Lint : L ∈ 𝓝 1 LU : L ⊆ U Lcomp : IsCompact L ⊢ (fun p => p.fst * p.snd) ⁻¹' L ∈ 𝓝 (1, 1) [PROOFSTEP] refine' continuousAt_fst.mul continuousAt_snd _ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : LocallyCompactSpace G U : Set G hU : U ∈ 𝓝 1 L : Set G Lint : L ∈ 𝓝 1 LU : L ⊆ U Lcomp : IsCompact L ⊢ L ∈ 𝓝 ((fun x => x.fst * x.snd) (1, 1)) [PROOFSTEP] simpa only [mul_one] using Lint [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : LocallyCompactSpace G U : Set G hU : U ∈ 𝓝 1 L : Set G Lint : L ∈ 𝓝 1 LU : L ⊆ U Lcomp : IsCompact L this : (fun p => p.fst * p.snd) ⁻¹' L ∈ 𝓝 (1, 1) ⊢ ∃ V, V ∈ 𝓝 1 ∧ ∀ (v : G), v ∈ V → ∀ (w : G), w ∈ V → v * w ∈ L [PROOFSTEP] simpa only [div_eq_mul_inv, nhds_prod_eq, mem_prod_self_iff, prod_subset_iff, mem_preimage] using this [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : LocallyCompactSpace G U : Set G hU : U ∈ 𝓝 1 L : Set G Lint : L ∈ 𝓝 1 LU : L ⊆ U Lcomp : IsCompact L V : Set G Vnhds : V ∈ 𝓝 1 hV : ∀ (v : G), v ∈ V → ∀ (w : G), w ∈ V → v * w ∈ L ⊢ ∃ K, IsCompact K ∧ IsClosed K ∧ K ⊆ U ∧ 1 ∈ interior K [PROOFSTEP] have VL : closure V ⊆ L := calc closure V = {(1 : G)} * closure V := by simp only [singleton_mul, one_mul, image_id'] _ ⊆ interior V * closure V := (mul_subset_mul_right (by simpa only [singleton_subset_iff] using mem_interior_iff_mem_nhds.2 Vnhds)) _ = interior V * V := (isOpen_interior.mul_closure _) _ ⊆ V * V := (mul_subset_mul_right interior_subset) _ ⊆ L := by rintro x ⟨y, z, yv, zv, rfl⟩ exact hV _ yv _ zv [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : LocallyCompactSpace G U : Set G hU : U ∈ 𝓝 1 L : Set G Lint : L ∈ 𝓝 1 LU : L ⊆ U Lcomp : IsCompact L V : Set G Vnhds : V ∈ 𝓝 1 hV : ∀ (v : G), v ∈ V → ∀ (w : G), w ∈ V → v * w ∈ L ⊢ closure V = {1} * closure V [PROOFSTEP] simp only [singleton_mul, one_mul, image_id'] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : LocallyCompactSpace G U : Set G hU : U ∈ 𝓝 1 L : Set G Lint : L ∈ 𝓝 1 LU : L ⊆ U Lcomp : IsCompact L V : Set G Vnhds : V ∈ 𝓝 1 hV : ∀ (v : G), v ∈ V → ∀ (w : G), w ∈ V → v * w ∈ L ⊢ {1} ⊆ interior V [PROOFSTEP] simpa only [singleton_subset_iff] using mem_interior_iff_mem_nhds.2 Vnhds [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : LocallyCompactSpace G U : Set G hU : U ∈ 𝓝 1 L : Set G Lint : L ∈ 𝓝 1 LU : L ⊆ U Lcomp : IsCompact L V : Set G Vnhds : V ∈ 𝓝 1 hV : ∀ (v : G), v ∈ V → ∀ (w : G), w ∈ V → v * w ∈ L ⊢ V * V ⊆ L [PROOFSTEP] rintro x ⟨y, z, yv, zv, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : LocallyCompactSpace G U : Set G hU : U ∈ 𝓝 1 L : Set G Lint : L ∈ 𝓝 1 LU : L ⊆ U Lcomp : IsCompact L V : Set G Vnhds : V ∈ 𝓝 1 hV : ∀ (v : G), v ∈ V → ∀ (w : G), w ∈ V → v * w ∈ L y z : G yv : y ∈ V zv : z ∈ V ⊢ (fun x x_1 => x * x_1) y z ∈ L [PROOFSTEP] exact hV _ yv _ zv [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝³ : TopologicalSpace G inst✝² : Group G inst✝¹ : TopologicalGroup G inst✝ : LocallyCompactSpace G U : Set G hU : U ∈ 𝓝 1 L : Set G Lint : L ∈ 𝓝 1 LU : L ⊆ U Lcomp : IsCompact L V : Set G Vnhds : V ∈ 𝓝 1 hV : ∀ (v : G), v ∈ V → ∀ (w : G), w ∈ V → v * w ∈ L VL : closure V ⊆ L ⊢ ∃ K, IsCompact K ∧ IsClosed K ∧ K ⊆ U ∧ 1 ∈ interior K [PROOFSTEP] exact ⟨closure V, isCompact_of_isClosed_subset Lcomp isClosed_closure VL, isClosed_closure, VL.trans LU, interior_mono subset_closure (mem_interior_iff_mem_nhds.2 Vnhds)⟩ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G x y : G ⊢ 𝓝 (x * y) = map (fun x_1 => x * x_1) (map (fun x => x * y) (𝓝 1 * 𝓝 1)) [PROOFSTEP] simp [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G x y : G ⊢ map (fun x_1 => x * x_1) (map (fun x => x * y) (𝓝 1 * 𝓝 1)) = map₂ (fun a b => x * (a * b * y)) (𝓝 1) (𝓝 1) [PROOFSTEP] rw [← map₂_mul, map_map₂, map_map₂] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G x y : G ⊢ map₂ (fun a b => x * (a * b * y)) (𝓝 1) (𝓝 1) = map₂ (fun a b => x * a * (b * y)) (𝓝 1) (𝓝 1) [PROOFSTEP] simp only [mul_assoc] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G x y : G ⊢ map₂ (fun a b => x * a * (b * y)) (𝓝 1) (𝓝 1) = 𝓝 x * 𝓝 y [PROOFSTEP] rw [← map_mul_left_nhds_one x, ← map_mul_right_nhds_one y, ← map₂_mul, map₂_map_left, map₂_map_right] [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : ContinuousMul G Γ : Subgroup G g : G ⊢ Continuous fun x => g • x [PROOFSTEP] convert ((@continuous_const _ _ _ _ g).mul continuous_id).quotient_map' _ [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : ContinuousMul G Γ : Subgroup G x : G ⧸ Γ ⊢ Continuous fun g => g • x [PROOFSTEP] induction x using QuotientGroup.induction_on [GOAL] case H α : Type u β : Type v G : Type w H : Type x inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : ContinuousMul G Γ : Subgroup G z✝ : G ⊢ Continuous fun g => g • ↑z✝ [PROOFSTEP] exact continuous_quotient_mk'.comp (continuous_mul_right _) [GOAL] α : Type u β : Type v G : Type w H : Type x ι : Sort u_1 inst✝ : Group G ts' : ι → TopologicalSpace G h' : ∀ (i : ι), TopologicalGroup G ⊢ TopologicalGroup G [PROOFSTEP] rw [← sInf_range] [GOAL] α : Type u β : Type v G : Type w H : Type x ι : Sort u_1 inst✝ : Group G ts' : ι → TopologicalSpace G h' : ∀ (i : ι), TopologicalGroup G ⊢ TopologicalGroup G [PROOFSTEP] exact topologicalGroup_sInf (Set.forall_range_iff.mpr h') [GOAL] α : Type u β : Type v G : Type w H : Type x ι : Sort u_1 inst✝ : Group G t₁ t₂ : TopologicalSpace G h₁ : TopologicalGroup G h₂ : TopologicalGroup G ⊢ TopologicalGroup G [PROOFSTEP] rw [inf_eq_iInf] [GOAL] α : Type u β : Type v G : Type w H : Type x ι : Sort u_1 inst✝ : Group G t₁ t₂ : TopologicalSpace G h₁ : TopologicalGroup G h₂ : TopologicalGroup G ⊢ TopologicalGroup G [PROOFSTEP] refine' topologicalGroup_iInf fun b => _ [GOAL] α : Type u β : Type v G : Type w H : Type x ι : Sort u_1 inst✝ : Group G t₁ t₂ : TopologicalSpace G h₁ : TopologicalGroup G h₂ : TopologicalGroup G b : Bool ⊢ TopologicalGroup G [PROOFSTEP] cases b [GOAL] case false α : Type u β : Type v G : Type w H : Type x ι : Sort u_1 inst✝ : Group G t₁ t₂ : TopologicalSpace G h₁ : TopologicalGroup G h₂ : TopologicalGroup G ⊢ TopologicalGroup G [PROOFSTEP] assumption [GOAL] case true α : Type u β : Type v G : Type w H : Type x ι : Sort u_1 inst✝ : Group G t₁ t₂ : TopologicalSpace G h₁ : TopologicalGroup G h₂ : TopologicalGroup G ⊢ TopologicalGroup G [PROOFSTEP] assumption [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝ : Group α g : GroupTopology α ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] letI := g.toTopologicalSpace [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝ : Group α g : GroupTopology α this : TopologicalSpace α := g.toTopologicalSpace ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] haveI := g.toTopologicalGroup [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝ : Group α g : GroupTopology α this✝ : TopologicalSpace α := g.toTopologicalSpace this : TopologicalGroup α ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] exact continuous_mul [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝ : Group α g : GroupTopology α ⊢ Continuous Inv.inv [PROOFSTEP] letI := g.toTopologicalSpace [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝ : Group α g : GroupTopology α this : TopologicalSpace α := g.toTopologicalSpace ⊢ Continuous Inv.inv [PROOFSTEP] haveI := g.toTopologicalGroup [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝ : Group α g : GroupTopology α this✝ : TopologicalSpace α := g.toTopologicalSpace this : TopologicalGroup α ⊢ Continuous Inv.inv [PROOFSTEP] exact continuous_inv [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝ : Group α f g : GroupTopology α h : f.toTopologicalSpace = g.toTopologicalSpace ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk α : Type u β : Type v G : Type w H : Type x inst✝ : Group α g : GroupTopology α toTopologicalSpace✝ : TopologicalSpace α toTopologicalGroup✝ : TopologicalGroup α h : { toTopologicalSpace := toTopologicalSpace✝, toTopologicalGroup := toTopologicalGroup✝ }.toTopologicalSpace = g.toTopologicalSpace ⊢ { toTopologicalSpace := toTopologicalSpace✝, toTopologicalGroup := toTopologicalGroup✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk α : Type u β : Type v G : Type w H : Type x inst✝ : Group α toTopologicalSpace✝¹ : TopologicalSpace α toTopologicalGroup✝¹ : TopologicalGroup α toTopologicalSpace✝ : TopologicalSpace α toTopologicalGroup✝ : TopologicalGroup α h : { toTopologicalSpace := toTopologicalSpace✝¹, toTopologicalGroup := toTopologicalGroup✝¹ }.toTopologicalSpace = { toTopologicalSpace := toTopologicalSpace✝, toTopologicalGroup := toTopologicalGroup✝ }.toTopologicalSpace ⊢ { toTopologicalSpace := toTopologicalSpace✝¹, toTopologicalGroup := toTopologicalGroup✝¹ } = { toTopologicalSpace := toTopologicalSpace✝, toTopologicalGroup := toTopologicalGroup✝ } [PROOFSTEP] congr [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝ : Group α _t : TopologicalSpace α := ⊥ ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] haveI := discreteTopology_bot α [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝ : Group α _t : TopologicalSpace α := ⊥ this : DiscreteTopology α ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] continuity [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝ : Group α src✝¹ : InfSet (GroupTopology α) := inferInstanceAs (InfSet (GroupTopology α)) src✝ : PartialOrder (GroupTopology α) := inferInstanceAs (PartialOrder (GroupTopology α)) ⊢ ∀ (s : Set (GroupTopology α)) (a : GroupTopology α), (∀ (b : GroupTopology α), b ∈ s → a ≤ b) → a ≤ sInf s [PROOFSTEP] intro S a hab [GOAL] α : Type u β : Type v G : Type w H : Type x inst✝ : Group α src✝¹ : InfSet (GroupTopology α) := inferInstanceAs (InfSet (GroupTopology α)) src✝ : PartialOrder (GroupTopology α) := inferInstanceAs (PartialOrder (GroupTopology α)) S : Set (GroupTopology α) a : GroupTopology α hab : ∀ (b : GroupTopology α), b ∈ S → a ≤ b ⊢ a ≤ sInf S [PROOFSTEP] apply (inferInstanceAs (CompleteLattice (TopologicalSpace α))).le_sInf [GOAL] case a α : Type u β : Type v G : Type w H : Type x inst✝ : Group α src✝¹ : InfSet (GroupTopology α) := inferInstanceAs (InfSet (GroupTopology α)) src✝ : PartialOrder (GroupTopology α) := inferInstanceAs (PartialOrder (GroupTopology α)) S : Set (GroupTopology α) a : GroupTopology α hab : ∀ (b : GroupTopology α), b ∈ S → a ≤ b ⊢ ∀ (b : TopologicalSpace α), b ∈ toTopologicalSpace '' S → a.toTopologicalSpace ≤ b [PROOFSTEP] rintro _ ⟨b, hbS, rfl⟩ [GOAL] case a.intro.intro α : Type u β : Type v G : Type w H : Type x inst✝ : Group α src✝¹ : InfSet (GroupTopology α) := inferInstanceAs (InfSet (GroupTopology α)) src✝ : PartialOrder (GroupTopology α) := inferInstanceAs (PartialOrder (GroupTopology α)) S : Set (GroupTopology α) a : GroupTopology α hab : ∀ (b : GroupTopology α), b ∈ S → a ≤ b b : GroupTopology α hbS : b ∈ S ⊢ a.toTopologicalSpace ≤ b.toTopologicalSpace [PROOFSTEP] exact hab b hbS [GOAL] α✝ : Type u β✝ : Type v G : Type w H : Type x inst✝¹ : Group α✝ α : Type u_1 β : Type u_2 t : TopologicalSpace α inst✝ : Group β f : α → β ⊢ Continuous f [PROOFSTEP] rw [continuous_sInf_rng] [GOAL] α✝ : Type u β✝ : Type v G : Type w H : Type x inst✝¹ : Group α✝ α : Type u_1 β : Type u_2 t : TopologicalSpace α inst✝ : Group β f : α → β ⊢ ∀ (t_1 : TopologicalSpace β), t_1 ∈ toTopologicalSpace '' {b | TopologicalSpace.coinduced f t ≤ b.toTopologicalSpace} → Continuous f [PROOFSTEP] rintro _ ⟨t', ht', rfl⟩ [GOAL] case intro.intro α✝ : Type u β✝ : Type v G : Type w H : Type x inst✝¹ : Group α✝ α : Type u_1 β : Type u_2 t : TopologicalSpace α inst✝ : Group β f : α → β t' : GroupTopology β ht' : t' ∈ {b | TopologicalSpace.coinduced f t ≤ b.toTopologicalSpace} ⊢ Continuous f [PROOFSTEP] exact continuous_iff_coinduced_le.2 ht'
{"mathlib_filename": "Mathlib.Topology.Algebra.Group.Basic", "llama_tokens": 50906}
[GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A : C U V : (Opens ↑X)ᵒᵖ i : U ⟶ V h : p₀ ∈ V.unop ⊢ (fun U => if p₀ ∈ U.unop then A else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) V [PROOFSTEP] dsimp [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A : C U V : (Opens ↑X)ᵒᵖ i : U ⟶ V h : p₀ ∈ V.unop ⊢ (if p₀ ∈ U.unop then A else ⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C [PROOFSTEP] erw [if_pos h, if_pos (leOfHom i.unop h)] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A : C U V W : (Opens ↑X)ᵒᵖ iVU : U ⟶ V iWV : V ⟶ W ⊢ { obj := fun U => if p₀ ∈ U.unop then A else ⊤_ C, map := fun {U V} i => if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) U) }.map (iVU ≫ iWV) = { obj := fun U => if p₀ ∈ U.unop then A else ⊤_ C, map := fun {U V} i => if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) U) }.map iVU ≫ { obj := fun U => if p₀ ∈ U.unop then A else ⊤_ C, map := fun {U V} i => if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) U) }.map iWV [PROOFSTEP] by_cases hW : p₀ ∈ unop W [GOAL] case pos X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A : C U V W : (Opens ↑X)ᵒᵖ iVU : U ⟶ V iWV : V ⟶ W hW : p₀ ∈ W.unop ⊢ { obj := fun U => if p₀ ∈ U.unop then A else ⊤_ C, map := fun {U V} i => if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) U) }.map (iVU ≫ iWV) = { obj := fun U => if p₀ ∈ U.unop then A else ⊤_ C, map := fun {U V} i => if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) U) }.map iVU ≫ { obj := fun U => if p₀ ∈ U.unop then A else ⊤_ C, map := fun {U V} i => if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) U) }.map iWV [PROOFSTEP] have hV : p₀ ∈ unop V := leOfHom iWV.unop hW [GOAL] case pos X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A : C U V W : (Opens ↑X)ᵒᵖ iVU : U ⟶ V iWV : V ⟶ W hW : p₀ ∈ W.unop hV : p₀ ∈ V.unop ⊢ { obj := fun U => if p₀ ∈ U.unop then A else ⊤_ C, map := fun {U V} i => if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) U) }.map (iVU ≫ iWV) = { obj := fun U => if p₀ ∈ U.unop then A else ⊤_ C, map := fun {U V} i => if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) U) }.map iVU ≫ { obj := fun U => if p₀ ∈ U.unop then A else ⊤_ C, map := fun {U V} i => if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) U) }.map iWV [PROOFSTEP] simp only [dif_pos hW, dif_pos hV, eqToHom_trans] [GOAL] case neg X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A : C U V W : (Opens ↑X)ᵒᵖ iVU : U ⟶ V iWV : V ⟶ W hW : ¬p₀ ∈ W.unop ⊢ { obj := fun U => if p₀ ∈ U.unop then A else ⊤_ C, map := fun {U V} i => if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) U) }.map (iVU ≫ iWV) = { obj := fun U => if p₀ ∈ U.unop then A else ⊤_ C, map := fun {U V} i => if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) U) }.map iVU ≫ { obj := fun U => if p₀ ∈ U.unop then A else ⊤_ C, map := fun {U V} i => if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) U) }.map iWV [PROOFSTEP] dsimp [GOAL] case neg X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A : C U V W : (Opens ↑X)ᵒᵖ iVU : U ⟶ V iWV : V ⟶ W hW : ¬p₀ ∈ W.unop ⊢ (if h : p₀ ∈ W.unop then eqToHom (_ : (if p₀ ∈ U.unop then A else ⊤_ C) = if p₀ ∈ W.unop then A else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ W.unop then A else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then A else ⊤_ C)) = (if h : p₀ ∈ V.unop then eqToHom (_ : (if p₀ ∈ U.unop then A else ⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then A else ⊤_ C)) ≫ if h : p₀ ∈ W.unop then eqToHom (_ : (if p₀ ∈ V.unop then A else ⊤_ C) = if p₀ ∈ W.unop then A else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ W.unop then A else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ V.unop then A else ⊤_ C) [PROOFSTEP] rw [dif_neg hW] [GOAL] case neg X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A : C U V W : (Opens ↑X)ᵒᵖ iVU : U ⟶ V iWV : V ⟶ W hW : ¬p₀ ∈ W.unop ⊢ IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ W.unop then A else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then A else ⊤_ C) = (if h : p₀ ∈ V.unop then eqToHom (_ : (if p₀ ∈ U.unop then A else ⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then A else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then A else ⊤_ C)) ≫ if h : p₀ ∈ W.unop then eqToHom (_ : (if p₀ ∈ V.unop then A else ⊤_ C) = if p₀ ∈ W.unop then A else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ W.unop then A else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ V.unop then A else ⊤_ C) [PROOFSTEP] apply ((if_neg hW).symm.ndrec terminalIsTerminal).hom_ext [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A : C hd : (U : Opens ↑(of PUnit)) → Decidable (PUnit.unit ∈ U) ⊢ skyscraperPresheaf p₀ A = ContinuousMap.const (↑(of PUnit)) p₀ _* skyscraperPresheaf PUnit.unit A [PROOFSTEP] convert_to @skyscraperPresheaf X p₀ (fun U => hd <| (Opens.map <| ContinuousMap.const _ p₀).obj U) C _ _ A = _ [GOAL] case h.e'_2 X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A : C hd : (U : Opens ↑(of PUnit)) → Decidable (PUnit.unit ∈ U) ⊢ skyscraperPresheaf p₀ A = skyscraperPresheaf p₀ A [PROOFSTEP] congr [GOAL] case convert_2 X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A : C hd : (U : Opens ↑(of PUnit)) → Decidable (PUnit.unit ∈ U) ⊢ skyscraperPresheaf p₀ A = ContinuousMap.const (↑(of PUnit)) p₀ _* skyscraperPresheaf PUnit.unit A [PROOFSTEP] congr [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a b : C f : a ⟶ b U V : (Opens ↑X)ᵒᵖ i : U ⟶ V ⊢ (skyscraperPresheaf p₀ a).map i ≫ (fun U => if h : p₀ ∈ U.unop then eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ U.unop then b else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then b else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj U)) V = (fun U => if h : p₀ ∈ U.unop then eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ U.unop then b else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then b else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj U)) U ≫ (skyscraperPresheaf p₀ b).map i [PROOFSTEP] simp only [skyscraperPresheaf_map] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a b : C f : a ⟶ b U V : (Opens ↑X)ᵒᵖ i : U ⟶ V ⊢ ((if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then a else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then a else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then a else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then a else ⊤_ C)) ≫ if h : p₀ ∈ V.unop then eqToHom (_ : (if p₀ ∈ V.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ V.unop then b else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then b else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj V)) = (if h : p₀ ∈ U.unop then eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ U.unop then b else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then b else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj U)) ≫ if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then b else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then b else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then b else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then b else ⊤_ C) [PROOFSTEP] by_cases hV : p₀ ∈ V.unop [GOAL] case pos X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a b : C f : a ⟶ b U V : (Opens ↑X)ᵒᵖ i : U ⟶ V hV : p₀ ∈ V.unop ⊢ ((if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then a else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then a else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then a else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then a else ⊤_ C)) ≫ if h : p₀ ∈ V.unop then eqToHom (_ : (if p₀ ∈ V.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ V.unop then b else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then b else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj V)) = (if h : p₀ ∈ U.unop then eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ U.unop then b else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then b else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj U)) ≫ if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then b else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then b else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then b else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then b else ⊤_ C) [PROOFSTEP] have hU : p₀ ∈ U.unop := leOfHom i.unop hV [GOAL] case pos X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a b : C f : a ⟶ b U V : (Opens ↑X)ᵒᵖ i : U ⟶ V hV : p₀ ∈ V.unop hU : p₀ ∈ U.unop ⊢ ((if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then a else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then a else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then a else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then a else ⊤_ C)) ≫ if h : p₀ ∈ V.unop then eqToHom (_ : (if p₀ ∈ V.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ V.unop then b else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then b else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj V)) = (if h : p₀ ∈ U.unop then eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ U.unop then b else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then b else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj U)) ≫ if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then b else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then b else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then b else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then b else ⊤_ C) [PROOFSTEP] split_ifs [GOAL] case pos X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a b : C f : a ⟶ b U V : (Opens ↑X)ᵒᵖ i : U ⟶ V hV : p₀ ∈ V.unop hU : p₀ ∈ U.unop h✝ : p₀ ∈ V.unop ⊢ eqToHom (_ : (fun U => if p₀ ∈ U.unop then a else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then a else ⊤_ C) V) ≫ eqToHom (_ : (if p₀ ∈ V.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ V.unop then b else ⊤_ C) = (eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ U.unop then b else ⊤_ C)) ≫ eqToHom (_ : (fun U => if p₀ ∈ U.unop then b else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then b else ⊤_ C) V) [PROOFSTEP] simp only [eqToHom_trans_assoc, Category.assoc, eqToHom_trans] [GOAL] case neg X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a b : C f : a ⟶ b U V : (Opens ↑X)ᵒᵖ i : U ⟶ V hV : p₀ ∈ V.unop hU : p₀ ∈ U.unop h✝ : ¬p₀ ∈ V.unop ⊢ eqToHom (_ : (fun U => if p₀ ∈ U.unop then a else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then a else ⊤_ C) V) ≫ eqToHom (_ : (if p₀ ∈ V.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ V.unop then b else ⊤_ C) = (eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ U.unop then b else ⊤_ C)) ≫ eqToHom (_ : (fun U => if p₀ ∈ U.unop then b else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then b else ⊤_ C) V) [PROOFSTEP] simp only [eqToHom_trans_assoc, Category.assoc, eqToHom_trans] [GOAL] case neg X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a b : C f : a ⟶ b U V : (Opens ↑X)ᵒᵖ i : U ⟶ V hV : ¬p₀ ∈ V.unop ⊢ ((if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then a else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then a else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then a else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then a else ⊤_ C)) ≫ if h : p₀ ∈ V.unop then eqToHom (_ : (if p₀ ∈ V.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ V.unop then b else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then b else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj V)) = (if h : p₀ ∈ U.unop then eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ U.unop then b else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then b else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj U)) ≫ if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then b else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then b else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then b else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then b else ⊤_ C) [PROOFSTEP] apply ((if_neg hV).symm.ndrec terminalIsTerminal).hom_ext [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a : C ⊢ map' p₀ (𝟙 a) = 𝟙 (skyscraperPresheaf p₀ a) [PROOFSTEP] refine NatTrans.ext _ _ <| funext fun U => ?_ [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a : C U : (Opens ↑X)ᵒᵖ ⊢ NatTrans.app (map' p₀ (𝟙 a)) U = NatTrans.app (𝟙 (skyscraperPresheaf p₀ a)) U [PROOFSTEP] simp only [SkyscraperPresheafFunctor.map'_app, NatTrans.id_app] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a : C U : (Opens ↑X)ᵒᵖ ⊢ (if h : p₀ ∈ U.unop then eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ 𝟙 a ≫ eqToHom (_ : a = if p₀ ∈ U.unop then a else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then a else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj U)) = NatTrans.app (𝟙 (skyscraperPresheaf p₀ a)) U [PROOFSTEP] split_ifs [GOAL] case pos X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a : C U : (Opens ↑X)ᵒᵖ h✝ : p₀ ∈ U.unop ⊢ eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ 𝟙 a ≫ eqToHom (_ : a = if p₀ ∈ U.unop then a else ⊤_ C) = NatTrans.app (𝟙 (skyscraperPresheaf p₀ a)) U [PROOFSTEP] aesop_cat [GOAL] case neg X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a : C U : (Opens ↑X)ᵒᵖ h✝ : ¬p₀ ∈ U.unop ⊢ IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then a else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj U) = NatTrans.app (𝟙 (skyscraperPresheaf p₀ a)) U [PROOFSTEP] aesop_cat [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a b c : C f : a ⟶ b g : b ⟶ c ⊢ map' p₀ (f ≫ g) = map' p₀ f ≫ map' p₀ g [PROOFSTEP] refine NatTrans.ext _ _ <| funext fun U => ?_ -- Porting note : change `simp` to `rw` [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a b c : C f : a ⟶ b g : b ⟶ c U : (Opens ↑X)ᵒᵖ ⊢ NatTrans.app (map' p₀ (f ≫ g)) U = NatTrans.app (map' p₀ f ≫ map' p₀ g) U [PROOFSTEP] rw [NatTrans.comp_app] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a b c : C f : a ⟶ b g : b ⟶ c U : (Opens ↑X)ᵒᵖ ⊢ NatTrans.app (map' p₀ (f ≫ g)) U = NatTrans.app (map' p₀ f) U ≫ NatTrans.app (map' p₀ g) U [PROOFSTEP] simp only [SkyscraperPresheafFunctor.map'_app] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a b c : C f : a ⟶ b g : b ⟶ c U : (Opens ↑X)ᵒᵖ ⊢ (if h : p₀ ∈ U.unop then eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ (f ≫ g) ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj U)) = (if h : p₀ ∈ U.unop then eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ U.unop then b else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then b else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj U)) ≫ if h : p₀ ∈ U.unop then eqToHom (_ : (if p₀ ∈ U.unop then b else ⊤_ C) = b) ≫ g ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ b).obj U) [PROOFSTEP] split_ifs with h [GOAL] case pos X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a b c : C f : a ⟶ b g : b ⟶ c U : (Opens ↑X)ᵒᵖ h : p₀ ∈ U.unop ⊢ eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ (f ≫ g) ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) = (eqToHom (_ : (if p₀ ∈ U.unop then a else ⊤_ C) = a) ≫ f ≫ eqToHom (_ : b = if p₀ ∈ U.unop then b else ⊤_ C)) ≫ eqToHom (_ : (if p₀ ∈ U.unop then b else ⊤_ C) = b) ≫ g ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) [PROOFSTEP] aesop_cat [GOAL] case neg X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{w, v} C inst✝ : HasTerminal C A a b c : C f : a ⟶ b g : b ⟶ c U : (Opens ↑X)ᵒᵖ h : ¬p₀ ∈ U.unop ⊢ IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj U) = IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then b else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ a).obj U) ≫ IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ b).obj U) [PROOFSTEP] aesop_cat [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : p₀ ⤳ y U V : (OpenNhds y)ᵒᵖ inc : U ⟶ V ⊢ ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A).map inc ≫ (fun U => eqToHom (_ : (if p₀ ∈ U.unop.obj.carrier then A else ⊤_ C) = A)) V = (fun U => eqToHom (_ : (if p₀ ∈ U.unop.obj.carrier then A else ⊤_ C) = A)) U ≫ ((Functor.const (OpenNhds y)ᵒᵖ).obj A).map inc [PROOFSTEP] change dite _ _ _ ≫ _ = _ [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : p₀ ⤳ y U V : (OpenNhds y)ᵒᵖ inc : U ⟶ V ⊢ (if h : p₀ ∈ ((OpenNhds.inclusion y).op.obj V).unop then (fun h => eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) ((OpenNhds.inclusion y).op.obj U) = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) ((OpenNhds.inclusion y).op.obj V))) h else (fun h => IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ ((OpenNhds.inclusion y).op.obj V).unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) ((OpenNhds.inclusion y).op.obj U))) h) ≫ (fun U => eqToHom (_ : (if p₀ ∈ U.unop.obj.carrier then A else ⊤_ C) = A)) V = (fun U => eqToHom (_ : (if p₀ ∈ U.unop.obj.carrier then A else ⊤_ C) = A)) U ≫ ((Functor.const (OpenNhds y)ᵒᵖ).obj A).map inc [PROOFSTEP] rw [dif_pos] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : p₀ ⤳ y U V : (OpenNhds y)ᵒᵖ inc : U ⟶ V ⊢ (fun h => eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) ((OpenNhds.inclusion y).op.obj U) = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) ((OpenNhds.inclusion y).op.obj V))) ?hc ≫ (fun U => eqToHom (_ : (if p₀ ∈ U.unop.obj.carrier then A else ⊤_ C) = A)) V = (fun U => eqToHom (_ : (if p₀ ∈ U.unop.obj.carrier then A else ⊤_ C) = A)) U ≫ ((Functor.const (OpenNhds y)ᵒᵖ).obj A).map inc case hc X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : p₀ ⤳ y U V : (OpenNhds y)ᵒᵖ inc : U ⟶ V ⊢ p₀ ∈ ((OpenNhds.inclusion y).op.obj V).unop [PROOFSTEP] swap -- Porting note : swap goal to prevent proving same thing twice [GOAL] case hc X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : p₀ ⤳ y U V : (OpenNhds y)ᵒᵖ inc : U ⟶ V ⊢ p₀ ∈ ((OpenNhds.inclusion y).op.obj V).unop [PROOFSTEP] exact h.mem_open V.unop.1.2 V.unop.2 [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : p₀ ⤳ y U V : (OpenNhds y)ᵒᵖ inc : U ⟶ V ⊢ (fun h => eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) ((OpenNhds.inclusion y).op.obj U) = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) ((OpenNhds.inclusion y).op.obj V))) (_ : p₀ ∈ ↑((OpenNhds.inclusion y).op.obj V).unop) ≫ (fun U => eqToHom (_ : (if p₀ ∈ U.unop.obj.carrier then A else ⊤_ C) = A)) V = (fun U => eqToHom (_ : (if p₀ ∈ U.unop.obj.carrier then A else ⊤_ C) = A)) U ≫ ((Functor.const (OpenNhds y)ᵒᵖ).obj A).map inc [PROOFSTEP] erw [Category.comp_id, eqToHom_trans] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : p₀ ⤳ y c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) U : (OpenNhds y)ᵒᵖ ⊢ NatTrans.app (skyscraperPresheafCoconeOfSpecializes p₀ A h).ι U ≫ (fun c => eqToHom (_ : (skyscraperPresheafCoconeOfSpecializes p₀ A h).pt = if True then (skyscraperPresheafCoconeOfSpecializes p₀ A h).pt else ⊤_ C) ≫ NatTrans.app c.ι (op ⊤)) c = NatTrans.app c.ι U [PROOFSTEP] dsimp -- Porting note : added a `dsimp` [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : p₀ ⤳ y c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) U : (OpenNhds y)ᵒᵖ ⊢ eqToHom (_ : (if p₀ ∈ U.unop.obj.carrier then A else ⊤_ C) = A) ≫ eqToHom (_ : A = if True then A else ⊤_ C) ≫ NatTrans.app c.ι (op ⊤) = NatTrans.app c.ι U [PROOFSTEP] rw [← c.w (homOfLE <| (le_top : unop U ≤ _)).op] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : p₀ ⤳ y c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) U : (OpenNhds y)ᵒᵖ ⊢ eqToHom (_ : (if p₀ ∈ U.unop.obj.carrier then A else ⊤_ C) = A) ≫ eqToHom (_ : A = if True then A else ⊤_ C) ≫ ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A).map (homOfLE (_ : U.unop ≤ ⊤)).op ≫ NatTrans.app c.ι (op U.unop) = NatTrans.app c.ι U [PROOFSTEP] change _ ≫ _ ≫ dite _ _ _ ≫ _ = _ [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : p₀ ⤳ y c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) U : (OpenNhds y)ᵒᵖ ⊢ eqToHom (_ : (if p₀ ∈ U.unop.obj.carrier then A else ⊤_ C) = A) ≫ eqToHom (_ : A = if True then A else ⊤_ C) ≫ (if h : p₀ ∈ ((OpenNhds.inclusion y).op.obj (op U.unop)).unop then (fun h => eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) ((OpenNhds.inclusion y).op.obj (op ⊤)) = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) ((OpenNhds.inclusion y).op.obj (op U.unop)))) h else (fun h => IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ ((OpenNhds.inclusion y).op.obj (op U.unop)).unop then A else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then A else ⊤_ C) ((OpenNhds.inclusion y).op.obj (op ⊤)))) h) ≫ NatTrans.app c.ι (op U.unop) = NatTrans.app c.ι U [PROOFSTEP] rw [dif_pos] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : p₀ ⤳ y c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) U : (OpenNhds y)ᵒᵖ ⊢ eqToHom (_ : (if p₀ ∈ U.unop.obj.carrier then A else ⊤_ C) = A) ≫ eqToHom (_ : A = if True then A else ⊤_ C) ≫ (fun h => eqToHom (_ : (fun U => if p₀ ∈ U.unop then A else ⊤_ C) ((OpenNhds.inclusion y).op.obj (op ⊤)) = (fun U => if p₀ ∈ U.unop then A else ⊤_ C) ((OpenNhds.inclusion y).op.obj (op U.unop)))) ?hc ≫ NatTrans.app c.ι (op U.unop) = NatTrans.app c.ι U [PROOFSTEP] simp only [skyscraperPresheafCoconeOfSpecializes_ι_app, eqToHom_trans_assoc, eqToHom_refl, Category.id_comp, unop_op, op_unop] [GOAL] case hc X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : p₀ ⤳ y c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) U : (OpenNhds y)ᵒᵖ ⊢ p₀ ∈ ((OpenNhds.inclusion y).op.obj (op U.unop)).unop [PROOFSTEP] exact h.mem_open U.unop.1.2 U.unop.2 [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h✝ : p₀ ⤳ y c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) f : (skyscraperPresheafCoconeOfSpecializes p₀ A h✝).pt ⟶ c.pt h : ∀ (j : (OpenNhds y)ᵒᵖ), NatTrans.app (skyscraperPresheafCoconeOfSpecializes p₀ A h✝).ι j ≫ f = NatTrans.app c.ι j ⊢ f = (fun c => eqToHom (_ : (skyscraperPresheafCoconeOfSpecializes p₀ A h✝).pt = if True then (skyscraperPresheafCoconeOfSpecializes p₀ A h✝).pt else ⊤_ C) ≫ NatTrans.app c.ι (op ⊤)) c [PROOFSTEP] dsimp -- Porting note : added a `dsimp` [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h✝ : p₀ ⤳ y c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) f : (skyscraperPresheafCoconeOfSpecializes p₀ A h✝).pt ⟶ c.pt h : ∀ (j : (OpenNhds y)ᵒᵖ), NatTrans.app (skyscraperPresheafCoconeOfSpecializes p₀ A h✝).ι j ≫ f = NatTrans.app c.ι j ⊢ f = eqToHom (_ : A = if True then A else ⊤_ C) ≫ NatTrans.app c.ι (op ⊤) [PROOFSTEP] rw [← h, skyscraperPresheafCoconeOfSpecializes_ι_app, eqToHom_trans_assoc, eqToHom_refl, Category.id_comp] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : ¬p₀ ⤳ y h1 : ∃ U, ¬p₀ ∈ U.obj := match Iff.mp not_specializes_iff_exists_open h with | Exists.intro U { left := ho, right := { left := h₀, right := hy } } => Exists.intro { obj := { carrier := U, is_open' := ho }, property := h₀ } hy c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) U : (OpenNhds y)ᵒᵖ ⊢ NatTrans.app (skyscraperPresheafCocone p₀ A y).ι U ≫ (fun c => eqToHom (_ : (skyscraperPresheafCocone p₀ A y).pt = if p₀ ∈ (Exists.choose h1).obj then A else (skyscraperPresheafCocone p₀ A y).pt) ≫ NatTrans.app c.ι (op (Exists.choose h1))) c = NatTrans.app c.ι U [PROOFSTEP] change _ = c.ι.app (op U.unop) [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : ¬p₀ ⤳ y h1 : ∃ U, ¬p₀ ∈ U.obj := match Iff.mp not_specializes_iff_exists_open h with | Exists.intro U { left := ho, right := { left := h₀, right := hy } } => Exists.intro { obj := { carrier := U, is_open' := ho }, property := h₀ } hy c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) U : (OpenNhds y)ᵒᵖ ⊢ NatTrans.app (skyscraperPresheafCocone p₀ A y).ι U ≫ (fun c => eqToHom (_ : (skyscraperPresheafCocone p₀ A y).pt = if p₀ ∈ (Exists.choose h1).obj then A else (skyscraperPresheafCocone p₀ A y).pt) ≫ NatTrans.app c.ι (op (Exists.choose h1))) c = NatTrans.app c.ι (op U.unop) [PROOFSTEP] simp only [← c.w (homOfLE <| @inf_le_left _ _ h1.choose U.unop).op, ← c.w (homOfLE <| @inf_le_right _ _ h1.choose U.unop).op, ← Category.assoc] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : ¬p₀ ⤳ y h1 : ∃ U, ¬p₀ ∈ U.obj := match Iff.mp not_specializes_iff_exists_open h with | Exists.intro U { left := ho, right := { left := h₀, right := hy } } => Exists.intro { obj := { carrier := U, is_open' := ho }, property := h₀ } hy c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) U : (OpenNhds y)ᵒᵖ ⊢ ((NatTrans.app (skyscraperPresheafCocone p₀ A y).ι U ≫ eqToHom (_ : (skyscraperPresheafCocone p₀ A y).pt = if p₀ ∈ (Exists.choose h1).obj then A else (skyscraperPresheafCocone p₀ A y).pt)) ≫ ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A).map (homOfLE (_ : Exists.choose h1 ⊓ U.unop ≤ Exists.choose h1)).op) ≫ NatTrans.app c.ι (op (Exists.choose (_ : ∃ U, ¬p₀ ∈ U.obj) ⊓ U.unop)) = ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A).map (homOfLE (_ : Exists.choose h1 ⊓ U.unop ≤ U.unop)).op ≫ NatTrans.app c.ι (op (Exists.choose (_ : ∃ U, ¬p₀ ∈ U.obj) ⊓ U.unop)) [PROOFSTEP] congr 1 [GOAL] case e_a X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : ¬p₀ ⤳ y h1 : ∃ U, ¬p₀ ∈ U.obj := match Iff.mp not_specializes_iff_exists_open h with | Exists.intro U { left := ho, right := { left := h₀, right := hy } } => Exists.intro { obj := { carrier := U, is_open' := ho }, property := h₀ } hy c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) U : (OpenNhds y)ᵒᵖ ⊢ (NatTrans.app (skyscraperPresheafCocone p₀ A y).ι U ≫ eqToHom (_ : (skyscraperPresheafCocone p₀ A y).pt = if p₀ ∈ (Exists.choose h1).obj then A else (skyscraperPresheafCocone p₀ A y).pt)) ≫ ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A).map (homOfLE (_ : Exists.choose h1 ⊓ U.unop ≤ Exists.choose h1)).op = ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A).map (homOfLE (_ : Exists.choose h1 ⊓ U.unop ≤ U.unop)).op [PROOFSTEP] refine' ((if_neg _).symm.ndrec terminalIsTerminal).hom_ext _ _ [GOAL] case e_a X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : ¬p₀ ⤳ y h1 : ∃ U, ¬p₀ ∈ U.obj := match Iff.mp not_specializes_iff_exists_open h with | Exists.intro U { left := ho, right := { left := h₀, right := hy } } => Exists.intro { obj := { carrier := U, is_open' := ho }, property := h₀ } hy c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) U : (OpenNhds y)ᵒᵖ ⊢ ¬p₀ ∈ ((OpenNhds.inclusion y).op.obj (op (Exists.choose (_ : ∃ U, ¬p₀ ∈ U.obj) ⊓ U.unop))).unop [PROOFSTEP] exact fun h => h1.choose_spec h.1 [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : ¬p₀ ⤳ y h1 : ∃ U, ¬p₀ ∈ U.obj := match Iff.mp not_specializes_iff_exists_open h with | Exists.intro U { left := ho, right := { left := h₀, right := hy } } => Exists.intro { obj := { carrier := U, is_open' := ho }, property := h₀ } hy c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) f : (skyscraperPresheafCocone p₀ A y).pt ⟶ c.pt H : ∀ (j : (OpenNhds y)ᵒᵖ), NatTrans.app (skyscraperPresheafCocone p₀ A y).ι j ≫ f = NatTrans.app c.ι j ⊢ f = (fun c => eqToHom (_ : (skyscraperPresheafCocone p₀ A y).pt = if p₀ ∈ (Exists.choose h1).obj then A else (skyscraperPresheafCocone p₀ A y).pt) ≫ NatTrans.app c.ι (op (Exists.choose h1))) c [PROOFSTEP] dsimp -- Porting note : added a `dsimp` [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : ¬p₀ ⤳ y h1 : ∃ U, ¬p₀ ∈ U.obj := match Iff.mp not_specializes_iff_exists_open h with | Exists.intro U { left := ho, right := { left := h₀, right := hy } } => Exists.intro { obj := { carrier := U, is_open' := ho }, property := h₀ } hy c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) f : (skyscraperPresheafCocone p₀ A y).pt ⟶ c.pt H : ∀ (j : (OpenNhds y)ᵒᵖ), NatTrans.app (skyscraperPresheafCocone p₀ A y).ι j ≫ f = NatTrans.app c.ι j ⊢ f = eqToHom (_ : (⊤_ C) = if p₀ ∈ (Exists.choose (_ : ∃ U, ¬p₀ ∈ U.obj)).obj then A else ⊤_ C) ≫ NatTrans.app c.ι (op (Exists.choose (_ : ∃ U, ¬p₀ ∈ U.obj))) [PROOFSTEP] rw [← Category.id_comp f, ← H, ← Category.assoc] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : ¬p₀ ⤳ y h1 : ∃ U, ¬p₀ ∈ U.obj := match Iff.mp not_specializes_iff_exists_open h with | Exists.intro U { left := ho, right := { left := h₀, right := hy } } => Exists.intro { obj := { carrier := U, is_open' := ho }, property := h₀ } hy c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) f : (skyscraperPresheafCocone p₀ A y).pt ⟶ c.pt H : ∀ (j : (OpenNhds y)ᵒᵖ), NatTrans.app (skyscraperPresheafCocone p₀ A y).ι j ≫ f = NatTrans.app c.ι j ⊢ 𝟙 (skyscraperPresheafCocone p₀ A y).pt ≫ f = (eqToHom (_ : (⊤_ C) = if p₀ ∈ (Exists.choose (_ : ∃ U, ¬p₀ ∈ U.obj)).obj then A else ⊤_ C) ≫ NatTrans.app (skyscraperPresheafCocone p₀ A y).ι (op (Exists.choose (_ : ∃ U, ¬p₀ ∈ U.obj)))) ≫ f [PROOFSTEP] congr 1 [GOAL] case e_a X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C y : ↑X h : ¬p₀ ⤳ y h1 : ∃ U, ¬p₀ ∈ U.obj := match Iff.mp not_specializes_iff_exists_open h with | Exists.intro U { left := ho, right := { left := h₀, right := hy } } => Exists.intro { obj := { carrier := U, is_open' := ho }, property := h₀ } hy c : Cocone ((OpenNhds.inclusion y).op ⋙ skyscraperPresheaf p₀ A) f : (skyscraperPresheafCocone p₀ A y).pt ⟶ c.pt H : ∀ (j : (OpenNhds y)ᵒᵖ), NatTrans.app (skyscraperPresheafCocone p₀ A y).ι j ≫ f = NatTrans.app c.ι j ⊢ 𝟙 (skyscraperPresheafCocone p₀ A y).pt = eqToHom (_ : (⊤_ C) = if p₀ ∈ (Exists.choose (_ : ∃ U, ¬p₀ ∈ U.obj)).obj then A else ⊤_ C) ≫ NatTrans.app (skyscraperPresheafCocone p₀ A y).ι (op (Exists.choose (_ : ∃ U, ¬p₀ ∈ U.obj))) [PROOFSTEP] apply terminalIsTerminal.hom_ext [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C ⊢ TopCat.Presheaf.IsSheaf (skyscraperPresheaf p₀ A) [PROOFSTEP] classical exact (Presheaf.isSheaf_iso_iff (eqToIso <| skyscraperPresheaf_eq_pushforward p₀ A)).mpr <| (Sheaf.pushforward_sheaf_of_sheaf _ (Presheaf.isSheaf_on_punit_of_isTerminal _ (by dsimp [skyscraperPresheaf] rw [if_neg] · exact terminalIsTerminal · exact Set.not_mem_empty PUnit.unit))) [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C ⊢ TopCat.Presheaf.IsSheaf (skyscraperPresheaf p₀ A) [PROOFSTEP] exact (Presheaf.isSheaf_iso_iff (eqToIso <| skyscraperPresheaf_eq_pushforward p₀ A)).mpr <| (Sheaf.pushforward_sheaf_of_sheaf _ (Presheaf.isSheaf_on_punit_of_isTerminal _ (by dsimp [skyscraperPresheaf] rw [if_neg] · exact terminalIsTerminal · exact Set.not_mem_empty PUnit.unit))) [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C ⊢ IsTerminal ((skyscraperPresheaf PUnit.unit A).obj (op ⊥)) [PROOFSTEP] dsimp [skyscraperPresheaf] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C ⊢ IsTerminal (if PUnit.unit ∈ ⊥ then A else ⊤_ C) [PROOFSTEP] rw [if_neg] [GOAL] X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C ⊢ IsTerminal (⊤_ C) [PROOFSTEP] exact terminalIsTerminal [GOAL] case hnc X : TopCat p₀ : ↑X inst✝² : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝¹ : Category.{u, v} C A : C inst✝ : HasTerminal C ⊢ ¬PUnit.unit ∈ ⊥ [PROOFSTEP] exact Set.not_mem_empty PUnit.unit [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U V : (Opens ↑X)ᵒᵖ inc : U ⟶ V ⊢ 𝓕.map inc ≫ (fun U => if h : p₀ ∈ U.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj U)) V = (fun U => if h : p₀ ∈ U.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj U)) U ≫ (skyscraperPresheaf p₀ c).map inc [PROOFSTEP] dsimp [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U V : (Opens ↑X)ᵒᵖ inc : U ⟶ V ⊢ (𝓕.map inc ≫ if h : p₀ ∈ V.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ V.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj V)) = (if h : p₀ ∈ U.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj U)) ≫ if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then c else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then c else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then c else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then c else ⊤_ C) [PROOFSTEP] by_cases hV : p₀ ∈ V.unop [GOAL] case pos X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U V : (Opens ↑X)ᵒᵖ inc : U ⟶ V hV : p₀ ∈ V.unop ⊢ (𝓕.map inc ≫ if h : p₀ ∈ V.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ V.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj V)) = (if h : p₀ ∈ U.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj U)) ≫ if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then c else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then c else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then c else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then c else ⊤_ C) [PROOFSTEP] have hU : p₀ ∈ U.unop := leOfHom inc.unop hV [GOAL] case pos X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U V : (Opens ↑X)ᵒᵖ inc : U ⟶ V hV : p₀ ∈ V.unop hU : p₀ ∈ U.unop ⊢ (𝓕.map inc ≫ if h : p₀ ∈ V.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ V.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj V)) = (if h : p₀ ∈ U.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj U)) ≫ if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then c else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then c else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then c else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then c else ⊤_ C) [PROOFSTEP] split_ifs [GOAL] case pos X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U V : (Opens ↑X)ᵒᵖ inc : U ⟶ V hV : p₀ ∈ V.unop hU : p₀ ∈ U.unop h✝ : p₀ ∈ V.unop ⊢ 𝓕.map inc ≫ Presheaf.germ 𝓕 { val := p₀, property := h✝ } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ V.unop then c else ⊤_ C) = (Presheaf.germ 𝓕 { val := p₀, property := hU } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C)) ≫ eqToHom (_ : (fun U => if p₀ ∈ U.unop then c else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then c else ⊤_ C) V) case neg X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U V : (Opens ↑X)ᵒᵖ inc : U ⟶ V hV : p₀ ∈ V.unop hU : p₀ ∈ U.unop h✝ : ¬p₀ ∈ V.unop ⊢ 𝓕.map inc ≫ Presheaf.germ 𝓕 { val := p₀, property := hV } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ V.unop then c else ⊤_ C) = (Presheaf.germ 𝓕 { val := p₀, property := hU } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C)) ≫ eqToHom (_ : (fun U => if p₀ ∈ U.unop then c else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then c else ⊤_ C) V) [PROOFSTEP] erw [← Category.assoc, 𝓕.germ_res inc.unop, Category.assoc, Category.assoc, eqToHom_trans] [GOAL] case neg X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U V : (Opens ↑X)ᵒᵖ inc : U ⟶ V hV : p₀ ∈ V.unop hU : p₀ ∈ U.unop h✝ : ¬p₀ ∈ V.unop ⊢ 𝓕.map inc ≫ Presheaf.germ 𝓕 { val := p₀, property := hV } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ V.unop then c else ⊤_ C) = (Presheaf.germ 𝓕 { val := p₀, property := hU } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C)) ≫ eqToHom (_ : (fun U => if p₀ ∈ U.unop then c else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then c else ⊤_ C) V) [PROOFSTEP] aesop_cat [GOAL] case neg X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U V : (Opens ↑X)ᵒᵖ inc : U ⟶ V hV : ¬p₀ ∈ V.unop ⊢ (𝓕.map inc ≫ if h : p₀ ∈ V.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ V.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj V)) = (if h : p₀ ∈ U.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj U)) ≫ if h : p₀ ∈ V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then c else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then c else ⊤_ C) V) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then c else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then c else ⊤_ C) [PROOFSTEP] split_ifs [GOAL] case pos X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U V : (Opens ↑X)ᵒᵖ inc : U ⟶ V hV : ¬p₀ ∈ V.unop h✝ : p₀ ∈ V.unop ⊢ 𝓕.map inc ≫ Presheaf.germ 𝓕 { val := p₀, property := h✝ } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ V.unop then c else ⊤_ C) = (if h : p₀ ∈ U.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj U)) ≫ eqToHom (_ : (fun U => if p₀ ∈ U.unop then c else ⊤_ C) U = (fun U => if p₀ ∈ U.unop then c else ⊤_ C) V) case neg X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U V : (Opens ↑X)ᵒᵖ inc : U ⟶ V hV h✝ : ¬p₀ ∈ V.unop ⊢ 𝓕.map inc ≫ IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj V) = (if h : p₀ ∈ U.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj U)) ≫ IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then c else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then c else ⊤_ C) [PROOFSTEP] apply ((if_neg hV).symm.ndrec terminalIsTerminal).hom_ext [GOAL] case neg X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U V : (Opens ↑X)ᵒᵖ inc : U ⟶ V hV h✝ : ¬p₀ ∈ V.unop ⊢ 𝓕.map inc ≫ IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj V) = (if h : p₀ ∈ U.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj U)) ≫ IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ V.unop then c else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U.unop then c else ⊤_ C) [PROOFSTEP] aesop_cat [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U V : (OpenNhds p₀)ᵒᵖ inc : U ⟶ V ⊢ ((OpenNhds.inclusion p₀).op ⋙ 𝓕).map inc ≫ (fun U => NatTrans.app f (op U.unop.obj) ≫ eqToHom (_ : (if p₀ ∈ U.unop.obj then c else ⊤_ C) = c)) V = (fun U => NatTrans.app f (op U.unop.obj) ≫ eqToHom (_ : (if p₀ ∈ U.unop.obj then c else ⊤_ C) = c)) U ≫ ((Functor.const (OpenNhds p₀)ᵒᵖ).obj c).map inc [PROOFSTEP] dsimp [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U V : (OpenNhds p₀)ᵒᵖ inc : U ⟶ V ⊢ 𝓕.map ((OpenNhds.inclusion p₀).map inc.unop).op ≫ NatTrans.app f (op V.unop.obj) ≫ eqToHom (_ : (if p₀ ∈ V.unop.obj then c else ⊤_ C) = c) = (NatTrans.app f (op U.unop.obj) ≫ eqToHom (_ : (if p₀ ∈ U.unop.obj then c else ⊤_ C) = c)) ≫ 𝟙 c [PROOFSTEP] erw [Category.comp_id, ← Category.assoc, comp_eqToHom_iff, Category.assoc, eqToHom_trans, f.naturality, skyscraperPresheaf_map] -- Porting note : added this `dsimp` and `rfl` in the end [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U V : (OpenNhds p₀)ᵒᵖ inc : U ⟶ V ⊢ (NatTrans.app f (op ((OpenNhds.inclusion p₀).obj U.unop)) ≫ if h : p₀ ∈ (op ((OpenNhds.inclusion p₀).obj V.unop)).unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then c else ⊤_ C) (op ((OpenNhds.inclusion p₀).obj U.unop)) = (fun U => if p₀ ∈ U.unop then c else ⊤_ C) (op ((OpenNhds.inclusion p₀).obj V.unop))) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op ((OpenNhds.inclusion p₀).obj V.unop)).unop then c else ⊤_ C) ▸ terminalIsTerminal) ((fun U => if p₀ ∈ U.unop then c else ⊤_ C) (op ((OpenNhds.inclusion p₀).obj U.unop)))) = NatTrans.app f (op U.unop.obj) ≫ eqToHom (_ : (if p₀ ∈ U.unop.obj then c else ⊤_ C) = if p₀ ∈ V.unop.obj then c else ⊤_ C) [PROOFSTEP] dsimp only [skyscraperPresheaf_obj, unop_op, Eq.ndrec] [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U V : (OpenNhds p₀)ᵒᵖ inc : U ⟶ V ⊢ (NatTrans.app f (op ((OpenNhds.inclusion p₀).obj U.unop)) ≫ if h : p₀ ∈ (OpenNhds.inclusion p₀).obj V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then c else ⊤_ C) (op ((OpenNhds.inclusion p₀).obj U.unop)) = (fun U => if p₀ ∈ U.unop then c else ⊤_ C) (op ((OpenNhds.inclusion p₀).obj V.unop))) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op ((OpenNhds.inclusion p₀).obj V.unop)).unop then c else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ (OpenNhds.inclusion p₀).obj U.unop then c else ⊤_ C)) = NatTrans.app f (op U.unop.obj) ≫ eqToHom (_ : (if p₀ ∈ U.unop.obj then c else ⊤_ C) = if p₀ ∈ V.unop.obj then c else ⊤_ C) [PROOFSTEP] have hV : p₀ ∈ (OpenNhds.inclusion p₀).obj V.unop := V.unop.2 [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U V : (OpenNhds p₀)ᵒᵖ inc : U ⟶ V hV : p₀ ∈ (OpenNhds.inclusion p₀).obj V.unop ⊢ (NatTrans.app f (op ((OpenNhds.inclusion p₀).obj U.unop)) ≫ if h : p₀ ∈ (OpenNhds.inclusion p₀).obj V.unop then eqToHom (_ : (fun U => if p₀ ∈ U.unop then c else ⊤_ C) (op ((OpenNhds.inclusion p₀).obj U.unop)) = (fun U => if p₀ ∈ U.unop then c else ⊤_ C) (op ((OpenNhds.inclusion p₀).obj V.unop))) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op ((OpenNhds.inclusion p₀).obj V.unop)).unop then c else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ (OpenNhds.inclusion p₀).obj U.unop then c else ⊤_ C)) = NatTrans.app f (op U.unop.obj) ≫ eqToHom (_ : (if p₀ ∈ U.unop.obj then c else ⊤_ C) = if p₀ ∈ V.unop.obj then c else ⊤_ C) [PROOFSTEP] split_ifs [GOAL] case pos X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U V : (OpenNhds p₀)ᵒᵖ inc : U ⟶ V hV : p₀ ∈ (OpenNhds.inclusion p₀).obj V.unop h✝ : p₀ ∈ V.unop.obj ⊢ NatTrans.app f (op ((OpenNhds.inclusion p₀).obj U.unop)) ≫ eqToHom (_ : (fun U => if p₀ ∈ U.unop then c else ⊤_ C) (op ((OpenNhds.inclusion p₀).obj U.unop)) = (fun U => if p₀ ∈ U.unop then c else ⊤_ C) (op ((OpenNhds.inclusion p₀).obj V.unop))) = NatTrans.app f (op U.unop.obj) ≫ eqToHom (_ : (if p₀ ∈ U.unop.obj then c else ⊤_ C) = if p₀ ∈ V.unop.obj then c else ⊤_ C) [PROOFSTEP] simp only [comp_eqToHom_iff, Category.assoc, eqToHom_trans, eqToHom_refl, Category.comp_id] [GOAL] case neg X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U V : (OpenNhds p₀)ᵒᵖ inc : U ⟶ V hV : p₀ ∈ (OpenNhds.inclusion p₀).obj V.unop h✝ : ¬p₀ ∈ V.unop.obj ⊢ NatTrans.app f (op ((OpenNhds.inclusion p₀).obj U.unop)) ≫ eqToHom (_ : (fun U => if p₀ ∈ U.unop then c else ⊤_ C) (op ((OpenNhds.inclusion p₀).obj U.unop)) = (fun U => if p₀ ∈ U.unop then c else ⊤_ C) (op ((OpenNhds.inclusion p₀).obj V.unop))) = NatTrans.app f (op U.unop.obj) ≫ eqToHom (_ : (if p₀ ∈ U.unop.obj then c else ⊤_ C) = if p₀ ∈ V.unop.obj then c else ⊤_ C) [PROOFSTEP] simp only [comp_eqToHom_iff, Category.assoc, eqToHom_trans, eqToHom_refl, Category.comp_id] [GOAL] case pos X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U V : (OpenNhds p₀)ᵒᵖ inc : U ⟶ V hV : p₀ ∈ (OpenNhds.inclusion p₀).obj V.unop h✝ : p₀ ∈ V.unop.obj ⊢ NatTrans.app f (op ((OpenNhds.inclusion p₀).obj U.unop)) = NatTrans.app f (op U.unop.obj) [PROOFSTEP] rfl [GOAL] case neg X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U V : (OpenNhds p₀)ᵒᵖ inc : U ⟶ V hV : p₀ ∈ (OpenNhds.inclusion p₀).obj V.unop h✝ : ¬p₀ ∈ V.unop.obj ⊢ NatTrans.app f (op ((OpenNhds.inclusion p₀).obj U.unop)) = NatTrans.app f (op U.unop.obj) [PROOFSTEP] rfl [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U : (Opens ↑X)ᵒᵖ h : p₀ ∈ U.unop ⊢ NatTrans.app (toSkyscraperPresheaf p₀ (fromStalk p₀ f)) U = NatTrans.app f U [PROOFSTEP] dsimp [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U : (Opens ↑X)ᵒᵖ h : p₀ ∈ U.unop ⊢ (if h : p₀ ∈ U.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ fromStalk p₀ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj U)) = NatTrans.app f U [PROOFSTEP] split_ifs [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U : (Opens ↑X)ᵒᵖ h : p₀ ∈ U.unop ⊢ Presheaf.germ 𝓕 { val := p₀, property := h } ≫ fromStalk p₀ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) = NatTrans.app f U [PROOFSTEP] erw [← Category.assoc, colimit.ι_desc, Category.assoc, eqToHom_trans, eqToHom_refl, Category.comp_id] [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U : (Opens ↑X)ᵒᵖ h : p₀ ∈ U.unop ⊢ NatTrans.app f (op (op { obj := U.unop, property := (_ : ↑{ val := p₀, property := h } ∈ U.unop) }).unop.obj) = NatTrans.app f U [PROOFSTEP] rfl [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U : (Opens ↑X)ᵒᵖ h : ¬p₀ ∈ U.unop ⊢ NatTrans.app (toSkyscraperPresheaf p₀ (fromStalk p₀ f)) U = NatTrans.app f U [PROOFSTEP] dsimp [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U : (Opens ↑X)ᵒᵖ h : ¬p₀ ∈ U.unop ⊢ (if h : p₀ ∈ U.unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ fromStalk p₀ f ≫ eqToHom (_ : c = if p₀ ∈ U.unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj U)) = NatTrans.app f U [PROOFSTEP] split_ifs [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : 𝓕 ⟶ skyscraperPresheaf p₀ c U : (Opens ↑X)ᵒᵖ h : ¬p₀ ∈ U.unop ⊢ IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ U.unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj U) = NatTrans.app f U [PROOFSTEP] apply ((if_neg h).symm.ndrec terminalIsTerminal).hom_ext [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U : (OpenNhds p₀)ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds p₀)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion p₀).op).obj 𝓕) U ≫ fromStalk p₀ (toSkyscraperPresheaf p₀ f) = colimit.ι (((whiskeringLeft (OpenNhds p₀)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion p₀).op).obj 𝓕) U ≫ f [PROOFSTEP] erw [colimit.ι_desc] [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U : (OpenNhds p₀)ᵒᵖ ⊢ NatTrans.app { pt := c, ι := NatTrans.mk fun U => NatTrans.app (toSkyscraperPresheaf p₀ f) (op U.unop.obj) ≫ eqToHom (_ : (if p₀ ∈ U.unop.obj then c else ⊤_ C) = c) }.ι U = colimit.ι (((whiskeringLeft (OpenNhds p₀)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion p₀).op).obj 𝓕) U ≫ f [PROOFSTEP] dsimp [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U : (OpenNhds p₀)ᵒᵖ ⊢ (if h : p₀ ∈ U.unop.obj then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ (op U.unop.obj).unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U.unop.obj).unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj (op U.unop.obj))) ≫ eqToHom (_ : (if p₀ ∈ U.unop.obj then c else ⊤_ C) = c) = colimit.ι ((OpenNhds.inclusion p₀).op ⋙ 𝓕) U ≫ f [PROOFSTEP] rw [dif_pos U.unop.2] [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U : (OpenNhds p₀)ᵒᵖ ⊢ (Presheaf.germ 𝓕 { val := p₀, property := (_ : p₀ ∈ U.unop.obj) } ≫ f ≫ eqToHom (_ : c = if p₀ ∈ (op U.unop.obj).unop then c else ⊤_ C)) ≫ eqToHom (_ : (if p₀ ∈ U.unop.obj then c else ⊤_ C) = c) = colimit.ι ((OpenNhds.inclusion p₀).op ⋙ 𝓕) U ≫ f [PROOFSTEP] rw [Category.assoc, Category.assoc, eqToHom_trans, eqToHom_refl, Category.comp_id, Presheaf.germ] [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C f : Presheaf.stalk 𝓕 p₀ ⟶ c U : (OpenNhds p₀)ᵒᵖ ⊢ colimit.ι ((OpenNhds.inclusion ↑{ val := p₀, property := (_ : p₀ ∈ U.unop.obj) }).op ⋙ 𝓕) (op { obj := U.unop.obj, property := (_ : ↑{ val := p₀, property := (_ : p₀ ∈ U.unop.obj) } ∈ U.unop.obj) }) ≫ f = colimit.ι ((OpenNhds.inclusion p₀).op ⋙ 𝓕) U ≫ f [PROOFSTEP] congr 3 [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 𝓖 : Presheaf C X f : 𝓕 ⟶ 𝓖 ⊢ (𝟭 (Presheaf C X)).map f ≫ (fun 𝓕 => toSkyscraperPresheaf p₀ (𝟙 (Presheaf.stalk ((𝟭 (Presheaf C X)).obj 𝓕) p₀))) 𝓖 = (fun 𝓕 => toSkyscraperPresheaf p₀ (𝟙 (Presheaf.stalk ((𝟭 (Presheaf C X)).obj 𝓕) p₀))) 𝓕 ≫ (Presheaf.stalkFunctor C p₀ ⋙ skyscraperPresheafFunctor p₀).map f [PROOFSTEP] ext U [GOAL] case w X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 𝓖 : Presheaf C X f : 𝓕 ⟶ 𝓖 U : Opens ↑X ⊢ NatTrans.app ((𝟭 (Presheaf C X)).map f ≫ (fun 𝓕 => toSkyscraperPresheaf p₀ (𝟙 (Presheaf.stalk ((𝟭 (Presheaf C X)).obj 𝓕) p₀))) 𝓖) (op U) = NatTrans.app ((fun 𝓕 => toSkyscraperPresheaf p₀ (𝟙 (Presheaf.stalk ((𝟭 (Presheaf C X)).obj 𝓕) p₀))) 𝓕 ≫ (Presheaf.stalkFunctor C p₀ ⋙ skyscraperPresheafFunctor p₀).map f) (op U) [PROOFSTEP] dsimp -- Porting note : added the following `rw` and `dsimp` to make it compile [GOAL] case w X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 𝓖 : Presheaf C X f : 𝓕 ⟶ 𝓖 U : Opens ↑X ⊢ NatTrans.app (f ≫ toSkyscraperPresheaf p₀ (𝟙 (Presheaf.stalk 𝓖 p₀))) (op U) = NatTrans.app (toSkyscraperPresheaf p₀ (𝟙 (Presheaf.stalk 𝓕 p₀)) ≫ SkyscraperPresheafFunctor.map' p₀ ((Presheaf.stalkFunctor C p₀).map f)) (op U) [PROOFSTEP] rw [NatTrans.comp_app, toSkyscraperPresheaf_app, NatTrans.comp_app, toSkyscraperPresheaf_app] [GOAL] case w X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 𝓖 : Presheaf C X f : 𝓕 ⟶ 𝓖 U : Opens ↑X ⊢ (NatTrans.app f (op U) ≫ if h : p₀ ∈ (op U).unop then Presheaf.germ 𝓖 { val := p₀, property := h } ≫ 𝟙 (Presheaf.stalk 𝓖 p₀) ≫ eqToHom (_ : Presheaf.stalk 𝓖 p₀ = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓖 p₀ else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓖 p₀ else ⊤_ C) ▸ terminalIsTerminal) (𝓖.obj (op U))) = (if h : p₀ ∈ (op U).unop then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ 𝟙 (Presheaf.stalk 𝓕 p₀) ≫ eqToHom (_ : Presheaf.stalk 𝓕 p₀ = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓕 p₀ else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓕 p₀ else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj (op U))) ≫ NatTrans.app (SkyscraperPresheafFunctor.map' p₀ ((Presheaf.stalkFunctor C p₀).map f)) (op U) [PROOFSTEP] dsimp only [skyscraperPresheaf_obj, unop_op, Eq.ndrec, SkyscraperPresheafFunctor.map'_app] [GOAL] case w X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 𝓖 : Presheaf C X f : 𝓕 ⟶ 𝓖 U : Opens ↑X ⊢ (NatTrans.app f (op U) ≫ if h : p₀ ∈ U then Presheaf.germ 𝓖 { val := p₀, property := h } ≫ 𝟙 (Presheaf.stalk 𝓖 p₀) ≫ eqToHom (_ : Presheaf.stalk 𝓖 p₀ = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓖 p₀ else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓖 p₀ else ⊤_ C) ▸ terminalIsTerminal) (𝓖.obj (op U))) = (if h : p₀ ∈ U then Presheaf.germ 𝓕 { val := p₀, property := h } ≫ 𝟙 (Presheaf.stalk 𝓕 p₀) ≫ eqToHom (_ : Presheaf.stalk 𝓕 p₀ = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓕 p₀ else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓕 p₀ else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj (op U))) ≫ if h : p₀ ∈ U then eqToHom (_ : (if p₀ ∈ (op U).unop then Presheaf.stalk 𝓕 p₀ else ⊤_ C) = Presheaf.stalk 𝓕 p₀) ≫ (Presheaf.stalkFunctor C p₀).map f ≫ eqToHom (_ : Presheaf.stalk 𝓖 p₀ = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓖 p₀ else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓖 p₀ else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U then Presheaf.stalk 𝓕 p₀ else ⊤_ C) [PROOFSTEP] split_ifs with h [GOAL] case pos X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 𝓖 : Presheaf C X f : 𝓕 ⟶ 𝓖 U : Opens ↑X h : p₀ ∈ U ⊢ NatTrans.app f (op U) ≫ Presheaf.germ 𝓖 { val := p₀, property := h } ≫ 𝟙 (Presheaf.stalk 𝓖 p₀) ≫ eqToHom (_ : Presheaf.stalk 𝓖 p₀ = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓖 p₀ else ⊤_ C) = (Presheaf.germ 𝓕 { val := p₀, property := h } ≫ 𝟙 (Presheaf.stalk 𝓕 p₀) ≫ eqToHom (_ : Presheaf.stalk 𝓕 p₀ = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓕 p₀ else ⊤_ C)) ≫ eqToHom (_ : (if p₀ ∈ (op U).unop then Presheaf.stalk 𝓕 p₀ else ⊤_ C) = Presheaf.stalk 𝓕 p₀) ≫ (Presheaf.stalkFunctor C p₀).map f ≫ eqToHom (_ : Presheaf.stalk 𝓖 p₀ = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓖 p₀ else ⊤_ C) [PROOFSTEP] simp only [Category.id_comp, ← Category.assoc] [GOAL] case pos X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 𝓖 : Presheaf C X f : 𝓕 ⟶ 𝓖 U : Opens ↑X h : p₀ ∈ U ⊢ (NatTrans.app f (op U) ≫ Presheaf.germ 𝓖 { val := p₀, property := h }) ≫ eqToHom (_ : Presheaf.stalk 𝓖 p₀ = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓖 p₀ else ⊤_ C) = (((Presheaf.germ 𝓕 { val := p₀, property := h } ≫ eqToHom (_ : Presheaf.stalk 𝓕 p₀ = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓕 p₀ else ⊤_ C)) ≫ eqToHom (_ : (if p₀ ∈ (op U).unop then Presheaf.stalk 𝓕 p₀ else ⊤_ C) = Presheaf.stalk 𝓕 p₀)) ≫ (Presheaf.stalkFunctor C p₀).map f) ≫ eqToHom (_ : Presheaf.stalk 𝓖 p₀ = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓖 p₀ else ⊤_ C) [PROOFSTEP] rw [comp_eqToHom_iff] [GOAL] case pos X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 𝓖 : Presheaf C X f : 𝓕 ⟶ 𝓖 U : Opens ↑X h : p₀ ∈ U ⊢ NatTrans.app f (op U) ≫ Presheaf.germ 𝓖 { val := p₀, property := h } = ((((Presheaf.germ 𝓕 { val := p₀, property := h } ≫ eqToHom (_ : Presheaf.stalk 𝓕 p₀ = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓕 p₀ else ⊤_ C)) ≫ eqToHom (_ : (if p₀ ∈ (op U).unop then Presheaf.stalk 𝓕 p₀ else ⊤_ C) = Presheaf.stalk 𝓕 p₀)) ≫ (Presheaf.stalkFunctor C p₀).map f) ≫ eqToHom (_ : Presheaf.stalk 𝓖 p₀ = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓖 p₀ else ⊤_ C)) ≫ eqToHom (_ : (if p₀ ∈ U then Presheaf.stalk 𝓖 p₀ else ⊤_ C) = Presheaf.stalk 𝓖 p₀) [PROOFSTEP] simp only [Category.assoc, eqToHom_trans, eqToHom_refl, Category.comp_id] [GOAL] case pos X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 𝓖 : Presheaf C X f : 𝓕 ⟶ 𝓖 U : Opens ↑X h : p₀ ∈ U ⊢ NatTrans.app f (op U) ≫ Presheaf.germ 𝓖 { val := p₀, property := h } = Presheaf.germ 𝓕 { val := p₀, property := h } ≫ (Presheaf.stalkFunctor C p₀).map f [PROOFSTEP] erw [colimit.ι_map] [GOAL] case pos X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 𝓖 : Presheaf C X f : 𝓕 ⟶ 𝓖 U : Opens ↑X h : p₀ ∈ U ⊢ NatTrans.app f (op U) ≫ Presheaf.germ 𝓖 { val := p₀, property := h } = NatTrans.app (((whiskeringLeft (OpenNhds p₀)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion p₀).op).map f) (op { obj := U, property := (_ : ↑{ val := p₀, property := h } ∈ U) }) ≫ colimit.ι (((whiskeringLeft (OpenNhds p₀)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion p₀).op).obj 𝓖) (op { obj := U, property := (_ : ↑{ val := p₀, property := h } ∈ U) }) [PROOFSTEP] rfl [GOAL] case neg X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 𝓖 : Presheaf C X f : 𝓕 ⟶ 𝓖 U : Opens ↑X h : ¬p₀ ∈ U ⊢ NatTrans.app f (op U) ≫ IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓖 p₀ else ⊤_ C) ▸ terminalIsTerminal) (𝓖.obj (op U)) = IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓕 p₀ else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj (op U)) ≫ IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then Presheaf.stalk 𝓖 p₀ else ⊤_ C) ▸ terminalIsTerminal) (if p₀ ∈ U then Presheaf.stalk 𝓕 p₀ else ⊤_ C) [PROOFSTEP] apply ((if_neg h).symm.ndrec terminalIsTerminal).hom_ext [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C x y : C f : x ⟶ y U : (OpenNhds p₀)ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds p₀)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion p₀).op).obj ((skyscraperPresheafFunctor p₀).obj x)) U ≫ (skyscraperPresheafFunctor p₀ ⋙ Presheaf.stalkFunctor C p₀).map f ≫ (fun c => (skyscraperPresheafStalkOfSpecializes p₀ c (_ : p₀ ⤳ p₀)).hom) y = colimit.ι (((whiskeringLeft (OpenNhds p₀)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion p₀).op).obj ((skyscraperPresheafFunctor p₀).obj x)) U ≫ (fun c => (skyscraperPresheafStalkOfSpecializes p₀ c (_ : p₀ ⤳ p₀)).hom) x ≫ (𝟭 C).map f [PROOFSTEP] erw [← Category.assoc, colimit.ι_map, colimit.isoColimitCocone_ι_hom_assoc, skyscraperPresheafCoconeOfSpecializes_ι_app (h := specializes_rfl), Category.assoc, colimit.ι_desc, whiskeringLeft_obj_map, whiskerLeft_app, SkyscraperPresheafFunctor.map'_app, dif_pos U.unop.2, skyscraperPresheafCoconeOfSpecializes_ι_app (h := specializes_rfl), comp_eqToHom_iff, Category.assoc, eqToHom_comp_iff, ← Category.assoc, eqToHom_trans, eqToHom_refl, Category.id_comp, comp_eqToHom_iff, Category.assoc, eqToHom_trans, eqToHom_refl, Category.comp_id, CategoryTheory.Functor.id_map] [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C α : (Presheaf.stalkFunctor C p₀).obj 𝓕 ⟶ c ⊢ ↑((fun c 𝓕 => { toFun := toSkyscraperPresheaf p₀, invFun := fromStalk p₀, left_inv := (_ : ∀ (f : Presheaf.stalk c p₀ ⟶ 𝓕), fromStalk p₀ (toSkyscraperPresheaf p₀ f) = f), right_inv := (_ : ∀ (f : c ⟶ skyscraperPresheaf p₀ 𝓕), toSkyscraperPresheaf p₀ (fromStalk p₀ f) = f) }) 𝓕 c) α = NatTrans.app (StalkSkyscraperPresheafAdjunctionAuxs.unit p₀) 𝓕 ≫ (skyscraperPresheafFunctor p₀).map α [PROOFSTEP] ext U [GOAL] case w X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C α : (Presheaf.stalkFunctor C p₀).obj 𝓕 ⟶ c U : Opens ↑X ⊢ NatTrans.app (↑((fun c 𝓕 => { toFun := toSkyscraperPresheaf p₀, invFun := fromStalk p₀, left_inv := (_ : ∀ (f : Presheaf.stalk c p₀ ⟶ 𝓕), fromStalk p₀ (toSkyscraperPresheaf p₀ f) = f), right_inv := (_ : ∀ (f : c ⟶ skyscraperPresheaf p₀ 𝓕), toSkyscraperPresheaf p₀ (fromStalk p₀ f) = f) }) 𝓕 c) α) (op U) = NatTrans.app (NatTrans.app (StalkSkyscraperPresheafAdjunctionAuxs.unit p₀) 𝓕 ≫ (skyscraperPresheafFunctor p₀).map α) (op U) [PROOFSTEP] rw [NatTrans.comp_app] [GOAL] case w X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C α : (Presheaf.stalkFunctor C p₀).obj 𝓕 ⟶ c U : Opens ↑X ⊢ NatTrans.app (↑((fun c 𝓕 => { toFun := toSkyscraperPresheaf p₀, invFun := fromStalk p₀, left_inv := (_ : ∀ (f : Presheaf.stalk c p₀ ⟶ 𝓕), fromStalk p₀ (toSkyscraperPresheaf p₀ f) = f), right_inv := (_ : ∀ (f : c ⟶ skyscraperPresheaf p₀ 𝓕), toSkyscraperPresheaf p₀ (fromStalk p₀ f) = f) }) 𝓕 c) α) (op U) = NatTrans.app (NatTrans.app (StalkSkyscraperPresheafAdjunctionAuxs.unit p₀) 𝓕) (op U) ≫ NatTrans.app ((skyscraperPresheafFunctor p₀).map α) (op U) [PROOFSTEP] simp only [Equiv.coe_fn_mk, toSkyscraperPresheaf_app, SkyscraperPresheafFunctor.map'_app, skyscraperPresheafFunctor_map, unit_app] [GOAL] case w X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C α : (Presheaf.stalkFunctor C p₀).obj 𝓕 ⟶ c U : Opens ↑X ⊢ (if h : p₀ ∈ (op U).unop then Presheaf.germ 𝓕 { val := p₀, property := (_ : p₀ ∈ (op U).unop) } ≫ α ≫ eqToHom (_ : c = if p₀ ∈ (op U).unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj (op U))) = (if h : p₀ ∈ (op U).unop then Presheaf.germ 𝓕 { val := p₀, property := (_ : p₀ ∈ (op U).unop) } ≫ 𝟙 (Presheaf.stalk ((𝟭 (Presheaf C X)).obj 𝓕) p₀) ≫ eqToHom (_ : (Presheaf.stalkFunctor C p₀).obj 𝓕 = if p₀ ∈ (op U).unop then (Presheaf.stalkFunctor C p₀).obj 𝓕 else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then (Presheaf.stalkFunctor C p₀).obj 𝓕 else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj (op U))) ≫ if h : p₀ ∈ (op U).unop then eqToHom (_ : (if p₀ ∈ (op U).unop then (Presheaf.stalkFunctor C p₀).obj 𝓕 else ⊤_ C) = (Presheaf.stalkFunctor C p₀).obj 𝓕) ≫ α ≫ eqToHom (_ : c = if p₀ ∈ (op U).unop then c else ⊤_ C) else IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then c else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ ((Presheaf.stalkFunctor C p₀).obj 𝓕)).obj (op U)) [PROOFSTEP] split_ifs with h [GOAL] case pos X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C α : (Presheaf.stalkFunctor C p₀).obj 𝓕 ⟶ c U : Opens ↑X h : p₀ ∈ (op U).unop ⊢ Presheaf.germ 𝓕 { val := p₀, property := (_ : p₀ ∈ (op U).unop) } ≫ α ≫ eqToHom (_ : c = if p₀ ∈ (op U).unop then c else ⊤_ C) = (Presheaf.germ 𝓕 { val := p₀, property := (_ : p₀ ∈ (op U).unop) } ≫ 𝟙 (Presheaf.stalk ((𝟭 (Presheaf C X)).obj 𝓕) p₀) ≫ eqToHom (_ : (Presheaf.stalkFunctor C p₀).obj 𝓕 = if p₀ ∈ (op U).unop then (Presheaf.stalkFunctor C p₀).obj 𝓕 else ⊤_ C)) ≫ eqToHom (_ : (if p₀ ∈ (op U).unop then (Presheaf.stalkFunctor C p₀).obj 𝓕 else ⊤_ C) = (Presheaf.stalkFunctor C p₀).obj 𝓕) ≫ α ≫ eqToHom (_ : c = if p₀ ∈ (op U).unop then c else ⊤_ C) [PROOFSTEP] erw [Category.id_comp, ← Category.assoc, comp_eqToHom_iff, Category.assoc, Category.assoc, Category.assoc, Category.assoc, eqToHom_trans, eqToHom_refl, Category.comp_id, ← Category.assoc _ _ α, eqToHom_trans, eqToHom_refl, Category.id_comp] [GOAL] case neg X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C α : (Presheaf.stalkFunctor C p₀).obj 𝓕 ⟶ c U : Opens ↑X h : ¬p₀ ∈ (op U).unop ⊢ IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then c else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj (op U)) = IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then (Presheaf.stalkFunctor C p₀).obj 𝓕 else ⊤_ C) ▸ terminalIsTerminal) (𝓕.obj (op U)) ≫ IsTerminal.from ((_ : (⊤_ C) = if p₀ ∈ (op U).unop then c else ⊤_ C) ▸ terminalIsTerminal) ((skyscraperPresheaf p₀ ((Presheaf.stalkFunctor C p₀).obj 𝓕)).obj (op U)) [PROOFSTEP] apply ((if_neg h).symm.ndrec terminalIsTerminal).hom_ext [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C α : 𝓕 ⟶ (skyscraperPresheafFunctor p₀).obj c ⊢ ↑((fun c 𝓕 => { toFun := toSkyscraperPresheaf p₀, invFun := fromStalk p₀, left_inv := (_ : ∀ (f : Presheaf.stalk c p₀ ⟶ 𝓕), fromStalk p₀ (toSkyscraperPresheaf p₀ f) = f), right_inv := (_ : ∀ (f : c ⟶ skyscraperPresheaf p₀ 𝓕), toSkyscraperPresheaf p₀ (fromStalk p₀ f) = f) }) 𝓕 c).symm α = (Presheaf.stalkFunctor C p₀).map α ≫ NatTrans.app (StalkSkyscraperPresheafAdjunctionAuxs.counit p₀) c [PROOFSTEP] dsimp [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C α : 𝓕 ⟶ (skyscraperPresheafFunctor p₀).obj c ⊢ fromStalk p₀ α = (Presheaf.stalkFunctor C p₀).map α ≫ (skyscraperPresheafStalkOfSpecializes p₀ c (_ : p₀ ⤳ p₀)).hom [PROOFSTEP] ext U [GOAL] case ih X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C α : 𝓕 ⟶ (skyscraperPresheafFunctor p₀).obj c U : Opens ↑X hxU✝ : p₀ ∈ U ⊢ Presheaf.germ 𝓕 { val := p₀, property := hxU✝ } ≫ fromStalk p₀ α = Presheaf.germ 𝓕 { val := p₀, property := hxU✝ } ≫ (Presheaf.stalkFunctor C p₀).map α ≫ (skyscraperPresheafStalkOfSpecializes p₀ c (_ : p₀ ⤳ p₀)).hom [PROOFSTEP] simp only [Equiv.coe_fn_symm_mk, counit_app] [GOAL] case ih X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C α : 𝓕 ⟶ (skyscraperPresheafFunctor p₀).obj c U : Opens ↑X hxU✝ : p₀ ∈ U ⊢ Presheaf.germ 𝓕 { val := p₀, property := hxU✝ } ≫ fromStalk p₀ α = Presheaf.germ 𝓕 { val := p₀, property := hxU✝ } ≫ (Presheaf.stalkFunctor C p₀).map α ≫ (skyscraperPresheafStalkOfSpecializes p₀ c (_ : p₀ ⤳ p₀)).hom [PROOFSTEP] erw [colimit.ι_desc, ← Category.assoc, colimit.ι_map, whiskerLeft_app, Category.assoc, colimit.ι_desc] [GOAL] case ih X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓕 : Presheaf C X c : C α : 𝓕 ⟶ (skyscraperPresheafFunctor p₀).obj c U : Opens ↑X hxU✝ : p₀ ∈ U ⊢ NatTrans.app { pt := c, ι := NatTrans.mk fun U => NatTrans.app α (op U.unop.obj) ≫ eqToHom (_ : (if p₀ ∈ U.unop.obj then c else ⊤_ C) = c) }.ι (op { obj := U, property := (_ : ↑{ val := p₀, property := hxU✝ } ∈ U) }) = NatTrans.app α ((OpenNhds.inclusion p₀).op.obj (op { obj := U, property := (_ : ↑{ val := p₀, property := hxU✝ } ∈ U) })) ≫ NatTrans.app { cocone := skyscraperPresheafCoconeOfSpecializes p₀ c (_ : p₀ ⤳ p₀), isColimit := skyscraperPresheafCoconeIsColimitOfSpecializes p₀ c (_ : p₀ ⤳ p₀) }.cocone.ι (op { obj := U, property := (_ : ↑{ val := p₀, property := hxU✝ } ∈ U) }) [PROOFSTEP] rfl [GOAL] X : TopCat p₀ : ↑X inst✝³ : (U : Opens ↑X) → Decidable (p₀ ∈ U) C : Type v inst✝² : Category.{u, v} C A : C inst✝¹ : HasTerminal C inst✝ : HasColimits C 𝓐 𝓑 : TopCat.Sheaf C X f : 𝓐 ⟶ 𝓑 ⊢ ((𝟭 (TopCat.Sheaf C X)).map f ≫ (fun 𝓕 => { val := NatTrans.app (StalkSkyscraperPresheafAdjunctionAuxs.unit p₀) 𝓕.val }) 𝓑).val = ((fun 𝓕 => { val := NatTrans.app (StalkSkyscraperPresheafAdjunctionAuxs.unit p₀) 𝓕.val }) 𝓐 ≫ ((Sheaf.forget C X ⋙ Presheaf.stalkFunctor C p₀) ⋙ skyscraperSheafFunctor p₀).map f).val [PROOFSTEP] apply (StalkSkyscraperPresheafAdjunctionAuxs.unit p₀).naturality
{"mathlib_filename": "Mathlib.Topology.Sheaves.Skyscraper", "llama_tokens": 42654}
[GOAL] X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝³ : TopologicalSpace X inst✝² : Monoid M inst✝¹ : TopologicalSpace M inst✝ : ContinuousMul M f : C(X, Mˣ) ⊢ (fun f => mk fun x => { val := ↑↑f x, inv := ↑↑f⁻¹ x, val_inv := (_ : ↑(↑f * ↑f⁻¹) x = ↑1 x), inv_val := (_ : ↑(↑f⁻¹ * ↑f) x = ↑1 x) }) ((fun f => { val := mk fun x => ↑(↑f x), inv := mk fun x => ↑(↑f x)⁻¹, val_inv := (_ : ((mk fun x => ↑(↑f x)) * mk fun x => ↑(↑f x)⁻¹) = 1), inv_val := (_ : ((mk fun x => ↑(↑f x)⁻¹) * mk fun x => ↑(↑f x)) = 1) }) f) = f [PROOFSTEP] ext [GOAL] case h.a X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝³ : TopologicalSpace X inst✝² : Monoid M inst✝¹ : TopologicalSpace M inst✝ : ContinuousMul M f : C(X, Mˣ) a✝ : X ⊢ ↑(↑((fun f => mk fun x => { val := ↑↑f x, inv := ↑↑f⁻¹ x, val_inv := (_ : ↑(↑f * ↑f⁻¹) x = ↑1 x), inv_val := (_ : ↑(↑f⁻¹ * ↑f) x = ↑1 x) }) ((fun f => { val := mk fun x => ↑(↑f x), inv := mk fun x => ↑(↑f x)⁻¹, val_inv := (_ : ((mk fun x => ↑(↑f x)) * mk fun x => ↑(↑f x)⁻¹) = 1), inv_val := (_ : ((mk fun x => ↑(↑f x)⁻¹) * mk fun x => ↑(↑f x)) = 1) }) f)) a✝) = ↑(↑f a✝) [PROOFSTEP] rfl [GOAL] X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝³ : TopologicalSpace X inst✝² : Monoid M inst✝¹ : TopologicalSpace M inst✝ : ContinuousMul M f : C(X, M)ˣ ⊢ (fun f => { val := mk fun x => ↑(↑f x), inv := mk fun x => ↑(↑f x)⁻¹, val_inv := (_ : ((mk fun x => ↑(↑f x)) * mk fun x => ↑(↑f x)⁻¹) = 1), inv_val := (_ : ((mk fun x => ↑(↑f x)⁻¹) * mk fun x => ↑(↑f x)) = 1) }) ((fun f => mk fun x => { val := ↑↑f x, inv := ↑↑f⁻¹ x, val_inv := (_ : ↑(↑f * ↑f⁻¹) x = ↑1 x), inv_val := (_ : ↑(↑f⁻¹ * ↑f) x = ↑1 x) }) f) = f [PROOFSTEP] ext [GOAL] case a.h X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝³ : TopologicalSpace X inst✝² : Monoid M inst✝¹ : TopologicalSpace M inst✝ : ContinuousMul M f : C(X, M)ˣ a✝ : X ⊢ ↑↑((fun f => { val := mk fun x => ↑(↑f x), inv := mk fun x => ↑(↑f x)⁻¹, val_inv := (_ : ((mk fun x => ↑(↑f x)) * mk fun x => ↑(↑f x)⁻¹) = 1), inv_val := (_ : ((mk fun x => ↑(↑f x)⁻¹) * mk fun x => ↑(↑f x)) = 1) }) ((fun f => mk fun x => { val := ↑↑f x, inv := ↑↑f⁻¹ x, val_inv := (_ : ↑(↑f * ↑f⁻¹) x = ↑1 x), inv_val := (_ : ↑(↑f⁻¹ * ↑f) x = ↑1 x) }) f)) a✝ = ↑↑f a✝ [PROOFSTEP] rfl [GOAL] X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝³ : TopologicalSpace X inst✝² : Monoid M inst✝¹ : TopologicalSpace M inst✝ : ContinuousMul M f : C(X, M)ˣ x : X ⊢ ↑(↑(↑unitsLift.symm f) x)⁻¹ = ↑↑f⁻¹ x [PROOFSTEP] rfl [GOAL] X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : NormedRing R inst✝ : CompleteSpace R f : C(X, R) h : ∀ (x : X), IsUnit (↑f x) ⊢ Continuous fun x => IsUnit.unit (_ : IsUnit (↑f x)) [PROOFSTEP] refine' continuous_induced_rng.2 (Continuous.prod_mk f.continuous (MulOpposite.continuous_op.comp (continuous_iff_continuousAt.mpr fun x => _))) [GOAL] X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : NormedRing R inst✝ : CompleteSpace R f : C(X, R) h : ∀ (x : X), IsUnit (↑f x) x : X ⊢ ContinuousAt (fun x => ↑((fun x => IsUnit.unit (_ : IsUnit (↑f x))) x)⁻¹) x [PROOFSTEP] have := NormedRing.inverse_continuousAt (h x).unit [GOAL] X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : NormedRing R inst✝ : CompleteSpace R f : C(X, R) h : ∀ (x : X), IsUnit (↑f x) x : X this : ContinuousAt Ring.inverse ↑(IsUnit.unit (_ : IsUnit (↑f x))) ⊢ ContinuousAt (fun x => ↑((fun x => IsUnit.unit (_ : IsUnit (↑f x))) x)⁻¹) x [PROOFSTEP] simp only [GOAL] X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : NormedRing R inst✝ : CompleteSpace R f : C(X, R) h : ∀ (x : X), IsUnit (↑f x) x : X this : ContinuousAt Ring.inverse ↑(IsUnit.unit (_ : IsUnit (↑f x))) ⊢ ContinuousAt (fun x => ↑(IsUnit.unit (_ : IsUnit (↑f x)))⁻¹) x [PROOFSTEP] simp only [← Ring.inverse_unit, IsUnit.unit_spec] at this ⊢ [GOAL] X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : NormedRing R inst✝ : CompleteSpace R f : C(X, R) h : ∀ (x : X), IsUnit (↑f x) x : X this : ContinuousAt Ring.inverse (↑f x) ⊢ ContinuousAt (fun x => Ring.inverse (↑f x)) x [PROOFSTEP] exact this.comp (f.continuousAt x) [GOAL] X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : NormedRing R inst✝ : CompleteSpace R f : C(X, R) h : ∀ (x : X), IsUnit (↑f x) ⊢ (mk fun x => ↑(↑(unitsOfForallIsUnit h) x)) = f [PROOFSTEP] ext [GOAL] case h X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : NormedRing R inst✝ : CompleteSpace R f : C(X, R) h : ∀ (x : X), IsUnit (↑f x) a✝ : X ⊢ ↑(mk fun x => ↑(↑(unitsOfForallIsUnit h) x)) a✝ = ↑f a✝ [PROOFSTEP] rfl [GOAL] X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : NormedRing R inst✝ : CompleteSpace R f : C(X, R) h : ∀ (x : X), IsUnit (↑f x) ⊢ ↑(↑unitsLift (unitsOfForallIsUnit h)) = f [PROOFSTEP] ext [GOAL] case h X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : NormedRing R inst✝ : CompleteSpace R f : C(X, R) h : ∀ (x : X), IsUnit (↑f x) a✝ : X ⊢ ↑↑(↑unitsLift (unitsOfForallIsUnit h)) a✝ = ↑f a✝ [PROOFSTEP] rfl [GOAL] X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : NormedField 𝕜 inst✝ : CompleteSpace 𝕜 f : C(X, 𝕜) ⊢ IsUnit f ↔ ∀ (x : X), ↑f x ≠ 0 [PROOFSTEP] simp_rw [f.isUnit_iff_forall_isUnit, isUnit_iff_ne_zero] [GOAL] X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : NormedField 𝕜 inst✝ : CompleteSpace 𝕜 f : C(X, 𝕜) ⊢ spectrum 𝕜 f = Set.range ↑f [PROOFSTEP] ext x [GOAL] case h X : Type u_1 M : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : NormedField 𝕜 inst✝ : CompleteSpace 𝕜 f : C(X, 𝕜) x : 𝕜 ⊢ x ∈ spectrum 𝕜 f ↔ x ∈ Set.range ↑f [PROOFSTEP] simp only [spectrum.mem_iff, isUnit_iff_forall_ne_zero, not_forall, coe_sub, Pi.sub_apply, algebraMap_apply, Algebra.id.smul_eq_mul, mul_one, Classical.not_not, Set.mem_range, sub_eq_zero, @eq_comm _ x _]
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.Units", "llama_tokens": 3231}
[GOAL] X Y : Scheme f : X ⟶ Y inst✝ : IsIso f h : IsAffine Y ⊢ IsAffine X [PROOFSTEP] rw [← mem_Spec_essImage] at h ⊢ [GOAL] X Y : Scheme f : X ⟶ Y inst✝ : IsIso f h : Y ∈ Functor.essImage Scheme.Spec ⊢ X ∈ Functor.essImage Scheme.Spec [PROOFSTEP] exact Functor.essImage.ofIso (asIso f).symm h [GOAL] ⊢ HasLimits AffineScheme [PROOFSTEP] haveI := Adjunction.has_colimits_of_equivalence Γ.{u} [GOAL] this : HasColimitsOfSize.{u, u, u, u + 1} AffineSchemeᵒᵖ ⊢ HasLimits AffineScheme [PROOFSTEP] haveI : HasLimits AffineScheme.{u}ᵒᵖᵒᵖ := Limits.hasLimits_op_of_hasColimits [GOAL] this✝ : HasColimitsOfSize.{u, u, u, u + 1} AffineSchemeᵒᵖ this : HasLimits AffineSchemeᵒᵖᵒᵖ ⊢ HasLimits AffineScheme [PROOFSTEP] exact Adjunction.has_limits_of_equivalence (opOpEquivalence AffineScheme.{u}).inverse [GOAL] ⊢ PreservesLimits forgetToScheme [PROOFSTEP] apply (config := { allowSynthFailures := true }) @preservesLimitsOfNatIso _ _ _ _ _ _ (isoWhiskerRight equivCommRingCat.unitIso forgetToScheme).symm [GOAL] ⊢ PreservesLimitsOfSize.{?u.56375, ?u.56375, ?u.56375, ?u.56375, ?u.56375 + 1, ?u.56375 + 1} ((equivCommRingCat.functor ⋙ equivCommRingCat.inverse) ⋙ forgetToScheme) [PROOFSTEP] change PreservesLimits (equivCommRingCat.functor ⋙ Scheme.Spec) [GOAL] ⊢ PreservesLimits (equivCommRingCat.functor ⋙ Scheme.Spec) [PROOFSTEP] infer_instance [GOAL] X Y : Scheme inst✝ : IsAffine X f : X ⟶ Y H : IsOpenImmersion f ⊢ IsAffineOpen (Scheme.Hom.opensRange f) [PROOFSTEP] refine' isAffineOfIso (IsOpenImmersion.isoOfRangeEq f (Y.ofRestrict _) _).inv [GOAL] X Y : Scheme inst✝ : IsAffine X f : X ⟶ Y H : IsOpenImmersion f ⊢ Set.range ↑f.val.base = Set.range ↑(Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.Hom.opensRange f)))).val.base [PROOFSTEP] exact Subtype.range_val.symm [GOAL] X : Scheme inst✝ : IsAffine X ⊢ IsAffineOpen ⊤ [PROOFSTEP] convert rangeIsAffineOpenOfOpenImmersion (𝟙 X) [GOAL] case h.e'_2 X : Scheme inst✝ : IsAffine X ⊢ ⊤ = Scheme.Hom.opensRange (𝟙 X) [PROOFSTEP] ext1 [GOAL] case h.e'_2.h X : Scheme inst✝ : IsAffine X ⊢ ↑⊤ = ↑(Scheme.Hom.opensRange (𝟙 X)) [PROOFSTEP] exact Set.range_id.symm [GOAL] X : Scheme ⊢ Opens.IsBasis (Scheme.affineOpens X) [PROOFSTEP] rw [Opens.isBasis_iff_nbhd] [GOAL] X : Scheme ⊢ ∀ {U : Opens ↑↑X.toPresheafedSpace} {x : ↑↑X.toPresheafedSpace}, x ∈ U → ∃ U', U' ∈ Scheme.affineOpens X ∧ x ∈ U' ∧ U' ≤ U [PROOFSTEP] rintro U x (hU : x ∈ (U : Set X)) [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace x : ↑↑X.toPresheafedSpace hU : x ∈ ↑U ⊢ ∃ U', U' ∈ Scheme.affineOpens X ∧ x ∈ U' ∧ U' ≤ U [PROOFSTEP] obtain ⟨S, hS, hxS, hSU⟩ := X.affineBasisCover_is_basis.exists_subset_of_mem_open hU U.isOpen [GOAL] case intro.intro.intro X : Scheme U : Opens ↑↑X.toPresheafedSpace x : ↑↑X.toPresheafedSpace hU : x ∈ ↑U S : Set ↑↑X.toPresheafedSpace hS : S ∈ {x | ∃ a, x = Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) a).val.base} hxS : x ∈ S hSU : S ⊆ ↑U ⊢ ∃ U', U' ∈ Scheme.affineOpens X ∧ x ∈ U' ∧ U' ≤ U [PROOFSTEP] refine' ⟨⟨S, X.affineBasisCover_is_basis.isOpen hS⟩, _, hxS, hSU⟩ [GOAL] case intro.intro.intro X : Scheme U : Opens ↑↑X.toPresheafedSpace x : ↑↑X.toPresheafedSpace hU : x ∈ ↑U S : Set ↑↑X.toPresheafedSpace hS : S ∈ {x | ∃ a, x = Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) a).val.base} hxS : x ∈ S hSU : S ⊆ ↑U ⊢ { carrier := S, is_open' := (_ : IsOpen S) } ∈ Scheme.affineOpens X [PROOFSTEP] rcases hS with ⟨i, rfl⟩ [GOAL] case intro.intro.intro.intro X : Scheme U : Opens ↑↑X.toPresheafedSpace x : ↑↑X.toPresheafedSpace hU : x ∈ ↑U i : (Scheme.affineBasisCover X).J hxS : x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) i).val.base hSU : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) i).val.base ⊆ ↑U ⊢ { carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) i).val.base)) } ∈ Scheme.affineOpens X [PROOFSTEP] exact rangeIsAffineOpenOfOpenImmersion _ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ Scheme.Spec.obj (op (X.presheaf.obj (op U))) ⟶ X [PROOFSTEP] haveI : IsAffine (X.restrict U.openEmbedding) := hU [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ Scheme.Spec.obj (op (X.presheaf.obj (op U))) ⟶ X [PROOFSTEP] have : U.openEmbedding.isOpenMap.functor.obj ⊤ = U := by ext1; exact Set.image_univ.trans Subtype.range_coe [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U [PROOFSTEP] ext1 [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤) = ↑U [PROOFSTEP] exact Set.image_univ.trans Subtype.range_coe [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) this : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U ⊢ Scheme.Spec.obj (op (X.presheaf.obj (op U))) ⟶ X [PROOFSTEP] exact Scheme.Spec.map (X.presheaf.map (eqToHom this.symm).op).op ≫ (X.restrict U.openEmbedding).isoSpec.inv ≫ X.ofRestrict _ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsOpenImmersion (fromSpec hU) [PROOFSTEP] delta IsAffineOpen.fromSpec [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsOpenImmersion (let_fun this := (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U); Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ (Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) [PROOFSTEP] dsimp -- Porting note : this was automatic [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsOpenImmersion (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ (Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) [PROOFSTEP] repeat apply (config := { allowSynthFailures := true }) PresheafedSpace.IsOpenImmersion.comp [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsOpenImmersion (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ (Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) [PROOFSTEP] apply (config := { allowSynthFailures := true }) PresheafedSpace.IsOpenImmersion.comp [GOAL] case hg X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ PresheafedSpace.IsOpenImmersion ((Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val [PROOFSTEP] apply (config := { allowSynthFailures := true }) PresheafedSpace.IsOpenImmersion.comp [GOAL] [PROOFSTEP] apply (config := { allowSynthFailures := true }) PresheafedSpace.IsOpenImmersion.comp [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ Set.range ↑(fromSpec hU).val.base = ↑U [PROOFSTEP] delta IsAffineOpen.fromSpec [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ Set.range ↑(let_fun this := (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U); Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ (Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base = ↑U [PROOFSTEP] dsimp [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ Set.range ↑((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base ≫ (Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).inv.val.base ≫ Opens.inclusion U) = ↑U [PROOFSTEP] erw [← Category.assoc] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ Set.range ↑(((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base ≫ (Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).inv.val.base) ≫ Opens.inclusion U) = ↑U [PROOFSTEP] rw [coe_comp, Set.range_comp, Set.range_iff_surjective.mpr, Set.image_univ] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ Set.range ↑(Opens.inclusion U) = ↑U X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ Function.Surjective ↑((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base ≫ (Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).inv.val.base) [PROOFSTEP] exact Subtype.range_coe [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ Function.Surjective ↑((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base ≫ (Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).inv.val.base) [PROOFSTEP] rw [← TopCat.epi_iff_surjective] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ Epi ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base ≫ (Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).inv.val.base) [PROOFSTEP] infer_instance [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(fromSpec hU).val.base)).obj ⊤ = U [PROOFSTEP] ext1 [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(fromSpec hU).val.base)).obj ⊤) = ↑U [PROOFSTEP] exact Set.image_univ.trans hU.fromSpec_range [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsCompact ↑U [PROOFSTEP] convert @IsCompact.image _ _ _ _ Set.univ hU.fromSpec.1.base PrimeSpectrum.compactSpace.1 ((fromSpec hU).val.base.2) -- Porting note : `continuity` can't do this [GOAL] case h.e'_3.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U e_1✝ : ↑↑X.toPresheafedSpace = (forget TopCat).obj ↑X.toPresheafedSpace ⊢ ↑U = ↑(fromSpec hU).val.base '' Set.univ [PROOFSTEP] convert hU.fromSpec_range.symm [GOAL] case h.e'_3.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U e_1✝¹ : ↑↑X.toPresheafedSpace = (forget TopCat).obj ↑X.toPresheafedSpace e_1✝ : Set ↑↑X.toPresheafedSpace = Set ((forget TopCat).obj ↑X.toPresheafedSpace) ⊢ ↑(fromSpec hU).val.base '' Set.univ = Set.range ↑(fromSpec hU).val.base [PROOFSTEP] exact Set.image_univ [GOAL] X Y : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : X ⟶ Y H : IsOpenImmersion f ⊢ IsAffineOpen ((Scheme.Hom.opensFunctor f).obj U) [PROOFSTEP] haveI : IsAffine _ := hU [GOAL] X Y : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : X ⟶ Y H : IsOpenImmersion f this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ IsAffineOpen ((Scheme.Hom.opensFunctor f).obj U) [PROOFSTEP] have : IsOpenImmersion (X.ofRestrict U.openEmbedding ≫ f) := PresheafedSpace.IsOpenImmersion.comp (hf := IsOpenImmersion.ofRestrict _ _) (hg := H) [GOAL] X Y : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : X ⟶ Y H : IsOpenImmersion f this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) this : IsOpenImmersion (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f) ⊢ IsAffineOpen ((Scheme.Hom.opensFunctor f).obj U) [PROOFSTEP] convert rangeIsAffineOpenOfOpenImmersion (X.ofRestrict U.openEmbedding ≫ f) [GOAL] case h.e'_2 X Y : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : X ⟶ Y H : IsOpenImmersion f this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) this : IsOpenImmersion (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f) ⊢ (Scheme.Hom.opensFunctor f).obj U = Scheme.Hom.opensRange (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f) [PROOFSTEP] ext1 [GOAL] case h.e'_2.h X Y : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : X ⟶ Y H : IsOpenImmersion f this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) this : IsOpenImmersion (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f) ⊢ ↑((Scheme.Hom.opensFunctor f).obj U) = ↑(Scheme.Hom.opensRange (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f)) [PROOFSTEP] exact Set.image_eq_range _ _ [GOAL] X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace ⊢ IsAffineOpen ((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U) ↔ IsAffineOpen U [PROOFSTEP] have : IsOpenImmersion (X.ofRestrict U.openEmbedding ≫ f) := PresheafedSpace.IsOpenImmersion.comp (hf := inferInstance) (hg := H) [GOAL] X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace this : IsOpenImmersion (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f) ⊢ IsAffineOpen ((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U) ↔ IsAffineOpen U [PROOFSTEP] refine' ⟨fun hU => @isAffineOfIso _ _ (IsOpenImmersion.isoOfRangeEq (X.ofRestrict U.openEmbedding ≫ f) (Y.ofRestrict _) _).hom ?_ hU, fun hU => hU.imageIsOpenImmersion f⟩ [GOAL] case refine'_1 X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace this : IsOpenImmersion (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f) hU : IsAffineOpen ((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U) ⊢ Set.range ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f).val.base = Set.range ↑(Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion ((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U)))).val.base [PROOFSTEP] rw [Scheme.comp_val_base, coe_comp, Set.range_comp] [GOAL] case refine'_1 X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace this : IsOpenImmersion (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f) hU : IsAffineOpen ((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U) ⊢ ↑f.val.base '' Set.range ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base = Set.range ↑(Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion ((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U)))).val.base [PROOFSTEP] dsimp [Opens.inclusion] [GOAL] case refine'_1 X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace this : IsOpenImmersion (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f) hU : IsAffineOpen ((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U) ⊢ ↑f.val.base '' Set.range ↑(ContinuousMap.mk Subtype.val) = Set.range ↑(ContinuousMap.mk Subtype.val) [PROOFSTEP] rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, Subtype.range_coe, Subtype.range_coe] [GOAL] case refine'_1 X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace this : IsOpenImmersion (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f) hU : IsAffineOpen ((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U) ⊢ ↑f.val.base '' ↑U = ↑((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U) [PROOFSTEP] rfl [GOAL] case refine'_2 X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace this : IsOpenImmersion (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f) hU : IsAffineOpen ((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U) ⊢ IsIso (IsOpenImmersion.isoOfRangeEq (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f) (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion ((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U)))) (_ : Set.range ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) ≫ f).val.base = Set.range ↑(Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion ((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U)))).val.base)).hom [PROOFSTEP] infer_instance [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ (Opens.map (fromSpec hU).val.base).obj U = ⊤ [PROOFSTEP] ext1 [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ ↑((Opens.map (fromSpec hU).val.base).obj U) = ↑⊤ [PROOFSTEP] change hU.fromSpec.1.base ⁻¹' (U : Set X) = Set.univ [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ ↑(fromSpec hU).val.base ⁻¹' ↑U = Set.univ [PROOFSTEP] rw [← hU.fromSpec_range, ← Set.image_univ] [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ ↑(fromSpec hU).val.base ⁻¹' (↑(fromSpec hU).val.base '' Set.univ) = Set.univ [PROOFSTEP] exact Set.preimage_image_eq _ PresheafedSpace.IsOpenImmersion.base_open.inj [GOAL] X : Scheme U V : Opens ↑↑X.toPresheafedSpace h : U = V W : (Opens ↑↑(Spec.obj (op (X.presheaf.obj (op V)))).toPresheafedSpace)ᵒᵖ ⊢ (Spec.obj (op (X.presheaf.obj (op V)))).presheaf.obj W = ((Spec.map (X.presheaf.map (eqToHom h).op).op).val.base _* (Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj W [PROOFSTEP] cases h [GOAL] case refl X : Scheme U : Opens ↑↑X.toPresheafedSpace W : (Opens ↑↑(Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace)ᵒᵖ ⊢ (Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj W = ((Spec.map (X.presheaf.map (eqToHom (_ : U = U)).op).op).val.base _* (Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj W [PROOFSTEP] induction W using Opposite.rec' [GOAL] case refl.h X : Scheme U : Opens ↑↑X.toPresheafedSpace X✝ : Opens ↑↑(Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace ⊢ (Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op X✝) = ((Spec.map (X.presheaf.map (eqToHom (_ : U = U)).op).op).val.base _* (Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj (op X✝) [PROOFSTEP] dsimp [GOAL] case refl.h X : Scheme U : Opens ↑↑X.toPresheafedSpace X✝ : Opens ↑↑(Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace ⊢ (Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op X✝) = (Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op ((Opens.map (Spec.map (X.presheaf.map (𝟙 (op U))).op).val.base).obj X✝)) [PROOFSTEP] simp [GOAL] X : Scheme U V : Opens ↑↑X.toPresheafedSpace h : U = V W : (Opens ↑↑(Spec.obj (op (X.presheaf.obj (op V)))).toPresheafedSpace)ᵒᵖ ⊢ NatTrans.app (Spec.map (X.presheaf.map (eqToHom h).op).op).val.c W = eqToHom (_ : (Spec.obj (op (X.presheaf.obj (op V)))).presheaf.obj W = ((Spec.map (X.presheaf.map (eqToHom h).op).op).val.base _* (Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj W) [PROOFSTEP] have : Scheme.Spec.map (X.presheaf.map (𝟙 (op U))).op = 𝟙 _ := by rw [X.presheaf.map_id, op_id, Scheme.Spec.map_id] [GOAL] X : Scheme U V : Opens ↑↑X.toPresheafedSpace h : U = V W : (Opens ↑↑(Spec.obj (op (X.presheaf.obj (op V)))).toPresheafedSpace)ᵒᵖ ⊢ Spec.map (X.presheaf.map (𝟙 (op U))).op = 𝟙 (Spec.obj (op (X.presheaf.obj (op U)))) [PROOFSTEP] rw [X.presheaf.map_id, op_id, Scheme.Spec.map_id] [GOAL] X : Scheme U V : Opens ↑↑X.toPresheafedSpace h : U = V W : (Opens ↑↑(Spec.obj (op (X.presheaf.obj (op V)))).toPresheafedSpace)ᵒᵖ this : Spec.map (X.presheaf.map (𝟙 (op U))).op = 𝟙 (Spec.obj (op (X.presheaf.obj (op U)))) ⊢ NatTrans.app (Spec.map (X.presheaf.map (eqToHom h).op).op).val.c W = eqToHom (_ : (Spec.obj (op (X.presheaf.obj (op V)))).presheaf.obj W = ((Spec.map (X.presheaf.map (eqToHom h).op).op).val.base _* (Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj W) [PROOFSTEP] cases h [GOAL] case refl X : Scheme U : Opens ↑↑X.toPresheafedSpace this : Spec.map (X.presheaf.map (𝟙 (op U))).op = 𝟙 (Spec.obj (op (X.presheaf.obj (op U)))) W : (Opens ↑↑(Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace)ᵒᵖ ⊢ NatTrans.app (Spec.map (X.presheaf.map (eqToHom (_ : U = U)).op).op).val.c W = eqToHom (_ : (Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj W = ((Spec.map (X.presheaf.map (eqToHom (_ : U = U)).op).op).val.base _* (Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj W) [PROOFSTEP] refine' (Scheme.congr_app this _).trans _ [GOAL] case refl X : Scheme U : Opens ↑↑X.toPresheafedSpace this : Spec.map (X.presheaf.map (𝟙 (op U))).op = 𝟙 (Spec.obj (op (X.presheaf.obj (op U)))) W : (Opens ↑↑(Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace)ᵒᵖ ⊢ NatTrans.app (𝟙 (Spec.obj (op (X.presheaf.obj (op U))))).val.c W ≫ (Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (𝟙 (Spec.obj (op (X.presheaf.obj (op U))))).val.base).op.obj W = (Opens.map (Spec.map (X.presheaf.map (𝟙 (op U))).op).val.base).op.obj W)) = eqToHom (_ : (Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj W = ((Spec.map (X.presheaf.map (eqToHom (_ : U = U)).op).op).val.base _* (Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj W) [PROOFSTEP] erw [Category.id_comp] [GOAL] case refl X : Scheme U : Opens ↑↑X.toPresheafedSpace this : Spec.map (X.presheaf.map (𝟙 (op U))).op = 𝟙 (Spec.obj (op (X.presheaf.obj (op U)))) W : (Opens ↑↑(Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace)ᵒᵖ ⊢ (Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (𝟙 (Spec.obj (op (X.presheaf.obj (op U))))).val.base).op.obj W = (Opens.map (Spec.map (X.presheaf.map (𝟙 (op U))).op).val.base).op.obj W)) = eqToHom (_ : (Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj W = ((Spec.map (X.presheaf.map (eqToHom (_ : U = U)).op).op).val.base _* (Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj W) [PROOFSTEP] simp [eqToHom_map] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ≫ NatTrans.app (fromSpec hU).val.c (op U) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] haveI : IsAffine _ := hU [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ≫ NatTrans.app (fromSpec hU).val.c (op U) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] have e₁ := SpecΓIdentity.hom.naturality (X.presheaf.map (eqToHom U.openEmbedding_obj_top).op) [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₁ : (Spec.toLocallyRingedSpace.rightOp ⋙ LocallyRingedSpace.Γ).map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) ≫ NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ≫ (𝟭 CommRingCat).map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) ⊢ NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ≫ NatTrans.app (fromSpec hU).val.c (op U) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] rw [← IsIso.comp_inv_eq] at e₁ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₁ : ((Spec.toLocallyRingedSpace.rightOp ⋙ LocallyRingedSpace.Γ).map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) ≫ NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)))) ≫ inv ((𝟭 CommRingCat).map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op)) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ⊢ NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ≫ NatTrans.app (fromSpec hU).val.c (op U) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] have e₂ := ΓSpec.adjunction_unit_app_app_top (X.restrict U.openEmbedding) [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₁ : ((Spec.toLocallyRingedSpace.rightOp ⋙ LocallyRingedSpace.Γ).map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) ≫ NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)))) ≫ inv ((𝟭 CommRingCat).map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op)) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) ⊢ NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ≫ NatTrans.app (fromSpec hU).val.c (op U) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] erw [← e₂] at e₁ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₁ : ((Spec.toLocallyRingedSpace.rightOp ⋙ LocallyRingedSpace.Γ).map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤)) ≫ inv ((𝟭 CommRingCat).map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op)) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) ⊢ NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ≫ NatTrans.app (fromSpec hU).val.c (op U) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] simp only [Functor.id_map, Quiver.Hom.unop_op, Functor.comp_map, ← Functor.map_inv, ← op_inv, LocallyRingedSpace.Γ_map, Category.assoc, Functor.rightOp_map, inv_eqToHom] at e₁ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) e₁ : NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ⊢ NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ≫ NatTrans.app (fromSpec hU).val.c (op U) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] delta IsAffineOpen.fromSpec Scheme.isoSpec [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) e₁ : NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ⊢ NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ≫ NatTrans.app (let_fun this := (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U); Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] rw [Scheme.comp_val_c_app, Scheme.comp_val_c_app, ← e₁] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) e₁ : NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ⊢ (NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op) ≫ (NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U) ≫ NatTrans.app (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv.val.c ((Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U))) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] simp_rw [Category.assoc] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) e₁ : NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ⊢ NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op ≫ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U) ≫ NatTrans.app (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv.val.c ((Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] erw [← X.presheaf.map_comp_assoc] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) e₁ : NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ⊢ NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map ((eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op ≫ (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop).op) ≫ NatTrans.app (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv.val.c ((Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] rw [← op_comp] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) e₁ : NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ⊢ NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop ≫ eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op ≫ NatTrans.app (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv.val.c ((Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] have e₃ : U.openEmbedding.isOpenMap.adjunction.counit.app U ≫ eqToHom U.openEmbedding_obj_top.symm = U.openEmbedding.isOpenMap.functor.map (eqToHom U.inclusion_map_eq_top) := Subsingleton.elim _ _ -- Porting note : `e₄` needs two more explicit inputs [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) e₁ : NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) e₃ : NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit U ≫ eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤) = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)) ⊢ NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop ≫ eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op ≫ NatTrans.app (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv.val.c ((Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] have e₄ := (asIso (ΓSpec.adjunction.unit.app (X.restrict U.openEmbedding))).inv.1.c.naturality_assoc [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) e₁ : NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) e₃ : NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit U ≫ eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤) = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)) e₄ : ∀ ⦃X_1 Y : (Opens ↑↑((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).toPresheafedSpace)ᵒᵖ⦄ (f : X_1 ⟶ Y) {Z : CommRingCat} (h : ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv.val.base _* ((Scheme.Γ.rightOp ⋙ Scheme.Spec).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf).obj Y ⟶ Z), ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.map f ≫ NatTrans.app (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv.val.c Y ≫ h = NatTrans.app (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv.val.c X_1 ≫ ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv.val.base _* ((Scheme.Γ.rightOp ⋙ Scheme.Spec).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf).map f ≫ h ⊢ NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop ≫ eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op ≫ NatTrans.app (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv.val.c ((Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] dsimp at e₄ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) e₁ : NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) e₃ : NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit U ≫ eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤) = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)) e₄ : ∀ ⦃X_1 Y : (Opens ↑((Opens.toTopCat ↑X.toPresheafedSpace).obj U))ᵒᵖ⦄ (f : X_1 ⟶ Y) {Z : CommRingCat} (h : (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.obj (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj Y.unop)) ⟶ Z), X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map f.unop).op ≫ NatTrans.app (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.c Y ≫ h = NatTrans.app (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.c X_1 ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).map f.unop).op ≫ h ⊢ NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop ≫ eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op ≫ NatTrans.app (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv.val.c ((Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] replace e₄ := @e₄ (op ⊤) (op <| (Opens.map U.inclusion).obj U) (eqToHom U.inclusion_map_eq_top).op [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) e₁ : NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) e₃ : NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit U ≫ eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤) = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)) e₄ : ∀ {Z : CommRingCat} (h : (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.obj (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj (op ((Opens.map (Opens.inclusion U)).obj U)).unop)) ⟶ Z), X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op.unop).op ≫ NatTrans.app (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.c (op ((Opens.map (Opens.inclusion U)).obj U)) ≫ h = NatTrans.app (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.c (op ⊤) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op.unop).op ≫ h ⊢ NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop ≫ eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op ≫ NatTrans.app (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv.val.c ((Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] erw [e₃, e₄, ← Scheme.comp_val_c_app_assoc, IsIso.inv_hom_id] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) e₁ : NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) e₃ : NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit U ≫ eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤) = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)) e₄ : ∀ {Z : CommRingCat} (h : (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.obj (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj (op ((Opens.map (Opens.inclusion U)).obj U)).unop)) ⟶ Z), X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op.unop).op ≫ NatTrans.app (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.c (op ((Opens.map (Opens.inclusion U)).obj U)) ≫ h = NatTrans.app (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.c (op ⊤) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op.unop).op ≫ h ⊢ NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (𝟙 (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)))))).val.c (op ⊤) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op.unop).op ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] simp only [eqToHom_map, eqToHom_op, Scheme.Spec_map_presheaf_map_eqToHom, eqToHom_unop, unop_op] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) e₁ : NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) e₃ : NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit U ≫ eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤) = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)) e₄ : ∀ {Z : CommRingCat} (h : (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.obj (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj (op ((Opens.map (Opens.inclusion U)).obj U)).unop)) ⟶ Z), X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op.unop).op ≫ NatTrans.app (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.c (op ((Opens.map (Opens.inclusion U)).obj U)) ≫ h = NatTrans.app (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.c (op ⊤) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op.unop).op ≫ h ⊢ NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (𝟙 (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)))))).val.c (op ⊤) ≫ eqToHom (_ : (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.obj (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ⊤)) = (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.obj (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U)))) ≫ eqToHom (_ : (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.obj ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) = ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U))) = eqToHom (_ : (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op ⊤) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op ((Opens.map (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U))) [PROOFSTEP] erw [Scheme.Spec_map_presheaf_map_eqToHom, Category.id_comp] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e₂ : NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) e₁ : NatTrans.app (Spec.toLocallyRingedSpace.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.c (op ⊤) ≫ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) e₃ : NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit U ≫ eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤) = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)) e₄ : ∀ {Z : CommRingCat} (h : (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.obj (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj (op ((Opens.map (Opens.inclusion U)).obj U)).unop)) ⟶ Z), X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op.unop).op ≫ NatTrans.app (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.c (op ((Opens.map (Opens.inclusion U)).obj U)) ≫ h = NatTrans.app (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.c (op ⊤) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op.unop).op ≫ h ⊢ eqToHom (_ : (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op ⊤) = ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf).obj (op ⊤)) ≫ eqToHom (_ : (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.obj (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ⊤)) = (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.obj (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U)))) ≫ eqToHom (_ : (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.obj ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) = ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U))) = eqToHom (_ : (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op ⊤) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op ((Opens.map (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U))) [PROOFSTEP] simp only [eqToHom_trans] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ NatTrans.app (fromSpec hU).val.c (op U) = NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U)) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] rw [← hU.SpecΓIdentity_hom_app_fromSpec, Iso.inv_hom_id_app_assoc] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ IsAffineOpen (Scheme.basicOpen X f) [PROOFSTEP] have o1 : IsOpenImmersion <| Scheme.Spec.map (CommRingCat.ofHom (algebraMap ((X.presheaf.obj <| op U)) (Localization.Away f))).op ≫ hU.fromSpec [GOAL] case o1 X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) [PROOFSTEP] exact PresheafedSpace.IsOpenImmersion.comp (hf := inferInstance) (hg := inferInstance) [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) ⊢ IsAffineOpen (Scheme.basicOpen X f) [PROOFSTEP] convert rangeIsAffineOpenOfOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (X.presheaf.obj (op U)) (Localization.Away f))).op ≫ hU.fromSpec) [GOAL] case h.e'_2 X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) ⊢ Scheme.basicOpen X f = Scheme.Hom.opensRange (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) [PROOFSTEP] ext1 [GOAL] case h.e'_2.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) ⊢ ↑(Scheme.basicOpen X f) = ↑(Scheme.Hom.opensRange (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU)) [PROOFSTEP] have : hU.fromSpec.val.base '' (hU.fromSpec.val.base ⁻¹' (X.basicOpen f : Set X)) = (X.basicOpen f : Set X) := by rw [Set.image_preimage_eq_inter_range, Set.inter_eq_left_iff_subset, hU.fromSpec_range] exact Scheme.basicOpen_le _ _ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) ⊢ ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) [PROOFSTEP] rw [Set.image_preimage_eq_inter_range, Set.inter_eq_left_iff_subset, hU.fromSpec_range] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) ⊢ ↑(Scheme.basicOpen X f) ⊆ ↑U [PROOFSTEP] exact Scheme.basicOpen_le _ _ [GOAL] case h.e'_2.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) ⊢ ↑(Scheme.basicOpen X f) = ↑(Scheme.Hom.opensRange (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU)) [PROOFSTEP] rw [Scheme.Hom.opensRange_coe, Scheme.comp_val_base, ← this, coe_comp, Set.range_comp] -- Porting note : `congr 1` did not work [GOAL] case h.e'_2.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) ⊢ ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(fromSpec hU).val.base '' Set.range ↑(Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op).val.base [PROOFSTEP] apply congr_arg (_ '' ·) [GOAL] case h.e'_2.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) ⊢ ↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f) = Set.range ↑(Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op).val.base [PROOFSTEP] refine' (Opens.coe_inj.mpr <| Scheme.preimage_basicOpen hU.fromSpec f).trans _ [GOAL] case h.e'_2.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) ⊢ ↑(Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(NatTrans.app (fromSpec hU).val.c (op U)) f)) = Set.range ↑(Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op).val.base [PROOFSTEP] refine' Eq.trans _ (PrimeSpectrum.localization_away_comap_range (Localization.Away f) f).symm [GOAL] case h.e'_2.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) ⊢ ↑(Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(NatTrans.app (fromSpec hU).val.c (op U)) f)) = ↑(PrimeSpectrum.basicOpen f) [PROOFSTEP] congr 1 [GOAL] case h.e'_2.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) ⊢ ↑(Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(NatTrans.app (fromSpec hU).val.c (op U)) f)) = ↑(PrimeSpectrum.basicOpen f) [PROOFSTEP] have : (Opens.map hU.fromSpec.val.base).obj U = ⊤ := by ext1 change hU.fromSpec.1.base ⁻¹' (U : Set X) = Set.univ rw [← hU.fromSpec_range, ← Set.image_univ] exact Set.preimage_image_eq _ PresheafedSpace.IsOpenImmersion.base_open.inj [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) ⊢ (Opens.map (fromSpec hU).val.base).obj U = ⊤ [PROOFSTEP] ext1 [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) ⊢ ↑((Opens.map (fromSpec hU).val.base).obj U) = ↑⊤ [PROOFSTEP] change hU.fromSpec.1.base ⁻¹' (U : Set X) = Set.univ [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) ⊢ ↑(fromSpec hU).val.base ⁻¹' ↑U = Set.univ [PROOFSTEP] rw [← hU.fromSpec_range, ← Set.image_univ] [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) ⊢ ↑(fromSpec hU).val.base ⁻¹' (↑(fromSpec hU).val.base '' Set.univ) = Set.univ [PROOFSTEP] exact Set.preimage_image_eq _ PresheafedSpace.IsOpenImmersion.base_open.inj [GOAL] case h.e'_2.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this✝ : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) this : (Opens.map (fromSpec hU).val.base).obj U = ⊤ ⊢ ↑(Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(NatTrans.app (fromSpec hU).val.c (op U)) f)) = ↑(PrimeSpectrum.basicOpen f) [PROOFSTEP] refine' Eq.trans _ (Opens.coe_inj.mpr <| basicOpen_eq_of_affine f) [GOAL] case h.e'_2.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this✝ : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) this : (Opens.map (fromSpec hU).val.base).obj U = ⊤ ⊢ ↑(Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(NatTrans.app (fromSpec hU).val.c (op U)) f)) = ↑(Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(SpecΓIdentity.app (X.presheaf.obj (op U))).inv f)) [PROOFSTEP] have lm : ∀ s, (Opens.map hU.fromSpec.val.base).obj U ⊓ s = s := fun s => this.symm ▸ top_inf_eq [GOAL] case h.e'_2.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this✝ : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) this : (Opens.map (fromSpec hU).val.base).obj U = ⊤ lm : ∀ (s : Opens ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace), (Opens.map (fromSpec hU).val.base).obj U ⊓ s = s ⊢ ↑(Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(NatTrans.app (fromSpec hU).val.c (op U)) f)) = ↑(Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(SpecΓIdentity.app (X.presheaf.obj (op U))).inv f)) [PROOFSTEP] refine' Opens.coe_inj.mpr <| Eq.trans _ (lm _) [GOAL] case h.e'_2.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this✝ : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) this : (Opens.map (fromSpec hU).val.base).obj U = ⊤ lm : ∀ (s : Opens ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace), (Opens.map (fromSpec hU).val.base).obj U ⊓ s = s ⊢ Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(NatTrans.app (fromSpec hU).val.c (op U)) f) = (Opens.map (fromSpec hU).val.base).obj U ⊓ Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(SpecΓIdentity.app (X.presheaf.obj (op U))).inv f) [PROOFSTEP] refine' Eq.trans _ ((Scheme.Spec.obj <| op <| X.presheaf.obj <| op U).basicOpen_res _ (eqToHom this).op) -- Porting note : changed `rw` to `erw` [GOAL] case h.e'_2.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this✝ : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) this : (Opens.map (fromSpec hU).val.base).obj U = ⊤ lm : ∀ (s : Opens ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace), (Opens.map (fromSpec hU).val.base).obj U ⊓ s = s ⊢ Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(NatTrans.app (fromSpec hU).val.c (op U)) f) = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom this).op) (↑(SpecΓIdentity.app (X.presheaf.obj (op U))).inv f)) [PROOFSTEP] erw [← comp_apply] [GOAL] case h.e'_2.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this✝ : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) this : (Opens.map (fromSpec hU).val.base).obj U = ⊤ lm : ∀ (s : Opens ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace), (Opens.map (fromSpec hU).val.base).obj U ⊓ s = s ⊢ Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(NatTrans.app (fromSpec hU).val.c (op U)) f) = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑((SpecΓIdentity.app (X.presheaf.obj (op U))).inv ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom this).op) f) [PROOFSTEP] congr 2 [GOAL] case h.e'_2.h.e_f.e_a X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this✝ : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) this : (Opens.map (fromSpec hU).val.base).obj U = ⊤ lm : ∀ (s : Opens ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace), (Opens.map (fromSpec hU).val.base).obj U ⊓ s = s ⊢ NatTrans.app (fromSpec hU).val.c (op U) = (SpecΓIdentity.app (X.presheaf.obj (op U))).inv ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom this).op [PROOFSTEP] rw [Iso.eq_inv_comp] [GOAL] case h.e'_2.h.e_f.e_a X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) o1 : IsOpenImmersion (Scheme.Spec.map (CommRingCat.ofHom (algebraMap (↑(X.presheaf.obj (op U))) (Localization.Away f))).op ≫ fromSpec hU) this✝ : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X f)) = ↑(Scheme.basicOpen X f) this : (Opens.map (fromSpec hU).val.base).obj U = ⊤ lm : ∀ (s : Opens ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace), (Opens.map (fromSpec hU).val.base).obj U ⊓ s = s ⊢ (SpecΓIdentity.app (X.presheaf.obj (op U))).hom ≫ NatTrans.app (fromSpec hU).val.c (op U) = (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom this).op [PROOFSTEP] erw [hU.SpecΓIdentity_hom_app_fromSpec] [GOAL] X : Scheme r : ↑(X.presheaf.obj (op ⊤)) U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsAffineOpen ((Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen X r)))).val.base).obj U) [PROOFSTEP] apply (isAffineOpen_iff_of_isOpenImmersion (X.ofRestrict (X.basicOpen r).openEmbedding) _).mp [GOAL] X : Scheme r : ↑(X.presheaf.obj (op ⊤)) U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsAffineOpen ((PresheafedSpace.IsOpenImmersion.openFunctor (_ : IsOpenImmersion (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen X r)))))).obj ((Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen X r)))).val.base).obj U)) [PROOFSTEP] delta PresheafedSpace.IsOpenImmersion.openFunctor [GOAL] X : Scheme r : ↑(X.presheaf.obj (op ⊤)) U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsAffineOpen ((IsOpenMap.functor (_ : IsOpenMap ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen X r)))).val.base)).obj ((Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen X r)))).val.base).obj U)) [PROOFSTEP] dsimp [GOAL] X : Scheme r : ↑(X.presheaf.obj (op ⊤)) U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsAffineOpen ((IsOpenMap.functor (_ : IsOpenMap ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen X r)))).val.base)).obj ((Opens.map (Opens.inclusion (Scheme.basicOpen X r))).obj U)) [PROOFSTEP] erw [Opens.functor_obj_map_obj, Opens.openEmbedding_obj_top, inf_comm, ← Scheme.basicOpen_res _ _ (homOfLE le_top).op] [GOAL] X : Scheme r : ↑(X.presheaf.obj (op ⊤)) U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsAffineOpen (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U ≤ ⊤)).op) r)) [PROOFSTEP] exact hU.basicOpenIsAffine _ [GOAL] X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ (Opens.map (isoSpec X).hom.val.base).obj (PrimeSpectrum.basicOpen f) = basicOpen X f [PROOFSTEP] rw [← basicOpen_eq_of_affine] [GOAL] X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ (Opens.map (isoSpec X).hom.val.base).obj (basicOpen (Spec.obj (op (Γ.obj (op X)))) (↑(SpecΓIdentity.app (Γ.obj (op X))).inv f)) = basicOpen X f [PROOFSTEP] trans (Opens.map X.isoSpec.hom.1.base).obj ((Scheme.Spec.obj (op (Scheme.Γ.obj (op X)))).basicOpen ((inv (X.isoSpec.hom.1.c.app (op ((Opens.map (inv X.isoSpec.hom).val.base).obj ⊤)))) ((X.presheaf.map (eqToHom <| by congr)) f))) [GOAL] X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ op ⊤ = (Opens.map (isoSpec X).hom.val.base).op.obj (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤)) [PROOFSTEP] congr [GOAL] X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ (Opens.map (isoSpec X).hom.val.base).obj (basicOpen (Spec.obj (op (Γ.obj (op X)))) (↑(SpecΓIdentity.app (Γ.obj (op X))).inv f)) = (Opens.map (isoSpec X).hom.val.base).obj (basicOpen (Spec.obj (op (Γ.obj (op X)))) (↑(inv (NatTrans.app (isoSpec X).hom.val.c (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤)))) (↑(X.presheaf.map (eqToHom (_ : op ⊤ = op ((Opens.map (isoSpec X).hom.val.base).obj (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤)).unop)))) f))) [PROOFSTEP] congr [GOAL] case e_a.e_f.h.e_5.h X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ (SpecΓIdentity.app (Γ.obj (op X))).inv = inv (NatTrans.app (isoSpec X).hom.val.c (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤))) [PROOFSTEP] rw [← IsIso.inv_eq_inv, IsIso.inv_inv, IsIso.Iso.inv_inv, NatIso.app_hom] -- Porting note : added this `change` to prevent timeout [GOAL] case e_a.e_f.h.e_5.h X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ NatTrans.app SpecΓIdentity.hom (Γ.obj (op X)) = NatTrans.app (isoSpec X).hom.val.c (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤)) [PROOFSTEP] change SpecΓIdentity.hom.app (X.presheaf.obj <| op ⊤) = _ [GOAL] case e_a.e_f.h.e_5.h X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ⊤)) = NatTrans.app (isoSpec X).hom.val.c (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤)) [PROOFSTEP] rw [← ΓSpec.adjunction_unit_app_app_top X] [GOAL] case e_a.e_f.h.e_5.h X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ NatTrans.app (NatTrans.app ΓSpec.adjunction.unit X).val.c (op ⊤) = NatTrans.app (isoSpec X).hom.val.c (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤)) [PROOFSTEP] rfl [GOAL] case e_a.e_f.h.e_6.h X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ f = ↑(X.presheaf.map (eqToHom (_ : op ⊤ = op ((Opens.map (isoSpec X).hom.val.base).obj (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤)).unop)))) f [PROOFSTEP] rw [eqToHom_map] [GOAL] case e_a.e_f.h.e_6.h X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ f = ↑(eqToHom (_ : X.presheaf.obj (op ⊤) = X.presheaf.obj ((Opens.map (isoSpec X).hom.val.base).op.obj (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤))))) f [PROOFSTEP] rfl [GOAL] X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ (Opens.map (isoSpec X).hom.val.base).obj (basicOpen (Spec.obj (op (Γ.obj (op X)))) (↑(inv (NatTrans.app (isoSpec X).hom.val.c (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤)))) (↑(X.presheaf.map (eqToHom (_ : op ⊤ = op ((Opens.map (isoSpec X).hom.val.base).obj (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤)).unop)))) f))) = basicOpen X f [PROOFSTEP] dsimp [GOAL] X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ (Opens.map (isoSpec X).hom.val.base).obj (basicOpen (Spec.obj (op (X.presheaf.obj (op ⊤)))) (↑(inv (NatTrans.app (isoSpec X).hom.val.c (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤)))) (↑(X.presheaf.map (𝟙 (op ⊤))) f))) = basicOpen X f [PROOFSTEP] congr [GOAL] X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ (Opens.map (isoSpec X).hom.val.base).obj (basicOpen (Spec.obj (op (X.presheaf.obj (op ⊤)))) (↑(inv (NatTrans.app (isoSpec X).hom.val.c (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤)))) (↑(X.presheaf.map (𝟙 (op ⊤))) f))) = basicOpen X f [PROOFSTEP] refine' (Scheme.preimage_basicOpen _ _).trans _ -- Porting note : changed `rw` to `erw` [GOAL] X : Scheme inst✝ : IsAffine X f : ↑(Γ.obj (op X)) ⊢ basicOpen X (↑(NatTrans.app (isoSpec X).hom.val.c (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤))) (↑(inv (NatTrans.app (isoSpec X).hom.val.c (op ((Opens.map (inv (isoSpec X).hom).val.base).obj ⊤)))) (↑(X.presheaf.map (𝟙 (op ⊤))) f))) = basicOpen X f [PROOFSTEP] erw [IsIso.inv_hom_id_apply, Scheme.basicOpen_res_eq] [GOAL] X : Scheme inst✝ : IsAffine X ⊢ Opens.IsBasis (Set.range (Scheme.basicOpen X)) [PROOFSTEP] delta Opens.IsBasis [GOAL] X : Scheme inst✝ : IsAffine X ⊢ IsTopologicalBasis (SetLike.coe '' Set.range (Scheme.basicOpen X)) [PROOFSTEP] convert PrimeSpectrum.isBasis_basic_opens.inducing (TopCat.homeoOfIso (Scheme.forgetToTop.mapIso X.isoSpec)).inducing using 1 [GOAL] case h.e'_3 X : Scheme inst✝ : IsAffine X ⊢ SetLike.coe '' Set.range (Scheme.basicOpen X) = Set.preimage ↑(TopCat.homeoOfIso (Scheme.forgetToTop.mapIso (Scheme.isoSpec X))) '' (SetLike.coe '' Set.range PrimeSpectrum.basicOpen) [PROOFSTEP] ext [GOAL] case h.e'_3.h X : Scheme inst✝ : IsAffine X x✝ : Set ↑↑X.toPresheafedSpace ⊢ x✝ ∈ SetLike.coe '' Set.range (Scheme.basicOpen X) ↔ x✝ ∈ Set.preimage ↑(TopCat.homeoOfIso (Scheme.forgetToTop.mapIso (Scheme.isoSpec X))) '' (SetLike.coe '' Set.range PrimeSpectrum.basicOpen) [PROOFSTEP] simp only [Set.mem_image, exists_exists_eq_and] [GOAL] case h.e'_3.h X : Scheme inst✝ : IsAffine X x✝ : Set ↑↑X.toPresheafedSpace ⊢ (∃ x, x ∈ Set.range (Scheme.basicOpen X) ∧ ↑x = x✝) ↔ ∃ x, (∃ x_1, x_1 ∈ Set.range PrimeSpectrum.basicOpen ∧ ↑x_1 = x) ∧ ↑(TopCat.homeoOfIso (Scheme.forgetToTop.mapIso (Scheme.isoSpec X))) ⁻¹' x = x✝ [PROOFSTEP] constructor [GOAL] case h.e'_3.h.mp X : Scheme inst✝ : IsAffine X x✝ : Set ↑↑X.toPresheafedSpace ⊢ (∃ x, x ∈ Set.range (Scheme.basicOpen X) ∧ ↑x = x✝) → ∃ x, (∃ x_1, x_1 ∈ Set.range PrimeSpectrum.basicOpen ∧ ↑x_1 = x) ∧ ↑(TopCat.homeoOfIso (Scheme.forgetToTop.mapIso (Scheme.isoSpec X))) ⁻¹' x = x✝ [PROOFSTEP] rintro ⟨_, ⟨x, rfl⟩, rfl⟩ [GOAL] case h.e'_3.h.mp.intro.intro.intro X : Scheme inst✝ : IsAffine X x : ↑(X.presheaf.obj (op ⊤)) ⊢ ∃ x_1, (∃ x, x ∈ Set.range PrimeSpectrum.basicOpen ∧ ↑x = x_1) ∧ ↑(TopCat.homeoOfIso (Scheme.forgetToTop.mapIso (Scheme.isoSpec X))) ⁻¹' x_1 = ↑(Scheme.basicOpen X x) [PROOFSTEP] refine' ⟨_, ⟨_, ⟨x, rfl⟩, rfl⟩, _⟩ [GOAL] case h.e'_3.h.mp.intro.intro.intro X : Scheme inst✝ : IsAffine X x : ↑(X.presheaf.obj (op ⊤)) ⊢ ↑(TopCat.homeoOfIso (Scheme.forgetToTop.mapIso (Scheme.isoSpec X))) ⁻¹' ↑(PrimeSpectrum.basicOpen x) = ↑(Scheme.basicOpen X x) [PROOFSTEP] exact congr_arg Opens.carrier (X.map_PrimeSpectrum_basicOpen_of_affine x) [GOAL] case h.e'_3.h.mpr X : Scheme inst✝ : IsAffine X x✝ : Set ↑↑X.toPresheafedSpace ⊢ (∃ x, (∃ x_1, x_1 ∈ Set.range PrimeSpectrum.basicOpen ∧ ↑x_1 = x) ∧ ↑(TopCat.homeoOfIso (Scheme.forgetToTop.mapIso (Scheme.isoSpec X))) ⁻¹' x = x✝) → ∃ x, x ∈ Set.range (Scheme.basicOpen X) ∧ ↑x = x✝ [PROOFSTEP] rintro ⟨_, ⟨_, ⟨x, rfl⟩, rfl⟩, rfl⟩ [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.intro X : Scheme inst✝ : IsAffine X x : ↑(op (Scheme.Γ.obj (op X))).unop ⊢ ∃ x_1, x_1 ∈ Set.range (Scheme.basicOpen X) ∧ ↑x_1 = ↑(TopCat.homeoOfIso (Scheme.forgetToTop.mapIso (Scheme.isoSpec X))) ⁻¹' ↑(PrimeSpectrum.basicOpen x) [PROOFSTEP] refine' ⟨_, ⟨x, rfl⟩, _⟩ [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.intro X : Scheme inst✝ : IsAffine X x : ↑(op (Scheme.Γ.obj (op X))).unop ⊢ ↑(Scheme.basicOpen X x) = ↑(TopCat.homeoOfIso (Scheme.forgetToTop.mapIso (Scheme.isoSpec X))) ⁻¹' ↑(PrimeSpectrum.basicOpen x) [PROOFSTEP] exact congr_arg Opens.carrier (X.map_PrimeSpectrum_basicOpen_of_affine x).symm [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U V : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ V } h : ↑x ∈ U ⊢ ∃ f, Scheme.basicOpen X f ≤ V ∧ ↑x ∈ Scheme.basicOpen X f [PROOFSTEP] haveI : IsAffine _ := hU [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U V : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ V } h : ↑x ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ ∃ f, Scheme.basicOpen X f ≤ V ∧ ↑x ∈ Scheme.basicOpen X f [PROOFSTEP] obtain ⟨_, ⟨_, ⟨r, rfl⟩, rfl⟩, h₁, h₂⟩ := (isBasis_basicOpen (X.restrict U.openEmbedding)).exists_subset_of_mem_open (x.2 : ⟨x, h⟩ ∈ _) ((Opens.map U.inclusion).obj V).isOpen [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U V : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ V } h : ↑x ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r : ↑((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) h₁ : { val := ↑x, property := h } ∈ ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) h₂ : ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) ⊆ ↑((Opens.map (Opens.inclusion U)).obj V) ⊢ ∃ f, Scheme.basicOpen X f ≤ V ∧ ↑x ∈ Scheme.basicOpen X f [PROOFSTEP] have : U.openEmbedding.isOpenMap.functor.obj ((X.restrict U.openEmbedding).basicOpen r) = X.basicOpen (X.presheaf.map (eqToHom U.openEmbedding_obj_top.symm).op r) := by refine' (Scheme.image_basicOpen (X.ofRestrict U.openEmbedding) r).trans _ erw [← Scheme.basicOpen_res_eq _ _ (eqToHom U.openEmbedding_obj_top).op] rw [← comp_apply, ← CategoryTheory.Functor.map_comp, ← op_comp, eqToHom_trans, eqToHom_refl, op_id, CategoryTheory.Functor.map_id, Scheme.Hom.invApp] erw [PresheafedSpace.IsOpenImmersion.ofRestrict_invApp] congr [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U V : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ V } h : ↑x ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r : ↑((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) h₁ : { val := ↑x, property := h } ∈ ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) h₂ : ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) ⊆ ↑((Opens.map (Opens.inclusion U)).obj V) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj (Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) = Scheme.basicOpen X (↑(X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op) r) [PROOFSTEP] refine' (Scheme.image_basicOpen (X.ofRestrict U.openEmbedding) r).trans _ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U V : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ V } h : ↑x ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r : ↑((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) h₁ : { val := ↑x, property := h } ∈ ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) h₂ : ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) ⊆ ↑((Opens.map (Opens.inclusion U)).obj V) ⊢ Scheme.basicOpen X (↑(Scheme.Hom.invApp (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊤) r) = Scheme.basicOpen X (↑(X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op) r) [PROOFSTEP] erw [← Scheme.basicOpen_res_eq _ _ (eqToHom U.openEmbedding_obj_top).op] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U V : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ V } h : ↑x ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r : ↑((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) h₁ : { val := ↑x, property := h } ∈ ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) h₂ : ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) ⊆ ↑((Opens.map (Opens.inclusion U)).obj V) ⊢ Scheme.basicOpen X (↑(Scheme.Hom.invApp (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊤) r) = Scheme.basicOpen X (↑(X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) (↑(X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op) r)) [PROOFSTEP] rw [← comp_apply, ← CategoryTheory.Functor.map_comp, ← op_comp, eqToHom_trans, eqToHom_refl, op_id, CategoryTheory.Functor.map_id, Scheme.Hom.invApp] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U V : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ V } h : ↑x ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r : ↑((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) h₁ : { val := ↑x, property := h } ∈ ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) h₂ : ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) ⊆ ↑((Opens.map (Opens.inclusion U)).obj V) ⊢ Scheme.basicOpen X (↑(PresheafedSpace.IsOpenImmersion.invApp (_ : IsOpenImmersion (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ⊤) r) = Scheme.basicOpen X (↑(𝟙 (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)))) r) [PROOFSTEP] erw [PresheafedSpace.IsOpenImmersion.ofRestrict_invApp] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U V : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ V } h : ↑x ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r : ↑((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) h₁ : { val := ↑x, property := h } ∈ ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) h₂ : ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) ⊆ ↑((Opens.map (Opens.inclusion U)).obj V) ⊢ Scheme.basicOpen X (↑(𝟙 ((PresheafedSpace.restrict X.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion U))).presheaf.obj (op ⊤))) r) = Scheme.basicOpen X (↑(𝟙 (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)))) r) [PROOFSTEP] congr [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U V : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ V } h : ↑x ∈ U this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r : ↑((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) h₁ : { val := ↑x, property := h } ∈ ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) h₂ : ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) ⊆ ↑((Opens.map (Opens.inclusion U)).obj V) this : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj (Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) = Scheme.basicOpen X (↑(X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op) r) ⊢ ∃ f, Scheme.basicOpen X f ≤ V ∧ ↑x ∈ Scheme.basicOpen X f [PROOFSTEP] use X.presheaf.map (eqToHom U.openEmbedding_obj_top.symm).op r [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U V : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ V } h : ↑x ∈ U this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r : ↑((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) h₁ : { val := ↑x, property := h } ∈ ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) h₂ : ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) ⊆ ↑((Opens.map (Opens.inclusion U)).obj V) this : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj (Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) = Scheme.basicOpen X (↑(X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op) r) ⊢ Scheme.basicOpen X (↑(X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op) r) ≤ V ∧ ↑x ∈ Scheme.basicOpen X (↑(X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op) r) [PROOFSTEP] rw [← this] [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U V : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ V } h : ↑x ∈ U this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r : ↑((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) h₁ : { val := ↑x, property := h } ∈ ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) h₂ : ↑(Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) ⊆ ↑((Opens.map (Opens.inclusion U)).obj V) this : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj (Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) = Scheme.basicOpen X (↑(X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op) r) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj (Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) ≤ V ∧ ↑x ∈ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj (Scheme.basicOpen (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) r) [PROOFSTEP] exact ⟨Set.image_subset_iff.mpr h₂, ⟨_, h⟩, h₁, rfl⟩ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ (Opens.map (fromSpec hU).val.base).obj (Scheme.basicOpen X f) = RingedSpace.basicOpen (LocallyRingedSpace.forgetToSheafedSpace.op.obj (Spec.toLocallyRingedSpace.rightOp.obj (X.presheaf.obj (op U)))).unop (↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U))) f) [PROOFSTEP] erw [LocallyRingedSpace.preimage_basicOpen] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toLocallyRingedSpace) (↑(NatTrans.app (fromSpec hU).val.c (op U)) f) = RingedSpace.basicOpen (LocallyRingedSpace.forgetToSheafedSpace.op.obj (Spec.toLocallyRingedSpace.rightOp.obj (X.presheaf.obj (op U)))).unop (↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U))) f) [PROOFSTEP] refine' Eq.trans _ (RingedSpace.basicOpen_res_eq (Scheme.Spec.obj <| op <| X.presheaf.obj (op U)).toLocallyRingedSpace.toRingedSpace (eqToHom hU.fromSpec_base_preimage).op _) -- Porting note : `congr` does not work [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toLocallyRingedSpace) (↑(NatTrans.app (fromSpec hU).val.c (op U)) f) = RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toLocallyRingedSpace) (↑((LocallyRingedSpace.toRingedSpace (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toLocallyRingedSpace).toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op) (↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U))) f)) [PROOFSTEP] refine congr_arg (RingedSpace.basicOpen _ ·) ?_ -- Porting note : change `rw` to `erw` [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ ↑(NatTrans.app (fromSpec hU).val.c (op U)) f = ↑((LocallyRingedSpace.toRingedSpace (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toLocallyRingedSpace).toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op) (↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U))) f) [PROOFSTEP] erw [← comp_apply] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ ↑(NatTrans.app (fromSpec hU).val.c (op U)) f = ↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U)) ≫ (LocallyRingedSpace.toRingedSpace (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toLocallyRingedSpace).toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op) f [PROOFSTEP] congr [GOAL] case e_a X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ NatTrans.app (fromSpec hU).val.c (op U) = NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U)) ≫ (LocallyRingedSpace.toRingedSpace (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toLocallyRingedSpace).toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op [PROOFSTEP] erw [← hU.SpecΓIdentity_hom_app_fromSpec] [GOAL] case e_a X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ NatTrans.app (fromSpec hU).val.c (op U) = NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U)) ≫ NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op U)) ≫ NatTrans.app (fromSpec hU).val.c (op U) [PROOFSTEP] rw [Iso.inv_hom_id_app_assoc] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ IsIso (basicOpenSectionsToAffine hU f) [PROOFSTEP] delta basicOpenSectionsToAffine [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ IsIso (NatTrans.app (IsAffineOpen.fromSpec hU).val.c (op (Scheme.basicOpen X f)) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : RingedSpace.basicOpen (LocallyRingedSpace.forgetToSheafedSpace.op.obj (Spec.toLocallyRingedSpace.rightOp.obj (X.presheaf.obj (op U)))).unop (↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U))) f) = (Opens.map (IsAffineOpen.fromSpec hU).val.base).obj (Scheme.basicOpen X f))).op) [PROOFSTEP] apply (config := { allowSynthFailures := true }) IsIso.comp_isIso [GOAL] case inst X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ IsIso (NatTrans.app (IsAffineOpen.fromSpec hU).val.c (op (Scheme.basicOpen X f))) [PROOFSTEP] apply PresheafedSpace.IsOpenImmersion.isIso_of_subset [GOAL] case inst.hU X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ ↑(Scheme.basicOpen X f) ⊆ Set.range ↑(IsAffineOpen.fromSpec hU).val.base [PROOFSTEP] rw [hU.fromSpec_range] [GOAL] case inst.hU X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ ↑(Scheme.basicOpen X f) ⊆ ↑U [PROOFSTEP] exact RingedSpace.basicOpen_le _ _ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ IsLocalization.Away f ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) [PROOFSTEP] apply (IsLocalization.isLocalization_iff_of_ringEquiv (Submonoid.powers f) (asIso <| basicOpenSectionsToAffine hU f ≫ (Scheme.Spec.obj _).presheaf.map (eqToHom (basicOpen_eq_of_affine _).symm).op).commRingCatIsoToRingEquiv).mpr [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ IsLocalization (Submonoid.powers f) ↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op (PrimeSpectrum.basicOpen f))) [PROOFSTEP] convert StructureSheaf.IsLocalization.to_basicOpen _ f using 1 -- Porting note : more hand holding is required here, the next 4 lines were not necessary [GOAL] case h.e'_3.h.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) e_1✝ : ↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op (PrimeSpectrum.basicOpen f))) = ↑((structureSheaf ↑(X.presheaf.obj (op U))).val.obj (op (PrimeSpectrum.basicOpen f))) he✝ : CommRing.toCommSemiring = CommRing.toCommSemiring ⊢ RingHom.toAlgebra (RingHom.comp (RingEquiv.toRingHom (Iso.commRingCatIsoToRingEquiv (asIso (basicOpenSectionsToAffine hU f ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : PrimeSpectrum.basicOpen f = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(SpecΓIdentity.app (X.presheaf.obj (op U))).inv f))).op)))) (algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f))))) = StructureSheaf.openAlgebra (↑(X.presheaf.obj (op U))) (op (PrimeSpectrum.basicOpen f)) [PROOFSTEP] delta StructureSheaf.openAlgebra [GOAL] case h.e'_3.h.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) e_1✝ : ↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op (PrimeSpectrum.basicOpen f))) = ↑((structureSheaf ↑(X.presheaf.obj (op U))).val.obj (op (PrimeSpectrum.basicOpen f))) he✝ : CommRing.toCommSemiring = CommRing.toCommSemiring ⊢ RingHom.toAlgebra (RingHom.comp (RingEquiv.toRingHom (Iso.commRingCatIsoToRingEquiv (asIso (basicOpenSectionsToAffine hU f ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : PrimeSpectrum.basicOpen f = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(SpecΓIdentity.app (X.presheaf.obj (op U))).inv f))).op)))) (algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f))))) = RingHom.toAlgebra (StructureSheaf.toOpen (↑(X.presheaf.obj (op U))) (op (PrimeSpectrum.basicOpen f)).unop) [PROOFSTEP] congr 1 [GOAL] case h.e'_3.h.h.e_i X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) e_1✝ : ↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op (PrimeSpectrum.basicOpen f))) = ↑((structureSheaf ↑(X.presheaf.obj (op U))).val.obj (op (PrimeSpectrum.basicOpen f))) he✝ : CommRing.toCommSemiring = CommRing.toCommSemiring ⊢ RingHom.comp (RingEquiv.toRingHom (Iso.commRingCatIsoToRingEquiv (asIso (basicOpenSectionsToAffine hU f ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : PrimeSpectrum.basicOpen f = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(SpecΓIdentity.app (X.presheaf.obj (op U))).inv f))).op)))) (algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) = StructureSheaf.toOpen (↑(X.presheaf.obj (op U))) (op (PrimeSpectrum.basicOpen f)).unop [PROOFSTEP] rw [CommRingCat.ringHom_comp_eq_comp, Iso.commRingIsoToRingEquiv_toRingHom, asIso_hom] [GOAL] case h.e'_3.h.h.e_i X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) e_1✝ : ↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op (PrimeSpectrum.basicOpen f))) = ↑((structureSheaf ↑(X.presheaf.obj (op U))).val.obj (op (PrimeSpectrum.basicOpen f))) he✝ : CommRing.toCommSemiring = CommRing.toCommSemiring ⊢ CommRingCat.ofHom (algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ≫ CommRingCat.ofHom (basicOpenSectionsToAffine hU f ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : PrimeSpectrum.basicOpen f = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(SpecΓIdentity.app (X.presheaf.obj (op U))).inv f))).op) = StructureSheaf.toOpen (↑(X.presheaf.obj (op U))) (op (PrimeSpectrum.basicOpen f)).unop [PROOFSTEP] dsimp [CommRingCat.ofHom] [GOAL] case h.e'_3.h.h.e_i X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) e_1✝ : ↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op (PrimeSpectrum.basicOpen f))) = ↑((structureSheaf ↑(X.presheaf.obj (op U))).val.obj (op (PrimeSpectrum.basicOpen f))) he✝ : CommRing.toCommSemiring = CommRing.toCommSemiring ⊢ algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) ≫ basicOpenSectionsToAffine hU f ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : PrimeSpectrum.basicOpen f = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(toSpecΓ (X.presheaf.obj (op U))) f))).op = StructureSheaf.toOpen (↑(X.presheaf.obj (op U))) (PrimeSpectrum.basicOpen f) [PROOFSTEP] change X.presheaf.map _ ≫ basicOpenSectionsToAffine hU f ≫ _ = _ [GOAL] case h.e'_3.h.h.e_i X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) e_1✝ : ↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op (PrimeSpectrum.basicOpen f))) = ↑((structureSheaf ↑(X.presheaf.obj (op U))).val.obj (op (PrimeSpectrum.basicOpen f))) he✝ : CommRing.toCommSemiring = CommRing.toCommSemiring ⊢ X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op ≫ basicOpenSectionsToAffine hU f ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : PrimeSpectrum.basicOpen f = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(toSpecΓ (X.presheaf.obj (op U))) f))).op = StructureSheaf.toOpen (↑(X.presheaf.obj (op U))) (PrimeSpectrum.basicOpen f) [PROOFSTEP] delta basicOpenSectionsToAffine [GOAL] case h.e'_3.h.h.e_i X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) e_1✝ : ↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op (PrimeSpectrum.basicOpen f))) = ↑((structureSheaf ↑(X.presheaf.obj (op U))).val.obj (op (PrimeSpectrum.basicOpen f))) he✝ : CommRing.toCommSemiring = CommRing.toCommSemiring ⊢ X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op ≫ (NatTrans.app (IsAffineOpen.fromSpec hU).val.c (op (Scheme.basicOpen X f)) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : RingedSpace.basicOpen (LocallyRingedSpace.forgetToSheafedSpace.op.obj (Spec.toLocallyRingedSpace.rightOp.obj (X.presheaf.obj (op U)))).unop (↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U))) f) = (Opens.map (IsAffineOpen.fromSpec hU).val.base).obj (Scheme.basicOpen X f))).op) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : PrimeSpectrum.basicOpen f = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(toSpecΓ (X.presheaf.obj (op U))) f))).op = StructureSheaf.toOpen (↑(X.presheaf.obj (op U))) (PrimeSpectrum.basicOpen f) [PROOFSTEP] simp only [Scheme.comp_val_c_app, Category.assoc] -- Porting note : `erw naturality_assoc` for some reason does not work, so changed to a version -- where `naturality` is used, the good thing is that `erw` is changed back to `rw` [GOAL] case h.e'_3.h.h.e_i X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) e_1✝ : ↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op (PrimeSpectrum.basicOpen f))) = ↑((structureSheaf ↑(X.presheaf.obj (op U))).val.obj (op (PrimeSpectrum.basicOpen f))) he✝ : CommRing.toCommSemiring = CommRing.toCommSemiring ⊢ X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op ≫ NatTrans.app (IsAffineOpen.fromSpec hU).val.c (op (Scheme.basicOpen X f)) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : RingedSpace.basicOpen (LocallyRingedSpace.forgetToSheafedSpace.op.obj (Spec.toLocallyRingedSpace.rightOp.obj (X.presheaf.obj (op U)))).unop (↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U))) f) = (Opens.map (IsAffineOpen.fromSpec hU).val.base).obj (Scheme.basicOpen X f))).op ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : PrimeSpectrum.basicOpen f = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(toSpecΓ (X.presheaf.obj (op U))) f))).op = StructureSheaf.toOpen (↑(X.presheaf.obj (op U))) (PrimeSpectrum.basicOpen f) [PROOFSTEP] simp only [← Category.assoc] [GOAL] case h.e'_3.h.h.e_i X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) e_1✝ : ↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op (PrimeSpectrum.basicOpen f))) = ↑((structureSheaf ↑(X.presheaf.obj (op U))).val.obj (op (PrimeSpectrum.basicOpen f))) he✝ : CommRing.toCommSemiring = CommRing.toCommSemiring ⊢ ((X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op ≫ NatTrans.app (IsAffineOpen.fromSpec hU).val.c (op (Scheme.basicOpen X f))) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : RingedSpace.basicOpen (LocallyRingedSpace.forgetToSheafedSpace.op.obj (Spec.toLocallyRingedSpace.rightOp.obj (X.presheaf.obj (op U)))).unop (↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U))) f) = (Opens.map (IsAffineOpen.fromSpec hU).val.base).obj (Scheme.basicOpen X f))).op) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : PrimeSpectrum.basicOpen f = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(toSpecΓ (X.presheaf.obj (op U))) f))).op = StructureSheaf.toOpen (↑(X.presheaf.obj (op U))) (PrimeSpectrum.basicOpen f) [PROOFSTEP] rw [hU.fromSpec.val.c.naturality, hU.fromSpec_app_eq] -- simp only [Category.assoc] -- rw [hU.fromSpec_app_eq] [GOAL] case h.e'_3.h.h.e_i X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) e_1✝ : ↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op (PrimeSpectrum.basicOpen f))) = ↑((structureSheaf ↑(X.presheaf.obj (op U))).val.obj (op (PrimeSpectrum.basicOpen f))) he✝ : CommRing.toCommSemiring = CommRing.toCommSemiring ⊢ (((NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U)) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (IsAffineOpen.fromSpec hU).val.base).obj U = ⊤)).op) ≫ ((IsAffineOpen.fromSpec hU).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : RingedSpace.basicOpen (LocallyRingedSpace.forgetToSheafedSpace.op.obj (Spec.toLocallyRingedSpace.rightOp.obj (X.presheaf.obj (op U)))).unop (↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U))) f) = (Opens.map (IsAffineOpen.fromSpec hU).val.base).obj (Scheme.basicOpen X f))).op) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : PrimeSpectrum.basicOpen f = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(toSpecΓ (X.presheaf.obj (op U))) f))).op = StructureSheaf.toOpen (↑(X.presheaf.obj (op U))) (PrimeSpectrum.basicOpen f) [PROOFSTEP] dsimp [GOAL] case h.e'_3.h.h.e_i X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) e_1✝ : ↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op (PrimeSpectrum.basicOpen f))) = ↑((structureSheaf ↑(X.presheaf.obj (op U))).val.obj (op (PrimeSpectrum.basicOpen f))) he✝ : CommRing.toCommSemiring = CommRing.toCommSemiring ⊢ (((toSpecΓ (X.presheaf.obj (op U)) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (IsAffineOpen.fromSpec hU).val.base).obj U = ⊤)).op) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map ((Opens.map (IsAffineOpen.fromSpec hU).val.base).map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U))).op) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : RingedSpace.basicOpen (LocallyRingedSpace.forgetToSheafedSpace.op.obj (Spec.toLocallyRingedSpace.rightOp.obj (X.presheaf.obj (op U)))).unop (↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U))) f) = (Opens.map (IsAffineOpen.fromSpec hU).val.base).obj (Scheme.basicOpen X f))).op) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : PrimeSpectrum.basicOpen f = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(toSpecΓ (X.presheaf.obj (op U))) f))).op = StructureSheaf.toOpen (↑(X.presheaf.obj (op U))) (PrimeSpectrum.basicOpen f) [PROOFSTEP] simp only [Category.assoc, ← Functor.map_comp, ← op_comp] [GOAL] case h.e'_3.h.h.e_i X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) e_1✝ : ↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op (PrimeSpectrum.basicOpen f))) = ↑((structureSheaf ↑(X.presheaf.obj (op U))).val.obj (op (PrimeSpectrum.basicOpen f))) he✝ : CommRing.toCommSemiring = CommRing.toCommSemiring ⊢ toSpecΓ (X.presheaf.obj (op U)) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : PrimeSpectrum.basicOpen f = Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(toSpecΓ (X.presheaf.obj (op U))) f)) ≫ eqToHom (_ : RingedSpace.basicOpen (LocallyRingedSpace.forgetToSheafedSpace.op.obj (Spec.toLocallyRingedSpace.rightOp.obj (X.presheaf.obj (op U)))).unop (↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U))) f) = (Opens.map (IsAffineOpen.fromSpec hU).val.base).obj (Scheme.basicOpen X f)) ≫ (Opens.map (IsAffineOpen.fromSpec hU).val.base).map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)) ≫ eqToHom (_ : (Opens.map (IsAffineOpen.fromSpec hU).val.base).obj U = ⊤)).op = StructureSheaf.toOpen (↑(X.presheaf.obj (op U))) (PrimeSpectrum.basicOpen f) [PROOFSTEP] apply StructureSheaf.toOpen_res [GOAL] X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : V ⟶ U hU : IsAffineOpen U r : ↑(X.presheaf.obj (op U)) e : V = Scheme.basicOpen X r ⊢ IsLocalization.Away r ↑(X.presheaf.obj (op V)) [PROOFSTEP] subst e [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U r : ↑(X.presheaf.obj (op U)) i : Scheme.basicOpen X r ⟶ U ⊢ IsLocalization.Away r ↑(X.presheaf.obj (op (Scheme.basicOpen X r))) [PROOFSTEP] convert isLocalization_basicOpen hU r using 3 [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) g : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) ⊢ ∃ f', Scheme.basicOpen X f' = Scheme.basicOpen X g [PROOFSTEP] haveI := isLocalization_basicOpen hU f [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) g : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) this : IsLocalization.Away f ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) ⊢ ∃ f', Scheme.basicOpen X f' = Scheme.basicOpen X g [PROOFSTEP] obtain ⟨x, ⟨_, n, rfl⟩, rfl⟩ := IsLocalization.surj'' (Submonoid.powers f) g [GOAL] case intro.intro.mk.intro X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) this : IsLocalization.Away f ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) x : ↑(X.presheaf.obj (op U)) n : ℕ ⊢ ∃ f', Scheme.basicOpen X f' = Scheme.basicOpen X (x • ↑(↑(IsLocalization.toInvSubmonoid (Submonoid.powers f) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) })) [PROOFSTEP] use f * x [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) this : IsLocalization.Away f ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) x : ↑(X.presheaf.obj (op U)) n : ℕ ⊢ Scheme.basicOpen X (f * x) = Scheme.basicOpen X (x • ↑(↑(IsLocalization.toInvSubmonoid (Submonoid.powers f) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) })) [PROOFSTEP] rw [Algebra.smul_def, Scheme.basicOpen_mul, Scheme.basicOpen_mul] [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) this : IsLocalization.Away f ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) x : ↑(X.presheaf.obj (op U)) n : ℕ ⊢ Scheme.basicOpen X f ⊓ Scheme.basicOpen X x = Scheme.basicOpen X (↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x) ⊓ Scheme.basicOpen X ↑(↑(IsLocalization.toInvSubmonoid (Submonoid.powers f) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }) [PROOFSTEP] erw [Scheme.basicOpen_res] [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) this : IsLocalization.Away f ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) x : ↑(X.presheaf.obj (op U)) n : ℕ ⊢ Scheme.basicOpen X f ⊓ Scheme.basicOpen X x = Scheme.basicOpen X f ⊓ Scheme.basicOpen X x ⊓ Scheme.basicOpen X ↑(↑(IsLocalization.toInvSubmonoid (Submonoid.powers f) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }) [PROOFSTEP] refine' (inf_eq_left.mpr _).symm [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) this : IsLocalization.Away f ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) x : ↑(X.presheaf.obj (op U)) n : ℕ ⊢ Scheme.basicOpen X f ⊓ Scheme.basicOpen X x ≤ Scheme.basicOpen X ↑(↑(IsLocalization.toInvSubmonoid (Submonoid.powers f) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }) [PROOFSTEP] convert inf_le_left (α := Opens X) using 1 [GOAL] case h.e'_4 X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) this : IsLocalization.Away f ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) x : ↑(X.presheaf.obj (op U)) n : ℕ ⊢ Scheme.basicOpen X ↑(↑(IsLocalization.toInvSubmonoid (Submonoid.powers f) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }) = Scheme.basicOpen X f [PROOFSTEP] apply Scheme.basicOpen_of_isUnit [GOAL] case h.e'_4.hf X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) this : IsLocalization.Away f ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) x : ↑(X.presheaf.obj (op U)) n : ℕ ⊢ IsUnit ↑(↑(IsLocalization.toInvSubmonoid (Submonoid.powers f) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }) [PROOFSTEP] apply Submonoid.leftInv_le_isUnit _ (IsLocalization.toInvSubmonoid (Submonoid.powers f) (X.presheaf.obj (op <| X.basicOpen f)) _).prop [GOAL] X : Scheme U V : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hV : IsAffineOpen V x : ↑↑X.toPresheafedSpace hx : x ∈ U ⊓ V ⊢ ∃ f g, Scheme.basicOpen X f = Scheme.basicOpen X g ∧ x ∈ Scheme.basicOpen X f [PROOFSTEP] obtain ⟨f, hf₁, hf₂⟩ := hU.exists_basicOpen_le ⟨x, hx.2⟩ hx.1 [GOAL] case intro.intro X : Scheme U V : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hV : IsAffineOpen V x : ↑↑X.toPresheafedSpace hx : x ∈ U ⊓ V f : ↑(X.presheaf.obj (op U)) hf₁ : Scheme.basicOpen X f ≤ V hf₂ : ↑{ val := x, property := (_ : x ∈ ↑V) } ∈ Scheme.basicOpen X f ⊢ ∃ f g, Scheme.basicOpen X f = Scheme.basicOpen X g ∧ x ∈ Scheme.basicOpen X f [PROOFSTEP] obtain ⟨g, hg₁, hg₂⟩ := hV.exists_basicOpen_le ⟨x, hf₂⟩ hx.2 [GOAL] case intro.intro.intro.intro X : Scheme U V : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hV : IsAffineOpen V x : ↑↑X.toPresheafedSpace hx : x ∈ U ⊓ V f : ↑(X.presheaf.obj (op U)) hf₁ : Scheme.basicOpen X f ≤ V hf₂ : ↑{ val := x, property := (_ : x ∈ ↑V) } ∈ Scheme.basicOpen X f g : ↑(X.presheaf.obj (op V)) hg₁ : Scheme.basicOpen X g ≤ Scheme.basicOpen X f hg₂ : ↑{ val := x, property := hf₂ } ∈ Scheme.basicOpen X g ⊢ ∃ f g, Scheme.basicOpen X f = Scheme.basicOpen X g ∧ x ∈ Scheme.basicOpen X f [PROOFSTEP] obtain ⟨f', hf'⟩ := basicOpen_basicOpen_is_basicOpen hU f (X.presheaf.map (homOfLE hf₁ : _ ⟶ V).op g) [GOAL] case intro.intro.intro.intro.intro X : Scheme U V : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hV : IsAffineOpen V x : ↑↑X.toPresheafedSpace hx : x ∈ U ⊓ V f : ↑(X.presheaf.obj (op U)) hf₁ : Scheme.basicOpen X f ≤ V hf₂ : ↑{ val := x, property := (_ : x ∈ ↑V) } ∈ Scheme.basicOpen X f g : ↑(X.presheaf.obj (op V)) hg₁ : Scheme.basicOpen X g ≤ Scheme.basicOpen X f hg₂ : ↑{ val := x, property := hf₂ } ∈ Scheme.basicOpen X g f' : ↑(X.presheaf.obj (op U)) hf' : Scheme.basicOpen X f' = Scheme.basicOpen X (↑(X.presheaf.map (homOfLE hf₁).op) g) ⊢ ∃ f g, Scheme.basicOpen X f = Scheme.basicOpen X g ∧ x ∈ Scheme.basicOpen X f [PROOFSTEP] replace hf' := (hf'.trans (RingedSpace.basicOpen_res _ _ _)).trans (inf_eq_right.mpr hg₁) [GOAL] case intro.intro.intro.intro.intro X : Scheme U V : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hV : IsAffineOpen V x : ↑↑X.toPresheafedSpace hx : x ∈ U ⊓ V f : ↑(X.presheaf.obj (op U)) hf₁ : Scheme.basicOpen X f ≤ V hf₂ : ↑{ val := x, property := (_ : x ∈ ↑V) } ∈ Scheme.basicOpen X f g : ↑(X.presheaf.obj (op V)) hg₁ : Scheme.basicOpen X g ≤ Scheme.basicOpen X f hg₂ : ↑{ val := x, property := hf₂ } ∈ Scheme.basicOpen X g f' : ↑(X.presheaf.obj (op U)) hf' : Scheme.basicOpen X f' = RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) g ⊢ ∃ f g, Scheme.basicOpen X f = Scheme.basicOpen X g ∧ x ∈ Scheme.basicOpen X f [PROOFSTEP] exact ⟨f', g, hf', hf'.symm ▸ hg₂⟩ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x : { x // x ∈ U } ⊢ ↑(fromSpec hU).val.base (primeIdealOf hU x) = ↑x [PROOFSTEP] dsimp only [IsAffineOpen.fromSpec, Subtype.coe_mk] -- Porting note : in the porting note of `Scheme.comp_val_base`, it says that `elementwise` is -- unnecessary, indeed, the linter did not like it, so I just use `elementwise_of%` instead of -- adding the corresponding lemma in `Scheme.lean` file [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x : { x // x ∈ U } ⊢ ↑(Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ (Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base (primeIdealOf hU x) = ↑x [PROOFSTEP] erw [← elementwise_of% Scheme.comp_val_base, ← elementwise_of% Scheme.comp_val_base] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x : { x // x ∈ U } ⊢ ↑((Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom ≫ Scheme.Spec.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op ≫ Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ (Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base x = ↑x [PROOFSTEP] simp only [← Functor.map_comp_assoc, ← Functor.map_comp, ← op_comp, eqToHom_trans, op_id, eqToHom_refl, CategoryTheory.Functor.map_id, Category.id_comp, Iso.hom_inv_id_assoc] -- Porting note : `simpa` did not like this rfl [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x : { x // x ∈ U } ⊢ ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base x = ↑x [PROOFSTEP] rfl [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace inst✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop [PROOFSTEP] rw [Opens.inclusion_map_eq_top] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace inst✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ⊤)).unop [PROOFSTEP] rfl [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace inst✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop [PROOFSTEP] rw [Opens.inclusion_map_eq_top] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace inst✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ⊤)).unop = (op ⊤).unop [PROOFSTEP] rfl [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace inst✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ NatTrans.app (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.c (op ((Opens.map (Opens.inclusion U)).obj U)) = X.presheaf.map (op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop))) ≫ toSpecΓ (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) [PROOFSTEP] have e : (Opens.map (inv (ΓSpec.adjunction.unit.app (X.restrict U.openEmbedding))).1.base).obj ((Opens.map U.inclusion).obj U) = ⊤ := by rw [Opens.inclusion_map_eq_top]; rfl [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace inst✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ (Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U) = ⊤ [PROOFSTEP] rw [Opens.inclusion_map_eq_top] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace inst✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ (Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ⊤ = ⊤ [PROOFSTEP] rfl [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace inst✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e : (Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U) = ⊤ ⊢ NatTrans.app (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.c (op ((Opens.map (Opens.inclusion U)).obj U)) = X.presheaf.map (op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop))) ≫ toSpecΓ (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) [PROOFSTEP] rw [Scheme.inv_val_c_app, IsIso.comp_inv_eq, Scheme.app_eq _ e, ΓSpec.adjunction_unit_app_app_top] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace inst✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e : (Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U) = ⊤ ⊢ ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U) = (Opens.map (Opens.inclusion U)).obj U)).op = (X.presheaf.map (op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop))) ≫ toSpecΓ (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop)))) ≫ ((Scheme.Γ.rightOp ⋙ Scheme.Spec).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.map (eqToHom (_ : ⊤ = (Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U))).op ≫ NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) ≫ ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.base).obj ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U)) = (Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.base).obj ⊤)).op [PROOFSTEP] simp only [Category.assoc, eqToHom_op, eqToHom_map] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace inst✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e : (Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U) = ⊤ ⊢ eqToHom (_ : ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (Opens.inclusion U)).obj U)) = ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U)))) = X.presheaf.map (op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop))) ≫ toSpecΓ (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) ≫ eqToHom (_ : ((Scheme.Γ.rightOp ⋙ Scheme.Spec).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U))) = ((Scheme.Γ.rightOp ⋙ Scheme.Spec).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ⊤)) ≫ NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) ≫ eqToHom (_ : ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj ((Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.base).op.obj (op ⊤)) = ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.base).obj ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U))))) [PROOFSTEP] erw [Scheme.presheaf_map_eqToHom_op, Scheme.presheaf_map_eqToHom_op] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace inst✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e : (Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U) = ⊤ ⊢ eqToHom (_ : ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (Opens.inclusion U)).obj U)) = ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U)))) = eqToHom (_ : X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop) = X.presheaf.obj (op (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop)) ≫ toSpecΓ (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) ≫ eqToHom (_ : (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.obj (op (op ⊤).unop) = (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.obj (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop)) ≫ eqToHom (_ : ((Scheme.Γ.rightOp ⋙ Scheme.Spec).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U))) = ((Scheme.Γ.rightOp ⋙ Scheme.Spec).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ⊤)) ≫ NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) ≫ eqToHom (_ : ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj ((Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.base).op.obj (op ⊤)) = ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.base).obj ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U))))) [PROOFSTEP] simp only [eqToHom_trans_assoc, eqToHom_refl, Category.id_comp] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace inst✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e : (Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U) = ⊤ ⊢ eqToHom (_ : ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (Opens.inclusion U)).obj U)) = ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U)))) = eqToHom (_ : X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop) = X.presheaf.obj (op (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop)) ≫ toSpecΓ (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) ≫ NatTrans.app SpecΓIdentity.hom ((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) ≫ eqToHom (_ : ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj ((Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.base).op.obj (op ⊤)) = ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.base).obj ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U))))) [PROOFSTEP] erw [SpecΓIdentity.inv_hom_id_app_assoc] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace inst✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e : (Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U) = ⊤ ⊢ eqToHom (_ : ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (Opens.inclusion U)).obj U)) = ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U)))) = eqToHom (_ : X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop) = X.presheaf.obj (op (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop)) ≫ eqToHom (_ : ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj ((Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.base).op.obj (op ⊤)) = ((𝟭 Scheme).obj (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).presheaf.obj (op ((Opens.map (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).val.base).obj ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).obj ((Opens.map (Opens.inclusion U)).obj U))))) [PROOFSTEP] rw [eqToHom_trans] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U ⊢ NatTrans.app (fromSpec hU).val.c (op U) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } = StructureSheaf.toStalk (↑(X.presheaf.obj (op U))) y [PROOFSTEP] haveI : IsAffine _ := hU [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ NatTrans.app (fromSpec hU).val.c (op U) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } = StructureSheaf.toStalk (↑(X.presheaf.obj (op U))) y [PROOFSTEP] delta IsAffineOpen.fromSpec Scheme.isoSpec StructureSheaf.toStalk [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ NatTrans.app (let_fun this := (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U); Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } = StructureSheaf.toOpen ↑(X.presheaf.obj (op U)) ⊤ ≫ TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) { val := y, property := True.intro } [PROOFSTEP] simp only [Scheme.comp_val_c_app, Category.assoc] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U) ≫ NatTrans.app (asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv.val.c ((Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c ((Opens.map ((asIso (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).inv ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op U)) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } = StructureSheaf.toOpen ↑(X.presheaf.obj (op U)) ⊤ ≫ TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) { val := y, property := True.intro } [PROOFSTEP] dsimp only [Functor.op, asIso_inv, unop_op] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U) ≫ NatTrans.app (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.c (op ((Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U)) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U)) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } = StructureSheaf.toOpen ↑(X.presheaf.obj (op U)) ⊤ ≫ TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) { val := y, property := True.intro } [PROOFSTEP] erw [IsAffineOpen.isLocalization_stalk_aux] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U) ≫ (X.presheaf.map (op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop))) ≫ toSpecΓ (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop)))) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U)) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } = StructureSheaf.toOpen ↑(X.presheaf.obj (op U)) ⊤ ≫ TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) { val := y, property := True.intro } [PROOFSTEP] simp only [Category.assoc] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U) ≫ X.presheaf.map (op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop))) ≫ toSpecΓ (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U)) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } = StructureSheaf.toOpen ↑(X.presheaf.obj (op U)) ⊤ ≫ TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) { val := y, property := True.intro } [PROOFSTEP] conv_lhs => rw [← Category.assoc] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) | NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U) ≫ X.presheaf.map (op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop))) ≫ toSpecΓ (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U)) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } [PROOFSTEP] rw [← Category.assoc] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) | NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U) ≫ X.presheaf.map (op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop))) ≫ toSpecΓ (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U)) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } [PROOFSTEP] rw [← Category.assoc] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) | NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U) ≫ X.presheaf.map (op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop))) ≫ toSpecΓ (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U)) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } [PROOFSTEP] rw [← Category.assoc] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ (NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U) ≫ X.presheaf.map (op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop)))) ≫ toSpecΓ (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U)) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } = StructureSheaf.toOpen ↑(X.presheaf.obj (op U)) ⊤ ≫ TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) { val := y, property := True.intro } [PROOFSTEP] erw [← X.presheaf.map_comp, Spec_Γ_naturality_assoc] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ toSpecΓ (X.presheaf.obj (op U)) ≫ LocallyRingedSpace.Γ.map (Spec.toLocallyRingedSpace.map (X.presheaf.map ((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop).op ≫ op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop)))).op).op ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U)) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } = StructureSheaf.toOpen ↑(X.presheaf.obj (op U)) ⊤ ≫ TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) { val := y, property := True.intro } [PROOFSTEP] congr 1 [GOAL] case e_a X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ LocallyRingedSpace.Γ.map (Spec.toLocallyRingedSpace.map (X.presheaf.map ((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop).op ≫ op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop)))).op).op ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U)) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } = TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) { val := y, property := True.intro } [PROOFSTEP] simp only [← Category.assoc] [GOAL] case e_a X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ ((LocallyRingedSpace.Γ.map (Spec.toLocallyRingedSpace.map (X.presheaf.map ((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop).op ≫ op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop)))).op).op ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop)))) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U))) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } = TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) { val := y, property := True.intro } [PROOFSTEP] convert (Spec.structureSheaf (X.presheaf.obj <| op U)).presheaf.germ_res (U := (Opens.map hU.fromSpec.val.base).obj U) (homOfLE le_top) ⟨y, hy⟩ using 2 [GOAL] case h.e'_2.h.h.e'_6.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e_1✝ : (LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) ⟶ TopCat.Presheaf.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf y) = ((TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) ⟶ TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) ↑{ val := y, property := hy }) e_3✝ : LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) e_4✝ : ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj (op U) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ((Opens.map (fromSpec hU).val.base).obj U)) ⊢ (LocallyRingedSpace.Γ.map (Spec.toLocallyRingedSpace.map (X.presheaf.map ((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop).op ≫ op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop)))).op).op ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop)))) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U)) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).map (homOfLE (_ : (Opens.map (fromSpec hU).val.base).obj U ≤ ⊤)).op [PROOFSTEP] rw [Category.assoc] [GOAL] case h.e'_2.h.h.e'_6.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e_1✝ : (LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) ⟶ TopCat.Presheaf.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf y) = ((TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) ⟶ TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) ↑{ val := y, property := hy }) e_3✝ : LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) e_4✝ : ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj (op U) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ((Opens.map (fromSpec hU).val.base).obj U)) ⊢ LocallyRingedSpace.Γ.map (Spec.toLocallyRingedSpace.map (X.presheaf.map ((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop).op ≫ op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop)))).op).op ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))))).presheaf.map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c (op ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj U)) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).map (homOfLE (_ : (Opens.map (fromSpec hU).val.base).obj U ≤ ⊤)).op [PROOFSTEP] erw [NatTrans.naturality] [GOAL] case h.e'_2.h.h.e'_6.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e_1✝ : (LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) ⟶ TopCat.Presheaf.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf y) = ((TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) ⟶ TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) ↑{ val := y, property := hy }) e_3✝ : LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) e_4✝ : ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj (op U) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ((Opens.map (fromSpec hU).val.base).obj U)) ⊢ LocallyRingedSpace.Γ.map (Spec.toLocallyRingedSpace.map (X.presheaf.map ((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop).op ≫ op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop)))).op).op ≫ NatTrans.app (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.c (op ⊤) ≫ ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).map (homOfLE (_ : (Opens.map (fromSpec hU).val.base).obj U ≤ ⊤)).op [PROOFSTEP] rw [← LocallyRingedSpace.Γ_map_op, ← LocallyRingedSpace.Γ.map_comp_assoc, ← op_comp] [GOAL] case h.e'_2.h.h.e'_6.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e_1✝ : (LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) ⟶ TopCat.Presheaf.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf y) = ((TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) ⟶ TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) ↑{ val := y, property := hy }) e_3✝ : LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) e_4✝ : ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj (op U) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ((Opens.map (fromSpec hU).val.base).obj U)) ⊢ LocallyRingedSpace.Γ.map (Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ Spec.toLocallyRingedSpace.map (X.presheaf.map ((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop).op ≫ op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop)))).op).op ≫ ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).map (homOfLE (_ : (Opens.map (fromSpec hU).val.base).obj U ≤ ⊤)).op [PROOFSTEP] erw [← Scheme.Spec.map_comp] [GOAL] case h.e'_2.h.h.e'_6.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e_1✝ : (LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) ⟶ TopCat.Presheaf.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf y) = ((TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) ⟶ TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) ↑{ val := y, property := hy }) e_3✝ : LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) e_4✝ : ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj (op U) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ((Opens.map (fromSpec hU).val.base).obj U)) ⊢ LocallyRingedSpace.Γ.map (Scheme.Spec.map ((X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ (X.presheaf.map ((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop).op ≫ op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop)))).op)).op ≫ ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).map (homOfLE (_ : (Opens.map (fromSpec hU).val.base).obj U ≤ ⊤)).op [PROOFSTEP] rw [← op_comp, ← X.presheaf.map_comp] [GOAL] case h.e'_2.h.h.e'_6.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e_1✝ : (LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) ⟶ TopCat.Presheaf.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf y) = ((TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) ⟶ TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) ↑{ val := y, property := hy }) e_3✝ : LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) e_4✝ : ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj (op U) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ((Opens.map (fromSpec hU).val.base).obj U)) ⊢ LocallyRingedSpace.Γ.map (Scheme.Spec.map (X.presheaf.map (((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op U).unop).op ≫ op (eqToHom (_ : (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).unop = ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop))) ≫ (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op)).op).op ≫ ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).map (homOfLE (_ : (Opens.map (fromSpec hU).val.base).obj U ≤ ⊤)).op [PROOFSTEP] convert_to LocallyRingedSpace.Γ.map (Quiver.Hom.op <| Scheme.Spec.map (X.presheaf.map (𝟙 (op U))).op) ≫ _ = _ [GOAL] case h.e'_2.h.h.e'_6.h.convert_4 X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e_1✝ : (LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) ⟶ TopCat.Presheaf.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf y) = ((TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) ⟶ TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) ↑{ val := y, property := hy }) e_3✝ : LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) e_4✝ : ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj (op U) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ((Opens.map (fromSpec hU).val.base).obj U)) ⊢ LocallyRingedSpace.Γ.map (Scheme.Spec.map (X.presheaf.map (𝟙 (op U))).op).op ≫ ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).map (homOfLE (_ : (Opens.map (fromSpec hU).val.base).obj U ≤ ⊤)).op [PROOFSTEP] simp only [CategoryTheory.Functor.map_id, op_id] [GOAL] case h.e'_2.h.h.e'_6.h.convert_4 X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e_1✝ : (LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) ⟶ TopCat.Presheaf.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf y) = ((TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) ⟶ TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) ↑{ val := y, property := hy }) e_3✝ : LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) e_4✝ : ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj (op U) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ((Opens.map (fromSpec hU).val.base).obj U)) ⊢ LocallyRingedSpace.Γ.map (𝟙 (Scheme.Spec.obj (op (X.presheaf.obj (op U))))).op ≫ ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).map (homOfLE (_ : (Opens.map (fromSpec hU).val.base).obj U ≤ ⊤)).op [PROOFSTEP] erw [CategoryTheory.Functor.map_id] [GOAL] case h.e'_2.h.h.e'_6.h.convert_4 X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e_1✝ : (LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) ⟶ TopCat.Presheaf.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf y) = ((TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) ⟶ TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) ↑{ val := y, property := hy }) e_3✝ : LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) e_4✝ : ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj (op U) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ((Opens.map (fromSpec hU).val.base).obj U)) ⊢ 𝟙 (LocallyRingedSpace.Γ.obj (op (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toLocallyRingedSpace)) ≫ ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).map (homOfLE (_ : (Opens.map (fromSpec hU).val.base).obj U ≤ ⊤)).op [PROOFSTEP] rw [Category.id_comp] [GOAL] case h.e'_2.h.h.e'_6.h.convert_4 X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e_1✝ : (LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) ⟶ TopCat.Presheaf.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf y) = ((TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) ⟶ TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) ↑{ val := y, property := hy }) e_3✝ : LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op (X.presheaf.obj (op U))))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ⊤) e_4✝ : ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op ≫ inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))) ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).obj (op U) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).obj (op ((Opens.map (fromSpec hU).val.base).obj U)) ⊢ ((Scheme.Spec.map (X.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op).op).val.base _* (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf).map (op (eqToHom (_ : ((Opens.map (inv (NatTrans.app ΓSpec.adjunction.unit (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))))).val.base).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))).unop = (op ⊤).unop))) = (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))).map (homOfLE (_ : (Opens.map (fromSpec hU).val.base).obj U ≤ ⊤)).op [PROOFSTEP] rfl [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U ⊢ IsLocalization.AtPrime (↑(TopCat.Presheaf.stalk X.presheaf (↑(fromSpec hU).val.base y))) y.asIdeal [PROOFSTEP] apply (@IsLocalization.isLocalization_iff_of_ringEquiv (R := X.presheaf.obj <| op U) (S := X.presheaf.stalk (hU.fromSpec.1.base y)) _ y.asIdeal.primeCompl _ (TopCat.Presheaf.algebra_section_stalk X.presheaf ⟨hU.fromSpec.1.base y, hy⟩) _ _ (asIso <| PresheafedSpace.stalkMap hU.fromSpec.1 y).commRingCatIsoToRingEquiv).mpr [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U ⊢ IsLocalization (Ideal.primeCompl y.asIdeal) ↑(PresheafedSpace.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace y) [PROOFSTEP] convert StructureSheaf.IsLocalization.to_stalk (X.presheaf.obj <| op U) y using 1 [GOAL] case a X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U ⊢ IsLocalization (Ideal.primeCompl y.asIdeal) ↑(PresheafedSpace.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace y) ↔ IsLocalization.AtPrime (↑(TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) y)) y.asIdeal [PROOFSTEP] delta IsLocalization.AtPrime StructureSheaf.stalkAlgebra [GOAL] case a X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U ⊢ IsLocalization (Ideal.primeCompl y.asIdeal) ↑(PresheafedSpace.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace y) ↔ IsLocalization (Ideal.primeCompl y.asIdeal) ↑(TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) y) [PROOFSTEP] rw [iff_iff_eq] [GOAL] case a X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U ⊢ IsLocalization (Ideal.primeCompl y.asIdeal) ↑(PresheafedSpace.stalk (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace y) = IsLocalization (Ideal.primeCompl y.asIdeal) ↑(TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(X.presheaf.obj (op U)))) y) [PROOFSTEP] congr 2 [GOAL] case a.h.e_6.h.e_i X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U ⊢ RingHom.comp (RingEquiv.toRingHom (Iso.commRingCatIsoToRingEquiv (asIso (PresheafedSpace.stalkMap (fromSpec hU).val y)))) (algebraMap ↑(X.presheaf.obj (op U)) ↑(TopCat.Presheaf.stalk X.presheaf (↑(fromSpec hU).val.base y))) = StructureSheaf.toStalk (↑(X.presheaf.obj (op U))) y [PROOFSTEP] rw [RingHom.algebraMap_toAlgebra] [GOAL] case a.h.e_6.h.e_i X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U ⊢ RingHom.comp (RingEquiv.toRingHom (Iso.commRingCatIsoToRingEquiv (asIso (PresheafedSpace.stalkMap (fromSpec hU).val y)))) (TopCat.Presheaf.germ X.presheaf { val := ↑(fromSpec hU).val.base y, property := hy }) = StructureSheaf.toStalk (↑(X.presheaf.obj (op U))) y [PROOFSTEP] refine' (PresheafedSpace.stalkMap_germ hU.fromSpec.1 _ ⟨_, hy⟩).trans _ [GOAL] case a.h.e_6.h.e_i X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hy : ↑(fromSpec hU).val.base y ∈ U ⊢ NatTrans.app (fromSpec hU).val.c (op U) ≫ TopCat.Presheaf.germ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf { val := y, property := hy } = StructureSheaf.toStalk (↑(X.presheaf.obj (op U))) y [PROOFSTEP] apply hU.isLocalization_stalk_aux' y hy [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x : { x // x ∈ U } ⊢ IsLocalization.AtPrime (↑(TopCat.Presheaf.stalk X.presheaf ↑x)) (primeIdealOf hU x).asIdeal [PROOFSTEP] rcases x with ⟨x, hx⟩ [GOAL] case mk X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x : ↑↑X.toPresheafedSpace hx : x ∈ U ⊢ IsLocalization.AtPrime (↑(TopCat.Presheaf.stalk X.presheaf ↑{ val := x, property := hx })) (primeIdealOf hU { val := x, property := hx }).asIdeal [PROOFSTEP] let y := hU.primeIdealOf ⟨x, hx⟩ [GOAL] case mk X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x : ↑↑X.toPresheafedSpace hx : x ∈ U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) := primeIdealOf hU { val := x, property := hx } ⊢ IsLocalization.AtPrime (↑(TopCat.Presheaf.stalk X.presheaf ↑{ val := x, property := hx })) (primeIdealOf hU { val := x, property := hx }).asIdeal [PROOFSTEP] have : hU.fromSpec.val.base y = x := hU.fromSpec_primeIdealOf ⟨x, hx⟩ -- Porting note : this is painful now, need to provide explicit instance [GOAL] case mk X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x : ↑↑X.toPresheafedSpace hx : x ∈ U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) := primeIdealOf hU { val := x, property := hx } this : ↑(fromSpec hU).val.base y = x ⊢ IsLocalization.AtPrime (↑(TopCat.Presheaf.stalk X.presheaf ↑{ val := x, property := hx })) (primeIdealOf hU { val := x, property := hx }).asIdeal [PROOFSTEP] change @IsLocalization (M := y.asIdeal.primeCompl) (S := X.presheaf.stalk x) _ _ (TopCat.Presheaf.algebra_section_stalk X.presheaf ⟨x, hx⟩) [GOAL] case mk X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x : ↑↑X.toPresheafedSpace hx : x ∈ U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) := primeIdealOf hU { val := x, property := hx } this : ↑(fromSpec hU).val.base y = x ⊢ IsLocalization (Ideal.primeCompl y.asIdeal) ↑(TopCat.Presheaf.stalk X.presheaf x) [PROOFSTEP] clear_value y [GOAL] case mk X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x : ↑↑X.toPresheafedSpace hx : x ∈ U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) this : ↑(fromSpec hU).val.base y = x ⊢ IsLocalization (Ideal.primeCompl y.asIdeal) ↑(TopCat.Presheaf.stalk X.presheaf x) [PROOFSTEP] subst this [GOAL] case mk X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U y : PrimeSpectrum ↑(X.presheaf.obj (op U)) hx : ↑(fromSpec hU).val.base y ∈ U ⊢ IsLocalization (Ideal.primeCompl y.asIdeal) ↑(TopCat.Presheaf.stalk X.presheaf (↑(fromSpec hU).val.base y)) [PROOFSTEP] convert hU.isLocalization_stalk' y hx [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ Scheme.basicOpen (Scheme.Spec.obj (op (X.presheaf.obj (op U)))) (↑(NatTrans.app (fromSpec hU).val.c (op U)) f) = PrimeSpectrum.basicOpen f [PROOFSTEP] rw [← Scheme.basicOpen_res_eq _ _ (eqToHom hU.fromSpec_base_preimage.symm).op, basicOpen_eq_of_affine', IsAffineOpen.fromSpec_app_eq] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ PrimeSpectrum.basicOpen (↑(SpecΓIdentity.app (X.presheaf.obj (op U))).hom (↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : ⊤ = (Opens.map (fromSpec hU).val.base).obj U)).op) (↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U)) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op) f))) = PrimeSpectrum.basicOpen f [PROOFSTEP] congr -- Porting note : change `rw` to `erw` [GOAL] case e_r X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ ↑(SpecΓIdentity.app (X.presheaf.obj (op U))).hom (↑((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : ⊤ = (Opens.map (fromSpec hU).val.base).obj U)).op) (↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U)) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op) f)) = f [PROOFSTEP] erw [← comp_apply, ← comp_apply] [GOAL] case e_r X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ ↑(((NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U)) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : (Opens.map (fromSpec hU).val.base).obj U = ⊤)).op) ≫ (Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.map (eqToHom (_ : ⊤ = (Opens.map (fromSpec hU).val.base).obj U)).op) ≫ (SpecΓIdentity.app (X.presheaf.obj (op U))).hom) f = f [PROOFSTEP] rw [Category.assoc, ← Functor.map_comp (self := (Scheme.Spec.obj <| op (X.presheaf.obj <| op U)).presheaf), eqToHom_op, eqToHom_op, eqToHom_trans, eqToHom_refl, CategoryTheory.Functor.map_id] -- Porting note : change `rw` to `erw` [GOAL] case e_r X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ ↑((NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U)) ≫ 𝟙 ((Scheme.Spec.obj (op (X.presheaf.obj (op U)))).presheaf.obj (op ⊤))) ≫ (SpecΓIdentity.app (X.presheaf.obj (op U))).hom) f = f [PROOFSTEP] erw [Category.comp_id] [GOAL] case e_r X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ ↑(NatTrans.app SpecΓIdentity.inv (X.presheaf.obj (op U)) ≫ (SpecΓIdentity.app (X.presheaf.obj (op U))).hom) f = f [PROOFSTEP] rw [← Iso.app_inv, Iso.inv_hom_id] [GOAL] case e_r X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ ↑(𝟙 ((𝟭 CommRingCat).obj (X.presheaf.obj (op U)))) f = f [PROOFSTEP] rfl [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) ⊢ (Opens.map (fromSpec hU).val.base).obj (Scheme.basicOpen X f) = PrimeSpectrum.basicOpen f [PROOFSTEP] simp only [IsAffineOpen.basicOpen_fromSpec_app, Scheme.preimage_basicOpen, eq_self_iff_true] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ ⨆ (f : ↑s), Scheme.basicOpen X ↑f = U ↔ Ideal.span s = ⊤ [PROOFSTEP] trans ⋃ i : s, (PrimeSpectrum.basicOpen i.1).1 = Set.univ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ ⨆ (f : ↑s), Scheme.basicOpen X ↑f = U ↔ ⋃ (i : ↑s), (PrimeSpectrum.basicOpen ↑i).carrier = Set.univ X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ ⋃ (i : ↑s), (PrimeSpectrum.basicOpen ↑i).carrier = Set.univ ↔ Ideal.span s = ⊤ [PROOFSTEP] trans hU.fromSpec.1.base ⁻¹' (⨆ f : s, X.basicOpen (f : X.presheaf.obj <| op U)).1 = hU.fromSpec.1.base ⁻¹' U.1 [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ ⨆ (f : ↑s), Scheme.basicOpen X ↑f = U ↔ ↑(fromSpec hU).val.base ⁻¹' (⨆ (f : ↑s), Scheme.basicOpen X ↑f).carrier = ↑(fromSpec hU).val.base ⁻¹' U.carrier [PROOFSTEP] refine' ⟨fun h => by rw [h], _⟩ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) h : ⨆ (f : ↑s), Scheme.basicOpen X ↑f = U ⊢ ↑(fromSpec hU).val.base ⁻¹' (⨆ (f : ↑s), Scheme.basicOpen X ↑f).carrier = ↑(fromSpec hU).val.base ⁻¹' U.carrier [PROOFSTEP] rw [h] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ ↑(fromSpec hU).val.base ⁻¹' (⨆ (f : ↑s), Scheme.basicOpen X ↑f).carrier = ↑(fromSpec hU).val.base ⁻¹' U.carrier → ⨆ (f : ↑s), Scheme.basicOpen X ↑f = U [PROOFSTEP] intro h [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) h : ↑(fromSpec hU).val.base ⁻¹' (⨆ (f : ↑s), Scheme.basicOpen X ↑f).carrier = ↑(fromSpec hU).val.base ⁻¹' U.carrier ⊢ ⨆ (f : ↑s), Scheme.basicOpen X ↑f = U [PROOFSTEP] apply_fun Set.image hU.fromSpec.1.base at h [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) h : ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' (⨆ (f : ↑s), Scheme.basicOpen X ↑f).carrier) = ↑(fromSpec hU).val.base '' (↑(fromSpec hU).val.base ⁻¹' U.carrier) ⊢ ⨆ (f : ↑s), Scheme.basicOpen X ↑f = U [PROOFSTEP] rw [Set.image_preimage_eq_inter_range, Set.image_preimage_eq_inter_range, hU.fromSpec_range] at h [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) h : (⨆ (f : ↑s), Scheme.basicOpen X ↑f).carrier ∩ ↑U = U.carrier ∩ ↑U ⊢ ⨆ (f : ↑s), Scheme.basicOpen X ↑f = U [PROOFSTEP] simp only [Set.inter_self, Opens.carrier_eq_coe, Set.inter_eq_right_iff_subset] at h [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) h : ↑U ⊆ ↑(⨆ (f : ↑s), Scheme.basicOpen X ↑f) ⊢ ⨆ (f : ↑s), Scheme.basicOpen X ↑f = U [PROOFSTEP] ext1 [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) h : ↑U ⊆ ↑(⨆ (f : ↑s), Scheme.basicOpen X ↑f) ⊢ ↑(⨆ (f : ↑s), Scheme.basicOpen X ↑f) = ↑U [PROOFSTEP] refine' Set.Subset.antisymm _ h [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) h : ↑U ⊆ ↑(⨆ (f : ↑s), Scheme.basicOpen X ↑f) ⊢ ↑(⨆ (f : ↑s), Scheme.basicOpen X ↑f) ⊆ ↑U [PROOFSTEP] simp only [Set.iUnion_subset_iff, SetCoe.forall, Opens.coe_iSup] [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) h : ↑U ⊆ ↑(⨆ (f : ↑s), Scheme.basicOpen X ↑f) ⊢ ∀ (x : ↑(X.presheaf.obj (op U))), x ∈ s → ↑(Scheme.basicOpen X x) ⊆ ↑U [PROOFSTEP] intro x _ [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) h : ↑U ⊆ ↑(⨆ (f : ↑s), Scheme.basicOpen X ↑f) x : ↑(X.presheaf.obj (op U)) h✝ : x ∈ s ⊢ ↑(Scheme.basicOpen X x) ⊆ ↑U [PROOFSTEP] exact X.basicOpen_le x [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ ↑(fromSpec hU).val.base ⁻¹' (⨆ (f : ↑s), Scheme.basicOpen X ↑f).carrier = ↑(fromSpec hU).val.base ⁻¹' U.carrier ↔ ⋃ (i : ↑s), (PrimeSpectrum.basicOpen ↑i).carrier = Set.univ [PROOFSTEP] simp only [Opens.iSup_def, Subtype.coe_mk, Set.preimage_iUnion] -- Porting note : need an extra rewrite here, after simp, it is in `↔` form [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ ⋃ (i : ↑s), ↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X ↑i) = ↑(fromSpec hU).val.base ⁻¹' U.carrier ↔ ⋃ (i : ↑s), (PrimeSpectrum.basicOpen ↑i).carrier = Set.univ [PROOFSTEP] rw [iff_iff_eq] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ (⋃ (i : ↑s), ↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X ↑i) = ↑(fromSpec hU).val.base ⁻¹' U.carrier) = (⋃ (i : ↑s), (PrimeSpectrum.basicOpen ↑i).carrier = Set.univ) [PROOFSTEP] congr 3 [GOAL] case e_a X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ ⋃ (i : ↑s), ↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X ↑i) = ⋃ (i : ↑s), (PrimeSpectrum.basicOpen ↑i).carrier [PROOFSTEP] refine congr_arg (Set.iUnion ·) ?_ [GOAL] case e_a X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ (fun i => ↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X ↑i)) = fun i => (PrimeSpectrum.basicOpen ↑i).carrier [PROOFSTEP] ext1 x [GOAL] case e_a.h X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) x : ↑s ⊢ ↑(fromSpec hU).val.base ⁻¹' ↑(Scheme.basicOpen X ↑x) = (PrimeSpectrum.basicOpen ↑x).carrier [PROOFSTEP] exact congr_arg Opens.carrier (hU.fromSpec_map_basicOpen _) [GOAL] case e_a X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ ↑(fromSpec hU).val.base ⁻¹' U.carrier = Set.univ [PROOFSTEP] exact congr_arg Opens.carrier hU.fromSpec_base_preimage [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ ⋃ (i : ↑s), (PrimeSpectrum.basicOpen ↑i).carrier = Set.univ ↔ Ideal.span s = ⊤ [PROOFSTEP] simp only [Opens.carrier_eq_coe, PrimeSpectrum.basicOpen_eq_zeroLocus_compl] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ ⋃ (i : ↑s), (PrimeSpectrum.zeroLocus {↑i})ᶜ = Set.univ ↔ Ideal.span s = ⊤ [PROOFSTEP] rw [← Set.compl_iInter, Set.compl_univ_iff, ← PrimeSpectrum.zeroLocus_iUnion, ← PrimeSpectrum.zeroLocus_empty_iff_eq_top, PrimeSpectrum.zeroLocus_span] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ PrimeSpectrum.zeroLocus (⋃ (i : ↑s), {↑i}) = ∅ ↔ PrimeSpectrum.zeroLocus s = ∅ [PROOFSTEP] simp only [Set.iUnion_singleton_eq_range, Subtype.range_val_subtype, Set.setOf_mem_eq] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ U ≤ ⨆ (f : ↑s), Scheme.basicOpen X ↑f ↔ Ideal.span s = ⊤ [PROOFSTEP] rw [← hU.basicOpen_union_eq_self_iff, @comm _ Eq] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) ⊢ U ≤ ⨆ (f : ↑s), Scheme.basicOpen X ↑f ↔ U = ⨆ (f : ↑s), Scheme.basicOpen X ↑f [PROOFSTEP] refine' ⟨fun h => le_antisymm h _, le_of_eq⟩ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) h : U ≤ ⨆ (f : ↑s), Scheme.basicOpen X ↑f ⊢ ⨆ (f : ↑s), Scheme.basicOpen X ↑f ≤ U [PROOFSTEP] simp only [iSup_le_iff, SetCoe.forall] [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) h : U ≤ ⨆ (f : ↑s), Scheme.basicOpen X ↑f ⊢ ∀ (x : ↑(X.presheaf.obj (op U))), x ∈ s → Scheme.basicOpen X x ≤ U [PROOFSTEP] intro x _ [GOAL] X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U s : Set ↑(X.presheaf.obj (op U)) h : U ≤ ⨆ (f : ↑s), Scheme.basicOpen X ↑f x : ↑(X.presheaf.obj (op U)) h✝ : x ∈ s ⊢ Scheme.basicOpen X x ≤ U [PROOFSTEP] exact X.basicOpen_le x [GOAL] X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U ⊢ P V [PROOFSTEP] classical have : ∀ (x : V.1), ∃ f : X.presheaf.obj <| op V.1, ↑x ∈ X.basicOpen f ∧ P (X.affineBasicOpen f) := by intro x have : ↑x ∈ (Set.univ : Set X) := trivial rw [← hS] at this obtain ⟨W, hW⟩ := Set.mem_iUnion.mp this obtain ⟨f, g, e, hf⟩ := exists_basicOpen_le_affine_inter V.prop W.1.prop x ⟨x.prop, hW⟩ refine' ⟨f, hf, _⟩ convert hP₁ _ g (hS' W) using 1 ext1 exact e choose f hf₁ hf₂ using this suffices Ideal.span (Set.range f) = ⊤ by obtain ⟨t, ht₁, ht₂⟩ := (Ideal.span_eq_top_iff_finite _).mp this apply hP₂ V t ht₂ rintro ⟨i, hi⟩ obtain ⟨x, rfl⟩ := ht₁ hi exact hf₂ x rw [← V.prop.self_le_basicOpen_union_iff] intro x hx rw [iSup_range', SetLike.mem_coe, Opens.mem_iSup] exact ⟨_, hf₁ ⟨x, hx⟩⟩ [GOAL] X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U ⊢ P V [PROOFSTEP] have : ∀ (x : V.1), ∃ f : X.presheaf.obj <| op V.1, ↑x ∈ X.basicOpen f ∧ P (X.affineBasicOpen f) := by intro x have : ↑x ∈ (Set.univ : Set X) := trivial rw [← hS] at this obtain ⟨W, hW⟩ := Set.mem_iUnion.mp this obtain ⟨f, g, e, hf⟩ := exists_basicOpen_le_affine_inter V.prop W.1.prop x ⟨x.prop, hW⟩ refine' ⟨f, hf, _⟩ convert hP₁ _ g (hS' W) using 1 ext1 exact e [GOAL] X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U ⊢ ∀ (x : { x // x ∈ ↑V }), ∃ f, ↑x ∈ Scheme.basicOpen X f ∧ P (Scheme.affineBasicOpen X f) [PROOFSTEP] intro x [GOAL] X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U x : { x // x ∈ ↑V } ⊢ ∃ f, ↑x ∈ Scheme.basicOpen X f ∧ P (Scheme.affineBasicOpen X f) [PROOFSTEP] have : ↑x ∈ (Set.univ : Set X) := trivial [GOAL] X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U x : { x // x ∈ ↑V } this : ↑x ∈ Set.univ ⊢ ∃ f, ↑x ∈ Scheme.basicOpen X f ∧ P (Scheme.affineBasicOpen X f) [PROOFSTEP] rw [← hS] at this [GOAL] X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U x : { x // x ∈ ↑V } this : ↑x ∈ ⋃ (i : ↑S), ↑↑↑i ⊢ ∃ f, ↑x ∈ Scheme.basicOpen X f ∧ P (Scheme.affineBasicOpen X f) [PROOFSTEP] obtain ⟨W, hW⟩ := Set.mem_iUnion.mp this [GOAL] case intro X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U x : { x // x ∈ ↑V } this : ↑x ∈ ⋃ (i : ↑S), ↑↑↑i W : ↑S hW : ↑x ∈ ↑↑↑W ⊢ ∃ f, ↑x ∈ Scheme.basicOpen X f ∧ P (Scheme.affineBasicOpen X f) [PROOFSTEP] obtain ⟨f, g, e, hf⟩ := exists_basicOpen_le_affine_inter V.prop W.1.prop x ⟨x.prop, hW⟩ [GOAL] case intro.intro.intro.intro X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U x : { x // x ∈ ↑V } this : ↑x ∈ ⋃ (i : ↑S), ↑↑↑i W : ↑S hW : ↑x ∈ ↑↑↑W f : ↑(X.presheaf.obj (op ↑V)) g : ↑(X.presheaf.obj (op ↑↑W)) e : Scheme.basicOpen X f = Scheme.basicOpen X g hf : ↑x ∈ Scheme.basicOpen X f ⊢ ∃ f, ↑x ∈ Scheme.basicOpen X f ∧ P (Scheme.affineBasicOpen X f) [PROOFSTEP] refine' ⟨f, hf, _⟩ [GOAL] case intro.intro.intro.intro X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U x : { x // x ∈ ↑V } this : ↑x ∈ ⋃ (i : ↑S), ↑↑↑i W : ↑S hW : ↑x ∈ ↑↑↑W f : ↑(X.presheaf.obj (op ↑V)) g : ↑(X.presheaf.obj (op ↑↑W)) e : Scheme.basicOpen X f = Scheme.basicOpen X g hf : ↑x ∈ Scheme.basicOpen X f ⊢ P (Scheme.affineBasicOpen X f) [PROOFSTEP] convert hP₁ _ g (hS' W) using 1 [GOAL] case h.e'_1 X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U x : { x // x ∈ ↑V } this : ↑x ∈ ⋃ (i : ↑S), ↑↑↑i W : ↑S hW : ↑x ∈ ↑↑↑W f : ↑(X.presheaf.obj (op ↑V)) g : ↑(X.presheaf.obj (op ↑↑W)) e : Scheme.basicOpen X f = Scheme.basicOpen X g hf : ↑x ∈ Scheme.basicOpen X f ⊢ Scheme.affineBasicOpen X f = Scheme.affineBasicOpen X g [PROOFSTEP] ext1 [GOAL] case h.e'_1.a X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U x : { x // x ∈ ↑V } this : ↑x ∈ ⋃ (i : ↑S), ↑↑↑i W : ↑S hW : ↑x ∈ ↑↑↑W f : ↑(X.presheaf.obj (op ↑V)) g : ↑(X.presheaf.obj (op ↑↑W)) e : Scheme.basicOpen X f = Scheme.basicOpen X g hf : ↑x ∈ Scheme.basicOpen X f ⊢ ↑(Scheme.affineBasicOpen X f) = ↑(Scheme.affineBasicOpen X g) [PROOFSTEP] exact e [GOAL] X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U this : ∀ (x : { x // x ∈ ↑V }), ∃ f, ↑x ∈ Scheme.basicOpen X f ∧ P (Scheme.affineBasicOpen X f) ⊢ P V [PROOFSTEP] choose f hf₁ hf₂ using this [GOAL] X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U f : { x // x ∈ ↑V } → ↑(X.presheaf.obj (op ↑V)) hf₁ : ∀ (x : { x // x ∈ ↑V }), ↑x ∈ Scheme.basicOpen X (f x) hf₂ : ∀ (x : { x // x ∈ ↑V }), P (Scheme.affineBasicOpen X (f x)) ⊢ P V [PROOFSTEP] suffices Ideal.span (Set.range f) = ⊤ by obtain ⟨t, ht₁, ht₂⟩ := (Ideal.span_eq_top_iff_finite _).mp this apply hP₂ V t ht₂ rintro ⟨i, hi⟩ obtain ⟨x, rfl⟩ := ht₁ hi exact hf₂ x [GOAL] X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U f : { x // x ∈ ↑V } → ↑(X.presheaf.obj (op ↑V)) hf₁ : ∀ (x : { x // x ∈ ↑V }), ↑x ∈ Scheme.basicOpen X (f x) hf₂ : ∀ (x : { x // x ∈ ↑V }), P (Scheme.affineBasicOpen X (f x)) this : Ideal.span (Set.range f) = ⊤ ⊢ P V [PROOFSTEP] obtain ⟨t, ht₁, ht₂⟩ := (Ideal.span_eq_top_iff_finite _).mp this [GOAL] case intro.intro X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U f : { x // x ∈ ↑V } → ↑(X.presheaf.obj (op ↑V)) hf₁ : ∀ (x : { x // x ∈ ↑V }), ↑x ∈ Scheme.basicOpen X (f x) hf₂ : ∀ (x : { x // x ∈ ↑V }), P (Scheme.affineBasicOpen X (f x)) this : Ideal.span (Set.range f) = ⊤ t : Finset ↑(X.presheaf.obj (op ↑V)) ht₁ : ↑t ⊆ Set.range f ht₂ : Ideal.span ↑t = ⊤ ⊢ P V [PROOFSTEP] apply hP₂ V t ht₂ [GOAL] case intro.intro X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U f : { x // x ∈ ↑V } → ↑(X.presheaf.obj (op ↑V)) hf₁ : ∀ (x : { x // x ∈ ↑V }), ↑x ∈ Scheme.basicOpen X (f x) hf₂ : ∀ (x : { x // x ∈ ↑V }), P (Scheme.affineBasicOpen X (f x)) this : Ideal.span (Set.range f) = ⊤ t : Finset ↑(X.presheaf.obj (op ↑V)) ht₁ : ↑t ⊆ Set.range f ht₂ : Ideal.span ↑t = ⊤ ⊢ ∀ (f : { x // x ∈ t }), P (Scheme.affineBasicOpen X ↑f) [PROOFSTEP] rintro ⟨i, hi⟩ [GOAL] case intro.intro.mk X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U f : { x // x ∈ ↑V } → ↑(X.presheaf.obj (op ↑V)) hf₁ : ∀ (x : { x // x ∈ ↑V }), ↑x ∈ Scheme.basicOpen X (f x) hf₂ : ∀ (x : { x // x ∈ ↑V }), P (Scheme.affineBasicOpen X (f x)) this : Ideal.span (Set.range f) = ⊤ t : Finset ↑(X.presheaf.obj (op ↑V)) ht₁ : ↑t ⊆ Set.range f ht₂ : Ideal.span ↑t = ⊤ i : ↑(X.presheaf.obj (op ↑V)) hi : i ∈ t ⊢ P (Scheme.affineBasicOpen X ↑{ val := i, property := hi }) [PROOFSTEP] obtain ⟨x, rfl⟩ := ht₁ hi [GOAL] case intro.intro.mk.intro X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U f : { x // x ∈ ↑V } → ↑(X.presheaf.obj (op ↑V)) hf₁ : ∀ (x : { x // x ∈ ↑V }), ↑x ∈ Scheme.basicOpen X (f x) hf₂ : ∀ (x : { x // x ∈ ↑V }), P (Scheme.affineBasicOpen X (f x)) this : Ideal.span (Set.range f) = ⊤ t : Finset ↑(X.presheaf.obj (op ↑V)) ht₁ : ↑t ⊆ Set.range f ht₂ : Ideal.span ↑t = ⊤ x : { x // x ∈ ↑V } hi : f x ∈ t ⊢ P (Scheme.affineBasicOpen X ↑{ val := f x, property := hi }) [PROOFSTEP] exact hf₂ x [GOAL] X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U f : { x // x ∈ ↑V } → ↑(X.presheaf.obj (op ↑V)) hf₁ : ∀ (x : { x // x ∈ ↑V }), ↑x ∈ Scheme.basicOpen X (f x) hf₂ : ∀ (x : { x // x ∈ ↑V }), P (Scheme.affineBasicOpen X (f x)) ⊢ Ideal.span (Set.range f) = ⊤ [PROOFSTEP] rw [← V.prop.self_le_basicOpen_union_iff] [GOAL] X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U f : { x // x ∈ ↑V } → ↑(X.presheaf.obj (op ↑V)) hf₁ : ∀ (x : { x // x ∈ ↑V }), ↑x ∈ Scheme.basicOpen X (f x) hf₂ : ∀ (x : { x // x ∈ ↑V }), P (Scheme.affineBasicOpen X (f x)) ⊢ ↑V ≤ ⨆ (f_1 : ↑(Set.range f)), Scheme.basicOpen X ↑f_1 [PROOFSTEP] intro x hx [GOAL] X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U f : { x // x ∈ ↑V } → ↑(X.presheaf.obj (op ↑V)) hf₁ : ∀ (x : { x // x ∈ ↑V }), ↑x ∈ Scheme.basicOpen X (f x) hf₂ : ∀ (x : { x // x ∈ ↑V }), P (Scheme.affineBasicOpen X (f x)) x : ↑↑X.toPresheafedSpace hx : x ∈ ↑↑V ⊢ x ∈ ↑(⨆ (f_1 : ↑(Set.range f)), Scheme.basicOpen X ↑f_1) [PROOFSTEP] rw [iSup_range', SetLike.mem_coe, Opens.mem_iSup] [GOAL] X : Scheme V : ↑(Scheme.affineOpens X) S : Set ↑(Scheme.affineOpens X) P : ↑(Scheme.affineOpens X) → Prop hP₁ : ∀ (U : ↑(Scheme.affineOpens X)) (f : ↑(X.presheaf.obj (op ↑U))), P U → P (Scheme.affineBasicOpen X f) hP₂ : ∀ (U : ↑(Scheme.affineOpens X)) (s : Finset ↑(X.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f : { x // x ∈ s }), P (Scheme.affineBasicOpen X ↑f)) → P U hS : ⋃ (i : ↑S), ↑↑↑i = Set.univ hS' : ∀ (U : ↑S), P ↑U f : { x // x ∈ ↑V } → ↑(X.presheaf.obj (op ↑V)) hf₁ : ∀ (x : { x // x ∈ ↑V }), ↑x ∈ Scheme.basicOpen X (f x) hf₂ : ∀ (x : { x // x ∈ ↑V }), P (Scheme.affineBasicOpen X (f x)) x : ↑↑X.toPresheafedSpace hx : x ∈ ↑↑V ⊢ ∃ i, x ∈ Scheme.basicOpen X (f i) [PROOFSTEP] exact ⟨_, hf₁ ⟨x, hx⟩⟩
{"mathlib_filename": "Mathlib.AlgebraicGeometry.AffineScheme", "llama_tokens": 107216}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ g : C(α, β) toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ h : (mk toFun✝).toFun = g.toFun ⊢ mk toFun✝ = g [PROOFSTEP] cases g [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ toFun✝¹ : α → β continuous_toFun✝¹ : Continuous toFun✝¹ toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ h : (mk toFun✝¹).toFun = (mk toFun✝).toFun ⊢ mk toFun✝¹ = mk toFun✝ [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f✝ g✝ f g : C(α, β) h : ↑f = ↑g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g✝ g : C(α, β) toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ h : ↑(mk toFun✝) = ↑g ⊢ mk toFun✝ = g [PROOFSTEP] cases g [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) toFun✝¹ : α → β continuous_toFun✝¹ : Continuous toFun✝¹ toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ h : ↑(mk toFun✝¹) = ↑(mk toFun✝) ⊢ mk toFun✝¹ = mk toFun✝ [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : TopologicalSpace δ f g : C(α, β) inst✝ : DiscreteTopology α x✝ : C(α, β) ⊢ (fun f => mk f) ((fun f => ↑f) x✝) = x✝ [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : TopologicalSpace δ f g : C(α, β) inst✝ : DiscreteTopology α x✝ : C(α, β) a✝ : α ⊢ ↑((fun f => mk f) ((fun f => ↑f) x✝)) a✝ = ↑x✝ a✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : TopologicalSpace δ f g : C(α, β) inst✝ : DiscreteTopology α x✝ : α → β ⊢ (fun f => ↑f) ((fun f => mk f) x✝) = x✝ [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : TopologicalSpace δ f g : C(α, β) inst✝ : DiscreteTopology α x✝¹ : α → β x✝ : α ⊢ (fun f => ↑f) ((fun f => mk f) x✝¹) x✝ = x✝¹ x✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f✝ g : C(α, β) f : C(β, γ) g₁ g₂ : C(α, β) hf : Injective ↑f h : comp f g₁ = comp f g₂ a : α ⊢ ↑f (↑g₁ a) = ↑f (↑g₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) ι : Type u_5 S : ι → Set α φ : (i : ι) → C(↑(S i), β) hφ : ∀ (i j : ι) (x : α) (hxi : x ∈ S i) (hxj : x ∈ S j), ↑(φ i) { val := x, property := hxi } = ↑(φ j) { val := x, property := hxj } hS : ∀ (x : α), ∃ i, S i ∈ nhds x H : ⋃ (i : ι), S i = Set.univ i : ι ⊢ ContinuousOn (Set.liftCover S (fun i => ↑(φ i)) hφ H) (S i) [PROOFSTEP] rw [continuousOn_iff_continuous_restrict] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) ι : Type u_5 S : ι → Set α φ : (i : ι) → C(↑(S i), β) hφ : ∀ (i j : ι) (x : α) (hxi : x ∈ S i) (hxj : x ∈ S j), ↑(φ i) { val := x, property := hxi } = ↑(φ j) { val := x, property := hxj } hS : ∀ (x : α), ∃ i, S i ∈ nhds x H : ⋃ (i : ι), S i = Set.univ i : ι ⊢ Continuous (Set.restrict (S i) (Set.liftCover S (fun i => ↑(φ i)) hφ H)) [PROOFSTEP] simpa only [Set.restrict, Set.liftCover_coe] using (φ i).continuous [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) ι : Type u_5 S : ι → Set α φ : (i : ι) → C(↑(S i), β) hφ : ∀ (i j : ι) (x : α) (hxi : x ∈ S i) (hxj : x ∈ S j), ↑(φ i) { val := x, property := hxi } = ↑(φ j) { val := x, property := hxj } hS : ∀ (x : α), ∃ i, S i ∈ nhds x i : ι x : ↑(S i) ⊢ ↑(liftCover S φ hφ hS) ↑x = ↑(φ i) x [PROOFSTEP] rw [liftCover, coe_mk, Set.liftCover_coe _] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) ι : Type u_5 S : ι → Set α φ : (i : ι) → C(↑(S i), β) hφ : ∀ (i j : ι) (x : α) (hxi : x ∈ S i) (hxj : x ∈ S j), ↑(φ i) { val := x, property := hxi } = ↑(φ j) { val := x, property := hxj } hS : ∀ (x : α), ∃ i, S i ∈ nhds x i : ι ⊢ restrict (S i) (liftCover S φ hφ hS) = φ i [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) ι : Type u_5 S : ι → Set α φ : (i : ι) → C(↑(S i), β) hφ : ∀ (i j : ι) (x : α) (hxi : x ∈ S i) (hxj : x ∈ S j), ↑(φ i) { val := x, property := hxi } = ↑(φ j) { val := x, property := hxj } hS : ∀ (x : α), ∃ i, S i ∈ nhds x i : ι a✝ : ↑(S i) ⊢ ↑(restrict (S i) (liftCover S φ hφ hS)) a✝ = ↑(φ i) a✝ [PROOFSTEP] simp only [coe_restrict, Function.comp_apply, liftCover_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) ι : Type u_5 S : ι → Set α φ : (i : ι) → C(↑(S i), β) hφ : ∀ (i j : ι) (x : α) (hxi : x ∈ S i) (hxj : x ∈ S j), ↑(φ i) { val := x, property := hxi } = ↑(φ j) { val := x, property := hxj } hS : ∀ (x : α), ∃ i, S i ∈ nhds x A : Set (Set α) F : (s : Set α) → s ∈ A → C(↑s, β) hF : ∀ (s : Set α) (hs : s ∈ A) (t : Set α) (ht : t ∈ A) (x : α) (hxi : x ∈ s) (hxj : x ∈ t), ↑(F s hs) { val := x, property := hxi } = ↑(F t ht) { val := x, property := hxj } hA : ∀ (x : α), ∃ i, i ∈ A ∧ i ∈ nhds x ⊢ C(α, β) [PROOFSTEP] let S : A → Set α := (↑) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) ι : Type u_5 S✝ : ι → Set α φ : (i : ι) → C(↑(S✝ i), β) hφ : ∀ (i j : ι) (x : α) (hxi : x ∈ S✝ i) (hxj : x ∈ S✝ j), ↑(φ i) { val := x, property := hxi } = ↑(φ j) { val := x, property := hxj } hS : ∀ (x : α), ∃ i, S✝ i ∈ nhds x A : Set (Set α) F : (s : Set α) → s ∈ A → C(↑s, β) hF : ∀ (s : Set α) (hs : s ∈ A) (t : Set α) (ht : t ∈ A) (x : α) (hxi : x ∈ s) (hxj : x ∈ t), ↑(F s hs) { val := x, property := hxi } = ↑(F t ht) { val := x, property := hxj } hA : ∀ (x : α), ∃ i, i ∈ A ∧ i ∈ nhds x S : ↑A → Set α := Subtype.val ⊢ C(α, β) [PROOFSTEP] let F : ∀ i : A, C(i, β) := fun i => F i i.prop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) ι : Type u_5 S✝ : ι → Set α φ : (i : ι) → C(↑(S✝ i), β) hφ : ∀ (i j : ι) (x : α) (hxi : x ∈ S✝ i) (hxj : x ∈ S✝ j), ↑(φ i) { val := x, property := hxi } = ↑(φ j) { val := x, property := hxj } hS : ∀ (x : α), ∃ i, S✝ i ∈ nhds x A : Set (Set α) F✝ : (s : Set α) → s ∈ A → C(↑s, β) hF : ∀ (s : Set α) (hs : s ∈ A) (t : Set α) (ht : t ∈ A) (x : α) (hxi : x ∈ s) (hxj : x ∈ t), ↑(F✝ s hs) { val := x, property := hxi } = ↑(F✝ t ht) { val := x, property := hxj } hA : ∀ (x : α), ∃ i, i ∈ A ∧ i ∈ nhds x S : ↑A → Set α := Subtype.val F : (i : ↑A) → C(↑↑i, β) := fun i => F✝ ↑i (_ : ↑i ∈ A) ⊢ C(α, β) [PROOFSTEP] refine' liftCover S F (fun i j => hF i i.prop j j.prop) _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) ι : Type u_5 S✝ : ι → Set α φ : (i : ι) → C(↑(S✝ i), β) hφ : ∀ (i j : ι) (x : α) (hxi : x ∈ S✝ i) (hxj : x ∈ S✝ j), ↑(φ i) { val := x, property := hxi } = ↑(φ j) { val := x, property := hxj } hS : ∀ (x : α), ∃ i, S✝ i ∈ nhds x A : Set (Set α) F✝ : (s : Set α) → s ∈ A → C(↑s, β) hF : ∀ (s : Set α) (hs : s ∈ A) (t : Set α) (ht : t ∈ A) (x : α) (hxi : x ∈ s) (hxj : x ∈ t), ↑(F✝ s hs) { val := x, property := hxi } = ↑(F✝ t ht) { val := x, property := hxj } hA : ∀ (x : α), ∃ i, i ∈ A ∧ i ∈ nhds x S : ↑A → Set α := Subtype.val F : (i : ↑A) → C(↑↑i, β) := fun i => F✝ ↑i (_ : ↑i ∈ A) ⊢ ∀ (x : α), ∃ i, S i ∈ nhds x [PROOFSTEP] intro x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) ι : Type u_5 S✝ : ι → Set α φ : (i : ι) → C(↑(S✝ i), β) hφ : ∀ (i j : ι) (x : α) (hxi : x ∈ S✝ i) (hxj : x ∈ S✝ j), ↑(φ i) { val := x, property := hxi } = ↑(φ j) { val := x, property := hxj } hS : ∀ (x : α), ∃ i, S✝ i ∈ nhds x A : Set (Set α) F✝ : (s : Set α) → s ∈ A → C(↑s, β) hF : ∀ (s : Set α) (hs : s ∈ A) (t : Set α) (ht : t ∈ A) (x : α) (hxi : x ∈ s) (hxj : x ∈ t), ↑(F✝ s hs) { val := x, property := hxi } = ↑(F✝ t ht) { val := x, property := hxj } hA : ∀ (x : α), ∃ i, i ∈ A ∧ i ∈ nhds x S : ↑A → Set α := Subtype.val F : (i : ↑A) → C(↑↑i, β) := fun i => F✝ ↑i (_ : ↑i ∈ A) x : α ⊢ ∃ i, S i ∈ nhds x [PROOFSTEP] obtain ⟨s, hs, hsx⟩ := hA x [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) ι : Type u_5 S✝ : ι → Set α φ : (i : ι) → C(↑(S✝ i), β) hφ : ∀ (i j : ι) (x : α) (hxi : x ∈ S✝ i) (hxj : x ∈ S✝ j), ↑(φ i) { val := x, property := hxi } = ↑(φ j) { val := x, property := hxj } hS : ∀ (x : α), ∃ i, S✝ i ∈ nhds x A : Set (Set α) F✝ : (s : Set α) → s ∈ A → C(↑s, β) hF : ∀ (s : Set α) (hs : s ∈ A) (t : Set α) (ht : t ∈ A) (x : α) (hxi : x ∈ s) (hxj : x ∈ t), ↑(F✝ s hs) { val := x, property := hxi } = ↑(F✝ t ht) { val := x, property := hxj } hA : ∀ (x : α), ∃ i, i ∈ A ∧ i ∈ nhds x S : ↑A → Set α := Subtype.val F : (i : ↑A) → C(↑↑i, β) := fun i => F✝ ↑i (_ : ↑i ∈ A) x : α s : Set α hs : s ∈ A hsx : s ∈ nhds x ⊢ ∃ i, S i ∈ nhds x [PROOFSTEP] exact ⟨⟨s, hs⟩, hsx⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) ι : Type u_5 S : ι → Set α φ : (i : ι) → C(↑(S i), β) hφ : ∀ (i j : ι) (x : α) (hxi : x ∈ S i) (hxj : x ∈ S j), ↑(φ i) { val := x, property := hxi } = ↑(φ j) { val := x, property := hxj } hS : ∀ (x : α), ∃ i, S i ∈ nhds x A : Set (Set α) F : (s : Set α) → s ∈ A → C(↑s, β) hF : ∀ (s : Set α) (hs : s ∈ A) (t : Set α) (ht : t ∈ A) (x : α) (hxi : x ∈ s) (hxj : x ∈ t), ↑(F s hs) { val := x, property := hxi } = ↑(F t ht) { val := x, property := hxj } hA : ∀ (x : α), ∃ i, i ∈ A ∧ i ∈ nhds x s : Set α hs : s ∈ A x : ↑s x' : ↑↑{ val := s, property := hs } := x ⊢ ↑(liftCover' A F hF hA) ↑x = ↑(F s hs) x [PROOFSTEP] delta liftCover' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : C(α, β) ι : Type u_5 S : ι → Set α φ : (i : ι) → C(↑(S i), β) hφ : ∀ (i j : ι) (x : α) (hxi : x ∈ S i) (hxj : x ∈ S j), ↑(φ i) { val := x, property := hxi } = ↑(φ j) { val := x, property := hxj } hS : ∀ (x : α), ∃ i, S i ∈ nhds x A : Set (Set α) F : (s : Set α) → s ∈ A → C(↑s, β) hF : ∀ (s : Set α) (hs : s ∈ A) (t : Set α) (ht : t ∈ A) (x : α) (hxi : x ∈ s) (hxj : x ∈ t), ↑(F s hs) { val := x, property := hxi } = ↑(F t ht) { val := x, property := hxj } hA : ∀ (x : α), ∃ i, i ∈ A ∧ i ∈ nhds x s : Set α hs : s ∈ A x : ↑s x' : ↑↑{ val := s, property := hs } := x ⊢ ↑(let S := Subtype.val; let F_1 := fun i => F ↑i (_ : ↑i ∈ A); liftCover S F_1 (_ : ∀ (i j : ↑A) (x : α) (hxi : x ∈ ↑i) (hxj : x ∈ ↑j), ↑(F ↑i (_ : ↑i ∈ A)) { val := x, property := hxi } = ↑(F ↑j (_ : ↑j ∈ A)) { val := x, property := hxj }) (_ : ∀ (x : α), ∃ i, ↑i ∈ nhds x)) ↑x = ↑(F s hs) x [PROOFSTEP] exact liftCover_coe x' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : α ≃ₜ β g : β ≃ₜ γ ⊢ ContinuousMap.comp (toContinuousMap (Homeomorph.symm f)) (toContinuousMap f) = ContinuousMap.id α [PROOFSTEP] rw [← coe_trans, self_trans_symm, coe_refl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : α ≃ₜ β g : β ≃ₜ γ ⊢ ContinuousMap.comp (toContinuousMap f) (toContinuousMap (Homeomorph.symm f)) = ContinuousMap.id β [PROOFSTEP] rw [← coe_trans, symm_trans_self, coe_refl]
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.Basic", "llama_tokens": 7535}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : PartialOrder β f g : C(α, β) x✝ : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : PartialOrder β g : C(α, β) toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ x✝ : (fun f => f.toFun) (mk toFun✝) = (fun f => f.toFun) g ⊢ mk toFun✝ = g [PROOFSTEP] cases g [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : PartialOrder β toFun✝¹ : α → β continuous_toFun✝¹ : Continuous toFun✝¹ toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ x✝ : (fun f => f.toFun) (mk toFun✝¹) = (fun f => f.toFun) (mk toFun✝) ⊢ mk toFun✝¹ = mk toFun✝ [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : LinearOrder β inst✝ : OrderClosedTopology β src✝¹ : PartialOrder C(α, β) := partialOrder src✝ : Sup C(α, β) := sup f g : C(α, β) ⊢ ∀ (a : α), ↑f a ≤ ↑(f ⊔ g) a [PROOFSTEP] simp [le_refl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : LinearOrder β inst✝ : OrderClosedTopology β src✝¹ : PartialOrder C(α, β) := partialOrder src✝ : Sup C(α, β) := sup f g : C(α, β) ⊢ ∀ (a : α), ↑g a ≤ ↑(f ⊔ g) a [PROOFSTEP] simp [le_refl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : LinearOrder β inst✝ : OrderClosedTopology β src✝¹ : PartialOrder C(α, β) := partialOrder src✝ : Sup C(α, β) := sup f₁ f₂ g : C(α, β) w₁ : f₁ ≤ g w₂ : f₂ ≤ g a : α ⊢ ↑(f₁ ⊔ f₂) a ≤ ↑g a [PROOFSTEP] simp [le_def.mp w₁ a, le_def.mp w₂ a] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : LinearOrder β inst✝ : OrderClosedTopology β src✝¹ : PartialOrder C(α, β) := partialOrder src✝ : Inf C(α, β) := inf f g : C(α, β) ⊢ ∀ (a : α), ↑(f ⊓ g) a ≤ ↑f a [PROOFSTEP] simp [le_refl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : LinearOrder β inst✝ : OrderClosedTopology β src✝¹ : PartialOrder C(α, β) := partialOrder src✝ : Inf C(α, β) := inf f g : C(α, β) ⊢ ∀ (a : α), ↑(f ⊓ g) a ≤ ↑g a [PROOFSTEP] simp [le_refl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : LinearOrder β inst✝ : OrderClosedTopology β src✝¹ : PartialOrder C(α, β) := partialOrder src✝ : Inf C(α, β) := inf f₁ f₂ g : C(α, β) w₁ : f₁ ≤ f₂ w₂ : f₁ ≤ g a : α ⊢ ↑f₁ a ≤ ↑(f₂ ⊓ g) a [PROOFSTEP] simp [le_def.mp w₁ a, le_def.mp w₂ a] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : LinearOrder γ inst✝ : OrderClosedTopology γ ι : Type u_4 s : Finset ι H : Finset.Nonempty s f : ι → C(β, γ) ⊢ ↑(Finset.sup' s H f) = Finset.sup' s H fun a => ↑(f a) [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : TopologicalSpace γ inst✝¹ : LinearOrder γ inst✝ : OrderClosedTopology γ ι : Type u_4 s : Finset ι H : Finset.Nonempty s f : ι → C(β, γ) x✝ : β ⊢ ↑(Finset.sup' s H f) x✝ = Finset.sup' s H (fun a => ↑(f a)) x✝ [PROOFSTEP] simp [sup'_apply]
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.Ordered", "llama_tokens": 1951}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a b : α s : Finset β ⊢ HasSum (fun x => 0) 0 [PROOFSTEP] simp [HasSum, tendsto_const_nhds] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a b : α s : Finset β inst✝ : IsEmpty β ⊢ HasSum f 0 [PROOFSTEP] convert @hasSum_zero α β _ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a b : α s : Finset β h : ¬Summable f ⊢ ∑' (b : β), f b = 0 [PROOFSTEP] simp [tsum_def, h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g✝ : β → α a b : α s : Finset β g : γ → β hg : Injective g hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 0 ⊢ HasSum (f ∘ g) a ↔ HasSum f a [PROOFSTEP] simp only [HasSum, Tendsto, comp_apply, hg.map_atTop_finset_sum_eq hf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g✝ : β → α a b : α s : Finset β g : β → γ hg : Injective g ⊢ HasSum (extend g f 0) a ↔ HasSum f a [PROOFSTEP] rw [← hg.hasSum_iff, extend_comp hg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g✝ : β → α a b : α s : Finset β g : β → γ hg : Injective g ⊢ ∀ (x : γ), ¬x ∈ Set.range g → extend g f 0 x = 0 [PROOFSTEP] exact extend_apply' _ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a b : α s✝ : Finset β s : Set β hf : support f ⊆ s ⊢ ∀ (x : β), (¬x ∈ Set.range fun a => ↑a) → f x = 0 [PROOFSTEP] simpa using support_subset_iff'.1 hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a b : α s✝ : Finset β s : Set β ⊢ HasSum (f ∘ Subtype.val) a ↔ HasSum (Set.indicator s f) a [PROOFSTEP] rw [← Set.indicator_range_comp, Subtype.range_coe, hasSum_subtype_iff_of_support_subset Set.support_indicator_subset] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a b : α s✝ s : Finset β f : β → α ⊢ HasSum (f ∘ Subtype.val) (∑ b in s, f b) [PROOFSTEP] rw [← sum_attach] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a b : α s✝ s : Finset β f : β → α ⊢ HasSum (f ∘ Subtype.val) (∑ x in attach s, f ↑x) [PROOFSTEP] exact hasSum_fintype _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a b : α s✝ : Finset β s : Set β hs : Set.Finite s f : β → α ⊢ Summable (f ∘ Subtype.val) [PROOFSTEP] have := hs.toFinset.summable f [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a b : α s✝ : Finset β s : Set β hs : Set.Finite s f : β → α this : Summable (f ∘ Subtype.val) ⊢ Summable (f ∘ Subtype.val) [PROOFSTEP] rwa [hs.coe_toFinset] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a b : α s : Finset β h : Set.Finite (support f) ⊢ Summable f [PROOFSTEP] apply summable_of_ne_finset_zero (s := h.toFinset) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a b : α s : Finset β h : Set.Finite (support f) ⊢ ∀ (b : β), ¬b ∈ Set.Finite.toFinset h → f b = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a b : α s : Finset β ha : Summable f ⊢ HasSum f (∑' (b : β), f b) [PROOFSTEP] simp only [tsum_def, ha, dite_true] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a b : α s : Finset β ha : Summable f ⊢ HasSum f (if Set.Finite (support fun b => f b) then ∑ᶠ (b : β), f b else Classical.choose (_ : Summable fun b => f b)) [PROOFSTEP] by_cases H : (support f).Finite [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a b : α s : Finset β ha : Summable f H : Set.Finite (support f) ⊢ HasSum f (if Set.Finite (support fun b => f b) then ∑ᶠ (b : β), f b else Classical.choose (_ : Summable fun b => f b)) [PROOFSTEP] simp [H, hasSum_sum_of_ne_finset_zero, finsum_eq_sum] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a b : α s : Finset β ha : Summable f H : ¬Set.Finite (support f) ⊢ HasSum f (if Set.Finite (support fun b => f b) then ∑ᶠ (b : β), f b else Classical.choose (_ : Summable fun b => f b)) [PROOFSTEP] simpa [H] using Classical.choose_spec ha [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a b✝ : α s : Finset β f : β → α b : β hf : ∀ (b' : β), b' ≠ b → f b' = 0 ⊢ ∀ (b_1 : β), ¬b_1 ∈ {b} → f b_1 = 0 [PROOFSTEP] simpa [hf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a b✝ : α s : Finset β f : β → α b : β hf : ∀ (b' : β), b' ≠ b → f b' = 0 this : HasSum f (∑ b' in {b}, f b') ⊢ HasSum f (f b) [PROOFSTEP] simpa using this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ b✝ : α s : Finset β b : β inst✝ : DecidablePred fun x => x = b a : α ⊢ HasSum (fun b' => if b' = b then a else 0) a [PROOFSTEP] convert @hasSum_single _ _ _ _ (fun b' => if b' = b then a else 0) b (fun b' hb' => if_neg hb') [GOAL] case h.e'_6 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ b✝ : α s : Finset β b : β inst✝ : DecidablePred fun x => x = b a : α ⊢ a = if b = b then a else 0 [PROOFSTEP] exact (if_pos rfl).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ b✝ : α s : Finset β inst✝ : DecidableEq β b : β a : α ⊢ HasSum (Pi.single b a) a [PROOFSTEP] convert hasSum_ite_eq b a [GOAL] case h.e'_5.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ b✝ : α s : Finset β inst✝ : DecidableEq β b : β a : α x✝ : β ⊢ Pi.single b a x✝ = if x✝ = b then a else 0 [PROOFSTEP] simp [Pi.single_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a b : α s : Finset β e : γ ≃ β ⊢ ∀ (x : β), ¬x ∈ Set.range ↑e → f x = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g✝ : β → α a b : α s : Finset β g : γ → α e : ↑(support f) ≃ ↑(support g) he : ∀ (x : ↑(support f)), g ↑(↑e x) = f ↑x ⊢ HasSum f a ↔ HasSum g a [PROOFSTEP] have : (g ∘ (↑)) ∘ e = f ∘ (↑) := funext he [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g✝ : β → α a b : α s : Finset β g : γ → α e : ↑(support f) ≃ ↑(support g) he : ∀ (x : ↑(support f)), g ↑(↑e x) = f ↑x this : (g ∘ Subtype.val) ∘ ↑e = f ∘ Subtype.val ⊢ HasSum f a ↔ HasSum g a [PROOFSTEP] rw [← hasSum_subtype_support, ← this, e.hasSum_iff, hasSum_subtype_support] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommMonoid α inst✝⁴ : TopologicalSpace α f g✝ : β → α a b : α s : Finset β inst✝³ : AddCommMonoid γ inst✝² : TopologicalSpace γ G : Type u_5 G' : Type u_6 inst✝¹ : AddMonoidHomClass G α γ inst✝ : AddMonoidHomClass G' γ α g : G g' : G' hg : Continuous ↑g hg' : Continuous ↑g' hinv : LeftInverse ↑g' ↑g h : Summable (↑g ∘ f) ⊢ Summable f [PROOFSTEP] have := h.map _ hg' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommMonoid α inst✝⁴ : TopologicalSpace α f g✝ : β → α a b : α s : Finset β inst✝³ : AddCommMonoid γ inst✝² : TopologicalSpace γ G : Type u_5 G' : Type u_6 inst✝¹ : AddMonoidHomClass G α γ inst✝ : AddMonoidHomClass G' γ α g : G g' : G' hg : Continuous ↑g hg' : Continuous ↑g' hinv : LeftInverse ↑g' ↑g h : Summable (↑g ∘ f) this : Summable (↑g' ∘ ↑g ∘ f) ⊢ Summable f [PROOFSTEP] rwa [← Function.comp.assoc, hinv.id] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g : β → α a✝ b : α s : Finset β inst✝ : T2Space α f : ℕ → α a : α hf : Summable f ⊢ HasSum f a ↔ Tendsto (fun n => ∑ i in range n, f i) atTop (𝓝 a) [PROOFSTEP] refine' ⟨fun h => h.tendsto_sum_nat, fun h => _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g : β → α a✝ b : α s : Finset β inst✝ : T2Space α f : ℕ → α a : α hf : Summable f h : Tendsto (fun n => ∑ i in range n, f i) atTop (𝓝 a) ⊢ HasSum f a [PROOFSTEP] rw [tendsto_nhds_unique h hf.hasSum.tendsto_sum_nat] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g : β → α a✝ b : α s : Finset β inst✝ : T2Space α f : ℕ → α a : α hf : Summable f h : Tendsto (fun n => ∑ i in range n, f i) atTop (𝓝 a) ⊢ HasSum f (∑' (b : ℕ), f b) [PROOFSTEP] exact hf.hasSum [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a b : α s : Finset β inst✝ : ContinuousAdd α hf : HasSum f a hg : HasSum g b ⊢ HasSum (fun b => f b + g b) (a + b) [PROOFSTEP] dsimp only [HasSum] at hf hg ⊢ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a b : α s : Finset β inst✝ : ContinuousAdd α hf : Tendsto (fun s => ∑ b in s, f b) atTop (𝓝 a) hg : Tendsto (fun s => ∑ b in s, g b) atTop (𝓝 b) ⊢ Tendsto (fun s => ∑ b in s, (f b + g b)) atTop (𝓝 (a + b)) [PROOFSTEP] simp_rw [sum_add_distrib] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a b : α s : Finset β inst✝ : ContinuousAdd α hf : Tendsto (fun s => ∑ b in s, f b) atTop (𝓝 a) hg : Tendsto (fun s => ∑ b in s, g b) atTop (𝓝 b) ⊢ Tendsto (fun s => ∑ x in s, f x + ∑ x in s, g x) atTop (𝓝 (a + b)) [PROOFSTEP] exact hf.add hg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g : β → α a✝ b : α s✝ : Finset β inst✝ : ContinuousAdd α f : γ → β → α a : γ → α s : Finset γ ⊢ (∀ (i : γ), i ∈ ∅ → HasSum (f i) (a i)) → HasSum (fun b => ∑ i in ∅, f i b) (∑ i in ∅, a i) [PROOFSTEP] simp only [hasSum_zero, sum_empty, forall_true_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g : β → α a✝ b : α s✝ : Finset β inst✝ : ContinuousAdd α f : γ → β → α a : γ → α s : Finset γ ⊢ ∀ ⦃a_1 : γ⦄ {s : Finset γ}, ¬a_1 ∈ s → ((∀ (i : γ), i ∈ s → HasSum (f i) (a i)) → HasSum (fun b => ∑ i in s, f i b) (∑ i in s, a i)) → (∀ (i : γ), i ∈ insert a_1 s → HasSum (f i) (a i)) → HasSum (fun b => ∑ i in insert a_1 s, f i b) (∑ i in insert a_1 s, a i) [PROOFSTEP] simp (config := { contextual := true }) only [mem_insert, forall_eq_or_imp, not_false_iff, sum_insert, and_imp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g : β → α a✝ b : α s✝ : Finset β inst✝ : ContinuousAdd α f : γ → β → α a : γ → α s : Finset γ ⊢ ∀ ⦃a_1 : γ⦄ {s : Finset γ}, ¬a_1 ∈ s → ((∀ (i : γ), i ∈ s → HasSum (f i) (a i)) → HasSum (fun b => ∑ i in s, f i b) (∑ i in s, a i)) → HasSum (f a_1) (a a_1) → (∀ (a_5 : γ), a_5 ∈ s → HasSum (f a_5) (a a_5)) → HasSum (fun b => f a_1 b + ∑ i in s, f i b) (a a_1 + ∑ i in s, a i) [PROOFSTEP] exact fun x s _ IH hx h ↦ hx.add (IH h) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a b : α s✝ : Finset β inst✝ : ContinuousAdd α s t : Set β hs : Disjoint s t ha : HasSum (f ∘ Subtype.val) a hb : HasSum (f ∘ Subtype.val) b ⊢ HasSum (f ∘ Subtype.val) (a + b) [PROOFSTEP] rw [hasSum_subtype_iff_indicator] at * [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a b : α s✝ : Finset β inst✝ : ContinuousAdd α s t : Set β hs : Disjoint s t ha : HasSum (Set.indicator s f) a hb : HasSum (Set.indicator t f) b ⊢ HasSum (Set.indicator (s ∪ t) f) (a + b) [PROOFSTEP] rw [Set.indicator_union_of_disjoint hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a b : α s✝ : Finset β inst✝ : ContinuousAdd α s t : Set β hs : Disjoint s t ha : HasSum (Set.indicator s f) a hb : HasSum (Set.indicator t f) b ⊢ HasSum (fun a => Set.indicator s f a + Set.indicator t f a) (a + b) [PROOFSTEP] exact ha.add hb [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ b : α s✝ : Finset β inst✝ : ContinuousAdd α ι : Type u_5 s : Finset ι t : ι → Set β a : ι → α hs : Set.Pairwise (↑s) (Disjoint on t) hf : ∀ (i : ι), i ∈ s → HasSum (f ∘ Subtype.val) (a i) ⊢ HasSum (f ∘ Subtype.val) (∑ i in s, a i) [PROOFSTEP] simp_rw [hasSum_subtype_iff_indicator] at * [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ b : α s✝ : Finset β inst✝ : ContinuousAdd α ι : Type u_5 s : Finset ι t : ι → Set β a : ι → α hs : Set.Pairwise (↑s) (Disjoint on t) hf : ∀ (i : ι), i ∈ s → HasSum (Set.indicator (t i) f) (a i) ⊢ HasSum (Set.indicator (⋃ (i : ι) (_ : i ∈ s), t i) f) (∑ i in s, a i) [PROOFSTEP] rw [Set.indicator_finset_biUnion _ _ hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ b : α s✝ : Finset β inst✝ : ContinuousAdd α ι : Type u_5 s : Finset ι t : ι → Set β a : ι → α hs : Set.Pairwise (↑s) (Disjoint on t) hf : ∀ (i : ι), i ∈ s → HasSum (Set.indicator (t i) f) (a i) ⊢ HasSum (fun a => ∑ i in s, Set.indicator (t i) f a) (∑ i in s, a i) [PROOFSTEP] exact hasSum_sum hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a b : α s✝ : Finset β inst✝ : ContinuousAdd α s t : Set β hs : IsCompl s t ha : HasSum (f ∘ Subtype.val) a hb : HasSum (f ∘ Subtype.val) b ⊢ HasSum f (a + b) [PROOFSTEP] simpa [← hs.compl_eq] using (hasSum_subtype_iff_indicator.1 ha).add (hasSum_subtype_iff_indicator.1 hb) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g : β → α a b : α s : Finset β inst✝ : ContinuousAdd α f : ℕ → α he : HasSum (fun k => f (2 * k)) a ho : HasSum (fun k => f (2 * k + 1)) b ⊢ HasSum f (a + b) [PROOFSTEP] have := mul_right_injective₀ (two_ne_zero' ℕ) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g : β → α a b : α s : Finset β inst✝ : ContinuousAdd α f : ℕ → α he : HasSum (fun k => f (2 * k)) a ho : HasSum (fun k => f (2 * k + 1)) b this : Injective ((fun x x_1 => x * x_1) 2) ⊢ HasSum f (a + b) [PROOFSTEP] replace he := this.hasSum_range_iff.2 he [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g : β → α a b : α s : Finset β inst✝ : ContinuousAdd α f : ℕ → α ho : HasSum (fun k => f (2 * k + 1)) b this : Injective ((fun x x_1 => x * x_1) 2) he : HasSum (fun x => f ↑x) a ⊢ HasSum f (a + b) [PROOFSTEP] replace ho := ((add_left_injective 1).comp this).hasSum_range_iff.2 ho [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g : β → α a b : α s : Finset β inst✝ : ContinuousAdd α f : ℕ → α this : Injective ((fun x x_1 => x * x_1) 2) he : HasSum (fun x => f ↑x) a ho : HasSum (fun x => f ↑x) b ⊢ HasSum f (a + b) [PROOFSTEP] refine' he.add_isCompl _ ho [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g : β → α a b : α s : Finset β inst✝ : ContinuousAdd α f : ℕ → α this : Injective ((fun x x_1 => x * x_1) 2) he : HasSum (fun x => f ↑x) a ho : HasSum (fun x => f ↑x) b ⊢ IsCompl (Set.range ((fun x x_1 => x * x_1) 2)) (Set.range ((fun x => x + 1) ∘ (fun x x_1 => x * x_1) 2)) [PROOFSTEP] simpa [(· ∘ ·)] using Nat.isCompl_even_odd [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b : α s : Finset β inst✝¹ : ContinuousAdd α inst✝ : RegularSpace α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum f a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) ⊢ HasSum g a [PROOFSTEP] refine' (atTop_basis.tendsto_iff (closed_nhds_basis a)).mpr _ [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b : α s : Finset β inst✝¹ : ContinuousAdd α inst✝ : RegularSpace α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum f a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) ⊢ ∀ (ib : Set α), ib ∈ 𝓝 a ∧ IsClosed ib → ∃ ia, True ∧ ∀ (x : Finset β), x ∈ Set.Ici ia → ∑ b in x, g b ∈ id ib [PROOFSTEP] rintro s ⟨hs, hsc⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b : α s✝ : Finset β inst✝¹ : ContinuousAdd α inst✝ : RegularSpace α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum f a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) s : Set α hs : s ∈ 𝓝 a hsc : IsClosed s ⊢ ∃ ia, True ∧ ∀ (x : Finset β), x ∈ Set.Ici ia → ∑ b in x, g b ∈ id s [PROOFSTEP] rcases mem_atTop_sets.mp (ha hs) with ⟨u, hu⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b : α s✝ : Finset β inst✝¹ : ContinuousAdd α inst✝ : RegularSpace α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum f a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) s : Set α hs : s ∈ 𝓝 a hsc : IsClosed s u : Finset ((b : β) × γ b) hu : ∀ (b : Finset ((b : β) × γ b)), b ≥ u → b ∈ (fun s => ∑ b in s, f b) ⁻¹' s ⊢ ∃ ia, True ∧ ∀ (x : Finset β), x ∈ Set.Ici ia → ∑ b in x, g b ∈ id s [PROOFSTEP] use u.image Sigma.fst, trivial [GOAL] case right α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b : α s✝ : Finset β inst✝¹ : ContinuousAdd α inst✝ : RegularSpace α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum f a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) s : Set α hs : s ∈ 𝓝 a hsc : IsClosed s u : Finset ((b : β) × γ b) hu : ∀ (b : Finset ((b : β) × γ b)), b ≥ u → b ∈ (fun s => ∑ b in s, f b) ⁻¹' s ⊢ ∀ (x : Finset β), x ∈ Set.Ici (image Sigma.fst u) → ∑ b in x, g b ∈ id s [PROOFSTEP] intro bs hbs [GOAL] case right α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b : α s✝ : Finset β inst✝¹ : ContinuousAdd α inst✝ : RegularSpace α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum f a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) s : Set α hs : s ∈ 𝓝 a hsc : IsClosed s u : Finset ((b : β) × γ b) hu : ∀ (b : Finset ((b : β) × γ b)), b ≥ u → b ∈ (fun s => ∑ b in s, f b) ⁻¹' s bs : Finset β hbs : bs ∈ Set.Ici (image Sigma.fst u) ⊢ ∑ b in bs, g b ∈ id s [PROOFSTEP] simp only [Set.mem_preimage, ge_iff_le, Finset.le_iff_subset] at hu [GOAL] case right α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b : α s✝ : Finset β inst✝¹ : ContinuousAdd α inst✝ : RegularSpace α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum f a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) s : Set α hs : s ∈ 𝓝 a hsc : IsClosed s u : Finset ((b : β) × γ b) bs : Finset β hbs : bs ∈ Set.Ici (image Sigma.fst u) hu : ∀ (b : Finset ((b : β) × γ b)), u ⊆ b → ∑ b in b, f b ∈ s ⊢ ∑ b in bs, g b ∈ id s [PROOFSTEP] have : Tendsto (fun t : Finset (Σ b, γ b) => ∑ p in t.filter fun p => p.1 ∈ bs, f p) atTop (𝓝 <| ∑ b in bs, g b) := by simp only [← sigma_preimage_mk, sum_sigma] refine' tendsto_finset_sum _ fun b _ => _ change Tendsto (fun t => (fun t => ∑ s in t, f ⟨b, s⟩) (preimage t (Sigma.mk b) _)) atTop (𝓝 (g b)) exact (hf b).comp (tendsto_finset_preimage_atTop_atTop (sigma_mk_injective)) [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b : α s✝ : Finset β inst✝¹ : ContinuousAdd α inst✝ : RegularSpace α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum f a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) s : Set α hs : s ∈ 𝓝 a hsc : IsClosed s u : Finset ((b : β) × γ b) bs : Finset β hbs : bs ∈ Set.Ici (image Sigma.fst u) hu : ∀ (b : Finset ((b : β) × γ b)), u ⊆ b → ∑ b in b, f b ∈ s ⊢ Tendsto (fun t => ∑ p in filter (fun p => p.fst ∈ bs) t, f p) atTop (𝓝 (∑ b in bs, g b)) [PROOFSTEP] simp only [← sigma_preimage_mk, sum_sigma] [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b : α s✝ : Finset β inst✝¹ : ContinuousAdd α inst✝ : RegularSpace α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum f a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) s : Set α hs : s ∈ 𝓝 a hsc : IsClosed s u : Finset ((b : β) × γ b) bs : Finset β hbs : bs ∈ Set.Ici (image Sigma.fst u) hu : ∀ (b : Finset ((b : β) × γ b)), u ⊆ b → ∑ b in b, f b ∈ s ⊢ Tendsto (fun t => ∑ a in bs, ∑ s in preimage t (Sigma.mk a) (_ : Set.InjOn (Sigma.mk a) (Sigma.mk a ⁻¹' ↑t)), f { fst := a, snd := s }) atTop (𝓝 (∑ b in bs, g b)) [PROOFSTEP] refine' tendsto_finset_sum _ fun b _ => _ [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b✝ : α s✝ : Finset β inst✝¹ : ContinuousAdd α inst✝ : RegularSpace α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum f a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) s : Set α hs : s ∈ 𝓝 a hsc : IsClosed s u : Finset ((b : β) × γ b) bs : Finset β hbs : bs ∈ Set.Ici (image Sigma.fst u) hu : ∀ (b : Finset ((b : β) × γ b)), u ⊆ b → ∑ b in b, f b ∈ s b : β x✝ : b ∈ bs ⊢ Tendsto (fun t => ∑ s in preimage t (Sigma.mk b) (_ : Set.InjOn (Sigma.mk b) (Sigma.mk b ⁻¹' ↑t)), f { fst := b, snd := s }) atTop (𝓝 (g b)) [PROOFSTEP] change Tendsto (fun t => (fun t => ∑ s in t, f ⟨b, s⟩) (preimage t (Sigma.mk b) _)) atTop (𝓝 (g b)) [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b✝ : α s✝ : Finset β inst✝¹ : ContinuousAdd α inst✝ : RegularSpace α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum f a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) s : Set α hs : s ∈ 𝓝 a hsc : IsClosed s u : Finset ((b : β) × γ b) bs : Finset β hbs : bs ∈ Set.Ici (image Sigma.fst u) hu : ∀ (b : Finset ((b : β) × γ b)), u ⊆ b → ∑ b in b, f b ∈ s b : β x✝ : b ∈ bs ⊢ Tendsto (fun t => (fun t => ∑ s in t, f { fst := b, snd := s }) (preimage t (Sigma.mk b) (_ : Set.InjOn (Sigma.mk b) (Sigma.mk b ⁻¹' ↑t)))) atTop (𝓝 (g b)) [PROOFSTEP] exact (hf b).comp (tendsto_finset_preimage_atTop_atTop (sigma_mk_injective)) [GOAL] case right α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b : α s✝ : Finset β inst✝¹ : ContinuousAdd α inst✝ : RegularSpace α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum f a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) s : Set α hs : s ∈ 𝓝 a hsc : IsClosed s u : Finset ((b : β) × γ b) bs : Finset β hbs : bs ∈ Set.Ici (image Sigma.fst u) hu : ∀ (b : Finset ((b : β) × γ b)), u ⊆ b → ∑ b in b, f b ∈ s this : Tendsto (fun t => ∑ p in filter (fun p => p.fst ∈ bs) t, f p) atTop (𝓝 (∑ b in bs, g b)) ⊢ ∑ b in bs, g b ∈ id s [PROOFSTEP] refine' hsc.mem_of_tendsto this (eventually_atTop.2 ⟨u, fun t ht => hu _ fun x hx => _⟩) [GOAL] case right α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b : α s✝ : Finset β inst✝¹ : ContinuousAdd α inst✝ : RegularSpace α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum f a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) s : Set α hs : s ∈ 𝓝 a hsc : IsClosed s u : Finset ((b : β) × γ b) bs : Finset β hbs : bs ∈ Set.Ici (image Sigma.fst u) hu : ∀ (b : Finset ((b : β) × γ b)), u ⊆ b → ∑ b in b, f b ∈ s this : Tendsto (fun t => ∑ p in filter (fun p => p.fst ∈ bs) t, f p) atTop (𝓝 (∑ b in bs, g b)) t : Finset ((b : β) × γ b) ht : t ≥ u x : (b : β) × γ b hx : x ∈ u ⊢ x ∈ filter (fun p => p.fst ∈ bs) t [PROOFSTEP] exact mem_filter.2 ⟨ht hx, hbs <| mem_image_of_mem _ hx⟩ [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g✝ : β → α a✝ b : α s : Finset β inst✝¹ : ContinuousAdd α inst✝ : T3Space α γ : β → Type u_5 f : (b : β) × γ b → α g : β → α a : α ha : HasSum g a hf : ∀ (b : β), HasSum (fun c => f { fst := b, snd := c }) (g b) hf' : Summable f ⊢ HasSum f a [PROOFSTEP] simpa [(hf'.hasSum.sigma hf).unique ha] using hf'.hasSum [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : AddCommMonoid α✝ inst✝⁵ : TopologicalSpace α✝ f✝ g : β✝ → α✝ a✝ b✝ : α✝ s : Finset β✝ inst✝⁴ : ContinuousAdd α✝ α : Type u_5 β : Type u_6 inst✝³ : TopologicalSpace α inst✝² : AddCommMonoid α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α a a' : α hf : HasSum f a b : β x : α hf' : HasSum (update f b x) a' ⊢ a + x = a' + f b [PROOFSTEP] have : ∀ b', f b' + ite (b' = b) x 0 = update f b x b' + ite (b' = b) (f b) 0 := by intro b' split_ifs with hb' · simpa only [Function.update_apply, hb', eq_self_iff_true] using add_comm (f b) x · simp only [Function.update_apply, hb', if_false] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : AddCommMonoid α✝ inst✝⁵ : TopologicalSpace α✝ f✝ g : β✝ → α✝ a✝ b✝ : α✝ s : Finset β✝ inst✝⁴ : ContinuousAdd α✝ α : Type u_5 β : Type u_6 inst✝³ : TopologicalSpace α inst✝² : AddCommMonoid α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α a a' : α hf : HasSum f a b : β x : α hf' : HasSum (update f b x) a' ⊢ ∀ (b' : β), (f b' + if b' = b then x else 0) = update f b x b' + if b' = b then f b else 0 [PROOFSTEP] intro b' [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : AddCommMonoid α✝ inst✝⁵ : TopologicalSpace α✝ f✝ g : β✝ → α✝ a✝ b✝ : α✝ s : Finset β✝ inst✝⁴ : ContinuousAdd α✝ α : Type u_5 β : Type u_6 inst✝³ : TopologicalSpace α inst✝² : AddCommMonoid α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α a a' : α hf : HasSum f a b : β x : α hf' : HasSum (update f b x) a' b' : β ⊢ (f b' + if b' = b then x else 0) = update f b x b' + if b' = b then f b else 0 [PROOFSTEP] split_ifs with hb' [GOAL] case pos α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : AddCommMonoid α✝ inst✝⁵ : TopologicalSpace α✝ f✝ g : β✝ → α✝ a✝ b✝ : α✝ s : Finset β✝ inst✝⁴ : ContinuousAdd α✝ α : Type u_5 β : Type u_6 inst✝³ : TopologicalSpace α inst✝² : AddCommMonoid α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α a a' : α hf : HasSum f a b : β x : α hf' : HasSum (update f b x) a' b' : β hb' : b' = b ⊢ f b' + x = update f b x b' + f b [PROOFSTEP] simpa only [Function.update_apply, hb', eq_self_iff_true] using add_comm (f b) x [GOAL] case neg α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : AddCommMonoid α✝ inst✝⁵ : TopologicalSpace α✝ f✝ g : β✝ → α✝ a✝ b✝ : α✝ s : Finset β✝ inst✝⁴ : ContinuousAdd α✝ α : Type u_5 β : Type u_6 inst✝³ : TopologicalSpace α inst✝² : AddCommMonoid α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α a a' : α hf : HasSum f a b : β x : α hf' : HasSum (update f b x) a' b' : β hb' : ¬b' = b ⊢ f b' + 0 = update f b x b' + 0 [PROOFSTEP] simp only [Function.update_apply, hb', if_false] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : AddCommMonoid α✝ inst✝⁵ : TopologicalSpace α✝ f✝ g : β✝ → α✝ a✝ b✝ : α✝ s : Finset β✝ inst✝⁴ : ContinuousAdd α✝ α : Type u_5 β : Type u_6 inst✝³ : TopologicalSpace α inst✝² : AddCommMonoid α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α a a' : α hf : HasSum f a b : β x : α hf' : HasSum (update f b x) a' this : ∀ (b' : β), (f b' + if b' = b then x else 0) = update f b x b' + if b' = b then f b else 0 ⊢ a + x = a' + f b [PROOFSTEP] have h := hf.add (hasSum_ite_eq b x) [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : AddCommMonoid α✝ inst✝⁵ : TopologicalSpace α✝ f✝ g : β✝ → α✝ a✝ b✝ : α✝ s : Finset β✝ inst✝⁴ : ContinuousAdd α✝ α : Type u_5 β : Type u_6 inst✝³ : TopologicalSpace α inst✝² : AddCommMonoid α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α a a' : α hf : HasSum f a b : β x : α hf' : HasSum (update f b x) a' this : ∀ (b' : β), (f b' + if b' = b then x else 0) = update f b x b' + if b' = b then f b else 0 h : HasSum (fun b_1 => f b_1 + if b_1 = b then x else 0) (a + x) ⊢ a + x = a' + f b [PROOFSTEP] simp_rw [this] at h [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : AddCommMonoid α✝ inst✝⁵ : TopologicalSpace α✝ f✝ g : β✝ → α✝ a✝ b✝ : α✝ s : Finset β✝ inst✝⁴ : ContinuousAdd α✝ α : Type u_5 β : Type u_6 inst✝³ : TopologicalSpace α inst✝² : AddCommMonoid α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α a a' : α hf : HasSum f a b : β x : α hf' : HasSum (update f b x) a' this : ∀ (b' : β), (f b' + if b' = b then x else 0) = update f b x b' + if b' = b then f b else 0 h : HasSum (fun b_1 => update f b x b_1 + if b_1 = b then f b else 0) (a + x) ⊢ a + x = a' + f b [PROOFSTEP] exact HasSum.unique h (hf'.add (hasSum_ite_eq b (f b))) [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : AddCommMonoid α✝ inst✝⁵ : TopologicalSpace α✝ f✝ g : β✝ → α✝ a✝ b✝ : α✝ s : Finset β✝ inst✝⁴ : ContinuousAdd α✝ α : Type u_5 β : Type u_6 inst✝³ : TopologicalSpace α inst✝² : AddCommMonoid α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α a : α hf : HasSum f a b : β a' : α hf' : HasSum (fun n => if n = b then 0 else f n) a' ⊢ a = a' + f b [PROOFSTEP] refine' (add_zero a).symm.trans (hf.update' b 0 _) [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : AddCommMonoid α✝ inst✝⁵ : TopologicalSpace α✝ f✝ g : β✝ → α✝ a✝ b✝ : α✝ s : Finset β✝ inst✝⁴ : ContinuousAdd α✝ α : Type u_5 β : Type u_6 inst✝³ : TopologicalSpace α inst✝² : AddCommMonoid α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α a : α hf : HasSum f a b : β a' : α hf' : HasSum (fun n => if n = b then 0 else f n) a' ⊢ HasSum (update f b 0) a' [PROOFSTEP] convert hf' [GOAL] case h.e'_5.h α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : AddCommMonoid α✝ inst✝⁵ : TopologicalSpace α✝ f✝ g : β✝ → α✝ a✝ b✝ : α✝ s : Finset β✝ inst✝⁴ : ContinuousAdd α✝ α : Type u_5 β : Type u_6 inst✝³ : TopologicalSpace α inst✝² : AddCommMonoid α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α a : α hf : HasSum f a b : β a' : α hf' : HasSum (fun n => if n = b then 0 else f n) a' x✝ : β ⊢ update f b 0 x✝ = if x✝ = b then 0 else f x✝ [PROOFSTEP] apply update_apply [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α f : β → α s t : Set β h : s = t ⊢ ∑' (x : ↑s), f ↑x = ∑' (x : ↑t), f ↑x [PROOFSTEP] rw [h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a a₁ a₂ : α hf : Set.Finite (support f) ⊢ ∑' (b : β), f b = ∑ᶠ (b : β), f b [PROOFSTEP] simp [tsum_def, summable_of_finite_support hf, hf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a a₁ a₂ : α s : Finset β hf : ∀ (b : β), ¬b ∈ s → f b = 0 ⊢ ∑' (b : β), f b = ∑ b in s, f b [PROOFSTEP] have I : support f ⊆ s := by intros x hx contrapose! hx rw [nmem_support] exact hf _ hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a a₁ a₂ : α s : Finset β hf : ∀ (b : β), ¬b ∈ s → f b = 0 ⊢ support f ⊆ ↑s [PROOFSTEP] intros x hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a a₁ a₂ : α s : Finset β hf : ∀ (b : β), ¬b ∈ s → f b = 0 x : β hx : x ∈ support f ⊢ x ∈ ↑s [PROOFSTEP] contrapose! hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a a₁ a₂ : α s : Finset β hf : ∀ (b : β), ¬b ∈ s → f b = 0 x : β hx : ¬x ∈ ↑s ⊢ ¬x ∈ support f [PROOFSTEP] rw [nmem_support] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a a₁ a₂ : α s : Finset β hf : ∀ (b : β), ¬b ∈ s → f b = 0 x : β hx : ¬x ∈ ↑s ⊢ f x = 0 [PROOFSTEP] exact hf _ hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a a₁ a₂ : α s : Finset β hf : ∀ (b : β), ¬b ∈ s → f b = 0 I : support f ⊆ ↑s ⊢ ∑' (b : β), f b = ∑ b in s, f b [PROOFSTEP] simp [tsum_def, summable_of_ne_finset_zero hf, Set.Finite.subset (finite_toSet s) I] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a a₁ a₂ : α s : Finset β hf : ∀ (b : β), ¬b ∈ s → f b = 0 I : support f ⊆ ↑s ⊢ ∑ᶠ (b : β), f b = ∑ b in s, f b [PROOFSTEP] exact finsum_eq_sum_of_support_subset f I [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a a₁ a₂ : α ⊢ ∑' (x : β), 0 = 0 [PROOFSTEP] rw [tsum_eq_finsum] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a a₁ a₂ : α ⊢ ∑ᶠ (b : β), 0 = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f g : β → α a a₁ a₂ : α ⊢ Set.Finite (support fun x => 0) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝ : IsEmpty β ⊢ ∑' (b : β), f b = 0 [PROOFSTEP] rw [tsum_eq_sum (s := (∅ : Finset β))] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝ : IsEmpty β ⊢ ∑ b in ∅, f b = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝ : IsEmpty β ⊢ ∀ (b : β), ¬b ∈ ∅ → f b = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α inst✝ : Fintype β f : β → α ⊢ ∑' (b : β), f b = ∑ b : β, f b [PROOFSTEP] apply tsum_eq_sum [GOAL] case hf α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α inst✝ : Fintype β f : β → α ⊢ ∀ (b : β), ¬b ∈ univ → f b = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α f : Bool → α ⊢ ∑' (i : Bool), f i = f (decide False) + f (decide True) [PROOFSTEP] rw [tsum_fintype, Finset.sum_eq_add] [GOAL] case hn α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α f : Bool → α ⊢ decide False ≠ decide True [PROOFSTEP] simp [GOAL] case h₀ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α f : Bool → α ⊢ ∀ (c : Bool), c ∈ univ → c ≠ decide False ∧ c ≠ decide True → f c = 0 [PROOFSTEP] simp [GOAL] case ha α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α f : Bool → α ⊢ ¬decide False ∈ univ → f (decide False) = 0 [PROOFSTEP] simp [GOAL] case hb α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α f : Bool → α ⊢ ¬decide True ∈ univ → f (decide True) = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α f : β → α b : β hf : ∀ (b' : β), b' ≠ b → f b' = 0 ⊢ ∑' (b : β), f b = f b [PROOFSTEP] rw [tsum_eq_sum (s := { b }), sum_singleton] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α f : β → α b : β hf : ∀ (b' : β), b' ≠ b → f b' = 0 ⊢ ∀ (b_1 : β), ¬b_1 ∈ {b} → f b_1 = 0 [PROOFSTEP] exact fun b' hb' ↦ hf b' (by simpa using hb') [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α f : β → α b : β hf : ∀ (b' : β), b' ≠ b → f b' = 0 b' : β hb' : ¬b' ∈ {b} ⊢ b' ≠ b [PROOFSTEP] simpa using hb' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ a₁ a₂ : α b : β inst✝ : DecidablePred fun x => x = b a : α ⊢ (∑' (b' : β), if b' = b then a else 0) = a [PROOFSTEP] rw [tsum_eq_single b] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ a₁ a₂ : α b : β inst✝ : DecidablePred fun x => x = b a : α ⊢ (if b = b then a else 0) = a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ a₁ a₂ : α b : β inst✝ : DecidablePred fun x => x = b a : α ⊢ ∀ (b' : β), b' ≠ b → (if b' = b then a else 0) = 0 [PROOFSTEP] intro b' hb' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ a₁ a₂ : α b : β inst✝ : DecidablePred fun x => x = b a : α b' : β hb' : b' ≠ b ⊢ (if b' = b then a else 0) = 0 [PROOFSTEP] simp [hb'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ a₁ a₂ : α inst✝ : DecidableEq β b : β a : α ⊢ ∑' (b' : β), Pi.single b a b' = a [PROOFSTEP] rw [tsum_eq_single b] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ a₁ a₂ : α inst✝ : DecidableEq β b : β a : α ⊢ Pi.single b a b = a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ a₁ a₂ : α inst✝ : DecidableEq β b : β a : α ⊢ ∀ (b' : β), b' ≠ b → Pi.single b a b' = 0 [PROOFSTEP] intro b' hb' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f g : β → α a✝ a₁ a₂ : α inst✝ : DecidableEq β b : β a : α b' : β hb' : b' ≠ b ⊢ Pi.single b a b' = 0 [PROOFSTEP] simp [hb'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α s : Finset β f : β → α ⊢ ∑' (x : { x // x ∈ s }), f ↑x = ∑ x in s, f x [PROOFSTEP] rw [← sum_attach] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α s : Finset β f : β → α ⊢ ∑' (x : { x // x ∈ s }), f ↑x = ∑ x in attach s, f ↑x [PROOFSTEP] exact tsum_fintype _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α s : Finset β f : β → α ⊢ ∑' (x : ↑↑s), f ↑x = ∑ x in s, f x [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : AddCommMonoid α inst✝ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α b : β f : β → α ⊢ ∑' (x : ↑{b}), f ↑x = f b [PROOFSTEP] rw [← coe_singleton, Finset.tsum_subtype', sum_singleton] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝¹ : T2Space α P : Prop inst✝ : Decidable P x : β → ¬P → α ⊢ (∑' (b : β), if h : P then 0 else x b h) = if h : P then 0 else ∑' (b : β), x b h [PROOFSTEP] by_cases hP : P [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝¹ : T2Space α P : Prop inst✝ : Decidable P x : β → ¬P → α hP : P ⊢ (∑' (b : β), if h : P then 0 else x b h) = if h : P then 0 else ∑' (b : β), x b h [PROOFSTEP] simp [hP] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝¹ : T2Space α P : Prop inst✝ : Decidable P x : β → ¬P → α hP : ¬P ⊢ (∑' (b : β), if h : P then 0 else x b h) = if h : P then 0 else ∑' (b : β), x b h [PROOFSTEP] simp [hP] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝¹ : T2Space α P : Prop inst✝ : Decidable P x : β → P → α ⊢ (∑' (b : β), if h : P then x b h else 0) = if h : P then ∑' (b : β), x b h else 0 [PROOFSTEP] by_cases hP : P [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝¹ : T2Space α P : Prop inst✝ : Decidable P x : β → P → α hP : P ⊢ (∑' (b : β), if h : P then x b h else 0) = if h : P then ∑' (b : β), x b h else 0 [PROOFSTEP] simp [hP] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝¹ : T2Space α P : Prop inst✝ : Decidable P x : β → P → α hP : ¬P ⊢ (∑' (b : β), if h : P then x b h else 0) = if h : P then ∑' (b : β), x b h else 0 [PROOFSTEP] simp [hP] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f✝ g✝ : β → α a a₁ a₂ : α inst✝² : T2Space α α' : Type u_5 inst✝¹ : AddCommMonoid α' inst✝ : TopologicalSpace α' e : α' → α hes : Surjective e h0 : e 0 = 0 f : β → α g : γ → α' h : ∀ {a : α'}, HasSum f (e a) ↔ HasSum g a hg : ¬Summable g ⊢ ∑' (b : β), f b = e (∑' (c : γ), g c) [PROOFSTEP] have hf : ¬Summable f := mt (hes.summable_iff_of_hasSum_iff @h).1 hg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f✝ g✝ : β → α a a₁ a₂ : α inst✝² : T2Space α α' : Type u_5 inst✝¹ : AddCommMonoid α' inst✝ : TopologicalSpace α' e : α' → α hes : Surjective e h0 : e 0 = 0 f : β → α g : γ → α' h : ∀ {a : α'}, HasSum f (e a) ↔ HasSum g a hg : ¬Summable g hf : ¬Summable f ⊢ ∑' (b : β), f b = e (∑' (c : γ), g c) [PROOFSTEP] simp [tsum_def, hf, hg, h0] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g✝ : β → α a a₁ a₂ : α inst✝ : T2Space α g : γ → β f : β → α hg : Injective g ⊢ ∑' (x : ↑(Set.range g)), f ↑x = ∑' (x : γ), f (g x) [PROOFSTEP] rw [← Set.image_univ, tsum_image f (hg.injOn _)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f✝ g✝ : β → α a a₁ a₂ : α inst✝ : T2Space α g : γ → β f : β → α hg : Injective g ⊢ ∑' (x : ↑Set.univ), f (g ↑x) = ∑' (x : γ), f (g x) [PROOFSTEP] simp_rw [← comp_apply (g := g), tsum_univ (f ∘ g)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α b : β hf : Summable (update f b 0) n : β ⊢ f n = (if n = b then f n else 0) + update f b 0 n [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α b : β hf : Summable (update f b 0) n : β h : n = b ⊢ f n = f n + update f b 0 n [PROOFSTEP] simp [update_apply, h] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α b : β hf : Summable (update f b 0) n : β h : ¬n = b ⊢ f n = 0 + update f b 0 n [PROOFSTEP] simp [update_apply, h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α b : β hf : Summable (update f b 0) ⊢ (∑' (x : β), if x = b then f x else 0) + ∑' (x : β), update f b 0 x = (if b = b then f b else 0) + ∑' (x : β), update f b 0 x [PROOFSTEP] congr [GOAL] case e_a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α b : β hf : Summable (update f b 0) ⊢ (∑' (x : β), if x = b then f x else 0) = if b = b then f b else 0 [PROOFSTEP] exact tsum_eq_single b fun b' hb' => if_neg hb' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α inst✝¹ : T2Space α inst✝ : ContinuousAdd α f : β → α b : β hf : Summable (update f b 0) ⊢ (if b = b then f b else 0) + ∑' (x : β), update f b 0 x = f b + ∑' (x : β), if x = b then 0 else f x [PROOFSTEP] simp only [update, eq_self_iff_true, if_true, eq_rec_constant, dite_eq_ite] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁷ : AddCommMonoid α inst✝⁶ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α inst✝⁵ : T2Space α inst✝⁴ : ContinuousAdd α inst✝³ : AddCommMonoid δ inst✝² : TopologicalSpace δ inst✝¹ : T3Space δ inst✝ : ContinuousAdd δ f : β → γ → δ h : Summable (uncurry f) h₁ : ∀ (b : β), Summable (f b) h₂ : ∀ (c : γ), Summable fun b => f b c ⊢ ∑' (c : γ) (b : β), f b c = ∑' (b : β) (c : γ), f b c [PROOFSTEP] erw [← tsum_prod' h h₁, ← tsum_prod' h.prod_symm h₂, ← (Equiv.prodComm γ β).tsum_eq (uncurry f)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁷ : AddCommMonoid α inst✝⁶ : TopologicalSpace α f✝ g : β → α a a₁ a₂ : α inst✝⁵ : T2Space α inst✝⁴ : ContinuousAdd α inst✝³ : AddCommMonoid δ inst✝² : TopologicalSpace δ inst✝¹ : T3Space δ inst✝ : ContinuousAdd δ f : β → γ → δ h : Summable (uncurry f) h₁ : ∀ (b : β), Summable (f b) h₂ : ∀ (c : γ), Summable fun b => f b c ⊢ ∑' (p : γ × β), uncurry f (Prod.swap p) = ∑' (c : γ × β), uncurry f (↑(Equiv.prodComm γ β) c) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β ⊢ ∑' (i : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) = ∑' (b : γ), m (s b) [PROOFSTEP] have H : ∀ n, m (⨆ b ∈ decode₂ γ n, s b) ≠ 0 → (decode₂ γ n).isSome := by intro n h generalize decode₂ γ n = foo at * cases' foo with b · refine' (h <| by simp [m0]).elim · exact rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β ⊢ ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true [PROOFSTEP] intro n h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β n : ℕ h : m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 ⊢ Option.isSome (decode₂ γ n) = true [PROOFSTEP] generalize decode₂ γ n = foo at * [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β n : ℕ foo : Option γ h : m (⨆ (b : γ) (_ : b ∈ foo), s b) ≠ 0 ⊢ Option.isSome foo = true [PROOFSTEP] cases' foo with b [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β n : ℕ h : m (⨆ (b : γ) (_ : b ∈ none), s b) ≠ 0 ⊢ Option.isSome none = true [PROOFSTEP] refine' (h <| by simp [m0]).elim [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β n : ℕ h : m (⨆ (b : γ) (_ : b ∈ none), s b) ≠ 0 ⊢ m (⨆ (b : γ) (_ : b ∈ none), s b) = 0 [PROOFSTEP] simp [m0] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β n : ℕ b : γ h : m (⨆ (b_1 : γ) (_ : b_1 ∈ some b), s b_1) ≠ 0 ⊢ Option.isSome (some b) = true [PROOFSTEP] exact rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true ⊢ ∑' (i : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) = ∑' (b : γ), m (s b) [PROOFSTEP] symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true ⊢ ∑' (b : γ), m (s b) = ∑' (i : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) [PROOFSTEP] refine' tsum_eq_tsum_of_ne_zero_bij (fun a => Option.get _ (H a.1 a.2)) _ _ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true ⊢ ∀ ⦃x y : ↑(support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b))⦄, (fun a => Option.get (decode₂ γ ↑a) (_ : Option.isSome (decode₂ γ ↑a) = true)) x = (fun a => Option.get (decode₂ γ ↑a) (_ : Option.isSome (decode₂ γ ↑a) = true)) y → ↑x = ↑y [PROOFSTEP] dsimp only [] [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true ⊢ ∀ ⦃x y : ↑(support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b))⦄, Option.get (decode₂ γ ↑x) (_ : Option.isSome (decode₂ γ ↑x) = true) = Option.get (decode₂ γ ↑y) (_ : Option.isSome (decode₂ γ ↑y) = true) → ↑x = ↑y [PROOFSTEP] rintro ⟨m, hm⟩ ⟨n, hn⟩ e [GOAL] case refine'_1.mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m✝ : β → α m0 : m✝ ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m✝ (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true m : ℕ hm : m ∈ support fun i => m✝ (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) n : ℕ hn : n ∈ support fun i => m✝ (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) e : Option.get (decode₂ γ ↑{ val := m, property := hm }) (_ : Option.isSome (decode₂ γ ↑{ val := m, property := hm }) = true) = Option.get (decode₂ γ ↑{ val := n, property := hn }) (_ : Option.isSome (decode₂ γ ↑{ val := n, property := hn }) = true) ⊢ ↑{ val := m, property := hm } = ↑{ val := n, property := hn } [PROOFSTEP] have := mem_decode₂.1 (Option.get_mem (H n hn)) [GOAL] case refine'_1.mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m✝ : β → α m0 : m✝ ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m✝ (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true m : ℕ hm : m ∈ support fun i => m✝ (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) n : ℕ hn : n ∈ support fun i => m✝ (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) e : Option.get (decode₂ γ ↑{ val := m, property := hm }) (_ : Option.isSome (decode₂ γ ↑{ val := m, property := hm }) = true) = Option.get (decode₂ γ ↑{ val := n, property := hn }) (_ : Option.isSome (decode₂ γ ↑{ val := n, property := hn }) = true) this : encode (Option.get (decode₂ γ n) (_ : Option.isSome (decode₂ γ n) = true)) = n ⊢ ↑{ val := m, property := hm } = ↑{ val := n, property := hn } [PROOFSTEP] rwa [← e, mem_decode₂.1 (Option.get_mem (H m hm))] at this [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true ⊢ (support fun b => m (s b)) ⊆ Set.range fun a => Option.get (decode₂ γ ↑a) (_ : Option.isSome (decode₂ γ ↑a) = true) [PROOFSTEP] intro b h [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true b : γ h : b ∈ support fun b => m (s b) ⊢ b ∈ Set.range fun a => Option.get (decode₂ γ ↑a) (_ : Option.isSome (decode₂ γ ↑a) = true) [PROOFSTEP] refine' ⟨⟨encode b, _⟩, _⟩ [GOAL] case refine'_2.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true b : γ h : b ∈ support fun b => m (s b) ⊢ encode b ∈ support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) [PROOFSTEP] simp only [mem_support, encodek₂] at h ⊢ [GOAL] case refine'_2.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true b : γ h : m (s b) ≠ 0 ⊢ m (⨆ (b_1 : γ) (_ : b_1 ∈ some b), s b_1) ≠ 0 [PROOFSTEP] convert h [GOAL] case h.e'_2.h.e'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true b : γ h : m (s b) ≠ 0 ⊢ ⨆ (b_1 : γ) (_ : b_1 ∈ some b), s b_1 = s b [PROOFSTEP] simp [Set.ext_iff, encodek₂] [GOAL] case refine'_2.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true b : γ h : b ∈ support fun b => m (s b) ⊢ (fun a => Option.get (decode₂ γ ↑a) (_ : Option.isSome (decode₂ γ ↑a) = true)) { val := encode b, property := (_ : encode b ∈ support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b)) } = b [PROOFSTEP] exact Option.get_of_mem _ (encodek₂ _) [GOAL] case refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true ⊢ ∀ (x : ↑(support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b))), m (s ((fun a => Option.get (decode₂ γ ↑a) (_ : Option.isSome (decode₂ γ ↑a) = true)) x)) = m (⨆ (b : γ) (_ : b ∈ decode₂ γ ↑x), s b) [PROOFSTEP] rintro ⟨n, h⟩ [GOAL] case refine'_3.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true n : ℕ h : n ∈ support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) ⊢ m (s ((fun a => Option.get (decode₂ γ ↑a) (_ : Option.isSome (decode₂ γ ↑a) = true)) { val := n, property := h })) = m (⨆ (b : γ) (_ : b ∈ decode₂ γ ↑{ val := n, property := h }), s b) [PROOFSTEP] dsimp only [Subtype.coe_mk] [GOAL] case refine'_3.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true n : ℕ h : n ∈ support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) ⊢ m (s (Option.get (decode₂ γ n) (_ : Option.isSome (decode₂ γ n) = true))) = m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) [PROOFSTEP] trans [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true n : ℕ h : n ∈ support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) ⊢ m (s (Option.get (decode₂ γ n) (_ : Option.isSome (decode₂ γ n) = true))) = ?m.392413 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true n : ℕ h : n ∈ support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) ⊢ ?m.392413 = m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true n : ℕ h : n ∈ support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) ⊢ α [PROOFSTEP] swap [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true n : ℕ h : n ∈ support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) ⊢ ?m.392413 = m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true n : ℕ h : n ∈ support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) ⊢ m (s (Option.get (decode₂ γ n) (_ : Option.isSome (decode₂ γ n) = true))) = ?m.392413 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true n : ℕ h : n ∈ support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) ⊢ α [PROOFSTEP] rw [show decode₂ γ n = _ from Option.get_mem (H n h)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true n : ℕ h : n ∈ support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) ⊢ m (s (Option.get (decode₂ γ n) (_ : Option.isSome (decode₂ γ n) = true))) = m (⨆ (b : γ) (_ : b ∈ some (Option.get (decode₂ γ n) (_ : Option.isSome (decode₂ γ n) = true))), s b) [PROOFSTEP] congr [GOAL] case e_a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Encodable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 s : γ → β H : ∀ (n : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ n), s b) ≠ 0 → Option.isSome (decode₂ γ n) = true n : ℕ h : n ∈ support fun i => m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b) ⊢ s (Option.get (decode₂ γ n) (_ : Option.isSome (decode₂ γ n) = true)) = ⨆ (b : γ) (_ : b ∈ some (Option.get (decode₂ γ n) (_ : Option.isSome (decode₂ γ n) = true))), s b [PROOFSTEP] simp [ext_iff, -Option.some_get] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Countable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 R : α → α → Prop m_iSup : ∀ (s : ℕ → β), R (m (⨆ (i : ℕ), s i)) (∑' (i : ℕ), m (s i)) s : γ → β ⊢ R (m (⨆ (b : γ), s b)) (∑' (b : γ), m (s b)) [PROOFSTEP] cases nonempty_encodable γ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Countable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 R : α → α → Prop m_iSup : ∀ (s : ℕ → β), R (m (⨆ (i : ℕ), s i)) (∑' (i : ℕ), m (s i)) s : γ → β val✝ : Encodable γ ⊢ R (m (⨆ (b : γ), s b)) (∑' (b : γ), m (s b)) [PROOFSTEP] rw [← iSup_decode₂, ← tsum_iSup_decode₂ _ m0 s] [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Countable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 R : α → α → Prop m_iSup : ∀ (s : ℕ → β), R (m (⨆ (i : ℕ), s i)) (∑' (i : ℕ), m (s i)) s : γ → β val✝ : Encodable γ ⊢ R (m (⨆ (i : ℕ) (b : γ) (_ : b ∈ decode₂ γ i), s b)) (∑' (i : ℕ), m (⨆ (b : γ) (_ : b ∈ decode₂ γ i), s b)) [PROOFSTEP] exact m_iSup _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Countable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 R : α → α → Prop m_iSup : ∀ (s : ℕ → β), R (m (⨆ (i : ℕ), s i)) (∑' (i : ℕ), m (s i)) s : δ → β t : Finset δ ⊢ R (m (⨆ (d : δ) (_ : d ∈ t), s d)) (∑ d in t, m (s d)) [PROOFSTEP] rw [iSup_subtype', ← Finset.tsum_subtype] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Countable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 R : α → α → Prop m_iSup : ∀ (s : ℕ → β), R (m (⨆ (i : ℕ), s i)) (∑' (i : ℕ), m (s i)) s : δ → β t : Finset δ ⊢ R (m (⨆ (x : { d // d ∈ t }), s ↑x)) (∑' (x : { x // x ∈ t }), m (s ↑x)) [PROOFSTEP] exact rel_iSup_tsum m m0 R m_iSup _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Countable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 R : α → α → Prop m_iSup : ∀ (s : ℕ → β), R (m (⨆ (i : ℕ), s i)) (∑' (i : ℕ), m (s i)) s₁ s₂ : β ⊢ R (m (s₁ ⊔ s₂)) (m s₁ + m s₂) [PROOFSTEP] convert rel_iSup_tsum m m0 R m_iSup fun b => cond b s₁ s₂ [GOAL] case h.e'_1.h.e'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Countable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 R : α → α → Prop m_iSup : ∀ (s : ℕ → β), R (m (⨆ (i : ℕ), s i)) (∑' (i : ℕ), m (s i)) s₁ s₂ : β ⊢ s₁ ⊔ s₂ = ⨆ (b : Bool), bif b then s₁ else s₂ [PROOFSTEP] simp only [iSup_bool_eq, cond] [GOAL] case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α f g : β → α a a₁ a₂ : α inst✝² : T2Space α inst✝¹ : Countable γ inst✝ : CompleteLattice β m : β → α m0 : m ⊥ = 0 R : α → α → Prop m_iSup : ∀ (s : ℕ → β), R (m (⨆ (i : ℕ), s i)) (∑' (i : ℕ), m (s i)) s₁ s₂ : β ⊢ m s₁ + m s₂ = ∑' (b : Bool), m (bif b then s₁ else s₂) [PROOFSTEP] rw [tsum_fintype, Fintype.sum_bool, cond, cond] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α h : HasSum f a ⊢ HasSum (fun b => -f b) (-a) [PROOFSTEP] simpa only using h.map (-AddMonoidHom.id α) continuous_neg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α hf : Summable fun b => -f b ⊢ Summable f [PROOFSTEP] simpa only [neg_neg] using hf.neg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α hf : HasSum f a₁ hg : HasSum g a₂ ⊢ HasSum (fun b => f b - g b) (a₁ - a₂) [PROOFSTEP] simp only [sub_eq_add_neg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α hf : HasSum f a₁ hg : HasSum g a₂ ⊢ HasSum (fun b => f b + -g b) (a₁ + -a₂) [PROOFSTEP] exact hf.add hg.neg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α hg : Summable g hfg : Summable fun b => f b - g b ⊢ Summable f [PROOFSTEP] simpa only [sub_add_cancel] using hfg.add hg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α hfg : Summable fun b => f b - g b hf : Summable f ⊢ Summable fun b => g b - f b [PROOFSTEP] simpa only [neg_sub] using hfg.neg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f g : β → α a✝ a₁ a₂ : α hf : HasSum f a₁ b : β inst✝ : DecidableEq β a : α ⊢ HasSum (Function.update f b a) (a - f b + a₁) [PROOFSTEP] convert (hasSum_ite_eq b (a - f b)).add hf [GOAL] case h.e'_5.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f g : β → α a✝ a₁ a₂ : α hf : HasSum f a₁ b : β inst✝ : DecidableEq β a : α x✝ : β ⊢ Function.update f b a x✝ = (if x✝ = b then a - f b else 0) + f x✝ [PROOFSTEP] rename_i b' [GOAL] case h.e'_5.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f g : β → α a✝ a₁ a₂ : α hf : HasSum f a₁ b : β inst✝ : DecidableEq β a : α b' : β ⊢ Function.update f b a b' = (if b' = b then a - f b else 0) + f b' [PROOFSTEP] by_cases h : b' = b [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f g : β → α a✝ a₁ a₂ : α hf : HasSum f a₁ b : β inst✝ : DecidableEq β a : α b' : β h : b' = b ⊢ Function.update f b a b' = (if b' = b then a - f b else 0) + f b' [PROOFSTEP] rw [h, update_same] [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f g : β → α a✝ a₁ a₂ : α hf : HasSum f a₁ b : β inst✝ : DecidableEq β a : α b' : β h : b' = b ⊢ a = (if b = b then a - f b else 0) + f b [PROOFSTEP] simp [eq_self_iff_true, if_true, sub_add_cancel] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f g : β → α a✝ a₁ a₂ : α hf : HasSum f a₁ b : β inst✝ : DecidableEq β a : α b' : β h : ¬b' = b ⊢ Function.update f b a b' = (if b' = b then a - f b else 0) + f b' [PROOFSTEP] simp only [h, update_noteq, if_false, Ne.def, zero_add, not_false_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α s : Set β hf : HasSum (f ∘ Subtype.val) a₁ ⊢ HasSum (f ∘ Subtype.val) a₂ ↔ HasSum f (a₁ + a₂) [PROOFSTEP] refine' ⟨fun h => hf.add_compl h, fun h => _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α s : Set β hf : HasSum (f ∘ Subtype.val) a₁ h : HasSum f (a₁ + a₂) ⊢ HasSum (f ∘ Subtype.val) a₂ [PROOFSTEP] rw [hasSum_subtype_iff_indicator] at hf ⊢ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α s : Set β hf : HasSum (Set.indicator s f) a₁ h : HasSum f (a₁ + a₂) ⊢ HasSum (Set.indicator sᶜ f) a₂ [PROOFSTEP] rw [Set.indicator_compl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α s : Set β hf : HasSum (Set.indicator s f) a₁ h : HasSum f (a₁ + a₂) ⊢ HasSum (f - Set.indicator s f) a₂ [PROOFSTEP] simpa only [add_sub_cancel'] using h.sub hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α s : Set β hf : HasSum (f ∘ Subtype.val) a₁ ⊢ HasSum f (a₁ + (a₂ - a₁)) ↔ HasSum f a₂ [PROOFSTEP] rw [add_sub_cancel'_right] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α s : Finset β ⊢ HasSum f (∑ b in s, f b + a) ↔ HasSum f (a + ∑ i in s, f i) [PROOFSTEP] rw [add_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α inst✝ : DecidableEq β hf : HasSum f a b : β ⊢ HasSum (fun n => if n = b then 0 else f n) (a - f b) [PROOFSTEP] convert hf.update b 0 using 1 [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α inst✝ : DecidableEq β hf : HasSum f a b : β ⊢ (fun n => if n = b then 0 else f n) = update f b 0 [PROOFSTEP] ext n [GOAL] case h.e'_5.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α inst✝ : DecidableEq β hf : HasSum f a b n : β ⊢ (if n = b then 0 else f n) = update f b 0 n [PROOFSTEP] rw [Function.update_apply] [GOAL] case h.e'_6 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α inst✝ : DecidableEq β hf : HasSum f a b : β ⊢ a - f b = 0 - f b + a [PROOFSTEP] rw [sub_add_eq_add_sub, zero_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α inst✝ : T2Space α ⊢ ∑' (b : β), -f b = -∑' (b : β), f b [PROOFSTEP] by_cases hf : Summable f [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α inst✝ : T2Space α hf : Summable f ⊢ ∑' (b : β), -f b = -∑' (b : β), f b [PROOFSTEP] exact hf.hasSum.neg.tsum_eq [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f g : β → α a a₁ a₂ : α inst✝ : T2Space α hf : ¬Summable f ⊢ ∑' (b : β), -f b = -∑' (b : β), f b [PROOFSTEP] simp [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable (mt Summable.of_neg hf)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommGroup α inst✝³ : TopologicalSpace α inst✝² : TopologicalAddGroup α f g : β → α a a₁ a₂ : α inst✝¹ : T2Space α inst✝ : DecidableEq β hf : Summable f b : β ⊢ ∑' (n : β), f n = f b + ∑' (n : β), if n = b then 0 else f n [PROOFSTEP] rw [(hasSum_ite_sub_hasSum hf.hasSum b).tsum_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommGroup α inst✝³ : TopologicalSpace α inst✝² : TopologicalAddGroup α f g : β → α a a₁ a₂ : α inst✝¹ : T2Space α inst✝ : DecidableEq β hf : Summable f b : β ⊢ ∑' (n : β), f n = f b + (∑' (b : β), f b - f b) [PROOFSTEP] exact (add_sub_cancel'_right _ _).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g : β → α a✝ a₁ a₂ : α f : ℕ → α k : ℕ a : α ⊢ HasSum (fun n => f (n + k)) a ↔ HasSum f (a + ∑ i in range k, f i) [PROOFSTEP] refine' Iff.trans _ (range k).hasSum_compl_iff [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g : β → α a✝ a₁ a₂ : α f : ℕ → α k : ℕ a : α ⊢ HasSum (fun n => f (n + k)) a ↔ HasSum (fun x => f ↑x) a [PROOFSTEP] rw [← (notMemRangeEquiv k).symm.hasSum_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g : β → α a✝ a₁ a₂ : α f : ℕ → α k : ℕ a : α ⊢ HasSum (fun n => f (n + k)) a ↔ HasSum ((fun x => f ↑x) ∘ ↑(notMemRangeEquiv k).symm) a [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g : β → α a✝ a₁ a₂ : α f : ℕ → α k : ℕ a : α ⊢ HasSum (fun n => f (n + k)) (a - ∑ i in range k, f i) ↔ HasSum f a [PROOFSTEP] simp [hasSum_nat_add_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalAddGroup α f✝ g : β → α a✝ a₁ a₂ : α M : Type u_5 inst✝² : AddCommMonoid M inst✝¹ : TopologicalSpace M inst✝ : ContinuousAdd M f : ℕ → M k : ℕ a : M h : HasSum (fun n => f (n + k)) a ⊢ HasSum f (∑ i in range k, f i + a) [PROOFSTEP] refine ((range k).hasSum f).add_compl ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalAddGroup α f✝ g : β → α a✝ a₁ a₂ : α M : Type u_5 inst✝² : AddCommMonoid M inst✝¹ : TopologicalSpace M inst✝ : ContinuousAdd M f : ℕ → M k : ℕ a : M h : HasSum (fun n => f (n + k)) a ⊢ HasSum (f ∘ Subtype.val) a [PROOFSTEP] rwa [← (notMemRangeEquiv k).symm.hasSum_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : AddCommGroup α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ : α M : Type u_5 inst✝³ : AddCommMonoid M inst✝² : TopologicalSpace M inst✝¹ : ContinuousAdd M inst✝ : T2Space M f : ℕ → M hf : Summable fun n => f (n + 1) ⊢ ∑' (b : ℕ), f b = f 0 + ∑' (b : ℕ), f (b + 1) [PROOFSTEP] simpa only [sum_range_one] using (sum_add_tsum_nat_add' hf).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ : α inst✝ : T2Space α f : ℕ → α ⊢ Tendsto (fun i => ∑' (k : ℕ), f (k + i)) atTop (𝓝 0) [PROOFSTEP] by_cases hf : Summable f [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ : α inst✝ : T2Space α f : ℕ → α hf : Summable f ⊢ Tendsto (fun i => ∑' (k : ℕ), f (k + i)) atTop (𝓝 0) [PROOFSTEP] have h₀ : (fun i => ∑' i, f i - ∑ j in range i, f j) = fun i => ∑' k : ℕ, f (k + i) := by ext1 i rw [sub_eq_iff_eq_add, add_comm, sum_add_tsum_nat_add i hf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ : α inst✝ : T2Space α f : ℕ → α hf : Summable f ⊢ (fun i => ∑' (i : ℕ), f i - ∑ j in range i, f j) = fun i => ∑' (k : ℕ), f (k + i) [PROOFSTEP] ext1 i [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ : α inst✝ : T2Space α f : ℕ → α hf : Summable f i : ℕ ⊢ ∑' (i : ℕ), f i - ∑ j in range i, f j = ∑' (k : ℕ), f (k + i) [PROOFSTEP] rw [sub_eq_iff_eq_add, add_comm, sum_add_tsum_nat_add i hf] [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ : α inst✝ : T2Space α f : ℕ → α hf : Summable f h₀ : (fun i => ∑' (i : ℕ), f i - ∑ j in range i, f j) = fun i => ∑' (k : ℕ), f (k + i) ⊢ Tendsto (fun i => ∑' (k : ℕ), f (k + i)) atTop (𝓝 0) [PROOFSTEP] have h₁ : Tendsto (fun _ : ℕ => ∑' i, f i) atTop (𝓝 (∑' i, f i)) := tendsto_const_nhds [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ : α inst✝ : T2Space α f : ℕ → α hf : Summable f h₀ : (fun i => ∑' (i : ℕ), f i - ∑ j in range i, f j) = fun i => ∑' (k : ℕ), f (k + i) h₁ : Tendsto (fun x => ∑' (i : ℕ), f i) atTop (𝓝 (∑' (i : ℕ), f i)) ⊢ Tendsto (fun i => ∑' (k : ℕ), f (k + i)) atTop (𝓝 0) [PROOFSTEP] simpa only [h₀, sub_self] using Tendsto.sub h₁ hf.hasSum.tendsto_sum_nat [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ : α inst✝ : T2Space α f : ℕ → α hf : ¬Summable f ⊢ Tendsto (fun i => ∑' (k : ℕ), f (k + i)) atTop (𝓝 0) [PROOFSTEP] convert tendsto_const_nhds (α := α) (β := ℕ) (a := 0) (f := atTop) [GOAL] case h.e'_3.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ : α inst✝ : T2Space α f : ℕ → α hf : ¬Summable f x✝ : ℕ ⊢ ∑' (k : ℕ), f (k + x✝) = 0 [PROOFSTEP] rename_i i [GOAL] case h.e'_3.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ : α inst✝ : T2Space α f : ℕ → α hf : ¬Summable f i : ℕ ⊢ ∑' (k : ℕ), f (k + i) = 0 [PROOFSTEP] rw [← summable_nat_add_iff i] at hf [GOAL] case h.e'_3.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ : α inst✝ : T2Space α f : ℕ → α i : ℕ hf : ¬Summable fun n => f (n + i) ⊢ ∑' (k : ℕ), f (k + i) = 0 [PROOFSTEP] exact tsum_eq_zero_of_not_summable hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g✝ : β → α a a₁ a₂ b : α f g : ℕ → α hf : HasSum f a hg : HasSum g b ⊢ HasSum (Int.rec f g) (a + b) [PROOFSTEP] have h₁ : Injective ((↑) : ℕ → ℤ) := @Int.ofNat.inj [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g✝ : β → α a a₁ a₂ b : α f g : ℕ → α hf : HasSum f a hg : HasSum g b h₁ : Injective Nat.cast ⊢ HasSum (Int.rec f g) (a + b) [PROOFSTEP] have h₂ : Injective Int.negSucc := @Int.negSucc.inj [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g✝ : β → α a a₁ a₂ b : α f g : ℕ → α hf : HasSum f a hg : HasSum g b h₁ : Injective Nat.cast h₂ : Injective Int.negSucc ⊢ HasSum (Int.rec f g) (a + b) [PROOFSTEP] have : IsCompl (Set.range ((↑) : ℕ → ℤ)) (Set.range Int.negSucc) := by constructor · rw [disjoint_iff_inf_le] rintro _ ⟨⟨i, rfl⟩, ⟨j, ⟨⟩⟩⟩ · rw [codisjoint_iff_le_sup] rintro (i | j) _ exacts [Or.inl ⟨_, rfl⟩, Or.inr ⟨_, rfl⟩] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g✝ : β → α a a₁ a₂ b : α f g : ℕ → α hf : HasSum f a hg : HasSum g b h₁ : Injective Nat.cast h₂ : Injective Int.negSucc ⊢ IsCompl (Set.range Nat.cast) (Set.range Int.negSucc) [PROOFSTEP] constructor [GOAL] case disjoint α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g✝ : β → α a a₁ a₂ b : α f g : ℕ → α hf : HasSum f a hg : HasSum g b h₁ : Injective Nat.cast h₂ : Injective Int.negSucc ⊢ Disjoint (Set.range Nat.cast) (Set.range Int.negSucc) [PROOFSTEP] rw [disjoint_iff_inf_le] [GOAL] case disjoint α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g✝ : β → α a a₁ a₂ b : α f g : ℕ → α hf : HasSum f a hg : HasSum g b h₁ : Injective Nat.cast h₂ : Injective Int.negSucc ⊢ Set.range Nat.cast ⊓ Set.range Int.negSucc ≤ ⊥ [PROOFSTEP] rintro _ ⟨⟨i, rfl⟩, ⟨j, ⟨⟩⟩⟩ [GOAL] case codisjoint α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g✝ : β → α a a₁ a₂ b : α f g : ℕ → α hf : HasSum f a hg : HasSum g b h₁ : Injective Nat.cast h₂ : Injective Int.negSucc ⊢ Codisjoint (Set.range Nat.cast) (Set.range Int.negSucc) [PROOFSTEP] rw [codisjoint_iff_le_sup] [GOAL] case codisjoint α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g✝ : β → α a a₁ a₂ b : α f g : ℕ → α hf : HasSum f a hg : HasSum g b h₁ : Injective Nat.cast h₂ : Injective Int.negSucc ⊢ ⊤ ≤ Set.range Nat.cast ⊔ Set.range Int.negSucc [PROOFSTEP] rintro (i | j) _ [GOAL] case codisjoint.ofNat α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g✝ : β → α a a₁ a₂ b : α f g : ℕ → α hf : HasSum f a hg : HasSum g b h₁ : Injective Nat.cast h₂ : Injective Int.negSucc i : ℕ a✝ : Int.ofNat i ∈ ⊤ ⊢ Int.ofNat i ∈ Set.range Nat.cast ⊔ Set.range Int.negSucc case codisjoint.negSucc α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g✝ : β → α a a₁ a₂ b : α f g : ℕ → α hf : HasSum f a hg : HasSum g b h₁ : Injective Nat.cast h₂ : Injective Int.negSucc j : ℕ a✝ : Int.negSucc j ∈ ⊤ ⊢ Int.negSucc j ∈ Set.range Nat.cast ⊔ Set.range Int.negSucc [PROOFSTEP] exacts [Or.inl ⟨_, rfl⟩, Or.inr ⟨_, rfl⟩] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g✝ : β → α a a₁ a₂ b : α f g : ℕ → α hf : HasSum f a hg : HasSum g b h₁ : Injective Nat.cast h₂ : Injective Int.negSucc this : IsCompl (Set.range Nat.cast) (Set.range Int.negSucc) ⊢ HasSum (Int.rec f g) (a + b) [PROOFSTEP] exact HasSum.add_isCompl this (h₁.hasSum_range_iff.mpr hf) (h₂.hasSum_range_iff.mpr hg) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ b : α f : ℤ → α hnonneg : HasSum (fun n => f ↑n) a hneg : HasSum (fun n => f (-↑(Nat.succ n))) b ⊢ HasSum f (a + b) [PROOFSTEP] simp_rw [← Int.negSucc_coe] at hneg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ b : α f : ℤ → α hnonneg : HasSum (fun n => f ↑n) a hneg : HasSum (fun n => f (Int.negSucc n)) b ⊢ HasSum f (a + b) [PROOFSTEP] convert hnonneg.int_rec hneg using 1 [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ b : α f : ℤ → α hnonneg : HasSum (fun n => f ↑n) a hneg : HasSum (fun n => f (Int.negSucc n)) b ⊢ f = Int.rec (fun n => f ↑n) fun n => f (Int.negSucc n) [PROOFSTEP] ext (i | j) [GOAL] case h.e'_5.h.ofNat α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ b : α f : ℤ → α hnonneg : HasSum (fun n => f ↑n) a hneg : HasSum (fun n => f (Int.negSucc n)) b i : ℕ ⊢ f (Int.ofNat i) = Int.rec (fun n => f ↑n) (fun n => f (Int.negSucc n)) (Int.ofNat i) [PROOFSTEP] rfl [GOAL] case h.e'_5.h.negSucc α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ b : α f : ℤ → α hnonneg : HasSum (fun n => f ↑n) a hneg : HasSum (fun n => f (Int.negSucc n)) b j : ℕ ⊢ f (Int.negSucc j) = Int.rec (fun n => f ↑n) (fun n => f (Int.negSucc n)) (Int.negSucc j) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g : β → α a a₁ a₂ b : α f : ℤ → α hpos : HasSum (fun n => f (↑n + 1)) a hneg : HasSum (fun n => f (-↑(Nat.succ n))) b ⊢ ∀ (g : ℕ → α), HasSum (fun k => g (k + 1)) a → HasSum g (a + g 0) [PROOFSTEP] intro g hg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : TopologicalSpace α inst✝ : TopologicalAddGroup α f✝ g✝ : β → α a a₁ a₂ b : α f : ℤ → α hpos : HasSum (fun n => f (↑n + 1)) a hneg : HasSum (fun n => f (-↑(Nat.succ n))) b g : ℕ → α hg : HasSum (fun k => g (k + 1)) a ⊢ HasSum g (a + g 0) [PROOFSTEP] simpa using (hasSum_nat_add_iff _).mp hg [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a ⊢ HasSum (fun n => f ↑n + f (-↑n)) (a + f 0) [PROOFSTEP] apply (hf.add (hasSum_ite_eq (0 : ℤ) (f 0))).hasSum_of_sum_eq fun u => ?_ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ ⊢ ∃ v, ∀ (v' : Finset ℕ), v ⊆ v' → ∃ u', u ⊆ u' ∧ ∑ x in u', (f x + if x = 0 then f 0 else 0) = ∑ b in v', (f ↑b + f (-↑b)) [PROOFSTEP] refine' ⟨u.image Int.natAbs, fun v' hv' => _⟩ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' ⊢ ∃ u', u ⊆ u' ∧ ∑ x in u', (f x + if x = 0 then f 0 else 0) = ∑ b in v', (f ↑b + f (-↑b)) [PROOFSTEP] let u1 := v'.image fun x : ℕ => (x : ℤ) [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' ⊢ ∃ u', u ⊆ u' ∧ ∑ x in u', (f x + if x = 0 then f 0 else 0) = ∑ b in v', (f ↑b + f (-↑b)) [PROOFSTEP] let u2 := v'.image fun x : ℕ => -(x : ℤ) [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' ⊢ ∃ u', u ⊆ u' ∧ ∑ x in u', (f x + if x = 0 then f 0 else 0) = ∑ b in v', (f ↑b + f (-↑b)) [PROOFSTEP] have A : u ⊆ u1 ∪ u2 := by intro x hx simp only [mem_union, mem_image, exists_prop] rcases le_total 0 x with (h'x | h'x) · left refine' ⟨Int.natAbs x, hv' _, _⟩ · simp only [mem_image, exists_prop] exact ⟨x, hx, rfl⟩ · simp only [h'x, Int.coe_natAbs, abs_eq_self] · right refine' ⟨Int.natAbs x, hv' _, _⟩ · simp only [mem_image, exists_prop] exact ⟨x, hx, rfl⟩ · simp only [abs_of_nonpos h'x, Int.coe_natAbs, neg_neg] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' ⊢ u ⊆ u1 ∪ u2 [PROOFSTEP] intro x hx [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' x : ℤ hx : x ∈ u ⊢ x ∈ u1 ∪ u2 [PROOFSTEP] simp only [mem_union, mem_image, exists_prop] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' x : ℤ hx : x ∈ u ⊢ (∃ a, a ∈ v' ∧ ↑a = x) ∨ ∃ a, a ∈ v' ∧ -↑a = x [PROOFSTEP] rcases le_total 0 x with (h'x | h'x) [GOAL] case inl α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' x : ℤ hx : x ∈ u h'x : 0 ≤ x ⊢ (∃ a, a ∈ v' ∧ ↑a = x) ∨ ∃ a, a ∈ v' ∧ -↑a = x [PROOFSTEP] left [GOAL] case inl.h α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' x : ℤ hx : x ∈ u h'x : 0 ≤ x ⊢ ∃ a, a ∈ v' ∧ ↑a = x [PROOFSTEP] refine' ⟨Int.natAbs x, hv' _, _⟩ [GOAL] case inl.h.refine'_1 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' x : ℤ hx : x ∈ u h'x : 0 ≤ x ⊢ Int.natAbs x ∈ image Int.natAbs u [PROOFSTEP] simp only [mem_image, exists_prop] [GOAL] case inl.h.refine'_1 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' x : ℤ hx : x ∈ u h'x : 0 ≤ x ⊢ ∃ a, a ∈ u ∧ Int.natAbs a = Int.natAbs x [PROOFSTEP] exact ⟨x, hx, rfl⟩ [GOAL] case inl.h.refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' x : ℤ hx : x ∈ u h'x : 0 ≤ x ⊢ ↑(Int.natAbs x) = x [PROOFSTEP] simp only [h'x, Int.coe_natAbs, abs_eq_self] [GOAL] case inr α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' x : ℤ hx : x ∈ u h'x : x ≤ 0 ⊢ (∃ a, a ∈ v' ∧ ↑a = x) ∨ ∃ a, a ∈ v' ∧ -↑a = x [PROOFSTEP] right [GOAL] case inr.h α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' x : ℤ hx : x ∈ u h'x : x ≤ 0 ⊢ ∃ a, a ∈ v' ∧ -↑a = x [PROOFSTEP] refine' ⟨Int.natAbs x, hv' _, _⟩ [GOAL] case inr.h.refine'_1 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' x : ℤ hx : x ∈ u h'x : x ≤ 0 ⊢ Int.natAbs x ∈ image Int.natAbs u [PROOFSTEP] simp only [mem_image, exists_prop] [GOAL] case inr.h.refine'_1 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' x : ℤ hx : x ∈ u h'x : x ≤ 0 ⊢ ∃ a, a ∈ u ∧ Int.natAbs a = Int.natAbs x [PROOFSTEP] exact ⟨x, hx, rfl⟩ [GOAL] case inr.h.refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' x : ℤ hx : x ∈ u h'x : x ≤ 0 ⊢ -↑(Int.natAbs x) = x [PROOFSTEP] simp only [abs_of_nonpos h'x, Int.coe_natAbs, neg_neg] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 ⊢ ∃ u', u ⊆ u' ∧ ∑ x in u', (f x + if x = 0 then f 0 else 0) = ∑ b in v', (f ↑b + f (-↑b)) [PROOFSTEP] refine' ⟨u1 ∪ u2, A, _⟩ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 ⊢ ∑ x in u1 ∪ u2, (f x + if x = 0 then f 0 else 0) = ∑ b in v', (f ↑b + f (-↑b)) [PROOFSTEP] calc (∑ x in u1 ∪ u2, (f x + ite (x = 0) (f 0) 0)) = (∑ x in u1 ∪ u2, f x) + ∑ x in u1 ∩ u2, f x := by rw [sum_add_distrib] congr 1 refine' (sum_subset_zero_on_sdiff inter_subset_union _ _).symm · intro x hx suffices x ≠ 0 by simp only [this, if_false] rintro rfl simp at hx · intro x hx simp only [mem_inter, mem_image, exists_prop] at hx have : x = 0 := by apply le_antisymm · rcases hx.2 with ⟨a, _, rfl⟩ simp only [Right.neg_nonpos_iff, Nat.cast_nonneg] · rcases hx.1 with ⟨a, _, rfl⟩ simp only [Nat.cast_nonneg] simp only [this, eq_self_iff_true, if_true] _ = (∑ x in u1, f x) + ∑ x in u2, f x := sum_union_inter _ = (∑ b in v', f b) + ∑ b in v', f (-b) := by simp _ = ∑ b in v', (f b + f (-b)) := sum_add_distrib.symm [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 ⊢ ∑ x in u1 ∪ u2, (f x + if x = 0 then f 0 else 0) = ∑ x in u1 ∪ u2, f x + ∑ x in u1 ∩ u2, f x [PROOFSTEP] rw [sum_add_distrib] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 ⊢ (∑ x in u1 ∪ u2, f x + ∑ x in u1 ∪ u2, if x = 0 then f 0 else 0) = ∑ x in u1 ∪ u2, f x + ∑ x in u1 ∩ u2, f x [PROOFSTEP] congr 1 [GOAL] case e_a α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 ⊢ (∑ x in u1 ∪ u2, if x = 0 then f 0 else 0) = ∑ x in u1 ∩ u2, f x [PROOFSTEP] refine' (sum_subset_zero_on_sdiff inter_subset_union _ _).symm [GOAL] case e_a.refine'_1 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 ⊢ ∀ (x : ℤ), x ∈ (u1 ∪ u2) \ (u1 ∩ u2) → (if x = 0 then f 0 else 0) = 0 [PROOFSTEP] intro x hx [GOAL] case e_a.refine'_1 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 x : ℤ hx : x ∈ (u1 ∪ u2) \ (u1 ∩ u2) ⊢ (if x = 0 then f 0 else 0) = 0 [PROOFSTEP] suffices x ≠ 0 by simp only [this, if_false] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 x : ℤ hx : x ∈ (u1 ∪ u2) \ (u1 ∩ u2) this : x ≠ 0 ⊢ (if x = 0 then f 0 else 0) = 0 [PROOFSTEP] simp only [this, if_false] [GOAL] case e_a.refine'_1 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 x : ℤ hx : x ∈ (u1 ∪ u2) \ (u1 ∩ u2) ⊢ x ≠ 0 [PROOFSTEP] rintro rfl [GOAL] case e_a.refine'_1 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 hx : 0 ∈ (u1 ∪ u2) \ (u1 ∩ u2) ⊢ False [PROOFSTEP] simp at hx [GOAL] case e_a.refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 ⊢ ∀ (x : ℤ), x ∈ u1 ∩ u2 → f x = if x = 0 then f 0 else 0 [PROOFSTEP] intro x hx [GOAL] case e_a.refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 x : ℤ hx : x ∈ u1 ∩ u2 ⊢ f x = if x = 0 then f 0 else 0 [PROOFSTEP] simp only [mem_inter, mem_image, exists_prop] at hx [GOAL] case e_a.refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 x : ℤ hx : (∃ a, a ∈ v' ∧ ↑a = x) ∧ ∃ a, a ∈ v' ∧ -↑a = x ⊢ f x = if x = 0 then f 0 else 0 [PROOFSTEP] have : x = 0 := by apply le_antisymm · rcases hx.2 with ⟨a, _, rfl⟩ simp only [Right.neg_nonpos_iff, Nat.cast_nonneg] · rcases hx.1 with ⟨a, _, rfl⟩ simp only [Nat.cast_nonneg] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 x : ℤ hx : (∃ a, a ∈ v' ∧ ↑a = x) ∧ ∃ a, a ∈ v' ∧ -↑a = x ⊢ x = 0 [PROOFSTEP] apply le_antisymm [GOAL] case a α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 x : ℤ hx : (∃ a, a ∈ v' ∧ ↑a = x) ∧ ∃ a, a ∈ v' ∧ -↑a = x ⊢ x ≤ 0 [PROOFSTEP] rcases hx.2 with ⟨a, _, rfl⟩ [GOAL] case a.intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝¹ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a✝ : α f : ℤ → α hf : HasSum f a✝ u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 a : ℕ left✝ : a ∈ v' hx : (∃ a_1, a_1 ∈ v' ∧ ↑a_1 = -↑a) ∧ ∃ a_1, a_1 ∈ v' ∧ -↑a_1 = -↑a ⊢ -↑a ≤ 0 [PROOFSTEP] simp only [Right.neg_nonpos_iff, Nat.cast_nonneg] [GOAL] case a α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 x : ℤ hx : (∃ a, a ∈ v' ∧ ↑a = x) ∧ ∃ a, a ∈ v' ∧ -↑a = x ⊢ 0 ≤ x [PROOFSTEP] rcases hx.1 with ⟨a, _, rfl⟩ [GOAL] case a.intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝¹ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a✝ : α f : ℤ → α hf : HasSum f a✝ u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 a : ℕ left✝ : a ∈ v' hx : (∃ a_1, a_1 ∈ v' ∧ ↑a_1 = ↑a) ∧ ∃ a_1, a_1 ∈ v' ∧ -↑a_1 = ↑a ⊢ 0 ≤ ↑a [PROOFSTEP] simp only [Nat.cast_nonneg] [GOAL] case e_a.refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 x : ℤ hx : (∃ a, a ∈ v' ∧ ↑a = x) ∧ ∃ a, a ∈ v' ∧ -↑a = x this : x = 0 ⊢ f x = if x = 0 then f 0 else 0 [PROOFSTEP] simp only [this, eq_self_iff_true, if_true] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : AddCommGroup α✝ inst✝⁴ : TopologicalSpace α✝ inst✝³ : TopologicalAddGroup α✝ f✝ g : β → α✝ a✝ a₁ a₂ : α✝ α : Type u_5 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : ContinuousAdd α a : α f : ℤ → α hf : HasSum f a u : Finset ℤ v' : Finset ℕ hv' : image Int.natAbs u ⊆ v' u1 : Finset ℤ := image (fun x => ↑x) v' u2 : Finset ℤ := image (fun x => -↑x) v' A : u ⊆ u1 ∪ u2 ⊢ ∑ x in u1, f x + ∑ x in u2, f x = ∑ b in v', f ↑b + ∑ b in v', f (-↑b) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α ⊢ (CauchySeq fun s => ∑ b in s, f b) ↔ ∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e [PROOFSTEP] simp only [CauchySeq, cauchy_map_iff, and_iff_right atTop_neBot, prod_atTop_atTop_eq, uniformity_eq_comap_nhds_zero α, tendsto_comap_iff, (· ∘ ·), atTop_neBot, true_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α ⊢ Tendsto (fun x => ∑ b in x.snd, f b - ∑ b in x.fst, f b) atTop (𝓝 0) ↔ ∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e [PROOFSTEP] rw [tendsto_atTop'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α ⊢ (∀ (s : Set α), s ∈ 𝓝 0 → ∃ a, ∀ (b : Finset β × Finset β), b ≥ a → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ s) ↔ ∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α ⊢ (∀ (s : Set α), s ∈ 𝓝 0 → ∃ a, ∀ (b : Finset β × Finset β), b ≥ a → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ s) → ∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e [PROOFSTEP] intro h e he [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α h : ∀ (s : Set α), s ∈ 𝓝 0 → ∃ a, ∀ (b : Finset β × Finset β), b ≥ a → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ s e : Set α he : e ∈ 𝓝 0 ⊢ ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e [PROOFSTEP] obtain ⟨⟨s₁, s₂⟩, h⟩ := h e he [GOAL] case mp.intro.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α h✝ : ∀ (s : Set α), s ∈ 𝓝 0 → ∃ a, ∀ (b : Finset β × Finset β), b ≥ a → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ s e : Set α he : e ∈ 𝓝 0 s₁ s₂ : Finset β h : ∀ (b : Finset β × Finset β), b ≥ (s₁, s₂) → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ e ⊢ ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e [PROOFSTEP] use s₁ ∪ s₂ [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α h✝ : ∀ (s : Set α), s ∈ 𝓝 0 → ∃ a, ∀ (b : Finset β × Finset β), b ≥ a → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ s e : Set α he : e ∈ 𝓝 0 s₁ s₂ : Finset β h : ∀ (b : Finset β × Finset β), b ≥ (s₁, s₂) → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ e ⊢ ∀ (t : Finset β), Disjoint t (s₁ ∪ s₂) → ∑ b in t, f b ∈ e [PROOFSTEP] intro t ht [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α h✝ : ∀ (s : Set α), s ∈ 𝓝 0 → ∃ a, ∀ (b : Finset β × Finset β), b ≥ a → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ s e : Set α he : e ∈ 𝓝 0 s₁ s₂ : Finset β h : ∀ (b : Finset β × Finset β), b ≥ (s₁, s₂) → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ e t : Finset β ht : Disjoint t (s₁ ∪ s₂) ⊢ ∑ b in t, f b ∈ e [PROOFSTEP] specialize h (s₁ ∪ s₂, s₁ ∪ s₂ ∪ t) ⟨le_sup_left, le_sup_of_le_left le_sup_right⟩ [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α h✝ : ∀ (s : Set α), s ∈ 𝓝 0 → ∃ a, ∀ (b : Finset β × Finset β), b ≥ a → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ s e : Set α he : e ∈ 𝓝 0 s₁ s₂ t : Finset β ht : Disjoint t (s₁ ∪ s₂) h : ∑ b in (s₁ ∪ s₂, s₁ ∪ s₂ ∪ t).snd, f b - ∑ b in (s₁ ∪ s₂, s₁ ∪ s₂ ∪ t).fst, f b ∈ e ⊢ ∑ b in t, f b ∈ e [PROOFSTEP] simpa only [Finset.sum_union ht.symm, add_sub_cancel'] using h [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α ⊢ (∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e) → ∀ (s : Set α), s ∈ 𝓝 0 → ∃ a, ∀ (b : Finset β × Finset β), b ≥ a → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ s [PROOFSTEP] rintro h e he [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α h : ∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e e : Set α he : e ∈ 𝓝 0 ⊢ ∃ a, ∀ (b : Finset β × Finset β), b ≥ a → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ e [PROOFSTEP] rcases exists_nhds_half_neg he with ⟨d, hd, hde⟩ [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α h : ∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e e : Set α he : e ∈ 𝓝 0 d : Set α hd : d ∈ 𝓝 0 hde : ∀ (v : α), v ∈ d → ∀ (w : α), w ∈ d → v - w ∈ e ⊢ ∃ a, ∀ (b : Finset β × Finset β), b ≥ a → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ e [PROOFSTEP] rcases h d hd with ⟨s, h⟩ [GOAL] case mpr.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α h✝ : ∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e e : Set α he : e ∈ 𝓝 0 d : Set α hd : d ∈ 𝓝 0 hde : ∀ (v : α), v ∈ d → ∀ (w : α), w ∈ d → v - w ∈ e s : Finset β h : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ d ⊢ ∃ a, ∀ (b : Finset β × Finset β), b ≥ a → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ e [PROOFSTEP] use(s, s) [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α h✝ : ∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e e : Set α he : e ∈ 𝓝 0 d : Set α hd : d ∈ 𝓝 0 hde : ∀ (v : α), v ∈ d → ∀ (w : α), w ∈ d → v - w ∈ e s : Finset β h : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ d ⊢ ∀ (b : Finset β × Finset β), b ≥ (s, s) → ∑ b in b.snd, f b - ∑ b in b.fst, f b ∈ e [PROOFSTEP] rintro ⟨t₁, t₂⟩ ⟨ht₁, ht₂⟩ [GOAL] case h.mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α h✝ : ∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e e : Set α he : e ∈ 𝓝 0 d : Set α hd : d ∈ 𝓝 0 hde : ∀ (v : α), v ∈ d → ∀ (w : α), w ∈ d → v - w ∈ e s : Finset β h : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ d t₁ t₂ : Finset β ht₁ : (s, s).fst ≤ (t₁, t₂).fst ht₂ : (s, s).snd ≤ (t₁, t₂).snd ⊢ ∑ b in (t₁, t₂).snd, f b - ∑ b in (t₁, t₂).fst, f b ∈ e [PROOFSTEP] have : ((∑ b in t₂, f b) - ∑ b in t₁, f b) = (∑ b in t₂ \ s, f b) - ∑ b in t₁ \ s, f b := by rw [← Finset.sum_sdiff ht₁, ← Finset.sum_sdiff ht₂, add_sub_add_right_eq_sub] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α h✝ : ∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e e : Set α he : e ∈ 𝓝 0 d : Set α hd : d ∈ 𝓝 0 hde : ∀ (v : α), v ∈ d → ∀ (w : α), w ∈ d → v - w ∈ e s : Finset β h : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ d t₁ t₂ : Finset β ht₁ : (s, s).fst ≤ (t₁, t₂).fst ht₂ : (s, s).snd ≤ (t₁, t₂).snd ⊢ ∑ b in t₂, f b - ∑ b in t₁, f b = ∑ b in t₂ \ s, f b - ∑ b in t₁ \ s, f b [PROOFSTEP] rw [← Finset.sum_sdiff ht₁, ← Finset.sum_sdiff ht₂, add_sub_add_right_eq_sub] [GOAL] case h.mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α h✝ : ∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e e : Set α he : e ∈ 𝓝 0 d : Set α hd : d ∈ 𝓝 0 hde : ∀ (v : α), v ∈ d → ∀ (w : α), w ∈ d → v - w ∈ e s : Finset β h : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ d t₁ t₂ : Finset β ht₁ : (s, s).fst ≤ (t₁, t₂).fst ht₂ : (s, s).snd ≤ (t₁, t₂).snd this : ∑ b in t₂, f b - ∑ b in t₁, f b = ∑ b in t₂ \ s, f b - ∑ b in t₁ \ s, f b ⊢ ∑ b in (t₁, t₂).snd, f b - ∑ b in (t₁, t₂).fst, f b ∈ e [PROOFSTEP] simp only [this] [GOAL] case h.mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f g : β → α a a₁ a₂ : α h✝ : ∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e e : Set α he : e ∈ 𝓝 0 d : Set α hd : d ∈ 𝓝 0 hde : ∀ (v : α), v ∈ d → ∀ (w : α), w ∈ d → v - w ∈ e s : Finset β h : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ d t₁ t₂ : Finset β ht₁ : (s, s).fst ≤ (t₁, t₂).fst ht₂ : (s, s).snd ≤ (t₁, t₂).snd this : ∑ b in t₂, f b - ∑ b in t₁, f b = ∑ b in t₂ \ s, f b - ∑ b in t₁ \ s, f b ⊢ ∑ b in t₂ \ s, f b - ∑ b in t₁ \ s, f b ∈ e [PROOFSTEP] exact hde _ (h _ Finset.sdiff_disjoint) _ (h _ Finset.sdiff_disjoint) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a a₁ a₂ : α f : β → α ⊢ Tendsto (fun s => ∑' (b : { x // ¬x ∈ s }), f ↑b) atTop (𝓝 0) [PROOFSTEP] by_cases H : Summable f [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a a₁ a₂ : α f : β → α H : Summable f ⊢ Tendsto (fun s => ∑' (b : { x // ¬x ∈ s }), f ↑b) atTop (𝓝 0) [PROOFSTEP] intro e he [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 ⊢ e ∈ Filter.map (fun s => ∑' (b : { x // ¬x ∈ s }), f ↑b) atTop [PROOFSTEP] rcases exists_mem_nhds_isClosed_subset he with ⟨o, ho, o_closed, oe⟩ [GOAL] case pos.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 o : Set α ho : o ∈ 𝓝 0 o_closed : IsClosed o oe : o ⊆ e ⊢ e ∈ Filter.map (fun s => ∑' (b : { x // ¬x ∈ s }), f ↑b) atTop [PROOFSTEP] simp only [le_eq_subset, Set.mem_preimage, mem_atTop_sets, Filter.mem_map, ge_iff_le] [GOAL] case pos.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 o : Set α ho : o ∈ 𝓝 0 o_closed : IsClosed o oe : o ⊆ e ⊢ ∃ a, ∀ (b : Finset β), a ⊆ b → ∑' (b_1 : { x // ¬x ∈ b }), f ↑b_1 ∈ e [PROOFSTEP] obtain ⟨s, hs⟩ : ∃ s : Finset β, ∀ t : Finset β, Disjoint t s → (∑ b : β in t, f b) ∈ o := cauchySeq_finset_iff_vanishing.1 (Tendsto.cauchySeq H.hasSum) o ho [GOAL] case pos.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 o : Set α ho : o ∈ 𝓝 0 o_closed : IsClosed o oe : o ⊆ e s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ o ⊢ ∃ a, ∀ (b : Finset β), a ⊆ b → ∑' (b_1 : { x // ¬x ∈ b }), f ↑b_1 ∈ e [PROOFSTEP] refine' ⟨s, fun a sa => oe _⟩ [GOAL] case pos.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a✝ a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 o : Set α ho : o ∈ 𝓝 0 o_closed : IsClosed o oe : o ⊆ e s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ o a : Finset β sa : s ⊆ a ⊢ ∑' (b : { x // ¬x ∈ a }), f ↑b ∈ o [PROOFSTEP] have A : Summable fun b : { x // x ∉ a } => f b := a.summable_compl_iff.2 H [GOAL] case pos.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a✝ a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 o : Set α ho : o ∈ 𝓝 0 o_closed : IsClosed o oe : o ⊆ e s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ o a : Finset β sa : s ⊆ a A : Summable fun b => f ↑b ⊢ ∑' (b : { x // ¬x ∈ a }), f ↑b ∈ o [PROOFSTEP] refine' IsClosed.mem_of_tendsto o_closed A.hasSum (eventually_of_forall fun b => _) [GOAL] case pos.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a✝ a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 o : Set α ho : o ∈ 𝓝 0 o_closed : IsClosed o oe : o ⊆ e s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ o a : Finset β sa : s ⊆ a A : Summable fun b => f ↑b b : Finset { x // ¬x ∈ a } ⊢ ∑ b in b, (fun b => f ↑b) b ∈ o [PROOFSTEP] have : Disjoint (Finset.image (fun i : { x // x ∉ a } => (i : β)) b) s := by refine' disjoint_left.2 fun i hi his => _ rcases mem_image.1 hi with ⟨i', _, rfl⟩ exact i'.2 (sa his) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a✝ a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 o : Set α ho : o ∈ 𝓝 0 o_closed : IsClosed o oe : o ⊆ e s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ o a : Finset β sa : s ⊆ a A : Summable fun b => f ↑b b : Finset { x // ¬x ∈ a } ⊢ Disjoint (image (fun i => ↑i) b) s [PROOFSTEP] refine' disjoint_left.2 fun i hi his => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a✝ a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 o : Set α ho : o ∈ 𝓝 0 o_closed : IsClosed o oe : o ⊆ e s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ o a : Finset β sa : s ⊆ a A : Summable fun b => f ↑b b : Finset { x // ¬x ∈ a } i : β hi : i ∈ image (fun i => ↑i) b his : i ∈ s ⊢ False [PROOFSTEP] rcases mem_image.1 hi with ⟨i', _, rfl⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a✝ a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 o : Set α ho : o ∈ 𝓝 0 o_closed : IsClosed o oe : o ⊆ e s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ o a : Finset β sa : s ⊆ a A : Summable fun b => f ↑b b : Finset { x // ¬x ∈ a } i' : { x // ¬x ∈ a } left✝ : i' ∈ b hi : ↑i' ∈ image (fun i => ↑i) b his : ↑i' ∈ s ⊢ False [PROOFSTEP] exact i'.2 (sa his) [GOAL] case pos.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a✝ a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 o : Set α ho : o ∈ 𝓝 0 o_closed : IsClosed o oe : o ⊆ e s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ o a : Finset β sa : s ⊆ a A : Summable fun b => f ↑b b : Finset { x // ¬x ∈ a } this : Disjoint (image (fun i => ↑i) b) s ⊢ ∑ b in b, (fun b => f ↑b) b ∈ o [PROOFSTEP] convert hs _ this using 1 [GOAL] case h.e'_4 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a✝ a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 o : Set α ho : o ∈ 𝓝 0 o_closed : IsClosed o oe : o ⊆ e s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ o a : Finset β sa : s ⊆ a A : Summable fun b => f ↑b b : Finset { x // ¬x ∈ a } this : Disjoint (image (fun i => ↑i) b) s ⊢ ∑ b in b, (fun b => f ↑b) b = ∑ b in image (fun i => ↑i) b, f b [PROOFSTEP] rw [sum_image] [GOAL] case h.e'_4 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a✝ a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 o : Set α ho : o ∈ 𝓝 0 o_closed : IsClosed o oe : o ⊆ e s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ o a : Finset β sa : s ⊆ a A : Summable fun b => f ↑b b : Finset { x // ¬x ∈ a } this : Disjoint (image (fun i => ↑i) b) s ⊢ ∀ (x : { x // ¬x ∈ a }), x ∈ b → ∀ (y : { x // ¬x ∈ a }), y ∈ b → ↑x = ↑y → x = y [PROOFSTEP] intro i _ j _ hij [GOAL] case h.e'_4 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a✝² a₁ a₂ : α f : β → α H : Summable f e : Set α he : e ∈ 𝓝 0 o : Set α ho : o ∈ 𝓝 0 o_closed : IsClosed o oe : o ⊆ e s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ o a : Finset β sa : s ⊆ a A : Summable fun b => f ↑b b : Finset { x // ¬x ∈ a } this : Disjoint (image (fun i => ↑i) b) s i : { x // ¬x ∈ a } a✝¹ : i ∈ b j : { x // ¬x ∈ a } a✝ : j ∈ b hij : ↑i = ↑j ⊢ i = j [PROOFSTEP] exact Subtype.ext hij [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a a₁ a₂ : α f : β → α H : ¬Summable f ⊢ Tendsto (fun s => ∑' (b : { x // ¬x ∈ s }), f ↑b) atTop (𝓝 0) [PROOFSTEP] convert tendsto_const_nhds (α := α) (β := Finset β) (f := atTop) (a := 0) [GOAL] case h.e'_3.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a a₁ a₂ : α f : β → α H : ¬Summable f x✝ : Finset β ⊢ ∑' (b : { x // ¬x ∈ x✝ }), f ↑b = 0 [PROOFSTEP] apply tsum_eq_zero_of_not_summable [GOAL] case h.e'_3.h.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommGroup α inst✝¹ : UniformSpace α inst✝ : UniformAddGroup α f✝ g : β → α a a₁ a₂ : α f : β → α H : ¬Summable f x✝ : Finset β ⊢ ¬Summable fun b => f ↑b [PROOFSTEP] rwa [Finset.summable_compl_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α f g : β → α a a₁ a₂ : α inst✝ : CompleteSpace α ⊢ Summable f ↔ ∀ (e : Set α), e ∈ 𝓝 0 → ∃ s, ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e [PROOFSTEP] rw [summable_iff_cauchySeq_finset, cauchySeq_finset_iff_vanishing] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α f g : β → α a a₁ a₂ : α inst✝ : CompleteSpace α hf : Summable f h : ∀ (b : β), g b = 0 ∨ g b = f b e : Set α he : e ∈ 𝓝 0 s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e t : Finset β ht : Disjoint t s ⊢ ∑ b in filter (fun b => g b = f b) t, g b = ∑ b in t, g b [PROOFSTEP] { refine' Finset.sum_subset (Finset.filter_subset _ _) _ intro b hbt hb simp only [Finset.mem_filter, and_iff_right hbt] at hb exact (h b).resolve_right hb } [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α f g : β → α a a₁ a₂ : α inst✝ : CompleteSpace α hf : Summable f h : ∀ (b : β), g b = 0 ∨ g b = f b e : Set α he : e ∈ 𝓝 0 s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e t : Finset β ht : Disjoint t s ⊢ ∑ b in filter (fun b => g b = f b) t, g b = ∑ b in t, g b [PROOFSTEP] refine' Finset.sum_subset (Finset.filter_subset _ _) _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α f g : β → α a a₁ a₂ : α inst✝ : CompleteSpace α hf : Summable f h : ∀ (b : β), g b = 0 ∨ g b = f b e : Set α he : e ∈ 𝓝 0 s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e t : Finset β ht : Disjoint t s ⊢ ∀ (x : β), x ∈ t → ¬x ∈ filter (fun b => g b = f b) t → g x = 0 [PROOFSTEP] intro b hbt hb [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α f g : β → α a a₁ a₂ : α inst✝ : CompleteSpace α hf : Summable f h : ∀ (b : β), g b = 0 ∨ g b = f b e : Set α he : e ∈ 𝓝 0 s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e t : Finset β ht : Disjoint t s b : β hbt : b ∈ t hb : ¬b ∈ filter (fun b => g b = f b) t ⊢ g b = 0 [PROOFSTEP] simp only [Finset.mem_filter, and_iff_right hbt] at hb [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α f g : β → α a a₁ a₂ : α inst✝ : CompleteSpace α hf : Summable f h : ∀ (b : β), g b = 0 ∨ g b = f b e : Set α he : e ∈ 𝓝 0 s : Finset β hs : ∀ (t : Finset β), Disjoint t s → ∑ b in t, f b ∈ e t : Finset β ht : Disjoint t s b : β hbt : b ∈ t hb : ¬g b = f b ⊢ g b = 0 [PROOFSTEP] exact (h b).resolve_right hb [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommGroup α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α f g : β → α a a₁ a₂ : α inst✝ : CompleteSpace α i : γ → β hf : Summable f hi : Injective i ⊢ Summable (f ∘ i) [PROOFSTEP] simpa only [Set.indicator_range_comp] using (hi.summable_iff (fun x hx => Set.indicator_of_not_mem hx _)).2 (hf.indicator (Set.range i)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommGroup α inst✝³ : UniformSpace α inst✝² : UniformAddGroup α f✝ g : β → α a a₁ a₂ : α inst✝¹ : CompleteSpace α inst✝ : T2Space α f : β → α hf : Summable f s : Finset β ⊢ ∑ x in s, f x + ∑' (x : { x // ¬x ∈ s }), f ↑x = ∑' (x : β), f x [PROOFSTEP] rw [← tsum_subtype_add_tsum_subtype_compl hf s] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommGroup α inst✝³ : UniformSpace α inst✝² : UniformAddGroup α f✝ g : β → α a a₁ a₂ : α inst✝¹ : CompleteSpace α inst✝ : T2Space α f : β → α hf : Summable f s : Finset β ⊢ ∑ x in s, f x + ∑' (x : { x // ¬x ∈ s }), f ↑x = ∑' (x : ↑↑s), f ↑x + ∑' (x : ↑(↑s)ᶜ), f ↑x [PROOFSTEP] simp only [Finset.tsum_subtype', add_right_inj] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommGroup α inst✝³ : UniformSpace α inst✝² : UniformAddGroup α f✝ g : β → α a a₁ a₂ : α inst✝¹ : CompleteSpace α inst✝ : T2Space α f : β → α hf : Summable f s : Finset β ⊢ ∑' (x : { x // ¬x ∈ s }), f ↑x = ∑' (x : ↑(↑s)ᶜ), f ↑x [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝² : TopologicalSpace G inst✝¹ : AddCommGroup G inst✝ : TopologicalAddGroup G f : α → G hf : Summable f e : Set G he : e ∈ 𝓝 0 ⊢ ∃ s, ∀ (t : Finset α), Disjoint t s → ∑ k in t, f k ∈ e [PROOFSTEP] letI : UniformSpace G := TopologicalAddGroup.toUniformSpace G [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝² : TopologicalSpace G inst✝¹ : AddCommGroup G inst✝ : TopologicalAddGroup G f : α → G hf : Summable f e : Set G he : e ∈ 𝓝 0 this : UniformSpace G := TopologicalAddGroup.toUniformSpace G ⊢ ∃ s, ∀ (t : Finset α), Disjoint t s → ∑ k in t, f k ∈ e [PROOFSTEP] letI : UniformAddGroup G := comm_topologicalAddGroup_is_uniform [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝² : TopologicalSpace G inst✝¹ : AddCommGroup G inst✝ : TopologicalAddGroup G f : α → G hf : Summable f e : Set G he : e ∈ 𝓝 0 this✝ : UniformSpace G := TopologicalAddGroup.toUniformSpace G this : UniformAddGroup G := comm_topologicalAddGroup_is_uniform ⊢ ∃ s, ∀ (t : Finset α), Disjoint t s → ∑ k in t, f k ∈ e [PROOFSTEP] rcases hf with ⟨y, hy⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝² : TopologicalSpace G inst✝¹ : AddCommGroup G inst✝ : TopologicalAddGroup G f : α → G e : Set G he : e ∈ 𝓝 0 this✝ : UniformSpace G := TopologicalAddGroup.toUniformSpace G this : UniformAddGroup G := comm_topologicalAddGroup_is_uniform y : G hy : HasSum f y ⊢ ∃ s, ∀ (t : Finset α), Disjoint t s → ∑ k in t, f k ∈ e [PROOFSTEP] exact cauchySeq_finset_iff_vanishing.1 hy.cauchySeq e he [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝² : TopologicalSpace G inst✝¹ : AddCommGroup G inst✝ : TopologicalAddGroup G f : α → G hf : Summable f ⊢ Tendsto f cofinite (𝓝 0) [PROOFSTEP] intro e he [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝² : TopologicalSpace G inst✝¹ : AddCommGroup G inst✝ : TopologicalAddGroup G f : α → G hf : Summable f e : Set G he : e ∈ 𝓝 0 ⊢ e ∈ Filter.map f cofinite [PROOFSTEP] rw [Filter.mem_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝² : TopologicalSpace G inst✝¹ : AddCommGroup G inst✝ : TopologicalAddGroup G f : α → G hf : Summable f e : Set G he : e ∈ 𝓝 0 ⊢ f ⁻¹' e ∈ cofinite [PROOFSTEP] rcases hf.vanishing he with ⟨s, hs⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝² : TopologicalSpace G inst✝¹ : AddCommGroup G inst✝ : TopologicalAddGroup G f : α → G hf : Summable f e : Set G he : e ∈ 𝓝 0 s : Finset α hs : ∀ (t : Finset α), Disjoint t s → ∑ k in t, f k ∈ e ⊢ f ⁻¹' e ∈ cofinite [PROOFSTEP] refine' s.eventually_cofinite_nmem.mono fun x hx => _ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝² : TopologicalSpace G inst✝¹ : AddCommGroup G inst✝ : TopologicalAddGroup G f : α → G hf : Summable f e : Set G he : e ∈ 𝓝 0 s : Finset α hs : ∀ (t : Finset α), Disjoint t s → ∑ k in t, f k ∈ e x : α hx : ¬x ∈ s ⊢ f x ∈ e [PROOFSTEP] simpa using hs { x } (disjoint_singleton_left.2 hx) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝² : TopologicalSpace G inst✝¹ : AddCommGroup G inst✝ : TopologicalAddGroup G f✝ : α → G f : ℕ → G hf : Summable f ⊢ Tendsto f atTop (𝓝 0) [PROOFSTEP] rw [← Nat.cofinite_eq_atTop] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝² : TopologicalSpace G inst✝¹ : AddCommGroup G inst✝ : TopologicalAddGroup G f✝ : α → G f : ℕ → G hf : Summable f ⊢ Tendsto f cofinite (𝓝 0) [PROOFSTEP] exact hf.tendsto_cofinite_zero [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝⁴ : TopologicalSpace G inst✝³ : AddCommGroup G inst✝² : TopologicalAddGroup G f : α → G inst✝¹ : TopologicalSpace.FirstCountableTopology G inst✝ : T1Space G hf : Summable f ⊢ Set.Countable (support f) [PROOFSTEP] simpa only [sInter_sets_nhds] using hf.tendsto_cofinite_zero.countable_compl_preimage_sInter_sets [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α inst✝¹ : AddCommMonoid γ inst✝ : TopologicalSpace γ f : β → α g : β → γ a : α b : γ hf : HasSum f a hg : HasSum g b ⊢ HasSum (fun x => (f x, g x)) (a, b) [PROOFSTEP] simp [HasSum, ← prod_mk_sum, Filter.Tendsto.prod_mk_nhds hf hg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Type u_5 π : α → Type u_6 inst✝¹ : (x : α) → AddCommMonoid (π x) inst✝ : (x : α) → TopologicalSpace (π x) f : ι → (x : α) → π x g : (x : α) → π x ⊢ HasSum f g ↔ ∀ (x : α), HasSum (fun i => f i x) (g x) [PROOFSTEP] simp only [HasSum, tendsto_pi_nhds, sum_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Type u_5 π : α → Type u_6 inst✝¹ : (x : α) → AddCommMonoid (π x) inst✝ : (x : α) → TopologicalSpace (π x) f : ι → (x : α) → π x ⊢ Summable f ↔ ∀ (x : α), Summable fun i => f i x [PROOFSTEP] simp only [Summable, Pi.hasSum, skolem] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f : β → α a : α inst✝ : T2Space α ⊢ ∑' (x : β), op (f x) = op (∑' (x : β), f x) [PROOFSTEP] by_cases h : Summable f [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f : β → α a : α inst✝ : T2Space α h : Summable f ⊢ ∑' (x : β), op (f x) = op (∑' (x : β), f x) [PROOFSTEP] exact h.hasSum.op.tsum_eq [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f : β → α a : α inst✝ : T2Space α h : ¬Summable f ⊢ ∑' (x : β), op (f x) = op (∑' (x : β), f x) [PROOFSTEP] have ho := summable_op.not.mpr h [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝² : AddCommMonoid α inst✝¹ : TopologicalSpace α f : β → α a : α inst✝ : T2Space α h : ¬Summable f ho : ¬Summable fun a => op (f a) ⊢ ∑' (x : β), op (f x) = op (∑' (x : β), f x) [PROOFSTEP] rw [tsum_eq_zero_of_not_summable h, tsum_eq_zero_of_not_summable ho, MulOpposite.op_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α inst✝¹ : StarAddMonoid α inst✝ : ContinuousStar α f : β → α a : α h : HasSum f a ⊢ HasSum (fun b => Star.star (f b)) (Star.star a) [PROOFSTEP] simpa only using h.map (starAddEquiv : α ≃+ α) continuous_star [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : AddCommMonoid α inst✝² : TopologicalSpace α inst✝¹ : StarAddMonoid α inst✝ : ContinuousStar α f : β → α a : α hf : Summable fun b => Star.star (f b) ⊢ Summable f [PROOFSTEP] simpa only [star_star] using hf.star [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α inst✝² : StarAddMonoid α inst✝¹ : ContinuousStar α f : β → α a : α inst✝ : T2Space α ⊢ star (∑' (b : β), f b) = ∑' (b : β), star (f b) [PROOFSTEP] by_cases hf : Summable f [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α inst✝² : StarAddMonoid α inst✝¹ : ContinuousStar α f : β → α a : α inst✝ : T2Space α hf : Summable f ⊢ star (∑' (b : β), f b) = ∑' (b : β), star (f b) [PROOFSTEP] exact hf.hasSum.star.tsum_eq.symm [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : AddCommMonoid α inst✝³ : TopologicalSpace α inst✝² : StarAddMonoid α inst✝¹ : ContinuousStar α f : β → α a : α inst✝ : T2Space α hf : ¬Summable f ⊢ star (∑' (b : β), f b) = ∑' (b : β), star (f b) [PROOFSTEP] rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable (mt Summable.ofStar hf), star_zero]
{"mathlib_filename": "Mathlib.Topology.Algebra.InfiniteSum.Basic", "llama_tokens": 75911}
[GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ⊢ t = UniformSpace.toTopologicalSpace [PROOFSTEP] refine' TopologicalAddGroup.ext h₁ inferInstance (le_antisymm _ _) [GOAL] case refine'_1 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ⊢ nhds 0 ≤ nhds 0 [PROOFSTEP] rw [Metric.nhds_basis_closedBall.ge_iff] -- Let `ε > 0`. Since `𝕜` is nontrivially normed, we have `0 < ‖ξ₀‖ < ε` for some `ξ₀ : 𝕜`. [GOAL] case refine'_1 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ⊢ ∀ (i' : ℝ), 0 < i' → Metric.closedBall 0 i' ∈ nhds 0 [PROOFSTEP] intro ε hε [GOAL] case refine'_1 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ⊢ Metric.closedBall 0 ε ∈ nhds 0 [PROOFSTEP] rcases NormedField.exists_norm_lt 𝕜 hε with ⟨ξ₀, hξ₀, hξ₀ε⟩ -- Since `ξ₀ ≠ 0` and `𝓣` is T2, we know that `{ξ₀}ᶜ` is a `𝓣`-neighborhood of 0. -- Porting note: added `mem_compl_singleton_iff.mpr` [GOAL] case refine'_1.intro.intro 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε ⊢ Metric.closedBall 0 ε ∈ nhds 0 [PROOFSTEP] have : { ξ₀ }ᶜ ∈ @nhds 𝕜 t 0 := IsOpen.mem_nhds isOpen_compl_singleton <| mem_compl_singleton_iff.mpr <| Ne.symm <| norm_ne_zero_iff.mp hξ₀.ne.symm [GOAL] case refine'_1.intro.intro 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε this : {ξ₀}ᶜ ∈ nhds 0 ⊢ Metric.closedBall 0 ε ∈ nhds 0 [PROOFSTEP] have : balancedCore 𝕜 { ξ₀ }ᶜ ∈ @nhds 𝕜 t 0 := balancedCore_mem_nhds_zero this [GOAL] case refine'_1.intro.intro 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε this✝ : {ξ₀}ᶜ ∈ nhds 0 this : balancedCore 𝕜 {ξ₀}ᶜ ∈ nhds 0 ⊢ Metric.closedBall 0 ε ∈ nhds 0 [PROOFSTEP] refine' mem_of_superset this fun ξ hξ => _ -- Let `ξ ∈ 𝓑`. We want to show `‖ξ‖ < ε`. If `ξ = 0`, this is trivial. [GOAL] case refine'_1.intro.intro 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε this✝ : {ξ₀}ᶜ ∈ nhds 0 this : balancedCore 𝕜 {ξ₀}ᶜ ∈ nhds 0 ξ : 𝕜 hξ : ξ ∈ balancedCore 𝕜 {ξ₀}ᶜ ⊢ ξ ∈ Metric.closedBall 0 ε [PROOFSTEP] by_cases hξ0 : ξ = 0 [GOAL] case pos 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε this✝ : {ξ₀}ᶜ ∈ nhds 0 this : balancedCore 𝕜 {ξ₀}ᶜ ∈ nhds 0 ξ : 𝕜 hξ : ξ ∈ balancedCore 𝕜 {ξ₀}ᶜ hξ0 : ξ = 0 ⊢ ξ ∈ Metric.closedBall 0 ε [PROOFSTEP] rw [hξ0] [GOAL] case pos 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε this✝ : {ξ₀}ᶜ ∈ nhds 0 this : balancedCore 𝕜 {ξ₀}ᶜ ∈ nhds 0 ξ : 𝕜 hξ : ξ ∈ balancedCore 𝕜 {ξ₀}ᶜ hξ0 : ξ = 0 ⊢ 0 ∈ Metric.closedBall 0 ε [PROOFSTEP] exact Metric.mem_closedBall_self hε.le [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε this✝ : {ξ₀}ᶜ ∈ nhds 0 this : balancedCore 𝕜 {ξ₀}ᶜ ∈ nhds 0 ξ : 𝕜 hξ : ξ ∈ balancedCore 𝕜 {ξ₀}ᶜ hξ0 : ¬ξ = 0 ⊢ ξ ∈ Metric.closedBall 0 ε [PROOFSTEP] rw [mem_closedBall_zero_iff] -- Now suppose `ξ ≠ 0`. By contradiction, let's assume `ε < ‖ξ‖`, and show that -- `ξ₀ ∈ 𝓑 ⊆ {ξ₀}ᶜ`, which is a contradiction. [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε this✝ : {ξ₀}ᶜ ∈ nhds 0 this : balancedCore 𝕜 {ξ₀}ᶜ ∈ nhds 0 ξ : 𝕜 hξ : ξ ∈ balancedCore 𝕜 {ξ₀}ᶜ hξ0 : ¬ξ = 0 ⊢ ‖ξ‖ ≤ ε [PROOFSTEP] by_contra' h [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε this✝ : {ξ₀}ᶜ ∈ nhds 0 this : balancedCore 𝕜 {ξ₀}ᶜ ∈ nhds 0 ξ : 𝕜 hξ : ξ ∈ balancedCore 𝕜 {ξ₀}ᶜ hξ0 : ¬ξ = 0 h : ε < ‖ξ‖ ⊢ False [PROOFSTEP] suffices (ξ₀ * ξ⁻¹) • ξ ∈ balancedCore 𝕜 { ξ₀ }ᶜ by rw [smul_eq_mul 𝕜, mul_assoc, inv_mul_cancel hξ0, mul_one] at this exact not_mem_compl_iff.mpr (mem_singleton ξ₀) ((balancedCore_subset _) this) -- For that, we use that `𝓑` is balanced : since `‖ξ₀‖ < ε < ‖ξ‖`, we have `‖ξ₀ / ξ‖ ≤ 1`, -- hence `ξ₀ = (ξ₀ / ξ) • ξ ∈ 𝓑` because `ξ ∈ 𝓑`. [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε this✝¹ : {ξ₀}ᶜ ∈ nhds 0 this✝ : balancedCore 𝕜 {ξ₀}ᶜ ∈ nhds 0 ξ : 𝕜 hξ : ξ ∈ balancedCore 𝕜 {ξ₀}ᶜ hξ0 : ¬ξ = 0 h : ε < ‖ξ‖ this : (ξ₀ * ξ⁻¹) • ξ ∈ balancedCore 𝕜 {ξ₀}ᶜ ⊢ False [PROOFSTEP] rw [smul_eq_mul 𝕜, mul_assoc, inv_mul_cancel hξ0, mul_one] at this [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε this✝¹ : {ξ₀}ᶜ ∈ nhds 0 this✝ : balancedCore 𝕜 {ξ₀}ᶜ ∈ nhds 0 ξ : 𝕜 hξ : ξ ∈ balancedCore 𝕜 {ξ₀}ᶜ hξ0 : ¬ξ = 0 h : ε < ‖ξ‖ this : ξ₀ ∈ balancedCore 𝕜 {ξ₀}ᶜ ⊢ False [PROOFSTEP] exact not_mem_compl_iff.mpr (mem_singleton ξ₀) ((balancedCore_subset _) this) -- For that, we use that `𝓑` is balanced : since `‖ξ₀‖ < ε < ‖ξ‖`, we have `‖ξ₀ / ξ‖ ≤ 1`, -- hence `ξ₀ = (ξ₀ / ξ) • ξ ∈ 𝓑` because `ξ ∈ 𝓑`. [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε this✝ : {ξ₀}ᶜ ∈ nhds 0 this : balancedCore 𝕜 {ξ₀}ᶜ ∈ nhds 0 ξ : 𝕜 hξ : ξ ∈ balancedCore 𝕜 {ξ₀}ᶜ hξ0 : ¬ξ = 0 h : ε < ‖ξ‖ ⊢ (ξ₀ * ξ⁻¹) • ξ ∈ balancedCore 𝕜 {ξ₀}ᶜ [PROOFSTEP] refine' (balancedCore_balanced _).smul_mem _ hξ [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε this✝ : {ξ₀}ᶜ ∈ nhds 0 this : balancedCore 𝕜 {ξ₀}ᶜ ∈ nhds 0 ξ : 𝕜 hξ : ξ ∈ balancedCore 𝕜 {ξ₀}ᶜ hξ0 : ¬ξ = 0 h : ε < ‖ξ‖ ⊢ ‖ξ₀ * ξ⁻¹‖ ≤ 1 [PROOFSTEP] rw [norm_mul, norm_inv, mul_inv_le_iff (norm_pos_iff.mpr hξ0), mul_one] [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ε : ℝ hε : 0 < ε ξ₀ : 𝕜 hξ₀ : 0 < ‖ξ₀‖ hξ₀ε : ‖ξ₀‖ < ε this✝ : {ξ₀}ᶜ ∈ nhds 0 this : balancedCore 𝕜 {ξ₀}ᶜ ∈ nhds 0 ξ : 𝕜 hξ : ξ ∈ balancedCore 𝕜 {ξ₀}ᶜ hξ0 : ¬ξ = 0 h : ε < ‖ξ‖ ⊢ ‖ξ₀‖ ≤ ‖ξ‖ [PROOFSTEP] exact (hξ₀ε.trans h).le [GOAL] case refine'_2 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ⊢ nhds 0 ≤ nhds 0 [PROOFSTEP] calc @nhds 𝕜 hnorm.toUniformSpace.toTopologicalSpace 0 = map id (@nhds 𝕜 hnorm.toUniformSpace.toTopologicalSpace 0) := map_id.symm _ = map (fun x => id x • (1 : 𝕜)) (@nhds 𝕜 hnorm.toUniformSpace.toTopologicalSpace 0) := by conv_rhs => congr ext rw [smul_eq_mul, mul_one] _ ≤ @nhds 𝕜 t ((0 : 𝕜) • (1 : 𝕜)) := (@Tendsto.smul_const _ _ _ hnorm.toUniformSpace.toTopologicalSpace t _ _ _ _ _ tendsto_id (1 : 𝕜)) _ = @nhds 𝕜 t 0 := by rw [zero_smul] [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ⊢ map id (nhds 0) = map (fun x => id x • 1) (nhds 0) [PROOFSTEP] conv_rhs => congr ext rw [smul_eq_mul, mul_one] [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 | map (fun x => id x • 1) (nhds 0) [PROOFSTEP] congr ext rw [smul_eq_mul, mul_one] [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 | map (fun x => id x • 1) (nhds 0) [PROOFSTEP] congr ext rw [smul_eq_mul, mul_one] [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 | map (fun x => id x • 1) (nhds 0) [PROOFSTEP] congr [GOAL] case m 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 | fun x => id x • 1 case f 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 | nhds 0 [PROOFSTEP] ext [GOAL] case m.h 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 x✝ : 𝕜 | id x✝ • 1 case f 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 | nhds 0 [PROOFSTEP] rw [smul_eq_mul, mul_one] [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' t : TopologicalSpace 𝕜 h₁ : TopologicalAddGroup 𝕜 h₂ : ContinuousSMul 𝕜 𝕜 h₃ : T2Space 𝕜 ⊢ nhds (0 • 1) = nhds 0 [PROOFSTEP] rw [zero_smul] [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) ⊢ Continuous ↑l [PROOFSTEP] by_cases H : finrank 𝕜 (LinearMap.range l) = 0 [GOAL] case pos 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : finrank 𝕜 { x // x ∈ range l } = 0 ⊢ Continuous ↑l [PROOFSTEP] rw [finrank_eq_zero, LinearMap.range_eq_bot] at H [GOAL] case pos 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : l = 0 ⊢ Continuous ↑l [PROOFSTEP] rw [H] [GOAL] case pos 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : l = 0 ⊢ Continuous ↑0 [PROOFSTEP] exact continuous_zero [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 ⊢ Continuous ↑l [PROOFSTEP] have : finrank 𝕜 (LinearMap.range l) = 1 := le_antisymm (finrank_self 𝕜 ▸ l.range.finrank_le) (zero_lt_iff.mpr H) [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 ⊢ Continuous ↑l [PROOFSTEP] have hi : Function.Injective ((LinearMap.ker l).liftQ l (le_refl _)) := by rw [← LinearMap.ker_eq_bot] exact Submodule.ker_liftQ_eq_bot _ _ _ (le_refl _) [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 ⊢ Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) [PROOFSTEP] rw [← LinearMap.ker_eq_bot] [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 ⊢ ker (Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) = ⊥ [PROOFSTEP] exact Submodule.ker_liftQ_eq_bot _ _ _ (le_refl _) [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ⊢ Continuous ↑l [PROOFSTEP] have hs : Function.Surjective ((LinearMap.ker l).liftQ l (le_refl _)) := by rw [← LinearMap.range_eq_top, Submodule.range_liftQ] exact Submodule.eq_top_of_finrank_eq ((finrank_self 𝕜).symm ▸ this) [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ⊢ Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) [PROOFSTEP] rw [← LinearMap.range_eq_top, Submodule.range_liftQ] [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ⊢ range l = ⊤ [PROOFSTEP] exact Submodule.eq_top_of_finrank_eq ((finrank_self 𝕜).symm ▸ this) [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) hs : Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ⊢ Continuous ↑l [PROOFSTEP] let φ : (E ⧸ LinearMap.ker l) ≃ₗ[𝕜] 𝕜 := LinearEquiv.ofBijective ((LinearMap.ker l).liftQ l (le_refl _)) ⟨hi, hs⟩ [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) hs : Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) φ : (E ⧸ ker l) ≃ₗ[𝕜] 𝕜 := LinearEquiv.ofBijective (Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) (_ : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ∧ Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l))) ⊢ Continuous ↑l [PROOFSTEP] have hlφ : (l : E → 𝕜) = φ ∘ (LinearMap.ker l).mkQ := by ext; rfl -- Since the quotient map `E →ₗ[𝕜] (E ⧸ l.ker)` is continuous, the continuity of `l` will follow -- form the continuity of `φ`. [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) hs : Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) φ : (E ⧸ ker l) ≃ₗ[𝕜] 𝕜 := LinearEquiv.ofBijective (Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) (_ : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ∧ Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l))) ⊢ ↑l = ↑φ ∘ ↑(Submodule.mkQ (ker l)) [PROOFSTEP] ext [GOAL] case h 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) hs : Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) φ : (E ⧸ ker l) ≃ₗ[𝕜] 𝕜 := LinearEquiv.ofBijective (Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) (_ : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ∧ Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l))) x✝ : E ⊢ ↑l x✝ = (↑φ ∘ ↑(Submodule.mkQ (ker l))) x✝ [PROOFSTEP] rfl -- Since the quotient map `E →ₗ[𝕜] (E ⧸ l.ker)` is continuous, the continuity of `l` will follow -- form the continuity of `φ`. [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) hs : Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) φ : (E ⧸ ker l) ≃ₗ[𝕜] 𝕜 := LinearEquiv.ofBijective (Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) (_ : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ∧ Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l))) hlφ : ↑l = ↑φ ∘ ↑(Submodule.mkQ (ker l)) ⊢ Continuous ↑l [PROOFSTEP] suffices Continuous φ.toEquiv by rw [hlφ] exact this.comp continuous_quot_mk [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this✝ : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) hs : Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) φ : (E ⧸ ker l) ≃ₗ[𝕜] 𝕜 := LinearEquiv.ofBijective (Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) (_ : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ∧ Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l))) hlφ : ↑l = ↑φ ∘ ↑(Submodule.mkQ (ker l)) this : Continuous ↑(LinearEquiv.toEquiv φ) ⊢ Continuous ↑l [PROOFSTEP] rw [hlφ] [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this✝ : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) hs : Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) φ : (E ⧸ ker l) ≃ₗ[𝕜] 𝕜 := LinearEquiv.ofBijective (Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) (_ : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ∧ Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l))) hlφ : ↑l = ↑φ ∘ ↑(Submodule.mkQ (ker l)) this : Continuous ↑(LinearEquiv.toEquiv φ) ⊢ Continuous (↑φ ∘ ↑(Submodule.mkQ (ker l))) [PROOFSTEP] exact this.comp continuous_quot_mk [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) hs : Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) φ : (E ⧸ ker l) ≃ₗ[𝕜] 𝕜 := LinearEquiv.ofBijective (Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) (_ : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ∧ Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l))) hlφ : ↑l = ↑φ ∘ ↑(Submodule.mkQ (ker l)) ⊢ Continuous ↑(LinearEquiv.toEquiv φ) [PROOFSTEP] have : induced φ.toEquiv.symm inferInstance = hnorm.toUniformSpace.toTopologicalSpace := by refine' unique_topology_of_t2 (topologicalAddGroup_induced φ.symm.toLinearMap) (continuousSMul_induced φ.symm.toLinearMap) _ -- Porting note: was `rw [t2Space_iff]` refine (@t2Space_iff 𝕜 (induced (↑(LinearEquiv.toEquiv φ).symm) inferInstance)).mpr ?_ exact fun x y hxy => @separated_by_continuous _ _ (induced _ _) _ _ _ continuous_induced_dom _ _ (φ.toEquiv.symm.injective.ne hxy) -- Finally, the pullback by `φ.symm` is exactly the pushforward by `φ`, so we have to prove -- that `φ` is continuous when `𝕜` is endowed with the pushforward by `φ` of the quotient -- topology, which is trivial by definition of the pushforward. [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) hs : Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) φ : (E ⧸ ker l) ≃ₗ[𝕜] 𝕜 := LinearEquiv.ofBijective (Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) (_ : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ∧ Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l))) hlφ : ↑l = ↑φ ∘ ↑(Submodule.mkQ (ker l)) ⊢ induced (↑(LinearEquiv.toEquiv φ).symm) inferInstance = UniformSpace.toTopologicalSpace [PROOFSTEP] refine' unique_topology_of_t2 (topologicalAddGroup_induced φ.symm.toLinearMap) (continuousSMul_induced φ.symm.toLinearMap) _ -- Porting note: was `rw [t2Space_iff]` [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) hs : Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) φ : (E ⧸ ker l) ≃ₗ[𝕜] 𝕜 := LinearEquiv.ofBijective (Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) (_ : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ∧ Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l))) hlφ : ↑l = ↑φ ∘ ↑(Submodule.mkQ (ker l)) ⊢ T2Space 𝕜 [PROOFSTEP] refine (@t2Space_iff 𝕜 (induced (↑(LinearEquiv.toEquiv φ).symm) inferInstance)).mpr ?_ [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) hs : Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) φ : (E ⧸ ker l) ≃ₗ[𝕜] 𝕜 := LinearEquiv.ofBijective (Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) (_ : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ∧ Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l))) hlφ : ↑l = ↑φ ∘ ↑(Submodule.mkQ (ker l)) ⊢ ∀ (x y : 𝕜), x ≠ y → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ y ∈ v ∧ Disjoint u v [PROOFSTEP] exact fun x y hxy => @separated_by_continuous _ _ (induced _ _) _ _ _ continuous_induced_dom _ _ (φ.toEquiv.symm.injective.ne hxy) -- Finally, the pullback by `φ.symm` is exactly the pushforward by `φ`, so we have to prove -- that `φ` is continuous when `𝕜` is endowed with the pushforward by `φ` of the quotient -- topology, which is trivial by definition of the pushforward. [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this✝ : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) hs : Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) φ : (E ⧸ ker l) ≃ₗ[𝕜] 𝕜 := LinearEquiv.ofBijective (Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) (_ : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ∧ Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l))) hlφ : ↑l = ↑φ ∘ ↑(Submodule.mkQ (ker l)) this : induced (↑(LinearEquiv.toEquiv φ).symm) inferInstance = UniformSpace.toTopologicalSpace ⊢ Continuous ↑(LinearEquiv.toEquiv φ) [PROOFSTEP] rw [this.symm, Equiv.induced_symm] [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 hl : IsClosed ↑(ker l) H : ¬finrank 𝕜 { x // x ∈ range l } = 0 this✝ : finrank 𝕜 { x // x ∈ range l } = 1 hi : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) hs : Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) φ : (E ⧸ ker l) ≃ₗ[𝕜] 𝕜 := LinearEquiv.ofBijective (Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) (_ : Function.Injective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l)) ∧ Function.Surjective ↑(Submodule.liftQ (ker l) l (_ : ker l ≤ ker l))) hlφ : ↑l = ↑φ ∘ ↑(Submodule.mkQ (ker l)) this : induced (↑(LinearEquiv.toEquiv φ).symm) inferInstance = UniformSpace.toTopologicalSpace ⊢ Continuous ↑(LinearEquiv.toEquiv φ) [PROOFSTEP] exact continuous_coinduced_rng [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 s : Set E hs₁ : IsOpen s hs₂ : Set.Nonempty s hs₃ : ∀ (x : E), x ∈ s → ↑l x ≠ 0 ⊢ Continuous ↑l [PROOFSTEP] refine' l.continuous_of_isClosed_ker (l.isClosed_or_dense_ker.resolve_right fun hl => _) [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 s : Set E hs₁ : IsOpen s hs₂ : Set.Nonempty s hs₃ : ∀ (x : E), x ∈ s → ↑l x ≠ 0 hl : Dense ↑(ker l) ⊢ False [PROOFSTEP] rcases hs₂ with ⟨x, hx⟩ [GOAL] case intro 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 s : Set E hs₁ : IsOpen s hs₃ : ∀ (x : E), x ∈ s → ↑l x ≠ 0 hl : Dense ↑(ker l) x : E hx : x ∈ s ⊢ False [PROOFSTEP] have : x ∈ interior (LinearMap.ker l : Set E)ᶜ := by rw [mem_interior_iff_mem_nhds] exact mem_of_superset (hs₁.mem_nhds hx) hs₃ [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 s : Set E hs₁ : IsOpen s hs₃ : ∀ (x : E), x ∈ s → ↑l x ≠ 0 hl : Dense ↑(ker l) x : E hx : x ∈ s ⊢ x ∈ interior (↑(ker l))ᶜ [PROOFSTEP] rw [mem_interior_iff_mem_nhds] [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 s : Set E hs₁ : IsOpen s hs₃ : ∀ (x : E), x ∈ s → ↑l x ≠ 0 hl : Dense ↑(ker l) x : E hx : x ∈ s ⊢ (↑(ker l))ᶜ ∈ nhds x [PROOFSTEP] exact mem_of_superset (hs₁.mem_nhds hx) hs₃ [GOAL] case intro 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁴ : AddCommGroup E inst✝¹³ : Module 𝕜 E inst✝¹² : TopologicalSpace E inst✝¹¹ : TopologicalAddGroup E inst✝¹⁰ : ContinuousSMul 𝕜 E F : Type w inst✝⁹ : AddCommGroup F inst✝⁸ : Module 𝕜 F inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalAddGroup F inst✝⁵ : ContinuousSMul 𝕜 F F' : Type x inst✝⁴ : AddCommGroup F' inst✝³ : Module 𝕜 F' inst✝² : TopologicalSpace F' inst✝¹ : TopologicalAddGroup F' inst✝ : ContinuousSMul 𝕜 F' l : E →ₗ[𝕜] 𝕜 s : Set E hs₁ : IsOpen s hs₃ : ∀ (x : E), x ∈ s → ↑l x ≠ 0 hl : Dense ↑(ker l) x : E hx : x ∈ s this : x ∈ interior (↑(ker l))ᶜ ⊢ False [PROOFSTEP] rwa [hl.interior_compl] at this [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜 E inst✝¹⁴ : TopologicalSpace E inst✝¹³ : TopologicalAddGroup E inst✝¹² : ContinuousSMul 𝕜 E F : Type w inst✝¹¹ : AddCommGroup F inst✝¹⁰ : Module 𝕜 F inst✝⁹ : TopologicalSpace F inst✝⁸ : TopologicalAddGroup F inst✝⁷ : ContinuousSMul 𝕜 F F' : Type x inst✝⁶ : AddCommGroup F' inst✝⁵ : Module 𝕜 F' inst✝⁴ : TopologicalSpace F' inst✝³ : TopologicalAddGroup F' inst✝² : ContinuousSMul 𝕜 F' inst✝¹ : CompleteSpace 𝕜 ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E ⊢ Continuous ↑(Basis.equivFun ξ) [PROOFSTEP] letI : UniformSpace E := TopologicalAddGroup.toUniformSpace E [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜 E inst✝¹⁴ : TopologicalSpace E inst✝¹³ : TopologicalAddGroup E inst✝¹² : ContinuousSMul 𝕜 E F : Type w inst✝¹¹ : AddCommGroup F inst✝¹⁰ : Module 𝕜 F inst✝⁹ : TopologicalSpace F inst✝⁸ : TopologicalAddGroup F inst✝⁷ : ContinuousSMul 𝕜 F F' : Type x inst✝⁶ : AddCommGroup F' inst✝⁵ : Module 𝕜 F' inst✝⁴ : TopologicalSpace F' inst✝³ : TopologicalAddGroup F' inst✝² : ContinuousSMul 𝕜 F' inst✝¹ : CompleteSpace 𝕜 ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this : UniformSpace E := TopologicalAddGroup.toUniformSpace E ⊢ Continuous ↑(Basis.equivFun ξ) [PROOFSTEP] letI : UniformAddGroup E := comm_topologicalAddGroup_is_uniform [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜 E inst✝¹⁴ : TopologicalSpace E inst✝¹³ : TopologicalAddGroup E inst✝¹² : ContinuousSMul 𝕜 E F : Type w inst✝¹¹ : AddCommGroup F inst✝¹⁰ : Module 𝕜 F inst✝⁹ : TopologicalSpace F inst✝⁸ : TopologicalAddGroup F inst✝⁷ : ContinuousSMul 𝕜 F F' : Type x inst✝⁶ : AddCommGroup F' inst✝⁵ : Module 𝕜 F' inst✝⁴ : TopologicalSpace F' inst✝³ : TopologicalAddGroup F' inst✝² : ContinuousSMul 𝕜 F' inst✝¹ : CompleteSpace 𝕜 ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this : UniformAddGroup E := comm_topologicalAddGroup_is_uniform ⊢ Continuous ↑(Basis.equivFun ξ) [PROOFSTEP] letI : SeparatedSpace E := separated_iff_t2.mpr ht2 [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁶ : AddCommGroup E inst✝¹⁵ : Module 𝕜 E inst✝¹⁴ : TopologicalSpace E inst✝¹³ : TopologicalAddGroup E inst✝¹² : ContinuousSMul 𝕜 E F : Type w inst✝¹¹ : AddCommGroup F inst✝¹⁰ : Module 𝕜 F inst✝⁹ : TopologicalSpace F inst✝⁸ : TopologicalAddGroup F inst✝⁷ : ContinuousSMul 𝕜 F F' : Type x inst✝⁶ : AddCommGroup F' inst✝⁵ : Module 𝕜 F' inst✝⁴ : TopologicalSpace F' inst✝³ : TopologicalAddGroup F' inst✝² : ContinuousSMul 𝕜 F' inst✝¹ : CompleteSpace 𝕜 ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝¹ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 ⊢ Continuous ↑(Basis.equivFun ξ) [PROOFSTEP] induction' hn : Fintype.card ι with n IH generalizing ι E [GOAL] case zero 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁴ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝³ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝² : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝¹ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.zero ⊢ Continuous ↑(Basis.equivFun ξ) [PROOFSTEP] rw [Fintype.card_eq_zero_iff] at hn [GOAL] case zero 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁴ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝³ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝² : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝¹ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : IsEmpty ι ⊢ Continuous ↑(Basis.equivFun ξ) [PROOFSTEP] exact continuous_of_const fun x y => funext hn.elim [GOAL] case succ 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁴ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝³ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝² : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝¹ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n ⊢ Continuous ↑(Basis.equivFun ξ) [PROOFSTEP] haveI : FiniteDimensional 𝕜 E := of_fintype_basis ξ [GOAL] case succ 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E ⊢ Continuous ↑(Basis.equivFun ξ) [PROOFSTEP] have H₁ : ∀ s : Submodule 𝕜 E, finrank 𝕜 s = n → IsClosed (s : Set E) := by intro s s_dim letI : UniformAddGroup s := s.toAddSubgroup.uniformAddGroup let b := Basis.ofVectorSpace 𝕜 s have U : UniformEmbedding b.equivFun.symm.toEquiv := by have : Fintype.card (Basis.ofVectorSpaceIndex 𝕜 s) = n := by rw [← s_dim] exact (finrank_eq_card_basis b).symm have : Continuous b.equivFun := IH b this exact b.equivFun.symm.uniformEmbedding b.equivFun.symm.toLinearMap.continuous_on_pi this have : IsComplete (s : Set E) := completeSpace_coe_iff_isComplete.1 ((completeSpace_congr U).1 (by infer_instance)) exact this.isClosed [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E ⊢ ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s [PROOFSTEP] intro s s_dim [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E s : Submodule 𝕜 E s_dim : finrank 𝕜 { x // x ∈ s } = n ⊢ IsClosed ↑s [PROOFSTEP] letI : UniformAddGroup s := s.toAddSubgroup.uniformAddGroup [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁶ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁵ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁴ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝³ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝² : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝¹ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝ : FiniteDimensional 𝕜 E s : Submodule 𝕜 E s_dim : finrank 𝕜 { x // x ∈ s } = n this : UniformAddGroup { x // x ∈ s } := AddSubgroup.uniformAddGroup (Submodule.toAddSubgroup s) ⊢ IsClosed ↑s [PROOFSTEP] let b := Basis.ofVectorSpace 𝕜 s [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁶ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁵ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁴ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝³ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝² : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝¹ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝ : FiniteDimensional 𝕜 E s : Submodule 𝕜 E s_dim : finrank 𝕜 { x // x ∈ s } = n this : UniformAddGroup { x // x ∈ s } := AddSubgroup.uniformAddGroup (Submodule.toAddSubgroup s) b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s })) 𝕜 { x // x ∈ s } := Basis.ofVectorSpace 𝕜 { x // x ∈ s } ⊢ IsClosed ↑s [PROOFSTEP] have U : UniformEmbedding b.equivFun.symm.toEquiv := by have : Fintype.card (Basis.ofVectorSpaceIndex 𝕜 s) = n := by rw [← s_dim] exact (finrank_eq_card_basis b).symm have : Continuous b.equivFun := IH b this exact b.equivFun.symm.uniformEmbedding b.equivFun.symm.toLinearMap.continuous_on_pi this [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁶ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁵ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁴ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝³ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝² : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝¹ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝ : FiniteDimensional 𝕜 E s : Submodule 𝕜 E s_dim : finrank 𝕜 { x // x ∈ s } = n this : UniformAddGroup { x // x ∈ s } := AddSubgroup.uniformAddGroup (Submodule.toAddSubgroup s) b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s })) 𝕜 { x // x ∈ s } := Basis.ofVectorSpace 𝕜 { x // x ∈ s } ⊢ UniformEmbedding ↑(LinearEquiv.toEquiv (LinearEquiv.symm (Basis.equivFun b))) [PROOFSTEP] have : Fintype.card (Basis.ofVectorSpaceIndex 𝕜 s) = n := by rw [← s_dim] exact (finrank_eq_card_basis b).symm [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁶ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁵ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁴ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝³ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝² : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝¹ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝ : FiniteDimensional 𝕜 E s : Submodule 𝕜 E s_dim : finrank 𝕜 { x // x ∈ s } = n this : UniformAddGroup { x // x ∈ s } := AddSubgroup.uniformAddGroup (Submodule.toAddSubgroup s) b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s })) 𝕜 { x // x ∈ s } := Basis.ofVectorSpace 𝕜 { x // x ∈ s } ⊢ Fintype.card ↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s }) = n [PROOFSTEP] rw [← s_dim] [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁶ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁵ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁴ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝³ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝² : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝¹ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝ : FiniteDimensional 𝕜 E s : Submodule 𝕜 E s_dim : finrank 𝕜 { x // x ∈ s } = n this : UniformAddGroup { x // x ∈ s } := AddSubgroup.uniformAddGroup (Submodule.toAddSubgroup s) b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s })) 𝕜 { x // x ∈ s } := Basis.ofVectorSpace 𝕜 { x // x ∈ s } ⊢ Fintype.card ↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s }) = finrank 𝕜 { x // x ∈ s } [PROOFSTEP] exact (finrank_eq_card_basis b).symm [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁷ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁶ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁵ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝⁴ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝³ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝² : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝¹ : FiniteDimensional 𝕜 E s : Submodule 𝕜 E s_dim : finrank 𝕜 { x // x ∈ s } = n this✝ : UniformAddGroup { x // x ∈ s } := AddSubgroup.uniformAddGroup (Submodule.toAddSubgroup s) b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s })) 𝕜 { x // x ∈ s } := Basis.ofVectorSpace 𝕜 { x // x ∈ s } this : Fintype.card ↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s }) = n ⊢ UniformEmbedding ↑(LinearEquiv.toEquiv (LinearEquiv.symm (Basis.equivFun b))) [PROOFSTEP] have : Continuous b.equivFun := IH b this [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁸ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁷ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁶ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝⁵ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝⁴ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝² : FiniteDimensional 𝕜 E s : Submodule 𝕜 E s_dim : finrank 𝕜 { x // x ∈ s } = n this✝¹ : UniformAddGroup { x // x ∈ s } := AddSubgroup.uniformAddGroup (Submodule.toAddSubgroup s) b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s })) 𝕜 { x // x ∈ s } := Basis.ofVectorSpace 𝕜 { x // x ∈ s } this✝ : Fintype.card ↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s }) = n this : Continuous ↑(Basis.equivFun b) ⊢ UniformEmbedding ↑(LinearEquiv.toEquiv (LinearEquiv.symm (Basis.equivFun b))) [PROOFSTEP] exact b.equivFun.symm.uniformEmbedding b.equivFun.symm.toLinearMap.continuous_on_pi this [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁶ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁵ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁴ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝³ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝² : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝¹ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝ : FiniteDimensional 𝕜 E s : Submodule 𝕜 E s_dim : finrank 𝕜 { x // x ∈ s } = n this : UniformAddGroup { x // x ∈ s } := AddSubgroup.uniformAddGroup (Submodule.toAddSubgroup s) b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s })) 𝕜 { x // x ∈ s } := Basis.ofVectorSpace 𝕜 { x // x ∈ s } U : UniformEmbedding ↑(LinearEquiv.toEquiv (LinearEquiv.symm (Basis.equivFun b))) ⊢ IsClosed ↑s [PROOFSTEP] have : IsComplete (s : Set E) := completeSpace_coe_iff_isComplete.1 ((completeSpace_congr U).1 (by infer_instance)) [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁶ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁵ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁴ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝³ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝² : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝¹ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝ : FiniteDimensional 𝕜 E s : Submodule 𝕜 E s_dim : finrank 𝕜 { x // x ∈ s } = n this : UniformAddGroup { x // x ∈ s } := AddSubgroup.uniformAddGroup (Submodule.toAddSubgroup s) b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s })) 𝕜 { x // x ∈ s } := Basis.ofVectorSpace 𝕜 { x // x ∈ s } U : UniformEmbedding ↑(LinearEquiv.toEquiv (LinearEquiv.symm (Basis.equivFun b))) ⊢ CompleteSpace (↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s }) → 𝕜) [PROOFSTEP] infer_instance [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁷ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁶ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁵ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝⁴ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝³ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝² : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝¹ : FiniteDimensional 𝕜 E s : Submodule 𝕜 E s_dim : finrank 𝕜 { x // x ∈ s } = n this✝ : UniformAddGroup { x // x ∈ s } := AddSubgroup.uniformAddGroup (Submodule.toAddSubgroup s) b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 { x // x ∈ s })) 𝕜 { x // x ∈ s } := Basis.ofVectorSpace 𝕜 { x // x ∈ s } U : UniformEmbedding ↑(LinearEquiv.toEquiv (LinearEquiv.symm (Basis.equivFun b))) this : IsComplete ↑s ⊢ IsClosed ↑s [PROOFSTEP] exact this.isClosed [GOAL] case succ 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s ⊢ Continuous ↑(Basis.equivFun ξ) [PROOFSTEP] have H₂ : ∀ f : E →ₗ[𝕜] 𝕜, Continuous f := by intro f by_cases H : finrank 𝕜 (LinearMap.range f) = 0 · rw [finrank_eq_zero, LinearMap.range_eq_bot] at H rw [H] exact continuous_zero · have : finrank 𝕜 (LinearMap.ker f) = n := by have Z := f.finrank_range_add_finrank_ker rw [finrank_eq_card_basis ξ, hn] at Z have : finrank 𝕜 (LinearMap.range f) = 1 := le_antisymm (finrank_self 𝕜 ▸ f.range.finrank_le) (zero_lt_iff.mpr H) rw [this, add_comm, Nat.add_one] at Z exact Nat.succ.inj Z have : IsClosed (LinearMap.ker f : Set E) := H₁ _ this exact LinearMap.continuous_of_isClosed_ker f this [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s ⊢ ∀ (f : E →ₗ[𝕜] 𝕜), Continuous ↑f [PROOFSTEP] intro f [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s f : E →ₗ[𝕜] 𝕜 ⊢ Continuous ↑f [PROOFSTEP] by_cases H : finrank 𝕜 (LinearMap.range f) = 0 [GOAL] case pos 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s f : E →ₗ[𝕜] 𝕜 H : finrank 𝕜 { x // x ∈ LinearMap.range f } = 0 ⊢ Continuous ↑f [PROOFSTEP] rw [finrank_eq_zero, LinearMap.range_eq_bot] at H [GOAL] case pos 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s f : E →ₗ[𝕜] 𝕜 H : f = 0 ⊢ Continuous ↑f [PROOFSTEP] rw [H] [GOAL] case pos 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s f : E →ₗ[𝕜] 𝕜 H : f = 0 ⊢ Continuous ↑0 [PROOFSTEP] exact continuous_zero [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s f : E →ₗ[𝕜] 𝕜 H : ¬finrank 𝕜 { x // x ∈ LinearMap.range f } = 0 ⊢ Continuous ↑f [PROOFSTEP] have : finrank 𝕜 (LinearMap.ker f) = n := by have Z := f.finrank_range_add_finrank_ker rw [finrank_eq_card_basis ξ, hn] at Z have : finrank 𝕜 (LinearMap.range f) = 1 := le_antisymm (finrank_self 𝕜 ▸ f.range.finrank_le) (zero_lt_iff.mpr H) rw [this, add_comm, Nat.add_one] at Z exact Nat.succ.inj Z [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s f : E →ₗ[𝕜] 𝕜 H : ¬finrank 𝕜 { x // x ∈ LinearMap.range f } = 0 ⊢ finrank 𝕜 { x // x ∈ LinearMap.ker f } = n [PROOFSTEP] have Z := f.finrank_range_add_finrank_ker [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s f : E →ₗ[𝕜] 𝕜 H : ¬finrank 𝕜 { x // x ∈ LinearMap.range f } = 0 Z : finrank 𝕜 { x // x ∈ LinearMap.range f } + finrank 𝕜 { x // x ∈ LinearMap.ker f } = finrank 𝕜 E ⊢ finrank 𝕜 { x // x ∈ LinearMap.ker f } = n [PROOFSTEP] rw [finrank_eq_card_basis ξ, hn] at Z [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s f : E →ₗ[𝕜] 𝕜 H : ¬finrank 𝕜 { x // x ∈ LinearMap.range f } = 0 Z : finrank 𝕜 { x // x ∈ LinearMap.range f } + finrank 𝕜 { x // x ∈ LinearMap.ker f } = Nat.succ n ⊢ finrank 𝕜 { x // x ∈ LinearMap.ker f } = n [PROOFSTEP] have : finrank 𝕜 (LinearMap.range f) = 1 := le_antisymm (finrank_self 𝕜 ▸ f.range.finrank_le) (zero_lt_iff.mpr H) [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁶ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁵ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁴ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝³ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝² : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝¹ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝ : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s f : E →ₗ[𝕜] 𝕜 H : ¬finrank 𝕜 { x // x ∈ LinearMap.range f } = 0 Z : finrank 𝕜 { x // x ∈ LinearMap.range f } + finrank 𝕜 { x // x ∈ LinearMap.ker f } = Nat.succ n this : finrank 𝕜 { x // x ∈ LinearMap.range f } = 1 ⊢ finrank 𝕜 { x // x ∈ LinearMap.ker f } = n [PROOFSTEP] rw [this, add_comm, Nat.add_one] at Z [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁶ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁵ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁴ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝³ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝² : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝¹ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝ : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s f : E →ₗ[𝕜] 𝕜 H : ¬finrank 𝕜 { x // x ∈ LinearMap.range f } = 0 Z : Nat.succ (finrank 𝕜 { x // x ∈ LinearMap.ker f }) = Nat.succ n this : finrank 𝕜 { x // x ∈ LinearMap.range f } = 1 ⊢ finrank 𝕜 { x // x ∈ LinearMap.ker f } = n [PROOFSTEP] exact Nat.succ.inj Z [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁶ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁵ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁴ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝³ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝² : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝¹ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝ : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s f : E →ₗ[𝕜] 𝕜 H : ¬finrank 𝕜 { x // x ∈ LinearMap.range f } = 0 this : finrank 𝕜 { x // x ∈ LinearMap.ker f } = n ⊢ Continuous ↑f [PROOFSTEP] have : IsClosed (LinearMap.ker f : Set E) := H₁ _ this [GOAL] case neg 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁷ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁶ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝⁵ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝⁴ : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝³ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝² : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this✝¹ : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s f : E →ₗ[𝕜] 𝕜 H : ¬finrank 𝕜 { x // x ∈ LinearMap.range f } = 0 this✝ : finrank 𝕜 { x // x ∈ LinearMap.ker f } = n this : IsClosed ↑(LinearMap.ker f) ⊢ Continuous ↑f [PROOFSTEP] exact LinearMap.continuous_of_isClosed_ker f this [GOAL] case succ 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s H₂ : ∀ (f : E →ₗ[𝕜] 𝕜), Continuous ↑f ⊢ Continuous ↑(Basis.equivFun ξ) [PROOFSTEP] rw [continuous_pi_iff] [GOAL] case succ 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s H₂ : ∀ (f : E →ₗ[𝕜] 𝕜), Continuous ↑f ⊢ ∀ (i : ι), Continuous fun a => ↑(Basis.equivFun ξ) a i [PROOFSTEP] intro i [GOAL] case succ 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s H₂ : ∀ (f : E →ₗ[𝕜] 𝕜), Continuous ↑f i : ι ⊢ Continuous fun a => ↑(Basis.equivFun ξ) a i [PROOFSTEP] change Continuous (ξ.coord i) [GOAL] case succ 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E✝ : Type v inst✝²² : AddCommGroup E✝ inst✝²¹ : Module 𝕜 E✝ inst✝²⁰ : TopologicalSpace E✝ inst✝¹⁹ : TopologicalAddGroup E✝ inst✝¹⁸ : ContinuousSMul 𝕜 E✝ F : Type w inst✝¹⁷ : AddCommGroup F inst✝¹⁶ : Module 𝕜 F inst✝¹⁵ : TopologicalSpace F inst✝¹⁴ : TopologicalAddGroup F inst✝¹³ : ContinuousSMul 𝕜 F F' : Type x inst✝¹² : AddCommGroup F' inst✝¹¹ : Module 𝕜 F' inst✝¹⁰ : TopologicalSpace F' inst✝⁹ : TopologicalAddGroup F' inst✝⁸ : ContinuousSMul 𝕜 F' inst✝⁷ : CompleteSpace 𝕜 ht2✝ : T2Space E✝ ι✝ : Type v inst✝⁶ : Fintype ι✝ ξ✝ : Basis ι✝ 𝕜 E✝ this✝⁵ : UniformSpace E✝ := TopologicalAddGroup.toUniformSpace E✝ this✝⁴ : UniformAddGroup E✝ := comm_topologicalAddGroup_is_uniform this✝³ : SeparatedSpace E✝ := Iff.mpr separated_iff_t2 ht2✝ x✝ : ℕ hn✝ : Fintype.card ι✝ = x✝ n : ℕ IH : ∀ {E : Type v} [inst : AddCommGroup E] [inst_1 : Module 𝕜 E] [inst_2 : TopologicalSpace E] [inst_3 : TopologicalAddGroup E] [inst_4 : ContinuousSMul 𝕜 E] [ht2 : T2Space E] {ι : Type v} [inst_5 : Fintype ι] (ξ : Basis ι 𝕜 E), let this := TopologicalAddGroup.toUniformSpace E; let this_1 := (_ : UniformAddGroup E); let this := (_ : SeparatedSpace E); Fintype.card ι = n → Continuous ↑(Basis.equivFun ξ) E : Type v inst✝⁵ : AddCommGroup E inst✝⁴ : Module 𝕜 E inst✝³ : TopologicalSpace E inst✝² : TopologicalAddGroup E inst✝¹ : ContinuousSMul 𝕜 E ht2 : T2Space E ι : Type v inst✝ : Fintype ι ξ : Basis ι 𝕜 E this✝² : UniformSpace E := TopologicalAddGroup.toUniformSpace E this✝¹ : UniformAddGroup E := comm_topologicalAddGroup_is_uniform this✝ : SeparatedSpace E := Iff.mpr separated_iff_t2 ht2 hn : Fintype.card ι = Nat.succ n this : FiniteDimensional 𝕜 E H₁ : ∀ (s : Submodule 𝕜 E), finrank 𝕜 { x // x ∈ s } = n → IsClosed ↑s H₂ : ∀ (f : E →ₗ[𝕜] 𝕜), Continuous ↑f i : ι ⊢ Continuous ↑(Basis.coord ξ i) [PROOFSTEP] exact H₂ (ξ.coord i) [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : E →ₗ[𝕜] F' ⊢ Continuous ↑f [PROOFSTEP] let b := Basis.ofVectorSpace 𝕜 E [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : E →ₗ[𝕜] F' b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E ⊢ Continuous ↑f [PROOFSTEP] have A : Continuous b.equivFun := continuous_equivFun_basis_aux b [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : E →ₗ[𝕜] F' b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E A : Continuous ↑(Basis.equivFun b) ⊢ Continuous ↑f [PROOFSTEP] have B : Continuous (f.comp (b.equivFun.symm : (Basis.ofVectorSpaceIndex 𝕜 E → 𝕜) →ₗ[𝕜] E)) := LinearMap.continuous_on_pi _ [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : E →ₗ[𝕜] F' b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E A : Continuous ↑(Basis.equivFun b) B : Continuous ↑(comp f ↑(LinearEquiv.symm (Basis.equivFun b))) ⊢ Continuous ↑f [PROOFSTEP] have : Continuous (f.comp (b.equivFun.symm : (Basis.ofVectorSpaceIndex 𝕜 E → 𝕜) →ₗ[𝕜] E) ∘ b.equivFun) := B.comp A [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : E →ₗ[𝕜] F' b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E A : Continuous ↑(Basis.equivFun b) B : Continuous ↑(comp f ↑(LinearEquiv.symm (Basis.equivFun b))) this : Continuous (↑(comp f ↑(LinearEquiv.symm (Basis.equivFun b))) ∘ ↑(Basis.equivFun b)) ⊢ Continuous ↑f [PROOFSTEP] convert this [GOAL] case h.e'_5 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : E →ₗ[𝕜] F' b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E A : Continuous ↑(Basis.equivFun b) B : Continuous ↑(comp f ↑(LinearEquiv.symm (Basis.equivFun b))) this : Continuous (↑(comp f ↑(LinearEquiv.symm (Basis.equivFun b))) ∘ ↑(Basis.equivFun b)) ⊢ ↑f = ↑(comp f ↑(LinearEquiv.symm (Basis.equivFun b))) ∘ ↑(Basis.equivFun b) [PROOFSTEP] ext x [GOAL] case h.e'_5.h 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : E →ₗ[𝕜] F' b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E A : Continuous ↑(Basis.equivFun b) B : Continuous ↑(comp f ↑(LinearEquiv.symm (Basis.equivFun b))) this : Continuous (↑(comp f ↑(LinearEquiv.symm (Basis.equivFun b))) ∘ ↑(Basis.equivFun b)) x : E ⊢ ↑f x = (↑(comp f ↑(LinearEquiv.symm (Basis.equivFun b))) ∘ ↑(Basis.equivFun b)) x [PROOFSTEP] dsimp [GOAL] case h.e'_5.h 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : E →ₗ[𝕜] F' b : Basis (↑(Basis.ofVectorSpaceIndex 𝕜 E)) 𝕜 E := Basis.ofVectorSpace 𝕜 E A : Continuous ↑(Basis.equivFun b) B : Continuous ↑(comp f ↑(LinearEquiv.symm (Basis.equivFun b))) this : Continuous (↑(comp f ↑(LinearEquiv.symm (Basis.equivFun b))) ∘ ↑(Basis.equivFun b)) x : E ⊢ ↑f x = ↑f (↑(LinearEquiv.symm (Basis.equivFun (Basis.ofVectorSpace 𝕜 E))) ↑(↑(Basis.ofVectorSpace 𝕜 E).repr x)) [PROOFSTEP] rw [Basis.equivFun_symm_apply, Basis.sum_repr] [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : F →ₗ[𝕜] E hf : Function.Surjective ↑f ⊢ IsOpenMap ↑f [PROOFSTEP] rcases f.exists_rightInverse_of_surjective (LinearMap.range_eq_top.2 hf) with ⟨g, hg⟩ [GOAL] case intro 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : F →ₗ[𝕜] E hf : Function.Surjective ↑f g : E →ₗ[𝕜] F hg : comp f g = id ⊢ IsOpenMap ↑f [PROOFSTEP] refine' IsOpenMap.of_sections fun x => ⟨fun y => g (y - f x) + x, _, _, fun y => _⟩ [GOAL] case intro.refine'_1 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : F →ₗ[𝕜] E hf : Function.Surjective ↑f g : E →ₗ[𝕜] F hg : comp f g = id x : F ⊢ ContinuousAt (fun y => ↑g (y - ↑f x) + x) (↑f x) [PROOFSTEP] exact ((g.continuous_of_finiteDimensional.comp <| continuous_id.sub continuous_const).add continuous_const).continuousAt [GOAL] case intro.refine'_2 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : F →ₗ[𝕜] E hf : Function.Surjective ↑f g : E →ₗ[𝕜] F hg : comp f g = id x : F ⊢ (fun y => ↑g (y - ↑f x) + x) (↑f x) = x [PROOFSTEP] simp only [GOAL] case intro.refine'_2 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : F →ₗ[𝕜] E hf : Function.Surjective ↑f g : E →ₗ[𝕜] F hg : comp f g = id x : F ⊢ ↑g (↑f x - ↑f x) + x = x [PROOFSTEP] rw [sub_self, map_zero, zero_add] [GOAL] case intro.refine'_3 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : F →ₗ[𝕜] E hf : Function.Surjective ↑f g : E →ₗ[𝕜] F hg : comp f g = id x : F y : E ⊢ ↑f ((fun y => ↑g (y - ↑f x) + x) y) = y [PROOFSTEP] simp only [map_sub, map_add, ← comp_apply f g, hg, id_apply, sub_add_cancel] [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁸ : AddCommGroup E inst✝¹⁷ : Module 𝕜 E inst✝¹⁶ : TopologicalSpace E inst✝¹⁵ : TopologicalAddGroup E inst✝¹⁴ : ContinuousSMul 𝕜 E F : Type w inst✝¹³ : AddCommGroup F inst✝¹² : Module 𝕜 F inst✝¹¹ : TopologicalSpace F inst✝¹⁰ : TopologicalAddGroup F inst✝⁹ : ContinuousSMul 𝕜 F F' : Type x inst✝⁸ : AddCommGroup F' inst✝⁷ : Module 𝕜 F' inst✝⁶ : TopologicalSpace F' inst✝⁵ : TopologicalAddGroup F' inst✝⁴ : ContinuousSMul 𝕜 F' inst✝³ : CompleteSpace 𝕜 inst✝² : T2Space E inst✝¹ : T2Space F inst✝ : FiniteDimensional 𝕜 E e : E ≃ₗ[𝕜] F ⊢ (toContinuousLinearEquiv e).toLinearEquiv = e [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁸ : AddCommGroup E inst✝¹⁷ : Module 𝕜 E inst✝¹⁶ : TopologicalSpace E inst✝¹⁵ : TopologicalAddGroup E inst✝¹⁴ : ContinuousSMul 𝕜 E F : Type w inst✝¹³ : AddCommGroup F inst✝¹² : Module 𝕜 F inst✝¹¹ : TopologicalSpace F inst✝¹⁰ : TopologicalAddGroup F inst✝⁹ : ContinuousSMul 𝕜 F F' : Type x inst✝⁸ : AddCommGroup F' inst✝⁷ : Module 𝕜 F' inst✝⁶ : TopologicalSpace F' inst✝⁵ : TopologicalAddGroup F' inst✝⁴ : ContinuousSMul 𝕜 F' inst✝³ : CompleteSpace 𝕜 inst✝² : T2Space E inst✝¹ : T2Space F inst✝ : FiniteDimensional 𝕜 E e : E ≃ₗ[𝕜] F x : E ⊢ ↑(toContinuousLinearEquiv e).toLinearEquiv x = ↑e x [PROOFSTEP] rfl [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁸ : AddCommGroup E inst✝¹⁷ : Module 𝕜 E inst✝¹⁶ : TopologicalSpace E inst✝¹⁵ : TopologicalAddGroup E inst✝¹⁴ : ContinuousSMul 𝕜 E F : Type w inst✝¹³ : AddCommGroup F inst✝¹² : Module 𝕜 F inst✝¹¹ : TopologicalSpace F inst✝¹⁰ : TopologicalAddGroup F inst✝⁹ : ContinuousSMul 𝕜 F F' : Type x inst✝⁸ : AddCommGroup F' inst✝⁷ : Module 𝕜 F' inst✝⁶ : TopologicalSpace F' inst✝⁵ : TopologicalAddGroup F' inst✝⁴ : ContinuousSMul 𝕜 F' inst✝³ : CompleteSpace 𝕜 inst✝² : T2Space E inst✝¹ : T2Space F inst✝ : FiniteDimensional 𝕜 E e : E ≃ₗ[𝕜] F ⊢ (ContinuousLinearEquiv.symm (toContinuousLinearEquiv e)).toLinearEquiv = symm e [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁸ : AddCommGroup E inst✝¹⁷ : Module 𝕜 E inst✝¹⁶ : TopologicalSpace E inst✝¹⁵ : TopologicalAddGroup E inst✝¹⁴ : ContinuousSMul 𝕜 E F : Type w inst✝¹³ : AddCommGroup F inst✝¹² : Module 𝕜 F inst✝¹¹ : TopologicalSpace F inst✝¹⁰ : TopologicalAddGroup F inst✝⁹ : ContinuousSMul 𝕜 F F' : Type x inst✝⁸ : AddCommGroup F' inst✝⁷ : Module 𝕜 F' inst✝⁶ : TopologicalSpace F' inst✝⁵ : TopologicalAddGroup F' inst✝⁴ : ContinuousSMul 𝕜 F' inst✝³ : CompleteSpace 𝕜 inst✝² : T2Space E inst✝¹ : T2Space F inst✝ : FiniteDimensional 𝕜 E e : E ≃ₗ[𝕜] F x : F ⊢ ↑(ContinuousLinearEquiv.symm (toContinuousLinearEquiv e)).toLinearEquiv x = ↑(symm e) x [PROOFSTEP] rfl [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 ι : Type u_1 inst✝¹ : Fintype ι inst✝ : T2Space E v : Basis ι 𝕜 E src✝ : E ≃ₗ[𝕜] ι → 𝕜 := equivFun v ⊢ Continuous { toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.invFun [PROOFSTEP] change Continuous v.equivFun.symm.toFun [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 ι : Type u_1 inst✝¹ : Fintype ι inst✝ : T2Space E v : Basis ι 𝕜 E src✝ : E ≃ₗ[𝕜] ι → 𝕜 := equivFun v ⊢ Continuous (↑(LinearEquiv.symm (equivFun v))).toAddHom.toFun [PROOFSTEP] exact v.equivFun.symm.toLinearMap.continuous_of_finiteDimensional [GOAL] 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : E →L[𝕜] E hf : det f ≠ 0 ⊢ ↑(toContinuousLinearEquivOfDetNeZero f hf) = f [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u hnorm : NontriviallyNormedField 𝕜 E : Type v inst✝¹⁷ : AddCommGroup E inst✝¹⁶ : Module 𝕜 E inst✝¹⁵ : TopologicalSpace E inst✝¹⁴ : TopologicalAddGroup E inst✝¹³ : ContinuousSMul 𝕜 E F : Type w inst✝¹² : AddCommGroup F inst✝¹¹ : Module 𝕜 F inst✝¹⁰ : TopologicalSpace F inst✝⁹ : TopologicalAddGroup F inst✝⁸ : ContinuousSMul 𝕜 F F' : Type x inst✝⁷ : AddCommGroup F' inst✝⁶ : Module 𝕜 F' inst✝⁵ : TopologicalSpace F' inst✝⁴ : TopologicalAddGroup F' inst✝³ : ContinuousSMul 𝕜 F' inst✝² : CompleteSpace 𝕜 inst✝¹ : T2Space E inst✝ : FiniteDimensional 𝕜 E f : E →L[𝕜] E hf : det f ≠ 0 x : E ⊢ ↑↑(toContinuousLinearEquivOfDetNeZero f hf) x = ↑f x [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Topology.Algebra.Module.FiniteDimension", "llama_tokens": 66393}
[GOAL] ⊢ Subalgebra.topologicalClosure (polynomialFunctions I) = ⊤ [PROOFSTEP] apply eq_top_iff.mpr [GOAL] ⊢ ⊤ ≤ Subalgebra.topologicalClosure (polynomialFunctions I) [PROOFSTEP] rintro f - [GOAL] f : C(↑I, ℝ) ⊢ f ∈ Subalgebra.topologicalClosure (polynomialFunctions I) [PROOFSTEP] refine' Filter.Frequently.mem_closure _ [GOAL] f : C(↑I, ℝ) ⊢ ∃ᶠ (x : C(↑I, ℝ)) in nhds f, x ∈ ↑(polynomialFunctions I) [PROOFSTEP] refine' Filter.Tendsto.frequently (bernsteinApproximation_uniform f) _ [GOAL] f : C(↑I, ℝ) ⊢ ∃ᶠ (x : ℕ) in atTop, bernsteinApproximation x f ∈ ↑(polynomialFunctions I) [PROOFSTEP] apply frequently_of_forall [GOAL] case h f : C(↑I, ℝ) ⊢ ∀ (x : ℕ), bernsteinApproximation x f ∈ ↑(polynomialFunctions I) [PROOFSTEP] intro n [GOAL] case h f : C(↑I, ℝ) n : ℕ ⊢ bernsteinApproximation n f ∈ ↑(polynomialFunctions I) [PROOFSTEP] simp only [SetLike.mem_coe] [GOAL] case h f : C(↑I, ℝ) n : ℕ ⊢ bernsteinApproximation n f ∈ polynomialFunctions I [PROOFSTEP] apply Subalgebra.sum_mem [GOAL] case h.h f : C(↑I, ℝ) n : ℕ ⊢ ∀ (x : Fin (n + 1)), x ∈ Finset.univ → ↑f (bernstein.z x) • bernstein n ↑x ∈ polynomialFunctions I [PROOFSTEP] rintro n - [GOAL] case h.h f : C(↑I, ℝ) n✝ : ℕ n : Fin (n✝ + 1) ⊢ ↑f (bernstein.z n) • bernstein n✝ ↑n ∈ polynomialFunctions I [PROOFSTEP] apply Subalgebra.smul_mem [GOAL] case h.h.hx f : C(↑I, ℝ) n✝ : ℕ n : Fin (n✝ + 1) ⊢ bernstein n✝ ↑n ∈ polynomialFunctions I [PROOFSTEP] dsimp [bernstein, polynomialFunctions] [GOAL] case h.h.hx f : C(↑I, ℝ) n✝ : ℕ n : Fin (n✝ + 1) ⊢ Polynomial.toContinuousMapOn (bernsteinPolynomial ℝ n✝ ↑n) I ∈ Subalgebra.map (Polynomial.toContinuousMapOnAlgHom I) ⊤ [PROOFSTEP] simp [GOAL] a b : ℝ ⊢ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) = ⊤ [PROOFSTEP] cases' lt_or_le a b with h h [GOAL] case inl a b : ℝ h : a < b ⊢ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) = ⊤ [PROOFSTEP] let W : C(Set.Icc a b, ℝ) →ₐ[ℝ] C(I, ℝ) := compRightAlgHom ℝ ℝ (iccHomeoI a b h).symm.toContinuousMap [GOAL] case inl a b : ℝ h : a < b W : C(↑(Set.Icc a b), ℝ) →ₐ[ℝ] C(↑I, ℝ) := compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h))) ⊢ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) = ⊤ [PROOFSTEP] let W' : C(Set.Icc a b, ℝ) ≃ₜ C(I, ℝ) := compRightHomeomorph ℝ (iccHomeoI a b h).symm [GOAL] case inl a b : ℝ h : a < b W : C(↑(Set.Icc a b), ℝ) →ₐ[ℝ] C(↑I, ℝ) := compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h))) W' : C(↑(Set.Icc a b), ℝ) ≃ₜ C(↑I, ℝ) := compRightHomeomorph ℝ (Homeomorph.symm (iccHomeoI a b h)) ⊢ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) = ⊤ [PROOFSTEP] have w : (W : C(Set.Icc a b, ℝ) → C(I, ℝ)) = W' := rfl [GOAL] case inl a b : ℝ h : a < b W : C(↑(Set.Icc a b), ℝ) →ₐ[ℝ] C(↑I, ℝ) := compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h))) W' : C(↑(Set.Icc a b), ℝ) ≃ₜ C(↑I, ℝ) := compRightHomeomorph ℝ (Homeomorph.symm (iccHomeoI a b h)) w : ↑W = ↑W' ⊢ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) = ⊤ [PROOFSTEP] have p := polynomialFunctions_closure_eq_top' [GOAL] case inl a b : ℝ h : a < b W : C(↑(Set.Icc a b), ℝ) →ₐ[ℝ] C(↑I, ℝ) := compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h))) W' : C(↑(Set.Icc a b), ℝ) ≃ₜ C(↑I, ℝ) := compRightHomeomorph ℝ (Homeomorph.symm (iccHomeoI a b h)) w : ↑W = ↑W' p : Subalgebra.topologicalClosure (polynomialFunctions I) = ⊤ ⊢ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) = ⊤ [PROOFSTEP] apply_fun fun s => s.comap W at p [GOAL] case inl a b : ℝ h : a < b W : C(↑(Set.Icc a b), ℝ) →ₐ[ℝ] C(↑I, ℝ) := compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h))) W' : C(↑(Set.Icc a b), ℝ) ≃ₜ C(↑I, ℝ) := compRightHomeomorph ℝ (Homeomorph.symm (iccHomeoI a b h)) w : ↑W = ↑W' p : Subalgebra.comap W (Subalgebra.topologicalClosure (polynomialFunctions I)) = Subalgebra.comap W ⊤ ⊢ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) = ⊤ [PROOFSTEP] simp only [Algebra.comap_top] at p [GOAL] case inl a b : ℝ h : a < b W : C(↑(Set.Icc a b), ℝ) →ₐ[ℝ] C(↑I, ℝ) := compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h))) W' : C(↑(Set.Icc a b), ℝ) ≃ₜ C(↑I, ℝ) := compRightHomeomorph ℝ (Homeomorph.symm (iccHomeoI a b h)) w : ↑W = ↑W' p : Subalgebra.comap (compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) (Subalgebra.topologicalClosure (polynomialFunctions I)) = ⊤ ⊢ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) = ⊤ [PROOFSTEP] rw [Subalgebra.topologicalClosure_comap_homeomorph _ W W' w] at p [GOAL] case inl a b : ℝ h : a < b W : C(↑(Set.Icc a b), ℝ) →ₐ[ℝ] C(↑I, ℝ) := compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h))) W' : C(↑(Set.Icc a b), ℝ) ≃ₜ C(↑I, ℝ) := compRightHomeomorph ℝ (Homeomorph.symm (iccHomeoI a b h)) w : ↑W = ↑W' p : Subalgebra.topologicalClosure (Subalgebra.comap W (polynomialFunctions I)) = ⊤ ⊢ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) = ⊤ [PROOFSTEP] rw [polynomialFunctions.comap_compRightAlgHom_iccHomeoI] at p [GOAL] case inl a b : ℝ h : a < b W : C(↑(Set.Icc a b), ℝ) →ₐ[ℝ] C(↑I, ℝ) := compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h))) W' : C(↑(Set.Icc a b), ℝ) ≃ₜ C(↑I, ℝ) := compRightHomeomorph ℝ (Homeomorph.symm (iccHomeoI a b h)) w : ↑W = ↑W' p : Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) = ⊤ ⊢ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) = ⊤ [PROOFSTEP] exact p [GOAL] case inr a b : ℝ h : b ≤ a ⊢ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) = ⊤ [PROOFSTEP] have : Subsingleton (Set.Icc a b) := (Set.subsingleton_coe _).mpr $ Set.subsingleton_Icc_of_ge h [GOAL] case inr a b : ℝ h : b ≤ a this : Subsingleton ↑(Set.Icc a b) ⊢ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) = ⊤ [PROOFSTEP] apply Subsingleton.elim [GOAL] a b : ℝ f : C(↑(Set.Icc a b), ℝ) ⊢ f ∈ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b)) [PROOFSTEP] rw [polynomialFunctions_closure_eq_top _ _] [GOAL] a b : ℝ f : C(↑(Set.Icc a b), ℝ) ⊢ f ∈ ⊤ [PROOFSTEP] simp [GOAL] a b : ℝ f : C(↑(Set.Icc a b), ℝ) ε : ℝ pos : 0 < ε ⊢ ∃ p, ‖Polynomial.toContinuousMapOn p (Set.Icc a b) - f‖ < ε [PROOFSTEP] have w := mem_closure_iff_frequently.mp (continuousMap_mem_polynomialFunctions_closure _ _ f) [GOAL] a b : ℝ f : C(↑(Set.Icc a b), ℝ) ε : ℝ pos : 0 < ε w : ∃ᶠ (x : C(↑(Set.Icc a b), ℝ)) in nhds f, x ∈ ↑(polynomialFunctions (Set.Icc a b)) ⊢ ∃ p, ‖Polynomial.toContinuousMapOn p (Set.Icc a b) - f‖ < ε [PROOFSTEP] rw [Metric.nhds_basis_ball.frequently_iff] at w [GOAL] a b : ℝ f : C(↑(Set.Icc a b), ℝ) ε : ℝ pos : 0 < ε w : ∀ (i : ℝ), 0 < i → ∃ x, x ∈ Metric.ball f i ∧ x ∈ ↑(polynomialFunctions (Set.Icc a b)) ⊢ ∃ p, ‖Polynomial.toContinuousMapOn p (Set.Icc a b) - f‖ < ε [PROOFSTEP] obtain ⟨-, H, ⟨m, ⟨-, rfl⟩⟩⟩ := w ε pos [GOAL] case intro.intro.intro.intro a b : ℝ f : C(↑(Set.Icc a b), ℝ) ε : ℝ pos : 0 < ε w : ∀ (i : ℝ), 0 < i → ∃ x, x ∈ Metric.ball f i ∧ x ∈ ↑(polynomialFunctions (Set.Icc a b)) m : ℝ[X] H : ↑↑(Polynomial.toContinuousMapOnAlgHom (Set.Icc a b)) m ∈ Metric.ball f ε ⊢ ∃ p, ‖Polynomial.toContinuousMapOn p (Set.Icc a b) - f‖ < ε [PROOFSTEP] rw [Metric.mem_ball, dist_eq_norm] at H [GOAL] case intro.intro.intro.intro a b : ℝ f : C(↑(Set.Icc a b), ℝ) ε : ℝ pos : 0 < ε w : ∀ (i : ℝ), 0 < i → ∃ x, x ∈ Metric.ball f i ∧ x ∈ ↑(polynomialFunctions (Set.Icc a b)) m : ℝ[X] H : ‖↑↑(Polynomial.toContinuousMapOnAlgHom (Set.Icc a b)) m - f‖ < ε ⊢ ∃ p, ‖Polynomial.toContinuousMapOn p (Set.Icc a b) - f‖ < ε [PROOFSTEP] exact ⟨m, H⟩ [GOAL] a b : ℝ f : ℝ → ℝ c : ContinuousOn f (Set.Icc a b) ε : ℝ pos : 0 < ε ⊢ ∃ p, ∀ (x : ℝ), x ∈ Set.Icc a b → |Polynomial.eval x p - f x| < ε [PROOFSTEP] let f' : C(Set.Icc a b, ℝ) := ⟨fun x => f x, continuousOn_iff_continuous_restrict.mp c⟩ [GOAL] a b : ℝ f : ℝ → ℝ c : ContinuousOn f (Set.Icc a b) ε : ℝ pos : 0 < ε f' : C(↑(Set.Icc a b), ℝ) := ContinuousMap.mk fun x => f ↑x ⊢ ∃ p, ∀ (x : ℝ), x ∈ Set.Icc a b → |Polynomial.eval x p - f x| < ε [PROOFSTEP] obtain ⟨p, b⟩ := exists_polynomial_near_continuousMap a b f' ε pos [GOAL] case intro a b✝ : ℝ f : ℝ → ℝ c : ContinuousOn f (Set.Icc a b✝) ε : ℝ pos : 0 < ε f' : C(↑(Set.Icc a b✝), ℝ) := ContinuousMap.mk fun x => f ↑x p : ℝ[X] b : ‖Polynomial.toContinuousMapOn p (Set.Icc a b✝) - f'‖ < ε ⊢ ∃ p, ∀ (x : ℝ), x ∈ Set.Icc a b✝ → |Polynomial.eval x p - f x| < ε [PROOFSTEP] use p [GOAL] case h a b✝ : ℝ f : ℝ → ℝ c : ContinuousOn f (Set.Icc a b✝) ε : ℝ pos : 0 < ε f' : C(↑(Set.Icc a b✝), ℝ) := ContinuousMap.mk fun x => f ↑x p : ℝ[X] b : ‖Polynomial.toContinuousMapOn p (Set.Icc a b✝) - f'‖ < ε ⊢ ∀ (x : ℝ), x ∈ Set.Icc a b✝ → |Polynomial.eval x p - f x| < ε [PROOFSTEP] rw [norm_lt_iff _ pos] at b [GOAL] case h a b✝ : ℝ f : ℝ → ℝ c : ContinuousOn f (Set.Icc a b✝) ε : ℝ pos : 0 < ε f' : C(↑(Set.Icc a b✝), ℝ) := ContinuousMap.mk fun x => f ↑x p : ℝ[X] b : ∀ (x : ↑(Set.Icc a b✝)), ‖↑(Polynomial.toContinuousMapOn p (Set.Icc a b✝) - f') x‖ < ε ⊢ ∀ (x : ℝ), x ∈ Set.Icc a b✝ → |Polynomial.eval x p - f x| < ε [PROOFSTEP] intro x m [GOAL] case h a b✝ : ℝ f : ℝ → ℝ c : ContinuousOn f (Set.Icc a b✝) ε : ℝ pos : 0 < ε f' : C(↑(Set.Icc a b✝), ℝ) := ContinuousMap.mk fun x => f ↑x p : ℝ[X] b : ∀ (x : ↑(Set.Icc a b✝)), ‖↑(Polynomial.toContinuousMapOn p (Set.Icc a b✝) - f') x‖ < ε x : ℝ m : x ∈ Set.Icc a b✝ ⊢ |Polynomial.eval x p - f x| < ε [PROOFSTEP] exact b ⟨x, m⟩
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.Weierstrass", "llama_tokens": 4944}
[GOAL] X : Type u inst✝³ : TopologicalSpace X inst✝² : SeparableSpace X inst✝¹ : NormalSpace X s : Set X hs : IsClosed s inst✝ : DiscreteTopology ↑s ⊢ #↑s < 𝔠 [PROOFSTEP] by_contra' h [GOAL] X : Type u inst✝³ : TopologicalSpace X inst✝² : SeparableSpace X inst✝¹ : NormalSpace X s : Set X hs : IsClosed s inst✝ : DiscreteTopology ↑s h : 𝔠 ≤ #↑s ⊢ False [PROOFSTEP] rcases exists_countable_dense X with ⟨t, htc, htd⟩ [GOAL] case intro.intro X : Type u inst✝³ : TopologicalSpace X inst✝² : SeparableSpace X inst✝¹ : NormalSpace X s : Set X hs : IsClosed s inst✝ : DiscreteTopology ↑s h : 𝔠 ≤ #↑s t : Set X htc : Set.Countable t htd : Dense t ⊢ False [PROOFSTEP] haveI := htc.to_subtype [GOAL] case intro.intro X : Type u inst✝³ : TopologicalSpace X inst✝² : SeparableSpace X inst✝¹ : NormalSpace X s : Set X hs : IsClosed s inst✝ : DiscreteTopology ↑s h : 𝔠 ≤ #↑s t : Set X htc : Set.Countable t htd : Dense t this : Countable ↑t ⊢ False [PROOFSTEP] refine (Cardinal.cantor 𝔠).not_le ?_ [GOAL] case intro.intro X : Type u inst✝³ : TopologicalSpace X inst✝² : SeparableSpace X inst✝¹ : NormalSpace X s : Set X hs : IsClosed s inst✝ : DiscreteTopology ↑s h : 𝔠 ≤ #↑s t : Set X htc : Set.Countable t htd : Dense t this : Countable ↑t ⊢ 2 ^ 𝔠 ≤ 𝔠 [PROOFSTEP] calc -- Any function `s → ℝ` is continuous, hence `2 ^ 𝔠 ≤ #C(s, ℝ)` 2 ^ 𝔠 ≤ #C(s, ℝ) := by rw [(ContinuousMap.equivFnOfDiscrete _ _).cardinal_eq, mk_arrow, mk_real, lift_continuum, lift_uzero] exact (power_le_power_left two_ne_zero h).trans (power_le_power_right (nat_lt_continuum 2).le) -- By the Tietze Extension Theorem, any function `f : C(s, ℝ)` can be extended to `C(X, ℝ)`, -- hence `#C(s, ℝ) ≤ #C(X, ℝ)` _ ≤ #C(X, ℝ) := by choose f hf using (ContinuousMap.exists_restrict_eq_of_closed · hs) have hfi : Injective f := LeftInverse.injective hf exact mk_le_of_injective hfi _ ≤ #C(t, ℝ) := (mk_le_of_injective <| ContinuousMap.injective_restrict htd) _ ≤ #(t → ℝ) := (mk_le_of_injective FunLike.coe_injective) _ ≤ 𝔠 := by rw [mk_arrow, mk_real, lift_uzero, lift_continuum, continuum, ← power_mul] exact power_le_power_left two_ne_zero mk_le_aleph0 [GOAL] X : Type u inst✝³ : TopologicalSpace X inst✝² : SeparableSpace X inst✝¹ : NormalSpace X s : Set X hs : IsClosed s inst✝ : DiscreteTopology ↑s h : 𝔠 ≤ #↑s t : Set X htc : Set.Countable t htd : Dense t this : Countable ↑t ⊢ 2 ^ 𝔠 ≤ #C(↑s, ℝ) [PROOFSTEP] rw [(ContinuousMap.equivFnOfDiscrete _ _).cardinal_eq, mk_arrow, mk_real, lift_continuum, lift_uzero] [GOAL] X : Type u inst✝³ : TopologicalSpace X inst✝² : SeparableSpace X inst✝¹ : NormalSpace X s : Set X hs : IsClosed s inst✝ : DiscreteTopology ↑s h : 𝔠 ≤ #↑s t : Set X htc : Set.Countable t htd : Dense t this : Countable ↑t ⊢ 2 ^ 𝔠 ≤ 𝔠 ^ #↑s [PROOFSTEP] exact (power_le_power_left two_ne_zero h).trans (power_le_power_right (nat_lt_continuum 2).le) -- By the Tietze Extension Theorem, any function `f : C(s, ℝ)` can be extended to `C(X, ℝ)`, -- hence `#C(s, ℝ) ≤ #C(X, ℝ)` [GOAL] X : Type u inst✝³ : TopologicalSpace X inst✝² : SeparableSpace X inst✝¹ : NormalSpace X s : Set X hs : IsClosed s inst✝ : DiscreteTopology ↑s h : 𝔠 ≤ #↑s t : Set X htc : Set.Countable t htd : Dense t this : Countable ↑t ⊢ #C(↑s, ℝ) ≤ #C(X, ℝ) [PROOFSTEP] choose f hf using (ContinuousMap.exists_restrict_eq_of_closed · hs) [GOAL] X : Type u inst✝³ : TopologicalSpace X inst✝² : SeparableSpace X inst✝¹ : NormalSpace X s : Set X hs : IsClosed s inst✝ : DiscreteTopology ↑s h : 𝔠 ≤ #↑s t : Set X htc : Set.Countable t htd : Dense t this : Countable ↑t f : C(↑s, ℝ) → C(X, ℝ) hf : ∀ (x : C(↑s, ℝ)), ContinuousMap.restrict s (f x) = x ⊢ #C(↑s, ℝ) ≤ #C(X, ℝ) [PROOFSTEP] have hfi : Injective f := LeftInverse.injective hf [GOAL] X : Type u inst✝³ : TopologicalSpace X inst✝² : SeparableSpace X inst✝¹ : NormalSpace X s : Set X hs : IsClosed s inst✝ : DiscreteTopology ↑s h : 𝔠 ≤ #↑s t : Set X htc : Set.Countable t htd : Dense t this : Countable ↑t f : C(↑s, ℝ) → C(X, ℝ) hf : ∀ (x : C(↑s, ℝ)), ContinuousMap.restrict s (f x) = x hfi : Injective f ⊢ #C(↑s, ℝ) ≤ #C(X, ℝ) [PROOFSTEP] exact mk_le_of_injective hfi [GOAL] X : Type u inst✝³ : TopologicalSpace X inst✝² : SeparableSpace X inst✝¹ : NormalSpace X s : Set X hs : IsClosed s inst✝ : DiscreteTopology ↑s h : 𝔠 ≤ #↑s t : Set X htc : Set.Countable t htd : Dense t this : Countable ↑t ⊢ #(↑t → ℝ) ≤ 𝔠 [PROOFSTEP] rw [mk_arrow, mk_real, lift_uzero, lift_continuum, continuum, ← power_mul] [GOAL] X : Type u inst✝³ : TopologicalSpace X inst✝² : SeparableSpace X inst✝¹ : NormalSpace X s : Set X hs : IsClosed s inst✝ : DiscreteTopology ↑s h : 𝔠 ≤ #↑s t : Set X htc : Set.Countable t htd : Dense t this : Countable ↑t ⊢ 2 ^ (ℵ₀ * #↑t) ≤ 2 ^ ℵ₀ [PROOFSTEP] exact power_le_power_left two_ne_zero mk_le_aleph0
{"mathlib_filename": "Mathlib.Topology.Separation.NotNormal", "llama_tokens": 2345}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : α →CO β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ g : α →CO β toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ map_open'✝ : IsOpenMap (ContinuousMap.mk toFun✝).toFun h : (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝, map_open' := map_open'✝ } = (fun f => f.toFun) g ⊢ { toContinuousMap := ContinuousMap.mk toFun✝, map_open' := map_open'✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ toFun✝¹ : α → β continuous_toFun✝¹ : Continuous toFun✝¹ map_open'✝¹ : IsOpenMap (ContinuousMap.mk toFun✝¹).toFun toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ map_open'✝ : IsOpenMap (ContinuousMap.mk toFun✝).toFun h : (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝¹, map_open' := map_open'✝¹ } = (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝, map_open' := map_open'✝ } ⊢ { toContinuousMap := ContinuousMap.mk toFun✝¹, map_open' := map_open'✝¹ } = { toContinuousMap := ContinuousMap.mk toFun✝, map_open' := map_open'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ g : β →CO γ f₁ f₂ : α →CO β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply]
{"mathlib_filename": "Mathlib.Topology.Hom.Open", "llama_tokens": 970}
{"mathlib_filename": "Mathlib.Topology.Category.Born", "llama_tokens": 0}
[GOAL] X✝ Y✝ : CompHaus a₁✝ a₂✝ : X✝ ⟶ Y✝ h : (compHausToTop ⋙ topToLocale).map a₁✝ = (compHausToTop ⋙ topToLocale).map a₂✝ ⊢ a₁✝ = a₂✝ [PROOFSTEP] dsimp at h [GOAL] X✝ Y✝ : CompHaus a₁✝ a₂✝ : X✝ ⟶ Y✝ h : (Opens.comap a₁✝).op = (Opens.comap a₂✝).op ⊢ a₁✝ = a₂✝ [PROOFSTEP] exact Opens.comap_injective (Quiver.Hom.op_inj h)
{"mathlib_filename": "Mathlib.Topology.Category.Locale", "llama_tokens": 226}
[GOAL] ⊢ T2Space Empty [PROOFSTEP] infer_instance [GOAL] X : UniformSpaceCat Y : CpltSepUniformSpace f : toUniformSpace (CpltSepUniformSpace.of (Completion ↑X)) ⟶ toUniformSpace Y ⊢ extensionHom (completionHom X ≫ f) = f [PROOFSTEP] apply Subtype.eq [GOAL] case a X : UniformSpaceCat Y : CpltSepUniformSpace f : toUniformSpace (CpltSepUniformSpace.of (Completion ↑X)) ⟶ toUniformSpace Y ⊢ ↑(extensionHom (completionHom X ≫ f)) = ↑f [PROOFSTEP] funext x [GOAL] case a.h X : UniformSpaceCat Y : CpltSepUniformSpace f : toUniformSpace (CpltSepUniformSpace.of (Completion ↑X)) ⟶ toUniformSpace Y x : ↑(toUniformSpace (completionFunctor.obj X)) ⊢ ↑(extensionHom (completionHom X ≫ f)) x = ↑f x [PROOFSTEP] exact congr_fun (Completion.extension_comp_coe f.property) x [GOAL] X : UniformSpaceCat Y : CpltSepUniformSpace f : completionFunctor.obj X ⟶ Y ⊢ (fun f => extensionHom f) ((fun f => completionHom X ≫ f) f) = f [PROOFSTEP] dsimp [GOAL] X : UniformSpaceCat Y : CpltSepUniformSpace f : completionFunctor.obj X ⟶ Y ⊢ extensionHom (completionHom X ≫ f) = f [PROOFSTEP] erw [extension_comp_coe] [GOAL] X : UniformSpaceCat Y : CpltSepUniformSpace f : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y ⊢ (fun f => completionHom X ≫ f) ((fun f => extensionHom f) f) = f [PROOFSTEP] apply Subtype.eq [GOAL] case a X : UniformSpaceCat Y : CpltSepUniformSpace f : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y ⊢ ↑((fun f => completionHom X ≫ f) ((fun f => extensionHom f) f)) = ↑f [PROOFSTEP] funext x [GOAL] case a.h X : UniformSpaceCat Y : CpltSepUniformSpace f : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y x : ↑X ⊢ ↑((fun f => completionHom X ≫ f) ((fun f => extensionHom f) f)) x = ↑f x [PROOFSTEP] cases f [GOAL] case a.h.mk X : UniformSpaceCat Y : CpltSepUniformSpace x : ↑X val✝ : ↑X → ↑((forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y) property✝ : UniformContinuous val✝ ⊢ ↑((fun f => completionHom X ≫ f) ((fun f => extensionHom f) { val := val✝, property := property✝ })) x = ↑{ val := val✝, property := property✝ } x [PROOFSTEP] exact @Completion.extension_coe _ _ _ _ _ (CpltSepUniformSpace.separatedSpace _) ‹_› _ [GOAL] X' X : UniformSpaceCat Y : CpltSepUniformSpace f : X' ⟶ X g : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y ⊢ ↑((fun X Y => { toFun := fun f => completionHom X ≫ f, invFun := fun f => extensionHom f, left_inv := (_ : ∀ (f : completionFunctor.obj X ⟶ Y), (fun f => extensionHom f) ((fun f => completionHom X ≫ f) f) = f), right_inv := (_ : ∀ (f : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y), (fun f => completionHom X ≫ f) ((fun f => extensionHom f) f) = f) }) X' Y).symm (f ≫ g) = completionFunctor.map f ≫ ↑((fun X Y => { toFun := fun f => completionHom X ≫ f, invFun := fun f => extensionHom f, left_inv := (_ : ∀ (f : completionFunctor.obj X ⟶ Y), (fun f => extensionHom f) ((fun f => completionHom X ≫ f) f) = f), right_inv := (_ : ∀ (f : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y), (fun f => completionHom X ≫ f) ((fun f => extensionHom f) f) = f) }) X Y).symm g [PROOFSTEP] apply hom_ext [GOAL] case a X' X : UniformSpaceCat Y : CpltSepUniformSpace f : X' ⟶ X g : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y ⊢ (forget UniformSpaceCat).map (↑((fun X Y => { toFun := fun f => completionHom X ≫ f, invFun := fun f => extensionHom f, left_inv := (_ : ∀ (f : completionFunctor.obj X ⟶ Y), (fun f => extensionHom f) ((fun f => completionHom X ≫ f) f) = f), right_inv := (_ : ∀ (f : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y), (fun f => completionHom X ≫ f) ((fun f => extensionHom f) f) = f) }) X' Y).symm (f ≫ g)) = (forget UniformSpaceCat).map (completionFunctor.map f ≫ ↑((fun X Y => { toFun := fun f => completionHom X ≫ f, invFun := fun f => extensionHom f, left_inv := (_ : ∀ (f : completionFunctor.obj X ⟶ Y), (fun f => extensionHom f) ((fun f => completionHom X ≫ f) f) = f), right_inv := (_ : ∀ (f : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y), (fun f => completionHom X ≫ f) ((fun f => extensionHom f) f) = f) }) X Y).symm g) [PROOFSTEP] funext x [GOAL] case a.h X' X : UniformSpaceCat Y : CpltSepUniformSpace f : X' ⟶ X g : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y x : (forget UniformSpaceCat).obj (toUniformSpace (completionFunctor.obj X')) ⊢ (forget UniformSpaceCat).map (↑((fun X Y => { toFun := fun f => completionHom X ≫ f, invFun := fun f => extensionHom f, left_inv := (_ : ∀ (f : completionFunctor.obj X ⟶ Y), (fun f => extensionHom f) ((fun f => completionHom X ≫ f) f) = f), right_inv := (_ : ∀ (f : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y), (fun f => completionHom X ≫ f) ((fun f => extensionHom f) f) = f) }) X' Y).symm (f ≫ g)) x = (forget UniformSpaceCat).map (completionFunctor.map f ≫ ↑((fun X Y => { toFun := fun f => completionHom X ≫ f, invFun := fun f => extensionHom f, left_inv := (_ : ∀ (f : completionFunctor.obj X ⟶ Y), (fun f => extensionHom f) ((fun f => completionHom X ≫ f) f) = f), right_inv := (_ : ∀ (f : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y), (fun f => completionHom X ≫ f) ((fun f => extensionHom f) f) = f) }) X Y).symm g) x [PROOFSTEP] dsimp [GOAL] case a.h X' X : UniformSpaceCat Y : CpltSepUniformSpace f : X' ⟶ X g : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y x : (forget UniformSpaceCat).obj (toUniformSpace (completionFunctor.obj X')) ⊢ (forget UniformSpaceCat).map (extensionHom (f ≫ g)) x = (forget UniformSpaceCat).map (completionFunctor.map f ≫ extensionHom g) x [PROOFSTEP] erw [coe_comp] -- Porting note : used to be `erw [← Completion.extension_map]` [GOAL] case a.h X' X : UniformSpaceCat Y : CpltSepUniformSpace f : X' ⟶ X g : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y x : (forget UniformSpaceCat).obj (toUniformSpace (completionFunctor.obj X')) ⊢ (forget UniformSpaceCat).map (extensionHom (f ≫ g)) x = ((forget UniformSpaceCat).map (extensionHom g) ∘ (forget UniformSpaceCat).map (completionFunctor.map f)) x [PROOFSTEP] have := (Completion.extension_map (γ := Y) (f := g) g.2 f.2) [GOAL] case a.h X' X : UniformSpaceCat Y : CpltSepUniformSpace f : X' ⟶ X g : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y x : (forget UniformSpaceCat).obj (toUniformSpace (completionFunctor.obj X')) this : Completion.extension ((forget UniformSpaceCat).map g) ∘ Completion.map ↑f = Completion.extension ((forget UniformSpaceCat).map g ∘ ↑f) ⊢ (forget UniformSpaceCat).map (extensionHom (f ≫ g)) x = ((forget UniformSpaceCat).map (extensionHom g) ∘ (forget UniformSpaceCat).map (completionFunctor.map f)) x [PROOFSTEP] simp only [forget_map_eq_coe] at this ⊢ [GOAL] case a.h X' X : UniformSpaceCat Y : CpltSepUniformSpace f : X' ⟶ X g : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y x : (forget UniformSpaceCat).obj (toUniformSpace (completionFunctor.obj X')) this : Completion.extension ↑g ∘ Completion.map ↑f = Completion.extension (↑g ∘ ↑f) ⊢ ↑(extensionHom (f ≫ g)) x = (↑(extensionHom g) ∘ ↑(completionFunctor.map f)) x [PROOFSTEP] erw [this] [GOAL] case a.h X' X : UniformSpaceCat Y : CpltSepUniformSpace f : X' ⟶ X g : X ⟶ (forget₂ CpltSepUniformSpace UniformSpaceCat).obj Y x : (forget UniformSpaceCat).obj (toUniformSpace (completionFunctor.obj X')) this : Completion.extension ↑g ∘ Completion.map ↑f = Completion.extension (↑g ∘ ↑f) ⊢ ↑(extensionHom (f ≫ g)) x = Completion.extension (↑g ∘ ↑f) x [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Topology.Category.UniformSpace", "llama_tokens": 3205}
[GOAL] α : Type u_1 β : Type u_2 E : Type u_3 inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : MetricSpace β inst✝ : NormedAddCommGroup E f : C(α, β) ⊢ (mkOfCompact f).toContinuousMap = f [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 E : Type u_3 inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : MetricSpace β inst✝ : NormedAddCommGroup E f : C(α, β) a✝ : α ⊢ ↑(mkOfCompact f).toContinuousMap a✝ = ↑f a✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 E : Type u_3 inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : MetricSpace β inst✝ : NormedAddCommGroup E f : α →ᵇ β ⊢ mkOfCompact f.toContinuousMap = f [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 E : Type u_3 inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : MetricSpace β inst✝ : NormedAddCommGroup E f : α →ᵇ β x✝ : α ⊢ ↑(mkOfCompact f.toContinuousMap) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 E : Type u_3 inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : MetricSpace β inst✝ : NormedAddCommGroup E ⊢ ∀ (s : Set (C(α, β) × C(α, β))), s ∈ uniformity C(α, β) ↔ ∃ t, t ∈ uniformity (α →ᵇ β) ∧ ∀ (x y : C(α, β)), (↑(equivBoundedOfCompact α β) x, ↑(equivBoundedOfCompact α β) y) ∈ t → (x, y) ∈ s [PROOFSTEP] simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] [GOAL] α : Type u_1 β : Type u_2 E : Type u_3 inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : MetricSpace β inst✝ : NormedAddCommGroup E ⊢ ∀ (s : Set (C(α, β) × C(α, β))), (∃ i, (IsCompact i.fst ∧ ∃ i_1, 0 < i_1 ∧ {p | dist p.fst p.snd ≤ i_1} ⊆ i.snd) ∧ {fg | ∀ (x : α), x ∈ i.fst → (↑fg.fst x, ↑fg.snd x) ∈ i.snd} ⊆ s) ↔ ∃ t, (∃ i, 0 < i ∧ {p | dist p.fst p.snd ≤ i} ⊆ t) ∧ ∀ (x y : C(α, β)), (↑(equivBoundedOfCompact α β) x, ↑(equivBoundedOfCompact α β) y) ∈ t → (x, y) ∈ s [PROOFSTEP] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{p | ∀ x, (p.1 x, p.2 x) ∈ b}, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, {p | dist p.1 p.2 ≤ ε}⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩ [GOAL] α : Type u_1 β : Type u_2 E : Type u_3 inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : MetricSpace β inst✝ : NormedAddCommGroup E f g : C(α, β) C : ℝ x : α ⊢ dist (↑f x) (↑g x) ≤ dist f g [PROOFSTEP] simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] [GOAL] α : Type u_1 β : Type u_2 E : Type u_3 inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : MetricSpace β inst✝ : NormedAddCommGroup E f g : C(α, β) C : ℝ C0 : 0 ≤ C ⊢ dist f g ≤ C ↔ ∀ (x : α), dist (↑f x) (↑g x) ≤ C [PROOFSTEP] simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] [GOAL] α : Type u_1 β : Type u_2 E : Type u_3 inst✝⁴ : TopologicalSpace α inst✝³ : CompactSpace α inst✝² : MetricSpace β inst✝¹ : NormedAddCommGroup E f g : C(α, β) C : ℝ inst✝ : Nonempty α ⊢ dist f g ≤ C ↔ ∀ (x : α), dist (↑f x) (↑g x) ≤ C [PROOFSTEP] simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] [GOAL] α : Type u_1 β : Type u_2 E : Type u_3 inst✝⁴ : TopologicalSpace α inst✝³ : CompactSpace α inst✝² : MetricSpace β inst✝¹ : NormedAddCommGroup E f g : C(α, β) C : ℝ inst✝ : Nonempty α ⊢ dist f g < C ↔ ∀ (x : α), dist (↑f x) (↑g x) < C [PROOFSTEP] simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] [GOAL] α : Type u_1 β : Type u_2 E : Type u_3 inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : MetricSpace β inst✝ : NormedAddCommGroup E f g : C(α, β) C : ℝ C0 : 0 < C ⊢ dist f g < C ↔ ∀ (x : α), dist (↑f x) (↑g x) < C [PROOFSTEP] rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] [GOAL] α : Type u_1 β : Type u_2 E : Type u_3 inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : MetricSpace β inst✝ : NormedAddCommGroup E f g : C(α, β) C : ℝ C0 : 0 < C ⊢ (∀ (x : α), dist (↑(mkOfCompact f) x) (↑(mkOfCompact g) x) < C) ↔ ∀ (x : α), dist (↑f x) (↑g x) < C [PROOFSTEP] simp only [mkOfCompact_apply] [GOAL] α : Type u_1 β : Type u_2 E : Type u_3 inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : MetricSpace β inst✝ : NormedAddCommGroup E src✝¹ : MetricSpace C(α, E) := metricSpace α E src✝ : AddCommGroup C(α, E) := instAddCommGroupContinuousMap x y : C(α, E) ⊢ dist x y = ‖x - y‖ [PROOFSTEP] rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] [GOAL] α : Type u_1 β : Type u_2 E : Type u_3 inst✝⁶ : TopologicalSpace α inst✝⁵ : CompactSpace α inst✝⁴ : MetricSpace β inst✝³ : NormedAddCommGroup E inst✝² : Nonempty α inst✝¹ : One E inst✝ : NormOneClass E ⊢ ‖1‖ = 1 [PROOFSTEP] simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] [GOAL] α : Type u_1 β : Type u_2 E : Type u_3 inst✝⁵ : TopologicalSpace α inst✝⁴ : CompactSpace α inst✝³ : MetricSpace β inst✝² : NormedAddCommGroup E 𝕜 : Type u_4 inst✝¹ : NormedField 𝕜 inst✝ : NormedSpace 𝕜 E src✝ : C(α, E) ≃+ (α →ᵇ E) := addEquivBoundedOfCompact α E c : 𝕜 f : C(α, E) ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : C(α, E)), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (c • f) = ↑(RingHom.id 𝕜) c • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : C(α, E)), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } f [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 E : Type u_3 inst✝⁵ : TopologicalSpace α inst✝⁴ : CompactSpace α inst✝³ : MetricSpace β inst✝² : NormedAddCommGroup E 𝕜 : Type u_4 inst✝¹ : NormedField 𝕜 inst✝ : NormedSpace 𝕜 E src✝ : C(α, E) ≃+ (α →ᵇ E) := addEquivBoundedOfCompact α E c : 𝕜 f : C(α, E) x✝ : α ⊢ ↑(AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : C(α, E)), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (c • f)) x✝ = ↑(↑(RingHom.id 𝕜) c • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : C(α, E)), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } f) x✝ [PROOFSTEP] norm_cast [GOAL] X : Type u_1 𝕜 : Type u_2 β : Type u_3 γ : Type u_4 inst✝⁶ : TopologicalSpace X inst✝⁵ : CompactSpace X inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup β inst✝² : NormedSpace 𝕜 β inst✝¹ : NormedAddCommGroup γ inst✝ : NormedSpace 𝕜 γ g : β →L[𝕜] γ ⊢ ↑(ContinuousLinearMap.compLeftContinuousCompact X g) = ContinuousLinearMap.compLeftContinuous 𝕜 X g [PROOFSTEP] ext f [GOAL] case h.h X : Type u_1 𝕜 : Type u_2 β : Type u_3 γ : Type u_4 inst✝⁶ : TopologicalSpace X inst✝⁵ : CompactSpace X inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup β inst✝² : NormedSpace 𝕜 β inst✝¹ : NormedAddCommGroup γ inst✝ : NormedSpace 𝕜 γ g : β →L[𝕜] γ f : C(X, β) a✝ : X ⊢ ↑(↑↑(ContinuousLinearMap.compLeftContinuousCompact X g) f) a✝ = ↑(↑(ContinuousLinearMap.compLeftContinuous 𝕜 X g) f) a✝ [PROOFSTEP] rfl [GOAL] X : Type u_1 Y : Type u_2 T : Type u_3 inst✝⁴ : TopologicalSpace X inst✝³ : CompactSpace X inst✝² : TopologicalSpace Y inst✝¹ : CompactSpace Y inst✝ : MetricSpace T f : C(X, Y) ⊢ Continuous fun g => comp g f [PROOFSTEP] refine' Metric.continuous_iff.mpr _ [GOAL] X : Type u_1 Y : Type u_2 T : Type u_3 inst✝⁴ : TopologicalSpace X inst✝³ : CompactSpace X inst✝² : TopologicalSpace Y inst✝¹ : CompactSpace Y inst✝ : MetricSpace T f : C(X, Y) ⊢ ∀ (b : C(Y, T)) (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (a : C(Y, T)), dist a b < δ → dist (comp a f) (comp b f) < ε [PROOFSTEP] intro g ε ε_pos [GOAL] X : Type u_1 Y : Type u_2 T : Type u_3 inst✝⁴ : TopologicalSpace X inst✝³ : CompactSpace X inst✝² : TopologicalSpace Y inst✝¹ : CompactSpace Y inst✝ : MetricSpace T f : C(X, Y) g : C(Y, T) ε : ℝ ε_pos : ε > 0 ⊢ ∃ δ, δ > 0 ∧ ∀ (a : C(Y, T)), dist a g < δ → dist (comp a f) (comp g f) < ε [PROOFSTEP] refine' ⟨ε, ε_pos, fun g' h => _⟩ [GOAL] X : Type u_1 Y : Type u_2 T : Type u_3 inst✝⁴ : TopologicalSpace X inst✝³ : CompactSpace X inst✝² : TopologicalSpace Y inst✝¹ : CompactSpace Y inst✝ : MetricSpace T f : C(X, Y) g : C(Y, T) ε : ℝ ε_pos : ε > 0 g' : C(Y, T) h : dist g' g < ε ⊢ dist (comp g' f) (comp g f) < ε [PROOFSTEP] rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ [GOAL] X : Type u_1 Y : Type u_2 T : Type u_3 inst✝⁴ : TopologicalSpace X inst✝³ : CompactSpace X inst✝² : TopologicalSpace Y inst✝¹ : CompactSpace Y inst✝ : MetricSpace T f : C(X, Y) g : C(Y, T) ε : ℝ ε_pos : ε > 0 g' : C(Y, T) h : ∀ (x : Y), dist (↑g' x) (↑g x) < ε ⊢ ∀ (x : X), dist (↑(comp g' f) x) (↑(comp g f) x) < ε [PROOFSTEP] exact fun x => h (f x) [GOAL] X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ ⊢ Summable F [PROOFSTEP] refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ [GOAL] X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Set X hK : IsCompact K ⊢ ∃ f, Tendsto (fun i => restrict K (∑ b in i, F b)) atTop (𝓝 f) [PROOFSTEP] lift K to Compacts X using hK [GOAL] case intro X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X ⊢ ∃ f, Tendsto (fun i => restrict (↑K) (∑ b in i, F b)) atTop (𝓝 f) [PROOFSTEP] have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp [GOAL] X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X ⊢ ∀ (s : Finset ι), restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict (↑K) (F i) [PROOFSTEP] intro s [GOAL] X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X s : Finset ι ⊢ restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict (↑K) (F i) [PROOFSTEP] ext1 x [GOAL] case h X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X s : Finset ι x : ↑↑K ⊢ ↑(restrict (↑K) (∑ i in s, F i)) x = ↑(∑ i in s, restrict (↑K) (F i)) x [PROOFSTEP] simp [GOAL] case intro X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X A : ∀ (s : Finset ι), restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict (↑K) (F i) ⊢ ∃ f, Tendsto (fun i => restrict (↑K) (∑ b in i, F b)) atTop (𝓝 f) [PROOFSTEP] simpa only [HasSum, A] using summable_of_summable_norm (hF K) [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedAddCommGroup β inst✝² : StarAddMonoid β inst✝¹ : NormedStarGroup β inst✝ : CompactSpace α f : C(α, β) ⊢ ‖star f‖ = ‖f‖ [PROOFSTEP] rw [← BoundedContinuousFunction.norm_mkOfCompact, BoundedContinuousFunction.mkOfCompact_star, norm_star, BoundedContinuousFunction.norm_mkOfCompact] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) ⊢ ‖star f * f‖ = ‖f‖ * ‖f‖ [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) ⊢ ‖star f * f‖ ≤ ‖f‖ * ‖f‖ [PROOFSTEP] rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) ⊢ ∀ (x : α), ‖↑(star f * f) x‖ ≤ ‖f‖ ^ 2 [PROOFSTEP] intro x [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) x : α ⊢ ‖↑(star f * f) x‖ ≤ ‖f‖ ^ 2 [PROOFSTEP] simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq] [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) x : α ⊢ ‖↑f x‖ ^ 2 ≤ ‖f‖ ^ 2 [PROOFSTEP] refine' sq_le_sq' _ _ [GOAL] case refine'_1.refine'_1 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) x : α ⊢ -‖f‖ ≤ ‖↑f x‖ [PROOFSTEP] linarith [norm_nonneg (f x), norm_nonneg f] [GOAL] case refine'_1.refine'_2 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) x : α ⊢ ‖↑f x‖ ≤ ‖f‖ [PROOFSTEP] exact ContinuousMap.norm_coe_le_norm f x [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) ⊢ ‖f‖ * ‖f‖ ≤ ‖star f * f‖ [PROOFSTEP] rw [← sq, ← Real.le_sqrt (norm_nonneg _) (norm_nonneg _), ContinuousMap.norm_le _ (Real.sqrt_nonneg _)] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) ⊢ ∀ (x : α), ‖↑f x‖ ≤ Real.sqrt ‖star f * f‖ [PROOFSTEP] intro x [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) x : α ⊢ ‖↑f x‖ ≤ Real.sqrt ‖star f * f‖ [PROOFSTEP] rw [Real.le_sqrt (norm_nonneg _) (norm_nonneg _), sq, ← CstarRing.norm_star_mul_self] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) x : α ⊢ ‖star (↑f x) * ↑f x‖ ≤ ‖star f * f‖ [PROOFSTEP] exact ContinuousMap.norm_coe_le_norm (star f * f) x
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.Compact", "llama_tokens": 7800}