text
stringlengths
0
3.06M
meta
stringlengths
57
121
[GOAL] S : Type u_1 inst✝ : UnitalShelf S x y : S ⊢ (x ◃ y) ◃ x = x ◃ y [PROOFSTEP] have h : (x ◃ y) ◃ x = (x ◃ y) ◃ (x ◃ 1) := by rw [act_one] [GOAL] S : Type u_1 inst✝ : UnitalShelf S x y : S ⊢ (x ◃ y) ◃ x = (x ◃ y) ◃ x ◃ 1 [PROOFSTEP] rw [act_one] [GOAL] S : Type u_1 inst✝ : UnitalShelf S x y : S h : (x ◃ y) ◃ x = (x ◃ y) ◃ x ◃ 1 ⊢ (x ◃ y) ◃ x = x ◃ y [PROOFSTEP] rw [h, ← Shelf.self_distrib, act_one] [GOAL] S : Type u_1 inst✝ : UnitalShelf S x : S ⊢ x ◃ x = x [PROOFSTEP] rw [← act_one x, ← Shelf.self_distrib, act_one, act_one] [GOAL] S : Type u_1 inst✝ : UnitalShelf S x y : S ⊢ x ◃ x ◃ y = x ◃ y [PROOFSTEP] have h : x ◃ (x ◃ y) = (x ◃ 1) ◃ (x ◃ y) := by rw [act_one] [GOAL] S : Type u_1 inst✝ : UnitalShelf S x y : S ⊢ x ◃ x ◃ y = (x ◃ 1) ◃ x ◃ y [PROOFSTEP] rw [act_one] [GOAL] S : Type u_1 inst✝ : UnitalShelf S x y : S h : x ◃ x ◃ y = (x ◃ 1) ◃ x ◃ y ⊢ x ◃ x ◃ y = x ◃ y [PROOFSTEP] rw [h, ← Shelf.self_distrib, one_act] [GOAL] S : Type u_1 inst✝ : UnitalShelf S x y z : S ⊢ (x ◃ y) ◃ z = x ◃ y ◃ z [PROOFSTEP] rw [self_distrib, self_distrib, act_act_self_eq, act_self_act_eq] [GOAL] R : Type u_1 inst✝ : Rack R x y y' : R ⊢ x ◃ y = x ◃ y' ↔ y = y' [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝ : Rack R x y y' : R ⊢ x ◃ y = x ◃ y' → y = y' case mpr R : Type u_1 inst✝ : Rack R x y y' : R ⊢ y = y' → x ◃ y = x ◃ y' [PROOFSTEP] apply (act' x).injective [GOAL] case mpr R : Type u_1 inst✝ : Rack R x y y' : R ⊢ y = y' → x ◃ y = x ◃ y' [PROOFSTEP] rintro rfl [GOAL] case mpr R : Type u_1 inst✝ : Rack R x y : R ⊢ x ◃ y = x ◃ y [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝ : Rack R x y y' : R ⊢ x ◃⁻¹ y = x ◃⁻¹ y' ↔ y = y' [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝ : Rack R x y y' : R ⊢ x ◃⁻¹ y = x ◃⁻¹ y' → y = y' case mpr R : Type u_1 inst✝ : Rack R x y y' : R ⊢ y = y' → x ◃⁻¹ y = x ◃⁻¹ y' [PROOFSTEP] apply (act' x).symm.injective [GOAL] case mpr R : Type u_1 inst✝ : Rack R x y y' : R ⊢ y = y' → x ◃⁻¹ y = x ◃⁻¹ y' [PROOFSTEP] rintro rfl [GOAL] case mpr R : Type u_1 inst✝ : Rack R x y : R ⊢ x ◃⁻¹ y = x ◃⁻¹ y [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝ : Rack R x y z : R ⊢ x ◃⁻¹ y ◃⁻¹ z = (x ◃⁻¹ y) ◃⁻¹ x ◃⁻¹ z [PROOFSTEP] rw [← left_cancel (x ◃⁻¹ y), right_inv, ← left_cancel x, right_inv, self_distrib] [GOAL] R : Type u_1 inst✝ : Rack R x y z : R ⊢ (x ◃ x ◃⁻¹ y) ◃ x ◃ x ◃⁻¹ y ◃⁻¹ z = z [PROOFSTEP] repeat' rw [right_inv] [GOAL] R : Type u_1 inst✝ : Rack R x y z : R ⊢ (x ◃ x ◃⁻¹ y) ◃ x ◃ x ◃⁻¹ y ◃⁻¹ z = z [PROOFSTEP] rw [right_inv] [GOAL] R : Type u_1 inst✝ : Rack R x y z : R ⊢ y ◃ x ◃ x ◃⁻¹ y ◃⁻¹ z = z [PROOFSTEP] rw [right_inv] [GOAL] R : Type u_1 inst✝ : Rack R x y z : R ⊢ y ◃ y ◃⁻¹ z = z [PROOFSTEP] rw [right_inv] [GOAL] R✝ : Type u_1 inst✝¹ : Rack R✝ R : Type u_2 inst✝ : Rack R x y : R ⊢ act' (x ◃ y) = act' x * act' y * (act' x)⁻¹ [PROOFSTEP] rw [eq_mul_inv_iff_mul_eq] [GOAL] R✝ : Type u_1 inst✝¹ : Rack R✝ R : Type u_2 inst✝ : Rack R x y : R ⊢ act' (x ◃ y) * act' x = act' x * act' y [PROOFSTEP] ext z [GOAL] case H R✝ : Type u_1 inst✝¹ : Rack R✝ R : Type u_2 inst✝ : Rack R x y z : R ⊢ ↑(act' (x ◃ y) * act' x) z = ↑(act' x * act' y) z [PROOFSTEP] apply self_distrib.symm [GOAL] R : Type u_1 inst✝ : Rack R ⊢ ∀ {x y z : Rᵐᵒᵖ}, (fun x y => op (unop x ◃⁻¹ unop y)) x ((fun x y => op (unop x ◃⁻¹ unop y)) y z) = (fun x y => op (unop x ◃⁻¹ unop y)) ((fun x y => op (unop x ◃⁻¹ unop y)) x y) ((fun x y => op (unop x ◃⁻¹ unop y)) x z) [PROOFSTEP] intro x y z [GOAL] R : Type u_1 inst✝ : Rack R x y z : Rᵐᵒᵖ ⊢ (fun x y => op (unop x ◃⁻¹ unop y)) x ((fun x y => op (unop x ◃⁻¹ unop y)) y z) = (fun x y => op (unop x ◃⁻¹ unop y)) ((fun x y => op (unop x ◃⁻¹ unop y)) x y) ((fun x y => op (unop x ◃⁻¹ unop y)) x z) [PROOFSTEP] induction x using MulOpposite.rec' [GOAL] case h R : Type u_1 inst✝ : Rack R y z : Rᵐᵒᵖ X✝ : R ⊢ (fun x y => op (unop x ◃⁻¹ unop y)) (op X✝) ((fun x y => op (unop x ◃⁻¹ unop y)) y z) = (fun x y => op (unop x ◃⁻¹ unop y)) ((fun x y => op (unop x ◃⁻¹ unop y)) (op X✝) y) ((fun x y => op (unop x ◃⁻¹ unop y)) (op X✝) z) [PROOFSTEP] induction y using MulOpposite.rec' [GOAL] case h.h R : Type u_1 inst✝ : Rack R z : Rᵐᵒᵖ X✝¹ X✝ : R ⊢ (fun x y => op (unop x ◃⁻¹ unop y)) (op X✝¹) ((fun x y => op (unop x ◃⁻¹ unop y)) (op X✝) z) = (fun x y => op (unop x ◃⁻¹ unop y)) ((fun x y => op (unop x ◃⁻¹ unop y)) (op X✝¹) (op X✝)) ((fun x y => op (unop x ◃⁻¹ unop y)) (op X✝¹) z) [PROOFSTEP] induction z using MulOpposite.rec' [GOAL] case h.h.h R : Type u_1 inst✝ : Rack R X✝² X✝¹ X✝ : R ⊢ (fun x y => op (unop x ◃⁻¹ unop y)) (op X✝²) ((fun x y => op (unop x ◃⁻¹ unop y)) (op X✝¹) (op X✝)) = (fun x y => op (unop x ◃⁻¹ unop y)) ((fun x y => op (unop x ◃⁻¹ unop y)) (op X✝²) (op X✝¹)) ((fun x y => op (unop x ◃⁻¹ unop y)) (op X✝²) (op X✝)) [PROOFSTEP] simp only [op_inj, unop_op, op_unop] [GOAL] case h.h.h R : Type u_1 inst✝ : Rack R X✝² X✝¹ X✝ : R ⊢ X✝² ◃⁻¹ X✝¹ ◃⁻¹ X✝ = (X✝² ◃⁻¹ X✝¹) ◃⁻¹ X✝² ◃⁻¹ X✝ [PROOFSTEP] rw [self_distrib_inv] [GOAL] R : Type u_1 inst✝ : Rack R x y : R ⊢ (fun x y => op (unop x ◃ unop y)) (op x) (op x ◃ op y) = op y [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : Rack R x y : R ⊢ op x ◃ (fun x y => op (unop x ◃ unop y)) (op x) (op y) = op y [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : Rack R x y : R ⊢ (x ◃ x) ◃ y = x ◃ y [PROOFSTEP] rw [← right_inv x y, ← self_distrib] [GOAL] R : Type u_1 inst✝ : Rack R x y : R ⊢ (x ◃⁻¹ x) ◃⁻¹ y = x ◃⁻¹ y [PROOFSTEP] have h := @self_act_act_eq _ _ (op x) (op y) [GOAL] R : Type u_1 inst✝ : Rack R x y : R h : (op x ◃ op x) ◃ op y = op x ◃ op y ⊢ (x ◃⁻¹ x) ◃⁻¹ y = x ◃⁻¹ y [PROOFSTEP] simpa using h [GOAL] R : Type u_1 inst✝ : Rack R x y : R ⊢ (x ◃ x) ◃⁻¹ y = x ◃⁻¹ y [PROOFSTEP] rw [← left_cancel (x ◃ x)] [GOAL] R : Type u_1 inst✝ : Rack R x y : R ⊢ (x ◃ x) ◃ (x ◃ x) ◃⁻¹ y = (x ◃ x) ◃ x ◃⁻¹ y [PROOFSTEP] rw [right_inv] [GOAL] R : Type u_1 inst✝ : Rack R x y : R ⊢ y = (x ◃ x) ◃ x ◃⁻¹ y [PROOFSTEP] rw [self_act_act_eq] [GOAL] R : Type u_1 inst✝ : Rack R x y : R ⊢ y = x ◃ x ◃⁻¹ y [PROOFSTEP] rw [right_inv] [GOAL] R : Type u_1 inst✝ : Rack R x y : R ⊢ (x ◃⁻¹ x) ◃ y = x ◃ y [PROOFSTEP] have h := @self_act_invAct_eq _ _ (op x) (op y) [GOAL] R : Type u_1 inst✝ : Rack R x y : R h : (op x ◃ op x) ◃⁻¹ op y = op x ◃⁻¹ op y ⊢ (x ◃⁻¹ x) ◃ y = x ◃ y [PROOFSTEP] simpa using h [GOAL] R : Type u_1 inst✝ : Rack R x y : R ⊢ x ◃ x = y ◃ y ↔ x = y [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝ : Rack R x y : R ⊢ x ◃ x = y ◃ y → x = y case mpr R : Type u_1 inst✝ : Rack R x y : R ⊢ x = y → x ◃ x = y ◃ y [PROOFSTEP] swap [GOAL] case mpr R : Type u_1 inst✝ : Rack R x y : R ⊢ x = y → x ◃ x = y ◃ y case mp R : Type u_1 inst✝ : Rack R x y : R ⊢ x ◃ x = y ◃ y → x = y [PROOFSTEP] rintro rfl [GOAL] case mpr R : Type u_1 inst✝ : Rack R x : R ⊢ x ◃ x = x ◃ x case mp R : Type u_1 inst✝ : Rack R x y : R ⊢ x ◃ x = y ◃ y → x = y [PROOFSTEP] rfl [GOAL] case mp R : Type u_1 inst✝ : Rack R x y : R ⊢ x ◃ x = y ◃ y → x = y [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 inst✝ : Rack R x y : R h : x ◃ x = y ◃ y ⊢ x = y [PROOFSTEP] trans (x ◃ x) ◃⁻¹ x ◃ x [GOAL] R : Type u_1 inst✝ : Rack R x y : R h : x ◃ x = y ◃ y ⊢ x = (x ◃ x) ◃⁻¹ x ◃ x R : Type u_1 inst✝ : Rack R x y : R h : x ◃ x = y ◃ y ⊢ (x ◃ x) ◃⁻¹ x ◃ x = y [PROOFSTEP] rw [← left_cancel (x ◃ x), right_inv, self_act_act_eq] [GOAL] R : Type u_1 inst✝ : Rack R x y : R h : x ◃ x = y ◃ y ⊢ (x ◃ x) ◃⁻¹ x ◃ x = y [PROOFSTEP] rw [h, ← left_cancel (y ◃ y), right_inv, self_act_act_eq] [GOAL] R : Type u_1 inst✝ : Rack R x y : R ⊢ x ◃⁻¹ x = y ◃⁻¹ y ↔ x = y [PROOFSTEP] have h := @self_act_eq_iff_eq _ _ (op x) (op y) [GOAL] R : Type u_1 inst✝ : Rack R x y : R h : op x ◃ op x = op y ◃ op y ↔ op x = op y ⊢ x ◃⁻¹ x = y ◃⁻¹ y ↔ x = y [PROOFSTEP] simpa using h [GOAL] R✝ : Type u_1 inst✝¹ : Rack R✝ R : Type u_2 inst✝ : Rack R x : R ⊢ (fun x => x ◃⁻¹ x) ((fun x => x ◃ x) x) = x [PROOFSTEP] simp [GOAL] R✝ : Type u_1 inst✝¹ : Rack R✝ R : Type u_2 inst✝ : Rack R x : R ⊢ (fun x => x ◃ x) ((fun x => x ◃⁻¹ x) x) = x [PROOFSTEP] simp [GOAL] R✝ : Type u_1 inst✝¹ : Rack R✝ R : Type u_2 inst✝ : Rack R h : IsInvolutory R x y : R ⊢ x ◃⁻¹ y = x ◃ y [PROOFSTEP] rw [← left_cancel x, right_inv, h x] [GOAL] R✝ : Type u_1 inst✝¹ : Rack R✝ R : Type u_2 inst✝ : Rack R x y z : R ⊢ x ◃ y ◃ z = (x ◃ y) ◃ z ↔ x ◃ z = z [PROOFSTEP] rw [self_distrib] [GOAL] R✝ : Type u_1 inst✝¹ : Rack R✝ R : Type u_2 inst✝ : Rack R x y z : R ⊢ (x ◃ y) ◃ x ◃ z = (x ◃ y) ◃ z ↔ x ◃ z = z [PROOFSTEP] rw [left_cancel] [GOAL] S₁ : Type u_1 S₂ : Type u_2 S₃ : Type u_3 inst✝³ : Shelf S₁ inst✝² : Shelf S₂ inst✝¹ : Shelf S₃ S : Type u_4 inst✝ : Shelf S ⊢ ∀ {x y : S}, (fun x => x) (x ◃ y) = (fun x => x) x ◃ (fun x => x) y [PROOFSTEP] simp [GOAL] S₁ : Type u_1 S₂ : Type u_2 S₃ : Type u_3 inst✝² : Shelf S₁ inst✝¹ : Shelf S₂ inst✝ : Shelf S₃ g : S₂ →◃ S₃ f : S₁ →◃ S₂ ⊢ ∀ {x y : S₁}, (g.toFun ∘ f.toFun) (x ◃ y) = (g.toFun ∘ f.toFun) x ◃ (g.toFun ∘ f.toFun) y [PROOFSTEP] simp [GOAL] Q : Type u_1 inst✝ : Quandle Q x : Q ⊢ x ◃⁻¹ x = x [PROOFSTEP] rw [← left_cancel x] [GOAL] Q : Type u_1 inst✝ : Quandle Q x : Q ⊢ x ◃ x ◃⁻¹ x = x ◃ x [PROOFSTEP] simp [GOAL] Q : Type u_1 inst✝ : Quandle Q ⊢ ∀ {x : Qᵐᵒᵖ}, x ◃ x = x [PROOFSTEP] intro x [GOAL] Q : Type u_1 inst✝ : Quandle Q x : Qᵐᵒᵖ ⊢ x ◃ x = x [PROOFSTEP] induction' x using MulOpposite.rec' [GOAL] case h Q : Type u_1 inst✝ : Quandle Q X✝ : Q ⊢ op X✝ ◃ op X✝ = op X✝ [PROOFSTEP] simp [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G ⊢ ∀ {x y z : Conj G}, (fun x => ↑(↑MulAut.conj x)) x ((fun x => ↑(↑MulAut.conj x)) y z) = (fun x => ↑(↑MulAut.conj x)) ((fun x => ↑(↑MulAut.conj x)) x y) ((fun x => ↑(↑MulAut.conj x)) x z) [PROOFSTEP] intro x y z [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y z : Conj G ⊢ (fun x => ↑(↑MulAut.conj x)) x ((fun x => ↑(↑MulAut.conj x)) y z) = (fun x => ↑(↑MulAut.conj x)) ((fun x => ↑(↑MulAut.conj x)) x y) ((fun x => ↑(↑MulAut.conj x)) x z) [PROOFSTEP] dsimp only [MulAut.conj_apply] [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y z : Conj G ⊢ x * (y * z * y⁻¹) * x⁻¹ = x * y * x⁻¹ * (x * z * x⁻¹) * (x * y * x⁻¹)⁻¹ [PROOFSTEP] simp [mul_assoc] [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G ⊢ (fun x => ↑(MulEquiv.symm (↑MulAut.conj x))) x (x ◃ y) = y [PROOFSTEP] simp [act', mul_assoc] [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G ⊢ x ◃ (fun x => ↑(MulEquiv.symm (↑MulAut.conj x))) x y = y [PROOFSTEP] simp [act', mul_assoc] [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G ⊢ ∀ {x : Conj G}, x ◃ x = x [PROOFSTEP] simp [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G ⊢ x ◃ y = y ↔ y ◃ x = x [PROOFSTEP] dsimp [Conj] at * [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G ⊢ x * y * x⁻¹ = y ↔ y * x * y⁻¹ = x [PROOFSTEP] constructor [GOAL] case mp Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G ⊢ x * y * x⁻¹ = y → y * x * y⁻¹ = x case mpr Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G ⊢ y * x * y⁻¹ = x → x * y * x⁻¹ = y [PROOFSTEP] repeat' intro h; conv_rhs => rw [eq_mul_inv_of_mul_eq (eq_mul_inv_of_mul_eq h)]; simp [GOAL] case mp Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G ⊢ x * y * x⁻¹ = y → y * x * y⁻¹ = x [PROOFSTEP] intro h [GOAL] case mp Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G h : x * y * x⁻¹ = y ⊢ y * x * y⁻¹ = x [PROOFSTEP] conv_rhs => rw [eq_mul_inv_of_mul_eq (eq_mul_inv_of_mul_eq h)]; simp [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G h : x * y * x⁻¹ = y | x [PROOFSTEP] rw [eq_mul_inv_of_mul_eq (eq_mul_inv_of_mul_eq h)]; simp [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G h : x * y * x⁻¹ = y | x [PROOFSTEP] rw [eq_mul_inv_of_mul_eq (eq_mul_inv_of_mul_eq h)]; simp [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G h : x * y * x⁻¹ = y | x [PROOFSTEP] rw [eq_mul_inv_of_mul_eq (eq_mul_inv_of_mul_eq h)] [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G h : x * y * x⁻¹ = y | y * x⁻¹⁻¹ * y⁻¹ [PROOFSTEP] simp [GOAL] case mpr Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G ⊢ y * x * y⁻¹ = x → x * y * x⁻¹ = y [PROOFSTEP] intro h [GOAL] case mpr Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G h : y * x * y⁻¹ = x ⊢ x * y * x⁻¹ = y [PROOFSTEP] conv_rhs => rw [eq_mul_inv_of_mul_eq (eq_mul_inv_of_mul_eq h)]; simp [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G h : y * x * y⁻¹ = x | y [PROOFSTEP] rw [eq_mul_inv_of_mul_eq (eq_mul_inv_of_mul_eq h)]; simp [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G h : y * x * y⁻¹ = x | y [PROOFSTEP] rw [eq_mul_inv_of_mul_eq (eq_mul_inv_of_mul_eq h)]; simp [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G h : y * x * y⁻¹ = x | y [PROOFSTEP] rw [eq_mul_inv_of_mul_eq (eq_mul_inv_of_mul_eq h)] [GOAL] Q : Type u_1 inst✝¹ : Quandle Q G : Type u_2 inst✝ : Group G x y : Conj G h : y * x * y⁻¹ = x | x * y⁻¹⁻¹ * x⁻¹ [PROOFSTEP] simp [GOAL] Q : Type u_1 inst✝² : Quandle Q G : Type u_2 H : Type u_3 inst✝¹ : Group G inst✝ : Group H f : G →* H ⊢ ∀ {x y : Conj G}, ↑f (x ◃ y) = ↑f x ◃ ↑f y [PROOFSTEP] simp [GOAL] Q : Type u_1 inst✝ : Quandle Q n : ℕ a : ZMod n ⊢ Function.Involutive (dihedralAct n a) [PROOFSTEP] intro b [GOAL] Q : Type u_1 inst✝ : Quandle Q n : ℕ a b : ZMod n ⊢ dihedralAct n a (dihedralAct n a b) = b [PROOFSTEP] dsimp only [dihedralAct] [GOAL] Q : Type u_1 inst✝ : Quandle Q n : ℕ a b : ZMod n ⊢ 2 * a - (2 * a - b) = b [PROOFSTEP] simp [GOAL] Q : Type u_1 inst✝ : Quandle Q n : ℕ ⊢ ∀ {x y z : Dihedral n}, dihedralAct n x (dihedralAct n y z) = dihedralAct n (dihedralAct n x y) (dihedralAct n x z) [PROOFSTEP] intro x y z [GOAL] Q : Type u_1 inst✝ : Quandle Q n : ℕ x y z : Dihedral n ⊢ dihedralAct n x (dihedralAct n y z) = dihedralAct n (dihedralAct n x y) (dihedralAct n x z) [PROOFSTEP] simp only [dihedralAct] [GOAL] Q : Type u_1 inst✝ : Quandle Q n : ℕ x y z : Dihedral n ⊢ 2 * x - (2 * y - z) = 2 * (2 * x - y) - (2 * x - z) [PROOFSTEP] ring_nf [GOAL] Q : Type u_1 inst✝ : Quandle Q n : ℕ ⊢ ∀ {x : Dihedral n}, x ◃ x = x [PROOFSTEP] intro x [GOAL] Q : Type u_1 inst✝ : Quandle Q n : ℕ x : Dihedral n ⊢ x ◃ x = x [PROOFSTEP] simp only [dihedralAct] [GOAL] Q : Type u_1 inst✝ : Quandle Q n : ℕ x : Dihedral n ⊢ 2 * x - x = x [PROOFSTEP] ring_nf [GOAL] R : Type u_1 inst✝ : Rack R ⊢ ∀ {x y : R}, act' (x ◃ y) = act' x ◃ act' y [PROOFSTEP] intro x y [GOAL] R : Type u_1 inst✝ : Rack R x y : R ⊢ act' (x ◃ y) = act' x ◃ act' y [PROOFSTEP] exact ad_conj x y [GOAL] R : Type u_1 inst✝ : Rack R ⊢ Equivalence (PreEnvelGroupRel R) [PROOFSTEP] constructor [GOAL] case refl R : Type u_1 inst✝ : Rack R ⊢ ∀ (x : PreEnvelGroup R), PreEnvelGroupRel R x x [PROOFSTEP] apply PreEnvelGroupRel.refl [GOAL] case symm R : Type u_1 inst✝ : Rack R ⊢ ∀ {x y : PreEnvelGroup R}, PreEnvelGroupRel R x y → PreEnvelGroupRel R y x [PROOFSTEP] apply PreEnvelGroupRel.symm [GOAL] case trans R : Type u_1 inst✝ : Rack R ⊢ ∀ {x y z : PreEnvelGroup R}, PreEnvelGroupRel R x y → PreEnvelGroupRel R y z → PreEnvelGroupRel R x z [PROOFSTEP] apply PreEnvelGroupRel.trans [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G a✝ b✝ a'✝ b'✝ : PreEnvelGroup R ha : PreEnvelGroupRel' R a✝ a'✝ hb : PreEnvelGroupRel' R b✝ b'✝ ⊢ mapAux f (PreEnvelGroup.mul a✝ b✝) = mapAux f (PreEnvelGroup.mul a'✝ b'✝) [PROOFSTEP] simp [toEnvelGroup.mapAux, well_def f ha, well_def f hb] [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G a✝ a'✝ : PreEnvelGroup R ha : PreEnvelGroupRel' R a✝ a'✝ ⊢ mapAux f (PreEnvelGroup.inv a✝) = mapAux f (PreEnvelGroup.inv a'✝) [PROOFSTEP] simp [toEnvelGroup.mapAux, well_def f ha] [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G a b c : PreEnvelGroup R ⊢ mapAux f (PreEnvelGroup.mul (PreEnvelGroup.mul a b) c) = mapAux f (PreEnvelGroup.mul a (PreEnvelGroup.mul b c)) [PROOFSTEP] apply mul_assoc [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G a : PreEnvelGroup R ⊢ mapAux f (PreEnvelGroup.mul unit a) = mapAux f a [PROOFSTEP] simp [toEnvelGroup.mapAux] [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G a : PreEnvelGroup R ⊢ mapAux f (PreEnvelGroup.mul a unit) = mapAux f a [PROOFSTEP] simp [toEnvelGroup.mapAux] [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G a : PreEnvelGroup R ⊢ mapAux f (PreEnvelGroup.mul (PreEnvelGroup.inv a) a) = mapAux f unit [PROOFSTEP] simp [toEnvelGroup.mapAux] [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G x y : R ⊢ mapAux f (PreEnvelGroup.mul (PreEnvelGroup.mul (incl x) (incl y)) (PreEnvelGroup.inv (incl x))) = mapAux f (incl (x ◃ y)) [PROOFSTEP] simp [toEnvelGroup.mapAux] [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G ⊢ (fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b)) 1 = 1 [PROOFSTEP] change Quotient.liftOn ⟦Rack.PreEnvelGroup.unit⟧ (toEnvelGroup.mapAux f) _ = 1 [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G ⊢ Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1 [PROOFSTEP] simp only [Quotient.lift_mk, mapAux] [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G x✝ y✝ : EnvelGroup R x y : PreEnvelGroup R ⊢ OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (Quotient.mk (setoid R) x * Quotient.mk (setoid R) y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (Quotient.mk (setoid R) x) * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (Quotient.mk (setoid R) y) [PROOFSTEP] simp only [toEnvelGroup.mapAux] [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G x✝ y✝ : EnvelGroup R x y : PreEnvelGroup R ⊢ Quotient.liftOn (Quotient.mk (setoid R) x * Quotient.mk (setoid R) y) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = Quotient.liftOn (Quotient.mk (setoid R) x) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) * Quotient.liftOn (Quotient.mk (setoid R) y) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) [PROOFSTEP] change Quotient.liftOn ⟦mul x y⟧ (toEnvelGroup.mapAux f) _ = _ [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G x✝ y✝ : EnvelGroup R x y : PreEnvelGroup R ⊢ Quotient.liftOn (Quotient.mk (setoid R) (PreEnvelGroup.mul x y)) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = Quotient.liftOn (Quotient.mk (setoid R) x) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) * Quotient.liftOn (Quotient.mk (setoid R) y) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) [PROOFSTEP] simp [toEnvelGroup.mapAux] [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G ⊢ (fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) ((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) f) = f [PROOFSTEP] ext [GOAL] case toFun.h R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G f : R →◃ Quandle.Conj G x✝ : R ⊢ ShelfHom.toFun ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) ((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) f)) x✝ = ShelfHom.toFun f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G F : EnvelGroup R →* G x✝ : EnvelGroup R x : PreEnvelGroup R ⊢ ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) x) = ↑F (Quotient.mk (setoid R) x) [PROOFSTEP] induction' x with _ x y ih_x ih_y x ih_x [GOAL] case unit R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G F : EnvelGroup R →* G x : EnvelGroup R ⊢ ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) unit) = ↑F (Quotient.mk (setoid R) unit) [PROOFSTEP] exact F.map_one.symm [GOAL] case incl R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G F : EnvelGroup R →* G x : EnvelGroup R x✝ : R ⊢ ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) (incl x✝)) = ↑F (Quotient.mk (setoid R) (incl x✝)) [PROOFSTEP] rfl [GOAL] case mul R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G F : EnvelGroup R →* G x✝ : EnvelGroup R x y : PreEnvelGroup R ih_x : ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) x) = ↑F (Quotient.mk (setoid R) x) ih_y : ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) y) = ↑F (Quotient.mk (setoid R) y) ⊢ ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) (PreEnvelGroup.mul x y)) = ↑F (Quotient.mk (setoid R) (PreEnvelGroup.mul x y)) [PROOFSTEP] have hm : ⟦x.mul y⟧ = @Mul.mul (EnvelGroup R) _ ⟦x⟧ ⟦y⟧ := rfl [GOAL] case mul R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G F : EnvelGroup R →* G x✝ : EnvelGroup R x y : PreEnvelGroup R ih_x : ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) x) = ↑F (Quotient.mk (setoid R) x) ih_y : ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) y) = ↑F (Quotient.mk (setoid R) y) hm : Quotient.mk (setoid R) (PreEnvelGroup.mul x y) = Mul.mul (Quotient.mk (setoid R) x) (Quotient.mk (setoid R) y) ⊢ ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) (PreEnvelGroup.mul x y)) = ↑F (Quotient.mk (setoid R) (PreEnvelGroup.mul x y)) [PROOFSTEP] simp only [MonoidHom.coe_mk, OneHom.coe_mk, Quotient.lift_mk] [GOAL] case mul R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G F : EnvelGroup R →* G x✝ : EnvelGroup R x y : PreEnvelGroup R ih_x : ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) x) = ↑F (Quotient.mk (setoid R) x) ih_y : ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) y) = ↑F (Quotient.mk (setoid R) y) hm : Quotient.mk (setoid R) (PreEnvelGroup.mul x y) = Mul.mul (Quotient.mk (setoid R) x) (Quotient.mk (setoid R) y) ⊢ mapAux (ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) (PreEnvelGroup.mul x y) = ↑F (Quotient.mk (setoid R) (PreEnvelGroup.mul x y)) [PROOFSTEP] suffices ∀ x y, F (Mul.mul x y) = F (x) * F (y) by simp_all only [MonoidHom.coe_mk, OneHom.coe_mk, Quotient.lift_mk, hm] rw [← ih_x, ← ih_y, mapAux] [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G F : EnvelGroup R →* G x✝ : EnvelGroup R x y : PreEnvelGroup R ih_x : ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) x) = ↑F (Quotient.mk (setoid R) x) ih_y : ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) y) = ↑F (Quotient.mk (setoid R) y) hm : Quotient.mk (setoid R) (PreEnvelGroup.mul x y) = Mul.mul (Quotient.mk (setoid R) x) (Quotient.mk (setoid R) y) this : ∀ (x y : EnvelGroup R), ↑F (Mul.mul x y) = ↑F x * ↑F y ⊢ mapAux (ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) (PreEnvelGroup.mul x y) = ↑F (Quotient.mk (setoid R) (PreEnvelGroup.mul x y)) [PROOFSTEP] simp_all only [MonoidHom.coe_mk, OneHom.coe_mk, Quotient.lift_mk, hm] [GOAL] R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G F : EnvelGroup R →* G x✝ : EnvelGroup R x y : PreEnvelGroup R ih_x : mapAux (ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) x = ↑F (Quotient.mk (setoid R) x) ih_y : mapAux (ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) y = ↑F (Quotient.mk (setoid R) y) hm : Quotient.mk (setoid R) (PreEnvelGroup.mul x y) = Mul.mul (Quotient.mk (setoid R) x) (Quotient.mk (setoid R) y) this : ∀ (x y : EnvelGroup R), ↑F (Mul.mul x y) = ↑F x * ↑F y ⊢ mapAux (ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) (PreEnvelGroup.mul x y) = ↑F (Quotient.mk (setoid R) x) * ↑F (Quotient.mk (setoid R) y) [PROOFSTEP] rw [← ih_x, ← ih_y, mapAux] [GOAL] case mul R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G F : EnvelGroup R →* G x✝ : EnvelGroup R x y : PreEnvelGroup R ih_x : ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) x) = ↑F (Quotient.mk (setoid R) x) ih_y : ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) y) = ↑F (Quotient.mk (setoid R) y) hm : Quotient.mk (setoid R) (PreEnvelGroup.mul x y) = Mul.mul (Quotient.mk (setoid R) x) (Quotient.mk (setoid R) y) ⊢ ∀ (x y : EnvelGroup R), ↑F (Mul.mul x y) = ↑F x * ↑F y [PROOFSTEP] exact F.map_mul [GOAL] case inv R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G F : EnvelGroup R →* G x✝ : EnvelGroup R x : PreEnvelGroup R ih_x : ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) x) = ↑F (Quotient.mk (setoid R) x) ⊢ ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) (PreEnvelGroup.inv x)) = ↑F (Quotient.mk (setoid R) (PreEnvelGroup.inv x)) [PROOFSTEP] have hm : ⟦x.inv⟧ = @Inv.inv (EnvelGroup R) _ ⟦x⟧ := rfl [GOAL] case inv R : Type u_1 inst✝¹ : Rack R G : Type u_2 inst✝ : Group G F : EnvelGroup R →* G x✝ : EnvelGroup R x : PreEnvelGroup R ih_x : ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) x) = ↑F (Quotient.mk (setoid R) x) hm : Quotient.mk (setoid R) (PreEnvelGroup.inv x) = (Quotient.mk (setoid R) x)⁻¹ ⊢ ↑((fun f => { toOneHom := { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) }, map_mul' := (_ : ∀ (x y : EnvelGroup R), OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } x * OneHom.toFun { toFun := fun x => Quotient.liftOn x (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b), map_one' := (_ : Quotient.liftOn (Quotient.mk (setoid R) unit) (mapAux f) (_ : ∀ (a b : PreEnvelGroup R), a ≈ b → mapAux f a = mapAux f b) = 1) } y) }) ((fun F => ShelfHom.comp (Quandle.Conj.map F) (toEnvelGroup R)) F)) (Quotient.mk (setoid R) (PreEnvelGroup.inv x)) = ↑F (Quotient.mk (setoid R) (PreEnvelGroup.inv x)) [PROOFSTEP] rw [hm, F.map_inv, MonoidHom.map_inv, ih_x]
{"mathlib_filename": "Mathlib.Algebra.Quandle", "llama_tokens": 29215}
[GOAL] ι : Type u_1 G : Type u_2 inst✝³ : Group G inst✝² : ConditionallyCompleteLattice G inst✝¹ : CovariantClass G G (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : Nonempty ι f : ι → G hf : BddAbove (range f) a : G ⊢ (⨆ (i : ι), f i) / a = ⨆ (i : ι), f i / a [PROOFSTEP] simp only [div_eq_mul_inv, ciSup_mul hf]
{"mathlib_filename": "Mathlib.Algebra.Bounds", "llama_tokens": 172}
[GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K terminated_at_n : TerminatedAt g n ⊢ continuantsAux g (n + 2) = continuantsAux g (n + 1) [PROOFSTEP] rw [terminatedAt_iff_s_none] at terminated_at_n [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K terminated_at_n : Stream'.Seq.get? g.s n = none ⊢ continuantsAux g (n + 2) = continuantsAux g (n + 1) [PROOFSTEP] simp only [continuantsAux, Nat.add_eq, add_zero, terminated_at_n] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K n_lt_m : n < m terminated_at_n : TerminatedAt g n ⊢ continuantsAux g m = continuantsAux g (n + 1) [PROOFSTEP] refine' Nat.le_induction rfl (fun k hnk hk => _) _ n_lt_m [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K n_lt_m : n < m terminated_at_n : TerminatedAt g n k : ℕ hnk : Nat.succ n ≤ k hk : continuantsAux g k = continuantsAux g (n + 1) ⊢ continuantsAux g (k + 1) = continuantsAux g (n + 1) [PROOFSTEP] rcases Nat.exists_eq_add_of_lt hnk with ⟨k, rfl⟩ [GOAL] case intro K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K n_lt_m : n < m terminated_at_n : TerminatedAt g n k : ℕ hnk : Nat.succ n ≤ n + k + 1 hk : continuantsAux g (n + k + 1) = continuantsAux g (n + 1) ⊢ continuantsAux g (n + k + 1 + 1) = continuantsAux g (n + 1) [PROOFSTEP] refine' (continuantsAux_stable_step_of_terminated _).trans hk [GOAL] case intro K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K n_lt_m : n < m terminated_at_n : TerminatedAt g n k : ℕ hnk : Nat.succ n ≤ n + k + 1 hk : continuantsAux g (n + k + 1) = continuantsAux g (n + 1) ⊢ TerminatedAt g (n + k) [PROOFSTEP] exact terminated_stable (Nat.le_add_right _ _) terminated_at_n [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.TerminatedAt s n ⊢ convergents'Aux s (n + 1) = convergents'Aux s n [PROOFSTEP] change s.get? n = none at terminated_at_n [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s n = none ⊢ convergents'Aux s (n + 1) = convergents'Aux s n [PROOFSTEP] induction' n with n IH generalizing s [GOAL] case zero K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n = none s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s Nat.zero = none ⊢ convergents'Aux s (Nat.zero + 1) = convergents'Aux s Nat.zero case succ K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) [PROOFSTEP] case zero => simp only [convergents'Aux, terminated_at_n, Stream'.Seq.head] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n = none s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s Nat.zero = none ⊢ convergents'Aux s (Nat.zero + 1) = convergents'Aux s Nat.zero [PROOFSTEP] case zero => simp only [convergents'Aux, terminated_at_n, Stream'.Seq.head] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n = none s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s Nat.zero = none ⊢ convergents'Aux s (Nat.zero + 1) = convergents'Aux s Nat.zero [PROOFSTEP] simp only [convergents'Aux, terminated_at_n, Stream'.Seq.head] [GOAL] case succ K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) [PROOFSTEP] case succ => cases' s_head_eq : s.head with gp_head case none => simp only [convergents'Aux, s_head_eq] case some => have : s.tail.TerminatedAt n := by simp only [Stream'.Seq.TerminatedAt, s.get?_tail, terminated_at_n] have := IH this rw [convergents'Aux] at this simp [this, Nat.add_eq, add_zero, convergents'Aux, s_head_eq] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) [PROOFSTEP] case succ => cases' s_head_eq : s.head with gp_head case none => simp only [convergents'Aux, s_head_eq] case some => have : s.tail.TerminatedAt n := by simp only [Stream'.Seq.TerminatedAt, s.get?_tail, terminated_at_n] have := IH this rw [convergents'Aux] at this simp [this, Nat.add_eq, add_zero, convergents'Aux, s_head_eq] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) [PROOFSTEP] cases' s_head_eq : s.head with gp_head [GOAL] case none K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none s_head_eq : Stream'.Seq.head s = none ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) case some K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) [PROOFSTEP] case none => simp only [convergents'Aux, s_head_eq] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none s_head_eq : Stream'.Seq.head s = none ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) [PROOFSTEP] case none => simp only [convergents'Aux, s_head_eq] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none s_head_eq : Stream'.Seq.head s = none ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) [PROOFSTEP] simp only [convergents'Aux, s_head_eq] [GOAL] case some K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) [PROOFSTEP] case some => have : s.tail.TerminatedAt n := by simp only [Stream'.Seq.TerminatedAt, s.get?_tail, terminated_at_n] have := IH this rw [convergents'Aux] at this simp [this, Nat.add_eq, add_zero, convergents'Aux, s_head_eq] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) [PROOFSTEP] case some => have : s.tail.TerminatedAt n := by simp only [Stream'.Seq.TerminatedAt, s.get?_tail, terminated_at_n] have := IH this rw [convergents'Aux] at this simp [this, Nat.add_eq, add_zero, convergents'Aux, s_head_eq] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) [PROOFSTEP] have : s.tail.TerminatedAt n := by simp only [Stream'.Seq.TerminatedAt, s.get?_tail, terminated_at_n] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head ⊢ Stream'.Seq.TerminatedAt (Stream'.Seq.tail s) n [PROOFSTEP] simp only [Stream'.Seq.TerminatedAt, s.get?_tail, terminated_at_n] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head this : Stream'.Seq.TerminatedAt (Stream'.Seq.tail s) n ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) [PROOFSTEP] have := IH this [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head this✝ : Stream'.Seq.TerminatedAt (Stream'.Seq.tail s) n this : convergents'Aux (Stream'.Seq.tail s) (n + 1) = convergents'Aux (Stream'.Seq.tail s) n ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) [PROOFSTEP] rw [convergents'Aux] at this [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n✝ m : ℕ inst✝ : DivisionRing K s✝ : Stream'.Seq (Pair K) terminated_at_n✝ : Stream'.Seq.get? s✝ n✝ = none n : ℕ IH : ∀ {s : Stream'.Seq (Pair K)}, Stream'.Seq.get? s n = none → convergents'Aux s (n + 1) = convergents'Aux s n s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.get? s (Nat.succ n) = none gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head this✝ : Stream'.Seq.TerminatedAt (Stream'.Seq.tail s) n this : (match Stream'.Seq.head (Stream'.Seq.tail s) with | none => 0 | some gp => gp.a / (gp.b + convergents'Aux (Stream'.Seq.tail (Stream'.Seq.tail s)) n)) = convergents'Aux (Stream'.Seq.tail s) n ⊢ convergents'Aux s (Nat.succ n + 1) = convergents'Aux s (Nat.succ n) [PROOFSTEP] simp [this, Nat.add_eq, add_zero, convergents'Aux, s_head_eq] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K s : Stream'.Seq (Pair K) n_le_m : n ≤ m terminated_at_n : Stream'.Seq.TerminatedAt s n ⊢ convergents'Aux s m = convergents'Aux s n [PROOFSTEP] induction' n_le_m with m n_le_m IH [GOAL] case refl K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.TerminatedAt s n ⊢ convergents'Aux s n = convergents'Aux s n [PROOFSTEP] rfl [GOAL] case step K : Type u_1 g : GeneralizedContinuedFraction K n m✝ : ℕ inst✝ : DivisionRing K s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.TerminatedAt s n m : ℕ n_le_m : Nat.le n m IH : convergents'Aux s m = convergents'Aux s n ⊢ convergents'Aux s (Nat.succ m) = convergents'Aux s n [PROOFSTEP] refine' (convergents'Aux_stable_step_of_terminated _).trans IH [GOAL] case step K : Type u_1 g : GeneralizedContinuedFraction K n m✝ : ℕ inst✝ : DivisionRing K s : Stream'.Seq (Pair K) terminated_at_n : Stream'.Seq.TerminatedAt s n m : ℕ n_le_m : Nat.le n m IH : convergents'Aux s m = convergents'Aux s n ⊢ Stream'.Seq.TerminatedAt s m [PROOFSTEP] exact s.terminated_stable n_le_m terminated_at_n [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K n_le_m : n ≤ m terminated_at_n : TerminatedAt g n ⊢ continuants g m = continuants g n [PROOFSTEP] simp only [nth_cont_eq_succ_nth_cont_aux, continuantsAux_stable_of_terminated (Nat.pred_le_iff.mp n_le_m) terminated_at_n] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K n_le_m : n ≤ m terminated_at_n : TerminatedAt g n ⊢ numerators g m = numerators g n [PROOFSTEP] simp only [num_eq_conts_a, continuants_stable_of_terminated n_le_m terminated_at_n] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K n_le_m : n ≤ m terminated_at_n : TerminatedAt g n ⊢ denominators g m = denominators g n [PROOFSTEP] simp only [denom_eq_conts_b, continuants_stable_of_terminated n_le_m terminated_at_n] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K n_le_m : n ≤ m terminated_at_n : TerminatedAt g n ⊢ convergents g m = convergents g n [PROOFSTEP] simp only [convergents, denominators_stable_of_terminated n_le_m terminated_at_n, numerators_stable_of_terminated n_le_m terminated_at_n] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n m : ℕ inst✝ : DivisionRing K n_le_m : n ≤ m terminated_at_n : TerminatedAt g n ⊢ convergents' g m = convergents' g n [PROOFSTEP] simp only [convergents', convergents'Aux_stable_of_terminated n_le_m terminated_at_n]
{"mathlib_filename": "Mathlib.Algebra.ContinuedFractions.TerminatedStable", "llama_tokens": 7043}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Mul α a : α x✝ : IsSquare (op a) c : αᵐᵒᵖ hc : op a = c * c ⊢ a = unop c * unop c [PROOFSTEP] rw [← unop_mul, ← hc, unop_op] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Mul α a : α x✝ : IsSquare a c : α hc : a = c * c ⊢ IsSquare (op a) [PROOFSTEP] simp [hc] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝² : MulOneClass α inst✝¹ : MulOneClass β inst✝ : MonoidHomClass F α β m : α f : F ⊢ IsSquare m → IsSquare (↑f m) [PROOFSTEP] rintro ⟨m, rfl⟩ [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝² : MulOneClass α inst✝¹ : MulOneClass β inst✝ : MonoidHomClass F α β f : F m : α ⊢ IsSquare (↑f (m * m)) [PROOFSTEP] exact ⟨f m, by simp⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝² : MulOneClass α inst✝¹ : MulOneClass β inst✝ : MonoidHomClass F α β f : F m : α ⊢ ↑f (m * m) = ↑f m * ↑f m [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Monoid α n : ℕ a m : α ⊢ IsSquare m ↔ ∃ c, m = c ^ 2 [PROOFSTEP] simp [IsSquare, pow_two] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Monoid α n✝ : ℕ a : α n : ℕ ⊢ IsSquare a → IsSquare (a ^ n) [PROOFSTEP] rintro ⟨a, rfl⟩ [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Monoid α n✝ n : ℕ a : α ⊢ IsSquare ((a * a) ^ n) [PROOFSTEP] exact ⟨a ^ n, (Commute.refl _).mul_pow _⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Monoid α n : ℕ a : α ⊢ Even n → ∀ (a : α), IsSquare (a ^ n) [PROOFSTEP] rintro ⟨n, rfl⟩ a [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Monoid α a✝ : α n : ℕ a : α ⊢ IsSquare (a ^ (n + n)) [PROOFSTEP] exact ⟨a ^ n, pow_add _ _ _⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Monoid α n : ℕ a : α inst✝ : HasDistribNeg α ⊢ Even n → ∀ (a : α), (-a) ^ n = a ^ n [PROOFSTEP] rintro ⟨c, rfl⟩ a [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Monoid α a✝ : α inst✝ : HasDistribNeg α c : ℕ a : α ⊢ (-a) ^ (c + c) = a ^ (c + c) [PROOFSTEP] simp_rw [← two_mul, pow_mul, neg_sq] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Monoid α n : ℕ a : α inst✝ : HasDistribNeg α h : Even n ⊢ (-1) ^ n = 1 [PROOFSTEP] rw [h.neg_pow, one_pow] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : CommSemigroup α a b : α ⊢ IsSquare a → IsSquare b → IsSquare (a * b) [PROOFSTEP] rintro ⟨a, rfl⟩ ⟨b, rfl⟩ [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : CommSemigroup α a b : α ⊢ IsSquare (a * a * (b * b)) [PROOFSTEP] exact ⟨a * b, mul_mul_mul_comm _ _ _ _⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : DivisionMonoid α a : α ⊢ IsSquare a⁻¹ ↔ IsSquare a [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : DivisionMonoid α a : α h : IsSquare a⁻¹ ⊢ IsSquare a [PROOFSTEP] rw [← isSquare_op_iff, ← inv_inv a] [GOAL] case refine'_1 F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : DivisionMonoid α a : α h : IsSquare a⁻¹ ⊢ IsSquare (op a⁻¹⁻¹) [PROOFSTEP] exact h.map (MulEquiv.inv' α) [GOAL] case refine'_2 F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : DivisionMonoid α a : α h : IsSquare a ⊢ IsSquare a⁻¹ [PROOFSTEP] exact ((isSquare_op_iff a).mpr h).map (MulEquiv.inv' α).symm [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : DivisionMonoid α a : α n : ℤ ⊢ IsSquare a → IsSquare (a ^ n) [PROOFSTEP] rintro ⟨a, rfl⟩ [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : DivisionMonoid α n : ℤ a : α ⊢ IsSquare ((a * a) ^ n) [PROOFSTEP] exact ⟨a ^ n, (Commute.refl _).mul_zpow _⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : DivisionMonoid α a : α inst✝ : HasDistribNeg α n : ℤ ⊢ Even n → ∀ (a : α), (-a) ^ n = a ^ n [PROOFSTEP] rintro ⟨c, rfl⟩ a [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : DivisionMonoid α a✝ : α inst✝ : HasDistribNeg α c : ℤ a : α ⊢ (-a) ^ (c + c) = a ^ (c + c) [PROOFSTEP] exact zpow_bit0_neg _ _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : DivisionMonoid α a : α inst✝ : HasDistribNeg α n : ℤ h : Even n ⊢ (-1) ^ n = 1 [PROOFSTEP] rw [h.neg_zpow, one_zpow] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : SubtractionMonoid α inst✝ : LinearOrder α a : α ⊢ Even |a| ↔ Even a [PROOFSTEP] cases abs_choice a [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : SubtractionMonoid α inst✝ : LinearOrder α a : α h✝ : |a| = a ⊢ Even |a| ↔ Even a [PROOFSTEP] have h : abs a = a := by assumption [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : SubtractionMonoid α inst✝ : LinearOrder α a : α h✝ : |a| = a ⊢ |a| = a [PROOFSTEP] assumption [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : SubtractionMonoid α inst✝ : LinearOrder α a : α h✝ h : |a| = a ⊢ Even |a| ↔ Even a [PROOFSTEP] simp only [h, even_neg] [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : SubtractionMonoid α inst✝ : LinearOrder α a : α h✝ : |a| = -a ⊢ Even |a| ↔ Even a [PROOFSTEP] have h : abs a = -a := by assumption [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : SubtractionMonoid α inst✝ : LinearOrder α a : α h✝ : |a| = -a ⊢ |a| = -a [PROOFSTEP] assumption [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : SubtractionMonoid α inst✝ : LinearOrder α a : α h✝ h : |a| = -a ⊢ Even |a| ↔ Even a [PROOFSTEP] simp only [h, even_neg] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : DivisionCommMonoid α a b : α ha : IsSquare a hb : IsSquare b ⊢ IsSquare (a / b) [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : DivisionCommMonoid α a b : α ha : IsSquare a hb : IsSquare b ⊢ IsSquare (a * b⁻¹) [PROOFSTEP] exact ha.mul hb.inv [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Group α n : ℤ ⊢ Even n → ∀ (a : α), IsSquare (a ^ n) [PROOFSTEP] rintro ⟨n, rfl⟩ a [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Group α n : ℤ a : α ⊢ IsSquare (a ^ (n + n)) [PROOFSTEP] exact ⟨a ^ n, zpow_add _ _ _⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝³ : CanonicallyLinearOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 m n : α hm : Even m hn : Even n ⊢ Even (m - n) [PROOFSTEP] obtain ⟨a, rfl⟩ := hm [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝³ : CanonicallyLinearOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 n : α hn : Even n a : α ⊢ Even (a + a - n) [PROOFSTEP] obtain ⟨b, rfl⟩ := hn [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝³ : CanonicallyLinearOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ Even (a + a - (b + b)) [PROOFSTEP] refine' ⟨a - b, _⟩ [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝³ : CanonicallyLinearOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a + a - (b + b) = a - b + (a - b) [PROOFSTEP] obtain h | h := le_total a b [GOAL] case intro.intro.inl F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝³ : CanonicallyLinearOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : α h : a ≤ b ⊢ a + a - (b + b) = a - b + (a - b) [PROOFSTEP] rw [tsub_eq_zero_of_le h, tsub_eq_zero_of_le (add_le_add h h), add_zero] [GOAL] case intro.intro.inr F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝³ : CanonicallyLinearOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : α h : b ≤ a ⊢ a + a - (b + b) = a - b + (a - b) [PROOFSTEP] exact (tsub_add_tsub_comm h h).symm [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m✝ n m : α ⊢ Even m ↔ ∃ c, m = 2 * c [PROOFSTEP] simp [even_iff_exists_two_nsmul] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n a : α ⊢ Even a ↔ 2 ∣ a [PROOFSTEP] simp [Even, Dvd.dvd, two_mul] [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 R : Type u_4 inst✝² : Semiring α✝ inst✝¹ : Semiring β m n : α✝ α : Type u_5 inst✝ : Semiring α ⊢ (Set.range fun x => 2 * x) = {a | Even a} [PROOFSTEP] ext x [GOAL] case h F : Type u_1 α✝ : Type u_2 β : Type u_3 R : Type u_4 inst✝² : Semiring α✝ inst✝¹ : Semiring β m n : α✝ α : Type u_5 inst✝ : Semiring α x : α ⊢ (x ∈ Set.range fun x => 2 * x) ↔ x ∈ {a | Even a} [PROOFSTEP] simp [eq_comm, two_mul, Even] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ 2 = 1 + 1 [PROOFSTEP] rw [one_add_one_eq_two] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α hm : Even m a : ℕ x✝ : a + 1 ≠ 0 ⊢ Even (m ^ (a + 1)) [PROOFSTEP] rw [pow_succ] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α hm : Even m a : ℕ x✝ : a + 1 ≠ 0 ⊢ Even (m * m ^ a) [PROOFSTEP] exact hm.mul_right _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n a b : α ⊢ a = 2 * b + 1 ↔ a = bit1 b [PROOFSTEP] rw [two_mul] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n a b : α ⊢ a = b + b + 1 ↔ a = bit1 b [PROOFSTEP] rfl [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 R : Type u_4 inst✝² : Semiring α✝ inst✝¹ : Semiring β m n : α✝ α : Type u_5 inst✝ : Semiring α ⊢ (Set.range fun x => 2 * x + 1) = {a | Odd a} [PROOFSTEP] ext x [GOAL] case h F : Type u_1 α✝ : Type u_2 β : Type u_3 R : Type u_4 inst✝² : Semiring α✝ inst✝¹ : Semiring β m n : α✝ α : Type u_5 inst✝ : Semiring α x : α ⊢ (x ∈ Set.range fun x => 2 * x + 1) ↔ x ∈ {a | Odd a} [PROOFSTEP] simp [Odd, eq_comm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ Even m → Odd n → Odd (m + n) [PROOFSTEP] rintro ⟨m, rfl⟩ ⟨n, rfl⟩ [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ Odd (m + m + (2 * n + 1)) [PROOFSTEP] exact ⟨m + n, by rw [mul_add, ← two_mul, add_assoc]⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ m + m + (2 * n + 1) = 2 * (m + n) + 1 [PROOFSTEP] rw [mul_add, ← two_mul, add_assoc] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α he : Even m ho : Odd n ⊢ Odd (n + m) [PROOFSTEP] simp only [he.add_odd ho, add_comm n m] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α hm : Odd m hn : Even n ⊢ Odd (m + n) [PROOFSTEP] rw [add_comm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α hm : Odd m hn : Even n ⊢ Odd (n + m) [PROOFSTEP] exact hn.add_odd hm [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ Odd m → Odd n → Even (m + n) [PROOFSTEP] rintro ⟨m, rfl⟩ ⟨n, rfl⟩ [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ Even (2 * m + 1 + (2 * n + 1)) [PROOFSTEP] refine' ⟨n + m + 1, _⟩ [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ 2 * m + 1 + (2 * n + 1) = n + m + 1 + (n + m + 1) [PROOFSTEP] rw [two_mul, two_mul] [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ m + m + 1 + (n + n + 1) = n + m + 1 + (n + m + 1) [PROOFSTEP] ac_rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ Odd (m + (m + 1)) [PROOFSTEP] simp [← add_assoc] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ Odd (m + 1 + m) [PROOFSTEP] simp [add_comm _ m] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ Odd (m + (1 + m)) [PROOFSTEP] simp [add_comm 1 m] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ Odd (1 + m + m) [PROOFSTEP] simp [add_comm 1 m] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝² : Semiring α inst✝¹ : Semiring β m n : α inst✝ : RingHomClass F α β f : F ⊢ Odd m → Odd (↑f m) [PROOFSTEP] rintro ⟨m, rfl⟩ [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝² : Semiring α inst✝¹ : Semiring β n : α inst✝ : RingHomClass F α β f : F m : α ⊢ Odd (↑f (2 * m + 1)) [PROOFSTEP] exact ⟨f m, by simp [two_mul]⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝² : Semiring α inst✝¹ : Semiring β n : α inst✝ : RingHomClass F α β f : F m : α ⊢ ↑f (2 * m + 1) = 2 * ↑f m + 1 [PROOFSTEP] simp [two_mul] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ Odd m → Odd n → Odd (m * n) [PROOFSTEP] rintro ⟨m, rfl⟩ ⟨n, rfl⟩ [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ Odd ((2 * m + 1) * (2 * n + 1)) [PROOFSTEP] refine' ⟨2 * m * n + n + m, _⟩ [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α ⊢ (2 * m + 1) * (2 * n + 1) = 2 * (2 * m * n + n + m) + 1 [PROOFSTEP] rw [mul_add, add_mul, mul_one, ← add_assoc, one_mul, mul_assoc, ← mul_add, ← mul_add, ← mul_assoc, ← Nat.cast_two, ← Nat.cast_comm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α hm : Odd m ⊢ Odd (m ^ 0) [PROOFSTEP] rw [pow_zero] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α hm : Odd m ⊢ Odd 1 [PROOFSTEP] exact odd_one [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α hm : Odd m a : ℕ ⊢ Odd (m ^ (a + 1)) [PROOFSTEP] rw [pow_succ] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Semiring α inst✝ : Semiring β m n : α hm : Odd m a : ℕ ⊢ Odd (m * m ^ a) [PROOFSTEP] exact hm.mul <| Odd.pow hm [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Monoid α inst✝ : HasDistribNeg α a : α n : ℕ ⊢ Odd n → ∀ (a : α), (-a) ^ n = -a ^ n [PROOFSTEP] rintro ⟨c, rfl⟩ a [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Monoid α inst✝ : HasDistribNeg α a✝ : α c : ℕ a : α ⊢ (-a) ^ (2 * c + 1) = -a ^ (2 * c + 1) [PROOFSTEP] simp_rw [pow_add, pow_mul, neg_sq, pow_one, mul_neg] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Monoid α inst✝ : HasDistribNeg α a : α n : ℕ h : Odd n ⊢ (-1) ^ n = -1 [PROOFSTEP] rw [h.neg_pow, one_pow] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : CanonicallyOrderedCommSemiring α inst✝ : Nontrivial α n : α hn : Odd n ⊢ 0 < n [PROOFSTEP] obtain ⟨k, rfl⟩ := hn [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : CanonicallyOrderedCommSemiring α inst✝ : Nontrivial α k : α ⊢ 0 < 2 * k + 1 [PROOFSTEP] rw [pos_iff_ne_zero, Ne.def, add_eq_zero_iff, not_and'] [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : CanonicallyOrderedCommSemiring α inst✝ : Nontrivial α k : α ⊢ 1 = 0 → ¬2 * k = 0 [PROOFSTEP] exact fun h => (one_ne_zero h).elim [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Ring α a b : α n : ℕ ⊢ Even (-2) [PROOFSTEP] simp only [even_neg, even_two] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Ring α a b : α n : ℕ hp : Odd a ⊢ Odd (-a) [PROOFSTEP] obtain ⟨k, hk⟩ := hp [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Ring α a b : α n : ℕ k : α hk : a = 2 * k + 1 ⊢ Odd (-a) [PROOFSTEP] use-(k + 1) [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Ring α a b : α n : ℕ k : α hk : a = 2 * k + 1 ⊢ -a = 2 * -(k + 1) + 1 [PROOFSTEP] rw [mul_neg, mul_add, neg_add, add_assoc, two_mul (1 : α), neg_add, neg_add_cancel_right, ← neg_add, hk] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Ring α a b : α n : ℕ ⊢ Odd (-1) [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Ring α a b : α n : ℕ ha : Odd a hb : Even b ⊢ Odd (a - b) [PROOFSTEP] rw [sub_eq_add_neg] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Ring α a b : α n : ℕ ha : Odd a hb : Even b ⊢ Odd (a + -b) [PROOFSTEP] exact ha.add_even hb.neg [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Ring α a b : α n : ℕ ha : Even a hb : Odd b ⊢ Odd (a - b) [PROOFSTEP] rw [sub_eq_add_neg] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Ring α a b : α n : ℕ ha : Even a hb : Odd b ⊢ Odd (a + -b) [PROOFSTEP] exact ha.add_odd hb.neg [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Ring α a b : α n : ℕ ha : Odd a hb : Odd b ⊢ Even (a - b) [PROOFSTEP] rw [sub_eq_add_neg] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : Ring α a b : α n : ℕ ha : Odd a hb : Odd b ⊢ Even (a + -b) [PROOFSTEP] exact ha.add_odd hb.neg [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Ring α a b : α n : ℕ inst✝ : LinearOrder α ⊢ Odd |a| ↔ Odd a [PROOFSTEP] cases' abs_choice a with h h [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Ring α a b : α n : ℕ inst✝ : LinearOrder α h : |a| = a ⊢ Odd |a| ↔ Odd a [PROOFSTEP] simp only [h, odd_neg] [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝¹ : Ring α a b : α n : ℕ inst✝ : LinearOrder α h : |a| = -a ⊢ Odd |a| ↔ Odd a [PROOFSTEP] simp only [h, odd_neg] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a✝ : R n : ℕ hn : Even n a : R ⊢ 0 ≤ a ^ n [PROOFSTEP] cases' hn with k hk [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a✝ : R n : ℕ a : R k : ℕ hk : n = k + k ⊢ 0 ≤ a ^ n [PROOFSTEP] simpa only [hk, two_mul] using pow_bit0_nonneg a k [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a : R n : ℕ hn : Even n ha : a ≠ 0 ⊢ 0 < a ^ n [PROOFSTEP] cases' hn with k hk [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a : R n : ℕ ha : a ≠ 0 k : ℕ hk : n = k + k ⊢ 0 < a ^ n [PROOFSTEP] simpa only [hk, two_mul] using pow_bit0_pos ha k [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a : R n : ℕ hn : Odd n ha : a ≤ 0 ⊢ a ^ n ≤ 0 [PROOFSTEP] cases' hn with k hk [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a : R n : ℕ ha : a ≤ 0 k : ℕ hk : n = 2 * k + 1 ⊢ a ^ n ≤ 0 [PROOFSTEP] simpa only [hk, two_mul] using pow_bit1_nonpos_iff.mpr ha [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a : R n : ℕ hn : Odd n ha : a < 0 ⊢ a ^ n < 0 [PROOFSTEP] cases' hn with k hk [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a : R n : ℕ ha : a < 0 k : ℕ hk : n = 2 * k + 1 ⊢ a ^ n < 0 [PROOFSTEP] simpa only [hk, two_mul] using pow_bit1_neg_iff.mpr ha [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a : R n : ℕ hn : Even n h₀ : 0 < n h : 0 < a ^ n ha : a = 0 ⊢ False [PROOFSTEP] rw [ha, zero_pow h₀] at h [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a : R n : ℕ hn : Even n h₀ : 0 < n h : 0 < 0 ha : a = 0 ⊢ False [PROOFSTEP] exact lt_irrefl 0 h [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a✝ : R n p : ℕ hp : Even p a : R ⊢ |a| ^ p = a ^ p [PROOFSTEP] rw [← abs_pow, abs_eq_self] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a✝ : R n p : ℕ hp : Even p a : R ⊢ 0 ≤ a ^ p [PROOFSTEP] exact hp.pow_nonneg _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a : R n : ℕ hn : Odd n ⊢ StrictMono fun a => a ^ n [PROOFSTEP] cases' hn with k hk [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 inst✝ : LinearOrderedRing R a : R n k : ℕ hk : n = 2 * k + 1 ⊢ StrictMono fun a => a ^ n [PROOFSTEP] simpa only [hk, two_mul] using strictMono_pow_bit1 _
{"mathlib_filename": "Mathlib.Algebra.Parity", "llama_tokens": 11493}
[GOAL] ι : Type u_1 A : ι → Type u_2 inst✝¹ : AddMonoid ι inst✝ : GMonoid A i : ι a : A i n : ℕ ⊢ mk i a ^ n = mk (n • i) (GMonoid.gnpow n a) [PROOFSTEP] match n with | 0 => rw [pow_zero] exact (GMonoid.gnpow_zero' ⟨_, a⟩).symm | n + 1 => rw [pow_succ, mk_pow a n, mk_mul_mk] exact (GMonoid.gnpow_succ' n ⟨_, a⟩).symm [GOAL] ι : Type u_1 A : ι → Type u_2 inst✝¹ : AddMonoid ι inst✝ : GMonoid A i : ι a : A i n : ℕ ⊢ mk i a ^ 0 = mk (0 • i) (GMonoid.gnpow 0 a) [PROOFSTEP] rw [pow_zero] [GOAL] ι : Type u_1 A : ι → Type u_2 inst✝¹ : AddMonoid ι inst✝ : GMonoid A i : ι a : A i n : ℕ ⊢ 1 = mk (0 • i) (GMonoid.gnpow 0 a) [PROOFSTEP] exact (GMonoid.gnpow_zero' ⟨_, a⟩).symm [GOAL] ι : Type u_1 A : ι → Type u_2 inst✝¹ : AddMonoid ι inst✝ : GMonoid A i : ι a : A i n✝ n : ℕ ⊢ mk i a ^ (n + 1) = mk ((n + 1) • i) (GMonoid.gnpow (n + 1) a) [PROOFSTEP] rw [pow_succ, mk_pow a n, mk_mul_mk] [GOAL] ι : Type u_1 A : ι → Type u_2 inst✝¹ : AddMonoid ι inst✝ : GMonoid A i : ι a : A i n✝ n : ℕ ⊢ mk (i + n • i) (GMul.mul a (GMonoid.gnpow n a)) = mk ((n + 1) • i) (GMonoid.gnpow (n + 1) a) [PROOFSTEP] exact (GMonoid.gnpow_succ' n ⟨_, a⟩).symm [GOAL] ι : Type u_1 α : Type u_2 A : ι → Type u_3 inst✝¹ : AddMonoid ι inst✝ : GradedMonoid.GMonoid A l : List α fι : α → ι ⊢ dProdIndex l fι = sum (map fι l) [PROOFSTEP] match l with | [] => simp | head :: tail => simp [List.dProdIndex_eq_map_sum tail fι] [GOAL] ι : Type u_1 α : Type u_2 A : ι → Type u_3 inst✝¹ : AddMonoid ι inst✝ : GradedMonoid.GMonoid A l : List α fι : α → ι ⊢ dProdIndex [] fι = sum (map fι []) [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 A : ι → Type u_3 inst✝¹ : AddMonoid ι inst✝ : GradedMonoid.GMonoid A l : List α fι : α → ι head : α tail : List α ⊢ dProdIndex (head :: tail) fι = sum (map fι (head :: tail)) [PROOFSTEP] simp [List.dProdIndex_eq_map_sum tail fι] [GOAL] ι : Type u_1 α : Type u_2 A : ι → Type u_3 inst✝¹ : AddMonoid ι inst✝ : GMonoid A l : List α fι : α → ι fA : (a : α) → A (fι a) ⊢ mk (List.dProdIndex l fι) (List.dProd l fι fA) = List.prod (List.map (fun a => mk (fι a) (fA a)) l) [PROOFSTEP] match l with | [] => simp; rfl | head :: tail => simp [← GradedMonoid.mk_list_dProd tail _ _, GradedMonoid.mk_mul_mk, List.prod_cons] [GOAL] ι : Type u_1 α : Type u_2 A : ι → Type u_3 inst✝¹ : AddMonoid ι inst✝ : GMonoid A l : List α fι : α → ι fA : (a : α) → A (fι a) ⊢ mk (List.dProdIndex [] fι) (List.dProd [] fι fA) = List.prod (List.map (fun a => mk (fι a) (fA a)) []) [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 A : ι → Type u_3 inst✝¹ : AddMonoid ι inst✝ : GMonoid A l : List α fι : α → ι fA : (a : α) → A (fι a) ⊢ mk 0 GOne.one = 1 [PROOFSTEP] rfl [GOAL] ι : Type u_1 α : Type u_2 A : ι → Type u_3 inst✝¹ : AddMonoid ι inst✝ : GMonoid A l : List α fι : α → ι fA : (a : α) → A (fι a) head : α tail : List α ⊢ mk (List.dProdIndex (head :: tail) fι) (List.dProd (head :: tail) fι fA) = List.prod (List.map (fun a => mk (fι a) (fA a)) (head :: tail)) [PROOFSTEP] simp [← GradedMonoid.mk_list_dProd tail _ _, GradedMonoid.mk_mul_mk, List.prod_cons] [GOAL] ι : Type u_1 α : Type u_2 A : ι → Type u_3 inst✝¹ : AddMonoid ι inst✝ : GMonoid A l : List α f : α → GradedMonoid A ⊢ List.prod (List.map f l) = mk (List.dProdIndex l fun i => (f i).fst) (List.dProd l (fun i => (f i).fst) fun i => (f i).snd) [PROOFSTEP] rw [GradedMonoid.mk_list_dProd, GradedMonoid.mk] [GOAL] ι : Type u_1 α : Type u_2 A : ι → Type u_3 inst✝¹ : AddMonoid ι inst✝ : GMonoid A l : List α f : α → GradedMonoid A ⊢ List.prod (List.map f l) = List.prod (List.map (fun a => { fst := (f a).fst, snd := (f a).snd }) l) [PROOFSTEP] simp_rw [Sigma.eta] [GOAL] ι : Type u_1 α : Type u_2 A : ι → Type u_3 inst✝¹ : AddMonoid ι inst✝ : GMonoid A n : ℕ f : Fin n → GradedMonoid A ⊢ List.prod (List.ofFn f) = mk (List.dProdIndex (List.finRange n) fun i => (f i).fst) (List.dProd (List.finRange n) (fun i => (f i).fst) fun i => (f i).snd) [PROOFSTEP] rw [List.ofFn_eq_map, GradedMonoid.list_prod_map_eq_dProd] [GOAL] ι : Type u_1 R : Type u_2 α : Type u_3 inst✝¹ : AddMonoid ι inst✝ : Monoid R l : List α fι : α → ι fA : α → R ⊢ dProd l fι fA = prod (map fA l) [PROOFSTEP] match l with | [] => rw [List.dProd_nil, List.map_nil, List.prod_nil] rfl | head :: tail => rw [List.dProd_cons, List.map_cons, List.prod_cons, List.dProd_monoid tail _ _] rfl [GOAL] ι : Type u_1 R : Type u_2 α : Type u_3 inst✝¹ : AddMonoid ι inst✝ : Monoid R l : List α fι : α → ι fA : α → R ⊢ dProd [] fι fA = prod (map fA []) [PROOFSTEP] rw [List.dProd_nil, List.map_nil, List.prod_nil] [GOAL] ι : Type u_1 R : Type u_2 α : Type u_3 inst✝¹ : AddMonoid ι inst✝ : Monoid R l : List α fι : α → ι fA : α → R ⊢ GradedMonoid.GOne.one = 1 [PROOFSTEP] rfl [GOAL] ι : Type u_1 R : Type u_2 α : Type u_3 inst✝¹ : AddMonoid ι inst✝ : Monoid R l : List α fι : α → ι fA : α → R head : α tail : List α ⊢ dProd (head :: tail) fι fA = prod (map fA (head :: tail)) [PROOFSTEP] rw [List.dProd_cons, List.map_cons, List.prod_cons, List.dProd_monoid tail _ _] [GOAL] ι : Type u_1 R : Type u_2 α : Type u_3 inst✝¹ : AddMonoid ι inst✝ : Monoid R l : List α fι : α → ι fA : α → R head : α tail : List α ⊢ GradedMonoid.GMul.mul (fA head) (prod (map fA tail)) = fA head * prod (map fA tail) [PROOFSTEP] rfl [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A n : ℕ r : R i : ι h : r ∈ A i ⊢ r ^ n ∈ A (n • i) [PROOFSTEP] match n with | 0 => rw [pow_zero, zero_nsmul] exact one_mem_graded _ | n + 1 => rw [pow_succ', succ_nsmul'] exact mul_mem_graded (pow_mem_graded n h) h [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A n : ℕ r : R i : ι h : r ∈ A i ⊢ r ^ 0 ∈ A (0 • i) [PROOFSTEP] rw [pow_zero, zero_nsmul] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A n : ℕ r : R i : ι h : r ∈ A i ⊢ 1 ∈ A 0 [PROOFSTEP] exact one_mem_graded _ [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A n✝ : ℕ r : R i : ι h : r ∈ A i n : ℕ ⊢ r ^ (n + 1) ∈ A ((n + 1) • i) [PROOFSTEP] rw [pow_succ', succ_nsmul'] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A n✝ : ℕ r : R i : ι h : r ∈ A i n : ℕ ⊢ r ^ n * r ∈ A (n • i + i) [PROOFSTEP] exact mul_mem_graded (pow_mem_graded n h) h [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A ι' : Type u_4 l : List ι' i : ι' → ι r : ι' → R h : ∀ (j : ι'), j ∈ l → r j ∈ A (i j) ⊢ List.prod (List.map r l) ∈ A (List.sum (List.map i l)) [PROOFSTEP] match l with | [] => rw [List.map_nil, List.map_nil, List.prod_nil, List.sum_nil] exact one_mem_graded _ | head :: tail => rw [List.map_cons, List.map_cons, List.prod_cons, List.sum_cons] exact mul_mem_graded (h _ <| List.mem_cons_self _ _) (list_prod_map_mem_graded tail _ _ <| fun j hj => h _ <| List.mem_cons_of_mem _ hj) [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A ι' : Type u_4 l : List ι' i : ι' → ι r : ι' → R h : ∀ (j : ι'), j ∈ [] → r j ∈ A (i j) ⊢ List.prod (List.map r []) ∈ A (List.sum (List.map i [])) [PROOFSTEP] rw [List.map_nil, List.map_nil, List.prod_nil, List.sum_nil] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A ι' : Type u_4 l : List ι' i : ι' → ι r : ι' → R h : ∀ (j : ι'), j ∈ [] → r j ∈ A (i j) ⊢ 1 ∈ A 0 [PROOFSTEP] exact one_mem_graded _ [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A ι' : Type u_4 l : List ι' i : ι' → ι r : ι' → R head : ι' tail : List ι' h : ∀ (j : ι'), j ∈ head :: tail → r j ∈ A (i j) ⊢ List.prod (List.map r (head :: tail)) ∈ A (List.sum (List.map i (head :: tail))) [PROOFSTEP] rw [List.map_cons, List.map_cons, List.prod_cons, List.sum_cons] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A ι' : Type u_4 l : List ι' i : ι' → ι r : ι' → R head : ι' tail : List ι' h : ∀ (j : ι'), j ∈ head :: tail → r j ∈ A (i j) ⊢ r head * List.prod (List.map r tail) ∈ A (i head + List.sum (List.map i tail)) [PROOFSTEP] exact mul_mem_graded (h _ <| List.mem_cons_self _ _) (list_prod_map_mem_graded tail _ _ <| fun j hj => h _ <| List.mem_cons_of_mem _ hj) [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A n : ℕ i : Fin n → ι r : Fin n → R h : ∀ (j : Fin n), r j ∈ A (i j) ⊢ List.prod (List.ofFn r) ∈ A (List.sum (List.ofFn i)) [PROOFSTEP] rw [List.ofFn_eq_map, List.ofFn_eq_map] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A n : ℕ i : Fin n → ι r : Fin n → R h : ∀ (j : Fin n), r j ∈ A (i j) ⊢ List.prod (List.map r (List.finRange n)) ∈ A (List.sum (List.map i (List.finRange n))) [PROOFSTEP] exact list_prod_map_mem_graded _ _ _ fun _ _ => h _ [GOAL] ι : Type u_1 R : Type u_2 α : Type u_3 S : Type u_4 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A fι : α → ι fA : (a : α) → { x // x ∈ A (fι a) } l : List α ⊢ ↑(List.dProd l fι fA) = List.prod (List.map (fun a => ↑(fA a)) l) [PROOFSTEP] match l with | [] => rw [List.dProd_nil, coe_gOne, List.map_nil, List.prod_nil] | head :: tail => rw [List.dProd_cons, coe_gMul, List.map_cons, List.prod_cons, SetLike.coe_list_dProd _ _ _ tail] [GOAL] ι : Type u_1 R : Type u_2 α : Type u_3 S : Type u_4 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A fι : α → ι fA : (a : α) → { x // x ∈ A (fι a) } l : List α ⊢ ↑(List.dProd [] fι fA) = List.prod (List.map (fun a => ↑(fA a)) []) [PROOFSTEP] rw [List.dProd_nil, coe_gOne, List.map_nil, List.prod_nil] [GOAL] ι : Type u_1 R : Type u_2 α : Type u_3 S : Type u_4 inst✝³ : SetLike S R inst✝² : Monoid R inst✝¹ : AddMonoid ι A : ι → S inst✝ : GradedMonoid A fι : α → ι fA : (a : α) → { x // x ∈ A (fι a) } l : List α head : α tail : List α ⊢ ↑(List.dProd (head :: tail) fι fA) = List.prod (List.map (fun a => ↑(fA a)) (head :: tail)) [PROOFSTEP] rw [List.dProd_cons, coe_gMul, List.map_cons, List.prod_cons, SetLike.coe_list_dProd _ _ _ tail]
{"mathlib_filename": "Mathlib.Algebra.GradedMonoid", "llama_tokens": 5744}
[GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝² : MulZeroClass M₀ a✝ b : M₀ inst✝¹ : Mul M₀' inst✝ : Zero M₀' f : M₀' → M₀ hf : Injective f zero : f 0 = 0 mul : ∀ (a b : M₀'), f (a * b) = f a * f b a : M₀' ⊢ f (0 * a) = f 0 [PROOFSTEP] simp only [mul, zero, zero_mul] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝² : MulZeroClass M₀ a✝ b : M₀ inst✝¹ : Mul M₀' inst✝ : Zero M₀' f : M₀' → M₀ hf : Injective f zero : f 0 = 0 mul : ∀ (a b : M₀'), f (a * b) = f a * f b a : M₀' ⊢ f (a * 0) = f 0 [PROOFSTEP] simp only [mul, zero, mul_zero] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝² : MulZeroClass M₀ a b : M₀ inst✝¹ : Mul M₀' inst✝ : Zero M₀' f : M₀ → M₀' hf : Surjective f zero : f 0 = 0 mul : ∀ (a b : M₀), f (a * b) = f a * f b x : M₀ ⊢ 0 * f x = 0 [PROOFSTEP] simp only [← zero, ← mul, zero_mul] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝² : MulZeroClass M₀ a b : M₀ inst✝¹ : Mul M₀' inst✝ : Zero M₀' f : M₀ → M₀' hf : Surjective f zero : f 0 = 0 mul : ∀ (a b : M₀), f (a * b) = f a * f b x : M₀ ⊢ f x * 0 = 0 [PROOFSTEP] simp only [← zero, ← mul, mul_zero] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁴ : Mul M₀ inst✝³ : Zero M₀ inst✝² : Mul M₀' inst✝¹ : Zero M₀' f : M₀ → M₀' hf : Injective f zero : f 0 = 0 mul : ∀ (x y : M₀), f (x * y) = f x * f y inst✝ : NoZeroDivisors M₀' a✝ b✝ : M₀ H : a✝ * b✝ = 0 ⊢ f (?m.2223 H) * f (?m.2224 H) = 0 [PROOFSTEP] rw [← mul, H, zero] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁴ : Mul M₀ inst✝³ : Zero M₀ inst✝² : Mul M₀' inst✝¹ : Zero M₀' f : M₀ → M₀' hf : Injective f zero : f 0 = 0 mul : ∀ (x y : M₀), f (x * y) = f x * f y inst✝ : NoZeroDivisors M₀' a✝ b✝ : M₀ H✝ : a✝ * b✝ = 0 this : f a✝ * f b✝ = 0 H : f a✝ = 0 ⊢ f a✝ = f 0 [PROOFSTEP] rwa [zero] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁴ : Mul M₀ inst✝³ : Zero M₀ inst✝² : Mul M₀' inst✝¹ : Zero M₀' f : M₀ → M₀' hf : Injective f zero : f 0 = 0 mul : ∀ (x y : M₀), f (x * y) = f x * f y inst✝ : NoZeroDivisors M₀' a✝ b✝ : M₀ H✝ : a✝ * b✝ = 0 this : f a✝ * f b✝ = 0 H : f b✝ = 0 ⊢ f b✝ = f 0 [PROOFSTEP] rwa [zero] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁴ : Mul M₀ inst✝³ : Zero M₀ inst✝² : Mul M₀' inst✝¹ : Zero M₀' f : M₀ → M₀' hf : Injective f zero : f 0 = 0 mul : ∀ (x y : M₀), f (x * y) = f x * f y inst✝ : IsLeftCancelMulZero M₀' a✝ b✝ c✝ : M₀ Hne : a✝ ≠ 0 He : a✝ * b✝ = a✝ * c✝ ⊢ b✝ = c✝ [PROOFSTEP] have := congr_arg f He [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁴ : Mul M₀ inst✝³ : Zero M₀ inst✝² : Mul M₀' inst✝¹ : Zero M₀' f : M₀ → M₀' hf : Injective f zero : f 0 = 0 mul : ∀ (x y : M₀), f (x * y) = f x * f y inst✝ : IsLeftCancelMulZero M₀' a✝ b✝ c✝ : M₀ Hne : a✝ ≠ 0 He : a✝ * b✝ = a✝ * c✝ this : f (a✝ * b✝) = f (a✝ * c✝) ⊢ b✝ = c✝ [PROOFSTEP] rw [mul, mul] at this [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁴ : Mul M₀ inst✝³ : Zero M₀ inst✝² : Mul M₀' inst✝¹ : Zero M₀' f : M₀ → M₀' hf : Injective f zero : f 0 = 0 mul : ∀ (x y : M₀), f (x * y) = f x * f y inst✝ : IsLeftCancelMulZero M₀' a✝ b✝ c✝ : M₀ Hne : a✝ ≠ 0 He : a✝ * b✝ = a✝ * c✝ this : f a✝ * f b✝ = f a✝ * f c✝ ⊢ b✝ = c✝ [PROOFSTEP] exact hf (mul_left_cancel₀ (fun Hfa => Hne <| hf <| by rw [Hfa, zero]) this) [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁴ : Mul M₀ inst✝³ : Zero M₀ inst✝² : Mul M₀' inst✝¹ : Zero M₀' f : M₀ → M₀' hf : Injective f zero : f 0 = 0 mul : ∀ (x y : M₀), f (x * y) = f x * f y inst✝ : IsLeftCancelMulZero M₀' a✝ b✝ c✝ : M₀ Hne : a✝ ≠ 0 He : a✝ * b✝ = a✝ * c✝ this : f a✝ * f b✝ = f a✝ * f c✝ Hfa : f a✝ = 0 ⊢ f a✝ = f 0 [PROOFSTEP] rw [Hfa, zero] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁴ : Mul M₀ inst✝³ : Zero M₀ inst✝² : Mul M₀' inst✝¹ : Zero M₀' f : M₀ → M₀' hf : Injective f zero : f 0 = 0 mul : ∀ (x y : M₀), f (x * y) = f x * f y inst✝ : IsRightCancelMulZero M₀' a✝ b✝ c✝ : M₀ Hne : b✝ ≠ 0 He : a✝ * b✝ = c✝ * b✝ ⊢ a✝ = c✝ [PROOFSTEP] have := congr_arg f He [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁴ : Mul M₀ inst✝³ : Zero M₀ inst✝² : Mul M₀' inst✝¹ : Zero M₀' f : M₀ → M₀' hf : Injective f zero : f 0 = 0 mul : ∀ (x y : M₀), f (x * y) = f x * f y inst✝ : IsRightCancelMulZero M₀' a✝ b✝ c✝ : M₀ Hne : b✝ ≠ 0 He : a✝ * b✝ = c✝ * b✝ this : f (a✝ * b✝) = f (c✝ * b✝) ⊢ a✝ = c✝ [PROOFSTEP] rw [mul, mul] at this [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁴ : Mul M₀ inst✝³ : Zero M₀ inst✝² : Mul M₀' inst✝¹ : Zero M₀' f : M₀ → M₀' hf : Injective f zero : f 0 = 0 mul : ∀ (x y : M₀), f (x * y) = f x * f y inst✝ : IsRightCancelMulZero M₀' a✝ b✝ c✝ : M₀ Hne : b✝ ≠ 0 He : a✝ * b✝ = c✝ * b✝ this : f a✝ * f b✝ = f c✝ * f b✝ ⊢ a✝ = c✝ [PROOFSTEP] exact hf (mul_right_cancel₀ (fun Hfa => Hne <| hf <| by rw [Hfa, zero]) this) [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁴ : Mul M₀ inst✝³ : Zero M₀ inst✝² : Mul M₀' inst✝¹ : Zero M₀' f : M₀ → M₀' hf : Injective f zero : f 0 = 0 mul : ∀ (x y : M₀), f (x * y) = f x * f y inst✝ : IsRightCancelMulZero M₀' a✝ b✝ c✝ : M₀ Hne : b✝ ≠ 0 He : a✝ * b✝ = c✝ * b✝ this : f a✝ * f b✝ = f c✝ * f b✝ Hfa : f b✝ = 0 ⊢ f b✝ = f 0 [PROOFSTEP] rw [Hfa, zero] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁴ : CancelMonoidWithZero M₀ a b c : M₀ inst✝³ : Zero M₀' inst✝² : Mul M₀' inst✝¹ : One M₀' inst✝ : Pow M₀' ℕ f : M₀' → M₀ hf : Injective f zero : f 0 = 0 one : f 1 = 1 mul : ∀ (x y : M₀'), f (x * y) = f x * f y npow : ∀ (x : M₀') (n : ℕ), f (x ^ n) = f x ^ n src✝¹ : Monoid M₀' := Injective.monoid f hf one mul npow src✝ : MulZeroClass M₀' := Injective.mulZeroClass f hf zero mul a✝ b✝ c✝ : M₀' hx : a✝ ≠ 0 H : a✝ * b✝ = a✝ * c✝ ⊢ f a✝ * f b✝ = f a✝ * f c✝ [PROOFSTEP] erw [← mul, ← mul, H] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁴ : CancelMonoidWithZero M₀ a b c : M₀ inst✝³ : Zero M₀' inst✝² : Mul M₀' inst✝¹ : One M₀' inst✝ : Pow M₀' ℕ f : M₀' → M₀ hf : Injective f zero : f 0 = 0 one : f 1 = 1 mul : ∀ (x y : M₀'), f (x * y) = f x * f y npow : ∀ (x : M₀') (n : ℕ), f (x ^ n) = f x ^ n src✝¹ : Monoid M₀' := Injective.monoid f hf one mul npow src✝ : MulZeroClass M₀' := Injective.mulZeroClass f hf zero mul a✝ b✝ c✝ : M₀' hx : b✝ ≠ 0 H : a✝ * b✝ = c✝ * b✝ ⊢ f a✝ * f b✝ = f c✝ * f b✝ [PROOFSTEP] erw [← mul, ← mul, H] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁷ : GroupWithZero G₀ a b c g h x : G₀ inst✝⁶ : Zero G₀' inst✝⁵ : Mul G₀' inst✝⁴ : One G₀' inst✝³ : Inv G₀' inst✝² : Div G₀' inst✝¹ : Pow G₀' ℕ inst✝ : Pow G₀' ℤ f : G₀' → G₀ hf : Injective f zero : f 0 = 0 one : f 1 = 1 mul : ∀ (x y : G₀'), f (x * y) = f x * f y inv : ∀ (x : G₀'), f x⁻¹ = (f x)⁻¹ div : ∀ (x y : G₀'), f (x / y) = f x / f y npow : ∀ (x : G₀') (n : ℕ), f (x ^ n) = f x ^ n zpow : ∀ (x : G₀') (n : ℤ), f (x ^ n) = f x ^ n src✝² : MonoidWithZero G₀' := Injective.monoidWithZero f hf zero one mul npow src✝¹ : DivInvMonoid G₀' := Injective.divInvMonoid f hf one mul inv div npow zpow src✝ : Nontrivial G₀' := pullback_nonzero f zero one ⊢ f 0⁻¹ = f 0 [PROOFSTEP] erw [inv, zero, inv_zero] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁷ : GroupWithZero G₀ a b c g h x✝ : G₀ inst✝⁶ : Zero G₀' inst✝⁵ : Mul G₀' inst✝⁴ : One G₀' inst✝³ : Inv G₀' inst✝² : Div G₀' inst✝¹ : Pow G₀' ℕ inst✝ : Pow G₀' ℤ f : G₀' → G₀ hf : Injective f zero : f 0 = 0 one : f 1 = 1 mul : ∀ (x y : G₀'), f (x * y) = f x * f y inv : ∀ (x : G₀'), f x⁻¹ = (f x)⁻¹ div : ∀ (x y : G₀'), f (x / y) = f x / f y npow : ∀ (x : G₀') (n : ℕ), f (x ^ n) = f x ^ n zpow : ∀ (x : G₀') (n : ℤ), f (x ^ n) = f x ^ n src✝² : MonoidWithZero G₀' := Injective.monoidWithZero f hf zero one mul npow src✝¹ : DivInvMonoid G₀' := Injective.divInvMonoid f hf one mul inv div npow zpow src✝ : Nontrivial G₀' := pullback_nonzero f zero one x : G₀' hx : x ≠ 0 ⊢ f (x * x⁻¹) = f 1 [PROOFSTEP] erw [one, mul, inv, mul_inv_cancel ((hf.ne_iff' zero).2 hx)] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁷ : GroupWithZero G₀ a b c g h x : G₀ inst✝⁶ : Zero G₀' inst✝⁵ : Mul G₀' inst✝⁴ : One G₀' inst✝³ : Inv G₀' inst✝² : Div G₀' inst✝¹ : Pow G₀' ℕ inst✝ : Pow G₀' ℤ h01 : 0 ≠ 1 f : G₀ → G₀' hf : Surjective f zero : f 0 = 0 one : f 1 = 1 mul : ∀ (x y : G₀), f (x * y) = f x * f y inv : ∀ (x : G₀), f x⁻¹ = (f x)⁻¹ div : ∀ (x y : G₀), f (x / y) = f x / f y npow : ∀ (x : G₀) (n : ℕ), f (x ^ n) = f x ^ n zpow : ∀ (x : G₀) (n : ℤ), f (x ^ n) = f x ^ n src✝¹ : MonoidWithZero G₀' := Surjective.monoidWithZero f hf zero one mul npow src✝ : DivInvMonoid G₀' := Surjective.divInvMonoid f hf one mul inv div npow zpow ⊢ 0⁻¹ = 0 [PROOFSTEP] erw [← zero, ← inv, inv_zero] [GOAL] M₀ : Type u_1 G₀ : Type u_2 M₀' : Type u_3 G₀' : Type u_4 inst✝⁷ : GroupWithZero G₀ a b c g h x✝ : G₀ inst✝⁶ : Zero G₀' inst✝⁵ : Mul G₀' inst✝⁴ : One G₀' inst✝³ : Inv G₀' inst✝² : Div G₀' inst✝¹ : Pow G₀' ℕ inst✝ : Pow G₀' ℤ h01 : 0 ≠ 1 f : G₀ → G₀' hf : Surjective f zero : f 0 = 0 one : f 1 = 1 mul : ∀ (x y : G₀), f (x * y) = f x * f y inv : ∀ (x : G₀), f x⁻¹ = (f x)⁻¹ div : ∀ (x y : G₀), f (x / y) = f x / f y npow : ∀ (x : G₀) (n : ℕ), f (x ^ n) = f x ^ n zpow : ∀ (x : G₀) (n : ℤ), f (x ^ n) = f x ^ n src✝¹ : MonoidWithZero G₀' := Surjective.monoidWithZero f hf zero one mul npow src✝ : DivInvMonoid G₀' := Surjective.divInvMonoid f hf one mul inv div npow zpow x : G₀ hx : f x ≠ 0 ⊢ f x * (f x)⁻¹ = 1 [PROOFSTEP] erw [← inv, ← mul, mul_inv_cancel (mt (congr_arg f) <| fun h ↦ hx (h.trans zero)), one]
{"mathlib_filename": "Mathlib.Algebra.GroupWithZero.InjSurj", "llama_tokens": 5772}
[GOAL] K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ ⊢ convergents (of v) (n + 1) = ↑⌊v⌋ + 1 / convergents (of (Int.fract v)⁻¹) n [PROOFSTEP] rw [of_convergents_eq_convergents', convergents'_succ, of_convergents_eq_convergents'] [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ⊢ ∀ (ε : K), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → |v - convergents (of v) n| < ε [PROOFSTEP] intro ε ε_pos [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → |v - convergents (of v) n| < ε [PROOFSTEP] rcases(exists_nat_gt (1 / ε) : ∃ N' : ℕ, 1 / ε < N') with ⟨N', one_div_ε_lt_N'⟩ [GOAL] case intro K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → |v - convergents (of v) n| < ε [PROOFSTEP] let N := max N' 5 -- set minimum to 5 to have N ≤ fib N work [GOAL] case intro K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → |v - convergents (of v) n| < ε [PROOFSTEP] exists N [GOAL] case intro K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 ⊢ ∀ (n : ℕ), n ≥ N → |v - convergents (of v) n| < ε [PROOFSTEP] intro n n_ge_N [GOAL] case intro K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N ⊢ |v - convergents (of v) n| < ε [PROOFSTEP] let g := of v [GOAL] case intro K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v ⊢ |v - convergents (of v) n| < ε [PROOFSTEP] cases' Decidable.em (g.TerminatedAt n) with terminated_at_n not_terminated_at_n [GOAL] case intro.inl K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v terminated_at_n : TerminatedAt g n ⊢ |v - convergents (of v) n| < ε [PROOFSTEP] have : v = g.convergents n := of_correctness_of_terminatedAt terminated_at_n [GOAL] case intro.inl K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v terminated_at_n : TerminatedAt g n this : v = convergents g n ⊢ |v - convergents (of v) n| < ε [PROOFSTEP] have : v - g.convergents n = 0 := sub_eq_zero.mpr this [GOAL] case intro.inl K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v terminated_at_n : TerminatedAt g n this✝ : v = convergents g n this : v - convergents g n = 0 ⊢ |v - convergents (of v) n| < ε [PROOFSTEP] rw [this] [GOAL] case intro.inl K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v terminated_at_n : TerminatedAt g n this✝ : v = convergents g n this : v - convergents g n = 0 ⊢ |0| < ε [PROOFSTEP] exact_mod_cast ε_pos [GOAL] case intro.inr K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n ⊢ |v - convergents (of v) n| < ε [PROOFSTEP] let B := g.denominators n [GOAL] case intro.inr K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n ⊢ |v - convergents (of v) n| < ε [PROOFSTEP] let nB := g.denominators (n + 1) [GOAL] case intro.inr K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) ⊢ |v - convergents (of v) n| < ε [PROOFSTEP] have abs_v_sub_conv_le : |v - g.convergents n| ≤ 1 / (B * nB) := abs_sub_convergents_le not_terminated_at_n [GOAL] case intro.inr K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) ⊢ |v - convergents (of v) n| < ε [PROOFSTEP] suffices : 1 / (B * nB) < ε [GOAL] case intro.inr K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) this : 1 / (B * nB) < ε ⊢ |v - convergents (of v) n| < ε case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) ⊢ 1 / (B * nB) < ε [PROOFSTEP] exact lt_of_le_of_lt abs_v_sub_conv_le this [GOAL] case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) ⊢ 1 / (B * nB) < ε [PROOFSTEP] have nB_ineq : (fib (n + 2) : K) ≤ nB := haveI : ¬g.TerminatedAt (n + 1 - 1) := not_terminated_at_n succ_nth_fib_le_of_nth_denom (Or.inr this) [GOAL] case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB ⊢ 1 / (B * nB) < ε [PROOFSTEP] have B_ineq : (fib (n + 1) : K) ≤ B := haveI : ¬g.TerminatedAt (n - 1) := mt (terminated_stable n.pred_le) not_terminated_at_n succ_nth_fib_le_of_nth_denom (Or.inr this) [GOAL] case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B ⊢ 1 / (B * nB) < ε [PROOFSTEP] have zero_lt_B : 0 < B := haveI : (0 : K) < fib (n + 1) := by exact_mod_cast fib_pos n.zero_lt_succ lt_of_lt_of_le this B_ineq [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B ⊢ 0 < ↑(fib (n + 1)) [PROOFSTEP] exact_mod_cast fib_pos n.zero_lt_succ [GOAL] case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B ⊢ 1 / (B * nB) < ε [PROOFSTEP] have zero_lt_mul_conts : 0 < B * nB := by have : 0 < nB := haveI : (0 : K) < fib (n + 2) := by exact_mod_cast fib_pos (n + 1).zero_lt_succ lt_of_lt_of_le this nB_ineq solve_by_elim [mul_pos] [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B ⊢ 0 < B * nB [PROOFSTEP] have : 0 < nB := haveI : (0 : K) < fib (n + 2) := by exact_mod_cast fib_pos (n + 1).zero_lt_succ lt_of_lt_of_le this nB_ineq [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B ⊢ 0 < ↑(fib (n + 2)) [PROOFSTEP] exact_mod_cast fib_pos (n + 1).zero_lt_succ [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B this : 0 < nB ⊢ 0 < B * nB [PROOFSTEP] solve_by_elim [mul_pos] [GOAL] case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB ⊢ 1 / (B * nB) < ε [PROOFSTEP] suffices : 1 < ε * (B * nB) [GOAL] case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB this : 1 < ε * (B * nB) ⊢ 1 / (B * nB) < ε case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB ⊢ 1 < ε * (B * nB) [PROOFSTEP] exact (div_lt_iff zero_lt_mul_conts).mpr this [GOAL] case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB ⊢ 1 < ε * (B * nB) [PROOFSTEP] have one_lt_ε_mul_N : 1 < ε * n := by have one_lt_ε_mul_N' : 1 < ε * (N' : K) := (div_lt_iff' ε_pos).mp one_div_ε_lt_N' have : (N' : K) ≤ N := by exact_mod_cast le_max_left _ _ have : ε * N' ≤ ε * n := (mul_le_mul_left ε_pos).mpr (le_trans this (by exact_mod_cast n_ge_N)) exact lt_of_lt_of_le one_lt_ε_mul_N' this [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB ⊢ 1 < ε * ↑n [PROOFSTEP] have one_lt_ε_mul_N' : 1 < ε * (N' : K) := (div_lt_iff' ε_pos).mp one_div_ε_lt_N' [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N' : 1 < ε * ↑N' ⊢ 1 < ε * ↑n [PROOFSTEP] have : (N' : K) ≤ N := by exact_mod_cast le_max_left _ _ [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N' : 1 < ε * ↑N' ⊢ ↑N' ≤ ↑N [PROOFSTEP] exact_mod_cast le_max_left _ _ [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N' : 1 < ε * ↑N' this : ↑N' ≤ ↑N ⊢ 1 < ε * ↑n [PROOFSTEP] have : ε * N' ≤ ε * n := (mul_le_mul_left ε_pos).mpr (le_trans this (by exact_mod_cast n_ge_N)) [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N' : 1 < ε * ↑N' this : ↑N' ≤ ↑N ⊢ ↑N ≤ ↑n [PROOFSTEP] exact_mod_cast n_ge_N [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N' : 1 < ε * ↑N' this✝ : ↑N' ≤ ↑N this : ε * ↑N' ≤ ε * ↑n ⊢ 1 < ε * ↑n [PROOFSTEP] exact lt_of_lt_of_le one_lt_ε_mul_N' this [GOAL] case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n ⊢ 1 < ε * (B * nB) [PROOFSTEP] suffices : ε * n ≤ ε * (B * nB) [GOAL] case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n this : ε * ↑n ≤ ε * (B * nB) ⊢ 1 < ε * (B * nB) case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n ⊢ ε * ↑n ≤ ε * (B * nB) [PROOFSTEP] exact lt_of_lt_of_le one_lt_ε_mul_N this [GOAL] case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n ⊢ ε * ↑n ≤ ε * (B * nB) [PROOFSTEP] suffices : (n : K) ≤ B * nB [GOAL] case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n this : ↑n ≤ B * nB ⊢ ε * ↑n ≤ ε * (B * nB) case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n ⊢ ↑n ≤ B * nB [PROOFSTEP] exact (mul_le_mul_left ε_pos).mpr this [GOAL] case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n ⊢ ↑n ≤ B * nB [PROOFSTEP] show (n : K) ≤ B * nB [GOAL] case this K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n ⊢ ↑n ≤ B * nB [PROOFSTEP] calc (n : K) ≤ fib n := by exact_mod_cast le_fib_self <| le_trans (le_max_right N' 5) n_ge_N _ ≤ fib (n + 1) := by exact_mod_cast fib_le_fib_succ _ ≤ fib (n + 1) * fib (n + 1) := by exact_mod_cast (fib (n + 1)).le_mul_self _ ≤ fib (n + 1) * fib (n + 2) := (mul_le_mul_of_nonneg_left (by exact_mod_cast fib_le_fib_succ) (by exact_mod_cast (fib (n + 1)).zero_le)) _ ≤ B * nB := mul_le_mul B_ineq nB_ineq (by exact_mod_cast (fib (n + 2)).zero_le) (le_of_lt zero_lt_B) [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n ⊢ ↑n ≤ ↑(fib n) [PROOFSTEP] exact_mod_cast le_fib_self <| le_trans (le_max_right N' 5) n_ge_N [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n ⊢ ↑(fib n) ≤ ↑(fib (n + 1)) [PROOFSTEP] exact_mod_cast fib_le_fib_succ [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n ⊢ ↑(fib (n + 1)) ≤ ↑(fib (n + 1)) * ↑(fib (n + 1)) [PROOFSTEP] exact_mod_cast (fib (n + 1)).le_mul_self [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n ⊢ ↑(fib (n + 1)) ≤ ↑(fib (n + 2)) [PROOFSTEP] exact_mod_cast fib_le_fib_succ [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n ⊢ 0 ≤ ↑(fib (n + 1)) [PROOFSTEP] exact_mod_cast (fib (n + 1)).zero_le [GOAL] K : Type u_1 v : K inst✝² : LinearOrderedField K inst✝¹ : FloorRing K inst✝ : Archimedean K ε : K ε_pos : ε > 0 N' : ℕ one_div_ε_lt_N' : 1 / ε < ↑N' N : ℕ := max N' 5 n : ℕ n_ge_N : n ≥ N g : GeneralizedContinuedFraction K := of v not_terminated_at_n : ¬TerminatedAt g n B : K := denominators g n nB : K := denominators g (n + 1) abs_v_sub_conv_le : |v - convergents g n| ≤ 1 / (B * nB) nB_ineq : ↑(fib (n + 2)) ≤ nB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_lt_mul_conts : 0 < B * nB one_lt_ε_mul_N : 1 < ε * ↑n ⊢ 0 ≤ ↑(fib (n + 2)) [PROOFSTEP] exact_mod_cast (fib (n + 2)).zero_le [GOAL] K : Type u_1 v : K inst✝³ : LinearOrderedField K inst✝² : FloorRing K inst✝¹ : Archimedean K inst✝ : OrderTopology K ⊢ Filter.Tendsto (convergents (of v)) Filter.atTop (nhds v) [PROOFSTEP] simpa [LinearOrderedAddCommGroup.tendsto_nhds, abs_sub_comm] using of_convergence_epsilon v
{"mathlib_filename": "Mathlib.Algebra.ContinuedFractions.Computation.ApproximationCorollaries", "llama_tokens": 14725}
[GOAL] α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ ⊢ TerminatedAt g n ↔ Stream'.Seq.TerminatedAt g.s n [PROOFSTEP] rfl [GOAL] α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ ⊢ TerminatedAt g n ↔ Stream'.Seq.get? g.s n = none [PROOFSTEP] rfl [GOAL] α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ ⊢ Stream'.Seq.get? (partialNumerators g) n = none ↔ Stream'.Seq.get? g.s n = none [PROOFSTEP] cases s_nth_eq : g.s.get? n [GOAL] case none α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ s_nth_eq : Stream'.Seq.get? g.s n = none ⊢ Stream'.Seq.get? (partialNumerators g) n = none ↔ none = none [PROOFSTEP] simp [partialNumerators, s_nth_eq] [GOAL] case some α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ val✝ : Pair α s_nth_eq : Stream'.Seq.get? g.s n = some val✝ ⊢ Stream'.Seq.get? (partialNumerators g) n = none ↔ some val✝ = none [PROOFSTEP] simp [partialNumerators, s_nth_eq] [GOAL] α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ ⊢ TerminatedAt g n ↔ Stream'.Seq.get? (partialNumerators g) n = none [PROOFSTEP] rw [terminatedAt_iff_s_none, part_num_none_iff_s_none] [GOAL] α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ ⊢ Stream'.Seq.get? (partialDenominators g) n = none ↔ Stream'.Seq.get? g.s n = none [PROOFSTEP] cases s_nth_eq : g.s.get? n [GOAL] case none α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ s_nth_eq : Stream'.Seq.get? g.s n = none ⊢ Stream'.Seq.get? (partialDenominators g) n = none ↔ none = none [PROOFSTEP] simp [partialDenominators, s_nth_eq] [GOAL] case some α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ val✝ : Pair α s_nth_eq : Stream'.Seq.get? g.s n = some val✝ ⊢ Stream'.Seq.get? (partialDenominators g) n = none ↔ some val✝ = none [PROOFSTEP] simp [partialDenominators, s_nth_eq] [GOAL] α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ ⊢ TerminatedAt g n ↔ Stream'.Seq.get? (partialDenominators g) n = none [PROOFSTEP] rw [terminatedAt_iff_s_none, part_denom_none_iff_s_none] [GOAL] α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ gp : Pair α s_nth_eq : Stream'.Seq.get? g.s n = some gp ⊢ Stream'.Seq.get? (partialNumerators g) n = some gp.a [PROOFSTEP] simp [partialNumerators, s_nth_eq] [GOAL] α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ gp : Pair α s_nth_eq : Stream'.Seq.get? g.s n = some gp ⊢ Stream'.Seq.get? (partialDenominators g) n = some gp.b [PROOFSTEP] simp [partialDenominators, s_nth_eq] [GOAL] α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ a : α nth_part_num_eq : Stream'.Seq.get? (partialNumerators g) n = some a ⊢ ∃ gp, Stream'.Seq.get? g.s n = some gp ∧ gp.a = a [PROOFSTEP] simpa [partialNumerators, Stream'.Seq.map_get?] using nth_part_num_eq [GOAL] α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ b : α nth_part_denom_eq : Stream'.Seq.get? (partialDenominators g) n = some b ⊢ ∃ gp, Stream'.Seq.get? g.s n = some gp ∧ gp.b = b [PROOFSTEP] simpa [partialDenominators, Stream'.Seq.map_get?] using nth_part_denom_eq [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K A : K nth_num_eq : numerators g n = A ⊢ ∃ conts, continuants g n = conts ∧ conts.a = A [PROOFSTEP] simpa [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K B : K nth_denom_eq : denominators g n = B ⊢ ∃ conts, continuants g n = conts ∧ conts.b = B [PROOFSTEP] simpa [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K ⊢ convergents g 0 = g.h [PROOFSTEP] simp [convergent_eq_num_div_denom, num_eq_conts_a, denom_eq_conts_b, div_one] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K zeroth_s_eq : Stream'.Seq.get? g.s 0 = some gp ⊢ continuantsAux g 2 = { a := gp.b * g.h + gp.a, b := gp.b } [PROOFSTEP] simp [zeroth_s_eq, continuantsAux, nextContinuants, nextDenominator, nextNumerator] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K zeroth_s_eq : Stream'.Seq.get? g.s 0 = some gp ⊢ continuants g 1 = { a := gp.b * g.h + gp.a, b := gp.b } [PROOFSTEP] simp [nth_cont_eq_succ_nth_cont_aux] -- porting note: simp used to work here, but now it can't figure out that 1 + 1 = 2 [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K zeroth_s_eq : Stream'.Seq.get? g.s 0 = some gp ⊢ continuantsAux g (1 + 1) = { a := gp.b * g.h + gp.a, b := gp.b } [PROOFSTEP] convert second_continuant_aux_eq zeroth_s_eq [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K zeroth_s_eq : Stream'.Seq.get? g.s 0 = some gp ⊢ numerators g 1 = gp.b * g.h + gp.a [PROOFSTEP] simp [num_eq_conts_a, first_continuant_eq zeroth_s_eq] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K zeroth_s_eq : Stream'.Seq.get? g.s 0 = some gp ⊢ denominators g 1 = gp.b [PROOFSTEP] simp [denom_eq_conts_b, first_continuant_eq zeroth_s_eq] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K ⊢ convergents' g 0 = g.h [PROOFSTEP] simp [convergents'] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n✝ : ℕ inst✝ : DivisionRing K s : Stream'.Seq (Pair K) h : Stream'.Seq.head s = none n : ℕ ⊢ convergents'Aux s (n + 1) = 0 [PROOFSTEP] simp [convergents'Aux, h, convergents'Aux.match_1] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n✝ : ℕ inst✝ : DivisionRing K s : Stream'.Seq (Pair K) p : Pair K h : Stream'.Seq.head s = some p n : ℕ ⊢ convergents'Aux s (n + 1) = p.a / (p.b + convergents'Aux (Stream'.Seq.tail s) n) [PROOFSTEP] simp [convergents'Aux, h, convergents'Aux.match_1]
{"mathlib_filename": "Mathlib.Algebra.ContinuedFractions.Translations", "llama_tokens": 2568}
[GOAL] α : Type u_1 inst✝ : SemigroupWithZero α a : α h : a = 0 ⊢ 0 ∣ a [PROOFSTEP] rw [h] [GOAL] α : Type u_1 inst✝ : SemigroupWithZero α a : α h : a = 0 ⊢ 0 ∣ 0 [PROOFSTEP] exact ⟨0, by simp⟩ [GOAL] α : Type u_1 inst✝ : SemigroupWithZero α a : α h : a = 0 ⊢ 0 = 0 * 0 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : SemigroupWithZero α a✝ a : α ⊢ a * 0 = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : CancelMonoidWithZero α a b c : α ha : a ≠ 0 d : α ⊢ a * c = a * b * d ↔ c = b * d [PROOFSTEP] rw [mul_assoc, mul_right_inj' ha] [GOAL] α : Type u_1 inst✝ : CancelCommMonoidWithZero α a b c : α hc : c ≠ 0 d : α ⊢ b * c = a * c * d ↔ b = a * d [PROOFSTEP] rw [mul_right_comm, mul_left_inj' hc] [GOAL] α : Type u_1 inst✝ : CommMonoidWithZero α a b : α hd : a ∣ b hnd : ¬b ∣ a ⊢ DvdNotUnit a b [PROOFSTEP] constructor [GOAL] case left α : Type u_1 inst✝ : CommMonoidWithZero α a b : α hd : a ∣ b hnd : ¬b ∣ a ⊢ a ≠ 0 [PROOFSTEP] rintro rfl [GOAL] case left α : Type u_1 inst✝ : CommMonoidWithZero α b : α hd : 0 ∣ b hnd : ¬b ∣ 0 ⊢ False [PROOFSTEP] exact hnd (dvd_zero _) [GOAL] case right α : Type u_1 inst✝ : CommMonoidWithZero α a b : α hd : a ∣ b hnd : ¬b ∣ a ⊢ ∃ x, ¬IsUnit x ∧ b = a * x [PROOFSTEP] rcases hd with ⟨c, rfl⟩ [GOAL] case right.intro α : Type u_1 inst✝ : CommMonoidWithZero α a c : α hnd : ¬a * c ∣ a ⊢ ∃ x, ¬IsUnit x ∧ a * c = a * x [PROOFSTEP] refine' ⟨c, _, rfl⟩ [GOAL] case right.intro α : Type u_1 inst✝ : CommMonoidWithZero α a c : α hnd : ¬a * c ∣ a ⊢ ¬IsUnit c [PROOFSTEP] rintro ⟨u, rfl⟩ [GOAL] case right.intro.intro α : Type u_1 inst✝ : CommMonoidWithZero α a : α u : αˣ hnd : ¬a * ↑u ∣ a ⊢ False [PROOFSTEP] simp at hnd [GOAL] α : Type u_1 inst✝ : CancelCommMonoidWithZero α x y : α x✝ : x ∣ y ∧ ¬y ∣ x d : α hd : y = x * d hyx : ¬y ∣ x hx0 : x = 0 ⊢ False [PROOFSTEP] simp [hx0] at hyx [GOAL] α : Type u_1 inst✝ : CancelCommMonoidWithZero α x y : α x✝¹ : x ∣ y ∧ ¬y ∣ x d : α hd : y = x * d hyx : ¬y ∣ x x✝ : d ∣ 1 e : α he : 1 = d * e ⊢ x = y * e [PROOFSTEP] rw [hd, mul_assoc, ← he, mul_one] [GOAL] α : Type u_1 inst✝ : CancelCommMonoidWithZero α x y : α x✝¹ : DvdNotUnit x y hx0 : x ≠ 0 d : α hdu : ¬IsUnit d hdx : y = x * d x✝ : y ∣ x e : α he : x = y * e ⊢ x * 1 = x * (d * e) [PROOFSTEP] conv => lhs rw [he, hdx] simp [mul_assoc] [GOAL] α : Type u_1 inst✝ : CancelCommMonoidWithZero α x y : α x✝¹ : DvdNotUnit x y hx0 : x ≠ 0 d : α hdu : ¬IsUnit d hdx : y = x * d x✝ : y ∣ x e : α he : x = y * e | x * 1 = x * (d * e) [PROOFSTEP] lhs rw [he, hdx] simp [mul_assoc] [GOAL] α : Type u_1 inst✝ : CancelCommMonoidWithZero α x y : α x✝¹ : DvdNotUnit x y hx0 : x ≠ 0 d : α hdu : ¬IsUnit d hdx : y = x * d x✝ : y ∣ x e : α he : x = y * e | x * 1 = x * (d * e) [PROOFSTEP] lhs rw [he, hdx] simp [mul_assoc] [GOAL] α : Type u_1 inst✝ : CancelCommMonoidWithZero α x y : α x✝¹ : DvdNotUnit x y hx0 : x ≠ 0 d : α hdu : ¬IsUnit d hdx : y = x * d x✝ : y ∣ x e : α he : x = y * e | x * 1 = x * (d * e) [PROOFSTEP] lhs [GOAL] α : Type u_1 inst✝ : CancelCommMonoidWithZero α x y : α x✝¹ : DvdNotUnit x y hx0 : x ≠ 0 d : α hdu : ¬IsUnit d hdx : y = x * d x✝ : y ∣ x e : α he : x = y * e | x * 1 [PROOFSTEP] rw [he, hdx] [GOAL] α : Type u_1 inst✝ : CancelCommMonoidWithZero α x y : α x✝¹ : DvdNotUnit x y hx0 : x ≠ 0 d : α hdu : ¬IsUnit d hdx : y = x * d x✝ : y ∣ x e : α he : x = y * e | x * d * e * 1 [PROOFSTEP] simp [mul_assoc] [GOAL] α : Type u_1 inst✝ : MonoidWithZero α p q : α h₁ : q ≠ 0 h₂ : p ∣ q ⊢ p ≠ 0 [PROOFSTEP] rcases h₂ with ⟨u, rfl⟩ [GOAL] case intro α : Type u_1 inst✝ : MonoidWithZero α p u : α h₁ : p * u ≠ 0 ⊢ p ≠ 0 [PROOFSTEP] exact left_ne_zero_of_mul h₁ [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Subsingleton αˣ a b : α ⊢ a ∣ b → b ∣ a → a = b [PROOFSTEP] rintro ⟨c, rfl⟩ ⟨d, hcd⟩ [GOAL] case intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Subsingleton αˣ a c d : α hcd : a = a * c * d ⊢ a = a * c [PROOFSTEP] rw [mul_assoc, eq_comm, mul_right_eq_self₀, mul_eq_one] at hcd [GOAL] case intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Subsingleton αˣ a c d : α hcd : c = 1 ∧ d = 1 ∨ a = 0 ⊢ a = a * c [PROOFSTEP] obtain ⟨rfl, -⟩ | rfl := hcd [GOAL] case intro.intro.inl.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Subsingleton αˣ a d : α ⊢ a = a * 1 [PROOFSTEP] simp [GOAL] case intro.intro.inr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Subsingleton αˣ c d : α ⊢ 0 = 0 * c [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Algebra.GroupWithZero.Divisibility", "llama_tokens": 2516}
[GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ a b : M₀ h : Commute a b ⊢ inverse (a * b) = inverse b * inverse a [PROOFSTEP] by_cases hab : IsUnit (a * b) [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ a b : M₀ h : Commute a b hab : IsUnit (a * b) ⊢ inverse (a * b) = inverse b * inverse a [PROOFSTEP] obtain ⟨⟨a, rfl⟩, b, rfl⟩ := h.isUnit_mul_iff.mp hab [GOAL] case pos.intro.intro.intro α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ a b : M₀ˣ h : Commute ↑a ↑b hab : IsUnit (↑a * ↑b) ⊢ inverse (↑a * ↑b) = inverse ↑b * inverse ↑a [PROOFSTEP] rw [← Units.val_mul, inverse_unit, inverse_unit, inverse_unit, ← Units.val_mul, mul_inv_rev] [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ a b : M₀ h : Commute a b hab : ¬IsUnit (a * b) ⊢ inverse (a * b) = inverse b * inverse a [PROOFSTEP] obtain ha | hb := not_and_or.mp (mt h.isUnit_mul_iff.mpr hab) [GOAL] case neg.inl α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ a b : M₀ h : Commute a b hab : ¬IsUnit (a * b) ha : ¬IsUnit a ⊢ inverse (a * b) = inverse b * inverse a [PROOFSTEP] rw [inverse_non_unit _ hab, inverse_non_unit _ ha, mul_zero] [GOAL] case neg.inr α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ a b : M₀ h : Commute a b hab : ¬IsUnit (a * b) hb : ¬IsUnit b ⊢ inverse (a * b) = inverse b * inverse a [PROOFSTEP] rw [inverse_non_unit _ hab, inverse_non_unit _ hb, zero_mul] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a b c : G₀ hac : Commute a c hbc : Commute b c ⊢ Commute (a / b) c [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a b c : G₀ hac : Commute a c hbc : Commute b c ⊢ Commute (a * b⁻¹) c [PROOFSTEP] exact hac.mul_left hbc.inv_left₀
{"mathlib_filename": "Mathlib.Algebra.GroupWithZero.Commute", "llama_tokens": 1194}
[GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n nth_fr_eq_zero : ifp_n.fr = 0 ⊢ IntFractPair.stream v (n + 1) = none [PROOFSTEP] cases' ifp_n with _ fr [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ b✝ : ℤ fr : K stream_nth_eq : IntFractPair.stream v n = some { b := b✝, fr := fr } nth_fr_eq_zero : { b := b✝, fr := fr }.fr = 0 ⊢ IntFractPair.stream v (n + 1) = none [PROOFSTEP] change fr = 0 at nth_fr_eq_zero [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ b✝ : ℤ fr : K stream_nth_eq : IntFractPair.stream v n = some { b := b✝, fr := fr } nth_fr_eq_zero : fr = 0 ⊢ IntFractPair.stream v (n + 1) = none [PROOFSTEP] simp [IntFractPair.stream, stream_nth_eq, nth_fr_eq_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ IntFractPair.stream v (n + 1) = none ↔ IntFractPair.stream v n = none ∨ ∃ ifp, IntFractPair.stream v n = some ifp ∧ ifp.fr = 0 [PROOFSTEP] rw [IntFractPair.stream] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ (Option.bind (IntFractPair.stream v n) fun ap_n => if ap_n.fr = 0 then none else some (IntFractPair.of ap_n.fr⁻¹)) = none ↔ IntFractPair.stream v n = none ∨ ∃ ifp, IntFractPair.stream v n = some ifp ∧ ifp.fr = 0 [PROOFSTEP] cases IntFractPair.stream v n [GOAL] case none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ (Option.bind none fun ap_n => if ap_n.fr = 0 then none else some (IntFractPair.of ap_n.fr⁻¹)) = none ↔ none = none ∨ ∃ ifp, none = some ifp ∧ ifp.fr = 0 [PROOFSTEP] simp [imp_false] [GOAL] case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ val✝ : IntFractPair K ⊢ (Option.bind (some val✝) fun ap_n => if ap_n.fr = 0 then none else some (IntFractPair.of ap_n.fr⁻¹)) = none ↔ some val✝ = none ∨ ∃ ifp, some val✝ = some ifp ∧ ifp.fr = 0 [PROOFSTEP] simp [imp_false] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ifp_succ_n : IntFractPair K ⊢ IntFractPair.stream v (n + 1) = some ifp_succ_n ↔ ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr ≠ 0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n [PROOFSTEP] simp [IntFractPair.stream, ite_eq_iff] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ a : ℤ n : ℕ ⊢ IntFractPair.stream (↑a) (n + 1) = none [PROOFSTEP] induction' n with n ih [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a : ℤ ⊢ IntFractPair.stream (↑a) (Nat.zero + 1) = none [PROOFSTEP] refine' IntFractPair.stream_eq_none_of_fr_eq_zero (IntFractPair.stream_zero (a : K)) _ [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a : ℤ ⊢ (IntFractPair.of ↑a).fr = 0 [PROOFSTEP] simp only [IntFractPair.of, Int.fract_intCast] [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ a : ℤ n : ℕ ih : IntFractPair.stream (↑a) (n + 1) = none ⊢ IntFractPair.stream (↑a) (Nat.succ n + 1) = none [PROOFSTEP] exact IntFractPair.succ_nth_stream_eq_none_iff.mpr (Or.inl ih) [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ifp_succ_n : IntFractPair K stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n succ_nth_fr_eq_zero : ifp_succ_n.fr = 0 ⊢ ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr⁻¹ = ↑⌊ifp_n.fr⁻¹⌋ [PROOFSTEP] rcases succ_nth_stream_eq_some_iff.mp stream_succ_nth_eq with ⟨ifp_n, seq_nth_eq, _, rfl⟩ [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ifp_n : IntFractPair K seq_nth_eq : IntFractPair.stream v n = some ifp_n left✝ : ifp_n.fr ≠ 0 stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some (IntFractPair.of ifp_n.fr⁻¹) succ_nth_fr_eq_zero : (IntFractPair.of ifp_n.fr⁻¹).fr = 0 ⊢ ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr⁻¹ = ↑⌊ifp_n.fr⁻¹⌋ [PROOFSTEP] refine' ⟨ifp_n, seq_nth_eq, _⟩ [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ifp_n : IntFractPair K seq_nth_eq : IntFractPair.stream v n = some ifp_n left✝ : ifp_n.fr ≠ 0 stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some (IntFractPair.of ifp_n.fr⁻¹) succ_nth_fr_eq_zero : (IntFractPair.of ifp_n.fr⁻¹).fr = 0 ⊢ ifp_n.fr⁻¹ = ↑⌊ifp_n.fr⁻¹⌋ [PROOFSTEP] simpa only [IntFractPair.of, Int.fract, sub_eq_zero] using succ_nth_fr_eq_zero [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ h : Int.fract v ≠ 0 n : ℕ ⊢ IntFractPair.stream v (n + 1) = IntFractPair.stream (Int.fract v)⁻¹ n [PROOFSTEP] induction' n with n ih [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ h : Int.fract v ≠ 0 ⊢ IntFractPair.stream v (Nat.zero + 1) = IntFractPair.stream (Int.fract v)⁻¹ Nat.zero [PROOFSTEP] have H : (IntFractPair.of v).fr = Int.fract v := rfl [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ h : Int.fract v ≠ 0 H : (IntFractPair.of v).fr = Int.fract v ⊢ IntFractPair.stream v (Nat.zero + 1) = IntFractPair.stream (Int.fract v)⁻¹ Nat.zero [PROOFSTEP] rw [stream_zero, stream_succ_of_some (stream_zero v) (ne_of_eq_of_ne H h), H] [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ h : Int.fract v ≠ 0 n : ℕ ih : IntFractPair.stream v (n + 1) = IntFractPair.stream (Int.fract v)⁻¹ n ⊢ IntFractPair.stream v (Nat.succ n + 1) = IntFractPair.stream (Int.fract v)⁻¹ (Nat.succ n) [PROOFSTEP] cases' eq_or_ne (IntFractPair.stream (Int.fract v)⁻¹ n) none with hnone hsome [GOAL] case succ.inl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ h : Int.fract v ≠ 0 n : ℕ ih : IntFractPair.stream v (n + 1) = IntFractPair.stream (Int.fract v)⁻¹ n hnone : IntFractPair.stream (Int.fract v)⁻¹ n = none ⊢ IntFractPair.stream v (Nat.succ n + 1) = IntFractPair.stream (Int.fract v)⁻¹ (Nat.succ n) [PROOFSTEP] rw [hnone] at ih [GOAL] case succ.inl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ h : Int.fract v ≠ 0 n : ℕ ih : IntFractPair.stream v (n + 1) = none hnone : IntFractPair.stream (Int.fract v)⁻¹ n = none ⊢ IntFractPair.stream v (Nat.succ n + 1) = IntFractPair.stream (Int.fract v)⁻¹ (Nat.succ n) [PROOFSTEP] rw [succ_nth_stream_eq_none_iff.mpr (Or.inl hnone), succ_nth_stream_eq_none_iff.mpr (Or.inl ih)] [GOAL] case succ.inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ h : Int.fract v ≠ 0 n : ℕ ih : IntFractPair.stream v (n + 1) = IntFractPair.stream (Int.fract v)⁻¹ n hsome : IntFractPair.stream (Int.fract v)⁻¹ n ≠ none ⊢ IntFractPair.stream v (Nat.succ n + 1) = IntFractPair.stream (Int.fract v)⁻¹ (Nat.succ n) [PROOFSTEP] obtain ⟨p, hp⟩ := Option.ne_none_iff_exists'.mp hsome [GOAL] case succ.inr.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ h : Int.fract v ≠ 0 n : ℕ ih : IntFractPair.stream v (n + 1) = IntFractPair.stream (Int.fract v)⁻¹ n hsome : IntFractPair.stream (Int.fract v)⁻¹ n ≠ none p : IntFractPair K hp : IntFractPair.stream (Int.fract v)⁻¹ n = some p ⊢ IntFractPair.stream v (Nat.succ n + 1) = IntFractPair.stream (Int.fract v)⁻¹ (Nat.succ n) [PROOFSTEP] rw [hp] at ih [GOAL] case succ.inr.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ h : Int.fract v ≠ 0 n : ℕ hsome : IntFractPair.stream (Int.fract v)⁻¹ n ≠ none p : IntFractPair K ih : IntFractPair.stream v (n + 1) = some p hp : IntFractPair.stream (Int.fract v)⁻¹ n = some p ⊢ IntFractPair.stream v (Nat.succ n + 1) = IntFractPair.stream (Int.fract v)⁻¹ (Nat.succ n) [PROOFSTEP] cases' eq_or_ne p.fr 0 with hz hnz [GOAL] case succ.inr.intro.inl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ h : Int.fract v ≠ 0 n : ℕ hsome : IntFractPair.stream (Int.fract v)⁻¹ n ≠ none p : IntFractPair K ih : IntFractPair.stream v (n + 1) = some p hp : IntFractPair.stream (Int.fract v)⁻¹ n = some p hz : p.fr = 0 ⊢ IntFractPair.stream v (Nat.succ n + 1) = IntFractPair.stream (Int.fract v)⁻¹ (Nat.succ n) [PROOFSTEP] rw [stream_eq_none_of_fr_eq_zero hp hz, stream_eq_none_of_fr_eq_zero ih hz] [GOAL] case succ.inr.intro.inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ h : Int.fract v ≠ 0 n : ℕ hsome : IntFractPair.stream (Int.fract v)⁻¹ n ≠ none p : IntFractPair K ih : IntFractPair.stream v (n + 1) = some p hp : IntFractPair.stream (Int.fract v)⁻¹ n = some p hnz : p.fr ≠ 0 ⊢ IntFractPair.stream v (Nat.succ n + 1) = IntFractPair.stream (Int.fract v)⁻¹ (Nat.succ n) [PROOFSTEP] rw [stream_succ_of_some hp hnz, stream_succ_of_some ih hnz] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K ⊢ (of v).h = ↑(IntFractPair.seq1 v).fst.b [PROOFSTEP] cases aux_seq_eq : IntFractPair.seq1 v [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K fst✝ : IntFractPair K snd✝ : Stream'.Seq (IntFractPair K) aux_seq_eq : IntFractPair.seq1 v = (fst✝, snd✝) ⊢ (of v).h = ↑(fst✝, snd✝).fst.b [PROOFSTEP] simp [of, aux_seq_eq] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K ⊢ (of v).h = ↑⌊v⌋ [PROOFSTEP] simp [of_h_eq_intFractPair_seq1_fst_b, IntFractPair.of] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ TerminatedAt (of v) n ↔ IntFractPair.stream v (n + 1) = none [PROOFSTEP] rw [of_terminatedAt_iff_intFractPair_seq1_terminatedAt, Stream'.Seq.TerminatedAt, IntFractPair.get?_seq1_eq_succ_get?_stream] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ gp_n : Pair K s_nth_eq : Stream'.Seq.get? (of v).s n = some gp_n ⊢ ∃ ifp, IntFractPair.stream v (n + 1) = some ifp ∧ ↑ifp.b = gp_n.b [PROOFSTEP] obtain ⟨ifp, stream_succ_nth_eq, gp_n_eq⟩ : ∃ ifp, IntFractPair.stream v (n + 1) = some ifp ∧ Pair.mk 1 (ifp.b : K) = gp_n := by unfold of IntFractPair.seq1 at s_nth_eq simpa [Stream'.Seq.get?_tail, Stream'.Seq.map_get?] using s_nth_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ gp_n : Pair K s_nth_eq : Stream'.Seq.get? (of v).s n = some gp_n ⊢ ∃ ifp, IntFractPair.stream v (n + 1) = some ifp ∧ { a := 1, b := ↑ifp.b } = gp_n [PROOFSTEP] unfold of IntFractPair.seq1 at s_nth_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ gp_n : Pair K s_nth_eq : Stream'.Seq.get? (match (IntFractPair.of v, Stream'.Seq.tail { val := IntFractPair.stream v, property := (_ : Stream'.IsSeq (IntFractPair.stream v)) }) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).s n = some gp_n ⊢ ∃ ifp, IntFractPair.stream v (n + 1) = some ifp ∧ { a := 1, b := ↑ifp.b } = gp_n [PROOFSTEP] simpa [Stream'.Seq.get?_tail, Stream'.Seq.map_get?] using s_nth_eq [GOAL] case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ gp_n : Pair K s_nth_eq : Stream'.Seq.get? (of v).s n = some gp_n ifp : IntFractPair K stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some ifp gp_n_eq : { a := 1, b := ↑ifp.b } = gp_n ⊢ ∃ ifp, IntFractPair.stream v (n + 1) = some ifp ∧ ↑ifp.b = gp_n.b [PROOFSTEP] cases gp_n_eq [GOAL] case intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ifp : IntFractPair K stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some ifp s_nth_eq : Stream'.Seq.get? (of v).s n = some { a := 1, b := ↑ifp.b } ⊢ ∃ ifp_1, IntFractPair.stream v (n + 1) = some ifp_1 ∧ ↑ifp_1.b = { a := 1, b := ↑ifp.b }.b [PROOFSTEP] simp_all only [Option.some.injEq, exists_eq_left'] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ifp_succ_n : IntFractPair K stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ⊢ Stream'.Seq.get? (of v).s n = some { a := 1, b := ↑ifp_succ_n.b } [PROOFSTEP] unfold of IntFractPair.seq1 [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ifp_succ_n : IntFractPair K stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ⊢ Stream'.Seq.get? (match (IntFractPair.of v, Stream'.Seq.tail { val := IntFractPair.stream v, property := (_ : Stream'.IsSeq (IntFractPair.stream v)) }) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).s n = some { a := 1, b := ↑ifp_succ_n.b } [PROOFSTEP] simp [Stream'.Seq.map_tail, Stream'.Seq.get?_tail, Stream'.Seq.map_get?, stream_succ_nth_eq] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n nth_fr_ne_zero : ifp_n.fr ≠ 0 ⊢ IntFractPair.stream v (n + 1) = some (IntFractPair.of ifp_n.fr⁻¹) [PROOFSTEP] cases ifp_n [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ b✝ : ℤ fr✝ : K stream_nth_eq : IntFractPair.stream v n = some { b := b✝, fr := fr✝ } nth_fr_ne_zero : { b := b✝, fr := fr✝ }.fr ≠ 0 ⊢ IntFractPair.stream v (n + 1) = some (IntFractPair.of { b := b✝, fr := fr✝ }.fr⁻¹) [PROOFSTEP] simp [IntFractPair.stream, stream_nth_eq, nth_fr_ne_zero] [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ b✝ : ℤ fr✝ : K stream_nth_eq : IntFractPair.stream v n = some { b := b✝, fr := fr✝ } nth_fr_ne_zero : { b := b✝, fr := fr✝ }.fr ≠ 0 ⊢ fr✝ = 0 → False [PROOFSTEP] intro [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ b✝ : ℤ fr✝ : K stream_nth_eq : IntFractPair.stream v n = some { b := b✝, fr := fr✝ } nth_fr_ne_zero : { b := b✝, fr := fr✝ }.fr ≠ 0 a✝ : fr✝ = 0 ⊢ False [PROOFSTEP] contradiction [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K n : ℕ v : K ⊢ Stream'.Seq.get? (of v).s 0 = Option.bind (IntFractPair.stream v 1) (some ∘ fun p => { a := 1, b := ↑p.b }) [PROOFSTEP] rw [of, IntFractPair.seq1] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K n : ℕ v : K ⊢ Stream'.Seq.get? (match (IntFractPair.of v, Stream'.Seq.tail { val := IntFractPair.stream v, property := (_ : Stream'.IsSeq (IntFractPair.stream v)) }) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).s 0 = Option.bind (IntFractPair.stream v 1) (some ∘ fun p => { a := 1, b := ↑p.b }) [PROOFSTEP] simp only [of, Stream'.Seq.map_tail, Stream'.Seq.map, Stream'.Seq.tail, Stream'.Seq.head, Stream'.Seq.get?, Stream'.map] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K n : ℕ v : K ⊢ Option.map (fun p => { a := 1, b := ↑p.b }) (Stream'.nth (Stream'.tail (IntFractPair.stream v)) 0) = Option.bind (IntFractPair.stream v 1) (some ∘ fun p => { a := 1, b := ↑p.b }) [PROOFSTEP] rw [← Stream'.nth_succ, Stream'.nth, Option.map] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K n : ℕ v : K ⊢ (match IntFractPair.stream v (Nat.succ 0) with | some x => some { a := 1, b := ↑x.b } | none => none) = Option.bind (IntFractPair.stream v 1) (some ∘ fun p => { a := 1, b := ↑p.b }) [PROOFSTEP] split [GOAL] case h_1 K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K n : ℕ v : K x✝¹ : Option (IntFractPair K) x✝ : IntFractPair K heq✝ : IntFractPair.stream v (Nat.succ 0) = some x✝ ⊢ some { a := 1, b := ↑x✝.b } = Option.bind (IntFractPair.stream v 1) (some ∘ fun p => { a := 1, b := ↑p.b }) [PROOFSTEP] simp_all only [Option.some_bind, Option.none_bind, Function.comp_apply] [GOAL] case h_2 K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K n : ℕ v : K x✝ : Option (IntFractPair K) heq✝ : IntFractPair.stream v (Nat.succ 0) = none ⊢ none = Option.bind (IntFractPair.stream v 1) (some ∘ fun p => { a := 1, b := ↑p.b }) [PROOFSTEP] simp_all only [Option.some_bind, Option.none_bind, Function.comp_apply] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ h : fract v ≠ 0 ⊢ Stream'.Seq.head (of v).s = some { a := 1, b := ↑⌊(fract v)⁻¹⌋ } [PROOFSTEP] change (of v).s.get? 0 = _ [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ h : fract v ≠ 0 ⊢ Stream'.Seq.get? (of v).s 0 = some { a := 1, b := ↑⌊(fract v)⁻¹⌋ } [PROOFSTEP] rw [of_s_head_aux, stream_succ_of_some (stream_zero v) h, Option.bind] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ h : fract v ≠ 0 ⊢ (match some (IntFractPair.of (IntFractPair.of v).fr⁻¹), some ∘ fun p => { a := 1, b := ↑p.b } with | none, x => none | some a, b => b a) = some { a := 1, b := ↑⌊(fract v)⁻¹⌋ } [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a : ℤ ⊢ ∀ (n : ℕ), Stream'.Seq.get? (of ↑a).s n = none [PROOFSTEP] intro n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ a : ℤ n : ℕ ⊢ Stream'.Seq.get? (of ↑a).s n = none [PROOFSTEP] induction' n with n ih [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a : ℤ ⊢ Stream'.Seq.get? (of ↑a).s Nat.zero = none [PROOFSTEP] rw [of_s_head_aux, stream_succ_of_int, Option.bind] [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ a : ℤ n : ℕ ih : Stream'.Seq.get? (of ↑a).s n = none ⊢ Stream'.Seq.get? (of ↑a).s (Nat.succ n) = none [PROOFSTEP] exact (of (a : K)).s.prop ih [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ n : ℕ ⊢ Stream'.Seq.get? (of v).s (n + 1) = Stream'.Seq.get? (of (fract v)⁻¹).s n [PROOFSTEP] cases' eq_or_ne (fract v) 0 with h h [GOAL] case inl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ n : ℕ h : fract v = 0 ⊢ Stream'.Seq.get? (of v).s (n + 1) = Stream'.Seq.get? (of (fract v)⁻¹).s n [PROOFSTEP] obtain ⟨a, rfl⟩ : ∃ a : ℤ, v = a := ⟨⌊v⌋, eq_of_sub_eq_zero h⟩ [GOAL] case inl.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n✝ n : ℕ a : ℤ h : fract ↑a = 0 ⊢ Stream'.Seq.get? (of ↑a).s (n + 1) = Stream'.Seq.get? (of (fract ↑a)⁻¹).s n [PROOFSTEP] rw [fract_intCast, inv_zero, of_s_of_int, ← cast_zero, of_s_of_int, Stream'.Seq.get?_nil, Stream'.Seq.get?_nil] [GOAL] case inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ n : ℕ h : fract v ≠ 0 ⊢ Stream'.Seq.get? (of v).s (n + 1) = Stream'.Seq.get? (of (fract v)⁻¹).s n [PROOFSTEP] cases' eq_or_ne ((of (fract v)⁻¹).s.get? n) none with h₁ h₁ [GOAL] case inr.inl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ n : ℕ h : fract v ≠ 0 h₁ : Stream'.Seq.get? (of (fract v)⁻¹).s n = none ⊢ Stream'.Seq.get? (of v).s (n + 1) = Stream'.Seq.get? (of (fract v)⁻¹).s n [PROOFSTEP] rwa [h₁, ← terminatedAt_iff_s_none, of_terminatedAt_n_iff_succ_nth_intFractPair_stream_eq_none, stream_succ h, ← of_terminatedAt_n_iff_succ_nth_intFractPair_stream_eq_none, terminatedAt_iff_s_none] [GOAL] case inr.inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ n : ℕ h : fract v ≠ 0 h₁ : Stream'.Seq.get? (of (fract v)⁻¹).s n ≠ none ⊢ Stream'.Seq.get? (of v).s (n + 1) = Stream'.Seq.get? (of (fract v)⁻¹).s n [PROOFSTEP] obtain ⟨p, hp⟩ := Option.ne_none_iff_exists'.mp h₁ [GOAL] case inr.inr.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ n : ℕ h : fract v ≠ 0 h₁ : Stream'.Seq.get? (of (fract v)⁻¹).s n ≠ none p : Pair K hp : Stream'.Seq.get? (of (fract v)⁻¹).s n = some p ⊢ Stream'.Seq.get? (of v).s (n + 1) = Stream'.Seq.get? (of (fract v)⁻¹).s n [PROOFSTEP] obtain ⟨p', hp'₁, _⟩ := exists_succ_get?_stream_of_gcf_of_get?_eq_some hp [GOAL] case inr.inr.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ n : ℕ h : fract v ≠ 0 h₁ : Stream'.Seq.get? (of (fract v)⁻¹).s n ≠ none p : Pair K hp : Stream'.Seq.get? (of (fract v)⁻¹).s n = some p p' : IntFractPair K hp'₁ : IntFractPair.stream (fract v)⁻¹ (n + 1) = some p' right✝ : ↑p'.b = p.b ⊢ Stream'.Seq.get? (of v).s (n + 1) = Stream'.Seq.get? (of (fract v)⁻¹).s n [PROOFSTEP] have Hp := get?_of_eq_some_of_succ_get?_intFractPair_stream hp'₁ [GOAL] case inr.inr.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ n : ℕ h : fract v ≠ 0 h₁ : Stream'.Seq.get? (of (fract v)⁻¹).s n ≠ none p : Pair K hp : Stream'.Seq.get? (of (fract v)⁻¹).s n = some p p' : IntFractPair K hp'₁ : IntFractPair.stream (fract v)⁻¹ (n + 1) = some p' right✝ : ↑p'.b = p.b Hp : Stream'.Seq.get? (of (fract v)⁻¹).s n = some { a := 1, b := ↑p'.b } ⊢ Stream'.Seq.get? (of v).s (n + 1) = Stream'.Seq.get? (of (fract v)⁻¹).s n [PROOFSTEP] rw [← stream_succ h] at hp'₁ [GOAL] case inr.inr.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ n : ℕ h : fract v ≠ 0 h₁ : Stream'.Seq.get? (of (fract v)⁻¹).s n ≠ none p : Pair K hp : Stream'.Seq.get? (of (fract v)⁻¹).s n = some p p' : IntFractPair K hp'₁ : IntFractPair.stream v (n + 1 + 1) = some p' right✝ : ↑p'.b = p.b Hp : Stream'.Seq.get? (of (fract v)⁻¹).s n = some { a := 1, b := ↑p'.b } ⊢ Stream'.Seq.get? (of v).s (n + 1) = Stream'.Seq.get? (of (fract v)⁻¹).s n [PROOFSTEP] rw [Hp, get?_of_eq_some_of_succ_get?_intFractPair_stream hp'₁] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a : ℤ ⊢ convergents' (of ↑a) n = ↑a [PROOFSTEP] induction' n with n [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a : ℤ ⊢ convergents' (of ↑a) Nat.zero = ↑a [PROOFSTEP] simp only [zeroth_convergent'_eq_h, of_h_eq_floor, floor_intCast, Nat.zero_eq] [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ a : ℤ n : ℕ n_ih✝ : convergents' (of ↑a) n = ↑a ⊢ convergents' (of ↑a) (Nat.succ n) = ↑a [PROOFSTEP] rw [convergents', of_h_eq_floor, floor_intCast, add_right_eq_self] [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ a : ℤ n : ℕ n_ih✝ : convergents' (of ↑a) n = ↑a ⊢ convergents'Aux (of ↑a).s (Nat.succ n) = 0 [PROOFSTEP] exact convergents'Aux_succ_none ((of_s_of_int K a).symm ▸ Stream'.Seq.get?_nil 0) _ [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ convergents' (of v) (n + 1) = ↑⌊v⌋ + 1 / convergents' (of (fract v)⁻¹) n [PROOFSTEP] cases' eq_or_ne (fract v) 0 with h h [GOAL] case inl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ h : fract v = 0 ⊢ convergents' (of v) (n + 1) = ↑⌊v⌋ + 1 / convergents' (of (fract v)⁻¹) n [PROOFSTEP] obtain ⟨a, rfl⟩ : ∃ a : ℤ, v = a := ⟨⌊v⌋, eq_of_sub_eq_zero h⟩ [GOAL] case inl.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ a : ℤ h : fract ↑a = 0 ⊢ convergents' (of ↑a) (n + 1) = ↑⌊↑a⌋ + 1 / convergents' (of (fract ↑a)⁻¹) n [PROOFSTEP] rw [convergents'_of_int, fract_intCast, inv_zero, ← cast_zero, convergents'_of_int, cast_zero, div_zero, add_zero, floor_intCast] [GOAL] case inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ h : fract v ≠ 0 ⊢ convergents' (of v) (n + 1) = ↑⌊v⌋ + 1 / convergents' (of (fract v)⁻¹) n [PROOFSTEP] rw [convergents', of_h_eq_floor, add_right_inj, convergents'Aux_succ_some (of_s_head h)] [GOAL] case inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ h : fract v ≠ 0 ⊢ { a := 1, b := ↑⌊(fract v)⁻¹⌋ }.a / ({ a := 1, b := ↑⌊(fract v)⁻¹⌋ }.b + convergents'Aux (Stream'.Seq.tail (of v).s) n) = 1 / convergents' (of (fract v)⁻¹) n [PROOFSTEP] exact congr_arg ((· / ·) 1) (by rw [convergents', of_h_eq_floor, add_right_inj, of_s_tail]) [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ h : fract v ≠ 0 ⊢ { a := 1, b := ↑⌊(fract v)⁻¹⌋ }.b + convergents'Aux (Stream'.Seq.tail (of v).s) n = convergents' (of (fract v)⁻¹) n [PROOFSTEP] rw [convergents', of_h_eq_floor, add_right_inj, of_s_tail]
{"mathlib_filename": "Mathlib.Algebra.ContinuedFractions.Computation.Translations", "llama_tokens": 12235}
[GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ ∀ (n : ℕ), (∀ (m : ℕ), m < n → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts) → ∃ conts, continuantsAux (of v) n = Pair.map Rat.cast conts [PROOFSTEP] clear n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K ⊢ ∀ (n : ℕ), (∀ (m : ℕ), m < n → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts) → ∃ conts, continuantsAux (of v) n = Pair.map Rat.cast conts [PROOFSTEP] let g := of v [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v ⊢ ∀ (n : ℕ), (∀ (m : ℕ), m < n → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts) → ∃ conts, continuantsAux (of v) n = Pair.map Rat.cast conts [PROOFSTEP] intro n IH [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < n → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ ∃ conts, continuantsAux (of v) n = Pair.map Rat.cast conts [PROOFSTEP] rcases n with (_ | _ | n) -- n = 0 [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ ∃ conts, continuantsAux (of v) Nat.zero = Pair.map Rat.cast conts [PROOFSTEP] suffices ∃ gp : Pair ℚ, Pair.mk (1 : K) 0 = gp.map (↑) by simpa [continuantsAux] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts this : ∃ gp, { a := 1, b := 0 } = Pair.map Rat.cast gp ⊢ ∃ conts, continuantsAux (of v) Nat.zero = Pair.map Rat.cast conts [PROOFSTEP] simpa [continuantsAux] [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ ∃ gp, { a := 1, b := 0 } = Pair.map Rat.cast gp [PROOFSTEP] use Pair.mk 1 0 [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ { a := 1, b := 0 } = Pair.map Rat.cast { a := 1, b := 0 } [PROOFSTEP] simp -- n = 1 [GOAL] case succ.zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.succ Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ ∃ conts, continuantsAux (of v) (Nat.succ Nat.zero) = Pair.map Rat.cast conts [PROOFSTEP] suffices ∃ conts : Pair ℚ, Pair.mk g.h 1 = conts.map (↑) by simpa [continuantsAux] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.succ Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts this : ∃ conts, { a := g.h, b := 1 } = Pair.map Rat.cast conts ⊢ ∃ conts, continuantsAux (of v) (Nat.succ Nat.zero) = Pair.map Rat.cast conts [PROOFSTEP] simpa [continuantsAux] [GOAL] case succ.zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.succ Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ ∃ conts, { a := g.h, b := 1 } = Pair.map Rat.cast conts [PROOFSTEP] use Pair.mk ⌊v⌋ 1 [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.succ Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ { a := g.h, b := 1 } = Pair.map Rat.cast { a := ↑⌊v⌋, b := 1 } [PROOFSTEP] simp -- 2 ≤ n [GOAL] case succ.succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] cases' IH (n + 1) <| lt_add_one (n + 1) with pred_conts pred_conts_eq [GOAL] case succ.succ.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] cases' s_ppred_nth_eq : g.s.get? n with gp_n [GOAL] case succ.succ.intro.none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts s_ppred_nth_eq : Stream'.Seq.get? g.s n = none ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] use pred_conts [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts s_ppred_nth_eq : Stream'.Seq.get? g.s n = none ⊢ continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast pred_conts [PROOFSTEP] have : g.continuantsAux (n + 2) = g.continuantsAux (n + 1) := continuantsAux_stable_of_terminated (n + 1).le_succ s_ppred_nth_eq [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts s_ppred_nth_eq : Stream'.Seq.get? g.s n = none this : continuantsAux g (n + 2) = continuantsAux g (n + 1) ⊢ continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast pred_conts [PROOFSTEP] simp only [this, pred_conts_eq] -- option.some [GOAL] case succ.succ.intro.some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] cases' IH n <| lt_of_le_of_lt n.le_succ <| lt_add_one <| n + 1 with ppred_conts ppred_conts_eq [GOAL] case succ.succ.intro.some.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ppred_conts : Pair ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast ppred_conts ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] obtain ⟨a_eq_one, z, b_eq_z⟩ : gp_n.a = 1 ∧ ∃ z : ℤ, gp_n.b = (z : K) [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ppred_conts : Pair ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast ppred_conts ⊢ gp_n.a = 1 ∧ ∃ z, gp_n.b = ↑z case succ.succ.intro.some.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ppred_conts : Pair ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast ppred_conts a_eq_one : gp_n.a = 1 z : ℤ b_eq_z : gp_n.b = ↑z ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] exact of_part_num_eq_one_and_exists_int_part_denom_eq s_ppred_nth_eq [GOAL] case succ.succ.intro.some.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ppred_conts : Pair ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast ppred_conts a_eq_one : gp_n.a = 1 z : ℤ b_eq_z : gp_n.b = ↑z ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] simp only [a_eq_one, b_eq_z, continuantsAux_recurrence s_ppred_nth_eq ppred_conts_eq pred_conts_eq] [GOAL] case succ.succ.intro.some.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ppred_conts : Pair ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast ppred_conts a_eq_one : gp_n.a = 1 z : ℤ b_eq_z : gp_n.b = ↑z ⊢ ∃ conts, { a := ↑z * (Pair.map Rat.cast pred_conts).a + 1 * (Pair.map Rat.cast ppred_conts).a, b := ↑z * (Pair.map Rat.cast pred_conts).b + 1 * (Pair.map Rat.cast ppred_conts).b } = Pair.map Rat.cast conts [PROOFSTEP] use nextContinuants 1 (z : ℚ) ppred_conts pred_conts [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ppred_conts : Pair ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast ppred_conts a_eq_one : gp_n.a = 1 z : ℤ b_eq_z : gp_n.b = ↑z ⊢ { a := ↑z * (Pair.map Rat.cast pred_conts).a + 1 * (Pair.map Rat.cast ppred_conts).a, b := ↑z * (Pair.map Rat.cast pred_conts).b + 1 * (Pair.map Rat.cast ppred_conts).b } = Pair.map Rat.cast (nextContinuants 1 (↑z) ppred_conts pred_conts) [PROOFSTEP] cases ppred_conts [GOAL] case h.mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n a_eq_one : gp_n.a = 1 z : ℤ b_eq_z : gp_n.b = ↑z a✝ b✝ : ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast { a := a✝, b := b✝ } ⊢ { a := ↑z * (Pair.map Rat.cast pred_conts).a + 1 * (Pair.map Rat.cast { a := a✝, b := b✝ }).a, b := ↑z * (Pair.map Rat.cast pred_conts).b + 1 * (Pair.map Rat.cast { a := a✝, b := b✝ }).b } = Pair.map Rat.cast (nextContinuants 1 ↑z { a := a✝, b := b✝ } pred_conts) [PROOFSTEP] cases pred_conts [GOAL] case h.mk.mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n a_eq_one : gp_n.a = 1 z : ℤ b_eq_z : gp_n.b = ↑z a✝¹ b✝¹ : ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast { a := a✝¹, b := b✝¹ } a✝ b✝ : ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast { a := a✝, b := b✝ } ⊢ { a := ↑z * (Pair.map Rat.cast { a := a✝, b := b✝ }).a + 1 * (Pair.map Rat.cast { a := a✝¹, b := b✝¹ }).a, b := ↑z * (Pair.map Rat.cast { a := a✝, b := b✝ }).b + 1 * (Pair.map Rat.cast { a := a✝¹, b := b✝¹ }).b } = Pair.map Rat.cast (nextContinuants 1 ↑z { a := a✝¹, b := b✝¹ } { a := a✝, b := b✝ }) [PROOFSTEP] simp [nextContinuants, nextNumerator, nextDenominator] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ ∃ conts, continuants (of v) n = Pair.map Rat.cast conts [PROOFSTEP] rw [nth_cont_eq_succ_nth_cont_aux] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ ∃ conts, continuantsAux (of v) (n + 1) = Pair.map Rat.cast conts [PROOFSTEP] exact exists_gcf_pair_rat_eq_of_nth_conts_aux v <| n + 1 [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ ∃ q, numerators (of v) n = ↑q [PROOFSTEP] rcases exists_gcf_pair_rat_eq_nth_conts v n with ⟨⟨a, _⟩, nth_cont_eq⟩ [GOAL] case intro.mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a b✝ : ℚ nth_cont_eq : continuants (of v) n = Pair.map Rat.cast { a := a, b := b✝ } ⊢ ∃ q, numerators (of v) n = ↑q [PROOFSTEP] use a [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a b✝ : ℚ nth_cont_eq : continuants (of v) n = Pair.map Rat.cast { a := a, b := b✝ } ⊢ numerators (of v) n = ↑a [PROOFSTEP] simp [num_eq_conts_a, nth_cont_eq] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ ∃ q, denominators (of v) n = ↑q [PROOFSTEP] rcases exists_gcf_pair_rat_eq_nth_conts v n with ⟨⟨_, b⟩, nth_cont_eq⟩ [GOAL] case intro.mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a✝ b : ℚ nth_cont_eq : continuants (of v) n = Pair.map Rat.cast { a := a✝, b := b } ⊢ ∃ q, denominators (of v) n = ↑q [PROOFSTEP] use b [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a✝ b : ℚ nth_cont_eq : continuants (of v) n = Pair.map Rat.cast { a := a✝, b := b } ⊢ denominators (of v) n = ↑b [PROOFSTEP] simp [denom_eq_conts_b, nth_cont_eq] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ ∃ q, convergents (of v) n = ↑q [PROOFSTEP] rcases exists_rat_eq_nth_numerator v n with ⟨Aₙ, nth_num_eq⟩ [GOAL] case intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ Aₙ : ℚ nth_num_eq : numerators (of v) n = ↑Aₙ ⊢ ∃ q, convergents (of v) n = ↑q [PROOFSTEP] rcases exists_rat_eq_nth_denominator v n with ⟨Bₙ, nth_denom_eq⟩ [GOAL] case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ Aₙ : ℚ nth_num_eq : numerators (of v) n = ↑Aₙ Bₙ : ℚ nth_denom_eq : denominators (of v) n = ↑Bₙ ⊢ ∃ q, convergents (of v) n = ↑q [PROOFSTEP] use Aₙ / Bₙ [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ Aₙ : ℚ nth_num_eq : numerators (of v) n = ↑Aₙ Bₙ : ℚ nth_denom_eq : denominators (of v) n = ↑Bₙ ⊢ convergents (of v) n = ↑(Aₙ / Bₙ) [PROOFSTEP] simp [nth_num_eq, nth_denom_eq, convergent_eq_num_div_denom] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ terminates : Terminates (of v) ⊢ ∃ q, v = ↑q [PROOFSTEP] obtain ⟨n, v_eq_conv⟩ : ∃ n, v = (of v).convergents n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ terminates : Terminates (of v) ⊢ ∃ n, v = convergents (of v) n case intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ terminates : Terminates (of v) n : ℕ v_eq_conv : v = convergents (of v) n ⊢ ∃ q, v = ↑q [PROOFSTEP] exact of_correctness_of_terminates terminates [GOAL] case intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ terminates : Terminates (of v) n : ℕ v_eq_conv : v = convergents (of v) n ⊢ ∃ q, v = ↑q [PROOFSTEP] obtain ⟨q, conv_eq_q⟩ : ∃ q : ℚ, (of v).convergents n = (↑q : K) [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ terminates : Terminates (of v) n : ℕ v_eq_conv : v = convergents (of v) n ⊢ ∃ q, convergents (of v) n = ↑q case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ terminates : Terminates (of v) n : ℕ v_eq_conv : v = convergents (of v) n q : ℚ conv_eq_q : convergents (of v) n = ↑q ⊢ ∃ q, v = ↑q [PROOFSTEP] exact exists_rat_eq_nth_convergent v n [GOAL] case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ terminates : Terminates (of v) n : ℕ v_eq_conv : v = convergents (of v) n q : ℚ conv_eq_q : convergents (of v) n = ↑q ⊢ ∃ q, v = ↑q [PROOFSTEP] have : v = (↑q : K) := Eq.trans v_eq_conv conv_eq_q [GOAL] case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ terminates : Terminates (of v) n : ℕ v_eq_conv : v = convergents (of v) n q : ℚ conv_eq_q : convergents (of v) n = ↑q this : v = ↑q ⊢ ∃ q, v = ↑q [PROOFSTEP] use q, this [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ mapFr Rat.cast (IntFractPair.of q) = IntFractPair.of v [PROOFSTEP] simp [IntFractPair.of, v_eq_q] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream v n [PROOFSTEP] induction' n with n IH [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q Nat.zero) = IntFractPair.stream v Nat.zero case succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream v n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case zero => -- Porting note: was -- simp [IntFractPair.stream, coe_of_rat_eq v_eq_q]simp only [IntFractPair.stream, Option.map_some', coe_of_rat_eq v_eq_q] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q Nat.zero) = IntFractPair.stream v Nat.zero [PROOFSTEP] case zero => -- Porting note: was -- simp [IntFractPair.stream, coe_of_rat_eq v_eq_q]simp only [IntFractPair.stream, Option.map_some', coe_of_rat_eq v_eq_q] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q Nat.zero) = IntFractPair.stream v Nat.zero [PROOFSTEP] simp only [IntFractPair.stream, Option.map_some', coe_of_rat_eq v_eq_q] [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream v n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case succ => rw [v_eq_q] at IH cases' stream_q_nth_eq : IntFractPair.stream q n with ifp_n case none => simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq] case some => cases' ifp_n with b fr cases' Decidable.em (fr = 0) with fr_zero fr_ne_zero · simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_zero] · replace IH : some (IntFractPair.mk b (fr : K)) = IntFractPair.stream (↑q) n; · rwa [stream_q_nth_eq] at IH have : (fr : K)⁻¹ = ((fr⁻¹ : ℚ) : K) := by norm_cast have coe_of_fr := coe_of_rat_eq this simpa [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_ne_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream v n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case succ => rw [v_eq_q] at IH cases' stream_q_nth_eq : IntFractPair.stream q n with ifp_n case none => simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq] case some => cases' ifp_n with b fr cases' Decidable.em (fr = 0) with fr_zero fr_ne_zero · simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_zero] · replace IH : some (IntFractPair.mk b (fr : K)) = IntFractPair.stream (↑q) n; · rwa [stream_q_nth_eq] at IH have : (fr : K)⁻¹ = ((fr⁻¹ : ℚ) : K) := by norm_cast have coe_of_fr := coe_of_rat_eq this simpa [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_ne_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream v n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] rw [v_eq_q] at IH [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] cases' stream_q_nth_eq : IntFractPair.stream q n with ifp_n [GOAL] case none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n stream_q_nth_eq : IntFractPair.stream q n = none ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n ifp_n : IntFractPair ℚ stream_q_nth_eq : IntFractPair.stream q n = some ifp_n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case none => simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n stream_q_nth_eq : IntFractPair.stream q n = none ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case none => simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n stream_q_nth_eq : IntFractPair.stream q n = none ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq] [GOAL] case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n ifp_n : IntFractPair ℚ stream_q_nth_eq : IntFractPair.stream q n = some ifp_n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case some => cases' ifp_n with b fr cases' Decidable.em (fr = 0) with fr_zero fr_ne_zero · simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_zero] · replace IH : some (IntFractPair.mk b (fr : K)) = IntFractPair.stream (↑q) n; · rwa [stream_q_nth_eq] at IH have : (fr : K)⁻¹ = ((fr⁻¹ : ℚ) : K) := by norm_cast have coe_of_fr := coe_of_rat_eq this simpa [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_ne_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n ifp_n : IntFractPair ℚ stream_q_nth_eq : IntFractPair.stream q n = some ifp_n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case some => cases' ifp_n with b fr cases' Decidable.em (fr = 0) with fr_zero fr_ne_zero · simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_zero] · replace IH : some (IntFractPair.mk b (fr : K)) = IntFractPair.stream (↑q) n; · rwa [stream_q_nth_eq] at IH have : (fr : K)⁻¹ = ((fr⁻¹ : ℚ) : K) := by norm_cast have coe_of_fr := coe_of_rat_eq this simpa [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_ne_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n ifp_n : IntFractPair ℚ stream_q_nth_eq : IntFractPair.stream q n = some ifp_n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] cases' ifp_n with b fr [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] cases' Decidable.em (fr = 0) with fr_zero fr_ne_zero [GOAL] case mk.inl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_zero : fr = 0 ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_zero] [GOAL] case mk.inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_ne_zero : ¬fr = 0 ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] replace IH : some (IntFractPair.mk b (fr : K)) = IntFractPair.stream (↑q) n [GOAL] case IH K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_ne_zero : ¬fr = 0 ⊢ some { b := b, fr := ↑fr } = IntFractPair.stream (↑q) n [PROOFSTEP] rwa [stream_q_nth_eq] at IH [GOAL] case mk.inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_ne_zero : ¬fr = 0 IH : some { b := b, fr := ↑fr } = IntFractPair.stream (↑q) n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] have : (fr : K)⁻¹ = ((fr⁻¹ : ℚ) : K) := by norm_cast [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_ne_zero : ¬fr = 0 IH : some { b := b, fr := ↑fr } = IntFractPair.stream (↑q) n ⊢ (↑fr)⁻¹ = ↑fr⁻¹ [PROOFSTEP] norm_cast [GOAL] case mk.inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_ne_zero : ¬fr = 0 IH : some { b := b, fr := ↑fr } = IntFractPair.stream (↑q) n this : (↑fr)⁻¹ = ↑fr⁻¹ ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] have coe_of_fr := coe_of_rat_eq this [GOAL] case mk.inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_ne_zero : ¬fr = 0 IH : some { b := b, fr := ↑fr } = IntFractPair.stream (↑q) n this : (↑fr)⁻¹ = ↑fr⁻¹ coe_of_fr : mapFr Rat.cast (IntFractPair.of fr⁻¹) = IntFractPair.of (↑fr)⁻¹ ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] simpa [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_ne_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Stream'.map (Option.map (mapFr Rat.cast)) (IntFractPair.stream q) = IntFractPair.stream v [PROOFSTEP] funext n [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ ⊢ Stream'.map (Option.map (mapFr Rat.cast)) (IntFractPair.stream q) n = IntFractPair.stream v n [PROOFSTEP] exact IntFractPair.coe_stream_nth_rat_eq v_eq_q n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ ↑(of q).h = (of v).h [PROOFSTEP] unfold of IntFractPair.seq1 [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ ↑(match (IntFractPair.of q, Stream'.Seq.tail { val := IntFractPair.stream q, property := (_ : Stream'.IsSeq (IntFractPair.stream q)) }) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).h = (match (IntFractPair.of v, Stream'.Seq.tail { val := IntFractPair.stream v, property := (_ : Stream'.IsSeq (IntFractPair.stream v)) }) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).h [PROOFSTEP] rw [← IntFractPair.coe_of_rat_eq v_eq_q] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ ↑(match (IntFractPair.of q, Stream'.Seq.tail { val := IntFractPair.stream q, property := (_ : Stream'.IsSeq (IntFractPair.stream q)) }) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).h = (match (IntFractPair.mapFr Rat.cast (IntFractPair.of q), Stream'.Seq.tail { val := IntFractPair.stream v, property := (_ : Stream'.IsSeq (IntFractPair.stream v)) }) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).h [PROOFSTEP] simp [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (Pair.map Rat.cast) (Stream'.Seq.get? (of q).s n) = Stream'.Seq.get? (of v).s n [PROOFSTEP] simp only [of, IntFractPair.seq1, Stream'.Seq.map_get?, Stream'.Seq.get?_tail] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (Pair.map Rat.cast) (Option.map (fun p => { a := 1, b := ↑p.b }) (Stream'.Seq.get? { val := IntFractPair.stream q, property := (_ : Stream'.IsSeq (IntFractPair.stream q)) } (n + 1))) = Option.map (fun p => { a := 1, b := ↑p.b }) (Stream'.Seq.get? { val := IntFractPair.stream v, property := (_ : Stream'.IsSeq (IntFractPair.stream v)) } (n + 1)) [PROOFSTEP] simp only [Stream'.Seq.get?] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (Pair.map Rat.cast) (Option.map (fun p => { a := 1, b := ↑p.b }) (IntFractPair.stream q (n + 1))) = Option.map (fun p => { a := 1, b := ↑p.b }) (IntFractPair.stream v (n + 1)) [PROOFSTEP] rw [← IntFractPair.coe_stream'_rat_eq v_eq_q] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (Pair.map Rat.cast) (Option.map (fun p => { a := 1, b := ↑p.b }) (IntFractPair.stream q (n + 1))) = Option.map (fun p => { a := 1, b := ↑p.b }) (Stream'.map (Option.map (IntFractPair.mapFr Rat.cast)) (IntFractPair.stream q) (n + 1)) [PROOFSTEP] rcases succ_nth_stream_eq : IntFractPair.stream q (n + 1) with (_ | ⟨_, _⟩) [GOAL] case none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ succ_nth_stream_eq : IntFractPair.stream q (n + 1) = none ⊢ Option.map (Pair.map Rat.cast) (Option.map (fun p => { a := 1, b := ↑p.b }) none) = Option.map (fun p => { a := 1, b := ↑p.b }) (Stream'.map (Option.map (IntFractPair.mapFr Rat.cast)) (IntFractPair.stream q) (n + 1)) [PROOFSTEP] simp [Stream'.map, Stream'.nth, succ_nth_stream_eq] [GOAL] case some.mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ b✝ : ℤ fr✝ : ℚ succ_nth_stream_eq : IntFractPair.stream q (n + 1) = some { b := b✝, fr := fr✝ } ⊢ Option.map (Pair.map Rat.cast) (Option.map (fun p => { a := 1, b := ↑p.b }) (some { b := b✝, fr := fr✝ })) = Option.map (fun p => { a := 1, b := ↑p.b }) (Stream'.map (Option.map (IntFractPair.mapFr Rat.cast)) (IntFractPair.stream q) (n + 1)) [PROOFSTEP] simp [Stream'.map, Stream'.nth, succ_nth_stream_eq] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Stream'.Seq.map (Pair.map Rat.cast) (of q).s = (of v).s [PROOFSTEP] ext n [GOAL] case h.a K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ a✝ : Pair K ⊢ a✝ ∈ Stream'.Seq.get? (Stream'.Seq.map (Pair.map Rat.cast) (of q).s) n ↔ a✝ ∈ Stream'.Seq.get? (of v).s n [PROOFSTEP] rw [← coe_of_s_get?_rat_eq v_eq_q] [GOAL] case h.a K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ a✝ : Pair K ⊢ a✝ ∈ Stream'.Seq.get? (Stream'.Seq.map (Pair.map Rat.cast) (of q).s) n ↔ a✝ ∈ Option.map (Pair.map Rat.cast) (Stream'.Seq.get? (of q).s n) [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ { h := ↑(of q).h, s := Stream'.Seq.map (Pair.map Rat.cast) (of q).s } = of v [PROOFSTEP] cases' gcf_v_eq : of v with h s [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : K s : Stream'.Seq (Pair K) gcf_v_eq : of v = { h := h, s := s } ⊢ { h := ↑(of q).h, s := Stream'.Seq.map (Pair.map Rat.cast) (of q).s } = { h := h, s := s } [PROOFSTEP] subst v [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ h : K s : Stream'.Seq (Pair K) gcf_v_eq : of ↑q = { h := h, s := s } ⊢ { h := ↑(of q).h, s := Stream'.Seq.map (Pair.map Rat.cast) (of q).s } = { h := h, s := s } [PROOFSTEP] obtain rfl : ↑⌊(q : K)⌋ = h := by injection gcf_v_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ h : K s : Stream'.Seq (Pair K) gcf_v_eq : of ↑q = { h := h, s := s } ⊢ ↑⌊↑q⌋ = h [PROOFSTEP] injection gcf_v_eq [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ s : Stream'.Seq (Pair K) gcf_v_eq : of ↑q = { h := ↑⌊↑q⌋, s := s } ⊢ { h := ↑(of q).h, s := Stream'.Seq.map (Pair.map Rat.cast) (of q).s } = { h := ↑⌊↑q⌋, s := s } [PROOFSTEP] simp only [gcf_v_eq, Int.cast_inj, Rat.floor_cast, of_h_eq_floor, eq_self_iff_true, Rat.cast_coe_int, and_self, coe_of_h_rat_eq rfl, coe_of_s_rat_eq rfl] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n : ℕ v : K q : ℚ v_eq_q : v = ↑q ⊢ Terminates (of v) ↔ Terminates (of q) [PROOFSTEP] constructor [GOAL] case mp K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n : ℕ v : K q : ℚ v_eq_q : v = ↑q ⊢ Terminates (of v) → Terminates (of q) [PROOFSTEP] intro h [GOAL] case mpr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n : ℕ v : K q : ℚ v_eq_q : v = ↑q ⊢ Terminates (of q) → Terminates (of v) [PROOFSTEP] intro h [GOAL] case mp K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n : ℕ v : K q : ℚ v_eq_q : v = ↑q h : Terminates (of v) ⊢ Terminates (of q) [PROOFSTEP] cases' h with n h [GOAL] case mpr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n : ℕ v : K q : ℚ v_eq_q : v = ↑q h : Terminates (of q) ⊢ Terminates (of v) [PROOFSTEP] cases' h with n h [GOAL] case mp.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Stream'.Seq.TerminatedAt (of v).s n ⊢ Terminates (of q) [PROOFSTEP] use n [GOAL] case mpr.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Stream'.Seq.TerminatedAt (of q).s n ⊢ Terminates (of v) [PROOFSTEP] use n [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Stream'.Seq.TerminatedAt (of v).s n ⊢ Stream'.Seq.TerminatedAt (of q).s n [PROOFSTEP] simp only [Stream'.Seq.TerminatedAt, (coe_of_s_get?_rat_eq v_eq_q n).symm] at h ⊢ [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Stream'.Seq.TerminatedAt (of q).s n ⊢ Stream'.Seq.TerminatedAt (of v).s n [PROOFSTEP] simp only [Stream'.Seq.TerminatedAt, (coe_of_s_get?_rat_eq v_eq_q n).symm] at h ⊢ [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Option.map (Pair.map Rat.cast) (Stream'.Seq.get? (of q).s n) = none ⊢ Stream'.Seq.get? (of q).s n = none [PROOFSTEP] cases h' : (of q).s.get? n [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Stream'.Seq.get? (of q).s n = none ⊢ Option.map (Pair.map Rat.cast) (Stream'.Seq.get? (of q).s n) = none [PROOFSTEP] cases h' : (of q).s.get? n [GOAL] case h.none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Option.map (Pair.map Rat.cast) (Stream'.Seq.get? (of q).s n) = none h' : Stream'.Seq.get? (of q).s n = none ⊢ none = none [PROOFSTEP] simp only [h'] at h [GOAL] case h.some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Option.map (Pair.map Rat.cast) (Stream'.Seq.get? (of q).s n) = none val✝ : Pair ℚ h' : Stream'.Seq.get? (of q).s n = some val✝ ⊢ some val✝ = none [PROOFSTEP] simp only [h'] at h [GOAL] case h.none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h h' : Stream'.Seq.get? (of q).s n = none ⊢ Option.map (Pair.map Rat.cast) none = none [PROOFSTEP] simp only [h'] at h [GOAL] case h.some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Stream'.Seq.get? (of q).s n = none val✝ : Pair ℚ h' : Stream'.Seq.get? (of q).s n = some val✝ ⊢ Option.map (Pair.map Rat.cast) (some val✝) = none [PROOFSTEP] simp only [h'] at h [GOAL] case h.none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h' : Stream'.Seq.get? (of q).s n = none h : Option.map (Pair.map Rat.cast) none = none ⊢ none = none [PROOFSTEP] trivial [GOAL] case h.some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ val✝ : Pair ℚ h' : Stream'.Seq.get? (of q).s n = some val✝ h : Option.map (Pair.map Rat.cast) (some val✝) = none ⊢ some val✝ = none [PROOFSTEP] trivial [GOAL] case h.none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h' : Stream'.Seq.get? (of q).s n = none h : True ⊢ Option.map (Pair.map Rat.cast) none = none [PROOFSTEP] trivial [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n ⊢ ifp_succ_n.fr.num < ifp_n.fr.num [PROOFSTEP] obtain ⟨ifp_n', stream_nth_eq', ifp_n_fract_ne_zero, IntFractPair.of_eq_ifp_succ_n⟩ : ∃ ifp_n', IntFractPair.stream q n = some ifp_n' ∧ ifp_n'.fr ≠ 0 ∧ IntFractPair.of ifp_n'.fr⁻¹ = ifp_succ_n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n ⊢ ∃ ifp_n', IntFractPair.stream q n = some ifp_n' ∧ ifp_n'.fr ≠ 0 ∧ IntFractPair.of ifp_n'.fr⁻¹ = ifp_succ_n case intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n ifp_n' : IntFractPair ℚ stream_nth_eq' : IntFractPair.stream q n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n'.fr⁻¹ = ifp_succ_n ⊢ ifp_succ_n.fr.num < ifp_n.fr.num [PROOFSTEP] exact succ_nth_stream_eq_some_iff.mp stream_succ_nth_eq [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n ifp_n' : IntFractPair ℚ stream_nth_eq' : IntFractPair.stream q n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n'.fr⁻¹ = ifp_succ_n ⊢ ifp_succ_n.fr.num < ifp_n.fr.num [PROOFSTEP] have : ifp_n = ifp_n' := by injection Eq.trans stream_nth_eq.symm stream_nth_eq' [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n ifp_n' : IntFractPair ℚ stream_nth_eq' : IntFractPair.stream q n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n'.fr⁻¹ = ifp_succ_n ⊢ ifp_n = ifp_n' [PROOFSTEP] injection Eq.trans stream_nth_eq.symm stream_nth_eq' [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n ifp_n' : IntFractPair ℚ stream_nth_eq' : IntFractPair.stream q n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n'.fr⁻¹ = ifp_succ_n this : ifp_n = ifp_n' ⊢ ifp_succ_n.fr.num < ifp_n.fr.num [PROOFSTEP] cases this [GOAL] case intro.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n stream_nth_eq' : IntFractPair.stream q n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n ⊢ ifp_succ_n.fr.num < ifp_n.fr.num [PROOFSTEP] rw [← IntFractPair.of_eq_ifp_succ_n] [GOAL] case intro.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n stream_nth_eq' : IntFractPair.stream q n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n ⊢ (IntFractPair.of ifp_n.fr⁻¹).fr.num < ifp_n.fr.num [PROOFSTEP] cases' nth_stream_fr_nonneg_lt_one stream_nth_eq with zero_le_ifp_n_fract ifp_n_fract_lt_one [GOAL] case intro.intro.intro.refl.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n stream_nth_eq' : IntFractPair.stream q n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n zero_le_ifp_n_fract : 0 ≤ ifp_n.fr ifp_n_fract_lt_one : ifp_n.fr < 1 ⊢ (IntFractPair.of ifp_n.fr⁻¹).fr.num < ifp_n.fr.num [PROOFSTEP] have : 0 < ifp_n.fr := lt_of_le_of_ne zero_le_ifp_n_fract <| ifp_n_fract_ne_zero.symm [GOAL] case intro.intro.intro.refl.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n stream_nth_eq' : IntFractPair.stream q n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n zero_le_ifp_n_fract : 0 ≤ ifp_n.fr ifp_n_fract_lt_one : ifp_n.fr < 1 this : 0 < ifp_n.fr ⊢ (IntFractPair.of ifp_n.fr⁻¹).fr.num < ifp_n.fr.num [PROOFSTEP] exact of_inv_fr_num_lt_num_of_pos this [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n [PROOFSTEP] induction' n with n IH [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q Nat.zero = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑Nat.zero case succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q (Nat.succ n) = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑(Nat.succ n) [PROOFSTEP] case zero => intro ifp_zero stream_zero_eq have : IntFractPair.of q = ifp_zero := by injection stream_zero_eq simp [le_refl, this.symm] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q Nat.zero = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑Nat.zero [PROOFSTEP] case zero => intro ifp_zero stream_zero_eq have : IntFractPair.of q = ifp_zero := by injection stream_zero_eq simp [le_refl, this.symm] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q Nat.zero = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑Nat.zero [PROOFSTEP] intro ifp_zero stream_zero_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_zero : IntFractPair ℚ stream_zero_eq : IntFractPair.stream q Nat.zero = some ifp_zero ⊢ ifp_zero.fr.num ≤ (IntFractPair.of q).fr.num - ↑Nat.zero [PROOFSTEP] have : IntFractPair.of q = ifp_zero := by injection stream_zero_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_zero : IntFractPair ℚ stream_zero_eq : IntFractPair.stream q Nat.zero = some ifp_zero ⊢ IntFractPair.of q = ifp_zero [PROOFSTEP] injection stream_zero_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_zero : IntFractPair ℚ stream_zero_eq : IntFractPair.stream q Nat.zero = some ifp_zero this : IntFractPair.of q = ifp_zero ⊢ ifp_zero.fr.num ≤ (IntFractPair.of q).fr.num - ↑Nat.zero [PROOFSTEP] simp [le_refl, this.symm] [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q (Nat.succ n) = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑(Nat.succ n) [PROOFSTEP] case succ => intro ifp_succ_n stream_succ_nth_eq suffices ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - n by rw [Int.ofNat_succ, sub_add_eq_sub_sub] solve_by_elim [le_sub_right_of_add_le] rcases succ_nth_stream_eq_some_iff.mp stream_succ_nth_eq with ⟨ifp_n, stream_nth_eq, -⟩ have : ifp_succ_n.fr.num < ifp_n.fr.num := stream_succ_nth_fr_num_lt_nth_fr_num_rat stream_nth_eq stream_succ_nth_eq have : ifp_succ_n.fr.num + 1 ≤ ifp_n.fr.num := Int.add_one_le_of_lt this exact le_trans this (IH stream_nth_eq) [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q (Nat.succ n) = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑(Nat.succ n) [PROOFSTEP] case succ => intro ifp_succ_n stream_succ_nth_eq suffices ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - n by rw [Int.ofNat_succ, sub_add_eq_sub_sub] solve_by_elim [le_sub_right_of_add_le] rcases succ_nth_stream_eq_some_iff.mp stream_succ_nth_eq with ⟨ifp_n, stream_nth_eq, -⟩ have : ifp_succ_n.fr.num < ifp_n.fr.num := stream_succ_nth_fr_num_lt_nth_fr_num_rat stream_nth_eq stream_succ_nth_eq have : ifp_succ_n.fr.num + 1 ≤ ifp_n.fr.num := Int.add_one_le_of_lt this exact le_trans this (IH stream_nth_eq) [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q (Nat.succ n) = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑(Nat.succ n) [PROOFSTEP] intro ifp_succ_n stream_succ_nth_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n ⊢ ifp_succ_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑(Nat.succ n) [PROOFSTEP] suffices ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - n by rw [Int.ofNat_succ, sub_add_eq_sub_sub] solve_by_elim [le_sub_right_of_add_le] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n this : ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - ↑n ⊢ ifp_succ_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑(Nat.succ n) [PROOFSTEP] rw [Int.ofNat_succ, sub_add_eq_sub_sub] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n this : ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - ↑n ⊢ ifp_succ_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n - 1 [PROOFSTEP] solve_by_elim [le_sub_right_of_add_le] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n ⊢ ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - ↑n [PROOFSTEP] rcases succ_nth_stream_eq_some_iff.mp stream_succ_nth_eq with ⟨ifp_n, stream_nth_eq, -⟩ [GOAL] case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n ⊢ ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - ↑n [PROOFSTEP] have : ifp_succ_n.fr.num < ifp_n.fr.num := stream_succ_nth_fr_num_lt_nth_fr_num_rat stream_nth_eq stream_succ_nth_eq [GOAL] case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n this : ifp_succ_n.fr.num < ifp_n.fr.num ⊢ ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - ↑n [PROOFSTEP] have : ifp_succ_n.fr.num + 1 ≤ ifp_n.fr.num := Int.add_one_le_of_lt this [GOAL] case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n this✝ : ifp_succ_n.fr.num < ifp_n.fr.num this : ifp_succ_n.fr.num + 1 ≤ ifp_n.fr.num ⊢ ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - ↑n [PROOFSTEP] exact le_trans this (IH stream_nth_eq) [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n : ℕ q : ℚ ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] let fract_q_num := (Int.fract q).num [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] let n := fract_q_num.natAbs + 1 [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] cases' stream_nth_eq : IntFractPair.stream q n with ifp [GOAL] case none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 stream_nth_eq : IntFractPair.stream q n = none ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] use n, stream_nth_eq [GOAL] case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] have ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - n := stream_nth_fr_num_le_fr_num_sub_n_rat stream_nth_eq [GOAL] case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - ↑n ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] have : fract_q_num - n = -1 := by have : 0 ≤ fract_q_num := Rat.num_nonneg_iff_zero_le.mpr (Int.fract_nonneg q) -- Porting note: was -- simp [Int.natAbs_of_nonneg this, sub_add_eq_sub_sub_swap, sub_right_comm] simp only [Nat.cast_add, Int.natAbs_of_nonneg this, Nat.cast_one, sub_add_eq_sub_sub_swap, sub_right_comm, sub_self, zero_sub] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - ↑n ⊢ fract_q_num - ↑n = -1 [PROOFSTEP] have : 0 ≤ fract_q_num := Rat.num_nonneg_iff_zero_le.mpr (Int.fract_nonneg q) -- Porting note: was -- simp [Int.natAbs_of_nonneg this, sub_add_eq_sub_sub_swap, sub_right_comm] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - ↑n this : 0 ≤ fract_q_num ⊢ fract_q_num - ↑n = -1 [PROOFSTEP] simp only [Nat.cast_add, Int.natAbs_of_nonneg this, Nat.cast_one, sub_add_eq_sub_sub_swap, sub_right_comm, sub_self, zero_sub] [GOAL] case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - ↑n this : fract_q_num - ↑n = -1 ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] have : 0 ≤ ifp.fr := (nth_stream_fr_nonneg_lt_one stream_nth_eq).left [GOAL] case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - ↑n this✝ : fract_q_num - ↑n = -1 this : 0 ≤ ifp.fr ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] have : 0 ≤ ifp.fr.num := Rat.num_nonneg_iff_zero_le.mpr this [GOAL] case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - ↑n this✝¹ : fract_q_num - ↑n = -1 this✝ : 0 ≤ ifp.fr this : 0 ≤ ifp.fr.num ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] linarith
{"mathlib_filename": "Mathlib.Algebra.ContinuedFractions.Computation.TerminatesIffRat", "llama_tokens": 30015}
[GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MulZeroClass M₀ a✝ b✝ a b : M₀ h : a ≠ 0 → b = 0 ha : a = 0 ⊢ a * b = 0 [PROOFSTEP] rw [ha, zero_mul] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MulZeroClass M₀ a✝ b✝ a b : M₀ h : a ≠ 0 → b = 0 ha : ¬a = 0 ⊢ a * b = 0 [PROOFSTEP] rw [h ha, mul_zero] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MulZeroOneClass M₀ h : 0 = 1 a : M₀ ⊢ a = 0 [PROOFSTEP] rw [← mul_one a, ← h, mul_zero] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ ⊢ a * c = b * c ↔ a = b ∨ c = 0 [PROOFSTEP] by_cases hc : c = 0 <;> [simp [hc]; simp [mul_left_inj', hc]] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ ⊢ a * c = b * c ↔ a = b ∨ c = 0 [PROOFSTEP] by_cases hc : c = 0 [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ hc : c = 0 ⊢ a * c = b * c ↔ a = b ∨ c = 0 [PROOFSTEP] simp [hc] [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ hc : ¬c = 0 ⊢ a * c = b * c ↔ a = b ∨ c = 0 [PROOFSTEP] simp [mul_left_inj', hc] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ ⊢ a * b = a * c ↔ b = c ∨ a = 0 [PROOFSTEP] by_cases ha : a = 0 <;> [simp [ha]; simp [mul_right_inj', ha]] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ ⊢ a * b = a * c ↔ b = c ∨ a = 0 [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ ha : a = 0 ⊢ a * b = a * c ↔ b = c ∨ a = 0 [PROOFSTEP] simp [ha] [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ ha : ¬a = 0 ⊢ a * b = a * c ↔ b = c ∨ a = 0 [PROOFSTEP] simp [mul_right_inj', ha] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ ⊢ a * b = a ↔ a * b = a * 1 [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ ⊢ a * b = b ↔ a * b = 1 * b [PROOFSTEP] rw [one_mul] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ ha : a ≠ 0 ⊢ a * b = a ↔ b = 1 [PROOFSTEP] rw [Iff.comm, ← mul_right_inj' ha, mul_one] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ hb : b ≠ 0 ⊢ a * b = b ↔ a = 1 [PROOFSTEP] rw [Iff.comm, ← mul_left_inj' hb, one_mul] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ ha : a ≠ 0 ⊢ a = a * b ↔ b = 1 [PROOFSTEP] rw [eq_comm, mul_eq_left₀ ha] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CancelMonoidWithZero M₀ a b c : M₀ hb : b ≠ 0 ⊢ b = a * b ↔ a = 1 [PROOFSTEP] rw [eq_comm, mul_eq_right₀ hb] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c g h✝ x : G₀ h : b ≠ 0 a : G₀ ⊢ a * (b * b⁻¹) = a [PROOFSTEP] simp [h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a b✝ c g h✝ x : G₀ h : a ≠ 0 b : G₀ ⊢ a * a⁻¹ * b = b [PROOFSTEP] simp [h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a b c g h✝ x : G₀ h : a ≠ 0 a_eq_0 : a⁻¹ = 0 ⊢ False [PROOFSTEP] have := mul_inv_cancel h [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a b c g h✝ x : G₀ h : a ≠ 0 a_eq_0 : a⁻¹ = 0 this : a * a⁻¹ = 1 ⊢ False [PROOFSTEP] simp [a_eq_0] at this [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a b c g h✝ x : G₀ h : a ≠ 0 ⊢ a⁻¹ * a = a⁻¹ * a * a⁻¹ * a⁻¹⁻¹ [PROOFSTEP] simp [inv_ne_zero h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a b c g h✝ x : G₀ h : a ≠ 0 ⊢ a⁻¹ * a * a⁻¹ * a⁻¹⁻¹ = a⁻¹ * a⁻¹⁻¹ [PROOFSTEP] simp [h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a b c g h✝ x : G₀ h : a ≠ 0 ⊢ a⁻¹ * a⁻¹⁻¹ = 1 [PROOFSTEP] simp [inv_ne_zero h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a b c g h✝ x : G₀ h : x ≠ 0 y y' : G₀ w : (fun y => x * y) y = (fun y => x * y) y' ⊢ y = y' [PROOFSTEP] simpa only [← mul_assoc, inv_mul_cancel h, one_mul] using congr_arg (fun y => x⁻¹ * y) w [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a b c g h✝ x : G₀ h : x ≠ 0 y y' : G₀ w : (fun y => y * x) y = (fun y => y * x) y' ⊢ y = y' [PROOFSTEP] simpa only [mul_assoc, mul_inv_cancel _ h, mul_one] using congr_arg (fun y => y * x⁻¹) w [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c g h✝ x : G₀ h : b ≠ 0 a : G₀ ⊢ a * (b⁻¹ * b) = a [PROOFSTEP] simp [h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a b✝ c g h✝ x : G₀ h : a ≠ 0 b : G₀ ⊢ a⁻¹ * a * b = b [PROOFSTEP] simp [h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a b c g h✝ x : G₀ h : a * b = 1 ⊢ a⁻¹ = b [PROOFSTEP] rw [← inv_mul_cancel_left₀ (left_ne_zero_of_mul_eq_one h) b, h, mul_one] -- See note [lower instance priority] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c g h x : G₀ src✝ : GroupWithZero G₀ := inst✝ a : G₀ ⊢ a⁻¹⁻¹ = a [PROOFSTEP] by_cases h : a = 0 [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c g h✝ x : G₀ src✝ : GroupWithZero G₀ := inst✝ a : G₀ h : a = 0 ⊢ a⁻¹⁻¹ = a [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c g h✝ x : G₀ src✝ : GroupWithZero G₀ := inst✝ a : G₀ h : ¬a = 0 ⊢ a⁻¹⁻¹ = a [PROOFSTEP] exact left_inv_eq_right_inv (inv_mul_cancel <| inv_ne_zero h) (inv_mul_cancel h) [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b✝ c g h x : G₀ src✝ : GroupWithZero G₀ := inst✝ a b : G₀ ⊢ (a * b)⁻¹ = b⁻¹ * a⁻¹ [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b✝ c g h x : G₀ src✝ : GroupWithZero G₀ := inst✝ a b : G₀ ha : a = 0 ⊢ (a * b)⁻¹ = b⁻¹ * a⁻¹ [PROOFSTEP] simp [ha] [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b✝ c g h x : G₀ src✝ : GroupWithZero G₀ := inst✝ a b : G₀ ha : ¬a = 0 ⊢ (a * b)⁻¹ = b⁻¹ * a⁻¹ [PROOFSTEP] by_cases hb : b = 0 [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b✝ c g h x : G₀ src✝ : GroupWithZero G₀ := inst✝ a b : G₀ ha : ¬a = 0 hb : b = 0 ⊢ (a * b)⁻¹ = b⁻¹ * a⁻¹ [PROOFSTEP] simp [hb] [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b✝ c g h x : G₀ src✝ : GroupWithZero G₀ := inst✝ a b : G₀ ha : ¬a = 0 hb : ¬b = 0 ⊢ (a * b)⁻¹ = b⁻¹ * a⁻¹ [PROOFSTEP] refine' inv_eq_of_mul _ [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b✝ c g h x : G₀ src✝ : GroupWithZero G₀ := inst✝ a b : G₀ ha : ¬a = 0 hb : ¬b = 0 ⊢ a * b * (b⁻¹ * a⁻¹) = 1 [PROOFSTEP] simp [mul_assoc, ha, hb] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a b c g h✝ x✝ : G₀ src✝ : GroupWithZero G₀ := inst✝ x y z : G₀ hx : x ≠ 0 h : x * y = x * z ⊢ y = z [PROOFSTEP] rw [← inv_mul_cancel_left₀ hx y, h, inv_mul_cancel_left₀ hx z] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a b c g h✝ x✝ : G₀ src✝ : GroupWithZero G₀ := inst✝ x y z : G₀ hy : y ≠ 0 h : x * y = z * y ⊢ x = z [PROOFSTEP] rw [← mul_inv_cancel_right₀ hy x, h, mul_inv_cancel_right₀ hy z] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ ⊢ 0 / a = 0 [PROOFSTEP] rw [div_eq_mul_inv, zero_mul] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ ⊢ a / 0 = 0 [PROOFSTEP] rw [div_eq_mul_inv, inv_zero, mul_zero] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ ⊢ a * a * a⁻¹ = a [PROOFSTEP] by_cases h : a = 0 [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ h : a = 0 ⊢ a * a * a⁻¹ = a [PROOFSTEP] rw [h, inv_zero, mul_zero] [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ h : ¬a = 0 ⊢ a * a * a⁻¹ = a [PROOFSTEP] rw [mul_assoc, mul_inv_cancel h, mul_one] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ ⊢ a * a⁻¹ * a = a [PROOFSTEP] by_cases h : a = 0 [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ h : a = 0 ⊢ a * a⁻¹ * a = a [PROOFSTEP] rw [h, inv_zero, mul_zero] [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ h : ¬a = 0 ⊢ a * a⁻¹ * a = a [PROOFSTEP] rw [mul_inv_cancel h, one_mul] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ ⊢ a⁻¹ * a * a = a [PROOFSTEP] by_cases h : a = 0 [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ h : a = 0 ⊢ a⁻¹ * a * a = a [PROOFSTEP] rw [h, inv_zero, mul_zero] [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ h : ¬a = 0 ⊢ a⁻¹ * a * a = a [PROOFSTEP] rw [inv_mul_cancel h, one_mul] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ ⊢ a * a / a = a [PROOFSTEP] rw [div_eq_mul_inv, mul_self_mul_inv a] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ ⊢ a / a * a = a [PROOFSTEP] rw [div_eq_mul_inv, mul_inv_mul_self a] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ ⊢ a / (a * a) = a⁻¹⁻¹ * a⁻¹ * a⁻¹ [PROOFSTEP] simp [mul_inv_rev] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ h : a ≠ 0 ⊢ 1 / a ≠ 0 [PROOFSTEP] simpa only [one_div] using inv_ne_zero h [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ ⊢ a⁻¹ = 0 ↔ a = 0 [PROOFSTEP] rw [inv_eq_iff_eq_inv, inv_zero] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ ⊢ a / (a / a) = a [PROOFSTEP] rw [div_div_eq_mul_div] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ ⊢ a * a / a = a [PROOFSTEP] exact mul_self_div_self a [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ h : 1 / a ≠ 0 ha : a = 0 ⊢ False [PROOFSTEP] rw [ha, div_zero] at h [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ h : 0 ≠ 0 ha : a = 0 ⊢ False [PROOFSTEP] contradiction [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ h : a ≠ 0 g : G₀ ⊢ (fun g => a * g) (a⁻¹ * g) = g [PROOFSTEP] simp [← mul_assoc, mul_inv_cancel h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a✝ b c a : G₀ h : a ≠ 0 g : G₀ ⊢ (fun g => g * a) (g * a⁻¹) = g [PROOFSTEP] simp [mul_assoc, inv_mul_cancel h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : CommGroupWithZero G₀ a✝ b✝ c✝ d a b c : G₀ ⊢ a / c * b = a * b / c [PROOFSTEP] simp_rw [div_eq_mul_inv, mul_assoc, mul_comm c⁻¹]
{"mathlib_filename": "Mathlib.Algebra.GroupWithZero.Basic", "llama_tokens": 8357}
[GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ u : M₀ˣ a : M₀ h : a * ↑u = 0 ⊢ a = 0 [PROOFSTEP] simpa using mul_eq_zero_of_left h ↑u⁻¹ [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ u : M₀ˣ a : M₀ h : ↑u * a = 0 ⊢ a = 0 [PROOFSTEP] simpa using mul_eq_zero_of_right (↑u⁻¹) h [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ x✝ : IsUnit 0 a : M₀ a0 : 0 * a = 1 inv_val✝ : a * 0 = 1 ⊢ 0 = 1 [PROOFSTEP] rwa [zero_mul] at a0 [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ u : M₀ˣ ⊢ inverse ↑u = ↑u⁻¹ [PROOFSTEP] rw [inverse, dif_pos u.isUnit, IsUnit.unit_of_val_units] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ x : M₀ h : IsUnit x ⊢ x * inverse x = 1 [PROOFSTEP] rcases h with ⟨u, rfl⟩ [GOAL] case intro α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ u : M₀ˣ ⊢ ↑u * inverse ↑u = 1 [PROOFSTEP] rw [inverse_unit, Units.mul_inv] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ x : M₀ h : IsUnit x ⊢ inverse x * x = 1 [PROOFSTEP] rcases h with ⟨u, rfl⟩ [GOAL] case intro α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ u : M₀ˣ ⊢ inverse ↑u * ↑u = 1 [PROOFSTEP] rw [inverse_unit, Units.inv_mul] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ x y : M₀ h : IsUnit x ⊢ y * x * inverse x = y [PROOFSTEP] rw [mul_assoc, mul_inverse_cancel x h, mul_one] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ x y : M₀ h : IsUnit x ⊢ y * inverse x * x = y [PROOFSTEP] rw [mul_assoc, inverse_mul_cancel x h, mul_one] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ x y : M₀ h : IsUnit x ⊢ x * (inverse x * y) = y [PROOFSTEP] rw [← mul_assoc, mul_inverse_cancel x h, one_mul] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ x y : M₀ h : IsUnit x ⊢ inverse x * (x * y) = y [PROOFSTEP] rw [← mul_assoc, inverse_mul_cancel x h, one_mul] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ x y z : M₀ h : IsUnit x h1 : inverse x * y = z ⊢ y = x * z [PROOFSTEP] rw [← h1, mul_inverse_cancel_left _ _ h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ x y z : M₀ h : IsUnit x h1 : y = x * z ⊢ inverse x * y = z [PROOFSTEP] rw [h1, inverse_mul_cancel_left _ _ h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ x y z : M₀ h : IsUnit z h1 : x = y * inverse z ⊢ x * z = y [PROOFSTEP] rw [h1, inverse_mul_cancel_right _ _ h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ x y z : M₀ h : IsUnit z h1 : x * z = y ⊢ x = y * inverse z [PROOFSTEP] rw [← h1, mul_inverse_cancel_right _ _ h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ ⊢ inverse 0 = 0 [PROOFSTEP] nontriviality [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ ✝ : Nontrivial M₀ ⊢ inverse 0 = 0 [PROOFSTEP] exact inverse_non_unit _ not_isUnit_zero [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ a : M₀ h : IsUnit (Ring.inverse a) ⊢ IsUnit a [PROOFSTEP] cases subsingleton_or_nontrivial M₀ [GOAL] case inl α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ a : M₀ h : IsUnit (Ring.inverse a) h✝ : Subsingleton M₀ ⊢ IsUnit a [PROOFSTEP] convert h [GOAL] case inr α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ a : M₀ h : IsUnit (Ring.inverse a) h✝ : Nontrivial M₀ ⊢ IsUnit a [PROOFSTEP] contrapose h [GOAL] case inr α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ a : M₀ h✝ : Nontrivial M₀ h : ¬IsUnit a ⊢ ¬IsUnit (Ring.inverse a) [PROOFSTEP] rw [Ring.inverse_non_unit _ h] [GOAL] case inr α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MonoidWithZero M₀ a : M₀ h✝ : Nontrivial M₀ h : ¬IsUnit a ⊢ ¬IsUnit 0 [PROOFSTEP] exact not_isUnit_zero [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a b : G₀ h : optParam (1 ≠ 0) (_ : 1 ≠ 0) ⊢ mk0 1 h = 1 [PROOFSTEP] ext [GOAL] case a α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a b : G₀ h : optParam (1 ≠ 0) (_ : 1 ≠ 0) ⊢ ↑(mk0 1 h) = ↑1 [PROOFSTEP] rfl [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b✝ a b : G₀ ha : a ≠ 0 hb : b ≠ 0 h : mk0 a ha = mk0 b hb ⊢ a = b [PROOFSTEP] injection h [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a b : G₀ p : (g : G₀) → g ≠ 0 → Prop ⊢ (∃ g hg, p g hg) ↔ ∃ g hg, p ↑(mk0 g hg) (_ : ↑(mk0 g hg) ≠ 0) [PROOFSTEP] simp_rw [val_mk0] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a b x : G₀ ⊢ (∃ u, ↑u = x) ↔ x ≠ 0 [PROOFSTEP] simp [exists0] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b a : G₀ ⊢ a = 0 ∨ ∃ u, a = ↑u [PROOFSTEP] by_cases h : a = 0 [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b a : G₀ h : a = 0 ⊢ a = 0 ∨ ∃ u, a = ↑u [PROOFSTEP] left [GOAL] case pos.h α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b a : G₀ h : a = 0 ⊢ a = 0 [PROOFSTEP] exact h [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b a : G₀ h : ¬a = 0 ⊢ a = 0 ∨ ∃ u, a = ↑u [PROOFSTEP] right [GOAL] case neg.h α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b a : G₀ h : ¬a = 0 ⊢ ∃ u, a = ↑u [PROOFSTEP] simpa only [eq_comm] using Units.exists_iff_ne_zero.mpr h [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b✝ c : G₀ src✝ : GroupWithZero G₀ := inst✝ a b : G₀ h : a * b = 0 ⊢ a = 0 ∨ b = 0 [PROOFSTEP] contrapose! h [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b✝ c : G₀ src✝ : GroupWithZero G₀ := inst✝ a b : G₀ h : a ≠ 0 ∧ b ≠ 0 ⊢ a * b ≠ 0 [PROOFSTEP] exact (Units.mk0 a h.1 * Units.mk0 b h.2).ne_zero [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a b c x y : G₀ hxy : x * y ≠ 0 ⊢ mk0 (x * y) hxy = mk0 x (_ : x ≠ 0) * mk0 y (_ : y ≠ 0) [PROOFSTEP] ext [GOAL] case a α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a b c x y : G₀ hxy : x * y ≠ 0 ⊢ ↑(mk0 (x * y) hxy) = ↑(mk0 x (_ : x ≠ 0) * mk0 y (_ : y ≠ 0)) [PROOFSTEP] rfl [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a b c : G₀ ha : a ≠ 0 hb : b ≠ 0 ⊢ a / b ≠ 0 [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a b c : G₀ ha : a ≠ 0 hb : b ≠ 0 ⊢ a * b⁻¹ ≠ 0 [PROOFSTEP] exact mul_ne_zero ha (inv_ne_zero hb) [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a b c : G₀ ⊢ a / b = 0 ↔ a = 0 ∨ b = 0 [PROOFSTEP] simp [div_eq_mul_inv] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b c a : G₀ ⊢ inverse a = a⁻¹ [PROOFSTEP] obtain rfl | ha := eq_or_ne a 0 [GOAL] case inl α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a b c : G₀ ⊢ inverse 0 = 0⁻¹ [PROOFSTEP] simp [GOAL] case inr α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b c a : G₀ ha : a ≠ 0 ⊢ inverse a = a⁻¹ [PROOFSTEP] exact Ring.inverse_unit (Units.mk0 a ha) [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ M : Type u_8 inst✝ : Nontrivial M hM : MonoidWithZero M h : ∀ (a : M), IsUnit a ∨ a = 0 a : M h0 : a ≠ 0 ⊢ a * a⁻¹ = 1 [PROOFSTEP] change (a * if h0 : a = 0 then 0 else ↑((h a).resolve_right h0).unit⁻¹) = 1 [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ M : Type u_8 inst✝ : Nontrivial M hM : MonoidWithZero M h : ∀ (a : M), IsUnit a ∨ a = 0 a : M h0 : a ≠ 0 ⊢ (a * if h0 : a = 0 then 0 else ↑(IsUnit.unit (_ : IsUnit a))⁻¹) = 1 [PROOFSTEP] rw [dif_neg h0, Units.mul_inv_eq_iff_eq_mul, one_mul, IsUnit.unit_spec]
{"mathlib_filename": "Mathlib.Algebra.GroupWithZero.Units.Basic", "llama_tokens": 6021}
[GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K terminated_at_succ_n : Stream'.Seq.TerminatedAt s (n + 1) ⊢ squashSeq s n = s [PROOFSTEP] change s.get? (n + 1) = none at terminated_at_succ_n [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K terminated_at_succ_n : Stream'.Seq.get? s (n + 1) = none ⊢ squashSeq s n = s [PROOFSTEP] cases s_nth_eq : s.get? n [GOAL] case none K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K terminated_at_succ_n : Stream'.Seq.get? s (n + 1) = none s_nth_eq : Stream'.Seq.get? s n = none ⊢ squashSeq s n = s [PROOFSTEP] simp only [*, squashSeq] [GOAL] case some K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K terminated_at_succ_n : Stream'.Seq.get? s (n + 1) = none val✝ : Pair K s_nth_eq : Stream'.Seq.get? s n = some val✝ ⊢ squashSeq s n = s [PROOFSTEP] simp only [*, squashSeq] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_n gp_succ_n : Pair K s_nth_eq : Stream'.Seq.get? s n = some gp_n s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n ⊢ Stream'.Seq.get? (squashSeq s n) n = some { a := gp_n.a, b := gp_n.b + gp_succ_n.a / gp_succ_n.b } [PROOFSTEP] simp [*, squashSeq] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n ⊢ Stream'.Seq.get? (squashSeq s n) m = Stream'.Seq.get? s m [PROOFSTEP] cases s_succ_nth_eq : s.get? (n + 1) [GOAL] case none K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = none ⊢ Stream'.Seq.get? (squashSeq s n) m = Stream'.Seq.get? s m case some K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n val✝ : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some val✝ ⊢ Stream'.Seq.get? (squashSeq s n) m = Stream'.Seq.get? s m [PROOFSTEP] case none => rw [squashSeq_eq_self_of_terminated s_succ_nth_eq] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = none ⊢ Stream'.Seq.get? (squashSeq s n) m = Stream'.Seq.get? s m [PROOFSTEP] case none => rw [squashSeq_eq_self_of_terminated s_succ_nth_eq] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = none ⊢ Stream'.Seq.get? (squashSeq s n) m = Stream'.Seq.get? s m [PROOFSTEP] rw [squashSeq_eq_self_of_terminated s_succ_nth_eq] [GOAL] case some K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n val✝ : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some val✝ ⊢ Stream'.Seq.get? (squashSeq s n) m = Stream'.Seq.get? s m [PROOFSTEP] case some => obtain ⟨gp_n, s_nth_eq⟩ : ∃ gp_n, s.get? n = some gp_n exact s.ge_stable n.le_succ s_succ_nth_eq obtain ⟨gp_m, s_mth_eq⟩ : ∃ gp_m, s.get? m = some gp_m exact s.ge_stable (le_of_lt m_lt_n) s_nth_eq simp [*, squashSeq, m_lt_n.ne] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n val✝ : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some val✝ ⊢ Stream'.Seq.get? (squashSeq s n) m = Stream'.Seq.get? s m [PROOFSTEP] case some => obtain ⟨gp_n, s_nth_eq⟩ : ∃ gp_n, s.get? n = some gp_n exact s.ge_stable n.le_succ s_succ_nth_eq obtain ⟨gp_m, s_mth_eq⟩ : ∃ gp_m, s.get? m = some gp_m exact s.ge_stable (le_of_lt m_lt_n) s_nth_eq simp [*, squashSeq, m_lt_n.ne] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n val✝ : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some val✝ ⊢ Stream'.Seq.get? (squashSeq s n) m = Stream'.Seq.get? s m [PROOFSTEP] obtain ⟨gp_n, s_nth_eq⟩ : ∃ gp_n, s.get? n = some gp_n [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n val✝ : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some val✝ ⊢ ∃ gp_n, Stream'.Seq.get? s n = some gp_n case intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n val✝ : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some val✝ gp_n : Pair K s_nth_eq : Stream'.Seq.get? s n = some gp_n ⊢ Stream'.Seq.get? (squashSeq s n) m = Stream'.Seq.get? s m [PROOFSTEP] exact s.ge_stable n.le_succ s_succ_nth_eq [GOAL] case intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n val✝ : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some val✝ gp_n : Pair K s_nth_eq : Stream'.Seq.get? s n = some gp_n ⊢ Stream'.Seq.get? (squashSeq s n) m = Stream'.Seq.get? s m [PROOFSTEP] obtain ⟨gp_m, s_mth_eq⟩ : ∃ gp_m, s.get? m = some gp_m [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n val✝ : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some val✝ gp_n : Pair K s_nth_eq : Stream'.Seq.get? s n = some gp_n ⊢ ∃ gp_m, Stream'.Seq.get? s m = some gp_m case intro.intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n val✝ : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some val✝ gp_n : Pair K s_nth_eq : Stream'.Seq.get? s n = some gp_n gp_m : Pair K s_mth_eq : Stream'.Seq.get? s m = some gp_m ⊢ Stream'.Seq.get? (squashSeq s n) m = Stream'.Seq.get? s m [PROOFSTEP] exact s.ge_stable (le_of_lt m_lt_n) s_nth_eq [GOAL] case intro.intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n val✝ : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some val✝ gp_n : Pair K s_nth_eq : Stream'.Seq.get? s n = some gp_n gp_m : Pair K s_mth_eq : Stream'.Seq.get? s m = some gp_m ⊢ Stream'.Seq.get? (squashSeq s n) m = Stream'.Seq.get? s m [PROOFSTEP] simp [*, squashSeq, m_lt_n.ne] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K ⊢ Stream'.Seq.tail (squashSeq s (n + 1)) = squashSeq (Stream'.Seq.tail s) n [PROOFSTEP] cases' s_succ_succ_nth_eq : s.get? (n + 2) with gp_succ_succ_n [GOAL] case none K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = none ⊢ Stream'.Seq.tail (squashSeq s (n + 1)) = squashSeq (Stream'.Seq.tail s) n case some K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n ⊢ Stream'.Seq.tail (squashSeq s (n + 1)) = squashSeq (Stream'.Seq.tail s) n [PROOFSTEP] case none => cases s_succ_nth_eq : s.get? (n + 1) <;> simp only [squashSeq, Stream'.Seq.get?_tail, s_succ_nth_eq, s_succ_succ_nth_eq] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = none ⊢ Stream'.Seq.tail (squashSeq s (n + 1)) = squashSeq (Stream'.Seq.tail s) n [PROOFSTEP] case none => cases s_succ_nth_eq : s.get? (n + 1) <;> simp only [squashSeq, Stream'.Seq.get?_tail, s_succ_nth_eq, s_succ_succ_nth_eq] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = none ⊢ Stream'.Seq.tail (squashSeq s (n + 1)) = squashSeq (Stream'.Seq.tail s) n [PROOFSTEP] cases s_succ_nth_eq : s.get? (n + 1) [GOAL] case none K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = none s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = none ⊢ Stream'.Seq.tail (squashSeq s (n + 1)) = squashSeq (Stream'.Seq.tail s) n [PROOFSTEP] simp only [squashSeq, Stream'.Seq.get?_tail, s_succ_nth_eq, s_succ_succ_nth_eq] [GOAL] case some K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = none val✝ : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some val✝ ⊢ Stream'.Seq.tail (squashSeq s (n + 1)) = squashSeq (Stream'.Seq.tail s) n [PROOFSTEP] simp only [squashSeq, Stream'.Seq.get?_tail, s_succ_nth_eq, s_succ_succ_nth_eq] [GOAL] case some K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n ⊢ Stream'.Seq.tail (squashSeq s (n + 1)) = squashSeq (Stream'.Seq.tail s) n [PROOFSTEP] case some => obtain ⟨gp_succ_n, s_succ_nth_eq⟩ : ∃ gp_succ_n, s.get? (n + 1) = some gp_succ_n; exact s.ge_stable (n + 1).le_succ s_succ_succ_nth_eq ext1 m cases' Decidable.em (m = n) with m_eq_n m_ne_n · simp [*, squashSeq] · have : s.tail.get? m = s.get? (m + 1) := s.get?_tail m cases s_succ_mth_eq : s.get? (m + 1) all_goals have _ := this.trans s_succ_mth_eq · simp only [*, squashSeq, Stream'.Seq.get?_tail, Stream'.Seq.get?_zipWith, Option.map₂_none_right] · simp [*, squashSeq] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n ⊢ Stream'.Seq.tail (squashSeq s (n + 1)) = squashSeq (Stream'.Seq.tail s) n [PROOFSTEP] case some => obtain ⟨gp_succ_n, s_succ_nth_eq⟩ : ∃ gp_succ_n, s.get? (n + 1) = some gp_succ_n; exact s.ge_stable (n + 1).le_succ s_succ_succ_nth_eq ext1 m cases' Decidable.em (m = n) with m_eq_n m_ne_n · simp [*, squashSeq] · have : s.tail.get? m = s.get? (m + 1) := s.get?_tail m cases s_succ_mth_eq : s.get? (m + 1) all_goals have _ := this.trans s_succ_mth_eq · simp only [*, squashSeq, Stream'.Seq.get?_tail, Stream'.Seq.get?_zipWith, Option.map₂_none_right] · simp [*, squashSeq] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n ⊢ Stream'.Seq.tail (squashSeq s (n + 1)) = squashSeq (Stream'.Seq.tail s) n [PROOFSTEP] obtain ⟨gp_succ_n, s_succ_nth_eq⟩ : ∃ gp_succ_n, s.get? (n + 1) = some gp_succ_n [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n ⊢ ∃ gp_succ_n, Stream'.Seq.get? s (n + 1) = some gp_succ_n case intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n ⊢ Stream'.Seq.tail (squashSeq s (n + 1)) = squashSeq (Stream'.Seq.tail s) n [PROOFSTEP] exact s.ge_stable (n + 1).le_succ s_succ_succ_nth_eq [GOAL] case intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n ⊢ Stream'.Seq.tail (squashSeq s (n + 1)) = squashSeq (Stream'.Seq.tail s) n [PROOFSTEP] ext1 m [GOAL] case intro.h K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n m : ℕ ⊢ Stream'.Seq.get? (Stream'.Seq.tail (squashSeq s (n + 1))) m = Stream'.Seq.get? (squashSeq (Stream'.Seq.tail s) n) m [PROOFSTEP] cases' Decidable.em (m = n) with m_eq_n m_ne_n [GOAL] case intro.h.inl K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n m : ℕ m_eq_n : m = n ⊢ Stream'.Seq.get? (Stream'.Seq.tail (squashSeq s (n + 1))) m = Stream'.Seq.get? (squashSeq (Stream'.Seq.tail s) n) m [PROOFSTEP] simp [*, squashSeq] [GOAL] case intro.h.inr K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n m : ℕ m_ne_n : ¬m = n ⊢ Stream'.Seq.get? (Stream'.Seq.tail (squashSeq s (n + 1))) m = Stream'.Seq.get? (squashSeq (Stream'.Seq.tail s) n) m [PROOFSTEP] have : s.tail.get? m = s.get? (m + 1) := s.get?_tail m [GOAL] case intro.h.inr K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n m : ℕ m_ne_n : ¬m = n this : Stream'.Seq.get? (Stream'.Seq.tail s) m = Stream'.Seq.get? s (m + 1) ⊢ Stream'.Seq.get? (Stream'.Seq.tail (squashSeq s (n + 1))) m = Stream'.Seq.get? (squashSeq (Stream'.Seq.tail s) n) m [PROOFSTEP] cases s_succ_mth_eq : s.get? (m + 1) [GOAL] case intro.h.inr.none K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n m : ℕ m_ne_n : ¬m = n this : Stream'.Seq.get? (Stream'.Seq.tail s) m = Stream'.Seq.get? s (m + 1) s_succ_mth_eq : Stream'.Seq.get? s (m + 1) = none ⊢ Stream'.Seq.get? (Stream'.Seq.tail (squashSeq s (n + 1))) m = Stream'.Seq.get? (squashSeq (Stream'.Seq.tail s) n) m case intro.h.inr.some K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n m : ℕ m_ne_n : ¬m = n this : Stream'.Seq.get? (Stream'.Seq.tail s) m = Stream'.Seq.get? s (m + 1) val✝ : Pair K s_succ_mth_eq : Stream'.Seq.get? s (m + 1) = some val✝ ⊢ Stream'.Seq.get? (Stream'.Seq.tail (squashSeq s (n + 1))) m = Stream'.Seq.get? (squashSeq (Stream'.Seq.tail s) n) m [PROOFSTEP] all_goals have _ := this.trans s_succ_mth_eq [GOAL] case intro.h.inr.none K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n m : ℕ m_ne_n : ¬m = n this : Stream'.Seq.get? (Stream'.Seq.tail s) m = Stream'.Seq.get? s (m + 1) s_succ_mth_eq : Stream'.Seq.get? s (m + 1) = none ⊢ Stream'.Seq.get? (Stream'.Seq.tail (squashSeq s (n + 1))) m = Stream'.Seq.get? (squashSeq (Stream'.Seq.tail s) n) m [PROOFSTEP] have _ := this.trans s_succ_mth_eq [GOAL] case intro.h.inr.some K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n m : ℕ m_ne_n : ¬m = n this : Stream'.Seq.get? (Stream'.Seq.tail s) m = Stream'.Seq.get? s (m + 1) val✝ : Pair K s_succ_mth_eq : Stream'.Seq.get? s (m + 1) = some val✝ ⊢ Stream'.Seq.get? (Stream'.Seq.tail (squashSeq s (n + 1))) m = Stream'.Seq.get? (squashSeq (Stream'.Seq.tail s) n) m [PROOFSTEP] have _ := this.trans s_succ_mth_eq [GOAL] case intro.h.inr.none K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n m : ℕ m_ne_n : ¬m = n this : Stream'.Seq.get? (Stream'.Seq.tail s) m = Stream'.Seq.get? s (m + 1) s_succ_mth_eq : Stream'.Seq.get? s (m + 1) = none x✝ : Stream'.Seq.get? (Stream'.Seq.tail s) m = none ⊢ Stream'.Seq.get? (Stream'.Seq.tail (squashSeq s (n + 1))) m = Stream'.Seq.get? (squashSeq (Stream'.Seq.tail s) n) m [PROOFSTEP] simp only [*, squashSeq, Stream'.Seq.get?_tail, Stream'.Seq.get?_zipWith, Option.map₂_none_right] [GOAL] case intro.h.inr.some K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_succ_n : Pair K s_succ_succ_nth_eq : Stream'.Seq.get? s (n + 2) = some gp_succ_succ_n gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n m : ℕ m_ne_n : ¬m = n this : Stream'.Seq.get? (Stream'.Seq.tail s) m = Stream'.Seq.get? s (m + 1) val✝ : Pair K s_succ_mth_eq : Stream'.Seq.get? s (m + 1) = some val✝ x✝ : Stream'.Seq.get? (Stream'.Seq.tail s) m = some val✝ ⊢ Stream'.Seq.get? (Stream'.Seq.tail (squashSeq s (n + 1))) m = Stream'.Seq.get? (squashSeq (Stream'.Seq.tail s) n) m [PROOFSTEP] simp [*, squashSeq] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K ⊢ convergents'Aux s (n + 2) = convergents'Aux (squashSeq s n) (n + 1) [PROOFSTEP] cases' s_succ_nth_eq : s.get? <| n + 1 with gp_succ_n [GOAL] case none K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = none ⊢ convergents'Aux s (n + 2) = convergents'Aux (squashSeq s n) (n + 1) case some K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n ⊢ convergents'Aux s (n + 2) = convergents'Aux (squashSeq s n) (n + 1) [PROOFSTEP] case none => rw [squashSeq_eq_self_of_terminated s_succ_nth_eq, convergents'Aux_stable_step_of_terminated s_succ_nth_eq] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = none ⊢ convergents'Aux s (n + 2) = convergents'Aux (squashSeq s n) (n + 1) [PROOFSTEP] case none => rw [squashSeq_eq_self_of_terminated s_succ_nth_eq, convergents'Aux_stable_step_of_terminated s_succ_nth_eq] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = none ⊢ convergents'Aux s (n + 2) = convergents'Aux (squashSeq s n) (n + 1) [PROOFSTEP] rw [squashSeq_eq_self_of_terminated s_succ_nth_eq, convergents'Aux_stable_step_of_terminated s_succ_nth_eq] [GOAL] case some K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n ⊢ convergents'Aux s (n + 2) = convergents'Aux (squashSeq s n) (n + 1) [PROOFSTEP] case some => induction' n with m IH generalizing s gp_succ_n case zero => obtain ⟨gp_head, s_head_eq⟩ : ∃ gp_head, s.head = some gp_head exact s.ge_stable zero_le_one s_succ_nth_eq have : (squashSeq s 0).head = some ⟨gp_head.a, gp_head.b + gp_succ_n.a / gp_succ_n.b⟩ := squashSeq_nth_of_not_terminated s_head_eq s_succ_nth_eq simp_all [convergents'Aux, Stream'.Seq.head, Stream'.Seq.get?_tail] case succ => obtain ⟨gp_head, s_head_eq⟩ : ∃ gp_head, s.head = some gp_head exact s.ge_stable (m + 2).zero_le s_succ_nth_eq suffices gp_head.a / (gp_head.b + convergents'Aux s.tail (m + 2)) = convergents'Aux (squashSeq s (m + 1)) (m + 2) by simpa only [convergents'Aux, s_head_eq] have : convergents'Aux s.tail (m + 2) = convergents'Aux (squashSeq s.tail m) (m + 1) := by refine' IH gp_succ_n _ simpa [Stream'.Seq.get?_tail] using s_succ_nth_eq have : (squashSeq s (m + 1)).head = some gp_head := (squashSeq_nth_of_lt m.succ_pos).trans s_head_eq simp_all [convergents'Aux, squashSeq_succ_n_tail_eq_squashSeq_tail_n] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n ⊢ convergents'Aux s (n + 2) = convergents'Aux (squashSeq s n) (n + 1) [PROOFSTEP] case some => induction' n with m IH generalizing s gp_succ_n case zero => obtain ⟨gp_head, s_head_eq⟩ : ∃ gp_head, s.head = some gp_head exact s.ge_stable zero_le_one s_succ_nth_eq have : (squashSeq s 0).head = some ⟨gp_head.a, gp_head.b + gp_succ_n.a / gp_succ_n.b⟩ := squashSeq_nth_of_not_terminated s_head_eq s_succ_nth_eq simp_all [convergents'Aux, Stream'.Seq.head, Stream'.Seq.get?_tail] case succ => obtain ⟨gp_head, s_head_eq⟩ : ∃ gp_head, s.head = some gp_head exact s.ge_stable (m + 2).zero_le s_succ_nth_eq suffices gp_head.a / (gp_head.b + convergents'Aux s.tail (m + 2)) = convergents'Aux (squashSeq s (m + 1)) (m + 2) by simpa only [convergents'Aux, s_head_eq] have : convergents'Aux s.tail (m + 2) = convergents'Aux (squashSeq s.tail m) (m + 1) := by refine' IH gp_succ_n _ simpa [Stream'.Seq.get?_tail] using s_succ_nth_eq have : (squashSeq s (m + 1)).head = some gp_head := (squashSeq_nth_of_lt m.succ_pos).trans s_head_eq simp_all [convergents'Aux, squashSeq_succ_n_tail_eq_squashSeq_tail_n] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (n + 1) = some gp_succ_n ⊢ convergents'Aux s (n + 2) = convergents'Aux (squashSeq s n) (n + 1) [PROOFSTEP] induction' n with m IH generalizing s gp_succ_n [GOAL] case zero K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.zero + 1) = some gp_succ_n ⊢ convergents'Aux s (Nat.zero + 2) = convergents'Aux (squashSeq s Nat.zero) (Nat.zero + 1) case succ K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ m : ℕ IH : ∀ {s : Stream'.Seq (Pair K)} (gp_succ_n : Pair K), Stream'.Seq.get? s (m + 1) = some gp_succ_n → convergents'Aux s (m + 2) = convergents'Aux (squashSeq s m) (m + 1) s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.succ m + 1) = some gp_succ_n ⊢ convergents'Aux s (Nat.succ m + 2) = convergents'Aux (squashSeq s (Nat.succ m)) (Nat.succ m + 1) [PROOFSTEP] case zero => obtain ⟨gp_head, s_head_eq⟩ : ∃ gp_head, s.head = some gp_head exact s.ge_stable zero_le_one s_succ_nth_eq have : (squashSeq s 0).head = some ⟨gp_head.a, gp_head.b + gp_succ_n.a / gp_succ_n.b⟩ := squashSeq_nth_of_not_terminated s_head_eq s_succ_nth_eq simp_all [convergents'Aux, Stream'.Seq.head, Stream'.Seq.get?_tail] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.zero + 1) = some gp_succ_n ⊢ convergents'Aux s (Nat.zero + 2) = convergents'Aux (squashSeq s Nat.zero) (Nat.zero + 1) [PROOFSTEP] case zero => obtain ⟨gp_head, s_head_eq⟩ : ∃ gp_head, s.head = some gp_head exact s.ge_stable zero_le_one s_succ_nth_eq have : (squashSeq s 0).head = some ⟨gp_head.a, gp_head.b + gp_succ_n.a / gp_succ_n.b⟩ := squashSeq_nth_of_not_terminated s_head_eq s_succ_nth_eq simp_all [convergents'Aux, Stream'.Seq.head, Stream'.Seq.get?_tail] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.zero + 1) = some gp_succ_n ⊢ convergents'Aux s (Nat.zero + 2) = convergents'Aux (squashSeq s Nat.zero) (Nat.zero + 1) [PROOFSTEP] obtain ⟨gp_head, s_head_eq⟩ : ∃ gp_head, s.head = some gp_head [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.zero + 1) = some gp_succ_n ⊢ ∃ gp_head, Stream'.Seq.head s = some gp_head case intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.zero + 1) = some gp_succ_n gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head ⊢ convergents'Aux s (Nat.zero + 2) = convergents'Aux (squashSeq s Nat.zero) (Nat.zero + 1) [PROOFSTEP] exact s.ge_stable zero_le_one s_succ_nth_eq [GOAL] case intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.zero + 1) = some gp_succ_n gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head ⊢ convergents'Aux s (Nat.zero + 2) = convergents'Aux (squashSeq s Nat.zero) (Nat.zero + 1) [PROOFSTEP] have : (squashSeq s 0).head = some ⟨gp_head.a, gp_head.b + gp_succ_n.a / gp_succ_n.b⟩ := squashSeq_nth_of_not_terminated s_head_eq s_succ_nth_eq [GOAL] case intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.zero + 1) = some gp_succ_n gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head this : Stream'.Seq.head (squashSeq s 0) = some { a := gp_head.a, b := gp_head.b + gp_succ_n.a / gp_succ_n.b } ⊢ convergents'Aux s (Nat.zero + 2) = convergents'Aux (squashSeq s Nat.zero) (Nat.zero + 1) [PROOFSTEP] simp_all [convergents'Aux, Stream'.Seq.head, Stream'.Seq.get?_tail] [GOAL] case succ K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ m : ℕ IH : ∀ {s : Stream'.Seq (Pair K)} (gp_succ_n : Pair K), Stream'.Seq.get? s (m + 1) = some gp_succ_n → convergents'Aux s (m + 2) = convergents'Aux (squashSeq s m) (m + 1) s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.succ m + 1) = some gp_succ_n ⊢ convergents'Aux s (Nat.succ m + 2) = convergents'Aux (squashSeq s (Nat.succ m)) (Nat.succ m + 1) [PROOFSTEP] case succ => obtain ⟨gp_head, s_head_eq⟩ : ∃ gp_head, s.head = some gp_head exact s.ge_stable (m + 2).zero_le s_succ_nth_eq suffices gp_head.a / (gp_head.b + convergents'Aux s.tail (m + 2)) = convergents'Aux (squashSeq s (m + 1)) (m + 2) by simpa only [convergents'Aux, s_head_eq] have : convergents'Aux s.tail (m + 2) = convergents'Aux (squashSeq s.tail m) (m + 1) := by refine' IH gp_succ_n _ simpa [Stream'.Seq.get?_tail] using s_succ_nth_eq have : (squashSeq s (m + 1)).head = some gp_head := (squashSeq_nth_of_lt m.succ_pos).trans s_head_eq simp_all [convergents'Aux, squashSeq_succ_n_tail_eq_squashSeq_tail_n] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ m : ℕ IH : ∀ {s : Stream'.Seq (Pair K)} (gp_succ_n : Pair K), Stream'.Seq.get? s (m + 1) = some gp_succ_n → convergents'Aux s (m + 2) = convergents'Aux (squashSeq s m) (m + 1) s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.succ m + 1) = some gp_succ_n ⊢ convergents'Aux s (Nat.succ m + 2) = convergents'Aux (squashSeq s (Nat.succ m)) (Nat.succ m + 1) [PROOFSTEP] case succ => obtain ⟨gp_head, s_head_eq⟩ : ∃ gp_head, s.head = some gp_head exact s.ge_stable (m + 2).zero_le s_succ_nth_eq suffices gp_head.a / (gp_head.b + convergents'Aux s.tail (m + 2)) = convergents'Aux (squashSeq s (m + 1)) (m + 2) by simpa only [convergents'Aux, s_head_eq] have : convergents'Aux s.tail (m + 2) = convergents'Aux (squashSeq s.tail m) (m + 1) := by refine' IH gp_succ_n _ simpa [Stream'.Seq.get?_tail] using s_succ_nth_eq have : (squashSeq s (m + 1)).head = some gp_head := (squashSeq_nth_of_lt m.succ_pos).trans s_head_eq simp_all [convergents'Aux, squashSeq_succ_n_tail_eq_squashSeq_tail_n] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ m : ℕ IH : ∀ {s : Stream'.Seq (Pair K)} (gp_succ_n : Pair K), Stream'.Seq.get? s (m + 1) = some gp_succ_n → convergents'Aux s (m + 2) = convergents'Aux (squashSeq s m) (m + 1) s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.succ m + 1) = some gp_succ_n ⊢ convergents'Aux s (Nat.succ m + 2) = convergents'Aux (squashSeq s (Nat.succ m)) (Nat.succ m + 1) [PROOFSTEP] obtain ⟨gp_head, s_head_eq⟩ : ∃ gp_head, s.head = some gp_head [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ m : ℕ IH : ∀ {s : Stream'.Seq (Pair K)} (gp_succ_n : Pair K), Stream'.Seq.get? s (m + 1) = some gp_succ_n → convergents'Aux s (m + 2) = convergents'Aux (squashSeq s m) (m + 1) s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.succ m + 1) = some gp_succ_n ⊢ ∃ gp_head, Stream'.Seq.head s = some gp_head case intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ m : ℕ IH : ∀ {s : Stream'.Seq (Pair K)} (gp_succ_n : Pair K), Stream'.Seq.get? s (m + 1) = some gp_succ_n → convergents'Aux s (m + 2) = convergents'Aux (squashSeq s m) (m + 1) s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.succ m + 1) = some gp_succ_n gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head ⊢ convergents'Aux s (Nat.succ m + 2) = convergents'Aux (squashSeq s (Nat.succ m)) (Nat.succ m + 1) [PROOFSTEP] exact s.ge_stable (m + 2).zero_le s_succ_nth_eq [GOAL] case intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ m : ℕ IH : ∀ {s : Stream'.Seq (Pair K)} (gp_succ_n : Pair K), Stream'.Seq.get? s (m + 1) = some gp_succ_n → convergents'Aux s (m + 2) = convergents'Aux (squashSeq s m) (m + 1) s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.succ m + 1) = some gp_succ_n gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head ⊢ convergents'Aux s (Nat.succ m + 2) = convergents'Aux (squashSeq s (Nat.succ m)) (Nat.succ m + 1) [PROOFSTEP] suffices gp_head.a / (gp_head.b + convergents'Aux s.tail (m + 2)) = convergents'Aux (squashSeq s (m + 1)) (m + 2) by simpa only [convergents'Aux, s_head_eq] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ m : ℕ IH : ∀ {s : Stream'.Seq (Pair K)} (gp_succ_n : Pair K), Stream'.Seq.get? s (m + 1) = some gp_succ_n → convergents'Aux s (m + 2) = convergents'Aux (squashSeq s m) (m + 1) s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.succ m + 1) = some gp_succ_n gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head this : gp_head.a / (gp_head.b + convergents'Aux (Stream'.Seq.tail s) (m + 2)) = convergents'Aux (squashSeq s (m + 1)) (m + 2) ⊢ convergents'Aux s (Nat.succ m + 2) = convergents'Aux (squashSeq s (Nat.succ m)) (Nat.succ m + 1) [PROOFSTEP] simpa only [convergents'Aux, s_head_eq] [GOAL] case intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ m : ℕ IH : ∀ {s : Stream'.Seq (Pair K)} (gp_succ_n : Pair K), Stream'.Seq.get? s (m + 1) = some gp_succ_n → convergents'Aux s (m + 2) = convergents'Aux (squashSeq s m) (m + 1) s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.succ m + 1) = some gp_succ_n gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head ⊢ gp_head.a / (gp_head.b + convergents'Aux (Stream'.Seq.tail s) (m + 2)) = convergents'Aux (squashSeq s (m + 1)) (m + 2) [PROOFSTEP] have : convergents'Aux s.tail (m + 2) = convergents'Aux (squashSeq s.tail m) (m + 1) := by refine' IH gp_succ_n _ simpa [Stream'.Seq.get?_tail] using s_succ_nth_eq [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ m : ℕ IH : ∀ {s : Stream'.Seq (Pair K)} (gp_succ_n : Pair K), Stream'.Seq.get? s (m + 1) = some gp_succ_n → convergents'Aux s (m + 2) = convergents'Aux (squashSeq s m) (m + 1) s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.succ m + 1) = some gp_succ_n gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head ⊢ convergents'Aux (Stream'.Seq.tail s) (m + 2) = convergents'Aux (squashSeq (Stream'.Seq.tail s) m) (m + 1) [PROOFSTEP] refine' IH gp_succ_n _ [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ m : ℕ IH : ∀ {s : Stream'.Seq (Pair K)} (gp_succ_n : Pair K), Stream'.Seq.get? s (m + 1) = some gp_succ_n → convergents'Aux s (m + 2) = convergents'Aux (squashSeq s m) (m + 1) s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.succ m + 1) = some gp_succ_n gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head ⊢ Stream'.Seq.get? (Stream'.Seq.tail s) (m + 1) = some gp_succ_n [PROOFSTEP] simpa [Stream'.Seq.get?_tail] using s_succ_nth_eq [GOAL] case intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ m : ℕ IH : ∀ {s : Stream'.Seq (Pair K)} (gp_succ_n : Pair K), Stream'.Seq.get? s (m + 1) = some gp_succ_n → convergents'Aux s (m + 2) = convergents'Aux (squashSeq s m) (m + 1) s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.succ m + 1) = some gp_succ_n gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head this : convergents'Aux (Stream'.Seq.tail s) (m + 2) = convergents'Aux (squashSeq (Stream'.Seq.tail s) m) (m + 1) ⊢ gp_head.a / (gp_head.b + convergents'Aux (Stream'.Seq.tail s) (m + 2)) = convergents'Aux (squashSeq s (m + 1)) (m + 2) [PROOFSTEP] have : (squashSeq s (m + 1)).head = some gp_head := (squashSeq_nth_of_lt m.succ_pos).trans s_head_eq [GOAL] case intro K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s✝ : Stream'.Seq (Pair K) inst✝ : DivisionRing K gp_succ_n✝ : Pair K s_succ_nth_eq✝ : Stream'.Seq.get? s✝ (n + 1) = some gp_succ_n✝ m : ℕ IH : ∀ {s : Stream'.Seq (Pair K)} (gp_succ_n : Pair K), Stream'.Seq.get? s (m + 1) = some gp_succ_n → convergents'Aux s (m + 2) = convergents'Aux (squashSeq s m) (m + 1) s : Stream'.Seq (Pair K) gp_succ_n : Pair K s_succ_nth_eq : Stream'.Seq.get? s (Nat.succ m + 1) = some gp_succ_n gp_head : Pair K s_head_eq : Stream'.Seq.head s = some gp_head this✝ : convergents'Aux (Stream'.Seq.tail s) (m + 2) = convergents'Aux (squashSeq (Stream'.Seq.tail s) m) (m + 1) this : Stream'.Seq.head (squashSeq s (m + 1)) = some gp_head ⊢ gp_head.a / (gp_head.b + convergents'Aux (Stream'.Seq.tail s) (m + 2)) = convergents'Aux (squashSeq s (m + 1)) (m + 2) [PROOFSTEP] simp_all [convergents'Aux, squashSeq_succ_n_tail_eq_squashSeq_tail_n] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K terminated_at_n : TerminatedAt g n ⊢ squashGCF g n = g [PROOFSTEP] cases n [GOAL] case zero K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K terminated_at_n : TerminatedAt g Nat.zero ⊢ squashGCF g Nat.zero = g case succ K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n✝ : ℕ terminated_at_n : TerminatedAt g (Nat.succ n✝) ⊢ squashGCF g (Nat.succ n✝) = g [PROOFSTEP] case zero => change g.s.get? 0 = none at terminated_at_n simp only [convergents', squashGCF, convergents'Aux, terminated_at_n] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K terminated_at_n : TerminatedAt g Nat.zero ⊢ squashGCF g Nat.zero = g [PROOFSTEP] case zero => change g.s.get? 0 = none at terminated_at_n simp only [convergents', squashGCF, convergents'Aux, terminated_at_n] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K terminated_at_n : TerminatedAt g Nat.zero ⊢ squashGCF g Nat.zero = g [PROOFSTEP] change g.s.get? 0 = none at terminated_at_n [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K terminated_at_n : Stream'.Seq.get? g.s 0 = none ⊢ squashGCF g Nat.zero = g [PROOFSTEP] simp only [convergents', squashGCF, convergents'Aux, terminated_at_n] [GOAL] case succ K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n✝ : ℕ terminated_at_n : TerminatedAt g (Nat.succ n✝) ⊢ squashGCF g (Nat.succ n✝) = g [PROOFSTEP] case succ => cases g simp only [squashGCF, mk.injEq, true_and] exact squashSeq_eq_self_of_terminated terminated_at_n [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n✝ : ℕ terminated_at_n : TerminatedAt g (Nat.succ n✝) ⊢ squashGCF g (Nat.succ n✝) = g [PROOFSTEP] case succ => cases g simp only [squashGCF, mk.injEq, true_and] exact squashSeq_eq_self_of_terminated terminated_at_n [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n✝ : ℕ terminated_at_n : TerminatedAt g (Nat.succ n✝) ⊢ squashGCF g (Nat.succ n✝) = g [PROOFSTEP] cases g [GOAL] case mk K : Type u_1 s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n✝ : ℕ h✝ : K s✝ : Stream'.Seq (Pair K) terminated_at_n : TerminatedAt { h := h✝, s := s✝ } (Nat.succ n✝) ⊢ squashGCF { h := h✝, s := s✝ } (Nat.succ n✝) = { h := h✝, s := s✝ } [PROOFSTEP] simp only [squashGCF, mk.injEq, true_and] [GOAL] case mk K : Type u_1 s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n✝ : ℕ h✝ : K s✝ : Stream'.Seq (Pair K) terminated_at_n : TerminatedAt { h := h✝, s := s✝ } (Nat.succ n✝) ⊢ squashSeq s✝ n✝ = s✝ [PROOFSTEP] exact squashSeq_eq_self_of_terminated terminated_at_n [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ m_lt_n : m < n ⊢ Stream'.Seq.get? (squashGCF g (n + 1)).s m = Stream'.Seq.get? g.s m [PROOFSTEP] simp only [squashGCF, squashSeq_nth_of_lt m_lt_n, Nat.add_eq, add_zero] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K ⊢ convergents' g (n + 1) = convergents' (squashGCF g n) n [PROOFSTEP] cases n [GOAL] case zero K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K ⊢ convergents' g (Nat.zero + 1) = convergents' (squashGCF g Nat.zero) Nat.zero case succ K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n✝ : ℕ ⊢ convergents' g (Nat.succ n✝ + 1) = convergents' (squashGCF g (Nat.succ n✝)) (Nat.succ n✝) [PROOFSTEP] case zero => cases g_s_head_eq : g.s.get? 0 <;> simp [g_s_head_eq, squashGCF, convergents', convergents'Aux, Stream'.Seq.head] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K ⊢ convergents' g (Nat.zero + 1) = convergents' (squashGCF g Nat.zero) Nat.zero [PROOFSTEP] case zero => cases g_s_head_eq : g.s.get? 0 <;> simp [g_s_head_eq, squashGCF, convergents', convergents'Aux, Stream'.Seq.head] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K ⊢ convergents' g (Nat.zero + 1) = convergents' (squashGCF g Nat.zero) Nat.zero [PROOFSTEP] cases g_s_head_eq : g.s.get? 0 [GOAL] case none K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K g_s_head_eq : Stream'.Seq.get? g.s 0 = none ⊢ convergents' g (Nat.zero + 1) = convergents' (squashGCF g Nat.zero) Nat.zero [PROOFSTEP] simp [g_s_head_eq, squashGCF, convergents', convergents'Aux, Stream'.Seq.head] [GOAL] case some K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K val✝ : Pair K g_s_head_eq : Stream'.Seq.get? g.s 0 = some val✝ ⊢ convergents' g (Nat.zero + 1) = convergents' (squashGCF g Nat.zero) Nat.zero [PROOFSTEP] simp [g_s_head_eq, squashGCF, convergents', convergents'Aux, Stream'.Seq.head] [GOAL] case succ K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n✝ : ℕ ⊢ convergents' g (Nat.succ n✝ + 1) = convergents' (squashGCF g (Nat.succ n✝)) (Nat.succ n✝) [PROOFSTEP] case succ => simp only [succ_succ_nth_convergent'_aux_eq_succ_nth_convergent'_aux_squashSeq, convergents', squashGCF] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n✝ : ℕ ⊢ convergents' g (Nat.succ n✝ + 1) = convergents' (squashGCF g (Nat.succ n✝)) (Nat.succ n✝) [PROOFSTEP] case succ => simp only [succ_succ_nth_convergent'_aux_eq_succ_nth_convergent'_aux_squashSeq, convergents', squashGCF] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n✝ : ℕ ⊢ convergents' g (Nat.succ n✝ + 1) = convergents' (squashGCF g (Nat.succ n✝)) (Nat.succ n✝) [PROOFSTEP] simp only [succ_succ_nth_convergent'_aux_eq_succ_nth_convergent'_aux_squashSeq, convergents', squashGCF] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ ⊢ ∀ (n_1 : ℕ), (∀ (m : ℕ), m < n_1 → m ≤ n → continuantsAux g m = continuantsAux (squashGCF g n) m) → n_1 ≤ n → continuantsAux g n_1 = continuantsAux (squashGCF g n) n_1 [PROOFSTEP] clear m [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K ⊢ ∀ (n_1 : ℕ), (∀ (m : ℕ), m < n_1 → m ≤ n → continuantsAux g m = continuantsAux (squashGCF g n) m) → n_1 ≤ n → continuantsAux g n_1 = continuantsAux (squashGCF g n) n_1 [PROOFSTEP] intro m IH m_le_n [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m : ℕ IH : ∀ (m_1 : ℕ), m_1 < m → m_1 ≤ n → continuantsAux g m_1 = continuantsAux (squashGCF g n) m_1 m_le_n : m ≤ n ⊢ continuantsAux g m = continuantsAux (squashGCF g n) m [PROOFSTEP] cases' m with m' [GOAL] case zero K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K IH : ∀ (m : ℕ), m < Nat.zero → m ≤ n → continuantsAux g m = continuantsAux (squashGCF g n) m m_le_n : Nat.zero ≤ n ⊢ continuantsAux g Nat.zero = continuantsAux (squashGCF g n) Nat.zero [PROOFSTEP] rfl [GOAL] case succ K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m' : ℕ IH : ∀ (m : ℕ), m < Nat.succ m' → m ≤ n → continuantsAux g m = continuantsAux (squashGCF g n) m m_le_n : Nat.succ m' ≤ n ⊢ continuantsAux g (Nat.succ m') = continuantsAux (squashGCF g n) (Nat.succ m') [PROOFSTEP] cases' n with n' [GOAL] case succ.zero K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m' : ℕ IH : ∀ (m : ℕ), m < Nat.succ m' → m ≤ Nat.zero → continuantsAux g m = continuantsAux (squashGCF g Nat.zero) m m_le_n : Nat.succ m' ≤ Nat.zero ⊢ continuantsAux g (Nat.succ m') = continuantsAux (squashGCF g Nat.zero) (Nat.succ m') [PROOFSTEP] exact (m'.not_succ_le_zero m_le_n).elim [GOAL] case succ.succ K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K m' n' : ℕ IH : ∀ (m : ℕ), m < Nat.succ m' → m ≤ Nat.succ n' → continuantsAux g m = continuantsAux (squashGCF g (Nat.succ n')) m m_le_n : Nat.succ m' ≤ Nat.succ n' ⊢ continuantsAux g (Nat.succ m') = continuantsAux (squashGCF g (Nat.succ n')) (Nat.succ m') [PROOFSTEP] cases' m' with m'' [GOAL] case succ.succ.zero K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n' : ℕ IH : ∀ (m : ℕ), m < Nat.succ Nat.zero → m ≤ Nat.succ n' → continuantsAux g m = continuantsAux (squashGCF g (Nat.succ n')) m m_le_n : Nat.succ Nat.zero ≤ Nat.succ n' ⊢ continuantsAux g (Nat.succ Nat.zero) = continuantsAux (squashGCF g (Nat.succ n')) (Nat.succ Nat.zero) [PROOFSTEP] rfl [GOAL] case succ.succ.succ K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n' m'' : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ m'') → m ≤ Nat.succ n' → continuantsAux g m = continuantsAux (squashGCF g (Nat.succ n')) m m_le_n : Nat.succ (Nat.succ m'') ≤ Nat.succ n' ⊢ continuantsAux g (Nat.succ (Nat.succ m'')) = continuantsAux (squashGCF g (Nat.succ n')) (Nat.succ (Nat.succ m'')) [PROOFSTEP] have m'_lt_n : m'' + 1 < n' + 1 := m_le_n [GOAL] case succ.succ.succ K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n' m'' : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ m'') → m ≤ Nat.succ n' → continuantsAux g m = continuantsAux (squashGCF g (Nat.succ n')) m m_le_n : Nat.succ (Nat.succ m'') ≤ Nat.succ n' m'_lt_n : m'' + 1 < n' + 1 ⊢ continuantsAux g (Nat.succ (Nat.succ m'')) = continuantsAux (squashGCF g (Nat.succ n')) (Nat.succ (Nat.succ m'')) [PROOFSTEP] have succ_m''th_conts_aux_eq := IH (m'' + 1) (lt_add_one (m'' + 1)) m'_lt_n.le [GOAL] case succ.succ.succ K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n' m'' : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ m'') → m ≤ Nat.succ n' → continuantsAux g m = continuantsAux (squashGCF g (Nat.succ n')) m m_le_n : Nat.succ (Nat.succ m'') ≤ Nat.succ n' m'_lt_n : m'' + 1 < n' + 1 succ_m''th_conts_aux_eq : continuantsAux g (m'' + 1) = continuantsAux (squashGCF g (Nat.succ n')) (m'' + 1) ⊢ continuantsAux g (Nat.succ (Nat.succ m'')) = continuantsAux (squashGCF g (Nat.succ n')) (Nat.succ (Nat.succ m'')) [PROOFSTEP] have : m'' < m'' + 2 := lt_add_of_pos_right m'' zero_lt_two [GOAL] case succ.succ.succ K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n' m'' : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ m'') → m ≤ Nat.succ n' → continuantsAux g m = continuantsAux (squashGCF g (Nat.succ n')) m m_le_n : Nat.succ (Nat.succ m'') ≤ Nat.succ n' m'_lt_n : m'' + 1 < n' + 1 succ_m''th_conts_aux_eq : continuantsAux g (m'' + 1) = continuantsAux (squashGCF g (Nat.succ n')) (m'' + 1) this : m'' < m'' + 2 ⊢ continuantsAux g (Nat.succ (Nat.succ m'')) = continuantsAux (squashGCF g (Nat.succ n')) (Nat.succ (Nat.succ m'')) [PROOFSTEP] have m''th_conts_aux_eq := IH m'' this (le_trans this.le m_le_n) [GOAL] case succ.succ.succ K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n' m'' : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ m'') → m ≤ Nat.succ n' → continuantsAux g m = continuantsAux (squashGCF g (Nat.succ n')) m m_le_n : Nat.succ (Nat.succ m'') ≤ Nat.succ n' m'_lt_n : m'' + 1 < n' + 1 succ_m''th_conts_aux_eq : continuantsAux g (m'' + 1) = continuantsAux (squashGCF g (Nat.succ n')) (m'' + 1) this : m'' < m'' + 2 m''th_conts_aux_eq : continuantsAux g m'' = continuantsAux (squashGCF g (Nat.succ n')) m'' ⊢ continuantsAux g (Nat.succ (Nat.succ m'')) = continuantsAux (squashGCF g (Nat.succ n')) (Nat.succ (Nat.succ m'')) [PROOFSTEP] have : (squashGCF g (n' + 1)).s.get? m'' = g.s.get? m'' := squashGCF_nth_of_lt (Nat.succ_lt_succ_iff.mp m'_lt_n) [GOAL] case succ.succ.succ K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : DivisionRing K n' m'' : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ m'') → m ≤ Nat.succ n' → continuantsAux g m = continuantsAux (squashGCF g (Nat.succ n')) m m_le_n : Nat.succ (Nat.succ m'') ≤ Nat.succ n' m'_lt_n : m'' + 1 < n' + 1 succ_m''th_conts_aux_eq : continuantsAux g (m'' + 1) = continuantsAux (squashGCF g (Nat.succ n')) (m'' + 1) this✝ : m'' < m'' + 2 m''th_conts_aux_eq : continuantsAux g m'' = continuantsAux (squashGCF g (Nat.succ n')) m'' this : Stream'.Seq.get? (squashGCF g (n' + 1)).s m'' = Stream'.Seq.get? g.s m'' ⊢ continuantsAux g (Nat.succ (Nat.succ m'')) = continuantsAux (squashGCF g (Nat.succ n')) (Nat.succ (Nat.succ m'')) [PROOFSTEP] simp [continuantsAux, succ_m''th_conts_aux_eq, m''th_conts_aux_eq, this] [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) n = some b → b ≠ 0 ⊢ convergents g (n + 1) = convergents (squashGCF g n) n [PROOFSTEP] cases' Decidable.em (g.TerminatedAt n) with terminated_at_n not_terminated_at_n [GOAL] case inl K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) n = some b → b ≠ 0 terminated_at_n : TerminatedAt g n ⊢ convergents g (n + 1) = convergents (squashGCF g n) n [PROOFSTEP] have : squashGCF g n = g := squashGCF_eq_self_of_terminated terminated_at_n [GOAL] case inl K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) n = some b → b ≠ 0 terminated_at_n : TerminatedAt g n this : squashGCF g n = g ⊢ convergents g (n + 1) = convergents (squashGCF g n) n [PROOFSTEP] simp only [this, convergents_stable_of_terminated n.le_succ terminated_at_n] [GOAL] case inr K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) n = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g n ⊢ convergents g (n + 1) = convergents (squashGCF g n) n [PROOFSTEP] obtain ⟨⟨a, b⟩, s_nth_eq⟩ : ∃ gp_n, g.s.get? n = some gp_n [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) n = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g n ⊢ ∃ gp_n, Stream'.Seq.get? g.s n = some gp_n case inr.intro.mk K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) n = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g n a b : K s_nth_eq : Stream'.Seq.get? g.s n = some { a := a, b := b } ⊢ convergents g (n + 1) = convergents (squashGCF g n) n [PROOFSTEP] exact Option.ne_none_iff_exists'.mp not_terminated_at_n [GOAL] case inr.intro.mk K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) n = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g n a b : K s_nth_eq : Stream'.Seq.get? g.s n = some { a := a, b := b } ⊢ convergents g (n + 1) = convergents (squashGCF g n) n [PROOFSTEP] have b_ne_zero : b ≠ 0 := nth_part_denom_ne_zero (part_denom_eq_s_b s_nth_eq) [GOAL] case inr.intro.mk K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) n = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g n a b : K s_nth_eq : Stream'.Seq.get? g.s n = some { a := a, b := b } b_ne_zero : b ≠ 0 ⊢ convergents g (n + 1) = convergents (squashGCF g n) n [PROOFSTEP] cases' n with n' [GOAL] case inr.intro.mk.zero K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) Nat.zero = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g Nat.zero s_nth_eq : Stream'.Seq.get? g.s Nat.zero = some { a := a, b := b } ⊢ convergents g (Nat.zero + 1) = convergents (squashGCF g Nat.zero) Nat.zero case inr.intro.mk.succ K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] case zero => suffices (b * g.h + a) / b = g.h + a / b by simpa [squashGCF, s_nth_eq, convergent_eq_conts_a_div_conts_b, continuants_recurrenceAux s_nth_eq zeroth_continuant_aux_eq_one_zero first_continuant_aux_eq_h_one] calc (b * g.h + a) / b = b * g.h / b + a / b := by ring -- requires `Field`, not `DivisionRing` _ = g.h + a / b := by rw [mul_div_cancel_left _ b_ne_zero] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) Nat.zero = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g Nat.zero s_nth_eq : Stream'.Seq.get? g.s Nat.zero = some { a := a, b := b } ⊢ convergents g (Nat.zero + 1) = convergents (squashGCF g Nat.zero) Nat.zero [PROOFSTEP] case zero => suffices (b * g.h + a) / b = g.h + a / b by simpa [squashGCF, s_nth_eq, convergent_eq_conts_a_div_conts_b, continuants_recurrenceAux s_nth_eq zeroth_continuant_aux_eq_one_zero first_continuant_aux_eq_h_one] calc (b * g.h + a) / b = b * g.h / b + a / b := by ring -- requires `Field`, not `DivisionRing` _ = g.h + a / b := by rw [mul_div_cancel_left _ b_ne_zero] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) Nat.zero = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g Nat.zero s_nth_eq : Stream'.Seq.get? g.s Nat.zero = some { a := a, b := b } ⊢ convergents g (Nat.zero + 1) = convergents (squashGCF g Nat.zero) Nat.zero [PROOFSTEP] suffices (b * g.h + a) / b = g.h + a / b by simpa [squashGCF, s_nth_eq, convergent_eq_conts_a_div_conts_b, continuants_recurrenceAux s_nth_eq zeroth_continuant_aux_eq_one_zero first_continuant_aux_eq_h_one] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) Nat.zero = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g Nat.zero s_nth_eq : Stream'.Seq.get? g.s Nat.zero = some { a := a, b := b } this : (b * g.h + a) / b = g.h + a / b ⊢ convergents g (Nat.zero + 1) = convergents (squashGCF g Nat.zero) Nat.zero [PROOFSTEP] simpa [squashGCF, s_nth_eq, convergent_eq_conts_a_div_conts_b, continuants_recurrenceAux s_nth_eq zeroth_continuant_aux_eq_one_zero first_continuant_aux_eq_h_one] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) Nat.zero = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g Nat.zero s_nth_eq : Stream'.Seq.get? g.s Nat.zero = some { a := a, b := b } ⊢ (b * g.h + a) / b = g.h + a / b [PROOFSTEP] calc (b * g.h + a) / b = b * g.h / b + a / b := by ring -- requires `Field`, not `DivisionRing` _ = g.h + a / b := by rw [mul_div_cancel_left _ b_ne_zero] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) Nat.zero = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g Nat.zero s_nth_eq : Stream'.Seq.get? g.s Nat.zero = some { a := a, b := b } ⊢ (b * g.h + a) / b = b * g.h / b + a / b [PROOFSTEP] ring -- requires `Field`, not `DivisionRing` [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) Nat.zero = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g Nat.zero s_nth_eq : Stream'.Seq.get? g.s Nat.zero = some { a := a, b := b } ⊢ b * g.h / b + a / b = g.h + a / b [PROOFSTEP] rw [mul_div_cancel_left _ b_ne_zero] [GOAL] case inr.intro.mk.succ K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] case succ => obtain ⟨⟨pa, pb⟩, s_n'th_eq⟩ : ∃ gp_n', g.s.get? n' = some gp_n' := g.s.ge_stable n'.le_succ s_nth_eq let g' := squashGCF g (n' + 1) set pred_conts := g.continuantsAux (n' + 1) with succ_n'th_conts_aux_eq set ppred_conts := g.continuantsAux n' with n'th_conts_aux_eq let pA := pred_conts.a let pB := pred_conts.b let ppA := ppred_conts.a let ppB := ppred_conts.b set pred_conts' := g'.continuantsAux (n' + 1) with succ_n'th_conts_aux_eq' set ppred_conts' := g'.continuantsAux n' with n'th_conts_aux_eq' let pA' := pred_conts'.a let pB' := pred_conts'.b let ppA' := ppred_conts'.a let ppB' := ppred_conts'.b have : g'.convergents (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') := by have : g'.s.get? n' = some ⟨pa, pb + a / b⟩ := squashSeq_nth_of_not_terminated s_n'th_eq s_nth_eq rw [convergent_eq_conts_a_div_conts_b, continuants_recurrenceAux this n'th_conts_aux_eq'.symm succ_n'th_conts_aux_eq'.symm] rw [this] -- then compute the convergent of the original gcf by recursively unfolding the continuants -- computation twice have : g.convergents (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) := by -- use the recurrence once have : g.continuantsAux (n' + 2) = ⟨pb * pA + pa * ppA, pb * pB + pa * ppB⟩ := continuantsAux_recurrence s_n'th_eq n'th_conts_aux_eq.symm succ_n'th_conts_aux_eq.symm rw [convergent_eq_conts_a_div_conts_b, continuants_recurrenceAux s_nth_eq succ_n'th_conts_aux_eq.symm this] rw [this] suffices ((pb + a / b) * pA + pa * ppA) / ((pb + a / b) * pB + pa * ppB) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) by obtain ⟨eq1, eq2, eq3, eq4⟩ : pA' = pA ∧ pB' = pB ∧ ppA' = ppA ∧ ppB' = ppB := by simp [*, (continuantsAux_eq_continuantsAux_squashGCF_of_le <| le_refl <| n' + 1).symm, (continuantsAux_eq_continuantsAux_squashGCF_of_le n'.le_succ).symm] symm simpa only [eq1, eq2, eq3, eq4, mul_div_cancel _ b_ne_zero] field_simp congr 1 <;> ring [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] case succ => obtain ⟨⟨pa, pb⟩, s_n'th_eq⟩ : ∃ gp_n', g.s.get? n' = some gp_n' := g.s.ge_stable n'.le_succ s_nth_eq let g' := squashGCF g (n' + 1) set pred_conts := g.continuantsAux (n' + 1) with succ_n'th_conts_aux_eq set ppred_conts := g.continuantsAux n' with n'th_conts_aux_eq let pA := pred_conts.a let pB := pred_conts.b let ppA := ppred_conts.a let ppB := ppred_conts.b set pred_conts' := g'.continuantsAux (n' + 1) with succ_n'th_conts_aux_eq' set ppred_conts' := g'.continuantsAux n' with n'th_conts_aux_eq' let pA' := pred_conts'.a let pB' := pred_conts'.b let ppA' := ppred_conts'.a let ppB' := ppred_conts'.b have : g'.convergents (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') := by have : g'.s.get? n' = some ⟨pa, pb + a / b⟩ := squashSeq_nth_of_not_terminated s_n'th_eq s_nth_eq rw [convergent_eq_conts_a_div_conts_b, continuants_recurrenceAux this n'th_conts_aux_eq'.symm succ_n'th_conts_aux_eq'.symm] rw [this] -- then compute the convergent of the original gcf by recursively unfolding the continuants -- computation twice have : g.convergents (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) := by -- use the recurrence once have : g.continuantsAux (n' + 2) = ⟨pb * pA + pa * ppA, pb * pB + pa * ppB⟩ := continuantsAux_recurrence s_n'th_eq n'th_conts_aux_eq.symm succ_n'th_conts_aux_eq.symm rw [convergent_eq_conts_a_div_conts_b, continuants_recurrenceAux s_nth_eq succ_n'th_conts_aux_eq.symm this] rw [this] suffices ((pb + a / b) * pA + pa * ppA) / ((pb + a / b) * pB + pa * ppB) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) by obtain ⟨eq1, eq2, eq3, eq4⟩ : pA' = pA ∧ pB' = pB ∧ ppA' = ppA ∧ ppB' = ppB := by simp [*, (continuantsAux_eq_continuantsAux_squashGCF_of_le <| le_refl <| n' + 1).symm, (continuantsAux_eq_continuantsAux_squashGCF_of_le n'.le_succ).symm] symm simpa only [eq1, eq2, eq3, eq4, mul_div_cancel _ b_ne_zero] field_simp congr 1 <;> ring [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] obtain ⟨⟨pa, pb⟩, s_n'th_eq⟩ : ∃ gp_n', g.s.get? n' = some gp_n' := g.s.ge_stable n'.le_succ s_nth_eq [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] let g' := squashGCF g (n' + 1) [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] set pred_conts := g.continuantsAux (n' + 1) with succ_n'th_conts_aux_eq [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] set ppred_conts := g.continuantsAux n' with n'th_conts_aux_eq [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] let pA := pred_conts.a [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] let pB := pred_conts.b [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] let ppA := ppred_conts.a [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] let ppB := ppred_conts.b [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] set pred_conts' := g'.continuantsAux (n' + 1) with succ_n'th_conts_aux_eq' [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] set ppred_conts' := g'.continuantsAux n' with n'th_conts_aux_eq' [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] let pA' := pred_conts'.a [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] let pB' := pred_conts'.b [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] let ppA' := ppred_conts'.a [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] let ppB' := ppred_conts'.b [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] have : g'.convergents (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') := by have : g'.s.get? n' = some ⟨pa, pb + a / b⟩ := squashSeq_nth_of_not_terminated s_n'th_eq s_nth_eq rw [convergent_eq_conts_a_div_conts_b, continuants_recurrenceAux this n'th_conts_aux_eq'.symm succ_n'th_conts_aux_eq'.symm] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b ⊢ convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') [PROOFSTEP] have : g'.s.get? n' = some ⟨pa, pb + a / b⟩ := squashSeq_nth_of_not_terminated s_n'th_eq s_nth_eq [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this : Stream'.Seq.get? g'.s n' = some { a := pa, b := pb + a / b } ⊢ convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') [PROOFSTEP] rw [convergent_eq_conts_a_div_conts_b, continuants_recurrenceAux this n'th_conts_aux_eq'.symm succ_n'th_conts_aux_eq'.symm] [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') ⊢ convergents g (Nat.succ n' + 1) = convergents (squashGCF g (Nat.succ n')) (Nat.succ n') [PROOFSTEP] rw [this] -- then compute the convergent of the original gcf by recursively unfolding the continuants -- computation twice [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') ⊢ convergents g (Nat.succ n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') [PROOFSTEP] have : g.convergents (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) := by -- use the recurrence once have : g.continuantsAux (n' + 2) = ⟨pb * pA + pa * ppA, pb * pB + pa * ppB⟩ := continuantsAux_recurrence s_n'th_eq n'th_conts_aux_eq.symm succ_n'th_conts_aux_eq.symm rw [convergent_eq_conts_a_div_conts_b, continuants_recurrenceAux s_nth_eq succ_n'th_conts_aux_eq.symm this] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') ⊢ convergents g (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) [PROOFSTEP] have : g.continuantsAux (n' + 2) = ⟨pb * pA + pa * ppA, pb * pB + pa * ppB⟩ := continuantsAux_recurrence s_n'th_eq n'th_conts_aux_eq.symm succ_n'th_conts_aux_eq.symm [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this✝ : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') this : continuantsAux g (n' + 2) = { a := pb * pA + pa * ppA, b := pb * pB + pa * ppB } ⊢ convergents g (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) [PROOFSTEP] rw [convergent_eq_conts_a_div_conts_b, continuants_recurrenceAux s_nth_eq succ_n'th_conts_aux_eq.symm this] [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this✝ : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') this : convergents g (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) ⊢ convergents g (Nat.succ n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') [PROOFSTEP] rw [this] [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this✝ : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') this : convergents g (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) ⊢ (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') [PROOFSTEP] suffices ((pb + a / b) * pA + pa * ppA) / ((pb + a / b) * pB + pa * ppB) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) by obtain ⟨eq1, eq2, eq3, eq4⟩ : pA' = pA ∧ pB' = pB ∧ ppA' = ppA ∧ ppB' = ppB := by simp [*, (continuantsAux_eq_continuantsAux_squashGCF_of_le <| le_refl <| n' + 1).symm, (continuantsAux_eq_continuantsAux_squashGCF_of_le n'.le_succ).symm] symm simpa only [eq1, eq2, eq3, eq4, mul_div_cancel _ b_ne_zero] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this✝¹ : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') this✝ : convergents g (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) this : ((pb + a / b) * pA + pa * ppA) / ((pb + a / b) * pB + pa * ppB) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) ⊢ (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') [PROOFSTEP] obtain ⟨eq1, eq2, eq3, eq4⟩ : pA' = pA ∧ pB' = pB ∧ ppA' = ppA ∧ ppB' = ppB := by simp [*, (continuantsAux_eq_continuantsAux_squashGCF_of_le <| le_refl <| n' + 1).symm, (continuantsAux_eq_continuantsAux_squashGCF_of_le n'.le_succ).symm] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this✝¹ : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') this✝ : convergents g (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) this : ((pb + a / b) * pA + pa * ppA) / ((pb + a / b) * pB + pa * ppB) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) ⊢ pA' = pA ∧ pB' = pB ∧ ppA' = ppA ∧ ppB' = ppB [PROOFSTEP] simp [*, (continuantsAux_eq_continuantsAux_squashGCF_of_le <| le_refl <| n' + 1).symm, (continuantsAux_eq_continuantsAux_squashGCF_of_le n'.le_succ).symm] [GOAL] case intro.intro.intro K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this✝¹ : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') this✝ : convergents g (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) this : ((pb + a / b) * pA + pa * ppA) / ((pb + a / b) * pB + pa * ppB) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) eq1 : pA' = pA eq2 : pB' = pB eq3 : ppA' = ppA eq4 : ppB' = ppB ⊢ (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') [PROOFSTEP] symm [GOAL] case intro.intro.intro K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this✝¹ : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') this✝ : convergents g (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) this : ((pb + a / b) * pA + pa * ppA) / ((pb + a / b) * pB + pa * ppB) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) eq1 : pA' = pA eq2 : pB' = pB eq3 : ppA' = ppA eq4 : ppB' = ppB ⊢ ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) [PROOFSTEP] simpa only [eq1, eq2, eq3, eq4, mul_div_cancel _ b_ne_zero] [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this✝ : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') this : convergents g (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) ⊢ ((pb + a / b) * pA + pa * ppA) / ((pb + a / b) * pB + pa * ppB) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) [PROOFSTEP] field_simp [GOAL] case intro.mk K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this✝ : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') this : convergents g (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) ⊢ ((pb * b + a) * (continuantsAux g (n' + 1)).a + pa * (continuantsAux g n').a * b) / ((pb * b + a) * (continuantsAux g (n' + 1)).b + pa * (continuantsAux g n').b * b) = (b * (pb * (continuantsAux g (n' + 1)).a + pa * (continuantsAux g n').a) + a * (continuantsAux g (n' + 1)).a) / (b * (pb * (continuantsAux g (n' + 1)).b + pa * (continuantsAux g n').b) + a * (continuantsAux g (n' + 1)).b) [PROOFSTEP] congr 1 [GOAL] case intro.mk.e_a K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this✝ : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') this : convergents g (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) ⊢ (pb * b + a) * (continuantsAux g (n' + 1)).a + pa * (continuantsAux g n').a * b = b * (pb * (continuantsAux g (n' + 1)).a + pa * (continuantsAux g n').a) + a * (continuantsAux g (n' + 1)).a [PROOFSTEP] ring [GOAL] case intro.mk.e_a K : Type u_1 g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : Field K a b : K b_ne_zero : b ≠ 0 n' : ℕ nth_part_denom_ne_zero : ∀ {b : K}, Stream'.Seq.get? (partialDenominators g) (Nat.succ n') = some b → b ≠ 0 not_terminated_at_n : ¬TerminatedAt g (Nat.succ n') s_nth_eq : Stream'.Seq.get? g.s (Nat.succ n') = some { a := a, b := b } pa pb : K s_n'th_eq : Stream'.Seq.get? g.s n' = some { a := pa, b := pb } g' : GeneralizedContinuedFraction K := squashGCF g (n' + 1) pred_conts : Pair K := continuantsAux g (n' + 1) succ_n'th_conts_aux_eq : pred_conts = continuantsAux g (n' + 1) ppred_conts : Pair K := continuantsAux g n' n'th_conts_aux_eq : ppred_conts = continuantsAux g n' pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b pred_conts' : Pair K := continuantsAux g' (n' + 1) succ_n'th_conts_aux_eq' : pred_conts' = continuantsAux g' (n' + 1) ppred_conts' : Pair K := continuantsAux g' n' n'th_conts_aux_eq' : ppred_conts' = continuantsAux g' n' pA' : K := pred_conts'.a pB' : K := pred_conts'.b ppA' : K := ppred_conts'.a ppB' : K := ppred_conts'.b this✝ : convergents g' (n' + 1) = ((pb + a / b) * pA' + pa * ppA') / ((pb + a / b) * pB' + pa * ppB') this : convergents g (n' + 2) = (b * (pb * pA + pa * ppA) + a * pA) / (b * (pb * pB + pa * ppB) + a * pB) ⊢ (pb * b + a) * (continuantsAux g (n' + 1)).b + pa * (continuantsAux g n').b * b = b * (pb * (continuantsAux g (n' + 1)).b + pa * (continuantsAux g n').b) + a * (continuantsAux g (n' + 1)).b [PROOFSTEP] ring [GOAL] K : Type u_1 n : ℕ g : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b ⊢ convergents g n = convergents' g n [PROOFSTEP] induction' n with n IH generalizing g [GOAL] case zero K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.zero → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b ⊢ convergents g Nat.zero = convergents' g Nat.zero case succ K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b ⊢ convergents g (Nat.succ n) = convergents' g (Nat.succ n) [PROOFSTEP] case zero => simp [GOAL] K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.zero → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b ⊢ convergents g Nat.zero = convergents' g Nat.zero [PROOFSTEP] case zero => simp [GOAL] K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.zero → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b ⊢ convergents g Nat.zero = convergents' g Nat.zero [PROOFSTEP] simp [GOAL] case succ K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b ⊢ convergents g (Nat.succ n) = convergents' g (Nat.succ n) [PROOFSTEP] case succ => let g' := squashGCF g n suffices g.convergents (n + 1) = g'.convergents' n by rwa [succ_nth_convergent'_eq_squashGCF_nth_convergent'] cases' Decidable.em (TerminatedAt g n) with terminated_at_n not_terminated_at_n · have g'_eq_g : g' = g := squashGCF_eq_self_of_terminated terminated_at_n rw [convergents_stable_of_terminated n.le_succ terminated_at_n, g'_eq_g, IH _] intro _ _ m_lt_n s_mth_eq exact s_pos (Nat.lt.step m_lt_n) s_mth_eq · suffices g.convergents (n + 1) = g'.convergents n by -- invoke the IH for the squashed gcf rwa [← IH] intro gp' m m_lt_n s_mth_eq' cases' m_lt_n with n succ_m_lt_n · -- the difficult case at the squashed position: we first obtain the values from -- the sequence obtain ⟨gp_succ_m, s_succ_mth_eq⟩ : ∃ gp_succ_m, g.s.get? (m + 1) = some gp_succ_m exact Option.ne_none_iff_exists'.mp not_terminated_at_n obtain ⟨gp_m, mth_s_eq⟩ : ∃ gp_m, g.s.get? m = some gp_m exact g.s.ge_stable m.le_succ s_succ_mth_eq suffices 0 < gp_m.a ∧ 0 < gp_m.b + gp_succ_m.a / gp_succ_m.b by have ot : g'.s.get? m = some ⟨gp_m.a, gp_m.b + gp_succ_m.a / gp_succ_m.b⟩ := squashSeq_nth_of_not_terminated mth_s_eq s_succ_mth_eq have : gp' = ⟨gp_m.a, gp_m.b + gp_succ_m.a / gp_succ_m.b⟩ := by simp_all only [Option.some.injEq] rwa [this] have m_lt_n : m < m.succ := Nat.lt_succ_self m refine' ⟨(s_pos (Nat.lt.step m_lt_n) mth_s_eq).left, _⟩ refine' add_pos (s_pos (Nat.lt.step m_lt_n) mth_s_eq).right _ have : 0 < gp_succ_m.a ∧ 0 < gp_succ_m.b := s_pos (lt_add_one <| m + 1) s_succ_mth_eq exact div_pos this.left this.right · -- the easy case: before the squashed position, nothing changes refine' s_pos (Nat.lt.step <| Nat.lt.step succ_m_lt_n) _ exact Eq.trans (squashGCF_nth_of_lt succ_m_lt_n).symm s_mth_eq' have : ∀ ⦃b⦄, g.partialDenominators.get? n = some b → b ≠ 0 := by intro b nth_part_denom_eq obtain ⟨gp, s_nth_eq, ⟨refl⟩⟩ : ∃ gp, g.s.get? n = some gp ∧ gp.b = b exact exists_s_b_of_part_denom nth_part_denom_eq exact (ne_of_lt (s_pos (lt_add_one n) s_nth_eq).right).symm exact succ_nth_convergent_eq_squashGCF_nth_convergent @this [GOAL] K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b ⊢ convergents g (Nat.succ n) = convergents' g (Nat.succ n) [PROOFSTEP] case succ => let g' := squashGCF g n suffices g.convergents (n + 1) = g'.convergents' n by rwa [succ_nth_convergent'_eq_squashGCF_nth_convergent'] cases' Decidable.em (TerminatedAt g n) with terminated_at_n not_terminated_at_n · have g'_eq_g : g' = g := squashGCF_eq_self_of_terminated terminated_at_n rw [convergents_stable_of_terminated n.le_succ terminated_at_n, g'_eq_g, IH _] intro _ _ m_lt_n s_mth_eq exact s_pos (Nat.lt.step m_lt_n) s_mth_eq · suffices g.convergents (n + 1) = g'.convergents n by -- invoke the IH for the squashed gcf rwa [← IH] intro gp' m m_lt_n s_mth_eq' cases' m_lt_n with n succ_m_lt_n · -- the difficult case at the squashed position: we first obtain the values from -- the sequence obtain ⟨gp_succ_m, s_succ_mth_eq⟩ : ∃ gp_succ_m, g.s.get? (m + 1) = some gp_succ_m exact Option.ne_none_iff_exists'.mp not_terminated_at_n obtain ⟨gp_m, mth_s_eq⟩ : ∃ gp_m, g.s.get? m = some gp_m exact g.s.ge_stable m.le_succ s_succ_mth_eq suffices 0 < gp_m.a ∧ 0 < gp_m.b + gp_succ_m.a / gp_succ_m.b by have ot : g'.s.get? m = some ⟨gp_m.a, gp_m.b + gp_succ_m.a / gp_succ_m.b⟩ := squashSeq_nth_of_not_terminated mth_s_eq s_succ_mth_eq have : gp' = ⟨gp_m.a, gp_m.b + gp_succ_m.a / gp_succ_m.b⟩ := by simp_all only [Option.some.injEq] rwa [this] have m_lt_n : m < m.succ := Nat.lt_succ_self m refine' ⟨(s_pos (Nat.lt.step m_lt_n) mth_s_eq).left, _⟩ refine' add_pos (s_pos (Nat.lt.step m_lt_n) mth_s_eq).right _ have : 0 < gp_succ_m.a ∧ 0 < gp_succ_m.b := s_pos (lt_add_one <| m + 1) s_succ_mth_eq exact div_pos this.left this.right · -- the easy case: before the squashed position, nothing changes refine' s_pos (Nat.lt.step <| Nat.lt.step succ_m_lt_n) _ exact Eq.trans (squashGCF_nth_of_lt succ_m_lt_n).symm s_mth_eq' have : ∀ ⦃b⦄, g.partialDenominators.get? n = some b → b ≠ 0 := by intro b nth_part_denom_eq obtain ⟨gp, s_nth_eq, ⟨refl⟩⟩ : ∃ gp, g.s.get? n = some gp ∧ gp.b = b exact exists_s_b_of_part_denom nth_part_denom_eq exact (ne_of_lt (s_pos (lt_add_one n) s_nth_eq).right).symm exact succ_nth_convergent_eq_squashGCF_nth_convergent @this [GOAL] K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b ⊢ convergents g (Nat.succ n) = convergents' g (Nat.succ n) [PROOFSTEP] let g' := squashGCF g n [GOAL] K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n ⊢ convergents g (Nat.succ n) = convergents' g (Nat.succ n) [PROOFSTEP] suffices g.convergents (n + 1) = g'.convergents' n by rwa [succ_nth_convergent'_eq_squashGCF_nth_convergent'] [GOAL] K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n this : convergents g (n + 1) = convergents' g' n ⊢ convergents g (Nat.succ n) = convergents' g (Nat.succ n) [PROOFSTEP] rwa [succ_nth_convergent'_eq_squashGCF_nth_convergent'] [GOAL] K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n ⊢ convergents g (n + 1) = convergents' g' n [PROOFSTEP] cases' Decidable.em (TerminatedAt g n) with terminated_at_n not_terminated_at_n [GOAL] case inl K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n terminated_at_n : TerminatedAt g n ⊢ convergents g (n + 1) = convergents' g' n [PROOFSTEP] have g'_eq_g : g' = g := squashGCF_eq_self_of_terminated terminated_at_n [GOAL] case inl K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n terminated_at_n : TerminatedAt g n g'_eq_g : g' = g ⊢ convergents g (n + 1) = convergents' g' n [PROOFSTEP] rw [convergents_stable_of_terminated n.le_succ terminated_at_n, g'_eq_g, IH _] [GOAL] K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n terminated_at_n : TerminatedAt g n g'_eq_g : g' = g ⊢ ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b [PROOFSTEP] intro _ _ m_lt_n s_mth_eq [GOAL] K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n terminated_at_n : TerminatedAt g n g'_eq_g : g' = g gp✝ : Pair K m✝ : ℕ m_lt_n : m✝ < n s_mth_eq : Stream'.Seq.get? g.s m✝ = some gp✝ ⊢ 0 < gp✝.a ∧ 0 < gp✝.b [PROOFSTEP] exact s_pos (Nat.lt.step m_lt_n) s_mth_eq [GOAL] case inr K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n not_terminated_at_n : ¬TerminatedAt g n ⊢ convergents g (n + 1) = convergents' g' n [PROOFSTEP] suffices g.convergents (n + 1) = g'.convergents n by -- invoke the IH for the squashed gcf rwa [← IH] intro gp' m m_lt_n s_mth_eq' cases' m_lt_n with n succ_m_lt_n · -- the difficult case at the squashed position: we first obtain the values from -- the sequence obtain ⟨gp_succ_m, s_succ_mth_eq⟩ : ∃ gp_succ_m, g.s.get? (m + 1) = some gp_succ_m exact Option.ne_none_iff_exists'.mp not_terminated_at_n obtain ⟨gp_m, mth_s_eq⟩ : ∃ gp_m, g.s.get? m = some gp_m exact g.s.ge_stable m.le_succ s_succ_mth_eq suffices 0 < gp_m.a ∧ 0 < gp_m.b + gp_succ_m.a / gp_succ_m.b by have ot : g'.s.get? m = some ⟨gp_m.a, gp_m.b + gp_succ_m.a / gp_succ_m.b⟩ := squashSeq_nth_of_not_terminated mth_s_eq s_succ_mth_eq have : gp' = ⟨gp_m.a, gp_m.b + gp_succ_m.a / gp_succ_m.b⟩ := by simp_all only [Option.some.injEq] rwa [this] have m_lt_n : m < m.succ := Nat.lt_succ_self m refine' ⟨(s_pos (Nat.lt.step m_lt_n) mth_s_eq).left, _⟩ refine' add_pos (s_pos (Nat.lt.step m_lt_n) mth_s_eq).right _ have : 0 < gp_succ_m.a ∧ 0 < gp_succ_m.b := s_pos (lt_add_one <| m + 1) s_succ_mth_eq exact div_pos this.left this.right · -- the easy case: before the squashed position, nothing changes refine' s_pos (Nat.lt.step <| Nat.lt.step succ_m_lt_n) _ exact Eq.trans (squashGCF_nth_of_lt succ_m_lt_n).symm s_mth_eq' [GOAL] K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n not_terminated_at_n : ¬TerminatedAt g n this : convergents g (n + 1) = convergents g' n ⊢ convergents g (n + 1) = convergents' g' n [PROOFSTEP] rwa [← IH] [GOAL] K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n not_terminated_at_n : ¬TerminatedAt g n this : convergents g (n + 1) = convergents g' n ⊢ ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g'.s m = some gp → 0 < gp.a ∧ 0 < gp.b [PROOFSTEP] intro gp' m m_lt_n s_mth_eq' [GOAL] K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n not_terminated_at_n : ¬TerminatedAt g n this : convergents g (n + 1) = convergents g' n gp' : Pair K m : ℕ m_lt_n : m < n s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' ⊢ 0 < gp'.a ∧ 0 < gp'.b [PROOFSTEP] cases' m_lt_n with n succ_m_lt_n [GOAL] case refl K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' ⊢ 0 < gp'.a ∧ 0 < gp'.b [PROOFSTEP] obtain ⟨gp_succ_m, s_succ_mth_eq⟩ : ∃ gp_succ_m, g.s.get? (m + 1) = some gp_succ_m [GOAL] K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' ⊢ ∃ gp_succ_m, Stream'.Seq.get? g.s (m + 1) = some gp_succ_m case refl.intro K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m ⊢ 0 < gp'.a ∧ 0 < gp'.b [PROOFSTEP] exact Option.ne_none_iff_exists'.mp not_terminated_at_n [GOAL] case refl.intro K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m ⊢ 0 < gp'.a ∧ 0 < gp'.b [PROOFSTEP] obtain ⟨gp_m, mth_s_eq⟩ : ∃ gp_m, g.s.get? m = some gp_m [GOAL] K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m ⊢ ∃ gp_m, Stream'.Seq.get? g.s m = some gp_m case refl.intro.intro K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m gp_m : Pair K mth_s_eq : Stream'.Seq.get? g.s m = some gp_m ⊢ 0 < gp'.a ∧ 0 < gp'.b [PROOFSTEP] exact g.s.ge_stable m.le_succ s_succ_mth_eq [GOAL] case refl.intro.intro K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m gp_m : Pair K mth_s_eq : Stream'.Seq.get? g.s m = some gp_m ⊢ 0 < gp'.a ∧ 0 < gp'.b [PROOFSTEP] suffices 0 < gp_m.a ∧ 0 < gp_m.b + gp_succ_m.a / gp_succ_m.b by have ot : g'.s.get? m = some ⟨gp_m.a, gp_m.b + gp_succ_m.a / gp_succ_m.b⟩ := squashSeq_nth_of_not_terminated mth_s_eq s_succ_mth_eq have : gp' = ⟨gp_m.a, gp_m.b + gp_succ_m.a / gp_succ_m.b⟩ := by simp_all only [Option.some.injEq] rwa [this] [GOAL] K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this✝ : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m gp_m : Pair K mth_s_eq : Stream'.Seq.get? g.s m = some gp_m this : 0 < gp_m.a ∧ 0 < gp_m.b + gp_succ_m.a / gp_succ_m.b ⊢ 0 < gp'.a ∧ 0 < gp'.b [PROOFSTEP] have ot : g'.s.get? m = some ⟨gp_m.a, gp_m.b + gp_succ_m.a / gp_succ_m.b⟩ := squashSeq_nth_of_not_terminated mth_s_eq s_succ_mth_eq [GOAL] K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this✝ : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m gp_m : Pair K mth_s_eq : Stream'.Seq.get? g.s m = some gp_m this : 0 < gp_m.a ∧ 0 < gp_m.b + gp_succ_m.a / gp_succ_m.b ot : Stream'.Seq.get? g'.s m = some { a := gp_m.a, b := gp_m.b + gp_succ_m.a / gp_succ_m.b } ⊢ 0 < gp'.a ∧ 0 < gp'.b [PROOFSTEP] have : gp' = ⟨gp_m.a, gp_m.b + gp_succ_m.a / gp_succ_m.b⟩ := by simp_all only [Option.some.injEq] [GOAL] K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this✝ : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m gp_m : Pair K mth_s_eq : Stream'.Seq.get? g.s m = some gp_m this : 0 < gp_m.a ∧ 0 < gp_m.b + gp_succ_m.a / gp_succ_m.b ot : Stream'.Seq.get? g'.s m = some { a := gp_m.a, b := gp_m.b + gp_succ_m.a / gp_succ_m.b } ⊢ gp' = { a := gp_m.a, b := gp_m.b + gp_succ_m.a / gp_succ_m.b } [PROOFSTEP] simp_all only [Option.some.injEq] [GOAL] K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this✝¹ : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m gp_m : Pair K mth_s_eq : Stream'.Seq.get? g.s m = some gp_m this✝ : 0 < gp_m.a ∧ 0 < gp_m.b + gp_succ_m.a / gp_succ_m.b ot : Stream'.Seq.get? g'.s m = some { a := gp_m.a, b := gp_m.b + gp_succ_m.a / gp_succ_m.b } this : gp' = { a := gp_m.a, b := gp_m.b + gp_succ_m.a / gp_succ_m.b } ⊢ 0 < gp'.a ∧ 0 < gp'.b [PROOFSTEP] rwa [this] [GOAL] case refl.intro.intro K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m gp_m : Pair K mth_s_eq : Stream'.Seq.get? g.s m = some gp_m ⊢ 0 < gp_m.a ∧ 0 < gp_m.b + gp_succ_m.a / gp_succ_m.b [PROOFSTEP] have m_lt_n : m < m.succ := Nat.lt_succ_self m [GOAL] case refl.intro.intro K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m gp_m : Pair K mth_s_eq : Stream'.Seq.get? g.s m = some gp_m m_lt_n : m < Nat.succ m ⊢ 0 < gp_m.a ∧ 0 < gp_m.b + gp_succ_m.a / gp_succ_m.b [PROOFSTEP] refine' ⟨(s_pos (Nat.lt.step m_lt_n) mth_s_eq).left, _⟩ [GOAL] case refl.intro.intro K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m gp_m : Pair K mth_s_eq : Stream'.Seq.get? g.s m = some gp_m m_lt_n : m < Nat.succ m ⊢ 0 < gp_m.b + gp_succ_m.a / gp_succ_m.b [PROOFSTEP] refine' add_pos (s_pos (Nat.lt.step m_lt_n) mth_s_eq).right _ [GOAL] case refl.intro.intro K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m gp_m : Pair K mth_s_eq : Stream'.Seq.get? g.s m = some gp_m m_lt_n : m < Nat.succ m ⊢ 0 < gp_succ_m.a / gp_succ_m.b [PROOFSTEP] have : 0 < gp_succ_m.a ∧ 0 < gp_succ_m.b := s_pos (lt_add_one <| m + 1) s_succ_mth_eq [GOAL] case refl.intro.intro K : Type u_1 n : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ m → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ m) = convergents' g (Nat.succ m) s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < Nat.succ (Nat.succ m) → Stream'.Seq.get? g.s m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ m) not_terminated_at_n : ¬TerminatedAt g (Nat.succ m) this✝ : convergents g (Nat.succ m + 1) = convergents g' (Nat.succ m) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' gp_succ_m : Pair K s_succ_mth_eq : Stream'.Seq.get? g.s (m + 1) = some gp_succ_m gp_m : Pair K mth_s_eq : Stream'.Seq.get? g.s m = some gp_m m_lt_n : m < Nat.succ m this : 0 < gp_succ_m.a ∧ 0 < gp_succ_m.b ⊢ 0 < gp_succ_m.a / gp_succ_m.b [PROOFSTEP] exact div_pos this.left this.right [GOAL] case step K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m n : ℕ succ_m_lt_n : Nat.le (Nat.succ m) n IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ n) = convergents' g (Nat.succ n) s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ (Nat.succ n) → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ n) not_terminated_at_n : ¬TerminatedAt g (Nat.succ n) this : convergents g (Nat.succ n + 1) = convergents g' (Nat.succ n) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' ⊢ 0 < gp'.a ∧ 0 < gp'.b [PROOFSTEP] refine' s_pos (Nat.lt.step <| Nat.lt.step succ_m_lt_n) _ [GOAL] case step K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b g : GeneralizedContinuedFraction K gp' : Pair K m n : ℕ succ_m_lt_n : Nat.le (Nat.succ m) n IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g (Nat.succ n) = convergents' g (Nat.succ n) s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ (Nat.succ n) → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g (Nat.succ n) not_terminated_at_n : ¬TerminatedAt g (Nat.succ n) this : convergents g (Nat.succ n + 1) = convergents g' (Nat.succ n) s_mth_eq' : Stream'.Seq.get? g'.s m = some gp' ⊢ Stream'.Seq.get? g.s m = some gp' [PROOFSTEP] exact Eq.trans (squashGCF_nth_of_lt succ_m_lt_n).symm s_mth_eq' [GOAL] case inr K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n not_terminated_at_n : ¬TerminatedAt g n ⊢ convergents g (n + 1) = convergents g' n [PROOFSTEP] have : ∀ ⦃b⦄, g.partialDenominators.get? n = some b → b ≠ 0 := by intro b nth_part_denom_eq obtain ⟨gp, s_nth_eq, ⟨refl⟩⟩ : ∃ gp, g.s.get? n = some gp ∧ gp.b = b exact exists_s_b_of_part_denom nth_part_denom_eq exact (ne_of_lt (s_pos (lt_add_one n) s_nth_eq).right).symm [GOAL] K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n not_terminated_at_n : ¬TerminatedAt g n ⊢ ∀ ⦃b : K⦄, Stream'.Seq.get? (partialDenominators g) n = some b → b ≠ 0 [PROOFSTEP] intro b nth_part_denom_eq [GOAL] K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n not_terminated_at_n : ¬TerminatedAt g n b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators g) n = some b ⊢ b ≠ 0 [PROOFSTEP] obtain ⟨gp, s_nth_eq, ⟨refl⟩⟩ : ∃ gp, g.s.get? n = some gp ∧ gp.b = b [GOAL] K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n not_terminated_at_n : ¬TerminatedAt g n b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators g) n = some b ⊢ ∃ gp, Stream'.Seq.get? g.s n = some gp ∧ gp.b = b case intro.intro.refl K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp nth_part_denom_eq : Stream'.Seq.get? (partialDenominators g) n = some gp.b ⊢ gp.b ≠ 0 [PROOFSTEP] exact exists_s_b_of_part_denom nth_part_denom_eq [GOAL] case intro.intro.refl K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp nth_part_denom_eq : Stream'.Seq.get? (partialDenominators g) n = some gp.b ⊢ gp.b ≠ 0 [PROOFSTEP] exact (ne_of_lt (s_pos (lt_add_one n) s_nth_eq).right).symm [GOAL] case inr K : Type u_1 n✝ : ℕ g✝ : GeneralizedContinuedFraction K s : Stream'.Seq (Pair K) inst✝ : LinearOrderedField K s_pos✝ : ∀ {gp : Pair K} {m : ℕ}, m < n✝ → Stream'.Seq.get? g✝.s m = some gp → 0 < gp.a ∧ 0 < gp.b n : ℕ IH : ∀ {g : GeneralizedContinuedFraction K}, (∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b) → convergents g n = convergents' g n g : GeneralizedContinuedFraction K s_pos : ∀ {gp : Pair K} {m : ℕ}, m < Nat.succ n → Stream'.Seq.get? g.s m = some gp → 0 < gp.a ∧ 0 < gp.b g' : GeneralizedContinuedFraction K := squashGCF g n not_terminated_at_n : ¬TerminatedAt g n this : ∀ ⦃b : K⦄, Stream'.Seq.get? (partialDenominators g) n = some b → b ≠ 0 ⊢ convergents g (n + 1) = convergents g' n [PROOFSTEP] exact succ_nth_convergent_eq_squashGCF_nth_convergent @this [GOAL] K : Type u_1 n : ℕ inst✝ : LinearOrderedField K c : ContinuedFraction K ⊢ convergents ↑↑c = convergents' ↑↑c [PROOFSTEP] ext n [GOAL] case a K : Type u_1 n✝ : ℕ inst✝ : LinearOrderedField K c : ContinuedFraction K n : ℕ ⊢ Stream'.nth (convergents ↑↑c) n = Stream'.nth (convergents' ↑↑c) n [PROOFSTEP] apply convergents_eq_convergents' [GOAL] case a.s_pos K : Type u_1 n✝ : ℕ inst✝ : LinearOrderedField K c : ContinuedFraction K n : ℕ ⊢ ∀ {gp : Pair K} {m : ℕ}, m < n → Stream'.Seq.get? (↑↑c).s m = some gp → 0 < gp.a ∧ 0 < gp.b [PROOFSTEP] intro gp m _ s_nth_eq [GOAL] case a.s_pos K : Type u_1 n✝ : ℕ inst✝ : LinearOrderedField K c : ContinuedFraction K n : ℕ gp : Pair K m : ℕ a✝ : m < n s_nth_eq : Stream'.Seq.get? (↑↑c).s m = some gp ⊢ 0 < gp.a ∧ 0 < gp.b [PROOFSTEP] exact ⟨zero_lt_one.trans_le ((c : SimpleContinuedFraction K).property m gp.a (part_num_eq_s_a s_nth_eq)).symm.le, c.property m gp.b <| part_denom_eq_s_b s_nth_eq⟩
{"mathlib_filename": "Mathlib.Algebra.ContinuedFractions.ConvergentsEquiv", "llama_tokens": 73833}
[GOAL] R : Type u inst✝ : EuclideanDomain R m k : R ⊢ m % k + m / k * k = m [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u inst✝ : EuclideanDomain R m k : R ⊢ m % k + k * (m / k) = m [PROOFSTEP] exact mod_add_div _ _ [GOAL] R : Type u inst✝ : EuclideanDomain R m k : R ⊢ m / k * k + m % k = m [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u inst✝ : EuclideanDomain R m k : R ⊢ k * (m / k) + m % k = m [PROOFSTEP] exact div_add_mod _ _ [GOAL] R✝ : Type u inst✝¹ : EuclideanDomain R✝ R : Type u_1 inst✝ : EuclideanDomain R a b : R ⊢ b * (a / b) + a % b - b * (a / b) = a - b * (a / b) [PROOFSTEP] rw [div_add_mod] [GOAL] R : Type u inst✝ : EuclideanDomain R a b : R h : a ≠ 0 ⊢ ¬a * b ≺ b [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u inst✝ : EuclideanDomain R a b : R h : a ≠ 0 ⊢ ¬b * a ≺ b [PROOFSTEP] exact mul_left_not_lt b h [GOAL] R : Type u inst✝ : EuclideanDomain R a : R ⊢ a % 0 = a [PROOFSTEP] simpa only [zero_mul, zero_add] using div_add_mod a 0 [GOAL] R : Type u inst✝ : EuclideanDomain R a : R this : (p : Prop) → Decidable p h : ¬a = 0 ⊢ ¬a ≺ 1 [PROOFSTEP] simpa only [one_mul] using mul_left_not_lt 1 h [GOAL] R : Type u inst✝ : EuclideanDomain R b d : R ha : b * d ≠ 0 ⊢ d = 0 → b * d = 0 [PROOFSTEP] rintro rfl [GOAL] R : Type u inst✝ : EuclideanDomain R b : R ha : b * 0 ≠ 0 ⊢ b * 0 = 0 [PROOFSTEP] exact mul_zero _ [GOAL] R : Type u inst✝ : EuclideanDomain R P : R → R → Prop a b : R H0 : ∀ (x : R), P 0 x H1 : ∀ (a b : R), a ≠ 0 → P (b % a) a → P a b a0 : a = 0 ⊢ P a b [PROOFSTEP] change P a b [GOAL] R : Type u inst✝ : EuclideanDomain R P : R → R → Prop a b : R H0 : ∀ (x : R), P 0 x H1 : ∀ (a b : R), a ≠ 0 → P (b % a) a → P a b a0 : a = 0 ⊢ P a b [PROOFSTEP] exact a0.symm ▸ H0 b [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a : R ⊢ gcd 0 a = a [PROOFSTEP] rw [gcd] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a : R ⊢ (if a0 : 0 = 0 then a else let_fun x := (_ : a % 0 ≺ 0); gcd (a % 0) 0) = a [PROOFSTEP] exact if_pos rfl [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R s t r' s' t' : R ⊢ xgcdAux 0 s t r' s' t' = (r', s', t') [PROOFSTEP] unfold xgcdAux [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R s t r' s' t' : R ⊢ (if _hr : 0 = 0 then (r', s', t') else let q := r' / 0; let_fun x := (_ : r' % 0 ≺ 0); xgcdAux (r' % 0) (s' - q * s) (t' - q * t) 0 s t) = (r', s', t') [PROOFSTEP] exact if_pos rfl [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R r s t r' s' t' : R h : r ≠ 0 ⊢ xgcdAux r s t r' s' t' = xgcdAux (r' % r) (s' - r' / r * s) (t' - r' / r * t) r s t [PROOFSTEP] conv => lhs rw [xgcdAux] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R r s t r' s' t' : R h : r ≠ 0 | xgcdAux r s t r' s' t' = xgcdAux (r' % r) (s' - r' / r * s) (t' - r' / r * t) r s t [PROOFSTEP] lhs rw [xgcdAux] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R r s t r' s' t' : R h : r ≠ 0 | xgcdAux r s t r' s' t' = xgcdAux (r' % r) (s' - r' / r * s) (t' - r' / r * t) r s t [PROOFSTEP] lhs rw [xgcdAux] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R r s t r' s' t' : R h : r ≠ 0 | xgcdAux r s t r' s' t' = xgcdAux (r' % r) (s' - r' / r * s) (t' - r' / r * t) r s t [PROOFSTEP] lhs [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R r s t r' s' t' : R h : r ≠ 0 | xgcdAux r s t r' s' t' [PROOFSTEP] rw [xgcdAux] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R r s t r' s' t' : R h : r ≠ 0 ⊢ (if _hr : r = 0 then (r', s', t') else let q := r' / r; let_fun x := (_ : r' % r ≺ r); xgcdAux (r' % r) (s' - q * s) (t' - q * t) r s t) = xgcdAux (r' % r) (s' - r' / r * s) (t' - r' / r * t) r s t [PROOFSTEP] exact if_neg h [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R s : R ⊢ gcdA 0 s = 0 [PROOFSTEP] unfold gcdA [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R s : R ⊢ (xgcd 0 s).fst = 0 [PROOFSTEP] rw [xgcd, xgcd_zero_left] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R s : R ⊢ gcdB 0 s = 1 [PROOFSTEP] unfold gcdB [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R s : R ⊢ (xgcd 0 s).snd = 1 [PROOFSTEP] rw [xgcd, xgcd_zero_left]
{"mathlib_filename": "Mathlib.Algebra.EuclideanDomain.Defs", "llama_tokens": 2354}
[GOAL] G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 R : Type u_4 inst✝ : AddGroup R a b : R h : a - b = 0 ⊢ a + -b = b + -b [PROOFSTEP] rw [← sub_eq_add_neg, h, add_neg_self] -- Porting note: -- This theorem was introduced during ad-hoc porting -- and hopefully can be removed again after `Mathlib.Algebra.Ring.Basic` is fully ported. [GOAL] G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 inst✝¹ : MulZeroOneClass M₀ inst✝ : Nontrivial M₀ a b : M₀ ⊢ 1 ≠ 0 [PROOFSTEP] intro h [GOAL] G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 inst✝¹ : MulZeroOneClass M₀ inst✝ : Nontrivial M₀ a b : M₀ h : 1 = 0 ⊢ False [PROOFSTEP] rcases exists_pair_ne M₀ with ⟨x, y, hx⟩ [GOAL] case intro.intro G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 inst✝¹ : MulZeroOneClass M₀ inst✝ : Nontrivial M₀ a b : M₀ h : 1 = 0 x y : M₀ hx : x ≠ y ⊢ False [PROOFSTEP] apply hx [GOAL] case intro.intro G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 inst✝¹ : MulZeroOneClass M₀ inst✝ : Nontrivial M₀ a b : M₀ h : 1 = 0 x y : M₀ hx : x ≠ y ⊢ x = y [PROOFSTEP] calc x = 1 * x := by rw [one_mul] _ = 0 := by rw [h, zero_mul] _ = 1 * y := by rw [h, zero_mul] _ = y := by rw [one_mul] [GOAL] G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 inst✝¹ : MulZeroOneClass M₀ inst✝ : Nontrivial M₀ a b : M₀ h : 1 = 0 x y : M₀ hx : x ≠ y ⊢ x = 1 * x [PROOFSTEP] rw [one_mul] [GOAL] G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 inst✝¹ : MulZeroOneClass M₀ inst✝ : Nontrivial M₀ a b : M₀ h : 1 = 0 x y : M₀ hx : x ≠ y ⊢ 1 * x = 0 [PROOFSTEP] rw [h, zero_mul] [GOAL] G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 inst✝¹ : MulZeroOneClass M₀ inst✝ : Nontrivial M₀ a b : M₀ h : 1 = 0 x y : M₀ hx : x ≠ y ⊢ 0 = 1 * y [PROOFSTEP] rw [h, zero_mul] [GOAL] G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 inst✝¹ : MulZeroOneClass M₀ inst✝ : Nontrivial M₀ a b : M₀ h : 1 = 0 x y : M₀ hx : x ≠ y ⊢ 1 * y = y [PROOFSTEP] rw [one_mul] [GOAL] G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 inst✝³ : MulZeroOneClass M₀ inst✝² : Nontrivial M₀ a b : M₀ inst✝¹ : Zero M₀' inst✝ : One M₀' f : M₀' → M₀ zero : f 0 = 0 one : f 1 = 1 ⊢ ¬f 0 = f 1 [PROOFSTEP] rw [zero, one] [GOAL] G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 inst✝³ : MulZeroOneClass M₀ inst✝² : Nontrivial M₀ a b : M₀ inst✝¹ : Zero M₀' inst✝ : One M₀' f : M₀' → M₀ zero : f 0 = 0 one : f 1 = 1 ⊢ ¬0 = 1 [PROOFSTEP] exact zero_ne_one [GOAL] G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 inst✝¹ : MulZeroClass M₀ inst✝ : NoZeroDivisors M₀ a b : M₀ ⊢ 0 = a * b ↔ a = 0 ∨ b = 0 [PROOFSTEP] rw [eq_comm, mul_eq_zero] [GOAL] G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 inst✝¹ : MulZeroClass M₀ inst✝ : NoZeroDivisors M₀ a b : M₀ ⊢ a * a = 0 ↔ a = 0 [PROOFSTEP] simp [GOAL] G₀ : Type u M₀ : Type u_1 M₀' : Type u_2 G₀' : Type u_3 inst✝¹ : MulZeroClass M₀ inst✝ : NoZeroDivisors M₀ a b : M₀ ⊢ 0 = a * a ↔ a = 0 [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Algebra.GroupWithZero.Defs", "llama_tokens": 1646}
[GOAL] src✝¹ : CommRing ℤ := inferInstanceAs (CommRing ℤ) src✝ : Nontrivial ℤ := inferInstanceAs (Nontrivial ℤ) a b : ℤ b0 : b ≠ 0 ⊢ ↑(natAbs ((fun x x_1 => x % x_1) a b)) < ↑(natAbs b) [PROOFSTEP] rw [Int.natAbs_of_nonneg (Int.emod_nonneg _ b0), ← Int.abs_eq_natAbs] [GOAL] src✝¹ : CommRing ℤ := inferInstanceAs (CommRing ℤ) src✝ : Nontrivial ℤ := inferInstanceAs (Nontrivial ℤ) a b : ℤ b0 : b ≠ 0 ⊢ a % b < |b| [PROOFSTEP] exact Int.emod_lt _ b0 [GOAL] src✝¹ : CommRing ℤ := inferInstanceAs (CommRing ℤ) src✝ : Nontrivial ℤ := inferInstanceAs (Nontrivial ℤ) a b : ℤ b0 : b ≠ 0 ⊢ natAbs (a * b) ≥ natAbs a [PROOFSTEP] rw [← mul_one a.natAbs, Int.natAbs_mul] [GOAL] src✝¹ : CommRing ℤ := inferInstanceAs (CommRing ℤ) src✝ : Nontrivial ℤ := inferInstanceAs (Nontrivial ℤ) a b : ℤ b0 : b ≠ 0 ⊢ natAbs a * natAbs b ≥ natAbs a * 1 [PROOFSTEP] rw [← Int.natAbs_pos] at b0 [GOAL] src✝¹ : CommRing ℤ := inferInstanceAs (CommRing ℤ) src✝ : Nontrivial ℤ := inferInstanceAs (Nontrivial ℤ) a b : ℤ b0 : 0 < natAbs b ⊢ natAbs a * natAbs b ≥ natAbs a * 1 [PROOFSTEP] exact Nat.mul_le_mul_of_nonneg_left b0 [GOAL] K : Type u_1 inst✝ : Field K a b : K ⊢ b * (fun x x_1 => x / x_1) a b + (fun a b => a - a * b / b) a b = a [PROOFSTEP] by_cases h : b = 0 [GOAL] case pos K : Type u_1 inst✝ : Field K a b : K h : b = 0 ⊢ b * (fun x x_1 => x / x_1) a b + (fun a b => a - a * b / b) a b = a [PROOFSTEP] simp [h, mul_div_cancel'] [GOAL] case neg K : Type u_1 inst✝ : Field K a b : K h : ¬b = 0 ⊢ b * (fun x x_1 => x / x_1) a b + (fun a b => a - a * b / b) a b = a [PROOFSTEP] simp [h, mul_div_cancel'] [GOAL] K : Type u_1 inst✝ : Field K a b : K hnb : b ≠ 0 ⊢ (fun a b => a = 0 ∧ b ≠ 0) ((fun a b => a - a * b / b) a b) b [PROOFSTEP] simp [hnb]
{"mathlib_filename": "Mathlib.Algebra.EuclideanDomain.Instances", "llama_tokens": 912}
[GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b c a : G₀ hc : c ≠ 0 ⊢ a / c / (b / c) = a / b [PROOFSTEP] rw [div_div_eq_mul_div, div_mul_cancel _ hc] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b c a : G₀ hc : c ≠ 0 ⊢ a / c * (c / b) = a / b [PROOFSTEP] rw [← mul_div_assoc, div_mul_cancel _ hc] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b✝ c a b : G₀ h : b = 0 → a = 0 hb : b = 0 ⊢ a / b * b = a [PROOFSTEP] simp [*] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b✝ c a b : G₀ h : b = 0 → a = 0 hb : b = 0 ⊢ a * b / b = a [PROOFSTEP] simp [*] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : CommGroupWithZero G₀ a✝ b✝ c d a b : G₀ h : a = 0 → b = 0 ⊢ a * b / a = b [PROOFSTEP] rw [mul_comm, mul_div_cancel_of_imp h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : CommGroupWithZero G₀ a✝ b✝ c d a b : G₀ h : b = 0 → a = 0 ⊢ b * (a / b) = a [PROOFSTEP] rw [mul_comm, div_mul_cancel_of_imp h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : CommGroupWithZero G₀ a✝ b✝ c✝ d✝ a b c d : G₀ hb : b ≠ 0 hd : d ≠ 0 h : a / b = c / d ⊢ a * d = c * b [PROOFSTEP] rw [← mul_one a, ← div_self hb, ← mul_comm_div, h, div_mul_eq_mul_div, div_mul_cancel _ hd] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : CommGroupWithZero G₀ a b✝ c d b : G₀ h : a ≠ 0 ⊢ 1 / (a * b) * a = 1 / b [PROOFSTEP] rw [div_mul_eq_mul_div, one_mul, div_mul_right _ h] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : CommGroupWithZero G₀ a✝ b✝ c d a b : G₀ hc : c ≠ 0 ⊢ c / a / (c / b) = b / a [PROOFSTEP] rw [div_div_div_eq, mul_comm, mul_div_mul_right _ _ hc] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝⁵ : MonoidWithZero M₀ inst✝⁴ : GroupWithZero G₀ inst✝³ : Nontrivial M₀ inst✝² : MonoidWithZero M₀' inst✝¹ : MonoidWithZeroHomClass F G₀ M₀ inst✝ : MonoidWithZeroHomClass F' G₀ M₀' f✝ : F a : G₀ f g : F' h : ↑f a = ↑g a ⊢ ↑f a⁻¹ = ↑g a⁻¹ [PROOFSTEP] rcases eq_or_ne a 0 with (rfl | ha) [GOAL] case inl α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝⁵ : MonoidWithZero M₀ inst✝⁴ : GroupWithZero G₀ inst✝³ : Nontrivial M₀ inst✝² : MonoidWithZero M₀' inst✝¹ : MonoidWithZeroHomClass F G₀ M₀ inst✝ : MonoidWithZeroHomClass F' G₀ M₀' f✝ : F f g : F' h : ↑f 0 = ↑g 0 ⊢ ↑f 0⁻¹ = ↑g 0⁻¹ [PROOFSTEP] rw [inv_zero, map_zero, map_zero] [GOAL] case inr α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝⁵ : MonoidWithZero M₀ inst✝⁴ : GroupWithZero G₀ inst✝³ : Nontrivial M₀ inst✝² : MonoidWithZero M₀' inst✝¹ : MonoidWithZeroHomClass F G₀ M₀ inst✝ : MonoidWithZeroHomClass F' G₀ M₀' f✝ : F a : G₀ f g : F' h : ↑f a = ↑g a ha : a ≠ 0 ⊢ ↑f a⁻¹ = ↑g a⁻¹ [PROOFSTEP] exact (IsUnit.mk0 a ha).eq_on_inv f g h [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝³ : MonoidWithZero M₀ inst✝² : GroupWithZero G₀ inst✝¹ : GroupWithZero G₀' inst✝ : MonoidWithZeroHomClass F G₀ G₀' f : F a b : G₀ ⊢ ↑f a⁻¹ = (↑f a)⁻¹ [PROOFSTEP] by_cases h : a = 0 [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝³ : MonoidWithZero M₀ inst✝² : GroupWithZero G₀ inst✝¹ : GroupWithZero G₀' inst✝ : MonoidWithZeroHomClass F G₀ G₀' f : F a b : G₀ h : a = 0 ⊢ ↑f a⁻¹ = (↑f a)⁻¹ [PROOFSTEP] simp [h, map_zero f] [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝³ : MonoidWithZero M₀ inst✝² : GroupWithZero G₀ inst✝¹ : GroupWithZero G₀' inst✝ : MonoidWithZeroHomClass F G₀ G₀' f : F a b : G₀ h : ¬a = 0 ⊢ ↑f a⁻¹ = (↑f a)⁻¹ [PROOFSTEP] apply eq_inv_of_mul_eq_one_left [GOAL] case neg.h α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝³ : MonoidWithZero M₀ inst✝² : GroupWithZero G₀ inst✝¹ : GroupWithZero G₀' inst✝ : MonoidWithZeroHomClass F G₀ G₀' f : F a b : G₀ h : ¬a = 0 ⊢ ↑f a⁻¹ * ↑f a = 1 [PROOFSTEP] rw [← map_mul, inv_mul_cancel h, map_one]
{"mathlib_filename": "Mathlib.Algebra.GroupWithZero.Units.Lemmas", "llama_tokens": 2750}
[GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a✝ : G₀ m✝ n✝ : ℕ a : G₀ m n : ℕ ha : a ≠ 0 h : n ≤ m ⊢ a ^ (m - n) = a ^ m * (a ^ n)⁻¹ [PROOFSTEP] have h1 : m - n + n = m := tsub_add_cancel_of_le h [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a✝ : G₀ m✝ n✝ : ℕ a : G₀ m n : ℕ ha : a ≠ 0 h : n ≤ m h1 : m - n + n = m ⊢ a ^ (m - n) = a ^ m * (a ^ n)⁻¹ [PROOFSTEP] have h2 : a ^ (m - n) * a ^ n = a ^ m := by rw [← pow_add, h1] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a✝ : G₀ m✝ n✝ : ℕ a : G₀ m n : ℕ ha : a ≠ 0 h : n ≤ m h1 : m - n + n = m ⊢ a ^ (m - n) * a ^ n = a ^ m [PROOFSTEP] rw [← pow_add, h1] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a✝ : G₀ m✝ n✝ : ℕ a : G₀ m n : ℕ ha : a ≠ 0 h : n ≤ m h1 : m - n + n = m h2 : a ^ (m - n) * a ^ n = a ^ m ⊢ a ^ (m - n) = a ^ m * (a ^ n)⁻¹ [PROOFSTEP] simpa only [div_eq_mul_inv] using eq_div_of_mul_eq (pow_ne_zero _ ha) h2 [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a✝ : G₀ m✝ n✝ : ℕ a : G₀ m n : ℕ h : n < m ⊢ a ^ (m - n) = a ^ m * (a ^ n)⁻¹ [PROOFSTEP] obtain rfl | ha := eq_or_ne a 0 [GOAL] case inl G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ m✝ n✝ m n : ℕ h : n < m ⊢ 0 ^ (m - n) = 0 ^ m * (0 ^ n)⁻¹ [PROOFSTEP] rw [zero_pow (tsub_pos_of_lt h), zero_pow (n.zero_le.trans_lt h), zero_mul] [GOAL] case inr G₀ : Type u_1 inst✝ : GroupWithZero G₀ a✝ : G₀ m✝ n✝ : ℕ a : G₀ m n : ℕ h : n < m ha : a ≠ 0 ⊢ a ^ (m - n) = a ^ m * (a ^ n)⁻¹ [PROOFSTEP] exact pow_sub₀ _ ha h.le [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ m n : ℕ ha : a ≠ 0 h : n ≤ m ⊢ a⁻¹ ^ (m - n) = (a ^ m)⁻¹ * a ^ n [PROOFSTEP] rw [pow_sub₀ _ (inv_ne_zero ha) h, inv_pow, inv_pow, inv_inv] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a✝ : G₀ m n : ℕ a : G₀ h : n < m ⊢ a⁻¹ ^ (m - n) = (a ^ m)⁻¹ * a ^ n [PROOFSTEP] rw [pow_sub_of_lt a⁻¹ h, inv_pow, inv_pow, inv_inv] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ n : ℕ h : ↑n ≠ 0 ⊢ 0 ^ ↑n = 0 [PROOFSTEP] rw [zpow_ofNat, zero_pow'] [GOAL] case a G₀ : Type u_1 inst✝ : GroupWithZero G₀ n : ℕ h : ↑n ≠ 0 ⊢ n ≠ 0 [PROOFSTEP] simpa using h [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ n : ℕ x✝ : -[n+1] ≠ 0 ⊢ 0 ^ -[n+1] = 0 [PROOFSTEP] simp [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ n : ℤ ⊢ 0 ^ n = if n = 0 then 1 else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos G₀ : Type u_1 inst✝ : GroupWithZero G₀ n : ℤ h : n = 0 ⊢ 0 ^ n = 1 [PROOFSTEP] rw [h, zpow_zero] [GOAL] case neg G₀ : Type u_1 inst✝ : GroupWithZero G₀ n : ℤ h : ¬n = 0 ⊢ 0 ^ n = 0 [PROOFSTEP] rw [zero_zpow _ h] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 n : ℕ ⊢ a ^ (↑n + 1) = a ^ ↑n * a [PROOFSTEP] simp only [← Int.ofNat_succ, zpow_ofNat, pow_succ'] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 ⊢ a ^ (-[0+1] + 1) = a ^ -[0+1] * a [PROOFSTEP] erw [zpow_zero, zpow_negSucc, pow_one, inv_mul_cancel ha] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 n : ℕ ⊢ a ^ (-[n + 1+1] + 1) = a ^ -[n + 1+1] * a [PROOFSTEP] rw [Int.negSucc_eq, zpow_neg, neg_add, neg_add_cancel_right, zpow_neg, ← Int.ofNat_succ, zpow_ofNat, zpow_ofNat, pow_succ _ (n + 1), mul_inv_rev, mul_assoc, inv_mul_cancel ha, mul_one] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 n : ℤ ⊢ a ^ (n - 1) = a ^ (n - 1) * a * a⁻¹ [PROOFSTEP] rw [mul_assoc, mul_inv_cancel ha, mul_one] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 n : ℤ ⊢ a ^ (n - 1) * a * a⁻¹ = a ^ n * a⁻¹ [PROOFSTEP] rw [← zpow_add_one₀ ha, sub_add_cancel] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 m n : ℤ ⊢ a ^ (m + n) = a ^ m * a ^ n [PROOFSTEP] induction' n using Int.induction_on with n ihn n ihn [GOAL] case hz G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 m : ℤ ⊢ a ^ (m + 0) = a ^ m * a ^ 0 [PROOFSTEP] simp [GOAL] case hp G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 m : ℤ n : ℕ ihn : a ^ (m + ↑n) = a ^ m * a ^ ↑n ⊢ a ^ (m + (↑n + 1)) = a ^ m * a ^ (↑n + 1) [PROOFSTEP] simp only [← add_assoc, zpow_add_one₀ ha, ihn, mul_assoc] [GOAL] case hn G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 m : ℤ n : ℕ ihn : a ^ (m + -↑n) = a ^ m * a ^ (-↑n) ⊢ a ^ (m + (-↑n - 1)) = a ^ m * a ^ (-↑n - 1) [PROOFSTEP] rw [zpow_sub_one₀ ha, ← mul_assoc, ← ihn, ← zpow_sub_one₀ ha, add_sub_assoc] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ m n : ℤ h : a ≠ 0 ∨ m + n ≠ 0 ∨ m = 0 ∧ n = 0 ⊢ a ^ (m + n) = a ^ m * a ^ n [PROOFSTEP] by_cases hm : m = 0 [GOAL] case pos G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ m n : ℤ h : a ≠ 0 ∨ m + n ≠ 0 ∨ m = 0 ∧ n = 0 hm : m = 0 ⊢ a ^ (m + n) = a ^ m * a ^ n [PROOFSTEP] simp [hm] [GOAL] case neg G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ m n : ℤ h : a ≠ 0 ∨ m + n ≠ 0 ∨ m = 0 ∧ n = 0 hm : ¬m = 0 ⊢ a ^ (m + n) = a ^ m * a ^ n [PROOFSTEP] by_cases hn : n = 0 [GOAL] case pos G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ m n : ℤ h : a ≠ 0 ∨ m + n ≠ 0 ∨ m = 0 ∧ n = 0 hm : ¬m = 0 hn : n = 0 ⊢ a ^ (m + n) = a ^ m * a ^ n [PROOFSTEP] simp [hn] [GOAL] case neg G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ m n : ℤ h : a ≠ 0 ∨ m + n ≠ 0 ∨ m = 0 ∧ n = 0 hm : ¬m = 0 hn : ¬n = 0 ⊢ a ^ (m + n) = a ^ m * a ^ n [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ m n : ℤ h : a ≠ 0 ∨ m + n ≠ 0 ∨ m = 0 ∧ n = 0 hm : ¬m = 0 hn : ¬n = 0 ha : a = 0 ⊢ a ^ (m + n) = a ^ m * a ^ n [PROOFSTEP] subst a [GOAL] case pos G₀ : Type u_1 inst✝ : GroupWithZero G₀ m n : ℤ hm : ¬m = 0 hn : ¬n = 0 h : 0 ≠ 0 ∨ m + n ≠ 0 ∨ m = 0 ∧ n = 0 ⊢ 0 ^ (m + n) = 0 ^ m * 0 ^ n [PROOFSTEP] simp only [false_or_iff, eq_self_iff_true, not_true, Ne.def, hm, hn, false_and_iff, or_false_iff] at h [GOAL] case pos G₀ : Type u_1 inst✝ : GroupWithZero G₀ m n : ℤ hm : ¬m = 0 hn : ¬n = 0 h : ¬m + n = 0 ⊢ 0 ^ (m + n) = 0 ^ m * 0 ^ n [PROOFSTEP] rw [zero_zpow _ h, zero_zpow _ hm, zero_mul] [GOAL] case neg G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ m n : ℤ h : a ≠ 0 ∨ m + n ≠ 0 ∨ m = 0 ∧ n = 0 hm : ¬m = 0 hn : ¬n = 0 ha : ¬a = 0 ⊢ a ^ (m + n) = a ^ m * a ^ n [PROOFSTEP] exact zpow_add₀ ha m n [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ h : a ≠ 0 i : ℤ ⊢ a ^ (1 + i) = a * a ^ i [PROOFSTEP] rw [zpow_add₀ h, zpow_one] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a x y : G₀ h : SemiconjBy a x y n : ℕ ⊢ SemiconjBy a (x ^ ↑n) (y ^ ↑n) [PROOFSTEP] simp [h.pow_right n] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a x y : G₀ h : SemiconjBy a x y n : ℕ ⊢ SemiconjBy a (x ^ -[n+1]) (y ^ -[n+1]) [PROOFSTEP] simp only [zpow_negSucc, (h.pow_right (n + 1)).inv_right₀] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ n : ℤ ⊢ a ^ bit1 n = a ^ n * a ^ n * a [PROOFSTEP] rw [← zpow_bit0, bit1, zpow_add', zpow_one] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ n : ℤ ⊢ a ≠ 0 ∨ bit0 n + 1 ≠ 0 ∨ bit0 n = 0 ∧ 1 = 0 [PROOFSTEP] right [GOAL] case h G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ n : ℤ ⊢ bit0 n + 1 ≠ 0 ∨ bit0 n = 0 ∧ 1 = 0 [PROOFSTEP] left [GOAL] case h.h G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ n : ℤ ⊢ bit0 n + 1 ≠ 0 [PROOFSTEP] apply bit1_ne_zero [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 a✝ : ℕ ⊢ a ^ ↑a✝ ≠ 0 [PROOFSTEP] rw [zpow_ofNat] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 a✝ : ℕ ⊢ a ^ a✝ ≠ 0 [PROOFSTEP] exact pow_ne_zero _ ha [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 a✝ : ℕ ⊢ a ^ -[a✝+1] ≠ 0 [PROOFSTEP] rw [zpow_negSucc] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 a✝ : ℕ ⊢ (a ^ (a✝ + 1))⁻¹ ≠ 0 [PROOFSTEP] exact inv_ne_zero (pow_ne_zero _ ha) [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 z1 z2 : ℤ ⊢ a ^ (z1 - z2) = a ^ z1 / a ^ z2 [PROOFSTEP] rw [sub_eq_add_neg, zpow_add₀ ha, zpow_neg, div_eq_mul_inv] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ a : G₀ n : ℤ ⊢ a ^ bit1 n = (a * a) ^ n * a [PROOFSTEP] rw [zpow_bit1₀, (Commute.refl a).mul_zpow] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ n : ℤ x : G₀ h : x ≠ 0 ⊢ x ^ (-n) * x ^ n = 1 [PROOFSTEP] rw [zpow_neg] [GOAL] G₀ : Type u_1 inst✝ : GroupWithZero G₀ n : ℤ x : G₀ h : x ≠ 0 ⊢ (x ^ n)⁻¹ * x ^ n = 1 [PROOFSTEP] exact inv_mul_cancel (zpow_ne_zero n h) [GOAL] G₀ : Type u_1 inst✝ : CommGroupWithZero G₀ a b : G₀ ⊢ a ^ 2 * b / a = a * b [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos G₀ : Type u_1 inst✝ : CommGroupWithZero G₀ a b : G₀ ha : a = 0 ⊢ a ^ 2 * b / a = a * b [PROOFSTEP] simp [ha] [GOAL] case neg G₀ : Type u_1 inst✝ : CommGroupWithZero G₀ a b : G₀ ha : ¬a = 0 ⊢ a ^ 2 * b / a = a * b [PROOFSTEP] rw [sq, mul_assoc, mul_div_cancel_left _ ha]
{"mathlib_filename": "Mathlib.Algebra.GroupWithZero.Power", "llama_tokens": 4966}
[GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MulZeroClass G₀ a : G₀ ⊢ SemiconjBy a 0 0 [PROOFSTEP] simp only [SemiconjBy, mul_zero, zero_mul] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : MulZeroClass G₀ x y : G₀ ⊢ SemiconjBy 0 x y [PROOFSTEP] simp only [SemiconjBy, mul_zero, zero_mul] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a x y x' y' : G₀ ha : a = 0 ⊢ SemiconjBy a⁻¹ x y ↔ SemiconjBy a y x [PROOFSTEP] simp only [ha, inv_zero, SemiconjBy.zero_left] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a x y x' y' : G₀ h : SemiconjBy a x y ⊢ SemiconjBy a x⁻¹ y⁻¹ [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a x y x' y' : G₀ h : SemiconjBy a x y ha : a = 0 ⊢ SemiconjBy a x⁻¹ y⁻¹ [PROOFSTEP] simp only [ha, zero_left] [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a x y x' y' : G₀ h : SemiconjBy a x y ha : ¬a = 0 ⊢ SemiconjBy a x⁻¹ y⁻¹ [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a x y x' y' : G₀ h : SemiconjBy a x y ha : ¬a = 0 hx : x = 0 ⊢ SemiconjBy a x⁻¹ y⁻¹ [PROOFSTEP] subst x [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a y x' y' : G₀ ha : ¬a = 0 h : SemiconjBy a 0 y ⊢ SemiconjBy a 0⁻¹ y⁻¹ [PROOFSTEP] simp only [SemiconjBy, mul_zero, @eq_comm _ _ (y * a), mul_eq_zero] at h [GOAL] case pos α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a y x' y' : G₀ ha : ¬a = 0 h : y = 0 ∨ a = 0 ⊢ SemiconjBy a 0⁻¹ y⁻¹ [PROOFSTEP] simp [h.resolve_right ha] [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a x y x' y' : G₀ h : SemiconjBy a x y ha : ¬a = 0 hx : ¬x = 0 ⊢ SemiconjBy a x⁻¹ y⁻¹ [PROOFSTEP] have := mul_ne_zero ha hx [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a x y x' y' : G₀ h : SemiconjBy a x y ha : ¬a = 0 hx : ¬x = 0 this : a * x ≠ 0 ⊢ SemiconjBy a x⁻¹ y⁻¹ [PROOFSTEP] rw [h.eq, mul_ne_zero_iff] at this [GOAL] case neg α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a x y x' y' : G₀ h : SemiconjBy a x y ha : ¬a = 0 hx : ¬x = 0 this : y ≠ 0 ∧ a ≠ 0 ⊢ SemiconjBy a x⁻¹ y⁻¹ [PROOFSTEP] exact @units_inv_right _ _ _ (Units.mk0 x hx) (Units.mk0 y this.1) h [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a x y x' y' : G₀ h : SemiconjBy a x y h' : SemiconjBy a x' y' ⊢ SemiconjBy a (x / x') (y / y') [PROOFSTEP] rw [div_eq_mul_inv, div_eq_mul_inv] [GOAL] α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝ : GroupWithZero G₀ a x y x' y' : G₀ h : SemiconjBy a x y h' : SemiconjBy a x' y' ⊢ SemiconjBy a (x * x'⁻¹) (y * y'⁻¹) [PROOFSTEP] exact h.mul_right h'.inv_right₀
{"mathlib_filename": "Mathlib.Algebra.GroupWithZero.Semiconj", "llama_tokens": 1978}
[GOAL] R : Type u inst✝ : EuclideanDomain R a b : R a0 : a ≠ 0 h : ¬b - a * b / a = 0 ⊢ False [PROOFSTEP] have := mul_left_not_lt a h [GOAL] R : Type u inst✝ : EuclideanDomain R a b : R a0 : a ≠ 0 h : ¬b - a * b / a = 0 this : ¬EuclideanDomain.r (a * (b - a * b / a)) a ⊢ False [PROOFSTEP] rw [mul_sub, sub_eq_iff_eq_add'.2 (div_add_mod (a * b) a).symm] at this [GOAL] R : Type u inst✝ : EuclideanDomain R a b : R a0 : a ≠ 0 h : ¬b - a * b / a = 0 this : ¬EuclideanDomain.r (a * b % a) a ⊢ False [PROOFSTEP] exact this (mod_lt _ a0) [GOAL] R : Type u inst✝ : EuclideanDomain R a b : R b0 : b ≠ 0 ⊢ a * b / b = a [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u inst✝ : EuclideanDomain R a b : R b0 : b ≠ 0 ⊢ b * a / b = a [PROOFSTEP] exact mul_div_cancel_left a b0 [GOAL] R : Type u inst✝ : EuclideanDomain R a b : R h : a % b = 0 ⊢ b ∣ a [PROOFSTEP] rw [← div_add_mod a b, h, add_zero] [GOAL] R : Type u inst✝ : EuclideanDomain R a b : R h : a % b = 0 ⊢ b ∣ b * (a / b) [PROOFSTEP] exact dvd_mul_right _ _ [GOAL] R : Type u inst✝ : EuclideanDomain R a b : R x✝ : b ∣ a c : R e : a = b * c ⊢ a % b = 0 [PROOFSTEP] rw [e, ← add_left_cancel_iff, div_add_mod, add_zero] [GOAL] R : Type u inst✝ : EuclideanDomain R a b : R x✝ : b ∣ a c : R e : a = b * c ⊢ b * c = b * (b * c / b) [PROOFSTEP] haveI := Classical.dec [GOAL] R : Type u inst✝ : EuclideanDomain R a b : R x✝ : b ∣ a c : R e : a = b * c this : (p : Prop) → Decidable p ⊢ b * c = b * (b * c / b) [PROOFSTEP] by_cases b0 : b = 0 [GOAL] case pos R : Type u inst✝ : EuclideanDomain R a b : R x✝ : b ∣ a c : R e : a = b * c this : (p : Prop) → Decidable p b0 : b = 0 ⊢ b * c = b * (b * c / b) [PROOFSTEP] simp only [b0, zero_mul] [GOAL] case neg R : Type u inst✝ : EuclideanDomain R a b : R x✝ : b ∣ a c : R e : a = b * c this : (p : Prop) → Decidable p b0 : ¬b = 0 ⊢ b * c = b * (b * c / b) [PROOFSTEP] rw [mul_div_cancel_left _ b0] [GOAL] R : Type u inst✝ : EuclideanDomain R a b c : R h : c ∣ b ⊢ c ∣ a % b ↔ c ∣ a [PROOFSTEP] rw [← dvd_add_right (h.mul_right _), div_add_mod] [GOAL] R : Type u inst✝ : EuclideanDomain R a : R a0 : ¬a = 0 ⊢ 0 / a = 0 [PROOFSTEP] simpa only [zero_mul] using mul_div_cancel 0 a0 [GOAL] R : Type u inst✝ : EuclideanDomain R a : R a0 : a ≠ 0 ⊢ a / a = 1 [PROOFSTEP] simpa only [one_mul] using mul_div_cancel 1 a0 [GOAL] R : Type u inst✝ : EuclideanDomain R a b c : R hb : b ≠ 0 h : a * b = c ⊢ a = c / b [PROOFSTEP] rw [← h, mul_div_cancel _ hb] [GOAL] R : Type u inst✝ : EuclideanDomain R a b c : R ha : a ≠ 0 h : a * b = c ⊢ b = c / a [PROOFSTEP] rw [← h, mul_div_cancel_left _ ha] [GOAL] R : Type u inst✝ : EuclideanDomain R x y z : R h : z ∣ y ⊢ x * y / z = x * (y / z) [PROOFSTEP] by_cases hz : z = 0 [GOAL] case pos R : Type u inst✝ : EuclideanDomain R x y z : R h : z ∣ y hz : z = 0 ⊢ x * y / z = x * (y / z) [PROOFSTEP] subst hz [GOAL] case pos R : Type u inst✝ : EuclideanDomain R x y : R h : 0 ∣ y ⊢ x * y / 0 = x * (y / 0) [PROOFSTEP] rw [div_zero, div_zero, mul_zero] [GOAL] case neg R : Type u inst✝ : EuclideanDomain R x y z : R h : z ∣ y hz : ¬z = 0 ⊢ x * y / z = x * (y / z) [PROOFSTEP] rcases h with ⟨p, rfl⟩ [GOAL] case neg.intro R : Type u inst✝ : EuclideanDomain R x z : R hz : ¬z = 0 p : R ⊢ x * (z * p) / z = x * (z * p / z) [PROOFSTEP] rw [mul_div_cancel_left _ hz, mul_left_comm, mul_div_cancel_left _ hz] [GOAL] R : Type u inst✝ : EuclideanDomain R a b : R hb : b ≠ 0 hab : b ∣ a ⊢ b * (a / b) = a [PROOFSTEP] rw [← mul_div_assoc _ hab, mul_div_cancel_left _ hb] [GOAL] R : Type u inst✝ : EuclideanDomain R p q : R hpq : q ∣ p ⊢ p / q ∣ p [PROOFSTEP] by_cases hq : q = 0 [GOAL] case pos R : Type u inst✝ : EuclideanDomain R p q : R hpq : q ∣ p hq : q = 0 ⊢ p / q ∣ p [PROOFSTEP] rw [hq, zero_dvd_iff] at hpq [GOAL] case pos R : Type u inst✝ : EuclideanDomain R p q : R hpq : p = 0 hq : q = 0 ⊢ p / q ∣ p [PROOFSTEP] rw [hpq] [GOAL] case pos R : Type u inst✝ : EuclideanDomain R p q : R hpq : p = 0 hq : q = 0 ⊢ 0 / q ∣ 0 [PROOFSTEP] exact dvd_zero _ [GOAL] case neg R : Type u inst✝ : EuclideanDomain R p q : R hpq : q ∣ p hq : ¬q = 0 ⊢ p / q ∣ p [PROOFSTEP] use q [GOAL] case h R : Type u inst✝ : EuclideanDomain R p q : R hpq : q ∣ p hq : ¬q = 0 ⊢ p = p / q * q [PROOFSTEP] rw [mul_comm, ← EuclideanDomain.mul_div_assoc _ hpq, mul_comm, EuclideanDomain.mul_div_cancel _ hq] [GOAL] R : Type u inst✝ : EuclideanDomain R a b c : R h : a * b ∣ c ⊢ b ∣ c / a [PROOFSTEP] rcases eq_or_ne a 0 with (rfl | ha) [GOAL] case inl R : Type u inst✝ : EuclideanDomain R b c : R h : 0 * b ∣ c ⊢ b ∣ c / 0 [PROOFSTEP] simp only [div_zero, dvd_zero] [GOAL] case inr R : Type u inst✝ : EuclideanDomain R a b c : R h : a * b ∣ c ha : a ≠ 0 ⊢ b ∣ c / a [PROOFSTEP] rcases h with ⟨d, rfl⟩ [GOAL] case inr.intro R : Type u inst✝ : EuclideanDomain R a b : R ha : a ≠ 0 d : R ⊢ b ∣ a * b * d / a [PROOFSTEP] refine' ⟨d, _⟩ [GOAL] case inr.intro R : Type u inst✝ : EuclideanDomain R a b : R ha : a ≠ 0 d : R ⊢ a * b * d / a = b * d [PROOFSTEP] rw [mul_assoc, mul_div_cancel_left _ ha] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a : R ⊢ gcd a 0 = a [PROOFSTEP] rw [gcd] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a : R ⊢ (if a0 : a = 0 then 0 else let_fun x := (_ : EuclideanDomain.r (0 % a) a); gcd (0 % a) a) = a [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a : R h : a = 0 ⊢ 0 = a [PROOFSTEP] simp only [h, zero_mod, gcd_zero_left] [GOAL] case neg R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a : R h : ¬a = 0 ⊢ (let_fun x := (_ : EuclideanDomain.r (0 % a) a); gcd (0 % a) a) = a [PROOFSTEP] simp only [h, zero_mod, gcd_zero_left] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R ⊢ gcd a b = gcd (b % a) a [PROOFSTEP] rw [gcd] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R ⊢ (if a0 : a = 0 then b else let_fun x := (_ : EuclideanDomain.r (b % a) a); gcd (b % a) a) = gcd (b % a) a [PROOFSTEP] split_ifs with h <;> [simp only [h, mod_zero, gcd_zero_right]; rfl] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R ⊢ (if a0 : a = 0 then b else let_fun x := (_ : EuclideanDomain.r (b % a) a); gcd (b % a) a) = gcd (b % a) a [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R h : a = 0 ⊢ b = gcd (b % a) a [PROOFSTEP] simp only [h, mod_zero, gcd_zero_right] [GOAL] case neg R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R h : ¬a = 0 ⊢ (let_fun x := (_ : EuclideanDomain.r (b % a) a); gcd (b % a) a) = gcd (b % a) a [PROOFSTEP] rfl [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b✝ b : R ⊢ gcd 0 b ∣ 0 ∧ gcd 0 b ∣ b [PROOFSTEP] rw [gcd_zero_left] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b✝ b : R ⊢ b ∣ 0 ∧ b ∣ b [PROOFSTEP] exact ⟨dvd_zero _, dvd_rfl⟩ [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a✝ b✝ a b : R x✝¹ : a ≠ 0 x✝ : gcd (b % a) a ∣ b % a ∧ gcd (b % a) a ∣ a IH₁ : gcd (b % a) a ∣ b % a IH₂ : gcd (b % a) a ∣ a ⊢ gcd a b ∣ a ∧ gcd a b ∣ b [PROOFSTEP] rw [gcd_val] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a✝ b✝ a b : R x✝¹ : a ≠ 0 x✝ : gcd (b % a) a ∣ b % a ∧ gcd (b % a) a ∣ a IH₁ : gcd (b % a) a ∣ b % a IH₂ : gcd (b % a) a ∣ a ⊢ gcd (b % a) a ∣ a ∧ gcd (b % a) a ∣ b [PROOFSTEP] exact ⟨IH₂, (dvd_mod_iff IH₂).1 IH₁⟩ [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R h : gcd a b = 0 ⊢ a = 0 ∧ b = 0 [PROOFSTEP] simpa [h] using gcd_dvd a b [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R ⊢ a = 0 ∧ b = 0 → gcd a b = 0 [PROOFSTEP] rintro ⟨rfl, rfl⟩ [GOAL] case intro R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R ⊢ gcd 0 0 = 0 [PROOFSTEP] exact gcd_zero_right _ [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b c x✝¹ : R x✝ : c ∣ 0 H : c ∣ x✝¹ ⊢ c ∣ gcd 0 x✝¹ [PROOFSTEP] simpa only [gcd_zero_left] using H [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a✝ b✝ c a b : R x✝ : a ≠ 0 IH : c ∣ b % a → c ∣ a → c ∣ gcd (b % a) a ca : c ∣ a cb : c ∣ b ⊢ c ∣ gcd a b [PROOFSTEP] rw [gcd_val] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a✝ b✝ c a b : R x✝ : a ≠ 0 IH : c ∣ b % a → c ∣ a → c ∣ gcd (b % a) a ca : c ∣ a cb : c ∣ b ⊢ c ∣ gcd (b % a) a [PROOFSTEP] exact IH ((dvd_mod_iff ca).2 cb) ca [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R h : gcd a b = a ⊢ a ∣ b [PROOFSTEP] rw [← h] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R h : gcd a b = a ⊢ gcd a b ∣ b [PROOFSTEP] apply gcd_dvd_right [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R h : a ∣ b ⊢ gcd a b = a [PROOFSTEP] rw [gcd_val, mod_eq_zero.2 h, gcd_zero_left] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R ⊢ ∀ (x s t s' t' : R), (xgcdAux 0 s t x s' t').fst = gcd 0 x [PROOFSTEP] intros [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y x✝ s✝ t✝ s'✝ t'✝ : R ⊢ (xgcdAux 0 s✝ t✝ x✝ s'✝ t'✝).fst = gcd 0 x✝ [PROOFSTEP] rw [xgcd_zero_left, gcd_zero_left] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x✝ y✝ x y : R h : x ≠ 0 IH : ∀ (s t s' t' : R), (xgcdAux (y % x) s t x s' t').fst = gcd (y % x) x s t s' t' : R ⊢ (xgcdAux x s t y s' t').fst = gcd x y [PROOFSTEP] simp only [xgcdAux_rec h, if_neg h, IH] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x✝ y✝ x y : R h : x ≠ 0 IH : ∀ (s t s' t' : R), (xgcdAux (y % x) s t x s' t').fst = gcd (y % x) x s t s' t' : R ⊢ gcd (y % x) x = gcd x y [PROOFSTEP] rw [← gcd_val] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R ⊢ xgcdAux x 1 0 y 0 1 = (gcd x y, xgcd x y) [PROOFSTEP] rw [xgcd, ← xgcdAux_fst x y 1 0 0 1, Prod.mk.eta] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b r r' s t s' t' : R p : EuclideanDomain.P a b (r, s, t) p' : EuclideanDomain.P a b (r', s', t') ⊢ EuclideanDomain.P a b (xgcdAux r s t r' s' t') [PROOFSTEP] induction r, r' using GCD.induction generalizing s t s' t' with | H0 n => simpa only [xgcd_zero_left] | H1 _ _ h IH => rw [xgcdAux_rec h] refine' IH _ p unfold P at p p' ⊢ dsimp rw [mul_sub, mul_sub, add_sub, sub_add_eq_add_sub, ← p', sub_sub, mul_comm _ s, ← mul_assoc, mul_comm _ t, ← mul_assoc, ← add_mul, ← p, mod_eq_sub_mul_div] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b r r' s t s' t' : R p : EuclideanDomain.P a b (r, s, t) p' : EuclideanDomain.P a b (r', s', t') ⊢ EuclideanDomain.P a b (xgcdAux r s t r' s' t') [PROOFSTEP] induction r, r' using GCD.induction generalizing s t s' t' with | H0 n => simpa only [xgcd_zero_left] | H1 _ _ h IH => rw [xgcdAux_rec h] refine' IH _ p unfold P at p p' ⊢ dsimp rw [mul_sub, mul_sub, add_sub, sub_add_eq_add_sub, ← p', sub_sub, mul_comm _ s, ← mul_assoc, mul_comm _ t, ← mul_assoc, ← add_mul, ← p, mod_eq_sub_mul_div] [GOAL] case H0 R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b n s t s' t' : R p : EuclideanDomain.P a b (0, s, t) p' : EuclideanDomain.P a b (n, s', t') ⊢ EuclideanDomain.P a b (xgcdAux 0 s t n s' t') [PROOFSTEP] | H0 n => simpa only [xgcd_zero_left] [GOAL] case H0 R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b n s t s' t' : R p : EuclideanDomain.P a b (0, s, t) p' : EuclideanDomain.P a b (n, s', t') ⊢ EuclideanDomain.P a b (xgcdAux 0 s t n s' t') [PROOFSTEP] simpa only [xgcd_zero_left] [GOAL] case H1 R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b a✝ b✝ : R h : a✝ ≠ 0 IH : ∀ {s t s' t' : R}, EuclideanDomain.P a b (b✝ % a✝, s, t) → EuclideanDomain.P a b (a✝, s', t') → EuclideanDomain.P a b (xgcdAux (b✝ % a✝) s t a✝ s' t') s t s' t' : R p : EuclideanDomain.P a b (a✝, s, t) p' : EuclideanDomain.P a b (b✝, s', t') ⊢ EuclideanDomain.P a b (xgcdAux a✝ s t b✝ s' t') [PROOFSTEP] | H1 _ _ h IH => rw [xgcdAux_rec h] refine' IH _ p unfold P at p p' ⊢ dsimp rw [mul_sub, mul_sub, add_sub, sub_add_eq_add_sub, ← p', sub_sub, mul_comm _ s, ← mul_assoc, mul_comm _ t, ← mul_assoc, ← add_mul, ← p, mod_eq_sub_mul_div] [GOAL] case H1 R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b a✝ b✝ : R h : a✝ ≠ 0 IH : ∀ {s t s' t' : R}, EuclideanDomain.P a b (b✝ % a✝, s, t) → EuclideanDomain.P a b (a✝, s', t') → EuclideanDomain.P a b (xgcdAux (b✝ % a✝) s t a✝ s' t') s t s' t' : R p : EuclideanDomain.P a b (a✝, s, t) p' : EuclideanDomain.P a b (b✝, s', t') ⊢ EuclideanDomain.P a b (xgcdAux a✝ s t b✝ s' t') [PROOFSTEP] rw [xgcdAux_rec h] [GOAL] case H1 R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b a✝ b✝ : R h : a✝ ≠ 0 IH : ∀ {s t s' t' : R}, EuclideanDomain.P a b (b✝ % a✝, s, t) → EuclideanDomain.P a b (a✝, s', t') → EuclideanDomain.P a b (xgcdAux (b✝ % a✝) s t a✝ s' t') s t s' t' : R p : EuclideanDomain.P a b (a✝, s, t) p' : EuclideanDomain.P a b (b✝, s', t') ⊢ EuclideanDomain.P a b (xgcdAux (b✝ % a✝) (s' - b✝ / a✝ * s) (t' - b✝ / a✝ * t) a✝ s t) [PROOFSTEP] refine' IH _ p [GOAL] case H1 R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b a✝ b✝ : R h : a✝ ≠ 0 IH : ∀ {s t s' t' : R}, EuclideanDomain.P a b (b✝ % a✝, s, t) → EuclideanDomain.P a b (a✝, s', t') → EuclideanDomain.P a b (xgcdAux (b✝ % a✝) s t a✝ s' t') s t s' t' : R p : EuclideanDomain.P a b (a✝, s, t) p' : EuclideanDomain.P a b (b✝, s', t') ⊢ EuclideanDomain.P a b (b✝ % a✝, s' - b✝ / a✝ * s, t' - b✝ / a✝ * t) [PROOFSTEP] unfold P at p p' ⊢ [GOAL] case H1 R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b a✝ b✝ : R h : a✝ ≠ 0 IH : ∀ {s t s' t' : R}, EuclideanDomain.P a b (b✝ % a✝, s, t) → EuclideanDomain.P a b (a✝, s', t') → EuclideanDomain.P a b (xgcdAux (b✝ % a✝) s t a✝ s' t') s t s' t' : R p : match (a✝, s, t) with | (r, s, t) => r = a * s + b * t p' : match (b✝, s', t') with | (r, s, t) => r = a * s + b * t ⊢ match (b✝ % a✝, s' - b✝ / a✝ * s, t' - b✝ / a✝ * t) with | (r, s, t) => r = a * s + b * t [PROOFSTEP] dsimp [GOAL] case H1 R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b a✝ b✝ : R h : a✝ ≠ 0 IH : ∀ {s t s' t' : R}, EuclideanDomain.P a b (b✝ % a✝, s, t) → EuclideanDomain.P a b (a✝, s', t') → EuclideanDomain.P a b (xgcdAux (b✝ % a✝) s t a✝ s' t') s t s' t' : R p : match (a✝, s, t) with | (r, s, t) => r = a * s + b * t p' : match (b✝, s', t') with | (r, s, t) => r = a * s + b * t ⊢ b✝ % a✝ = a * (s' - b✝ / a✝ * s) + b * (t' - b✝ / a✝ * t) [PROOFSTEP] rw [mul_sub, mul_sub, add_sub, sub_add_eq_add_sub, ← p', sub_sub, mul_comm _ s, ← mul_assoc, mul_comm _ t, ← mul_assoc, ← add_mul, ← p, mod_eq_sub_mul_div] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R ⊢ gcd a b = a * gcdA a b + b * gcdB a b [PROOFSTEP] have := @xgcdAux_P _ _ _ a b a b 1 0 0 1 (by dsimp [P]; rw [mul_one, mul_zero, add_zero]) (by dsimp [P]; rw [mul_one, mul_zero, zero_add]) [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R ⊢ EuclideanDomain.P a b (a, 1, 0) [PROOFSTEP] dsimp [P] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R ⊢ a = a * 1 + b * 0 [PROOFSTEP] rw [mul_one, mul_zero, add_zero] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R ⊢ EuclideanDomain.P a b (b, 0, 1) [PROOFSTEP] dsimp [P] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R ⊢ b = a * 0 + b * 1 [PROOFSTEP] rw [mul_one, mul_zero, zero_add] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R a b : R this : EuclideanDomain.P a b (xgcdAux a 1 0 b 0 1) ⊢ gcd a b = a * gcdA a b + b * gcdB a b [PROOFSTEP] rwa [xgcdAux_val, xgcd_val] at this [GOAL] R✝ : Type u inst✝¹ : EuclideanDomain R✝ inst✝ : DecidableEq R✝ R : Type u_1 e : EuclideanDomain R this : DecidableEq R a b : R h : a * b = 0 h0 : ¬a = 0 ∧ ¬b = 0 ⊢ a = 0 [PROOFSTEP] rw [← mul_div_cancel a h0.2, h, zero_div] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : gcd x y = 0 ⊢ x ∣ lcm x y [PROOFSTEP] rw [lcm, hxy, div_zero] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : gcd x y = 0 ⊢ x ∣ 0 [PROOFSTEP] exact dvd_zero _ [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : ¬gcd x y = 0 z : R hz : y = gcd x y * z ⊢ x * z * gcd x y = x * y [PROOFSTEP] rw [mul_right_comm, mul_assoc, ← hz] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : gcd x y = 0 ⊢ y ∣ lcm x y [PROOFSTEP] rw [lcm, hxy, div_zero] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : gcd x y = 0 ⊢ y ∣ 0 [PROOFSTEP] exact dvd_zero _ [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : ¬gcd x y = 0 z : R hz : x = gcd x y * z ⊢ gcd x y * (y * z) = x * y [PROOFSTEP] rw [← mul_assoc, mul_right_comm, ← hz] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z ⊢ lcm x y ∣ z [PROOFSTEP] rw [lcm] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z ⊢ x * y / gcd x y ∣ z [PROOFSTEP] by_cases hxy : gcd x y = 0 [GOAL] case pos R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : gcd x y = 0 ⊢ x * y / gcd x y ∣ z [PROOFSTEP] rw [hxy, div_zero] [GOAL] case pos R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : gcd x y = 0 ⊢ 0 ∣ z [PROOFSTEP] rw [EuclideanDomain.gcd_eq_zero_iff] at hxy [GOAL] case pos R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : x = 0 ∧ y = 0 ⊢ 0 ∣ z [PROOFSTEP] rwa [hxy.1] at hxz [GOAL] case neg R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : ¬gcd x y = 0 ⊢ x * y / gcd x y ∣ z [PROOFSTEP] rcases gcd_dvd x y with ⟨⟨r, hr⟩, ⟨s, hs⟩⟩ [GOAL] case neg.intro.intro.intro R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : ¬gcd x y = 0 r : R hr : x = gcd x y * r s : R hs : y = gcd x y * s ⊢ x * y / gcd x y ∣ z [PROOFSTEP] suffices x * y ∣ z * gcd x y by cases' this with p hp use p generalize gcd x y = g at hxy hs hp ⊢ subst hs rw [mul_left_comm, mul_div_cancel_left _ hxy, ← mul_left_inj' hxy, hp] rw [← mul_assoc] simp only [mul_right_comm] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : ¬gcd x y = 0 r : R hr : x = gcd x y * r s : R hs : y = gcd x y * s this : x * y ∣ z * gcd x y ⊢ x * y / gcd x y ∣ z [PROOFSTEP] cases' this with p hp [GOAL] case intro R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : ¬gcd x y = 0 r : R hr : x = gcd x y * r s : R hs : y = gcd x y * s p : R hp : z * gcd x y = x * y * p ⊢ x * y / gcd x y ∣ z [PROOFSTEP] use p [GOAL] case h R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : ¬gcd x y = 0 r : R hr : x = gcd x y * r s : R hs : y = gcd x y * s p : R hp : z * gcd x y = x * y * p ⊢ z = x * y / gcd x y * p [PROOFSTEP] generalize gcd x y = g at hxy hs hp ⊢ [GOAL] case h R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z r : R hr : x = gcd x y * r s p g : R hxy : ¬g = 0 hs : y = g * s hp : z * g = x * y * p ⊢ z = x * y / g * p [PROOFSTEP] subst hs [GOAL] case h R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x z : R hxz : x ∣ z r s p g : R hxy : ¬g = 0 hyz : g * s ∣ z hr : x = gcd x (g * s) * r hp : z * g = x * (g * s) * p ⊢ z = x * (g * s) / g * p [PROOFSTEP] rw [mul_left_comm, mul_div_cancel_left _ hxy, ← mul_left_inj' hxy, hp] [GOAL] case h R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x z : R hxz : x ∣ z r s p g : R hxy : ¬g = 0 hyz : g * s ∣ z hr : x = gcd x (g * s) * r hp : z * g = x * (g * s) * p ⊢ x * (g * s) * p = x * s * p * g [PROOFSTEP] rw [← mul_assoc] [GOAL] case h R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x z : R hxz : x ∣ z r s p g : R hxy : ¬g = 0 hyz : g * s ∣ z hr : x = gcd x (g * s) * r hp : z * g = x * (g * s) * p ⊢ x * g * s * p = x * s * p * g [PROOFSTEP] simp only [mul_right_comm] [GOAL] case neg.intro.intro.intro R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : ¬gcd x y = 0 r : R hr : x = gcd x y * r s : R hs : y = gcd x y * s ⊢ x * y ∣ z * gcd x y [PROOFSTEP] rw [gcd_eq_gcd_ab, mul_add] [GOAL] case neg.intro.intro.intro R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : ¬gcd x y = 0 r : R hr : x = gcd x y * r s : R hs : y = gcd x y * s ⊢ x * y ∣ z * (x * gcdA x y) + z * (y * gcdB x y) [PROOFSTEP] apply dvd_add [GOAL] case neg.intro.intro.intro.h₁ R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : ¬gcd x y = 0 r : R hr : x = gcd x y * r s : R hs : y = gcd x y * s ⊢ x * y ∣ z * (x * gcdA x y) [PROOFSTEP] rw [mul_left_comm] [GOAL] case neg.intro.intro.intro.h₁ R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : ¬gcd x y = 0 r : R hr : x = gcd x y * r s : R hs : y = gcd x y * s ⊢ x * y ∣ x * (z * gcdA x y) [PROOFSTEP] exact mul_dvd_mul_left _ (hyz.mul_right _) [GOAL] case neg.intro.intro.intro.h₂ R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : ¬gcd x y = 0 r : R hr : x = gcd x y * r s : R hs : y = gcd x y * s ⊢ x * y ∣ z * (y * gcdB x y) [PROOFSTEP] rw [mul_left_comm, mul_comm] [GOAL] case neg.intro.intro.intro.h₂ R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y z : R hxz : x ∣ z hyz : y ∣ z hxy : ¬gcd x y = 0 r : R hr : x = gcd x y * r s : R hs : y = gcd x y * s ⊢ y * x ∣ y * (z * gcdB x y) [PROOFSTEP] exact mul_dvd_mul_left _ (hxz.mul_right _) [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x : R ⊢ lcm 0 x = 0 [PROOFSTEP] rw [lcm, zero_mul, zero_div] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x : R ⊢ lcm x 0 = 0 [PROOFSTEP] rw [lcm, mul_zero, zero_div] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R ⊢ lcm x y = 0 ↔ x = 0 ∨ y = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R ⊢ lcm x y = 0 → x = 0 ∨ y = 0 [PROOFSTEP] intro hxy [GOAL] case mp R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : lcm x y = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] rw [lcm, mul_div_assoc _ (gcd_dvd_right _ _), mul_eq_zero] at hxy [GOAL] case mp R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : x = 0 ∨ y / gcd x y = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] apply Or.imp_right _ hxy [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : x = 0 ∨ y / gcd x y = 0 ⊢ y / gcd x y = 0 → y = 0 [PROOFSTEP] intro hy [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : x = 0 ∨ y / gcd x y = 0 hy : y / gcd x y = 0 ⊢ y = 0 [PROOFSTEP] by_cases hgxy : gcd x y = 0 [GOAL] case pos R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : x = 0 ∨ y / gcd x y = 0 hy : y / gcd x y = 0 hgxy : gcd x y = 0 ⊢ y = 0 [PROOFSTEP] rw [EuclideanDomain.gcd_eq_zero_iff] at hgxy [GOAL] case pos R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : x = 0 ∨ y / gcd x y = 0 hy : y / gcd x y = 0 hgxy : x = 0 ∧ y = 0 ⊢ y = 0 [PROOFSTEP] exact hgxy.2 [GOAL] case neg R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : x = 0 ∨ y / gcd x y = 0 hy : y / gcd x y = 0 hgxy : ¬gcd x y = 0 ⊢ y = 0 [PROOFSTEP] rcases gcd_dvd x y with ⟨⟨r, hr⟩, ⟨s, hs⟩⟩ [GOAL] case neg.intro.intro.intro R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : x = 0 ∨ y / gcd x y = 0 hy : y / gcd x y = 0 hgxy : ¬gcd x y = 0 r : R hr : x = gcd x y * r s : R hs : y = gcd x y * s ⊢ y = 0 [PROOFSTEP] generalize gcd x y = g at hr hs hy hgxy ⊢ [GOAL] case neg.intro.intro.intro R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hxy : x = 0 ∨ y / gcd x y = 0 r s g : R hr : x = g * r hs : y = g * s hy : y / g = 0 hgxy : ¬g = 0 ⊢ y = 0 [PROOFSTEP] subst hs [GOAL] case neg.intro.intro.intro R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x r s g : R hr : x = g * r hgxy : ¬g = 0 hxy : x = 0 ∨ g * s / gcd x (g * s) = 0 hy : g * s / g = 0 ⊢ g * s = 0 [PROOFSTEP] rw [mul_div_cancel_left _ hgxy] at hy [GOAL] case neg.intro.intro.intro R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x r s g : R hr : x = g * r hgxy : ¬g = 0 hxy : x = 0 ∨ g * s / gcd x (g * s) = 0 hy : s = 0 ⊢ g * s = 0 [PROOFSTEP] rw [hy, mul_zero] [GOAL] case mpr R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R ⊢ x = 0 ∨ y = 0 → lcm x y = 0 [PROOFSTEP] rintro (hx | hy) [GOAL] case mpr.inl R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hx : x = 0 ⊢ lcm x y = 0 [PROOFSTEP] rw [hx, lcm_zero_left] [GOAL] case mpr.inr R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R hy : y = 0 ⊢ lcm x y = 0 [PROOFSTEP] rw [hy, lcm_zero_right] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R ⊢ gcd x y * lcm x y = x * y [PROOFSTEP] rw [lcm] [GOAL] R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R ⊢ gcd x y * (x * y / gcd x y) = x * y [PROOFSTEP] by_cases h : gcd x y = 0 [GOAL] case pos R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R h : gcd x y = 0 ⊢ gcd x y * (x * y / gcd x y) = x * y [PROOFSTEP] rw [h, zero_mul] [GOAL] case pos R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R h : gcd x y = 0 ⊢ 0 = x * y [PROOFSTEP] rw [EuclideanDomain.gcd_eq_zero_iff] at h [GOAL] case pos R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R h : x = 0 ∧ y = 0 ⊢ 0 = x * y [PROOFSTEP] rw [h.1, zero_mul] [GOAL] case neg R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R h : ¬gcd x y = 0 ⊢ gcd x y * (x * y / gcd x y) = x * y [PROOFSTEP] rcases gcd_dvd x y with ⟨⟨r, hr⟩, ⟨s, hs⟩⟩ [GOAL] case neg.intro.intro.intro R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y : R h : ¬gcd x y = 0 r : R hr : x = gcd x y * r s : R hs : y = gcd x y * s ⊢ gcd x y * (x * y / gcd x y) = x * y [PROOFSTEP] generalize gcd x y = g at h hr ⊢ [GOAL] case neg.intro.intro.intro R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R x y r s : R hs : y = gcd x y * s g : R h : ¬g = 0 hr : x = g * r ⊢ g * (x * y / g) = x * y [PROOFSTEP] subst hr [GOAL] case neg.intro.intro.intro R : Type u inst✝¹ : EuclideanDomain R inst✝ : DecidableEq R y r s g : R h : ¬g = 0 hs : y = gcd (g * r) y * s ⊢ g * (g * r * y / g) = g * r * y [PROOFSTEP] rw [mul_assoc, mul_div_cancel_left _ h] [GOAL] R : Type u inst✝ : EuclideanDomain R a b c : R ha : a ≠ 0 hcb : c ∣ b ⊢ a * b / (a * c) = b / c [PROOFSTEP] by_cases hc : c = 0 [GOAL] case pos R : Type u inst✝ : EuclideanDomain R a b c : R ha : a ≠ 0 hcb : c ∣ b hc : c = 0 ⊢ a * b / (a * c) = b / c [PROOFSTEP] simp [hc] [GOAL] case neg R : Type u inst✝ : EuclideanDomain R a b c : R ha : a ≠ 0 hcb : c ∣ b hc : ¬c = 0 ⊢ a * b / (a * c) = b / c [PROOFSTEP] refine' eq_div_of_mul_eq_right hc (mul_left_cancel₀ ha _) [GOAL] case neg R : Type u inst✝ : EuclideanDomain R a b c : R ha : a ≠ 0 hcb : c ∣ b hc : ¬c = 0 ⊢ a * (c * (a * b / (a * c))) = a * b [PROOFSTEP] rw [← mul_assoc, ← mul_div_assoc _ (mul_dvd_mul_left a hcb), mul_div_cancel_left _ (mul_ne_zero ha hc)] [GOAL] R : Type u inst✝ : EuclideanDomain R a b c d : R hac : c ∣ a hbd : d ∣ b ⊢ a * b / (c * d) = a / c * (b / d) [PROOFSTEP] rcases eq_or_ne c 0 with (rfl | hc0) [GOAL] case inl R : Type u inst✝ : EuclideanDomain R a b d : R hbd : d ∣ b hac : 0 ∣ a ⊢ a * b / (0 * d) = a / 0 * (b / d) [PROOFSTEP] simp [GOAL] case inr R : Type u inst✝ : EuclideanDomain R a b c d : R hac : c ∣ a hbd : d ∣ b hc0 : c ≠ 0 ⊢ a * b / (c * d) = a / c * (b / d) [PROOFSTEP] rcases eq_or_ne d 0 with (rfl | hd0) [GOAL] case inr.inl R : Type u inst✝ : EuclideanDomain R a b c : R hac : c ∣ a hc0 : c ≠ 0 hbd : 0 ∣ b ⊢ a * b / (c * 0) = a / c * (b / 0) [PROOFSTEP] simp [GOAL] case inr.inr R : Type u inst✝ : EuclideanDomain R a b c d : R hac : c ∣ a hbd : d ∣ b hc0 : c ≠ 0 hd0 : d ≠ 0 ⊢ a * b / (c * d) = a / c * (b / d) [PROOFSTEP] obtain ⟨k1, rfl⟩ := hac [GOAL] case inr.inr.intro R : Type u inst✝ : EuclideanDomain R b c d : R hbd : d ∣ b hc0 : c ≠ 0 hd0 : d ≠ 0 k1 : R ⊢ c * k1 * b / (c * d) = c * k1 / c * (b / d) [PROOFSTEP] obtain ⟨k2, rfl⟩ := hbd [GOAL] case inr.inr.intro.intro R : Type u inst✝ : EuclideanDomain R c d : R hc0 : c ≠ 0 hd0 : d ≠ 0 k1 k2 : R ⊢ c * k1 * (d * k2) / (c * d) = c * k1 / c * (d * k2 / d) [PROOFSTEP] rw [mul_div_cancel_left _ hc0, mul_div_cancel_left _ hd0, mul_mul_mul_comm, mul_div_cancel_left _ (mul_ne_zero hc0 hd0)]
{"mathlib_filename": "Mathlib.Algebra.EuclideanDomain.Basic", "llama_tokens": 15730}
[GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K a b c : K fract_a_ne_zero : Int.fract a ≠ 0 ⊢ (↑⌊a⌋ * b + c) / Int.fract a + b = (b * a + c) / Int.fract a [PROOFSTEP] field_simp [fract_a_ne_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K a b c : K fract_a_ne_zero : Int.fract a ≠ 0 ⊢ ↑⌊a⌋ * b + c + b * Int.fract a = b * a + c [PROOFSTEP] rw [Int.fract] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K a b c : K fract_a_ne_zero : Int.fract a ≠ 0 ⊢ ↑⌊a⌋ * b + c + b * (a - ↑⌊a⌋) = b * a + c [PROOFSTEP] ring [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K ⊢ ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr [PROOFSTEP] let g := of v [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ⊢ ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr [PROOFSTEP] induction' n with n IH [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ⊢ ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v Nat.zero = some ifp_n → v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) ifp_n.fr [PROOFSTEP] intro ifp_zero stream_zero_eq [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ifp_zero : IntFractPair K stream_zero_eq : IntFractPair.stream v Nat.zero = some ifp_zero ⊢ v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) ifp_zero.fr [PROOFSTEP] have : IntFractPair.of v = ifp_zero := by have : IntFractPair.stream v 0 = some (IntFractPair.of v) := rfl simpa only [Nat.zero_eq, this, Option.some.injEq] using stream_zero_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ifp_zero : IntFractPair K stream_zero_eq : IntFractPair.stream v Nat.zero = some ifp_zero ⊢ IntFractPair.of v = ifp_zero [PROOFSTEP] have : IntFractPair.stream v 0 = some (IntFractPair.of v) := rfl [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ifp_zero : IntFractPair K stream_zero_eq : IntFractPair.stream v Nat.zero = some ifp_zero this : IntFractPair.stream v 0 = some (IntFractPair.of v) ⊢ IntFractPair.of v = ifp_zero [PROOFSTEP] simpa only [Nat.zero_eq, this, Option.some.injEq] using stream_zero_eq [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ifp_zero : IntFractPair K stream_zero_eq : IntFractPair.stream v Nat.zero = some ifp_zero this : IntFractPair.of v = ifp_zero ⊢ v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) ifp_zero.fr [PROOFSTEP] cases this [GOAL] case zero.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) ⊢ v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) (IntFractPair.of v).fr [PROOFSTEP] cases' Decidable.em (Int.fract v = 0) with fract_eq_zero fract_ne_zero [GOAL] case zero.refl.inl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 ⊢ v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) (IntFractPair.of v).fr [PROOFSTEP] suffices v = ⌊v⌋ by -- Porting note: was `simpa [continuantsAux, fract_eq_zero, compExactValue]` field_simp [nextContinuants, nextNumerator, nextDenominator, compExactValue] have : (IntFractPair.of v).fr = Int.fract v := rfl rwa [this, if_pos fract_eq_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 this : v = ↑⌊v⌋ ⊢ v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) (IntFractPair.of v).fr [PROOFSTEP] field_simp [nextContinuants, nextNumerator, nextDenominator, compExactValue] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 this : v = ↑⌊v⌋ ⊢ v = if (IntFractPair.of v).fr = 0 then ↑⌊v⌋ else ↑⌊v⌋ + (IntFractPair.of v).fr [PROOFSTEP] have : (IntFractPair.of v).fr = Int.fract v := rfl [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 this✝ : v = ↑⌊v⌋ this : (IntFractPair.of v).fr = Int.fract v ⊢ v = if (IntFractPair.of v).fr = 0 then ↑⌊v⌋ else ↑⌊v⌋ + (IntFractPair.of v).fr [PROOFSTEP] rwa [this, if_pos fract_eq_zero] [GOAL] case zero.refl.inl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 ⊢ v = ↑⌊v⌋ [PROOFSTEP] calc v = Int.fract v + ⌊v⌋ := by rw [Int.fract_add_floor] _ = ⌊v⌋ := by simp [fract_eq_zero] -- Int.fract v ≠ 0; the claim then easily follows by unfolding a single computation step [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 ⊢ v = Int.fract v + ↑⌊v⌋ [PROOFSTEP] rw [Int.fract_add_floor] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_eq_zero : Int.fract v = 0 ⊢ Int.fract v + ↑⌊v⌋ = ↑⌊v⌋ [PROOFSTEP] simp [fract_eq_zero] -- Int.fract v ≠ 0; the claim then easily follows by unfolding a single computation step [GOAL] case zero.refl.inr K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_ne_zero : ¬Int.fract v = 0 ⊢ v = compExactValue (continuantsAux (of v) Nat.zero) (continuantsAux (of v) (Nat.zero + 1)) (IntFractPair.of v).fr [PROOFSTEP] field_simp [continuantsAux, nextContinuants, nextNumerator, nextDenominator, of_h_eq_floor, compExactValue] -- Porting note: this and the if_neg rewrite are needed [GOAL] case zero.refl.inr K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_ne_zero : ¬Int.fract v = 0 ⊢ v = if (IntFractPair.of v).fr = 0 then ↑⌊v⌋ else ↑⌊v⌋ + (IntFractPair.of v).fr [PROOFSTEP] have : (IntFractPair.of v).fr = Int.fract v := rfl [GOAL] case zero.refl.inr K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v stream_zero_eq : IntFractPair.stream v Nat.zero = some (IntFractPair.of v) fract_ne_zero : ¬Int.fract v = 0 this : (IntFractPair.of v).fr = Int.fract v ⊢ v = if (IntFractPair.of v).fr = 0 then ↑⌊v⌋ else ↑⌊v⌋ + (IntFractPair.of v).fr [PROOFSTEP] rw [this, if_neg fract_ne_zero, Int.floor_add_fract] [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr ⊢ ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v (Nat.succ n) = some ifp_n → v = compExactValue (continuantsAux (of v) (Nat.succ n)) (continuantsAux (of v) (Nat.succ n + 1)) ifp_n.fr [PROOFSTEP] intro ifp_succ_n succ_nth_stream_eq [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ⊢ v = compExactValue (continuantsAux (of v) (Nat.succ n)) (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] obtain ⟨ifp_n, nth_stream_eq, nth_fract_ne_zero, -⟩ : ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr ≠ 0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ⊢ ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr ≠ 0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n case succ.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 ⊢ v = compExactValue (continuantsAux (of v) (Nat.succ n)) (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] exact IntFractPair.succ_nth_stream_eq_some_iff.1 succ_nth_stream_eq [GOAL] case succ.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 ⊢ v = compExactValue (continuantsAux (of v) (Nat.succ n)) (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] let conts := g.continuantsAux (n + 2) [GOAL] case succ.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue (continuantsAux (of v) n) (continuantsAux (of v) (n + 1)) ifp_n.fr ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) ⊢ v = compExactValue (continuantsAux (of v) (Nat.succ n)) (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] set pconts := g.continuantsAux (n + 1) with pconts_eq [GOAL] case succ.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue (continuantsAux (of v) n) pconts ifp_n.fr pconts_eq : pconts = continuantsAux g (n + 1) ⊢ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] set ppconts := g.continuantsAux n with ppconts_eq [GOAL] case succ.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ⊢ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] cases' Decidable.em (ifp_succ_n.fr = 0) with ifp_succ_n_fr_eq_zero ifp_succ_n_fr_ne_zero [GOAL] case succ.intro.intro.intro.inl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ⊢ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] suffices v = conts.a / conts.b by simpa [compExactValue, ifp_succ_n_fr_eq_zero] -- use the IH and the fact that ifp_n.fr⁻¹ = ⌊ifp_n.fr⁻¹⌋ to prove this case [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 this : v = conts.a / conts.b ⊢ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] simpa [compExactValue, ifp_succ_n_fr_eq_zero] -- use the IH and the fact that ifp_n.fr⁻¹ = ⌊ifp_n.fr⁻¹⌋ to prove this case [GOAL] case succ.intro.intro.intro.inl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ⊢ v = conts.a / conts.b [PROOFSTEP] obtain ⟨ifp_n', nth_stream_eq', ifp_n_fract_inv_eq_floor⟩ : ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr⁻¹ = ⌊ifp_n.fr⁻¹⌋ [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ⊢ ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr⁻¹ = ↑⌊ifp_n.fr⁻¹⌋ case succ.intro.intro.intro.inl.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_inv_eq_floor : ifp_n'.fr⁻¹ = ↑⌊ifp_n'.fr⁻¹⌋ ⊢ v = conts.a / conts.b [PROOFSTEP] exact IntFractPair.exists_succ_nth_stream_of_fr_zero succ_nth_stream_eq ifp_succ_n_fr_eq_zero [GOAL] case succ.intro.intro.intro.inl.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_inv_eq_floor : ifp_n'.fr⁻¹ = ↑⌊ifp_n'.fr⁻¹⌋ ⊢ v = conts.a / conts.b [PROOFSTEP] have : ifp_n' = ifp_n := by injection Eq.trans nth_stream_eq'.symm nth_stream_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_inv_eq_floor : ifp_n'.fr⁻¹ = ↑⌊ifp_n'.fr⁻¹⌋ ⊢ ifp_n' = ifp_n [PROOFSTEP] injection Eq.trans nth_stream_eq'.symm nth_stream_eq [GOAL] case succ.intro.intro.intro.inl.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_inv_eq_floor : ifp_n'.fr⁻¹ = ↑⌊ifp_n'.fr⁻¹⌋ this : ifp_n' = ifp_n ⊢ v = conts.a / conts.b [PROOFSTEP] cases this [GOAL] case succ.intro.intro.intro.inl.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_inv_eq_floor : ifp_n.fr⁻¹ = ↑⌊ifp_n.fr⁻¹⌋ ⊢ v = conts.a / conts.b [PROOFSTEP] have s_nth_eq : g.s.get? n = some ⟨1, ⌊ifp_n.fr⁻¹⌋⟩ := get?_of_eq_some_of_get?_intFractPair_stream_fr_ne_zero nth_stream_eq nth_fract_ne_zero [GOAL] case succ.intro.intro.intro.inl.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_inv_eq_floor : ifp_n.fr⁻¹ = ↑⌊ifp_n.fr⁻¹⌋ s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ⊢ v = conts.a / conts.b [PROOFSTEP] rw [← ifp_n_fract_inv_eq_floor] at s_nth_eq [GOAL] case succ.intro.intro.intro.inl.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_inv_eq_floor : ifp_n.fr⁻¹ = ↑⌊ifp_n.fr⁻¹⌋ s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ifp_n.fr⁻¹ } ⊢ v = conts.a / conts.b [PROOFSTEP] suffices v = compExactValue ppconts pconts ifp_n.fr by simpa [continuantsAux, s_nth_eq, compExactValue, nth_fract_ne_zero] using this [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_inv_eq_floor : ifp_n.fr⁻¹ = ↑⌊ifp_n.fr⁻¹⌋ s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ifp_n.fr⁻¹ } this : v = compExactValue ppconts pconts ifp_n.fr ⊢ v = conts.a / conts.b [PROOFSTEP] simpa [continuantsAux, s_nth_eq, compExactValue, nth_fract_ne_zero] using this [GOAL] case succ.intro.intro.intro.inl.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_eq_zero : ifp_succ_n.fr = 0 nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_inv_eq_floor : ifp_n.fr⁻¹ = ↑⌊ifp_n.fr⁻¹⌋ s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ifp_n.fr⁻¹ } ⊢ v = compExactValue ppconts pconts ifp_n.fr [PROOFSTEP] exact IH nth_stream_eq [GOAL] case succ.intro.intro.intro.inr K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : ¬ifp_succ_n.fr = 0 ⊢ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] suffices compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr by have : v = compExactValue ppconts pconts ifp_n.fr := IH nth_stream_eq conv_lhs => rw [this] assumption -- get the correspondence between ifp_n and ifp_succ_n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : ¬ifp_succ_n.fr = 0 this : compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr ⊢ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] have : v = compExactValue ppconts pconts ifp_n.fr := IH nth_stream_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : ¬ifp_succ_n.fr = 0 this✝ : compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr this : v = compExactValue ppconts pconts ifp_n.fr ⊢ v = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] conv_lhs => rw [this] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : ¬ifp_succ_n.fr = 0 this✝ : compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr this : v = compExactValue ppconts pconts ifp_n.fr | v [PROOFSTEP] rw [this] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : ¬ifp_succ_n.fr = 0 this✝ : compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr this : v = compExactValue ppconts pconts ifp_n.fr | v [PROOFSTEP] rw [this] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : ¬ifp_succ_n.fr = 0 this✝ : compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr this : v = compExactValue ppconts pconts ifp_n.fr | v [PROOFSTEP] rw [this] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : ¬ifp_succ_n.fr = 0 this✝ : compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr this : v = compExactValue ppconts pconts ifp_n.fr ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts (continuantsAux (of v) (Nat.succ n + 1)) ifp_succ_n.fr [PROOFSTEP] assumption -- get the correspondence between ifp_n and ifp_succ_n [GOAL] case succ.intro.intro.intro.inr K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : ¬ifp_succ_n.fr = 0 ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr [PROOFSTEP] obtain ⟨ifp_n', nth_stream_eq', ifp_n_fract_ne_zero, ⟨refl⟩⟩ : ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr ≠ 0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_succ_n_fr_ne_zero : ¬ifp_succ_n.fr = 0 ⊢ ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr ≠ 0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n case succ.intro.intro.intro.inr.intro.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n'.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n'.fr⁻¹).fr = 0 ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n'.fr⁻¹).fr [PROOFSTEP] exact IntFractPair.succ_nth_stream_eq_some_iff.1 succ_nth_stream_eq [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n'.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n'.fr⁻¹).fr = 0 ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n'.fr⁻¹).fr [PROOFSTEP] have : ifp_n' = ifp_n := by injection Eq.trans nth_stream_eq'.symm nth_stream_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n'.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n'.fr⁻¹).fr = 0 ⊢ ifp_n' = ifp_n [PROOFSTEP] injection Eq.trans nth_stream_eq'.symm nth_stream_eq [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n'.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n'.fr⁻¹).fr = 0 this : ifp_n' = ifp_n ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n'.fr⁻¹).fr [PROOFSTEP] cases this [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have s_nth_eq : g.s.get? n = some ⟨1, (⌊ifp_n.fr⁻¹⌋ : K)⟩ := get?_of_eq_some_of_get?_intFractPair_stream_fr_ne_zero nth_stream_eq ifp_n_fract_ne_zero [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] let ppA := ppconts.a [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] let ppB := ppconts.b [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] let pA := pconts.a [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] let pB := pconts.b [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) := by -- unfold compExactValue and the convergent computation once field_simp [ifp_n_fract_ne_zero, compExactValue, nextContinuants, nextNumerator, nextDenominator] ac_rfl [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b ⊢ compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) [PROOFSTEP] field_simp [ifp_n_fract_ne_zero, compExactValue, nextContinuants, nextNumerator, nextDenominator] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b ⊢ ((continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a * ifp_n.fr) / ((continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b * ifp_n.fr) = ((continuantsAux (of v) n).a * ifp_n.fr + (continuantsAux (of v) (n + 1)).a) / ((continuantsAux (of v) n).b * ifp_n.fr + (continuantsAux (of v) (n + 1)).b) [PROOFSTEP] ac_rfl [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] rw [this] -- two calculations needed to show the claim [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) ⊢ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have tmp_calc := compExactValue_correctness_of_stream_eq_some_aux_comp pA ppA ifp_succ_n_fr_ne_zero [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊ifp_n.fr⁻¹⌋ * pA + ppA) / Int.fract ifp_n.fr⁻¹ + pA = (pA * ifp_n.fr⁻¹ + ppA) / Int.fract ifp_n.fr⁻¹ ⊢ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have tmp_calc' := compExactValue_correctness_of_stream_eq_some_aux_comp pB ppB ifp_succ_n_fr_ne_zero [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊ifp_n.fr⁻¹⌋ * pA + ppA) / Int.fract ifp_n.fr⁻¹ + pA = (pA * ifp_n.fr⁻¹ + ppA) / Int.fract ifp_n.fr⁻¹ tmp_calc' : (↑⌊ifp_n.fr⁻¹⌋ * pB + ppB) / Int.fract ifp_n.fr⁻¹ + pB = (pB * ifp_n.fr⁻¹ + ppB) / Int.fract ifp_n.fr⁻¹ ⊢ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] let f := Int.fract (1 / ifp_n.fr) [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊ifp_n.fr⁻¹⌋ * pA + ppA) / Int.fract ifp_n.fr⁻¹ + pA = (pA * ifp_n.fr⁻¹ + ppA) / Int.fract ifp_n.fr⁻¹ tmp_calc' : (↑⌊ifp_n.fr⁻¹⌋ * pB + ppB) / Int.fract ifp_n.fr⁻¹ + pB = (pB * ifp_n.fr⁻¹ + ppB) / Int.fract ifp_n.fr⁻¹ f : K := Int.fract (1 / ifp_n.fr) ⊢ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have f_ne_zero : f ≠ 0 := by simpa using ifp_succ_n_fr_ne_zero [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊ifp_n.fr⁻¹⌋ * pA + ppA) / Int.fract ifp_n.fr⁻¹ + pA = (pA * ifp_n.fr⁻¹ + ppA) / Int.fract ifp_n.fr⁻¹ tmp_calc' : (↑⌊ifp_n.fr⁻¹⌋ * pB + ppB) / Int.fract ifp_n.fr⁻¹ + pB = (pB * ifp_n.fr⁻¹ + ppB) / Int.fract ifp_n.fr⁻¹ f : K := Int.fract (1 / ifp_n.fr) ⊢ f ≠ 0 [PROOFSTEP] simpa using ifp_succ_n_fr_ne_zero [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊ifp_n.fr⁻¹⌋ * pA + ppA) / Int.fract ifp_n.fr⁻¹ + pA = (pA * ifp_n.fr⁻¹ + ppA) / Int.fract ifp_n.fr⁻¹ tmp_calc' : (↑⌊ifp_n.fr⁻¹⌋ * pB + ppB) / Int.fract ifp_n.fr⁻¹ + pB = (pB * ifp_n.fr⁻¹ + ppB) / Int.fract ifp_n.fr⁻¹ f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 ⊢ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] rw [inv_eq_one_div] at tmp_calc tmp_calc' [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 ⊢ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have hA : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) + pA * f = pA * (1 / ifp_n.fr) + ppA := by have := congrFun (congrArg HMul.hMul tmp_calc) f rwa [right_distrib, div_mul_cancel (h := f_ne_zero), div_mul_cancel (h := f_ne_zero)] at this [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 ⊢ ↑⌊1 / ifp_n.fr⌋ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA [PROOFSTEP] have := congrFun (congrArg HMul.hMul tmp_calc) f [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this✝ : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 this : ((↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA) * f = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) * f ⊢ ↑⌊1 / ifp_n.fr⌋ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA [PROOFSTEP] rwa [right_distrib, div_mul_cancel (h := f_ne_zero), div_mul_cancel (h := f_ne_zero)] at this [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 hA : ↑⌊1 / ifp_n.fr⌋ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA ⊢ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] have hB : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) + pB * f = pB * (1 / ifp_n.fr) + ppB := by have := congrFun (congrArg HMul.hMul tmp_calc') f rwa [right_distrib, div_mul_cancel (h := f_ne_zero), div_mul_cancel (h := f_ne_zero)] at this [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 hA : ↑⌊1 / ifp_n.fr⌋ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA ⊢ ↑⌊1 / ifp_n.fr⌋ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB [PROOFSTEP] have := congrFun (congrArg HMul.hMul tmp_calc') f [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this✝ : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 hA : ↑⌊1 / ifp_n.fr⌋ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA this : ((↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB) * f = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) * f ⊢ ↑⌊1 / ifp_n.fr⌋ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB [PROOFSTEP] rwa [right_distrib, div_mul_cancel (h := f_ne_zero), div_mul_cancel (h := f_ne_zero)] at this [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 hA : ↑⌊1 / ifp_n.fr⌋ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : ↑⌊1 / ifp_n.fr⌋ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB ⊢ (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) = compExactValue pconts conts (IntFractPair.of ifp_n.fr⁻¹).fr [PROOFSTEP] field_simp [compExactValue, continuantsAux_recurrence s_nth_eq ppconts_eq pconts_eq, nextContinuants, nextNumerator, nextDenominator] [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 hA : ↑⌊1 / ifp_n.fr⌋ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : ↑⌊1 / ifp_n.fr⌋ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB ⊢ ((continuantsAux (of v) n).a * ifp_n.fr + (continuantsAux (of v) (n + 1)).a) / ((continuantsAux (of v) n).b * ifp_n.fr + (continuantsAux (of v) (n + 1)).b) = if (IntFractPair.of (1 / ifp_n.fr)).fr = 0 then (↑⌊1 / ifp_n.fr⌋ * (continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a) / (↑⌊1 / ifp_n.fr⌋ * (continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b) else (↑⌊1 / ifp_n.fr⌋ * (continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a + (continuantsAux (of v) (n + 1)).a * (IntFractPair.of (1 / ifp_n.fr)).fr) / (↑⌊1 / ifp_n.fr⌋ * (continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b + (continuantsAux (of v) (n + 1)).b * (IntFractPair.of (1 / ifp_n.fr)).fr) [PROOFSTEP] have hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f := rfl [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 hA : ↑⌊1 / ifp_n.fr⌋ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : ↑⌊1 / ifp_n.fr⌋ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f ⊢ ((continuantsAux (of v) n).a * ifp_n.fr + (continuantsAux (of v) (n + 1)).a) / ((continuantsAux (of v) n).b * ifp_n.fr + (continuantsAux (of v) (n + 1)).b) = if (IntFractPair.of (1 / ifp_n.fr)).fr = 0 then (↑⌊1 / ifp_n.fr⌋ * (continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a) / (↑⌊1 / ifp_n.fr⌋ * (continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b) else (↑⌊1 / ifp_n.fr⌋ * (continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a + (continuantsAux (of v) (n + 1)).a * (IntFractPair.of (1 / ifp_n.fr)).fr) / (↑⌊1 / ifp_n.fr⌋ * (continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b + (continuantsAux (of v) (n + 1)).b * (IntFractPair.of (1 / ifp_n.fr)).fr) [PROOFSTEP] rw [one_div, if_neg _, ← one_div, hfr] [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 hA : ↑⌊1 / ifp_n.fr⌋ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : ↑⌊1 / ifp_n.fr⌋ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f ⊢ ((continuantsAux (of v) n).a * ifp_n.fr + (continuantsAux (of v) (n + 1)).a) / ((continuantsAux (of v) n).b * ifp_n.fr + (continuantsAux (of v) (n + 1)).b) = (↑⌊1 / ifp_n.fr⌋ * (continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a + (continuantsAux (of v) (n + 1)).a * f) / (↑⌊1 / ifp_n.fr⌋ * (continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b + (continuantsAux (of v) (n + 1)).b * f) K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 hA : ↑⌊1 / ifp_n.fr⌋ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : ↑⌊1 / ifp_n.fr⌋ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f ⊢ ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 [PROOFSTEP] field_simp [hA, hB] [GOAL] case succ.intro.intro.intro.inr.intro.intro.intro.refl.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 hA : ↑⌊1 / ifp_n.fr⌋ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : ↑⌊1 / ifp_n.fr⌋ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f ⊢ ((continuantsAux (of v) n).a * ifp_n.fr + (continuantsAux (of v) (n + 1)).a) / ((continuantsAux (of v) n).b * ifp_n.fr + (continuantsAux (of v) (n + 1)).b) = ((continuantsAux (of v) (n + 1)).a + (continuantsAux (of v) n).a * ifp_n.fr) / ((continuantsAux (of v) (n + 1)).b + (continuantsAux (of v) n).b * ifp_n.fr) K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 hA : ↑⌊1 / ifp_n.fr⌋ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : ↑⌊1 / ifp_n.fr⌋ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f ⊢ ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 [PROOFSTEP] ac_rfl [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := continuantsAux g (n + 2) pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = continuantsAux g n nth_stream_eq' : IntFractPair.stream v n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (Nat.succ n) = some (IntFractPair.of ifp_n.fr⁻¹) ifp_succ_n_fr_ne_zero : ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 s_nth_eq : Stream'.Seq.get? g.s n = some { a := 1, b := ↑⌊ifp_n.fr⁻¹⌋ } ppA : K := ppconts.a ppB : K := ppconts.b pA : K := pconts.a pB : K := pconts.b this : compExactValue ppconts pconts ifp_n.fr = (ppA + ifp_n.fr⁻¹ * pA) / (ppB + ifp_n.fr⁻¹ * pB) tmp_calc : (↑⌊1 / ifp_n.fr⌋ * pA + ppA) / Int.fract (1 / ifp_n.fr) + pA = (pA * (1 / ifp_n.fr) + ppA) / Int.fract (1 / ifp_n.fr) tmp_calc' : (↑⌊1 / ifp_n.fr⌋ * pB + ppB) / Int.fract (1 / ifp_n.fr) + pB = (pB * (1 / ifp_n.fr) + ppB) / Int.fract (1 / ifp_n.fr) f : K := Int.fract (1 / ifp_n.fr) f_ne_zero : f ≠ 0 hA : ↑⌊1 / ifp_n.fr⌋ * pA + ppA + pA * f = pA * (1 / ifp_n.fr) + ppA hB : ↑⌊1 / ifp_n.fr⌋ * pB + ppB + pB * f = pB * (1 / ifp_n.fr) + ppB hfr : (IntFractPair.of (1 / ifp_n.fr)).fr = f ⊢ ¬(IntFractPair.of ifp_n.fr⁻¹).fr = 0 [PROOFSTEP] rwa [inv_eq_one_div, hfr] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K nth_stream_eq_none : IntFractPair.stream v n = none ⊢ v = convergents (of v) (n - 1) [PROOFSTEP] induction n with | zero => contradiction -- IntFractPair.stream v 0 ≠ none | succ n IH => let g := of v change v = g.convergents n have : IntFractPair.stream v n = none ∨ ∃ ifp, IntFractPair.stream v n = some ifp ∧ ifp.fr = 0 := IntFractPair.succ_nth_stream_eq_none_iff.1 nth_stream_eq_none rcases this with (⟨nth_stream_eq_none⟩ | ⟨ifp_n, nth_stream_eq, nth_stream_fr_eq_zero⟩) · cases' n with n' · contradiction -- IntFractPair.stream v 0 ≠ none · have : g.TerminatedAt n' := of_terminatedAt_n_iff_succ_nth_intFractPair_stream_eq_none.2 nth_stream_eq_none have : g.convergents (n' + 1) = g.convergents n' := convergents_stable_of_terminated n'.le_succ this rw [this] exact IH nth_stream_eq_none · simpa [nth_stream_fr_eq_zero, compExactValue] using compExactValue_correctness_of_stream_eq_some nth_stream_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K nth_stream_eq_none : IntFractPair.stream v n = none ⊢ v = convergents (of v) (n - 1) [PROOFSTEP] induction n with | zero => contradiction -- IntFractPair.stream v 0 ≠ none | succ n IH => let g := of v change v = g.convergents n have : IntFractPair.stream v n = none ∨ ∃ ifp, IntFractPair.stream v n = some ifp ∧ ifp.fr = 0 := IntFractPair.succ_nth_stream_eq_none_iff.1 nth_stream_eq_none rcases this with (⟨nth_stream_eq_none⟩ | ⟨ifp_n, nth_stream_eq, nth_stream_fr_eq_zero⟩) · cases' n with n' · contradiction -- IntFractPair.stream v 0 ≠ none · have : g.TerminatedAt n' := of_terminatedAt_n_iff_succ_nth_intFractPair_stream_eq_none.2 nth_stream_eq_none have : g.convergents (n' + 1) = g.convergents n' := convergents_stable_of_terminated n'.le_succ this rw [this] exact IH nth_stream_eq_none · simpa [nth_stream_fr_eq_zero, compExactValue] using compExactValue_correctness_of_stream_eq_some nth_stream_eq [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K nth_stream_eq_none : IntFractPair.stream v Nat.zero = none ⊢ v = convergents (of v) (Nat.zero - 1) [PROOFSTEP] | zero => contradiction -- IntFractPair.stream v 0 ≠ none [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K nth_stream_eq_none : IntFractPair.stream v Nat.zero = none ⊢ v = convergents (of v) (Nat.zero - 1) [PROOFSTEP] contradiction -- IntFractPair.stream v 0 ≠ none [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K n : ℕ IH : IntFractPair.stream v n = none → v = convergents (of v) (n - 1) nth_stream_eq_none : IntFractPair.stream v (Nat.succ n) = none ⊢ v = convergents (of v) (Nat.succ n - 1) [PROOFSTEP] | succ n IH => let g := of v change v = g.convergents n have : IntFractPair.stream v n = none ∨ ∃ ifp, IntFractPair.stream v n = some ifp ∧ ifp.fr = 0 := IntFractPair.succ_nth_stream_eq_none_iff.1 nth_stream_eq_none rcases this with (⟨nth_stream_eq_none⟩ | ⟨ifp_n, nth_stream_eq, nth_stream_fr_eq_zero⟩) · cases' n with n' · contradiction -- IntFractPair.stream v 0 ≠ none · have : g.TerminatedAt n' := of_terminatedAt_n_iff_succ_nth_intFractPair_stream_eq_none.2 nth_stream_eq_none have : g.convergents (n' + 1) = g.convergents n' := convergents_stable_of_terminated n'.le_succ this rw [this] exact IH nth_stream_eq_none · simpa [nth_stream_fr_eq_zero, compExactValue] using compExactValue_correctness_of_stream_eq_some nth_stream_eq [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K n : ℕ IH : IntFractPair.stream v n = none → v = convergents (of v) (n - 1) nth_stream_eq_none : IntFractPair.stream v (Nat.succ n) = none ⊢ v = convergents (of v) (Nat.succ n - 1) [PROOFSTEP] let g := of v [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K n : ℕ IH : IntFractPair.stream v n = none → v = convergents (of v) (n - 1) nth_stream_eq_none : IntFractPair.stream v (Nat.succ n) = none g : GeneralizedContinuedFraction K := of v ⊢ v = convergents (of v) (Nat.succ n - 1) [PROOFSTEP] change v = g.convergents n [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K n : ℕ IH : IntFractPair.stream v n = none → v = convergents (of v) (n - 1) nth_stream_eq_none : IntFractPair.stream v (Nat.succ n) = none g : GeneralizedContinuedFraction K := of v ⊢ v = convergents g n [PROOFSTEP] have : IntFractPair.stream v n = none ∨ ∃ ifp, IntFractPair.stream v n = some ifp ∧ ifp.fr = 0 := IntFractPair.succ_nth_stream_eq_none_iff.1 nth_stream_eq_none [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K n : ℕ IH : IntFractPair.stream v n = none → v = convergents (of v) (n - 1) nth_stream_eq_none : IntFractPair.stream v (Nat.succ n) = none g : GeneralizedContinuedFraction K := of v this : IntFractPair.stream v n = none ∨ ∃ ifp, IntFractPair.stream v n = some ifp ∧ ifp.fr = 0 ⊢ v = convergents g n [PROOFSTEP] rcases this with (⟨nth_stream_eq_none⟩ | ⟨ifp_n, nth_stream_eq, nth_stream_fr_eq_zero⟩) [GOAL] case succ.inl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K n : ℕ IH : IntFractPair.stream v n = none → v = convergents (of v) (n - 1) nth_stream_eq_none✝ : IntFractPair.stream v (Nat.succ n) = none g : GeneralizedContinuedFraction K := of v nth_stream_eq_none : IntFractPair.stream v n = none ⊢ v = convergents g n [PROOFSTEP] cases' n with n' [GOAL] case succ.inl.zero K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v IH : IntFractPair.stream v Nat.zero = none → v = convergents (of v) (Nat.zero - 1) nth_stream_eq_none✝ : IntFractPair.stream v (Nat.succ Nat.zero) = none nth_stream_eq_none : IntFractPair.stream v Nat.zero = none ⊢ v = convergents g Nat.zero [PROOFSTEP] contradiction -- IntFractPair.stream v 0 ≠ none [GOAL] case succ.inl.succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n' : ℕ IH : IntFractPair.stream v (Nat.succ n') = none → v = convergents (of v) (Nat.succ n' - 1) nth_stream_eq_none✝ : IntFractPair.stream v (Nat.succ (Nat.succ n')) = none nth_stream_eq_none : IntFractPair.stream v (Nat.succ n') = none ⊢ v = convergents g (Nat.succ n') [PROOFSTEP] have : g.TerminatedAt n' := of_terminatedAt_n_iff_succ_nth_intFractPair_stream_eq_none.2 nth_stream_eq_none [GOAL] case succ.inl.succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n' : ℕ IH : IntFractPair.stream v (Nat.succ n') = none → v = convergents (of v) (Nat.succ n' - 1) nth_stream_eq_none✝ : IntFractPair.stream v (Nat.succ (Nat.succ n')) = none nth_stream_eq_none : IntFractPair.stream v (Nat.succ n') = none this : TerminatedAt g n' ⊢ v = convergents g (Nat.succ n') [PROOFSTEP] have : g.convergents (n' + 1) = g.convergents n' := convergents_stable_of_terminated n'.le_succ this [GOAL] case succ.inl.succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n' : ℕ IH : IntFractPair.stream v (Nat.succ n') = none → v = convergents (of v) (Nat.succ n' - 1) nth_stream_eq_none✝ : IntFractPair.stream v (Nat.succ (Nat.succ n')) = none nth_stream_eq_none : IntFractPair.stream v (Nat.succ n') = none this✝ : TerminatedAt g n' this : convergents g (n' + 1) = convergents g n' ⊢ v = convergents g (Nat.succ n') [PROOFSTEP] rw [this] [GOAL] case succ.inl.succ K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n' : ℕ IH : IntFractPair.stream v (Nat.succ n') = none → v = convergents (of v) (Nat.succ n' - 1) nth_stream_eq_none✝ : IntFractPair.stream v (Nat.succ (Nat.succ n')) = none nth_stream_eq_none : IntFractPair.stream v (Nat.succ n') = none this✝ : TerminatedAt g n' this : convergents g (n' + 1) = convergents g n' ⊢ v = convergents g n' [PROOFSTEP] exact IH nth_stream_eq_none [GOAL] case succ.inr.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K n : ℕ IH : IntFractPair.stream v n = none → v = convergents (of v) (n - 1) nth_stream_eq_none : IntFractPair.stream v (Nat.succ n) = none g : GeneralizedContinuedFraction K := of v ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_stream_fr_eq_zero : ifp_n.fr = 0 ⊢ v = convergents g n [PROOFSTEP] simpa [nth_stream_fr_eq_zero, compExactValue] using compExactValue_correctness_of_stream_eq_some nth_stream_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K terminates : Terminates (of v) ⊢ ∀ᶠ (n : ℕ) in atTop, v = convergents (of v) n [PROOFSTEP] rw [eventually_atTop] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K terminates : Terminates (of v) ⊢ ∃ a, ∀ (b : ℕ), b ≥ a → v = convergents (of v) b [PROOFSTEP] obtain ⟨n, terminated_at_n⟩ : ∃ n, (of v).TerminatedAt n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K v : K n : ℕ inst✝ : FloorRing K terminates : Terminates (of v) ⊢ ∃ n, TerminatedAt (of v) n case intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K terminates : Terminates (of v) n : ℕ terminated_at_n : TerminatedAt (of v) n ⊢ ∃ a, ∀ (b : ℕ), b ≥ a → v = convergents (of v) b [PROOFSTEP] exact terminates [GOAL] case intro K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K terminates : Terminates (of v) n : ℕ terminated_at_n : TerminatedAt (of v) n ⊢ ∃ a, ∀ (b : ℕ), b ≥ a → v = convergents (of v) b [PROOFSTEP] use n [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K terminates : Terminates (of v) n : ℕ terminated_at_n : TerminatedAt (of v) n ⊢ ∀ (b : ℕ), b ≥ n → v = convergents (of v) b [PROOFSTEP] intro m m_geq_n [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K terminates : Terminates (of v) n : ℕ terminated_at_n : TerminatedAt (of v) n m : ℕ m_geq_n : m ≥ n ⊢ v = convergents (of v) m [PROOFSTEP] rw [convergents_stable_of_terminated m_geq_n terminated_at_n] [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K terminates : Terminates (of v) n : ℕ terminated_at_n : TerminatedAt (of v) n m : ℕ m_geq_n : m ≥ n ⊢ v = convergents (of v) n [PROOFSTEP] exact of_correctness_of_terminatedAt terminated_at_n
{"mathlib_filename": "Mathlib.Algebra.ContinuedFractions.Computation.CorrectnessTerminating", "llama_tokens": 46794}
[GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : Add A f g : AddMonoidAlgebra R A a0 b0 : A h : ∀ {a b : A}, a ∈ f.support → b ∈ g.support → a ≠ a0 ∨ b ≠ b0 → a + b ≠ a0 + b0 ⊢ ↑(f * g) (a0 + b0) = ↑f a0 * ↑g b0 [PROOFSTEP] classical rw [mul_apply] refine' (Finset.sum_eq_single a0 _ _).trans _ · exact fun b H hb => Finset.sum_eq_zero fun x H1 => if_neg (h H H1 (Or.inl hb)) · exact fun af0 => by simp [not_mem_support_iff.mp af0] · refine' (Finset.sum_eq_single b0 (fun b bg b0 => _) _).trans (if_pos rfl) · by_cases af : a0 ∈ f.support · exact if_neg (h af bg (Or.inr b0)) · simp only [not_mem_support_iff.mp af, zero_mul, ite_self] · exact fun bf0 => by simp [not_mem_support_iff.mp bf0] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : Add A f g : AddMonoidAlgebra R A a0 b0 : A h : ∀ {a b : A}, a ∈ f.support → b ∈ g.support → a ≠ a0 ∨ b ≠ b0 → a + b ≠ a0 + b0 ⊢ ↑(f * g) (a0 + b0) = ↑f a0 * ↑g b0 [PROOFSTEP] rw [mul_apply] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : Add A f g : AddMonoidAlgebra R A a0 b0 : A h : ∀ {a b : A}, a ∈ f.support → b ∈ g.support → a ≠ a0 ∨ b ≠ b0 → a + b ≠ a0 + b0 ⊢ (sum f fun a₁ b₁ => sum g fun a₂ b₂ => if a₁ + a₂ = a0 + b0 then b₁ * b₂ else 0) = ↑f a0 * ↑g b0 [PROOFSTEP] refine' (Finset.sum_eq_single a0 _ _).trans _ [GOAL] case refine'_1 R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : Add A f g : AddMonoidAlgebra R A a0 b0 : A h : ∀ {a b : A}, a ∈ f.support → b ∈ g.support → a ≠ a0 ∨ b ≠ b0 → a + b ≠ a0 + b0 ⊢ ∀ (b : A), b ∈ f.support → b ≠ a0 → (fun a₁ b₁ => sum g fun a₂ b₂ => if a₁ + a₂ = a0 + b0 then b₁ * b₂ else 0) b (↑f b) = 0 [PROOFSTEP] exact fun b H hb => Finset.sum_eq_zero fun x H1 => if_neg (h H H1 (Or.inl hb)) [GOAL] case refine'_2 R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : Add A f g : AddMonoidAlgebra R A a0 b0 : A h : ∀ {a b : A}, a ∈ f.support → b ∈ g.support → a ≠ a0 ∨ b ≠ b0 → a + b ≠ a0 + b0 ⊢ ¬a0 ∈ f.support → (fun a₁ b₁ => sum g fun a₂ b₂ => if a₁ + a₂ = a0 + b0 then b₁ * b₂ else 0) a0 (↑f a0) = 0 [PROOFSTEP] exact fun af0 => by simp [not_mem_support_iff.mp af0] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : Add A f g : AddMonoidAlgebra R A a0 b0 : A h : ∀ {a b : A}, a ∈ f.support → b ∈ g.support → a ≠ a0 ∨ b ≠ b0 → a + b ≠ a0 + b0 af0 : ¬a0 ∈ f.support ⊢ (fun a₁ b₁ => sum g fun a₂ b₂ => if a₁ + a₂ = a0 + b0 then b₁ * b₂ else 0) a0 (↑f a0) = 0 [PROOFSTEP] simp [not_mem_support_iff.mp af0] [GOAL] case refine'_3 R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : Add A f g : AddMonoidAlgebra R A a0 b0 : A h : ∀ {a b : A}, a ∈ f.support → b ∈ g.support → a ≠ a0 ∨ b ≠ b0 → a + b ≠ a0 + b0 ⊢ (fun a₁ b₁ => sum g fun a₂ b₂ => if a₁ + a₂ = a0 + b0 then b₁ * b₂ else 0) a0 (↑f a0) = ↑f a0 * ↑g b0 [PROOFSTEP] refine' (Finset.sum_eq_single b0 (fun b bg b0 => _) _).trans (if_pos rfl) [GOAL] case refine'_3.refine'_1 R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : Add A f g : AddMonoidAlgebra R A a0 b0✝ : A h : ∀ {a b : A}, a ∈ f.support → b ∈ g.support → a ≠ a0 ∨ b ≠ b0✝ → a + b ≠ a0 + b0✝ b : A bg : b ∈ g.support b0 : b ≠ b0✝ ⊢ (fun a₂ b₂ => if a0 + a₂ = a0 + b0✝ then ↑f a0 * b₂ else 0) b (↑g b) = 0 [PROOFSTEP] by_cases af : a0 ∈ f.support [GOAL] case pos R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : Add A f g : AddMonoidAlgebra R A a0 b0✝ : A h : ∀ {a b : A}, a ∈ f.support → b ∈ g.support → a ≠ a0 ∨ b ≠ b0✝ → a + b ≠ a0 + b0✝ b : A bg : b ∈ g.support b0 : b ≠ b0✝ af : a0 ∈ f.support ⊢ (fun a₂ b₂ => if a0 + a₂ = a0 + b0✝ then ↑f a0 * b₂ else 0) b (↑g b) = 0 [PROOFSTEP] exact if_neg (h af bg (Or.inr b0)) [GOAL] case neg R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : Add A f g : AddMonoidAlgebra R A a0 b0✝ : A h : ∀ {a b : A}, a ∈ f.support → b ∈ g.support → a ≠ a0 ∨ b ≠ b0✝ → a + b ≠ a0 + b0✝ b : A bg : b ∈ g.support b0 : b ≠ b0✝ af : ¬a0 ∈ f.support ⊢ (fun a₂ b₂ => if a0 + a₂ = a0 + b0✝ then ↑f a0 * b₂ else 0) b (↑g b) = 0 [PROOFSTEP] simp only [not_mem_support_iff.mp af, zero_mul, ite_self] [GOAL] case refine'_3.refine'_2 R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : Add A f g : AddMonoidAlgebra R A a0 b0 : A h : ∀ {a b : A}, a ∈ f.support → b ∈ g.support → a ≠ a0 ∨ b ≠ b0 → a + b ≠ a0 + b0 ⊢ ¬b0 ∈ g.support → (fun a₂ b₂ => if a0 + a₂ = a0 + b0 then ↑f a0 * b₂ else 0) b0 (↑g b0) = 0 [PROOFSTEP] exact fun bf0 => by simp [not_mem_support_iff.mp bf0] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : Add A f g : AddMonoidAlgebra R A a0 b0 : A h : ∀ {a b : A}, a ∈ f.support → b ∈ g.support → a ≠ a0 ∨ b ≠ b0 → a + b ≠ a0 + b0 bf0 : ¬b0 ∈ g.support ⊢ (fun a₂ b₂ => if a0 + a₂ = a0 + b0 then ↑f a0 * b₂ else 0) b0 (↑g b0) = 0 [PROOFSTEP] simp [not_mem_support_iff.mp bf0] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : AddLeftCancelSemigroup A g : AddMonoidAlgebra R A a x : A hx : x ∈ (single a 1 * g).support ⊢ ∃ b, b ∈ g.support ∧ a + b = x [PROOFSTEP] rwa [support_single_mul _ _ (fun y => by rw [one_mul] : ∀ y : R, 1 * y = 0 ↔ _), Finset.mem_map] at hx [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : AddLeftCancelSemigroup A g : AddMonoidAlgebra R A a x : A hx : x ∈ (single a 1 * g).support y : R ⊢ 1 * y = 0 ↔ y = 0 [PROOFSTEP] rw [one_mul] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : AddRightCancelSemigroup A f : AddMonoidAlgebra R A b x : A hx : x ∈ (f * single b 1).support ⊢ ∃ a, a ∈ f.support ∧ a + b = x [PROOFSTEP] rwa [support_mul_single _ _ (fun y => by rw [mul_one] : ∀ y : R, y * 1 = 0 ↔ _), Finset.mem_map] at hx [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : AddRightCancelSemigroup A f : AddMonoidAlgebra R A b x : A hx : x ∈ (f * single b 1).support y : R ⊢ y * 1 = 0 ↔ y = 0 [PROOFSTEP] rw [mul_one] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f * g = 0 ⊢ f = 0 ∨ g = 0 [PROOFSTEP] contrapose! fg [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 ⊢ f * g ≠ 0 [PROOFSTEP] let gmin : A := g.support.min' (support_nonempty_iff.mpr fg.2) [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) ⊢ f * g ≠ 0 [PROOFSTEP] refine' support_nonempty_iff.mp _ [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) ⊢ Finset.Nonempty (f * g).support [PROOFSTEP] obtain ⟨a, ha, H⟩ := Right.exists_add_of_mem_support_single_mul gmin ((f * single gmin 1 : AddMonoidAlgebra R A).support.min' (by rw [support_mul_single] <;> simp [support_nonempty_iff.mpr fg.1])) (Finset.min'_mem _ _) [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) ⊢ Finset.Nonempty (f * single gmin 1).support [PROOFSTEP] rw [support_mul_single] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) ⊢ Finset.Nonempty (Finset.map (addRightEmbedding gmin) f.support) [PROOFSTEP] simp [support_nonempty_iff.mpr fg.1] [GOAL] case hr R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) ⊢ ∀ (y : R), y * 1 = 0 ↔ y = 0 [PROOFSTEP] simp [support_nonempty_iff.mpr fg.1] [GOAL] case intro.intro R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) ⊢ Finset.Nonempty (f * g).support [PROOFSTEP] refine' ⟨a + gmin, mem_support_iff.mpr _⟩ [GOAL] case intro.intro R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) ⊢ ↑(f * g) (a + gmin) ≠ 0 [PROOFSTEP] rw [mul_apply_add_eq_mul_of_forall_ne _] [GOAL] case intro.intro R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) ⊢ ↑f a * ↑g gmin ≠ 0 [PROOFSTEP] refine' mul_ne_zero _ _ [GOAL] case intro.intro.refine'_1 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) ⊢ ↑f a ≠ 0 case intro.intro.refine'_2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) ⊢ ↑g gmin ≠ 0 [PROOFSTEP] exacts [mem_support_iff.mp ha, mem_support_iff.mp (Finset.min'_mem _ _)] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) ⊢ ∀ {a_1 b : A}, a_1 ∈ f.support → b ∈ g.support → a_1 ≠ a ∨ b ≠ gmin → a_1 + b ≠ a + gmin [PROOFSTEP] rw [H] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) ⊢ ∀ {a_1 b : A}, a_1 ∈ f.support → b ∈ g.support → a_1 ≠ a ∨ b ≠ gmin → a_1 + b ≠ Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) [PROOFSTEP] rintro b c bf cg (hb | hc) [GOAL] case inl R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ a ⊢ b + c ≠ Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) [PROOFSTEP] refine' ne_of_gt _ [GOAL] case inr R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ gmin ⊢ b + c ≠ Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) [PROOFSTEP] refine' ne_of_gt _ [GOAL] case inl R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ a ⊢ Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) < b + c [PROOFSTEP] refine' lt_of_lt_of_le (_ : _ < b + gmin) _ [GOAL] case inl.refine'_1 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ a ⊢ Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) < b + gmin [PROOFSTEP] apply Finset.min'_lt_of_mem_erase_min' [GOAL] case inl.refine'_1.ha R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ a ⊢ b + gmin ∈ Finset.erase (f * single gmin 1).support (Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support)) [PROOFSTEP] rw [← H] [GOAL] case inl.refine'_1.ha R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ a ⊢ b + gmin ∈ Finset.erase (f * single gmin 1).support (a + gmin) [PROOFSTEP] apply Finset.mem_erase_of_ne_of_mem [GOAL] case inl.refine'_1.ha.a R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ a ⊢ b + gmin ≠ a + gmin [PROOFSTEP] simpa only [Ne.def, add_left_inj] [GOAL] case inl.refine'_1.ha.a R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ a ⊢ b + gmin ∈ (f * single gmin 1).support [PROOFSTEP] rw [support_mul_single _ _ (fun y => by rw [mul_one] : ∀ y : R, y * 1 = 0 ↔ _)] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ a y : R ⊢ y * 1 = 0 ↔ y = 0 [PROOFSTEP] rw [mul_one] [GOAL] case inl.refine'_1.ha.a R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ a ⊢ b + gmin ∈ Finset.map (addRightEmbedding gmin) f.support [PROOFSTEP] simpa only [Finset.mem_map, addRightEmbedding_apply, add_left_inj, exists_prop, exists_eq_right] [GOAL] case inl.refine'_2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ a ⊢ b + gmin ≤ b + c [PROOFSTEP] haveI : CovariantClass A A (· + ·) (· ≤ ·) := Add.to_covariantClass_left A [GOAL] case inl.refine'_2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ a this : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ b + gmin ≤ b + c [PROOFSTEP] exact add_le_add_left (Finset.min'_le _ _ cg) _ [GOAL] case inr R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ gmin ⊢ Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) < b + c [PROOFSTEP] refine' lt_of_le_of_lt (_ : _ ≤ b + gmin) _ [GOAL] case inr.refine'_1 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ gmin ⊢ Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) ≤ b + gmin [PROOFSTEP] apply Finset.min'_le [GOAL] case inr.refine'_1.H2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ gmin ⊢ b + gmin ∈ (f * single gmin 1).support [PROOFSTEP] rw [support_mul_single _ _ (fun y => by rw [mul_one] : ∀ y : R, y * 1 = 0 ↔ _)] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ gmin y : R ⊢ y * 1 = 0 ↔ y = 0 [PROOFSTEP] rw [mul_one] [GOAL] case inr.refine'_1.H2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ gmin ⊢ b + gmin ∈ Finset.map (addRightEmbedding gmin) f.support [PROOFSTEP] simp only [bf, Finset.mem_map, addRightEmbedding_apply, add_left_inj, exists_prop, exists_eq_right] [GOAL] case inr.refine'_2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ gmin ⊢ b + gmin < b + c [PROOFSTEP] refine' add_lt_add_left _ _ [GOAL] case inr.refine'_2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddRightCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 gmin : A := Finset.min' g.support (_ : Finset.Nonempty g.support) a : A ha : a ∈ f.support H : a + gmin = Finset.min' (f * single gmin 1).support (_ : Finset.Nonempty (f * single gmin 1).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ gmin ⊢ gmin < c [PROOFSTEP] exact Finset.min'_lt_of_mem_erase_min' _ _ (Finset.mem_erase.mpr ⟨hc, cg⟩) [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f * g = 0 ⊢ f = 0 ∨ g = 0 [PROOFSTEP] contrapose! fg [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 ⊢ f * g ≠ 0 [PROOFSTEP] let fmin : A := f.support.min' (support_nonempty_iff.mpr fg.1) [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) ⊢ f * g ≠ 0 [PROOFSTEP] refine' support_nonempty_iff.mp _ [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) ⊢ Finset.Nonempty (f * g).support [PROOFSTEP] obtain ⟨a, ha, H⟩ := Left.exists_add_of_mem_support_single_mul fmin ((single fmin 1 * g : AddMonoidAlgebra R A).support.min' (by rw [support_single_mul] <;> simp [support_nonempty_iff.mpr fg.2])) (Finset.min'_mem _ _) [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) ⊢ Finset.Nonempty (single fmin 1 * g).support [PROOFSTEP] rw [support_single_mul] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) ⊢ Finset.Nonempty (Finset.map (addLeftEmbedding fmin) g.support) [PROOFSTEP] simp [support_nonempty_iff.mpr fg.2] [GOAL] case hr R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) ⊢ ∀ (y : R), 1 * y = 0 ↔ y = 0 [PROOFSTEP] simp [support_nonempty_iff.mpr fg.2] [GOAL] case intro.intro R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) ⊢ Finset.Nonempty (f * g).support [PROOFSTEP] refine' ⟨fmin + a, mem_support_iff.mpr _⟩ [GOAL] case intro.intro R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) ⊢ ↑(f * g) (fmin + a) ≠ 0 [PROOFSTEP] rw [mul_apply_add_eq_mul_of_forall_ne _] [GOAL] case intro.intro R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) ⊢ ↑f fmin * ↑g a ≠ 0 [PROOFSTEP] refine' mul_ne_zero _ _ [GOAL] case intro.intro.refine'_1 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) ⊢ ↑f fmin ≠ 0 case intro.intro.refine'_2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) ⊢ ↑g a ≠ 0 [PROOFSTEP] exacts [mem_support_iff.mp (Finset.min'_mem _ _), mem_support_iff.mp ha] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) ⊢ ∀ {a_1 b : A}, a_1 ∈ f.support → b ∈ g.support → a_1 ≠ fmin ∨ b ≠ a → a_1 + b ≠ fmin + a [PROOFSTEP] rw [H] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) ⊢ ∀ {a_1 b : A}, a_1 ∈ f.support → b ∈ g.support → a_1 ≠ fmin ∨ b ≠ a → a_1 + b ≠ Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) [PROOFSTEP] rintro b c bf cg (hb | hc) [GOAL] case inl R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ fmin ⊢ b + c ≠ Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) [PROOFSTEP] refine' ne_of_gt _ [GOAL] case inr R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ a ⊢ b + c ≠ Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) [PROOFSTEP] refine' ne_of_gt _ [GOAL] case inl R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ fmin ⊢ Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) < b + c [PROOFSTEP] refine' lt_of_le_of_lt (_ : _ ≤ fmin + c) _ [GOAL] case inl.refine'_1 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ fmin ⊢ Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) ≤ fmin + c [PROOFSTEP] apply Finset.min'_le [GOAL] case inl.refine'_1.H2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ fmin ⊢ fmin + c ∈ (single fmin 1 * g).support [PROOFSTEP] rw [support_single_mul _ _ (fun y => by rw [one_mul] : ∀ y : R, 1 * y = 0 ↔ _)] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ fmin y : R ⊢ 1 * y = 0 ↔ y = 0 [PROOFSTEP] rw [one_mul] [GOAL] case inl.refine'_1.H2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ fmin ⊢ fmin + c ∈ Finset.map (addLeftEmbedding fmin) g.support [PROOFSTEP] simp only [cg, Finset.mem_map, addLeftEmbedding_apply, add_right_inj, exists_prop, exists_eq_right] [GOAL] case inl.refine'_2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ fmin ⊢ fmin + c < b + c [PROOFSTEP] refine' add_lt_add_right _ _ [GOAL] case inl.refine'_2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hb : b ≠ fmin ⊢ fmin < b [PROOFSTEP] exact Finset.min'_lt_of_mem_erase_min' _ _ (Finset.mem_erase.mpr ⟨hb, bf⟩) [GOAL] case inr R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ a ⊢ Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) < b + c [PROOFSTEP] refine' lt_of_lt_of_le (_ : _ < fmin + c) _ [GOAL] case inr.refine'_1 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ a ⊢ Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) < fmin + c [PROOFSTEP] apply Finset.min'_lt_of_mem_erase_min' [GOAL] case inr.refine'_1.ha R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ a ⊢ fmin + c ∈ Finset.erase (single fmin 1 * g).support (Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support)) [PROOFSTEP] rw [← H] [GOAL] case inr.refine'_1.ha R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ a ⊢ fmin + c ∈ Finset.erase (single fmin 1 * g).support (fmin + a) [PROOFSTEP] apply Finset.mem_erase_of_ne_of_mem [GOAL] case inr.refine'_1.ha.a R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ a ⊢ fmin + c ≠ fmin + a [PROOFSTEP] simpa only [Ne.def, add_right_inj] [GOAL] case inr.refine'_1.ha.a R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ a ⊢ fmin + c ∈ (single fmin 1 * g).support [PROOFSTEP] rw [support_single_mul _ _ (fun y => by rw [one_mul] : ∀ y : R, 1 * y = 0 ↔ _)] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ a y : R ⊢ 1 * y = 0 ↔ y = 0 [PROOFSTEP] rw [one_mul] [GOAL] case inr.refine'_1.ha.a R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ a ⊢ fmin + c ∈ Finset.map (addLeftEmbedding fmin) g.support [PROOFSTEP] simpa only [Finset.mem_map, addLeftEmbedding_apply, add_right_inj, exists_prop, exists_eq_right] [GOAL] case inr.refine'_2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ a ⊢ fmin + c ≤ b + c [PROOFSTEP] haveI : CovariantClass A A (Function.swap (· + ·)) (· ≤ ·) := Add.to_covariantClass_right A [GOAL] case inr.refine'_2 R : Type u_1 A : Type u_2 inst✝⁴ : Semiring R inst✝³ : NoZeroDivisors R inst✝² : AddLeftCancelSemigroup A inst✝¹ : LinearOrder A inst✝ : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 f g : AddMonoidAlgebra R A fg : f ≠ 0 ∧ g ≠ 0 fmin : A := Finset.min' f.support (_ : Finset.Nonempty f.support) a : A ha : a ∈ g.support H : fmin + a = Finset.min' (single fmin 1 * g).support (_ : Finset.Nonempty (single fmin 1 * g).support) b c : A bf : b ∈ f.support cg : c ∈ g.support hc : c ≠ a this : CovariantClass A A (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ fmin + c ≤ b + c [PROOFSTEP] exact add_le_add_right (Finset.min'_le _ _ bf) _
{"mathlib_filename": "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors", "llama_tokens": 21077}
[GOAL] R : Type u_1 M : Type u_2 inst✝⁶ : Ring R inst✝⁵ : TopologicalSpace R inst✝⁴ : TopologicalSpace M inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalRing R inst✝ : TopologicalAddGroup M hmul : Tendsto (fun p => p.fst • p.snd) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) hmulleft : ∀ (m : M), Tendsto (fun a => a • m) (𝓝 0) (𝓝 0) hmulright : ∀ (a : R), Tendsto (fun m => a • m) (𝓝 0) (𝓝 0) ⊢ Continuous fun p => p.fst • p.snd [PROOFSTEP] refine continuous_of_continuousAt_zero₂ (AddMonoidHom.smul : R →+ M →+ M) ?_ ?_ ?_ [GOAL] case refine_1 R : Type u_1 M : Type u_2 inst✝⁶ : Ring R inst✝⁵ : TopologicalSpace R inst✝⁴ : TopologicalSpace M inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalRing R inst✝ : TopologicalAddGroup M hmul : Tendsto (fun p => p.fst • p.snd) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) hmulleft : ∀ (m : M), Tendsto (fun a => a • m) (𝓝 0) (𝓝 0) hmulright : ∀ (a : R), Tendsto (fun m => a • m) (𝓝 0) (𝓝 0) ⊢ ContinuousAt (fun x => ↑(↑AddMonoidHom.smul x.fst) x.snd) (0, 0) [PROOFSTEP] simpa [ContinuousAt, nhds_prod_eq] [GOAL] case refine_2 R : Type u_1 M : Type u_2 inst✝⁶ : Ring R inst✝⁵ : TopologicalSpace R inst✝⁴ : TopologicalSpace M inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalRing R inst✝ : TopologicalAddGroup M hmul : Tendsto (fun p => p.fst • p.snd) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) hmulleft : ∀ (m : M), Tendsto (fun a => a • m) (𝓝 0) (𝓝 0) hmulright : ∀ (a : R), Tendsto (fun m => a • m) (𝓝 0) (𝓝 0) ⊢ ∀ (x : R), ContinuousAt (↑(↑AddMonoidHom.smul x)) 0 [PROOFSTEP] simpa [ContinuousAt, nhds_prod_eq] [GOAL] case refine_3 R : Type u_1 M : Type u_2 inst✝⁶ : Ring R inst✝⁵ : TopologicalSpace R inst✝⁴ : TopologicalSpace M inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : TopologicalRing R inst✝ : TopologicalAddGroup M hmul : Tendsto (fun p => p.fst • p.snd) (𝓝 0 ×ˢ 𝓝 0) (𝓝 0) hmulleft : ∀ (m : M), Tendsto (fun a => a • m) (𝓝 0) (𝓝 0) hmulright : ∀ (a : R), Tendsto (fun m => a • m) (𝓝 0) (𝓝 0) ⊢ ∀ (y : M), ContinuousAt (fun x => ↑(↑AddMonoidHom.smul x) y) 0 [PROOFSTEP] simpa [ContinuousAt, nhds_prod_eq] [GOAL] R : Type u_1 M : Type u_2 inst✝⁷ : Ring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSpace M inst✝⁴ : AddCommGroup M inst✝³ : ContinuousAdd M inst✝² : Module R M inst✝¹ : ContinuousSMul R M inst✝ : NeBot (𝓝[{x | IsUnit x}] 0) s : Submodule R M hs : Set.Nonempty (interior ↑s) ⊢ s = ⊤ [PROOFSTEP] rcases hs with ⟨y, hy⟩ [GOAL] case intro R : Type u_1 M : Type u_2 inst✝⁷ : Ring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSpace M inst✝⁴ : AddCommGroup M inst✝³ : ContinuousAdd M inst✝² : Module R M inst✝¹ : ContinuousSMul R M inst✝ : NeBot (𝓝[{x | IsUnit x}] 0) s : Submodule R M y : M hy : y ∈ interior ↑s ⊢ s = ⊤ [PROOFSTEP] refine' Submodule.eq_top_iff'.2 fun x => _ [GOAL] case intro R : Type u_1 M : Type u_2 inst✝⁷ : Ring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSpace M inst✝⁴ : AddCommGroup M inst✝³ : ContinuousAdd M inst✝² : Module R M inst✝¹ : ContinuousSMul R M inst✝ : NeBot (𝓝[{x | IsUnit x}] 0) s : Submodule R M y : M hy : y ∈ interior ↑s x : M ⊢ x ∈ s [PROOFSTEP] rw [mem_interior_iff_mem_nhds] at hy [GOAL] case intro R : Type u_1 M : Type u_2 inst✝⁷ : Ring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSpace M inst✝⁴ : AddCommGroup M inst✝³ : ContinuousAdd M inst✝² : Module R M inst✝¹ : ContinuousSMul R M inst✝ : NeBot (𝓝[{x | IsUnit x}] 0) s : Submodule R M y : M hy : ↑s ∈ 𝓝 y x : M ⊢ x ∈ s [PROOFSTEP] have : Tendsto (fun c : R => y + c • x) (𝓝[{x : R | IsUnit x}] 0) (𝓝 (y + (0 : R) • x)) := tendsto_const_nhds.add ((tendsto_nhdsWithin_of_tendsto_nhds tendsto_id).smul tendsto_const_nhds) [GOAL] case intro R : Type u_1 M : Type u_2 inst✝⁷ : Ring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSpace M inst✝⁴ : AddCommGroup M inst✝³ : ContinuousAdd M inst✝² : Module R M inst✝¹ : ContinuousSMul R M inst✝ : NeBot (𝓝[{x | IsUnit x}] 0) s : Submodule R M y : M hy : ↑s ∈ 𝓝 y x : M this : Tendsto (fun c => y + c • x) (𝓝[{x | IsUnit x}] 0) (𝓝 (y + 0 • x)) ⊢ x ∈ s [PROOFSTEP] rw [zero_smul, add_zero] at this [GOAL] case intro R : Type u_1 M : Type u_2 inst✝⁷ : Ring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSpace M inst✝⁴ : AddCommGroup M inst✝³ : ContinuousAdd M inst✝² : Module R M inst✝¹ : ContinuousSMul R M inst✝ : NeBot (𝓝[{x | IsUnit x}] 0) s : Submodule R M y : M hy : ↑s ∈ 𝓝 y x : M this : Tendsto (fun c => y + c • x) (𝓝[{x | IsUnit x}] 0) (𝓝 y) ⊢ x ∈ s [PROOFSTEP] obtain ⟨_, hu : y + _ • _ ∈ s, u, rfl⟩ := nonempty_of_mem (inter_mem (Filter.mem_map.1 (this hy)) self_mem_nhdsWithin) [GOAL] case intro.intro.intro.intro R : Type u_1 M : Type u_2 inst✝⁷ : Ring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSpace M inst✝⁴ : AddCommGroup M inst✝³ : ContinuousAdd M inst✝² : Module R M inst✝¹ : ContinuousSMul R M inst✝ : NeBot (𝓝[{x | IsUnit x}] 0) s : Submodule R M y : M hy : ↑s ∈ 𝓝 y x : M this : Tendsto (fun c => y + c • x) (𝓝[{x | IsUnit x}] 0) (𝓝 y) u : Rˣ hu : y + ↑u • x ∈ s ⊢ x ∈ s [PROOFSTEP] have hy' : y ∈ ↑s := mem_of_mem_nhds hy [GOAL] case intro.intro.intro.intro R : Type u_1 M : Type u_2 inst✝⁷ : Ring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSpace M inst✝⁴ : AddCommGroup M inst✝³ : ContinuousAdd M inst✝² : Module R M inst✝¹ : ContinuousSMul R M inst✝ : NeBot (𝓝[{x | IsUnit x}] 0) s : Submodule R M y : M hy : ↑s ∈ 𝓝 y x : M this : Tendsto (fun c => y + c • x) (𝓝[{x | IsUnit x}] 0) (𝓝 y) u : Rˣ hu : y + ↑u • x ∈ s hy' : y ∈ ↑s ⊢ x ∈ s [PROOFSTEP] rwa [s.add_mem_iff_right hy', ← Units.smul_def, s.smul_mem_iff' u] at hu [GOAL] R : Type u_1 M : Type u_2 inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : ContinuousAdd M inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Nontrivial M inst✝¹ : NeBot (𝓝[{0}ᶜ] 0) inst✝ : NoZeroSMulDivisors R M x : M ⊢ NeBot (𝓝[{x}ᶜ] x) [PROOFSTEP] rcases exists_ne (0 : M) with ⟨y, hy⟩ [GOAL] case intro R : Type u_1 M : Type u_2 inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : ContinuousAdd M inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Nontrivial M inst✝¹ : NeBot (𝓝[{0}ᶜ] 0) inst✝ : NoZeroSMulDivisors R M x y : M hy : y ≠ 0 ⊢ NeBot (𝓝[{x}ᶜ] x) [PROOFSTEP] suffices : Tendsto (fun c : R => x + c • y) (𝓝[≠] 0) (𝓝[≠] x) [GOAL] case intro R : Type u_1 M : Type u_2 inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : ContinuousAdd M inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Nontrivial M inst✝¹ : NeBot (𝓝[{0}ᶜ] 0) inst✝ : NoZeroSMulDivisors R M x y : M hy : y ≠ 0 this : Tendsto (fun c => x + c • y) (𝓝[{0}ᶜ] 0) (𝓝[{x}ᶜ] x) ⊢ NeBot (𝓝[{x}ᶜ] x) case this R : Type u_1 M : Type u_2 inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : ContinuousAdd M inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Nontrivial M inst✝¹ : NeBot (𝓝[{0}ᶜ] 0) inst✝ : NoZeroSMulDivisors R M x y : M hy : y ≠ 0 ⊢ Tendsto (fun c => x + c • y) (𝓝[{0}ᶜ] 0) (𝓝[{x}ᶜ] x) [PROOFSTEP] exact this.neBot [GOAL] case this R : Type u_1 M : Type u_2 inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : ContinuousAdd M inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Nontrivial M inst✝¹ : NeBot (𝓝[{0}ᶜ] 0) inst✝ : NoZeroSMulDivisors R M x y : M hy : y ≠ 0 ⊢ Tendsto (fun c => x + c • y) (𝓝[{0}ᶜ] 0) (𝓝[{x}ᶜ] x) [PROOFSTEP] refine' Tendsto.inf _ (tendsto_principal_principal.2 <| _) [GOAL] case this.refine'_1 R : Type u_1 M : Type u_2 inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : ContinuousAdd M inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Nontrivial M inst✝¹ : NeBot (𝓝[{0}ᶜ] 0) inst✝ : NoZeroSMulDivisors R M x y : M hy : y ≠ 0 ⊢ Tendsto (fun c => x + c • y) (𝓝 0) (𝓝 x) [PROOFSTEP] convert tendsto_const_nhds.add ((@tendsto_id R _).smul_const y) [GOAL] case h.e'_5.h.e'_3 R : Type u_1 M : Type u_2 inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : ContinuousAdd M inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Nontrivial M inst✝¹ : NeBot (𝓝[{0}ᶜ] 0) inst✝ : NoZeroSMulDivisors R M x y : M hy : y ≠ 0 ⊢ x = x + 0 • y [PROOFSTEP] rw [zero_smul, add_zero] [GOAL] case this.refine'_2 R : Type u_1 M : Type u_2 inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : ContinuousAdd M inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Nontrivial M inst✝¹ : NeBot (𝓝[{0}ᶜ] 0) inst✝ : NoZeroSMulDivisors R M x y : M hy : y ≠ 0 ⊢ ∀ (a : R), a ∈ {0}ᶜ → x + a • y ∈ {x}ᶜ [PROOFSTEP] intro c hc [GOAL] case this.refine'_2 R : Type u_1 M : Type u_2 inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : ContinuousAdd M inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Nontrivial M inst✝¹ : NeBot (𝓝[{0}ᶜ] 0) inst✝ : NoZeroSMulDivisors R M x y : M hy : y ≠ 0 c : R hc : c ∈ {0}ᶜ ⊢ x + c • y ∈ {x}ᶜ [PROOFSTEP] simpa [hy] using hc [GOAL] ι : Type u_1 R : Type u_2 M₁ : Type u_3 M₂ : Type u_4 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M₁ inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₁ inst✝¹ : Module R M₂ u : TopologicalSpace R t : TopologicalSpace M₂ inst✝ : ContinuousSMul R M₂ f : M₁ →ₗ[R] M₂ ⊢ ContinuousSMul R M₁ [PROOFSTEP] let _ : TopologicalSpace M₁ := t.induced f [GOAL] ι : Type u_1 R : Type u_2 M₁ : Type u_3 M₂ : Type u_4 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M₁ inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₁ inst✝¹ : Module R M₂ u : TopologicalSpace R t : TopologicalSpace M₂ inst✝ : ContinuousSMul R M₂ f : M₁ →ₗ[R] M₂ x✝ : TopologicalSpace M₁ := TopologicalSpace.induced (↑f) t ⊢ ContinuousSMul R M₁ [PROOFSTEP] refine' ⟨continuous_induced_rng.2 _⟩ [GOAL] ι : Type u_1 R : Type u_2 M₁ : Type u_3 M₂ : Type u_4 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M₁ inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₁ inst✝¹ : Module R M₂ u : TopologicalSpace R t : TopologicalSpace M₂ inst✝ : ContinuousSMul R M₂ f : M₁ →ₗ[R] M₂ x✝ : TopologicalSpace M₁ := TopologicalSpace.induced (↑f) t ⊢ Continuous (↑f ∘ fun p => p.fst • p.snd) [PROOFSTEP] simp_rw [Function.comp, f.map_smul] [GOAL] ι : Type u_1 R : Type u_2 M₁ : Type u_3 M₂ : Type u_4 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M₁ inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₁ inst✝¹ : Module R M₂ u : TopologicalSpace R t : TopologicalSpace M₂ inst✝ : ContinuousSMul R M₂ f : M₁ →ₗ[R] M₂ x✝ : TopologicalSpace M₁ := TopologicalSpace.induced (↑f) t ⊢ Continuous fun x => x.fst • ↑f x.snd [PROOFSTEP] exact continuous_fst.smul (continuous_induced_dom.comp continuous_snd) [GOAL] R R' : Type u M M' : Type v inst✝¹⁰ : Semiring R inst✝⁹ : Ring R' inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommMonoid M inst✝⁶ : TopologicalSpace M' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M inst✝³ : ContinuousConstSMul R M inst✝² : Module R' M' inst✝¹ : ContinuousConstSMul R' M' inst✝ : ContinuousAdd M s : Submodule R M ⊢ Dense ↑s ↔ topologicalClosure s = ⊤ [PROOFSTEP] rw [← SetLike.coe_set_eq, dense_iff_closure_eq] [GOAL] R R' : Type u M M' : Type v inst✝¹⁰ : Semiring R inst✝⁹ : Ring R' inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommMonoid M inst✝⁶ : TopologicalSpace M' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M inst✝³ : ContinuousConstSMul R M inst✝² : Module R' M' inst✝¹ : ContinuousConstSMul R' M' inst✝ : ContinuousAdd M s : Submodule R M ⊢ closure ↑s = Set.univ ↔ ↑(topologicalClosure s) = ↑⊤ [PROOFSTEP] simp [GOAL] R R' : Type u M M' : Type v inst✝¹⁰ : Semiring R inst✝⁹ : Ring R' inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommMonoid M inst✝⁶ : TopologicalSpace M' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M inst✝³ : ContinuousConstSMul R M inst✝² : Module R' M' inst✝¹ : ContinuousConstSMul R' M' inst✝ : ContinuousAdd M s : Submodule R M hs : IsCoatom s ⊢ IsClosed ↑s ∨ Dense ↑s [PROOFSTEP] refine (hs.le_iff.mp s.le_topologicalClosure).symm.imp ?_ dense_iff_topologicalClosure_eq_top.mpr [GOAL] R R' : Type u M M' : Type v inst✝¹⁰ : Semiring R inst✝⁹ : Ring R' inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommMonoid M inst✝⁶ : TopologicalSpace M' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M inst✝³ : ContinuousConstSMul R M inst✝² : Module R' M' inst✝¹ : ContinuousConstSMul R' M' inst✝ : ContinuousAdd M s : Submodule R M hs : IsCoatom s ⊢ topologicalClosure s = s → IsClosed ↑s [PROOFSTEP] exact fun h ↦ h ▸ isClosed_closure [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 inst✝⁷ : Finite ι inst✝⁶ : Semiring R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : TopologicalSpace M inst✝¹ : ContinuousAdd M inst✝ : ContinuousSMul R M f : (ι → R) →ₗ[R] M ⊢ Continuous ↑f [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro ι : Type u_1 R : Type u_2 M : Type u_3 inst✝⁷ : Finite ι inst✝⁶ : Semiring R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : TopologicalSpace M inst✝¹ : ContinuousAdd M inst✝ : ContinuousSMul R M f : (ι → R) →ₗ[R] M val✝ : Fintype ι ⊢ Continuous ↑f [PROOFSTEP] classical -- for the proof, write `f` in the standard basis, and use that each coordinate is a continuous -- function. have : (f : (ι → R) → M) = fun x => ∑ i : ι, x i • f fun j => if i = j then 1 else 0 := by ext x exact f.pi_apply_eq_sum_univ x rw [this] refine continuous_finset_sum _ fun i _ => ?_ exact (continuous_apply i).smul continuous_const [GOAL] case intro ι : Type u_1 R : Type u_2 M : Type u_3 inst✝⁷ : Finite ι inst✝⁶ : Semiring R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : TopologicalSpace M inst✝¹ : ContinuousAdd M inst✝ : ContinuousSMul R M f : (ι → R) →ₗ[R] M val✝ : Fintype ι ⊢ Continuous ↑f [PROOFSTEP] have : (f : (ι → R) → M) = fun x => ∑ i : ι, x i • f fun j => if i = j then 1 else 0 := by ext x exact f.pi_apply_eq_sum_univ x [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 inst✝⁷ : Finite ι inst✝⁶ : Semiring R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : TopologicalSpace M inst✝¹ : ContinuousAdd M inst✝ : ContinuousSMul R M f : (ι → R) →ₗ[R] M val✝ : Fintype ι ⊢ ↑f = fun x => ∑ i : ι, x i • ↑f fun j => if i = j then 1 else 0 [PROOFSTEP] ext x [GOAL] case h ι : Type u_1 R : Type u_2 M : Type u_3 inst✝⁷ : Finite ι inst✝⁶ : Semiring R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : TopologicalSpace M inst✝¹ : ContinuousAdd M inst✝ : ContinuousSMul R M f : (ι → R) →ₗ[R] M val✝ : Fintype ι x : ι → R ⊢ ↑f x = ∑ i : ι, x i • ↑f fun j => if i = j then 1 else 0 [PROOFSTEP] exact f.pi_apply_eq_sum_univ x [GOAL] case intro ι : Type u_1 R : Type u_2 M : Type u_3 inst✝⁷ : Finite ι inst✝⁶ : Semiring R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : TopologicalSpace M inst✝¹ : ContinuousAdd M inst✝ : ContinuousSMul R M f : (ι → R) →ₗ[R] M val✝ : Fintype ι this : ↑f = fun x => ∑ i : ι, x i • ↑f fun j => if i = j then 1 else 0 ⊢ Continuous ↑f [PROOFSTEP] rw [this] [GOAL] case intro ι : Type u_1 R : Type u_2 M : Type u_3 inst✝⁷ : Finite ι inst✝⁶ : Semiring R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : TopologicalSpace M inst✝¹ : ContinuousAdd M inst✝ : ContinuousSMul R M f : (ι → R) →ₗ[R] M val✝ : Fintype ι this : ↑f = fun x => ∑ i : ι, x i • ↑f fun j => if i = j then 1 else 0 ⊢ Continuous fun x => ∑ i : ι, x i • ↑f fun j => if i = j then 1 else 0 [PROOFSTEP] refine continuous_finset_sum _ fun i _ => ?_ [GOAL] case intro ι : Type u_1 R : Type u_2 M : Type u_3 inst✝⁷ : Finite ι inst✝⁶ : Semiring R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : TopologicalSpace M inst✝¹ : ContinuousAdd M inst✝ : ContinuousSMul R M f : (ι → R) →ₗ[R] M val✝ : Fintype ι this : ↑f = fun x => ∑ i : ι, x i • ↑f fun j => if i = j then 1 else 0 i : ι x✝ : i ∈ Finset.univ ⊢ Continuous fun x => x i • ↑f fun j => if i = j then 1 else 0 [PROOFSTEP] exact (continuous_apply i).smul continuous_const [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁶ : Semiring R₁ inst✝¹⁵ : Semiring R₂ inst✝¹⁴ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ ⊢ Function.Injective toLinearMap [PROOFSTEP] intro f g H [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁶ : Semiring R₁ inst✝¹⁵ : Semiring R₂ inst✝¹⁴ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f g : M₁ →SL[σ₁₂] M₂ H : ↑f = ↑g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁶ : Semiring R₁ inst✝¹⁵ : Semiring R₂ inst✝¹⁴ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ g : M₁ →SL[σ₁₂] M₂ toLinearMap✝ : M₁ →ₛₗ[σ₁₂] M₂ cont✝ : Continuous toLinearMap✝.toFun H : ↑(mk toLinearMap✝) = ↑g ⊢ mk toLinearMap✝ = g [PROOFSTEP] cases g [GOAL] case mk.mk R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁶ : Semiring R₁ inst✝¹⁵ : Semiring R₂ inst✝¹⁴ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ toLinearMap✝¹ : M₁ →ₛₗ[σ₁₂] M₂ cont✝¹ : Continuous toLinearMap✝¹.toFun toLinearMap✝ : M₁ →ₛₗ[σ₁₂] M₂ cont✝ : Continuous toLinearMap✝.toFun H : ↑(mk toLinearMap✝¹) = ↑(mk toLinearMap✝) ⊢ mk toLinearMap✝¹ = mk toLinearMap✝ [PROOFSTEP] congr [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : Module R₁ M₂ f : M₁ →L[R₁] M₂ c : R₁ x : M₁ ⊢ ↑f (c • x) = c • ↑f x [PROOFSTEP] simp only [RingHom.id_apply, ContinuousLinearMap.map_smulₛₗ] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²³ : Semiring R₁ inst✝²² : Semiring R₂ inst✝²¹ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝²⁰ : TopologicalSpace M₁ inst✝¹⁹ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁸ : TopologicalSpace M'₁ inst✝¹⁷ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁶ : TopologicalSpace M₂ inst✝¹⁵ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹⁴ : TopologicalSpace M₃ inst✝¹³ : AddCommMonoid M₃ M₄ : Type u_8 inst✝¹² : TopologicalSpace M₄ inst✝¹¹ : AddCommMonoid M₄ inst✝¹⁰ : Module R₁ M₁ inst✝⁹ : Module R₁ M'₁ inst✝⁸ : Module R₂ M₂ inst✝⁷ : Module R₃ M₃ inst✝⁶ : RingHomSurjective σ₁₂ inst✝⁵ : TopologicalSpace R₁ inst✝⁴ : TopologicalSpace R₂ inst✝³ : ContinuousSMul R₁ M₁ inst✝² : ContinuousAdd M₁ inst✝¹ : ContinuousSMul R₂ M₂ inst✝ : ContinuousAdd M₂ f : M₁ →SL[σ₁₂] M₂ hf' : DenseRange ↑f s : Submodule R₁ M₁ hs : Submodule.topologicalClosure s = ⊤ ⊢ Submodule.topologicalClosure (Submodule.map (↑f) s) = ⊤ [PROOFSTEP] rw [SetLike.ext'_iff] at hs ⊢ [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²³ : Semiring R₁ inst✝²² : Semiring R₂ inst✝²¹ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝²⁰ : TopologicalSpace M₁ inst✝¹⁹ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁸ : TopologicalSpace M'₁ inst✝¹⁷ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁶ : TopologicalSpace M₂ inst✝¹⁵ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹⁴ : TopologicalSpace M₃ inst✝¹³ : AddCommMonoid M₃ M₄ : Type u_8 inst✝¹² : TopologicalSpace M₄ inst✝¹¹ : AddCommMonoid M₄ inst✝¹⁰ : Module R₁ M₁ inst✝⁹ : Module R₁ M'₁ inst✝⁸ : Module R₂ M₂ inst✝⁷ : Module R₃ M₃ inst✝⁶ : RingHomSurjective σ₁₂ inst✝⁵ : TopologicalSpace R₁ inst✝⁴ : TopologicalSpace R₂ inst✝³ : ContinuousSMul R₁ M₁ inst✝² : ContinuousAdd M₁ inst✝¹ : ContinuousSMul R₂ M₂ inst✝ : ContinuousAdd M₂ f : M₁ →SL[σ₁₂] M₂ hf' : DenseRange ↑f s : Submodule R₁ M₁ hs✝ : Submodule.topologicalClosure s = ⊤ hs : ↑(Submodule.topologicalClosure s) = ↑⊤ ⊢ ↑(Submodule.topologicalClosure (Submodule.map (↑f) s)) = ↑⊤ [PROOFSTEP] simp only [Submodule.topologicalClosure_coe, Submodule.top_coe, ← dense_iff_closure_eq] at hs ⊢ [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²³ : Semiring R₁ inst✝²² : Semiring R₂ inst✝²¹ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝²⁰ : TopologicalSpace M₁ inst✝¹⁹ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁸ : TopologicalSpace M'₁ inst✝¹⁷ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁶ : TopologicalSpace M₂ inst✝¹⁵ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹⁴ : TopologicalSpace M₃ inst✝¹³ : AddCommMonoid M₃ M₄ : Type u_8 inst✝¹² : TopologicalSpace M₄ inst✝¹¹ : AddCommMonoid M₄ inst✝¹⁰ : Module R₁ M₁ inst✝⁹ : Module R₁ M'₁ inst✝⁸ : Module R₂ M₂ inst✝⁷ : Module R₃ M₃ inst✝⁶ : RingHomSurjective σ₁₂ inst✝⁵ : TopologicalSpace R₁ inst✝⁴ : TopologicalSpace R₂ inst✝³ : ContinuousSMul R₁ M₁ inst✝² : ContinuousAdd M₁ inst✝¹ : ContinuousSMul R₂ M₂ inst✝ : ContinuousAdd M₂ f : M₁ →SL[σ₁₂] M₂ hf' : DenseRange ↑f s : Submodule R₁ M₁ hs✝ : Submodule.topologicalClosure s = ⊤ hs : Dense ↑s ⊢ Dense ↑(Submodule.map (↑f) s) [PROOFSTEP] exact hf'.dense_image f.continuous hs [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁶ : Semiring R₁ inst✝¹⁵ : Semiring R₂ inst✝¹⁴ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f : M₁ →SL[σ₁₂] M₂ hf : f ≠ 0 ⊢ ∃ x, ↑f x ≠ 0 [PROOFSTEP] by_contra' h [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁶ : Semiring R₁ inst✝¹⁵ : Semiring R₂ inst✝¹⁴ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f : M₁ →SL[σ₁₂] M₂ hf : f ≠ 0 h : ∀ (x : M₁), ↑f x = 0 ⊢ False [PROOFSTEP] exact hf (ContinuousLinearMap.ext h) [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁶ : Semiring R₁ inst✝¹⁵ : Semiring R₂ inst✝¹⁴ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f : M₁ →L[R₁] M₁ ⊢ ↑f = LinearMap.id ↔ f = id R₁ M₁ [PROOFSTEP] rw [← coe_id, coe_inj] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ ⊢ ∀ (a b c : M₁ →SL[σ₁₂] M₂), a + b + c = a + (b + c) [PROOFSTEP] intros [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ a✝ b✝ c✝ : M₁ →SL[σ₁₂] M₂ ⊢ a✝ + b✝ + c✝ = a✝ + (b✝ + c✝) [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ a✝ b✝ c✝ : M₁ →SL[σ₁₂] M₂ x✝ : M₁ ⊢ ↑(a✝ + b✝ + c✝) x✝ = ↑(a✝ + (b✝ + c✝)) x✝ [PROOFSTEP] apply_rules [zero_add, add_assoc, add_zero, add_left_neg, add_comm] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ ⊢ ∀ (a : M₁ →SL[σ₁₂] M₂), 0 + a = a [PROOFSTEP] intros [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ a✝ : M₁ →SL[σ₁₂] M₂ ⊢ 0 + a✝ = a✝ [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ a✝ : M₁ →SL[σ₁₂] M₂ x✝ : M₁ ⊢ ↑(0 + a✝) x✝ = ↑a✝ x✝ [PROOFSTEP] apply_rules [zero_add, add_assoc, add_zero, add_left_neg, add_comm] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ ⊢ ∀ (a : M₁ →SL[σ₁₂] M₂), a + 0 = a [PROOFSTEP] intros [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ a✝ : M₁ →SL[σ₁₂] M₂ ⊢ a✝ + 0 = a✝ [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ a✝ : M₁ →SL[σ₁₂] M₂ x✝ : M₁ ⊢ ↑(a✝ + 0) x✝ = ↑a✝ x✝ [PROOFSTEP] apply_rules [zero_add, add_assoc, add_zero, add_left_neg, add_comm] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ f : M₁ →SL[σ₁₂] M₂ ⊢ (fun x x_1 => x • x_1) 0 f = 0 [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ f : M₁ →SL[σ₁₂] M₂ x✝ : M₁ ⊢ ↑((fun x x_1 => x • x_1) 0 f) x✝ = ↑0 x✝ [PROOFSTEP] simp [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ n : ℕ f : M₁ →SL[σ₁₂] M₂ ⊢ (fun x x_1 => x • x_1) (n + 1) f = f + (fun x x_1 => x • x_1) n f [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ n : ℕ f : M₁ →SL[σ₁₂] M₂ x✝ : M₁ ⊢ ↑((fun x x_1 => x • x_1) (n + 1) f) x✝ = ↑(f + (fun x x_1 => x • x_1) n f) x✝ [PROOFSTEP] simp [Nat.add_comm n 1, add_smul] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ ⊢ ∀ (a b : M₁ →SL[σ₁₂] M₂), a + b = b + a [PROOFSTEP] intros [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ a✝ b✝ : M₁ →SL[σ₁₂] M₂ ⊢ a✝ + b✝ = b✝ + a✝ [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ a✝ b✝ : M₁ →SL[σ₁₂] M₂ x✝ : M₁ ⊢ ↑(a✝ + b✝) x✝ = ↑(b✝ + a✝) x✝ [PROOFSTEP] apply_rules [zero_add, add_assoc, add_zero, add_left_neg, add_comm] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ ι : Type u_9 t : Finset ι f : ι → M₁ →SL[σ₁₂] M₂ ⊢ ↑(∑ d in t, f d) = ∑ d in t, ↑(f d) [PROOFSTEP] simp only [← coe_coe, coe_sum, LinearMap.coeFn_sum] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : ContinuousAdd M₂ ι : Type u_9 t : Finset ι f : ι → M₁ →SL[σ₁₂] M₂ b : M₁ ⊢ ↑(∑ d in t, f d) b = ∑ d in t, ↑(f d) b [PROOFSTEP] simp only [coe_sum', Finset.sum_apply] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ g : M₂ →SL[σ₂₃] M₃ ⊢ comp g 0 = 0 [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ g : M₂ →SL[σ₂₃] M₃ x✝ : M₁ ⊢ ↑(comp g 0) x✝ = ↑0 x✝ [PROOFSTEP] simp [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ f : M₁ →SL[σ₁₂] M₂ ⊢ comp 0 f = 0 [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁷ : Semiring R₁ inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ f : M₁ →SL[σ₁₂] M₂ x✝ : M₁ ⊢ ↑(comp 0 f) x✝ = ↑0 x✝ [PROOFSTEP] simp [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁹ : Semiring R₁ inst✝¹⁸ : Semiring R₂ inst✝¹⁷ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁶ : TopologicalSpace M₁ inst✝¹⁵ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁴ : TopologicalSpace M'₁ inst✝¹³ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹² : TopologicalSpace M₂ inst✝¹¹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹⁰ : TopologicalSpace M₃ inst✝⁹ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁸ : TopologicalSpace M₄ inst✝⁷ : AddCommMonoid M₄ inst✝⁶ : Module R₁ M₁ inst✝⁵ : Module R₁ M'₁ inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : ContinuousAdd M₂ inst✝ : ContinuousAdd M₃ g : M₂ →SL[σ₂₃] M₃ f₁ f₂ : M₁ →SL[σ₁₂] M₂ ⊢ comp g (f₁ + f₂) = comp g f₁ + comp g f₂ [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁹ : Semiring R₁ inst✝¹⁸ : Semiring R₂ inst✝¹⁷ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁶ : TopologicalSpace M₁ inst✝¹⁵ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁴ : TopologicalSpace M'₁ inst✝¹³ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹² : TopologicalSpace M₂ inst✝¹¹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹⁰ : TopologicalSpace M₃ inst✝⁹ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁸ : TopologicalSpace M₄ inst✝⁷ : AddCommMonoid M₄ inst✝⁶ : Module R₁ M₁ inst✝⁵ : Module R₁ M'₁ inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : ContinuousAdd M₂ inst✝ : ContinuousAdd M₃ g : M₂ →SL[σ₂₃] M₃ f₁ f₂ : M₁ →SL[σ₁₂] M₂ x✝ : M₁ ⊢ ↑(comp g (f₁ + f₂)) x✝ = ↑(comp g f₁ + comp g f₂) x✝ [PROOFSTEP] simp [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁸ : Semiring R₁ inst✝¹⁷ : Semiring R₂ inst✝¹⁶ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁵ : TopologicalSpace M₁ inst✝¹⁴ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹³ : TopologicalSpace M'₁ inst✝¹² : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹¹ : TopologicalSpace M₂ inst✝¹⁰ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁹ : TopologicalSpace M₃ inst✝⁸ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁷ : TopologicalSpace M₄ inst✝⁶ : AddCommMonoid M₄ inst✝⁵ : Module R₁ M₁ inst✝⁴ : Module R₁ M'₁ inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : ContinuousAdd M₃ g₁ g₂ : M₂ →SL[σ₂₃] M₃ f : M₁ →SL[σ₁₂] M₂ ⊢ comp (g₁ + g₂) f = comp g₁ f + comp g₂ f [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁸ : Semiring R₁ inst✝¹⁷ : Semiring R₂ inst✝¹⁶ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁵ : TopologicalSpace M₁ inst✝¹⁴ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹³ : TopologicalSpace M'₁ inst✝¹² : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹¹ : TopologicalSpace M₂ inst✝¹⁰ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁹ : TopologicalSpace M₃ inst✝⁸ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁷ : TopologicalSpace M₄ inst✝⁶ : AddCommMonoid M₄ inst✝⁵ : Module R₁ M₁ inst✝⁴ : Module R₁ M'₁ inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : ContinuousAdd M₃ g₁ g₂ : M₂ →SL[σ₂₃] M₃ f : M₁ →SL[σ₁₂] M₂ x✝ : M₁ ⊢ ↑(comp (g₁ + g₂) f) x✝ = ↑(comp g₁ f + comp g₂ f) x✝ [PROOFSTEP] simp [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁹ : Semiring R₁ inst✝¹⁸ : Semiring R₂ inst✝¹⁷ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁶ : TopologicalSpace M₁ inst✝¹⁵ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁴ : TopologicalSpace M'₁ inst✝¹³ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹² : TopologicalSpace M₂ inst✝¹¹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹⁰ : TopologicalSpace M₃ inst✝⁹ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁸ : TopologicalSpace M₄ inst✝⁷ : AddCommMonoid M₄ inst✝⁶ : Module R₁ M₁ inst✝⁵ : Module R₁ M'₁ inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ F : Type u_9 inst✝¹ : ContinuousAdd M₁ inst✝ : ContinuousAdd M'₁ ⊢ coprod (inl R₁ M₁ M'₁) (inr R₁ M₁ M'₁) = id R₁ (M₁ × M'₁) [PROOFSTEP] apply coe_injective [GOAL] case a R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹⁹ : Semiring R₁ inst✝¹⁸ : Semiring R₂ inst✝¹⁷ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁶ : TopologicalSpace M₁ inst✝¹⁵ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁴ : TopologicalSpace M'₁ inst✝¹³ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹² : TopologicalSpace M₂ inst✝¹¹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹⁰ : TopologicalSpace M₃ inst✝⁹ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁸ : TopologicalSpace M₄ inst✝⁷ : AddCommMonoid M₄ inst✝⁶ : Module R₁ M₁ inst✝⁵ : Module R₁ M'₁ inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ F : Type u_9 inst✝¹ : ContinuousAdd M₁ inst✝ : ContinuousAdd M'₁ ⊢ ↑(coprod (inl R₁ M₁ M'₁) (inr R₁ M₁ M'₁)) = ↑(id R₁ (M₁ × M'₁)) [PROOFSTEP] apply LinearMap.coprod_inl_inr [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁰ : Semiring R₁ inst✝¹⁹ : Semiring R₂ inst✝¹⁸ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁷ : TopologicalSpace M₁ inst✝¹⁶ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁵ : TopologicalSpace M'₁ inst✝¹⁴ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹³ : TopologicalSpace M₂ inst✝¹² : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹¹ : TopologicalSpace M₃ inst✝¹⁰ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁹ : TopologicalSpace M₄ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R₁ M₁ inst✝⁶ : Module R₁ M'₁ inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ F : Type u_9 inst✝² : Module R₁ M₂ inst✝¹ : TopologicalSpace R₁ inst✝ : ContinuousSMul R₁ M₂ c : R₁ →L[R₁] M₂ ⊢ smulRight 1 (↑c 1) = c [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁰ : Semiring R₁ inst✝¹⁹ : Semiring R₂ inst✝¹⁸ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁷ : TopologicalSpace M₁ inst✝¹⁶ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁵ : TopologicalSpace M'₁ inst✝¹⁴ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹³ : TopologicalSpace M₂ inst✝¹² : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹¹ : TopologicalSpace M₃ inst✝¹⁰ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁹ : TopologicalSpace M₄ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R₁ M₁ inst✝⁶ : Module R₁ M'₁ inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ F : Type u_9 inst✝² : Module R₁ M₂ inst✝¹ : TopologicalSpace R₁ inst✝ : ContinuousSMul R₁ M₂ c : R₁ →L[R₁] M₂ ⊢ ↑(smulRight 1 (↑c 1)) 1 = ↑c 1 [PROOFSTEP] simp [← ContinuousLinearMap.map_smul_of_tower] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁰ : Semiring R₁ inst✝¹⁹ : Semiring R₂ inst✝¹⁸ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁷ : TopologicalSpace M₁ inst✝¹⁶ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁵ : TopologicalSpace M'₁ inst✝¹⁴ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹³ : TopologicalSpace M₂ inst✝¹² : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹¹ : TopologicalSpace M₃ inst✝¹⁰ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁹ : TopologicalSpace M₄ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R₁ M₁ inst✝⁶ : Module R₁ M'₁ inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ F : Type u_9 inst✝² : Module R₁ M₂ inst✝¹ : TopologicalSpace R₁ inst✝ : ContinuousSMul R₁ M₂ f f' : M₂ ⊢ smulRight 1 f = smulRight 1 f' ↔ f = f' [PROOFSTEP] simp only [ext_ring_iff, smulRight_apply, one_apply, one_smul] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²¹ : Semiring R₁ inst✝²⁰ : Semiring R₂ inst✝¹⁹ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁸ : TopologicalSpace M₁ inst✝¹⁷ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁶ : TopologicalSpace M'₁ inst✝¹⁵ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁴ : TopologicalSpace M₂ inst✝¹³ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹² : TopologicalSpace M₃ inst✝¹¹ : AddCommMonoid M₃ M₄ : Type u_8 inst✝¹⁰ : TopologicalSpace M₄ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R₁ M₁ inst✝⁷ : Module R₁ M'₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ F : Type u_9 inst✝³ : Module R₁ M₂ inst✝² : TopologicalSpace R₁ inst✝¹ : ContinuousSMul R₁ M₂ inst✝ : ContinuousMul R₁ x : M₂ c : R₁ ⊢ comp (smulRight 1 x) (smulRight 1 c) = smulRight 1 (c • x) [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²¹ : Semiring R₁ inst✝²⁰ : Semiring R₂ inst✝¹⁹ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁸ : TopologicalSpace M₁ inst✝¹⁷ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁶ : TopologicalSpace M'₁ inst✝¹⁵ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁴ : TopologicalSpace M₂ inst✝¹³ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹² : TopologicalSpace M₃ inst✝¹¹ : AddCommMonoid M₃ M₄ : Type u_8 inst✝¹⁰ : TopologicalSpace M₄ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R₁ M₁ inst✝⁷ : Module R₁ M'₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ F : Type u_9 inst✝³ : Module R₁ M₂ inst✝² : TopologicalSpace R₁ inst✝¹ : ContinuousSMul R₁ M₂ inst✝ : ContinuousMul R₁ x : M₂ c : R₁ ⊢ ↑(comp (smulRight 1 x) (smulRight 1 c)) 1 = ↑(smulRight 1 (c • x)) 1 [PROOFSTEP] simp [mul_smul] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²² : Semiring R₁ inst✝²¹ : Semiring R₂ inst✝²⁰ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁹ : TopologicalSpace M₁ inst✝¹⁸ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁷ : TopologicalSpace M'₁ inst✝¹⁶ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁵ : TopologicalSpace M₂ inst✝¹⁴ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹³ : TopologicalSpace M₃ inst✝¹² : AddCommMonoid M₃ M₄ : Type u_8 inst✝¹¹ : TopologicalSpace M₄ inst✝¹⁰ : AddCommMonoid M₄ inst✝⁹ : Module R₁ M₁ inst✝⁸ : Module R₁ M'₁ inst✝⁷ : Module R₂ M₂ inst✝⁶ : Module R₃ M₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ F : Type u_9 inst✝⁴ : Module R₁ M₂ inst✝³ : TopologicalSpace R₁ inst✝² : ContinuousSMul R₁ M₂ inst✝¹ : ContinuousSMul R₁ M₁ inst✝ : ContinuousAdd M₁ x y : M₁ ⊢ toSpanSingleton R₁ (x + y) = toSpanSingleton R₁ x + toSpanSingleton R₁ y [PROOFSTEP] ext1 [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²² : Semiring R₁ inst✝²¹ : Semiring R₂ inst✝²⁰ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁹ : TopologicalSpace M₁ inst✝¹⁸ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁷ : TopologicalSpace M'₁ inst✝¹⁶ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁵ : TopologicalSpace M₂ inst✝¹⁴ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹³ : TopologicalSpace M₃ inst✝¹² : AddCommMonoid M₃ M₄ : Type u_8 inst✝¹¹ : TopologicalSpace M₄ inst✝¹⁰ : AddCommMonoid M₄ inst✝⁹ : Module R₁ M₁ inst✝⁸ : Module R₁ M'₁ inst✝⁷ : Module R₂ M₂ inst✝⁶ : Module R₃ M₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ F : Type u_9 inst✝⁴ : Module R₁ M₂ inst✝³ : TopologicalSpace R₁ inst✝² : ContinuousSMul R₁ M₂ inst✝¹ : ContinuousSMul R₁ M₁ inst✝ : ContinuousAdd M₁ x y : M₁ ⊢ ↑(toSpanSingleton R₁ (x + y)) 1 = ↑(toSpanSingleton R₁ x + toSpanSingleton R₁ y) 1 [PROOFSTEP] simp [toSpanSingleton_apply] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁵ : Semiring R₁ inst✝²⁴ : Semiring R₂ inst✝²³ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝²² : TopologicalSpace M₁ inst✝²¹ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝²⁰ : TopologicalSpace M'₁ inst✝¹⁹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁸ : TopologicalSpace M₂ inst✝¹⁷ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹⁶ : TopologicalSpace M₃ inst✝¹⁵ : AddCommMonoid M₃ M₄ : Type u_8 inst✝¹⁴ : TopologicalSpace M₄ inst✝¹³ : AddCommMonoid M₄ inst✝¹² : Module R₁ M₁ inst✝¹¹ : Module R₁ M'₁ inst✝¹⁰ : Module R₂ M₂ inst✝⁹ : Module R₃ M₃ inst✝⁸ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ F : Type u_9 inst✝⁷ : Module R₁ M₂ inst✝⁶ : TopologicalSpace R₁ inst✝⁵ : ContinuousSMul R₁ M₂ inst✝⁴ : ContinuousSMul R₁ M₁ α : Type u_10 inst✝³ : Monoid α inst✝² : DistribMulAction α M₁ inst✝¹ : ContinuousConstSMul α M₁ inst✝ : SMulCommClass R₁ α M₁ c : α x : M₁ ⊢ toSpanSingleton R₁ (c • x) = c • toSpanSingleton R₁ x [PROOFSTEP] ext1 [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁵ : Semiring R₁ inst✝²⁴ : Semiring R₂ inst✝²³ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝²² : TopologicalSpace M₁ inst✝²¹ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝²⁰ : TopologicalSpace M'₁ inst✝¹⁹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁸ : TopologicalSpace M₂ inst✝¹⁷ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹⁶ : TopologicalSpace M₃ inst✝¹⁵ : AddCommMonoid M₃ M₄ : Type u_8 inst✝¹⁴ : TopologicalSpace M₄ inst✝¹³ : AddCommMonoid M₄ inst✝¹² : Module R₁ M₁ inst✝¹¹ : Module R₁ M'₁ inst✝¹⁰ : Module R₂ M₂ inst✝⁹ : Module R₃ M₃ inst✝⁸ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ F : Type u_9 inst✝⁷ : Module R₁ M₂ inst✝⁶ : TopologicalSpace R₁ inst✝⁵ : ContinuousSMul R₁ M₂ inst✝⁴ : ContinuousSMul R₁ M₁ α : Type u_10 inst✝³ : Monoid α inst✝² : DistribMulAction α M₁ inst✝¹ : ContinuousConstSMul α M₁ inst✝ : SMulCommClass R₁ α M₁ c : α x : M₁ ⊢ ↑(toSpanSingleton R₁ (c • x)) 1 = ↑(c • toSpanSingleton R₁ x) 1 [PROOFSTEP] rw [toSpanSingleton_apply, smul_apply, toSpanSingleton_apply, smul_comm] [GOAL] R : Type u_1 inst✝⁹ : Semiring R M : Type u_2 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M M₂ : Type u_3 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₂ ι : Type u_4 φ : ι → Type u_5 inst✝² : (i : ι) → TopologicalSpace (φ i) inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) f : (i : ι) → M →L[R] φ i ⊢ pi f = 0 ↔ ∀ (i : ι), f i = 0 [PROOFSTEP] simp only [ext_iff, pi_apply, Function.funext_iff] [GOAL] R : Type u_1 inst✝⁹ : Semiring R M : Type u_2 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M M₂ : Type u_3 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₂ ι : Type u_4 φ : ι → Type u_5 inst✝² : (i : ι) → TopologicalSpace (φ i) inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) f : (i : ι) → M →L[R] φ i ⊢ (∀ (x : M) (a : ι), ↑(f a) x = ↑0 x a) ↔ ∀ (i : ι) (x : M), ↑(f i) x = ↑0 x [PROOFSTEP] exact forall_swap [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M M₂ : Type u_3 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ ι : Type u_4 φ : ι → Type u_5 inst✝³ : (i : ι) → TopologicalSpace (φ i) inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J i : ↑I ⊢ Continuous fun a => AddHom.toFun (↑(LinearMap.iInfKerProjEquiv R φ hd hu)).toAddHom a i [PROOFSTEP] have := @continuous_subtype_val _ _ fun x => x ∈ (⨅ i ∈ J, ker (proj i : (∀ i, φ i) →L[R] φ i) : Submodule R (∀ i, φ i)) [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M M₂ : Type u_3 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ ι : Type u_4 φ : ι → Type u_5 inst✝³ : (i : ι) → TopologicalSpace (φ i) inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J i : ↑I this : Continuous Subtype.val ⊢ Continuous fun a => AddHom.toFun (↑(LinearMap.iInfKerProjEquiv R φ hd hu)).toAddHom a i [PROOFSTEP] have := Continuous.comp (continuous_apply (π := φ) i) this [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M M₂ : Type u_3 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ ι : Type u_4 φ : ι → Type u_5 inst✝³ : (i : ι) → TopologicalSpace (φ i) inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J i : ↑I this✝ : Continuous Subtype.val this : Continuous ((fun p => p ↑i) ∘ Subtype.val) ⊢ Continuous fun a => AddHom.toFun (↑(LinearMap.iInfKerProjEquiv R φ hd hu)).toAddHom a i [PROOFSTEP] exact this [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M M₂ : Type u_3 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ ι : Type u_4 φ : ι → Type u_5 inst✝³ : (i : ι) → TopologicalSpace (φ i) inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J i : ι ⊢ Continuous fun a => ↑(LinearMap.pi fun i => if h : i ∈ I then LinearMap.proj { val := i, property := h } else 0) a i [PROOFSTEP] change Continuous (⇑(if h : i ∈ I then LinearMap.proj (R := R) (ι := ↥I) (φ := fun i : ↥I => φ i) ⟨i, h⟩ else (0 : ((i : I) → φ i) →ₗ[R] φ i))) [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M M₂ : Type u_3 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ ι : Type u_4 φ : ι → Type u_5 inst✝³ : (i : ι) → TopologicalSpace (φ i) inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J i : ι ⊢ Continuous ↑(if h : i ∈ I then LinearMap.proj { val := i, property := h } else 0) [PROOFSTEP] split_ifs <;> [apply continuous_apply; exact continuous_zero] [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M M₂ : Type u_3 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ ι : Type u_4 φ : ι → Type u_5 inst✝³ : (i : ι) → TopologicalSpace (φ i) inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J i : ι ⊢ Continuous ↑(if h : i ∈ I then LinearMap.proj { val := i, property := h } else 0) [PROOFSTEP] split_ifs [GOAL] case pos R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M M₂ : Type u_3 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ ι : Type u_4 φ : ι → Type u_5 inst✝³ : (i : ι) → TopologicalSpace (φ i) inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J i : ι h✝ : i ∈ I ⊢ Continuous ↑(LinearMap.proj { val := i, property := h✝ }) [PROOFSTEP] apply continuous_apply [GOAL] case neg R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M M₂ : Type u_3 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ ι : Type u_4 φ : ι → Type u_5 inst✝³ : (i : ι) → TopologicalSpace (φ i) inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J i : ι h✝ : ¬i ∈ I ⊢ Continuous ↑0 [PROOFSTEP] exact continuous_zero [GOAL] R : Type u_1 inst✝¹³ : Ring R R₂ : Type u_2 inst✝¹² : Ring R₂ R₃ : Type u_3 inst✝¹¹ : Ring R₃ M : Type u_4 inst✝¹⁰ : TopologicalSpace M inst✝⁹ : AddCommGroup M M₂ : Type u_5 inst✝⁸ : TopologicalSpace M₂ inst✝⁷ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁶ : TopologicalSpace M₃ inst✝⁵ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁴ : TopologicalSpace M₄ inst✝³ : AddCommGroup M₄ inst✝² : Module R M inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ f : M →SL[σ₁₂] M₂ x : M ⊢ ↑f (-x) = -↑f x [PROOFSTEP] exact map_neg f x [GOAL] R : Type u_1 inst✝¹³ : Ring R R₂ : Type u_2 inst✝¹² : Ring R₂ R₃ : Type u_3 inst✝¹¹ : Ring R₃ M : Type u_4 inst✝¹⁰ : TopologicalSpace M inst✝⁹ : AddCommGroup M M₂ : Type u_5 inst✝⁸ : TopologicalSpace M₂ inst✝⁷ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁶ : TopologicalSpace M₃ inst✝⁵ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁴ : TopologicalSpace M₄ inst✝³ : AddCommGroup M₄ inst✝² : Module R M inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ f : M →SL[σ₁₂] M₂ x y : M ⊢ ↑f (x - y) = ↑f x - ↑f y [PROOFSTEP] exact map_sub f x y [GOAL] R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ ⊢ AddCommGroup (M →SL[σ₁₂] M₂) [PROOFSTEP] refine' { ContinuousLinearMap.addCommMonoid with zero := 0 add := (· + ·) neg := (-·) sub := (· - ·) sub_eq_add_neg := _ nsmul := (· • ·) zsmul := (· • ·) zsmul_zero' := fun f => by ext; simp zsmul_succ' := fun n f => by ext; simp [add_smul, add_comm] zsmul_neg' := fun n f => by ext; simp [Nat.succ_eq_add_one, add_smul] .. } [GOAL] R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid f : M →SL[σ₁₂] M₂ ⊢ (fun x x_1 => x • x_1) 0 f = 0 [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid f : M →SL[σ₁₂] M₂ x✝ : M ⊢ ↑((fun x x_1 => x • x_1) 0 f) x✝ = ↑0 x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid n : ℕ f : M →SL[σ₁₂] M₂ ⊢ (fun x x_1 => x • x_1) (Int.ofNat (Nat.succ n)) f = f + (fun x x_1 => x • x_1) (Int.ofNat n) f [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid n : ℕ f : M →SL[σ₁₂] M₂ x✝ : M ⊢ ↑((fun x x_1 => x • x_1) (Int.ofNat (Nat.succ n)) f) x✝ = ↑(f + (fun x x_1 => x • x_1) (Int.ofNat n) f) x✝ [PROOFSTEP] simp [add_smul, add_comm] [GOAL] R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid n : ℕ f : M →SL[σ₁₂] M₂ ⊢ (fun x x_1 => x • x_1) (Int.negSucc n) f = -(fun x x_1 => x • x_1) (↑(Nat.succ n)) f [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid n : ℕ f : M →SL[σ₁₂] M₂ x✝ : M ⊢ ↑((fun x x_1 => x • x_1) (Int.negSucc n) f) x✝ = ↑(-(fun x x_1 => x • x_1) (↑(Nat.succ n)) f) x✝ [PROOFSTEP] simp [Nat.succ_eq_add_one, add_smul] [GOAL] case refine'_1 R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid ⊢ ∀ (a b : M →SL[σ₁₂] M₂), a - b = a + -b [PROOFSTEP] { intros ext apply_rules [zero_add, add_assoc, add_zero, add_left_neg, add_comm, sub_eq_add_neg] } [GOAL] case refine'_1 R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid ⊢ ∀ (a b : M →SL[σ₁₂] M₂), a - b = a + -b [PROOFSTEP] intros [GOAL] case refine'_1 R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid a✝ b✝ : M →SL[σ₁₂] M₂ ⊢ a✝ - b✝ = a✝ + -b✝ [PROOFSTEP] ext [GOAL] case refine'_1.h R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid a✝ b✝ : M →SL[σ₁₂] M₂ x✝ : M ⊢ ↑(a✝ - b✝) x✝ = ↑(a✝ + -b✝) x✝ [PROOFSTEP] apply_rules [zero_add, add_assoc, add_zero, add_left_neg, add_comm, sub_eq_add_neg] [GOAL] case refine'_2 R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid ⊢ ∀ (a : M →SL[σ₁₂] M₂), -a + a = 0 [PROOFSTEP] { intros ext apply_rules [zero_add, add_assoc, add_zero, add_left_neg, add_comm, sub_eq_add_neg] } [GOAL] case refine'_2 R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid ⊢ ∀ (a : M →SL[σ₁₂] M₂), -a + a = 0 [PROOFSTEP] intros [GOAL] case refine'_2 R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid a✝ : M →SL[σ₁₂] M₂ ⊢ -a✝ + a✝ = 0 [PROOFSTEP] ext [GOAL] case refine'_2.h R : Type u_1 inst✝¹⁴ : Ring R R₂ : Type u_2 inst✝¹³ : Ring R₂ R₃ : Type u_3 inst✝¹² : Ring R₃ M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : AddCommGroup M M₂ : Type u_5 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : TopologicalAddGroup M₂ src✝ : AddCommMonoid (M →SL[σ₁₂] M₂) := addCommMonoid a✝ : M →SL[σ₁₂] M₂ x✝ : M ⊢ ↑(-a✝ + a✝) x✝ = ↑0 x✝ [PROOFSTEP] apply_rules [zero_add, add_assoc, add_zero, add_left_neg, add_comm, sub_eq_add_neg] [GOAL] R : Type u_1 inst✝¹⁶ : Ring R R₂ : Type u_2 inst✝¹⁵ : Ring R₂ R₃ : Type u_3 inst✝¹⁴ : Ring R₃ M : Type u_4 inst✝¹³ : TopologicalSpace M inst✝¹² : AddCommGroup M M₂ : Type u_5 inst✝¹¹ : TopologicalSpace M₂ inst✝¹⁰ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁹ : TopologicalSpace M₃ inst✝⁸ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁷ : TopologicalSpace M₄ inst✝⁶ : AddCommGroup M₄ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : TopologicalAddGroup M₂ inst✝ : TopologicalAddGroup M₃ g : M₂ →SL[σ₂₃] M₃ f : M →SL[σ₁₂] M₂ ⊢ comp g (-f) = -comp g f [PROOFSTEP] ext x [GOAL] case h R : Type u_1 inst✝¹⁶ : Ring R R₂ : Type u_2 inst✝¹⁵ : Ring R₂ R₃ : Type u_3 inst✝¹⁴ : Ring R₃ M : Type u_4 inst✝¹³ : TopologicalSpace M inst✝¹² : AddCommGroup M M₂ : Type u_5 inst✝¹¹ : TopologicalSpace M₂ inst✝¹⁰ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁹ : TopologicalSpace M₃ inst✝⁸ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁷ : TopologicalSpace M₄ inst✝⁶ : AddCommGroup M₄ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : TopologicalAddGroup M₂ inst✝ : TopologicalAddGroup M₃ g : M₂ →SL[σ₂₃] M₃ f : M →SL[σ₁₂] M₂ x : M ⊢ ↑(comp g (-f)) x = ↑(-comp g f) x [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type u_2 inst✝¹⁴ : Ring R₂ R₃ : Type u_3 inst✝¹³ : Ring R₃ M : Type u_4 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type u_5 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : TopologicalAddGroup M₃ g : M₂ →SL[σ₂₃] M₃ f : M →SL[σ₁₂] M₂ ⊢ comp (-g) f = -comp g f [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type u_2 inst✝¹⁴ : Ring R₂ R₃ : Type u_3 inst✝¹³ : Ring R₃ M : Type u_4 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type u_5 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : TopologicalAddGroup M₃ g : M₂ →SL[σ₂₃] M₃ f : M →SL[σ₁₂] M₂ x✝ : M ⊢ ↑(comp (-g) f) x✝ = ↑(-comp g f) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁶ : Ring R R₂ : Type u_2 inst✝¹⁵ : Ring R₂ R₃ : Type u_3 inst✝¹⁴ : Ring R₃ M : Type u_4 inst✝¹³ : TopologicalSpace M inst✝¹² : AddCommGroup M M₂ : Type u_5 inst✝¹¹ : TopologicalSpace M₂ inst✝¹⁰ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁹ : TopologicalSpace M₃ inst✝⁸ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁷ : TopologicalSpace M₄ inst✝⁶ : AddCommGroup M₄ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : TopologicalAddGroup M₂ inst✝ : TopologicalAddGroup M₃ g : M₂ →SL[σ₂₃] M₃ f₁ f₂ : M →SL[σ₁₂] M₂ ⊢ comp g (f₁ - f₂) = comp g f₁ - comp g f₂ [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝¹⁶ : Ring R R₂ : Type u_2 inst✝¹⁵ : Ring R₂ R₃ : Type u_3 inst✝¹⁴ : Ring R₃ M : Type u_4 inst✝¹³ : TopologicalSpace M inst✝¹² : AddCommGroup M M₂ : Type u_5 inst✝¹¹ : TopologicalSpace M₂ inst✝¹⁰ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁹ : TopologicalSpace M₃ inst✝⁸ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁷ : TopologicalSpace M₄ inst✝⁶ : AddCommGroup M₄ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : TopologicalAddGroup M₂ inst✝ : TopologicalAddGroup M₃ g : M₂ →SL[σ₂₃] M₃ f₁ f₂ : M →SL[σ₁₂] M₂ x✝ : M ⊢ ↑(comp g (f₁ - f₂)) x✝ = ↑(comp g f₁ - comp g f₂) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type u_2 inst✝¹⁴ : Ring R₂ R₃ : Type u_3 inst✝¹³ : Ring R₃ M : Type u_4 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type u_5 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : TopologicalAddGroup M₃ g₁ g₂ : M₂ →SL[σ₂₃] M₃ f : M →SL[σ₁₂] M₂ ⊢ comp (g₁ - g₂) f = comp g₁ f - comp g₂ f [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type u_2 inst✝¹⁴ : Ring R₂ R₃ : Type u_3 inst✝¹³ : Ring R₃ M : Type u_4 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type u_5 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : TopologicalAddGroup M₃ g₁ g₂ : M₂ →SL[σ₂₃] M₃ f : M →SL[σ₁₂] M₂ x✝ : M ⊢ ↑(comp (g₁ - g₂) f) x✝ = ↑(comp g₁ f - comp g₂ f) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type u_2 inst✝¹⁴ : Ring R₂ R₃ : Type u_3 inst✝¹³ : Ring R₃ M : Type u_4 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type u_5 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R c : R n : ℕ ⊢ smulRight 1 c ^ n = smulRight 1 (c ^ n) [PROOFSTEP] induction' n with n ihn [GOAL] case zero R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type u_2 inst✝¹⁴ : Ring R₂ R₃ : Type u_3 inst✝¹³ : Ring R₃ M : Type u_4 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type u_5 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R c : R ⊢ smulRight 1 c ^ Nat.zero = smulRight 1 (c ^ Nat.zero) [PROOFSTEP] ext [GOAL] case zero.h R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type u_2 inst✝¹⁴ : Ring R₂ R₃ : Type u_3 inst✝¹³ : Ring R₃ M : Type u_4 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type u_5 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R c : R ⊢ ↑(smulRight 1 c ^ Nat.zero) 1 = ↑(smulRight 1 (c ^ Nat.zero)) 1 [PROOFSTEP] simp [GOAL] case succ R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type u_2 inst✝¹⁴ : Ring R₂ R₃ : Type u_3 inst✝¹³ : Ring R₃ M : Type u_4 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type u_5 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R c : R n : ℕ ihn : smulRight 1 c ^ n = smulRight 1 (c ^ n) ⊢ smulRight 1 c ^ Nat.succ n = smulRight 1 (c ^ Nat.succ n) [PROOFSTEP] rw [pow_succ, ihn, mul_def, smulRight_comp, smul_eq_mul, pow_succ'] [GOAL] R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type u_2 inst✝¹⁴ : Ring R₂ R₃ : Type u_3 inst✝¹³ : Ring R₃ M : Type u_4 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type u_5 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝ : TopologicalAddGroup M f₁ : M →SL[σ₁₂] M₂ f₂ : M₂ →SL[σ₂₁] M h : Function.RightInverse ↑f₂ ↑f₁ x : M ⊢ ↑(id R M - comp f₂ f₁) x ∈ ker f₁ [PROOFSTEP] simp [h (f₁ x)] [GOAL] R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type u_2 inst✝¹⁴ : Ring R₂ R₃ : Type u_3 inst✝¹³ : Ring R₃ M : Type u_4 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type u_5 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝ : TopologicalAddGroup M f₁ : M →SL[σ₁₂] M₂ f₂ : M₂ →SL[σ₂₁] M h : Function.RightInverse ↑f₂ ↑f₁ x : { x // x ∈ ker f₁ } ⊢ ↑(projKerOfRightInverse f₁ f₂ h) ↑x = x [PROOFSTEP] ext1 [GOAL] case a R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type u_2 inst✝¹⁴ : Ring R₂ R₃ : Type u_3 inst✝¹³ : Ring R₃ M : Type u_4 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type u_5 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝ : TopologicalAddGroup M f₁ : M →SL[σ₁₂] M₂ f₂ : M₂ →SL[σ₂₁] M h : Function.RightInverse ↑f₂ ↑f₁ x : { x // x ∈ ker f₁ } ⊢ ↑(↑(projKerOfRightInverse f₁ f₂ h) ↑x) = ↑x [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type u_2 inst✝¹⁴ : Ring R₂ R₃ : Type u_3 inst✝¹³ : Ring R₃ M : Type u_4 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type u_5 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type u_6 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type u_7 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝ : TopologicalAddGroup M f₁ : M →SL[σ₁₂] M₂ f₂ : M₂ →SL[σ₂₁] M h : Function.RightInverse ↑f₂ ↑f₁ y : M₂ ⊢ ↑(↑(projKerOfRightInverse f₁ f₂ h) (↑f₂ y)) = ↑0 [PROOFSTEP] simp [h y] [GOAL] R : Type u_1 M : Type u_2 inst✝⁷ : TopologicalSpace R inst✝⁶ : DivisionRing R inst✝⁵ : ContinuousSub R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalSpace M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M f : M →L[R] R hf : f ≠ 0 x : M hx : ↑f x ≠ 0 y : M ⊢ Continuous fun a => y + (a - ↑f y) • (↑f x)⁻¹ • x [PROOFSTEP] continuity [GOAL] R : Type u_1 M : Type u_2 inst✝⁷ : TopologicalSpace R inst✝⁶ : DivisionRing R inst✝⁵ : ContinuousSub R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalSpace M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M f : M →L[R] R hf : f ≠ 0 x : M hx : ↑f x ≠ 0 y : M ⊢ (fun a => y + (a - ↑f y) • (↑f x)⁻¹ • x) (↑f y) = y [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 inst✝⁷ : TopologicalSpace R inst✝⁶ : DivisionRing R inst✝⁵ : ContinuousSub R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalSpace M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M f : M →L[R] R hf : f ≠ 0 x : M hx : ↑f x ≠ 0 y : M a : R ⊢ ↑f ((fun a => y + (a - ↑f y) • (↑f x)⁻¹ • x) a) = a [PROOFSTEP] simp [hx] [GOAL] R : Type u_1 R₂ : Type u_2 R₃ : Type u_3 S : Type u_4 S₃ : Type u_5 inst✝³³ : Semiring R inst✝³² : Semiring R₂ inst✝³¹ : Semiring R₃ inst✝³⁰ : Monoid S inst✝²⁹ : Monoid S₃ M : Type u_6 inst✝²⁸ : TopologicalSpace M inst✝²⁷ : AddCommMonoid M inst✝²⁶ : Module R M M₂ : Type u_7 inst✝²⁵ : TopologicalSpace M₂ inst✝²⁴ : AddCommMonoid M₂ inst✝²³ : Module R₂ M₂ M₃ : Type u_8 inst✝²² : TopologicalSpace M₃ inst✝²¹ : AddCommMonoid M₃ inst✝²⁰ : Module R₃ M₃ N₂ : Type u_9 inst✝¹⁹ : TopologicalSpace N₂ inst✝¹⁸ : AddCommMonoid N₂ inst✝¹⁷ : Module R N₂ N₃ : Type u_10 inst✝¹⁶ : TopologicalSpace N₃ inst✝¹⁵ : AddCommMonoid N₃ inst✝¹⁴ : Module R N₃ inst✝¹³ : DistribMulAction S₃ M₃ inst✝¹² : SMulCommClass R₃ S₃ M₃ inst✝¹¹ : ContinuousConstSMul S₃ M₃ inst✝¹⁰ : DistribMulAction S N₃ inst✝⁹ : SMulCommClass R S N₃ inst✝⁸ : ContinuousConstSMul S N₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : DistribMulAction S₃ M₂ inst✝⁵ : ContinuousConstSMul S₃ M₂ inst✝⁴ : SMulCommClass R₂ S₃ M₂ inst✝³ : DistribMulAction S N₂ inst✝² : ContinuousConstSMul S N₂ inst✝¹ : SMulCommClass R S N₂ inst✝ : LinearMap.CompatibleSMul N₂ N₃ S R hₗ : N₂ →L[R] N₃ c : S fₗ : M →L[R] N₂ ⊢ comp hₗ (c • fₗ) = c • comp hₗ fₗ [PROOFSTEP] ext x [GOAL] case h R : Type u_1 R₂ : Type u_2 R₃ : Type u_3 S : Type u_4 S₃ : Type u_5 inst✝³³ : Semiring R inst✝³² : Semiring R₂ inst✝³¹ : Semiring R₃ inst✝³⁰ : Monoid S inst✝²⁹ : Monoid S₃ M : Type u_6 inst✝²⁸ : TopologicalSpace M inst✝²⁷ : AddCommMonoid M inst✝²⁶ : Module R M M₂ : Type u_7 inst✝²⁵ : TopologicalSpace M₂ inst✝²⁴ : AddCommMonoid M₂ inst✝²³ : Module R₂ M₂ M₃ : Type u_8 inst✝²² : TopologicalSpace M₃ inst✝²¹ : AddCommMonoid M₃ inst✝²⁰ : Module R₃ M₃ N₂ : Type u_9 inst✝¹⁹ : TopologicalSpace N₂ inst✝¹⁸ : AddCommMonoid N₂ inst✝¹⁷ : Module R N₂ N₃ : Type u_10 inst✝¹⁶ : TopologicalSpace N₃ inst✝¹⁵ : AddCommMonoid N₃ inst✝¹⁴ : Module R N₃ inst✝¹³ : DistribMulAction S₃ M₃ inst✝¹² : SMulCommClass R₃ S₃ M₃ inst✝¹¹ : ContinuousConstSMul S₃ M₃ inst✝¹⁰ : DistribMulAction S N₃ inst✝⁹ : SMulCommClass R S N₃ inst✝⁸ : ContinuousConstSMul S N₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : DistribMulAction S₃ M₂ inst✝⁵ : ContinuousConstSMul S₃ M₂ inst✝⁴ : SMulCommClass R₂ S₃ M₂ inst✝³ : DistribMulAction S N₂ inst✝² : ContinuousConstSMul S N₂ inst✝¹ : SMulCommClass R S N₂ inst✝ : LinearMap.CompatibleSMul N₂ N₃ S R hₗ : N₂ →L[R] N₃ c : S fₗ : M →L[R] N₂ x : M ⊢ ↑(comp hₗ (c • fₗ)) x = ↑(c • comp hₗ fₗ) x [PROOFSTEP] exact hₗ.map_smul_of_tower c (fₗ x) [GOAL] R : Type u_1 R₂ : Type u_2 R₃ : Type u_3 S : Type u_4 S₃ : Type u_5 inst✝³⁶ : Semiring R inst✝³⁵ : Semiring R₂ inst✝³⁴ : Semiring R₃ inst✝³³ : Monoid S inst✝³² : Monoid S₃ M : Type u_6 inst✝³¹ : TopologicalSpace M inst✝³⁰ : AddCommMonoid M inst✝²⁹ : Module R M M₂ : Type u_7 inst✝²⁸ : TopologicalSpace M₂ inst✝²⁷ : AddCommMonoid M₂ inst✝²⁶ : Module R₂ M₂ M₃ : Type u_8 inst✝²⁵ : TopologicalSpace M₃ inst✝²⁴ : AddCommMonoid M₃ inst✝²³ : Module R₃ M₃ N₂ : Type u_9 inst✝²² : TopologicalSpace N₂ inst✝²¹ : AddCommMonoid N₂ inst✝²⁰ : Module R N₂ N₃ : Type u_10 inst✝¹⁹ : TopologicalSpace N₃ inst✝¹⁸ : AddCommMonoid N₃ inst✝¹⁷ : Module R N₃ inst✝¹⁶ : DistribMulAction S₃ M₃ inst✝¹⁵ : SMulCommClass R₃ S₃ M₃ inst✝¹⁴ : ContinuousConstSMul S₃ M₃ inst✝¹³ : DistribMulAction S N₃ inst✝¹² : SMulCommClass R S N₃ inst✝¹¹ : ContinuousConstSMul S N₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹⁰ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁹ : DistribMulAction S₃ M₂ inst✝⁸ : ContinuousConstSMul S₃ M₂ inst✝⁷ : SMulCommClass R₂ S₃ M₂ inst✝⁶ : DistribMulAction S N₂ inst✝⁵ : ContinuousConstSMul S N₂ inst✝⁴ : SMulCommClass R S N₂ inst✝³ : SMulCommClass R₂ R₂ M₂ inst✝² : SMulCommClass R₃ R₃ M₃ inst✝¹ : ContinuousConstSMul R₂ M₂ inst✝ : ContinuousConstSMul R₃ M₃ h : M₂ →SL[σ₂₃] M₃ c : R₂ f : M →SL[σ₁₂] M₂ ⊢ comp h (c • f) = ↑σ₂₃ c • comp h f [PROOFSTEP] ext x [GOAL] case h R : Type u_1 R₂ : Type u_2 R₃ : Type u_3 S : Type u_4 S₃ : Type u_5 inst✝³⁶ : Semiring R inst✝³⁵ : Semiring R₂ inst✝³⁴ : Semiring R₃ inst✝³³ : Monoid S inst✝³² : Monoid S₃ M : Type u_6 inst✝³¹ : TopologicalSpace M inst✝³⁰ : AddCommMonoid M inst✝²⁹ : Module R M M₂ : Type u_7 inst✝²⁸ : TopologicalSpace M₂ inst✝²⁷ : AddCommMonoid M₂ inst✝²⁶ : Module R₂ M₂ M₃ : Type u_8 inst✝²⁵ : TopologicalSpace M₃ inst✝²⁴ : AddCommMonoid M₃ inst✝²³ : Module R₃ M₃ N₂ : Type u_9 inst✝²² : TopologicalSpace N₂ inst✝²¹ : AddCommMonoid N₂ inst✝²⁰ : Module R N₂ N₃ : Type u_10 inst✝¹⁹ : TopologicalSpace N₃ inst✝¹⁸ : AddCommMonoid N₃ inst✝¹⁷ : Module R N₃ inst✝¹⁶ : DistribMulAction S₃ M₃ inst✝¹⁵ : SMulCommClass R₃ S₃ M₃ inst✝¹⁴ : ContinuousConstSMul S₃ M₃ inst✝¹³ : DistribMulAction S N₃ inst✝¹² : SMulCommClass R S N₃ inst✝¹¹ : ContinuousConstSMul S N₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹⁰ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁹ : DistribMulAction S₃ M₂ inst✝⁸ : ContinuousConstSMul S₃ M₂ inst✝⁷ : SMulCommClass R₂ S₃ M₂ inst✝⁶ : DistribMulAction S N₂ inst✝⁵ : ContinuousConstSMul S N₂ inst✝⁴ : SMulCommClass R S N₂ inst✝³ : SMulCommClass R₂ R₂ M₂ inst✝² : SMulCommClass R₃ R₃ M₃ inst✝¹ : ContinuousConstSMul R₂ M₂ inst✝ : ContinuousConstSMul R₃ M₃ h : M₂ →SL[σ₂₃] M₃ c : R₂ f : M →SL[σ₁₂] M₂ x : M ⊢ ↑(comp h (c • f)) x = ↑(↑σ₂₃ c • comp h f) x [PROOFSTEP] simp only [coe_smul', coe_comp', Function.comp_apply, Pi.smul_apply, ContinuousLinearMap.map_smulₛₗ] [GOAL] R : Type u_1 R₂ : Type u_2 R₃ : Type u_3 S : Type u_4 S₃ : Type u_5 inst✝²⁹ : Semiring R inst✝²⁸ : Semiring R₂ inst✝²⁷ : Semiring R₃ inst✝²⁶ : Semiring S inst✝²⁵ : Semiring S₃ M : Type u_6 inst✝²⁴ : TopologicalSpace M inst✝²³ : AddCommMonoid M inst✝²² : Module R M M₂ : Type u_7 inst✝²¹ : TopologicalSpace M₂ inst✝²⁰ : AddCommMonoid M₂ inst✝¹⁹ : Module R₂ M₂ M₃ : Type u_8 inst✝¹⁸ : TopologicalSpace M₃ inst✝¹⁷ : AddCommMonoid M₃ inst✝¹⁶ : Module R₃ M₃ N₂ : Type u_9 inst✝¹⁵ : TopologicalSpace N₂ inst✝¹⁴ : AddCommMonoid N₂ inst✝¹³ : Module R N₂ N₃ : Type u_10 inst✝¹² : TopologicalSpace N₃ inst✝¹¹ : AddCommMonoid N₃ inst✝¹⁰ : Module R N₃ inst✝⁹ : Module S₃ M₃ inst✝⁸ : SMulCommClass R₃ S₃ M₃ inst✝⁷ : ContinuousConstSMul S₃ M₃ inst✝⁶ : Module S N₂ inst✝⁵ : ContinuousConstSMul S N₂ inst✝⁴ : SMulCommClass R S N₂ inst✝³ : Module S N₃ inst✝² : SMulCommClass R S N₃ inst✝¹ : ContinuousConstSMul S N₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ c : S h : M₂ →SL[σ₂₃] M₃ f✝ g : M →SL[σ₁₂] M₂ x y z : M f : (M →L[R] N₂) × (M →L[R] N₃) ⊢ (fun f => (comp (fst R N₂ N₃) f, comp (snd R N₂ N₃) f)) ((fun f => ContinuousLinearMap.prod f.fst f.snd) f) = f [PROOFSTEP] ext [GOAL] case h₁.h R : Type u_1 R₂ : Type u_2 R₃ : Type u_3 S : Type u_4 S₃ : Type u_5 inst✝²⁹ : Semiring R inst✝²⁸ : Semiring R₂ inst✝²⁷ : Semiring R₃ inst✝²⁶ : Semiring S inst✝²⁵ : Semiring S₃ M : Type u_6 inst✝²⁴ : TopologicalSpace M inst✝²³ : AddCommMonoid M inst✝²² : Module R M M₂ : Type u_7 inst✝²¹ : TopologicalSpace M₂ inst✝²⁰ : AddCommMonoid M₂ inst✝¹⁹ : Module R₂ M₂ M₃ : Type u_8 inst✝¹⁸ : TopologicalSpace M₃ inst✝¹⁷ : AddCommMonoid M₃ inst✝¹⁶ : Module R₃ M₃ N₂ : Type u_9 inst✝¹⁵ : TopologicalSpace N₂ inst✝¹⁴ : AddCommMonoid N₂ inst✝¹³ : Module R N₂ N₃ : Type u_10 inst✝¹² : TopologicalSpace N₃ inst✝¹¹ : AddCommMonoid N₃ inst✝¹⁰ : Module R N₃ inst✝⁹ : Module S₃ M₃ inst✝⁸ : SMulCommClass R₃ S₃ M₃ inst✝⁷ : ContinuousConstSMul S₃ M₃ inst✝⁶ : Module S N₂ inst✝⁵ : ContinuousConstSMul S N₂ inst✝⁴ : SMulCommClass R S N₂ inst✝³ : Module S N₃ inst✝² : SMulCommClass R S N₃ inst✝¹ : ContinuousConstSMul S N₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ c : S h : M₂ →SL[σ₂₃] M₃ f✝ g : M →SL[σ₁₂] M₂ x y z : M f : (M →L[R] N₂) × (M →L[R] N₃) x✝ : M ⊢ ↑((fun f => (comp (fst R N₂ N₃) f, comp (snd R N₂ N₃) f)) ((fun f => ContinuousLinearMap.prod f.fst f.snd) f)).fst x✝ = ↑f.fst x✝ [PROOFSTEP] rfl [GOAL] case h₂.h R : Type u_1 R₂ : Type u_2 R₃ : Type u_3 S : Type u_4 S₃ : Type u_5 inst✝²⁹ : Semiring R inst✝²⁸ : Semiring R₂ inst✝²⁷ : Semiring R₃ inst✝²⁶ : Semiring S inst✝²⁵ : Semiring S₃ M : Type u_6 inst✝²⁴ : TopologicalSpace M inst✝²³ : AddCommMonoid M inst✝²² : Module R M M₂ : Type u_7 inst✝²¹ : TopologicalSpace M₂ inst✝²⁰ : AddCommMonoid M₂ inst✝¹⁹ : Module R₂ M₂ M₃ : Type u_8 inst✝¹⁸ : TopologicalSpace M₃ inst✝¹⁷ : AddCommMonoid M₃ inst✝¹⁶ : Module R₃ M₃ N₂ : Type u_9 inst✝¹⁵ : TopologicalSpace N₂ inst✝¹⁴ : AddCommMonoid N₂ inst✝¹³ : Module R N₂ N₃ : Type u_10 inst✝¹² : TopologicalSpace N₃ inst✝¹¹ : AddCommMonoid N₃ inst✝¹⁰ : Module R N₃ inst✝⁹ : Module S₃ M₃ inst✝⁸ : SMulCommClass R₃ S₃ M₃ inst✝⁷ : ContinuousConstSMul S₃ M₃ inst✝⁶ : Module S N₂ inst✝⁵ : ContinuousConstSMul S N₂ inst✝⁴ : SMulCommClass R S N₂ inst✝³ : Module S N₃ inst✝² : SMulCommClass R S N₃ inst✝¹ : ContinuousConstSMul S N₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ c : S h : M₂ →SL[σ₂₃] M₃ f✝ g : M →SL[σ₁₂] M₂ x y z : M f : (M →L[R] N₂) × (M →L[R] N₃) x✝ : M ⊢ ↑((fun f => (comp (fst R N₂ N₃) f, comp (snd R N₂ N₃) f)) ((fun f => ContinuousLinearMap.prod f.fst f.snd) f)).snd x✝ = ↑f.snd x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 R₂ : Type u_2 R₃ : Type u_3 S : Type u_4 S₃ : Type u_5 inst✝²⁹ : Semiring R inst✝²⁸ : Semiring R₂ inst✝²⁷ : Semiring R₃ inst✝²⁶ : Semiring S inst✝²⁵ : Semiring S₃ M : Type u_6 inst✝²⁴ : TopologicalSpace M inst✝²³ : AddCommMonoid M inst✝²² : Module R M M₂ : Type u_7 inst✝²¹ : TopologicalSpace M₂ inst✝²⁰ : AddCommMonoid M₂ inst✝¹⁹ : Module R₂ M₂ M₃ : Type u_8 inst✝¹⁸ : TopologicalSpace M₃ inst✝¹⁷ : AddCommMonoid M₃ inst✝¹⁶ : Module R₃ M₃ N₂ : Type u_9 inst✝¹⁵ : TopologicalSpace N₂ inst✝¹⁴ : AddCommMonoid N₂ inst✝¹³ : Module R N₂ N₃ : Type u_10 inst✝¹² : TopologicalSpace N₃ inst✝¹¹ : AddCommMonoid N₃ inst✝¹⁰ : Module R N₃ inst✝⁹ : Module S₃ M₃ inst✝⁸ : SMulCommClass R₃ S₃ M₃ inst✝⁷ : ContinuousConstSMul S₃ M₃ inst✝⁶ : Module S N₂ inst✝⁵ : ContinuousConstSMul S N₂ inst✝⁴ : SMulCommClass R S N₂ inst✝³ : Module S N₃ inst✝² : SMulCommClass R S N₃ inst✝¹ : ContinuousConstSMul S N₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ c : S h : M₂ →SL[σ₂₃] M₃ f✝ g : M →SL[σ₁₂] M₂ x y z : M f : M →L[R] N₂ × N₃ ⊢ (fun f => ContinuousLinearMap.prod f.fst f.snd) ((fun f => (comp (fst R N₂ N₃) f, comp (snd R N₂ N₃) f)) f) = f [PROOFSTEP] ext [GOAL] case h.h₁ R : Type u_1 R₂ : Type u_2 R₃ : Type u_3 S : Type u_4 S₃ : Type u_5 inst✝²⁹ : Semiring R inst✝²⁸ : Semiring R₂ inst✝²⁷ : Semiring R₃ inst✝²⁶ : Semiring S inst✝²⁵ : Semiring S₃ M : Type u_6 inst✝²⁴ : TopologicalSpace M inst✝²³ : AddCommMonoid M inst✝²² : Module R M M₂ : Type u_7 inst✝²¹ : TopologicalSpace M₂ inst✝²⁰ : AddCommMonoid M₂ inst✝¹⁹ : Module R₂ M₂ M₃ : Type u_8 inst✝¹⁸ : TopologicalSpace M₃ inst✝¹⁷ : AddCommMonoid M₃ inst✝¹⁶ : Module R₃ M₃ N₂ : Type u_9 inst✝¹⁵ : TopologicalSpace N₂ inst✝¹⁴ : AddCommMonoid N₂ inst✝¹³ : Module R N₂ N₃ : Type u_10 inst✝¹² : TopologicalSpace N₃ inst✝¹¹ : AddCommMonoid N₃ inst✝¹⁰ : Module R N₃ inst✝⁹ : Module S₃ M₃ inst✝⁸ : SMulCommClass R₃ S₃ M₃ inst✝⁷ : ContinuousConstSMul S₃ M₃ inst✝⁶ : Module S N₂ inst✝⁵ : ContinuousConstSMul S N₂ inst✝⁴ : SMulCommClass R S N₂ inst✝³ : Module S N₃ inst✝² : SMulCommClass R S N₃ inst✝¹ : ContinuousConstSMul S N₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ c : S h : M₂ →SL[σ₂₃] M₃ f✝ g : M →SL[σ₁₂] M₂ x y z : M f : M →L[R] N₂ × N₃ x✝ : M ⊢ (↑((fun f => ContinuousLinearMap.prod f.fst f.snd) ((fun f => (comp (fst R N₂ N₃) f, comp (snd R N₂ N₃) f)) f)) x✝).fst = (↑f x✝).fst [PROOFSTEP] rfl [GOAL] case h.h₂ R : Type u_1 R₂ : Type u_2 R₃ : Type u_3 S : Type u_4 S₃ : Type u_5 inst✝²⁹ : Semiring R inst✝²⁸ : Semiring R₂ inst✝²⁷ : Semiring R₃ inst✝²⁶ : Semiring S inst✝²⁵ : Semiring S₃ M : Type u_6 inst✝²⁴ : TopologicalSpace M inst✝²³ : AddCommMonoid M inst✝²² : Module R M M₂ : Type u_7 inst✝²¹ : TopologicalSpace M₂ inst✝²⁰ : AddCommMonoid M₂ inst✝¹⁹ : Module R₂ M₂ M₃ : Type u_8 inst✝¹⁸ : TopologicalSpace M₃ inst✝¹⁷ : AddCommMonoid M₃ inst✝¹⁶ : Module R₃ M₃ N₂ : Type u_9 inst✝¹⁵ : TopologicalSpace N₂ inst✝¹⁴ : AddCommMonoid N₂ inst✝¹³ : Module R N₂ N₃ : Type u_10 inst✝¹² : TopologicalSpace N₃ inst✝¹¹ : AddCommMonoid N₃ inst✝¹⁰ : Module R N₃ inst✝⁹ : Module S₃ M₃ inst✝⁸ : SMulCommClass R₃ S₃ M₃ inst✝⁷ : ContinuousConstSMul S₃ M₃ inst✝⁶ : Module S N₂ inst✝⁵ : ContinuousConstSMul S N₂ inst✝⁴ : SMulCommClass R S N₂ inst✝³ : Module S N₃ inst✝² : SMulCommClass R S N₃ inst✝¹ : ContinuousConstSMul S N₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ c : S h : M₂ →SL[σ₂₃] M₃ f✝ g : M →SL[σ₁₂] M₂ x y z : M f : M →L[R] N₂ × N₃ x✝ : M ⊢ (↑((fun f => ContinuousLinearMap.prod f.fst f.snd) ((fun f => (comp (fst R N₂ N₃) f, comp (snd R N₂ N₃) f)) f)) x✝).snd = (↑f x✝).snd [PROOFSTEP] rfl [GOAL] R : Type u_1 R₂ : Type u_2 R₃ : Type u_3 S : Type u_4 S₃ : Type u_5 inst✝²⁹ : Semiring R inst✝²⁸ : Semiring R₂ inst✝²⁷ : Semiring R₃ inst✝²⁶ : Semiring S inst✝²⁵ : Semiring S₃ M : Type u_6 inst✝²⁴ : TopologicalSpace M inst✝²³ : AddCommMonoid M inst✝²² : Module R M M₂ : Type u_7 inst✝²¹ : TopologicalSpace M₂ inst✝²⁰ : AddCommMonoid M₂ inst✝¹⁹ : Module R₂ M₂ M₃ : Type u_8 inst✝¹⁸ : TopologicalSpace M₃ inst✝¹⁷ : AddCommMonoid M₃ inst✝¹⁶ : Module R₃ M₃ N₂ : Type u_9 inst✝¹⁵ : TopologicalSpace N₂ inst✝¹⁴ : AddCommMonoid N₂ inst✝¹³ : Module R N₂ N₃ : Type u_10 inst✝¹² : TopologicalSpace N₃ inst✝¹¹ : AddCommMonoid N₃ inst✝¹⁰ : Module R N₃ inst✝⁹ : Module S₃ M₃ inst✝⁸ : SMulCommClass R₃ S₃ M₃ inst✝⁷ : ContinuousConstSMul S₃ M₃ inst✝⁶ : Module S N₂ inst✝⁵ : ContinuousConstSMul S N₂ inst✝⁴ : SMulCommClass R S N₂ inst✝³ : Module S N₃ inst✝² : SMulCommClass R S N₃ inst✝¹ : ContinuousConstSMul S N₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ c : S h : M₂ →SL[σ₂₃] M₃ f✝ g✝ : M →SL[σ₁₂] M₂ x y z : M f g : M × N₂ →L[R] N₃ ⊢ f = g ↔ comp f (inl R M N₂) = comp g (inl R M N₂) ∧ comp f (inr R M N₂) = comp g (inr R M N₂) [PROOFSTEP] simp only [← coe_inj, LinearMap.prod_ext_iff] [GOAL] R : Type u_1 R₂ : Type u_2 R₃ : Type u_3 S : Type u_4 S₃ : Type u_5 inst✝²⁹ : Semiring R inst✝²⁸ : Semiring R₂ inst✝²⁷ : Semiring R₃ inst✝²⁶ : Semiring S inst✝²⁵ : Semiring S₃ M : Type u_6 inst✝²⁴ : TopologicalSpace M inst✝²³ : AddCommMonoid M inst✝²² : Module R M M₂ : Type u_7 inst✝²¹ : TopologicalSpace M₂ inst✝²⁰ : AddCommMonoid M₂ inst✝¹⁹ : Module R₂ M₂ M₃ : Type u_8 inst✝¹⁸ : TopologicalSpace M₃ inst✝¹⁷ : AddCommMonoid M₃ inst✝¹⁶ : Module R₃ M₃ N₂ : Type u_9 inst✝¹⁵ : TopologicalSpace N₂ inst✝¹⁴ : AddCommMonoid N₂ inst✝¹³ : Module R N₂ N₃ : Type u_10 inst✝¹² : TopologicalSpace N₃ inst✝¹¹ : AddCommMonoid N₃ inst✝¹⁰ : Module R N₃ inst✝⁹ : Module S₃ M₃ inst✝⁸ : SMulCommClass R₃ S₃ M₃ inst✝⁷ : ContinuousConstSMul S₃ M₃ inst✝⁶ : Module S N₂ inst✝⁵ : ContinuousConstSMul S N₂ inst✝⁴ : SMulCommClass R S N₂ inst✝³ : Module S N₃ inst✝² : SMulCommClass R S N₃ inst✝¹ : ContinuousConstSMul S N₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ c : S h : M₂ →SL[σ₂₃] M₃ f✝ g✝ : M →SL[σ₁₂] M₂ x y z : M f g : M × N₂ →L[R] N₃ ⊢ LinearMap.comp (↑f) (LinearMap.inl R M N₂) = LinearMap.comp (↑g) (LinearMap.inl R M N₂) ∧ LinearMap.comp (↑f) (LinearMap.inr R M N₂) = LinearMap.comp (↑g) (LinearMap.inr R M N₂) ↔ ↑(comp f (inl R M N₂)) = ↑(comp g (inl R M N₂)) ∧ ↑(comp f (inr R M N₂)) = ↑(comp g (inr R M N₂)) [PROOFSTEP] rfl [GOAL] R : Type u_1 S : Type u_2 T : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹⁸ : Semiring R inst✝¹⁷ : Semiring S inst✝¹⁶ : Semiring T inst✝¹⁵ : Module R S inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : Module R M₂ inst✝¹² : Module S M₂ inst✝¹¹ : IsScalarTower R S M₂ inst✝¹⁰ : TopologicalSpace S inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : ContinuousSMul S M₂ inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : ContinuousAdd M₂ inst✝³ : Module T M₂ inst✝² : ContinuousConstSMul T M₂ inst✝¹ : SMulCommClass R T M₂ inst✝ : SMulCommClass S T M₂ c : M →L[R] S x y : M₂ ⊢ smulRight c (x + y) = smulRight c x + smulRight c y [PROOFSTEP] ext e [GOAL] case h R : Type u_1 S : Type u_2 T : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹⁸ : Semiring R inst✝¹⁷ : Semiring S inst✝¹⁶ : Semiring T inst✝¹⁵ : Module R S inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : Module R M₂ inst✝¹² : Module S M₂ inst✝¹¹ : IsScalarTower R S M₂ inst✝¹⁰ : TopologicalSpace S inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : ContinuousSMul S M₂ inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : ContinuousAdd M₂ inst✝³ : Module T M₂ inst✝² : ContinuousConstSMul T M₂ inst✝¹ : SMulCommClass R T M₂ inst✝ : SMulCommClass S T M₂ c : M →L[R] S x y : M₂ e : M ⊢ ↑(smulRight c (x + y)) e = ↑(smulRight c x + smulRight c y) e [PROOFSTEP] apply smul_add [GOAL] R : Type u_1 S : Type u_2 T : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹⁸ : Semiring R inst✝¹⁷ : Semiring S inst✝¹⁶ : Semiring T inst✝¹⁵ : Module R S inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : Module R M₂ inst✝¹² : Module S M₂ inst✝¹¹ : IsScalarTower R S M₂ inst✝¹⁰ : TopologicalSpace S inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : ContinuousSMul S M₂ inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : ContinuousAdd M₂ inst✝³ : Module T M₂ inst✝² : ContinuousConstSMul T M₂ inst✝¹ : SMulCommClass R T M₂ inst✝ : SMulCommClass S T M₂ c : M →L[R] S a : T x : M₂ ⊢ AddHom.toFun { toFun := smulRight c, map_add' := (_ : ∀ (x y : M₂), smulRight c (x + y) = smulRight c x + smulRight c y) } (a • x) = ↑(RingHom.id T) a • AddHom.toFun { toFun := smulRight c, map_add' := (_ : ∀ (x y : M₂), smulRight c (x + y) = smulRight c x + smulRight c y) } x [PROOFSTEP] ext e [GOAL] case h R : Type u_1 S : Type u_2 T : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹⁸ : Semiring R inst✝¹⁷ : Semiring S inst✝¹⁶ : Semiring T inst✝¹⁵ : Module R S inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : Module R M₂ inst✝¹² : Module S M₂ inst✝¹¹ : IsScalarTower R S M₂ inst✝¹⁰ : TopologicalSpace S inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : ContinuousSMul S M₂ inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : ContinuousAdd M₂ inst✝³ : Module T M₂ inst✝² : ContinuousConstSMul T M₂ inst✝¹ : SMulCommClass R T M₂ inst✝ : SMulCommClass S T M₂ c : M →L[R] S a : T x : M₂ e : M ⊢ ↑(AddHom.toFun { toFun := smulRight c, map_add' := (_ : ∀ (x y : M₂), smulRight c (x + y) = smulRight c x + smulRight c y) } (a • x)) e = ↑(↑(RingHom.id T) a • AddHom.toFun { toFun := smulRight c, map_add' := (_ : ∀ (x y : M₂), smulRight c (x + y) = smulRight c x + smulRight c y) } x) e [PROOFSTEP] dsimp [GOAL] case h R : Type u_1 S : Type u_2 T : Type u_3 M : Type u_4 M₂ : Type u_5 inst✝¹⁸ : Semiring R inst✝¹⁷ : Semiring S inst✝¹⁶ : Semiring T inst✝¹⁵ : Module R S inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : Module R M₂ inst✝¹² : Module S M₂ inst✝¹¹ : IsScalarTower R S M₂ inst✝¹⁰ : TopologicalSpace S inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : ContinuousSMul S M₂ inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : ContinuousAdd M₂ inst✝³ : Module T M₂ inst✝² : ContinuousConstSMul T M₂ inst✝¹ : SMulCommClass R T M₂ inst✝ : SMulCommClass S T M₂ c : M →L[R] S a : T x : M₂ e : M ⊢ ↑c e • a • x = a • ↑c e • x [PROOFSTEP] apply smul_comm [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f g : M₁ ≃SL[σ₁₂] M₂ h₁ : (fun f => f.toFun) f = (fun f => f.toFun) g h₂ : (fun f => f.invFun) f = (fun f => f.invFun) g ⊢ f = g [PROOFSTEP] cases' f with f' _ [GOAL] case mk R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ g : M₁ ≃SL[σ₁₂] M₂ f' : M₁ ≃ₛₗ[σ₁₂] M₂ continuous_toFun✝ : Continuous f'.toFun continuous_invFun✝ : Continuous f'.invFun h₁ : (fun f => f.toFun) (mk f') = (fun f => f.toFun) g h₂ : (fun f => f.invFun) (mk f') = (fun f => f.invFun) g ⊢ mk f' = g [PROOFSTEP] cases' g with g' _ [GOAL] case mk.mk R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f' : M₁ ≃ₛₗ[σ₁₂] M₂ continuous_toFun✝¹ : Continuous f'.toFun continuous_invFun✝¹ : Continuous f'.invFun g' : M₁ ≃ₛₗ[σ₁₂] M₂ continuous_toFun✝ : Continuous g'.toFun continuous_invFun✝ : Continuous g'.invFun h₁ : (fun f => f.toFun) (mk f') = (fun f => f.toFun) (mk g') h₂ : (fun f => f.invFun) (mk f') = (fun f => f.invFun) (mk g') ⊢ mk f' = mk g' [PROOFSTEP] rcases f' with ⟨⟨⟨_, _⟩, _⟩, _⟩ [GOAL] case mk.mk.mk.mk.mk R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ g' : M₁ ≃ₛₗ[σ₁₂] M₂ continuous_toFun✝¹ : Continuous g'.toFun continuous_invFun✝¹ : Continuous g'.invFun invFun✝ : M₂ → M₁ toFun✝ : M₁ → M₂ map_add'✝ : ∀ (x y : M₁), toFun✝ (x + y) = toFun✝ x + toFun✝ y map_smul'✝ : ∀ (r : R₁) (x : M₁), AddHom.toFun { toFun := toFun✝, map_add' := map_add'✝ } (r • x) = ↑σ₁₂ r • AddHom.toFun { toFun := toFun✝, map_add' := map_add'✝ } x left_inv✝ : Function.LeftInverse invFun✝ { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }.toAddHom.toFun right_inv✝ : Function.RightInverse invFun✝ { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }.toAddHom.toFun continuous_toFun✝ : Continuous (↑{ toLinearMap := { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }).toAddHom.toFun continuous_invFun✝ : Continuous { toLinearMap := { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }.invFun h₁ : (fun f => f.toFun) (mk { toLinearMap := { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }) = (fun f => f.toFun) (mk g') h₂ : (fun f => f.invFun) (mk { toLinearMap := { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }) = (fun f => f.invFun) (mk g') ⊢ mk { toLinearMap := { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } = mk g' [PROOFSTEP] rcases g' with ⟨⟨⟨_, _⟩, _⟩, _⟩ [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ invFun✝¹ : M₂ → M₁ toFun✝¹ : M₁ → M₂ map_add'✝¹ : ∀ (x y : M₁), toFun✝¹ (x + y) = toFun✝¹ x + toFun✝¹ y map_smul'✝¹ : ∀ (r : R₁) (x : M₁), AddHom.toFun { toFun := toFun✝¹, map_add' := map_add'✝¹ } (r • x) = ↑σ₁₂ r • AddHom.toFun { toFun := toFun✝¹, map_add' := map_add'✝¹ } x left_inv✝¹ : Function.LeftInverse invFun✝¹ { toAddHom := { toFun := toFun✝¹, map_add' := map_add'✝¹ }, map_smul' := map_smul'✝¹ }.toAddHom.toFun right_inv✝¹ : Function.RightInverse invFun✝¹ { toAddHom := { toFun := toFun✝¹, map_add' := map_add'✝¹ }, map_smul' := map_smul'✝¹ }.toAddHom.toFun continuous_toFun✝¹ : Continuous (↑{ toLinearMap := { toAddHom := { toFun := toFun✝¹, map_add' := map_add'✝¹ }, map_smul' := map_smul'✝¹ }, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }).toAddHom.toFun continuous_invFun✝¹ : Continuous { toLinearMap := { toAddHom := { toFun := toFun✝¹, map_add' := map_add'✝¹ }, map_smul' := map_smul'✝¹ }, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }.invFun invFun✝ : M₂ → M₁ toFun✝ : M₁ → M₂ map_add'✝ : ∀ (x y : M₁), toFun✝ (x + y) = toFun✝ x + toFun✝ y map_smul'✝ : ∀ (r : R₁) (x : M₁), AddHom.toFun { toFun := toFun✝, map_add' := map_add'✝ } (r • x) = ↑σ₁₂ r • AddHom.toFun { toFun := toFun✝, map_add' := map_add'✝ } x left_inv✝ : Function.LeftInverse invFun✝ { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }.toAddHom.toFun right_inv✝ : Function.RightInverse invFun✝ { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }.toAddHom.toFun continuous_toFun✝ : Continuous (↑{ toLinearMap := { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }).toAddHom.toFun continuous_invFun✝ : Continuous { toLinearMap := { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }.invFun h₁ : (fun f => f.toFun) (mk { toLinearMap := { toAddHom := { toFun := toFun✝¹, map_add' := map_add'✝¹ }, map_smul' := map_smul'✝¹ }, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }) = (fun f => f.toFun) (mk { toLinearMap := { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }) h₂ : (fun f => f.invFun) (mk { toLinearMap := { toAddHom := { toFun := toFun✝¹, map_add' := map_add'✝¹ }, map_smul' := map_smul'✝¹ }, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }) = (fun f => f.invFun) (mk { toLinearMap := { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }) ⊢ mk { toLinearMap := { toAddHom := { toFun := toFun✝¹, map_add' := map_add'✝¹ }, map_smul' := map_smul'✝¹ }, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } = mk { toLinearMap := { toAddHom := { toFun := toFun✝, map_add' := map_add'✝ }, map_smul' := map_smul'✝ }, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } [PROOFSTEP] congr [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ ⊢ Function.Injective toLinearEquiv [PROOFSTEP] rintro ⟨e, _, _⟩ ⟨e', _, _⟩ rfl [GOAL] case mk.mk R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ e : M₁ ≃ₛₗ[σ₁₂] M₂ continuous_toFun✝¹ : Continuous e.toFun continuous_invFun✝¹ : Continuous e.invFun continuous_toFun✝ : Continuous (↑(mk e).toLinearEquiv).toAddHom.toFun continuous_invFun✝ : Continuous (mk e).toLinearEquiv.invFun ⊢ mk e = mk (mk e).toLinearEquiv [PROOFSTEP] rfl [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁵ : Semiring R₁ inst✝²⁴ : Semiring R₂ inst✝²³ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²² : RingHomInvPair σ₁₂ σ₂₁ inst✝²¹ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝²⁰ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁹ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁸ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁷ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁶ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹⁴ : TopologicalSpace M₁ inst✝¹³ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹² : TopologicalSpace M'₁ inst✝¹¹ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommMonoid M₄ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₁ M'₁ inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ inst✝ : TopologicalSpace R₁ f g : R₁ ≃L[R₁] M₁ h : ↑f 1 = ↑g 1 x : R₁ ⊢ ↑f (x * 1) = ↑g (x * 1) [PROOFSTEP] rw [← smul_eq_mul, map_smul, h, map_smul] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ e : M₁ ≃SL[σ₁₂] M₂ ⊢ (ContinuousLinearEquiv.symm e).toLinearEquiv = LinearEquiv.symm e.toLinearEquiv [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ e : M₁ ≃SL[σ₁₂] M₂ x✝ : M₂ ⊢ ↑(ContinuousLinearEquiv.symm e).toLinearEquiv x✝ = ↑(LinearEquiv.symm e.toLinearEquiv) x✝ [PROOFSTEP] rfl [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ e₁ : M₁ ≃SL[σ₁₂] M₂ e₂ : M₂ ≃SL[σ₂₃] M₃ ⊢ (ContinuousLinearEquiv.trans e₁ e₂).toLinearEquiv = LinearEquiv.trans e₁.toLinearEquiv e₂.toLinearEquiv [PROOFSTEP] ext [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ e₁ : M₁ ≃SL[σ₁₂] M₂ e₂ : M₂ ≃SL[σ₂₃] M₃ x✝ : M₁ ⊢ ↑(ContinuousLinearEquiv.trans e₁ e₂).toLinearEquiv x✝ = ↑(LinearEquiv.trans e₁.toLinearEquiv e₂.toLinearEquiv) x✝ [PROOFSTEP] rfl [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ e : M₁ ≃SL[σ₁₂] M₂ ⊢ ↑(ContinuousLinearEquiv.symm e) ∘ ↑e = id [PROOFSTEP] ext x [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ e : M₁ ≃SL[σ₁₂] M₂ x : M₁ ⊢ (↑(ContinuousLinearEquiv.symm e) ∘ ↑e) x = id x [PROOFSTEP] exact symm_apply_apply e x [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ e : M₁ ≃SL[σ₁₂] M₂ ⊢ ↑e ∘ ↑(ContinuousLinearEquiv.symm e) = id [PROOFSTEP] ext x [GOAL] case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ e : M₁ ≃SL[σ₁₂] M₂ x : M₂ ⊢ (↑e ∘ ↑(ContinuousLinearEquiv.symm e)) x = id x [PROOFSTEP] exact apply_symm_apply e x [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ e : M₁ ≃SL[σ₁₂] M₂ ⊢ ContinuousLinearEquiv.symm (ContinuousLinearEquiv.symm e) = e [PROOFSTEP] ext x [GOAL] case h.h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ e : M₁ ≃SL[σ₁₂] M₂ x : M₁ ⊢ ↑(ContinuousLinearEquiv.symm (ContinuousLinearEquiv.symm e)) x = ↑e x [PROOFSTEP] rfl [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ e : M₁ ≃SL[σ₁₂] M₂ s : Set M₂ ⊢ ↑(ContinuousLinearEquiv.symm e) '' s = ↑e ⁻¹' s [PROOFSTEP] rw [e.symm.image_eq_preimage, e.symm_symm] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f g h : M₁ ≃L[R₁] M₁ ⊢ f * g * h = f * (g * h) [PROOFSTEP] ext [GOAL] case h.h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f g h : M₁ ≃L[R₁] M₁ x✝ : M₁ ⊢ ↑(f * g * h) x✝ = ↑(f * (g * h)) x✝ [PROOFSTEP] rfl [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f : M₁ ≃L[R₁] M₁ ⊢ 1 * f = f [PROOFSTEP] ext [GOAL] case h.h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f : M₁ ≃L[R₁] M₁ x✝ : M₁ ⊢ ↑(1 * f) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f : M₁ ≃L[R₁] M₁ ⊢ f * 1 = f [PROOFSTEP] ext [GOAL] case h.h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f : M₁ ≃L[R₁] M₁ x✝ : M₁ ⊢ ↑(f * 1) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f : M₁ ≃L[R₁] M₁ ⊢ f⁻¹ * f = 1 [PROOFSTEP] ext x [GOAL] case h.h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝²⁴ : Semiring R₁ inst✝²³ : Semiring R₂ inst✝²² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁰ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝¹⁹ : RingHomInvPair σ₂₃ σ₃₂ inst✝¹⁸ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝¹⁷ : RingHomInvPair σ₁₃ σ₃₁ inst✝¹⁶ : RingHomInvPair σ₃₁ σ₁₃ inst✝¹⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝¹³ : TopologicalSpace M₁ inst✝¹² : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹¹ : TopologicalSpace M'₁ inst✝¹⁰ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝⁹ : TopologicalSpace M₂ inst✝⁸ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : AddCommMonoid M₃ M₄ : Type u_8 inst✝⁵ : TopologicalSpace M₄ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R₁ M₁ inst✝² : Module R₁ M'₁ inst✝¹ : Module R₂ M₂ inst✝ : Module R₃ M₃ f : M₁ ≃L[R₁] M₁ x : M₁ ⊢ ↑(f⁻¹ * f) x = ↑1 x [PROOFSTEP] exact f.left_inv x [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝³¹ : Semiring R₁ inst✝³⁰ : Semiring R₂ inst✝²⁹ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²⁸ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁷ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝²⁶ : RingHomInvPair σ₂₃ σ₃₂ inst✝²⁵ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝²⁴ : RingHomInvPair σ₁₃ σ₃₁ inst✝²³ : RingHomInvPair σ₃₁ σ₁₃ inst✝²² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝²¹ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝²⁰ : TopologicalSpace M₁ inst✝¹⁹ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁸ : TopologicalSpace M'₁ inst✝¹⁷ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁶ : TopologicalSpace M₂ inst✝¹⁵ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹⁴ : TopologicalSpace M₃ inst✝¹³ : AddCommMonoid M₃ M₄ : Type u_8 inst✝¹² : TopologicalSpace M₄ inst✝¹¹ : AddCommMonoid M₄ inst✝¹⁰ : Module R₁ M₁ inst✝⁹ : Module R₁ M'₁ inst✝⁸ : Module R₂ M₂ inst✝⁷ : Module R₃ M₃ R₄ : Type u_9 inst✝⁶ : Semiring R₄ inst✝⁵ : Module R₄ M₄ σ₃₄ : R₃ →+* R₄ σ₄₃ : R₄ →+* R₃ inst✝⁴ : RingHomInvPair σ₃₄ σ₄₃ inst✝³ : RingHomInvPair σ₄₃ σ₃₄ σ₂₄ : R₂ →+* R₄ σ₁₄ : R₁ →+* R₄ inst✝² : RingHomCompTriple σ₂₁ σ₁₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₂₄ σ₄₃ σ₂₃ inst✝ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ e₁₂ : M₁ ≃SL[σ₁₂] M₂ e₄₃ : M₄ ≃SL[σ₄₃] M₃ f : M₁ →SL[σ₁₄] M₄ x : M₁ ⊢ ↑((fun f => ContinuousLinearMap.comp (↑(ContinuousLinearEquiv.symm e₄₃)) (ContinuousLinearMap.comp f ↑e₁₂)) ((fun f => ContinuousLinearMap.comp (↑e₄₃) (ContinuousLinearMap.comp f ↑(ContinuousLinearEquiv.symm e₁₂))) f)) x = ↑f x [PROOFSTEP] simp only [ContinuousLinearMap.comp_apply, symm_apply_apply, coe_coe] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝³¹ : Semiring R₁ inst✝³⁰ : Semiring R₂ inst✝²⁹ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₁ : R₂ →+* R₁ inst✝²⁸ : RingHomInvPair σ₁₂ σ₂₁ inst✝²⁷ : RingHomInvPair σ₂₁ σ₁₂ σ₂₃ : R₂ →+* R₃ σ₃₂ : R₃ →+* R₂ inst✝²⁶ : RingHomInvPair σ₂₃ σ₃₂ inst✝²⁵ : RingHomInvPair σ₃₂ σ₂₃ σ₁₃ : R₁ →+* R₃ σ₃₁ : R₃ →+* R₁ inst✝²⁴ : RingHomInvPair σ₁₃ σ₃₁ inst✝²³ : RingHomInvPair σ₃₁ σ₁₃ inst✝²² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝²¹ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁ M₁ : Type u_4 inst✝²⁰ : TopologicalSpace M₁ inst✝¹⁹ : AddCommMonoid M₁ M'₁ : Type u_5 inst✝¹⁸ : TopologicalSpace M'₁ inst✝¹⁷ : AddCommMonoid M'₁ M₂ : Type u_6 inst✝¹⁶ : TopologicalSpace M₂ inst✝¹⁵ : AddCommMonoid M₂ M₃ : Type u_7 inst✝¹⁴ : TopologicalSpace M₃ inst✝¹³ : AddCommMonoid M₃ M₄ : Type u_8 inst✝¹² : TopologicalSpace M₄ inst✝¹¹ : AddCommMonoid M₄ inst✝¹⁰ : Module R₁ M₁ inst✝⁹ : Module R₁ M'₁ inst✝⁸ : Module R₂ M₂ inst✝⁷ : Module R₃ M₃ R₄ : Type u_9 inst✝⁶ : Semiring R₄ inst✝⁵ : Module R₄ M₄ σ₃₄ : R₃ →+* R₄ σ₄₃ : R₄ →+* R₃ inst✝⁴ : RingHomInvPair σ₃₄ σ₄₃ inst✝³ : RingHomInvPair σ₄₃ σ₃₄ σ₂₄ : R₂ →+* R₄ σ₁₄ : R₁ →+* R₄ inst✝² : RingHomCompTriple σ₂₁ σ₁₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₂₄ σ₄₃ σ₂₃ inst✝ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ e₁₂ : M₁ ≃SL[σ₁₂] M₂ e₄₃ : M₄ ≃SL[σ₄₃] M₃ f : M₂ →SL[σ₂₃] M₃ x : M₂ ⊢ ↑((fun f => ContinuousLinearMap.comp (↑e₄₃) (ContinuousLinearMap.comp f ↑(ContinuousLinearEquiv.symm e₁₂))) ((fun f => ContinuousLinearMap.comp (↑(ContinuousLinearEquiv.symm e₄₃)) (ContinuousLinearMap.comp f ↑e₁₂)) f)) x = ↑f x [PROOFSTEP] simp only [ContinuousLinearMap.comp_apply, apply_symm_apply, coe_coe] [GOAL] R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : (M →L[R] M)ˣ ⊢ ∀ (x y : M), ↑↑f (x + y) = ↑↑f x + ↑↑f y [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : (M →L[R] M)ˣ ⊢ ∀ (r : R) (x : M), AddHom.toFun { toFun := ↑↑f, map_add' := (_ : ∀ (a a_1 : M), ↑↑f (a + a_1) = ↑↑f a + ↑↑f a_1) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := ↑↑f, map_add' := (_ : ∀ (a a_1 : M), ↑↑f (a + a_1) = ↑↑f a + ↑↑f a_1) } x [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : (M →L[R] M)ˣ x : M ⊢ ↑(f.inv * ↑f) x = x [PROOFSTEP] rw [f.inv_val] [GOAL] R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : (M →L[R] M)ˣ x : M ⊢ ↑1 x = x [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : (M →L[R] M)ˣ x : M ⊢ ↑(↑f * f.inv) x = x [PROOFSTEP] rw [f.val_inv] [GOAL] R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : (M →L[R] M)ˣ x : M ⊢ ↑1 x = x [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : M ≃L[R] M ⊢ ↑f * ↑(ContinuousLinearEquiv.symm f) = 1 [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : M ≃L[R] M x✝ : M ⊢ ↑(↑f * ↑(ContinuousLinearEquiv.symm f)) x✝ = ↑1 x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : M ≃L[R] M ⊢ ↑(ContinuousLinearEquiv.symm f) * ↑f = 1 [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : M ≃L[R] M x✝ : M ⊢ ↑(↑(ContinuousLinearEquiv.symm f) * ↑f) x✝ = ↑1 x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : (M →L[R] M)ˣ ⊢ toUnit (ofUnit f) = f [PROOFSTEP] ext [GOAL] case a.h R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : (M →L[R] M)ˣ x✝ : M ⊢ ↑↑(toUnit (ofUnit f)) x✝ = ↑↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : M ≃L[R] M ⊢ ofUnit (toUnit f) = f [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M f : M ≃L[R] M x✝ : M ⊢ ↑(ofUnit (toUnit f)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M x y : (M →L[R] M)ˣ ⊢ Equiv.toFun { toFun := ofUnit, invFun := toUnit, left_inv := (_ : ∀ (f : (M →L[R] M)ˣ), toUnit (ofUnit f) = f), right_inv := (_ : ∀ (f : M ≃L[R] M), ofUnit (toUnit f) = f) } (x * y) = Equiv.toFun { toFun := ofUnit, invFun := toUnit, left_inv := (_ : ∀ (f : (M →L[R] M)ˣ), toUnit (ofUnit f) = f), right_inv := (_ : ∀ (f : M ≃L[R] M), ofUnit (toUnit f) = f) } x * Equiv.toFun { toFun := ofUnit, invFun := toUnit, left_inv := (_ : ∀ (f : (M →L[R] M)ˣ), toUnit (ofUnit f) = f), right_inv := (_ : ∀ (f : M ≃L[R] M), ofUnit (toUnit f) = f) } y [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 inst✝¹⁰ : Ring R R₂ : Type u_2 inst✝⁹ : Ring R₂ M : Type u_3 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M₂ : Type u_4 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : TopologicalAddGroup M x y : (M →L[R] M)ˣ x✝ : M ⊢ ↑(Equiv.toFun { toFun := ofUnit, invFun := toUnit, left_inv := (_ : ∀ (f : (M →L[R] M)ˣ), toUnit (ofUnit f) = f), right_inv := (_ : ∀ (f : M ≃L[R] M), ofUnit (toUnit f) = f) } (x * y)) x✝ = ↑(Equiv.toFun { toFun := ofUnit, invFun := toUnit, left_inv := (_ : ∀ (f : (M →L[R] M)ˣ), toUnit (ofUnit f) = f), right_inv := (_ : ∀ (f : M ≃L[R] M), ofUnit (toUnit f) = f) } x * Equiv.toFun { toFun := ofUnit, invFun := toUnit, left_inv := (_ : ∀ (f : (M →L[R] M)ˣ), toUnit (ofUnit f) = f), right_inv := (_ : ∀ (f : M ≃L[R] M), ofUnit (toUnit f) = f) } y) x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹¹ : Ring R R₂ : Type u_2 inst✝¹⁰ : Ring R₂ M : Type u_3 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M₂ : Type u_4 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : TopologicalSpace R inst✝ : ContinuousMul R u : Rˣ x : R ⊢ ↑(ContinuousLinearMap.smulRight 1 ↑u⁻¹) (↑(ContinuousLinearMap.smulRight 1 ↑u) x) = x [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹¹ : Ring R R₂ : Type u_2 inst✝¹⁰ : Ring R₂ M : Type u_3 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M₂ : Type u_4 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : TopologicalSpace R inst✝ : ContinuousMul R u : Rˣ x : R ⊢ ↑(ContinuousLinearMap.smulRight 1 ↑u) (↑(ContinuousLinearMap.smulRight 1 ↑u⁻¹) x) = x [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹¹ : Ring R R₂ : Type u_2 inst✝¹⁰ : Ring R₂ M : Type u_3 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M₂ : Type u_4 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : TopologicalSpace R inst✝ : ContinuousMul R e : R ≃L[R] R ⊢ ↑e 1 * ↑(ContinuousLinearEquiv.symm e) 1 = 1 [PROOFSTEP] rw [← smul_eq_mul, ← map_smul, smul_eq_mul, mul_one, symm_apply_apply] [GOAL] R : Type u_1 inst✝¹¹ : Ring R R₂ : Type u_2 inst✝¹⁰ : Ring R₂ M : Type u_3 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M₂ : Type u_4 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : TopologicalSpace R inst✝ : ContinuousMul R e : R ≃L[R] R ⊢ ↑(ContinuousLinearEquiv.symm e) 1 * ↑e 1 = 1 [PROOFSTEP] rw [← smul_eq_mul, ← map_smul, smul_eq_mul, mul_one, apply_symm_apply] [GOAL] R : Type u_1 inst✝¹¹ : Ring R R₂ : Type u_2 inst✝¹⁰ : Ring R₂ M : Type u_3 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M₂ : Type u_4 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : TopologicalSpace R inst✝ : ContinuousMul R u : Rˣ ⊢ ↑((fun e => { val := ↑e 1, inv := ↑(ContinuousLinearEquiv.symm e) 1, val_inv := (_ : ↑e 1 * ↑(ContinuousLinearEquiv.symm e) 1 = 1), inv_val := (_ : ↑(ContinuousLinearEquiv.symm e) 1 * ↑e 1 = 1) }) ((fun u => equivOfInverse (ContinuousLinearMap.smulRight 1 ↑u) (ContinuousLinearMap.smulRight 1 ↑u⁻¹) (_ : ∀ (x : R), x * ↑u * ↑u⁻¹ = x) (_ : ∀ (x : R), x * ↑u⁻¹ * ↑u = x)) u)) = ↑u [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹¹ : Ring R R₂ : Type u_2 inst✝¹⁰ : Ring R₂ M : Type u_3 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M₂ : Type u_4 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : TopologicalSpace R inst✝ : ContinuousMul R e : R ≃L[R] R ⊢ ↑((fun u => equivOfInverse (ContinuousLinearMap.smulRight 1 ↑u) (ContinuousLinearMap.smulRight 1 ↑u⁻¹) (_ : ∀ (x : R), x * ↑u * ↑u⁻¹ = x) (_ : ∀ (x : R), x * ↑u⁻¹ * ↑u = x)) ((fun e => { val := ↑e 1, inv := ↑(ContinuousLinearEquiv.symm e) 1, val_inv := (_ : ↑e 1 * ↑(ContinuousLinearEquiv.symm e) 1 = 1), inv_val := (_ : ↑(ContinuousLinearEquiv.symm e) 1 * ↑e 1 = 1) }) e)) 1 = ↑e 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹¹ : Ring R R₂ : Type u_2 inst✝¹⁰ : Ring R₂ M : Type u_3 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M₂ : Type u_4 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : Module R M₂ inst✝ : TopologicalAddGroup M f₁ : M →L[R] M₂ f₂ : M₂ →L[R] M h : Function.RightInverse ↑f₂ ↑f₁ x : M ⊢ ↑(ContinuousLinearMap.coprod f₂ (Submodule.subtypeL (ker f₁))) (↑(ContinuousLinearMap.prod f₁ (ContinuousLinearMap.projKerOfRightInverse f₁ f₂ h)) x) = x [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹¹ : Ring R R₂ : Type u_2 inst✝¹⁰ : Ring R₂ M : Type u_3 inst✝⁹ : TopologicalSpace M inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M₂ : Type u_4 inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : Module R M₂ inst✝ : TopologicalAddGroup M f₁ : M →L[R] M₂ f₂ : M₂ →L[R] M h : Function.RightInverse ↑f₂ ↑f₁ x✝ : M₂ × { x // x ∈ ker f₁ } x : M₂ y : { x // x ∈ ker f₁ } ⊢ ↑(ContinuousLinearMap.prod f₁ (ContinuousLinearMap.projKerOfRightInverse f₁ f₂ h)) (↑(ContinuousLinearMap.coprod f₂ (Submodule.subtypeL (ker f₁))) (x, y)) = (x, y) [PROOFSTEP] rw [ContinuousLinearMap.coprod_apply, Submodule.subtypeL_apply, _root_.map_add, ContinuousLinearMap.prod_apply, h x, ContinuousLinearMap.projKerOfRightInverse_comp_inv, ContinuousLinearMap.prod_apply, LinearMap.map_coe_ker, ContinuousLinearMap.projKerOfRightInverse_apply_idem, Prod.mk_add_mk, add_zero, zero_add] [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁶ : TopologicalSpace M inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ inst✝¹ : AddCommMonoid M inst✝ : Module R M e : M ≃L[R] M₂ ⊢ inverse ↑e = ↑(ContinuousLinearEquiv.symm e) [PROOFSTEP] have h : ∃ e' : M ≃L[R] M₂, (e' : M →L[R] M₂) = ↑e := ⟨e, rfl⟩ [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁶ : TopologicalSpace M inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ inst✝¹ : AddCommMonoid M inst✝ : Module R M e : M ≃L[R] M₂ h : ∃ e', ↑e' = ↑e ⊢ inverse ↑e = ↑(ContinuousLinearEquiv.symm e) [PROOFSTEP] simp only [inverse, dif_pos h] [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁶ : TopologicalSpace M inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ inst✝¹ : AddCommMonoid M inst✝ : Module R M e : M ≃L[R] M₂ h : ∃ e', ↑e' = ↑e ⊢ ↑(ContinuousLinearEquiv.symm (choose h)) = ↑(ContinuousLinearEquiv.symm e) [PROOFSTEP] congr [GOAL] case e_e.e_e R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁶ : TopologicalSpace M inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ inst✝¹ : AddCommMonoid M inst✝ : Module R M e : M ≃L[R] M₂ h : ∃ e', ↑e' = ↑e ⊢ choose h = e [PROOFSTEP] exact_mod_cast Classical.choose_spec h [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M ⊢ Ring.inverse ↑e = inverse ↑e [PROOFSTEP] suffices Ring.inverse ((ContinuousLinearEquiv.unitsEquiv _ _).symm e : M →L[R] M) = inverse ↑e by convert this [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M this : Ring.inverse ↑(↑(MulEquiv.symm (ContinuousLinearEquiv.unitsEquiv R M)) e) = inverse ↑e ⊢ Ring.inverse ↑e = inverse ↑e [PROOFSTEP] convert this [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M ⊢ Ring.inverse ↑(↑(MulEquiv.symm (ContinuousLinearEquiv.unitsEquiv R M)) e) = inverse ↑e [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M ⊢ ↑(↑(MulEquiv.symm (ContinuousLinearEquiv.unitsEquiv R M)) e)⁻¹ = ↑(ContinuousLinearEquiv.symm e) [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ ⊢ inverse f = comp (Ring.inverse (comp (↑(ContinuousLinearEquiv.symm e)) f)) ↑(ContinuousLinearEquiv.symm e) [PROOFSTEP] by_cases h₁ : ∃ e' : M ≃L[R] M₂, e' = f [GOAL] case pos R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ h₁ : ∃ e', ↑e' = f ⊢ inverse f = comp (Ring.inverse (comp (↑(ContinuousLinearEquiv.symm e)) f)) ↑(ContinuousLinearEquiv.symm e) [PROOFSTEP] obtain ⟨e', he'⟩ := h₁ [GOAL] case pos.intro R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ e' : M ≃L[R] M₂ he' : ↑e' = f ⊢ inverse f = comp (Ring.inverse (comp (↑(ContinuousLinearEquiv.symm e)) f)) ↑(ContinuousLinearEquiv.symm e) [PROOFSTEP] rw [← he'] [GOAL] case pos.intro R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ e' : M ≃L[R] M₂ he' : ↑e' = f ⊢ inverse ↑e' = comp (Ring.inverse (comp ↑(ContinuousLinearEquiv.symm e) ↑e')) ↑(ContinuousLinearEquiv.symm e) [PROOFSTEP] change _ = Ring.inverse (e'.trans e.symm : M →L[R] M) ∘L (e.symm : M₂ →L[R] M) [GOAL] case pos.intro R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ e' : M ≃L[R] M₂ he' : ↑e' = f ⊢ inverse ↑e' = comp (Ring.inverse ↑(ContinuousLinearEquiv.trans e' (ContinuousLinearEquiv.symm e))) ↑(ContinuousLinearEquiv.symm e) [PROOFSTEP] ext [GOAL] case pos.intro.h R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ e' : M ≃L[R] M₂ he' : ↑e' = f x✝ : M₂ ⊢ ↑(inverse ↑e') x✝ = ↑(comp (Ring.inverse ↑(ContinuousLinearEquiv.trans e' (ContinuousLinearEquiv.symm e))) ↑(ContinuousLinearEquiv.symm e)) x✝ [PROOFSTEP] simp [GOAL] case neg R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ h₁ : ¬∃ e', ↑e' = f ⊢ inverse f = comp (Ring.inverse (comp (↑(ContinuousLinearEquiv.symm e)) f)) ↑(ContinuousLinearEquiv.symm e) [PROOFSTEP] suffices ¬IsUnit ((e.symm : M₂ →L[R] M).comp f) by simp [this, h₁] [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ h₁ : ¬∃ e', ↑e' = f this : ¬IsUnit (comp (↑(ContinuousLinearEquiv.symm e)) f) ⊢ inverse f = comp (Ring.inverse (comp (↑(ContinuousLinearEquiv.symm e)) f)) ↑(ContinuousLinearEquiv.symm e) [PROOFSTEP] simp [this, h₁] [GOAL] case neg R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ h₁ : ¬∃ e', ↑e' = f ⊢ ¬IsUnit (comp (↑(ContinuousLinearEquiv.symm e)) f) [PROOFSTEP] contrapose! h₁ [GOAL] case neg R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ h₁ : IsUnit (comp (↑(ContinuousLinearEquiv.symm e)) f) ⊢ ∃ e', ↑e' = f [PROOFSTEP] rcases h₁ with ⟨F, hF⟩ [GOAL] case neg.intro R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ F : (M →L[R] M)ˣ hF : ↑F = comp (↑(ContinuousLinearEquiv.symm e)) f ⊢ ∃ e', ↑e' = f [PROOFSTEP] use(ContinuousLinearEquiv.unitsEquiv _ _ F).trans e [GOAL] case h R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ F : (M →L[R] M)ˣ hF : ↑F = comp (↑(ContinuousLinearEquiv.symm e)) f ⊢ ↑(ContinuousLinearEquiv.trans (↑(ContinuousLinearEquiv.unitsEquiv R M) F) e) = f [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ F : (M →L[R] M)ˣ hF : ↑F = comp (↑(ContinuousLinearEquiv.symm e)) f x✝ : M ⊢ ↑↑(ContinuousLinearEquiv.trans (↑(ContinuousLinearEquiv.unitsEquiv R M) F) e) x✝ = ↑f x✝ [PROOFSTEP] dsimp [GOAL] case h.h R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ F : (M →L[R] M)ˣ hF : ↑F = comp (↑(ContinuousLinearEquiv.symm e)) f x✝ : M ⊢ ↑e (↑↑F x✝) = ↑f x✝ [PROOFSTEP] rw [hF] [GOAL] case h.h R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M ≃L[R] M₂ f : M →L[R] M₂ F : (M →L[R] M)ˣ hF : ↑F = comp (↑(ContinuousLinearEquiv.symm e)) f x✝ : M ⊢ ↑e (↑(comp (↑(ContinuousLinearEquiv.symm e)) f) x✝) = ↑f x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ ⊢ Ring.inverse = inverse [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁷ : TopologicalSpace M inst✝⁶ : TopologicalSpace M₂ inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : TopologicalAddGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ x✝¹ : M →L[R] M x✝ : M ⊢ ↑(Ring.inverse x✝¹) x✝ = ↑(inverse x✝¹) x✝ [PROOFSTEP] simp [to_ring_inverse (ContinuousLinearEquiv.refl R M)] [GOAL] R : Type u_1 inst✝⁸ : Ring R M : Type u_2 inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M₂ : Type u_3 inst✝⁴ : TopologicalSpace M₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : TopologicalAddGroup M inst✝ : T1Space M p : Submodule R M h : ClosedComplemented p ⊢ IsClosed ↑p [PROOFSTEP] rcases h with ⟨f, hf⟩ [GOAL] case intro R : Type u_1 inst✝⁸ : Ring R M : Type u_2 inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M₂ : Type u_3 inst✝⁴ : TopologicalSpace M₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : TopologicalAddGroup M inst✝ : T1Space M p : Submodule R M f : M →L[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x ⊢ IsClosed ↑p [PROOFSTEP] have : ker (id R M - p.subtypeL.comp f) = p := LinearMap.ker_id_sub_eq_of_proj hf [GOAL] case intro R : Type u_1 inst✝⁸ : Ring R M : Type u_2 inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M₂ : Type u_3 inst✝⁴ : TopologicalSpace M₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : TopologicalAddGroup M inst✝ : T1Space M p : Submodule R M f : M →L[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x this : ker (ContinuousLinearMap.id R M - comp (subtypeL p) f) = p ⊢ IsClosed ↑p [PROOFSTEP] exact this ▸ isClosed_ker _ [GOAL] R : Type u_1 inst✝⁶ : Ring R M : Type u_2 inst✝⁵ : TopologicalSpace M inst✝⁴ : AddCommGroup M inst✝³ : Module R M M₂ : Type u_3 inst✝² : TopologicalSpace M₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ x : { x // x ∈ ⊥ } ⊢ ↑0 ↑x = x [PROOFSTEP] simp only [zero_apply, eq_zero_of_bot_submodule x] [GOAL] R : Type u_1 inst✝⁶ : Ring R M : Type u_2 inst✝⁵ : TopologicalSpace M inst✝⁴ : AddCommGroup M inst✝³ : Module R M M₂ : Type u_3 inst✝² : TopologicalSpace M₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ x : { x // x ∈ ⊤ } ⊢ ↑(↑(codRestrict (ContinuousLinearMap.id R M) ⊤ (_ : M → True)) ↑x) = ↑x [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : TopologicalSpace M S : Submodule R M inst✝² : TopologicalSpace R inst✝¹ : TopologicalAddGroup M inst✝ : ContinuousSMul R M ⊢ ContinuousSMul R (M ⧸ S) [PROOFSTEP] constructor [GOAL] case continuous_smul R : Type u_1 M : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : TopologicalSpace M S : Submodule R M inst✝² : TopologicalSpace R inst✝¹ : TopologicalAddGroup M inst✝ : ContinuousSMul R M ⊢ Continuous fun p => p.fst • p.snd [PROOFSTEP] have quot : QuotientMap fun au : R × M => (au.1, S.mkQ au.2) := IsOpenMap.to_quotientMap (IsOpenMap.id.prod S.isOpenMap_mkQ) (continuous_id.prod_map continuous_quot_mk) (Function.surjective_id.Prod_map <| surjective_quot_mk _) [GOAL] case continuous_smul R : Type u_1 M : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : TopologicalSpace M S : Submodule R M inst✝² : TopologicalSpace R inst✝¹ : TopologicalAddGroup M inst✝ : ContinuousSMul R M quot : QuotientMap fun au => (au.fst, ↑(mkQ S) au.snd) ⊢ Continuous fun p => p.fst • p.snd [PROOFSTEP] rw [quot.continuous_iff] [GOAL] case continuous_smul R : Type u_1 M : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : TopologicalSpace M S : Submodule R M inst✝² : TopologicalSpace R inst✝¹ : TopologicalAddGroup M inst✝ : ContinuousSMul R M quot : QuotientMap fun au => (au.fst, ↑(mkQ S) au.snd) ⊢ Continuous ((fun p => p.fst • p.snd) ∘ fun au => (au.fst, ↑(mkQ S) au.snd)) [PROOFSTEP] exact continuous_quot_mk.comp continuous_smul
{"mathlib_filename": "Mathlib.Topology.Algebra.Module.Basic", "llama_tokens": 89705}
[GOAL] k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G ⊢ x ∈ Ideal.span (↑(of k G) '' s) ↔ ∀ (m : G), m ∈ x.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m' [PROOFSTEP] let RHS : Ideal (MonoidAlgebra k G) := { carrier := {p | ∀ m : G, m ∈ p.support → ∃ m' ∈ s, ∃ d, m = d * m'} add_mem' := fun {x y} hx hy m hm => by classical exact (Finset.mem_union.1 <| Finsupp.support_add hm).elim (hx m) (hy m) zero_mem' := fun m hm => by cases hm smul_mem' := fun x y hy m hm => by classical replace hm := Finset.mem_biUnion.mp (Finsupp.support_sum hm) obtain ⟨xm, -, hm⟩ := hm replace hm := Finset.mem_biUnion.mp (Finsupp.support_sum hm) obtain ⟨ym, hym, hm⟩ := hm replace hm := Finset.mem_singleton.mp (Finsupp.support_single_subset hm) obtain rfl := hm refine' (hy _ hym).imp fun sm p => And.imp_right _ p rintro ⟨d, rfl⟩ exact ⟨xm * d, (mul_assoc _ _ _).symm⟩ } [GOAL] k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x✝ x y : MonoidAlgebra k G hx : x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} hy : y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} m : G hm : m ∈ (x + y).support ⊢ ∃ m', m' ∈ s ∧ ∃ d, m = d * m' [PROOFSTEP] classical exact (Finset.mem_union.1 <| Finsupp.support_add hm).elim (hx m) (hy m) [GOAL] k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x✝ x y : MonoidAlgebra k G hx : x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} hy : y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} m : G hm : m ∈ (x + y).support ⊢ ∃ m', m' ∈ s ∧ ∃ d, m = d * m' [PROOFSTEP] exact (Finset.mem_union.1 <| Finsupp.support_add hm).elim (hx m) (hy m) [GOAL] k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G m : G hm : m ∈ 0.support ⊢ ∃ m', m' ∈ s ∧ ∃ d, m = d * m' [PROOFSTEP] cases hm [GOAL] k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x✝ x y : MonoidAlgebra k G hy : y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier m : G hm : m ∈ (x • y).support ⊢ ∃ m', m' ∈ s ∧ ∃ d, m = d * m' [PROOFSTEP] classical replace hm := Finset.mem_biUnion.mp (Finsupp.support_sum hm) obtain ⟨xm, -, hm⟩ := hm replace hm := Finset.mem_biUnion.mp (Finsupp.support_sum hm) obtain ⟨ym, hym, hm⟩ := hm replace hm := Finset.mem_singleton.mp (Finsupp.support_single_subset hm) obtain rfl := hm refine' (hy _ hym).imp fun sm p => And.imp_right _ p rintro ⟨d, rfl⟩ exact ⟨xm * d, (mul_assoc _ _ _).symm⟩ [GOAL] k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x✝ x y : MonoidAlgebra k G hy : y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier m : G hm : m ∈ (x • y).support ⊢ ∃ m', m' ∈ s ∧ ∃ d, m = d * m' [PROOFSTEP] replace hm := Finset.mem_biUnion.mp (Finsupp.support_sum hm) [GOAL] k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x✝ x y : MonoidAlgebra k G hy : y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier m : G hm : ∃ a, a ∈ x.support ∧ m ∈ (Finsupp.sum y fun a₂ b₂ => single (a * a₂) (↑x a * b₂)).support ⊢ ∃ m', m' ∈ s ∧ ∃ d, m = d * m' [PROOFSTEP] obtain ⟨xm, -, hm⟩ := hm [GOAL] case intro.intro k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x✝ x y : MonoidAlgebra k G hy : y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier m xm : G hm : m ∈ (Finsupp.sum y fun a₂ b₂ => single (xm * a₂) (↑x xm * b₂)).support ⊢ ∃ m', m' ∈ s ∧ ∃ d, m = d * m' [PROOFSTEP] replace hm := Finset.mem_biUnion.mp (Finsupp.support_sum hm) [GOAL] case intro.intro k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x✝ x y : MonoidAlgebra k G hy : y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier m xm : G hm : ∃ a, a ∈ y.support ∧ m ∈ (single (xm * a) (↑x xm * ↑y a)).support ⊢ ∃ m', m' ∈ s ∧ ∃ d, m = d * m' [PROOFSTEP] obtain ⟨ym, hym, hm⟩ := hm [GOAL] case intro.intro.intro.intro k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x✝ x y : MonoidAlgebra k G hy : y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier m xm ym : G hym : ym ∈ y.support hm : m ∈ (single (xm * ym) (↑x xm * ↑y ym)).support ⊢ ∃ m', m' ∈ s ∧ ∃ d, m = d * m' [PROOFSTEP] replace hm := Finset.mem_singleton.mp (Finsupp.support_single_subset hm) [GOAL] case intro.intro.intro.intro k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x✝ x y : MonoidAlgebra k G hy : y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier m xm ym : G hym : ym ∈ y.support hm : m = xm * ym ⊢ ∃ m', m' ∈ s ∧ ∃ d, m = d * m' [PROOFSTEP] obtain rfl := hm [GOAL] case intro.intro.intro.intro k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x✝ x y : MonoidAlgebra k G hy : y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier xm ym : G hym : ym ∈ y.support ⊢ ∃ m', m' ∈ s ∧ ∃ d, xm * ym = d * m' [PROOFSTEP] refine' (hy _ hym).imp fun sm p => And.imp_right _ p [GOAL] case intro.intro.intro.intro k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x✝ x y : MonoidAlgebra k G hy : y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier xm ym : G hym : ym ∈ y.support sm : G p : sm ∈ s ∧ ∃ d, ym = d * sm ⊢ (∃ d, ym = d * sm) → ∃ d, xm * ym = d * sm [PROOFSTEP] rintro ⟨d, rfl⟩ [GOAL] case intro.intro.intro.intro.intro k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x✝ x y : MonoidAlgebra k G hy : y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier xm sm d : G hym : d * sm ∈ y.support p : sm ∈ s ∧ ∃ d_1, d * sm = d_1 * sm ⊢ ∃ d_1, xm * (d * sm) = d_1 * sm [PROOFSTEP] exact ⟨xm * d, (mul_assoc _ _ _).symm⟩ [GOAL] k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } ⊢ x ∈ Ideal.span (↑(of k G) '' s) ↔ ∀ (m : G), m ∈ x.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m' [PROOFSTEP] change _ ↔ x ∈ RHS [GOAL] k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } ⊢ x ∈ Ideal.span (↑(of k G) '' s) ↔ x ∈ RHS [PROOFSTEP] constructor [GOAL] case mp k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } ⊢ x ∈ Ideal.span (↑(of k G) '' s) → x ∈ RHS [PROOFSTEP] revert x [GOAL] case mp k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } ⊢ ∀ {x : MonoidAlgebra k G}, x ∈ Ideal.span (↑(of k G) '' s) → x ∈ RHS [PROOFSTEP] rw [← SetLike.le_def] -- porting note: refine needs this even though it's defeq? [GOAL] case mp k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } ⊢ Ideal.span (↑(of k G) '' s) ≤ RHS [PROOFSTEP] refine Ideal.span_le.2 ?_ [GOAL] case mp k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } ⊢ ↑(of k G) '' s ⊆ ↑RHS [PROOFSTEP] rintro _ ⟨i, hi, rfl⟩ m hm [GOAL] case mp.intro.intro k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } i : G hi : i ∈ s m : G hm : m ∈ (↑(of k G) i).support ⊢ ∃ m', m' ∈ s ∧ ∃ d, m = d * m' [PROOFSTEP] refine' ⟨_, hi, 1, _⟩ [GOAL] case mp.intro.intro k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } i : G hi : i ∈ s m : G hm : m ∈ (↑(of k G) i).support ⊢ m = 1 * i [PROOFSTEP] obtain rfl := Finset.mem_singleton.mp (Finsupp.support_single_subset hm) [GOAL] case mp.intro.intro k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } m : G hi : m ∈ s hm : m ∈ (↑(of k G) m).support ⊢ m = 1 * m [PROOFSTEP] exact (one_mul _).symm [GOAL] case mpr k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } ⊢ x ∈ RHS → x ∈ Ideal.span (↑(of k G) '' s) [PROOFSTEP] intro hx [GOAL] case mpr k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } hx : x ∈ RHS ⊢ x ∈ Ideal.span (↑(of k G) '' s) [PROOFSTEP] rw [← Finsupp.sum_single x] [GOAL] case mpr k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } hx : x ∈ RHS ⊢ Finsupp.sum x Finsupp.single ∈ Ideal.span (↑(of k G) '' s) [PROOFSTEP] refine Ideal.sum_mem _ fun i hi => ?_ -- porting note: changed `apply` to `refine` [GOAL] case mpr k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } hx : x ∈ RHS i : G hi : i ∈ x.support ⊢ Finsupp.single i (↑x i) ∈ Ideal.span (↑(of k G) '' s) [PROOFSTEP] obtain ⟨d, hd, d2, rfl⟩ := hx _ hi [GOAL] case mpr.intro.intro.intro k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } hx : x ∈ RHS d : G hd : d ∈ s d2 : G hi : d2 * d ∈ x.support ⊢ Finsupp.single (d2 * d) (↑x (d2 * d)) ∈ Ideal.span (↑(of k G) '' s) [PROOFSTEP] convert Ideal.mul_mem_left _ (id <| Finsupp.single d2 <| x (d2 * d) : MonoidAlgebra k G) _ [GOAL] case h.e'_4 k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } hx : x ∈ RHS d : G hd : d ∈ s d2 : G hi : d2 * d ∈ x.support ⊢ Finsupp.single (d2 * d) (↑x (d2 * d)) = id (Finsupp.single d2 (↑x (d2 * d))) * ?mpr.intro.intro.intro.convert_2 case mpr.intro.intro.intro.convert_2 k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } hx : x ∈ RHS d : G hd : d ∈ s d2 : G hi : d2 * d ∈ x.support ⊢ MonoidAlgebra k G case mpr.intro.intro.intro.convert_3 k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } hx : x ∈ RHS d : G hd : d ∈ s d2 : G hi : d2 * d ∈ x.support ⊢ ?mpr.intro.intro.intro.convert_2 ∈ Ideal.span (↑(of k G) '' s) [PROOFSTEP] pick_goal 3 [GOAL] case mpr.intro.intro.intro.convert_3 k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } hx : x ∈ RHS d : G hd : d ∈ s d2 : G hi : d2 * d ∈ x.support ⊢ ?mpr.intro.intro.intro.convert_2 ∈ Ideal.span (↑(of k G) '' s) case h.e'_4 k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } hx : x ∈ RHS d : G hd : d ∈ s d2 : G hi : d2 * d ∈ x.support ⊢ Finsupp.single (d2 * d) (↑x (d2 * d)) = id (Finsupp.single d2 (↑x (d2 * d))) * ?mpr.intro.intro.intro.convert_2 case mpr.intro.intro.intro.convert_2 k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } hx : x ∈ RHS d : G hd : d ∈ s d2 : G hi : d2 * d ∈ x.support ⊢ MonoidAlgebra k G [PROOFSTEP] refine' Ideal.subset_span ⟨_, hd, rfl⟩ [GOAL] case h.e'_4 k : Type u_1 A : Type u_2 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, smul_mem' := (_ : ∀ (x y : MonoidAlgebra k G), y ∈ { toAddSubsemigroup := { carrier := {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'}, add_mem' := (_ : ∀ {x y : MonoidAlgebra k G}, x ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → y ∈ {p | ∀ (m : G), m ∈ p.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m'} → ∀ (m : G), m ∈ (x + y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }, zero_mem' := (_ : ∀ (m : G), m ∈ 0.support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') }.toAddSubsemigroup.carrier → ∀ (m : G), m ∈ (x • y).support → ∃ m', m' ∈ s ∧ ∃ d, m = d * m') } hx : x ∈ RHS d : G hd : d ∈ s d2 : G hi : d2 * d ∈ x.support ⊢ Finsupp.single (d2 * d) (↑x (d2 * d)) = id (Finsupp.single d2 (↑x (d2 * d))) * ↑(of k G) d [PROOFSTEP] rw [id.def, MonoidAlgebra.of_apply, MonoidAlgebra.single_mul_single, mul_one]
{"mathlib_filename": "Mathlib.Algebra.MonoidAlgebra.Ideal", "llama_tokens": 21585}
[GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a : G ⊢ (single a r * f).support ⊆ image ((fun x x_1 => x * x_1) a) f.support [PROOFSTEP] intro x hx [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a x : G hx : x ∈ (single a r * f).support ⊢ x ∈ image ((fun x x_1 => x * x_1) a) f.support [PROOFSTEP] contrapose hx [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a x : G hx : ¬x ∈ image ((fun x x_1 => x * x_1) a) f.support ⊢ ¬x ∈ (single a r * f).support [PROOFSTEP] have : ∀ y, a * y = x → f y = 0 := by simpa only [not_and', mem_image, mem_support_iff, exists_prop, not_exists, Classical.not_not] using hx [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a x : G hx : ¬x ∈ image ((fun x x_1 => x * x_1) a) f.support ⊢ ∀ (y : G), a * y = x → ↑f y = 0 [PROOFSTEP] simpa only [not_and', mem_image, mem_support_iff, exists_prop, not_exists, Classical.not_not] using hx [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a x : G hx : ¬x ∈ image ((fun x x_1 => x * x_1) a) f.support this : ∀ (y : G), a * y = x → ↑f y = 0 ⊢ ¬x ∈ (single a r * f).support [PROOFSTEP] simp only [mem_support_iff, mul_apply, sum_single_index, zero_mul, ite_self, sum_zero, Classical.not_not] [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a x : G hx : ¬x ∈ image ((fun x x_1 => x * x_1) a) f.support this : ∀ (y : G), a * y = x → ↑f y = 0 ⊢ (sum f fun a₂ b₂ => if a * a₂ = x then r * b₂ else 0) = 0 [PROOFSTEP] exact Finset.sum_eq_zero (by simp (config := { contextual := true }) only [this, mem_support_iff, mul_zero, Ne.def, ite_eq_right_iff, eq_self_iff_true, imp_true_iff]) [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a x : G hx : ¬x ∈ image ((fun x x_1 => x * x_1) a) f.support this : ∀ (y : G), a * y = x → ↑f y = 0 ⊢ ∀ (x_1 : G), x_1 ∈ f.support → (fun a₂ b₂ => if a * a₂ = x then r * b₂ else 0) x_1 (↑f x_1) = 0 [PROOFSTEP] simp (config := { contextual := true }) only [this, mem_support_iff, mul_zero, Ne.def, ite_eq_right_iff, eq_self_iff_true, imp_true_iff] [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a : G ⊢ (f * single a r).support ⊆ image (fun x => x * a) f.support [PROOFSTEP] intro x hx [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a x : G hx : x ∈ (f * single a r).support ⊢ x ∈ image (fun x => x * a) f.support [PROOFSTEP] contrapose hx [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a x : G hx : ¬x ∈ image (fun x => x * a) f.support ⊢ ¬x ∈ (f * single a r).support [PROOFSTEP] have : ∀ y, y * a = x → f y = 0 := by simpa only [not_and', mem_image, mem_support_iff, exists_prop, not_exists, Classical.not_not] using hx [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a x : G hx : ¬x ∈ image (fun x => x * a) f.support ⊢ ∀ (y : G), y * a = x → ↑f y = 0 [PROOFSTEP] simpa only [not_and', mem_image, mem_support_iff, exists_prop, not_exists, Classical.not_not] using hx [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a x : G hx : ¬x ∈ image (fun x => x * a) f.support this : ∀ (y : G), y * a = x → ↑f y = 0 ⊢ ¬x ∈ (f * single a r).support [PROOFSTEP] simp only [mem_support_iff, mul_apply, sum_single_index, zero_mul, ite_self, sum_zero, Classical.not_not] [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a x : G hx : ¬x ∈ image (fun x => x * a) f.support this : ∀ (y : G), y * a = x → ↑f y = 0 ⊢ (sum f fun a₁ b₁ => sum (single a r) fun a₂ b₂ => if a₁ * a₂ = x then b₁ * b₂ else 0) = 0 [PROOFSTEP] exact Finset.sum_eq_zero (by simp (config := { contextual := true }) only [this, sum_single_index, ite_eq_right_iff, eq_self_iff_true, imp_true_iff, zero_mul]) [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k a x : G hx : ¬x ∈ image (fun x => x * a) f.support this : ∀ (y : G), y * a = x → ↑f y = 0 ⊢ ∀ (x_1 : G), x_1 ∈ f.support → (fun a₁ b₁ => sum (single a r) fun a₂ b₂ => if a₁ * a₂ = x then b₁ * b₂ else 0) x_1 (↑f x_1) = 0 [PROOFSTEP] simp (config := { contextual := true }) only [this, sum_single_index, ite_eq_right_iff, eq_self_iff_true, imp_true_iff, zero_mul] [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k hr : ∀ (y : k), r * y = 0 ↔ y = 0 x : G lx : IsLeftRegular x ⊢ (single x r * f).support = image ((fun x x_1 => x * x_1) x) f.support [PROOFSTEP] refine' subset_antisymm (support_single_mul_subset f _ _) fun y hy => _ [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k hr : ∀ (y : k), r * y = 0 ↔ y = 0 x : G lx : IsLeftRegular x y : G hy : y ∈ image ((fun x x_1 => x * x_1) x) f.support ⊢ y ∈ (single x r * f).support [PROOFSTEP] obtain ⟨y, yf, rfl⟩ : ∃ a : G, a ∈ f.support ∧ x * a = y := by simpa only [Finset.mem_image, exists_prop] using hy [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k hr : ∀ (y : k), r * y = 0 ↔ y = 0 x : G lx : IsLeftRegular x y : G hy : y ∈ image ((fun x x_1 => x * x_1) x) f.support ⊢ ∃ a, a ∈ f.support ∧ x * a = y [PROOFSTEP] simpa only [Finset.mem_image, exists_prop] using hy [GOAL] case intro.intro k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k hr : ∀ (y : k), r * y = 0 ↔ y = 0 x : G lx : IsLeftRegular x y : G yf : y ∈ f.support hy : x * y ∈ image ((fun x x_1 => x * x_1) x) f.support ⊢ x * y ∈ (single x r * f).support [PROOFSTEP] simp only [mul_apply, mem_support_iff.mp yf, hr, mem_support_iff, sum_single_index, Finsupp.sum_ite_eq', Ne.def, not_false_iff, if_true, zero_mul, ite_self, sum_zero, lx.eq_iff] [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k hr : ∀ (y : k), y * r = 0 ↔ y = 0 x : G rx : IsRightRegular x ⊢ (f * single x r).support = image (fun x_1 => x_1 * x) f.support [PROOFSTEP] refine' subset_antisymm (support_mul_single_subset f _ _) fun y hy => _ [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k hr : ∀ (y : k), y * r = 0 ↔ y = 0 x : G rx : IsRightRegular x y : G hy : y ∈ image (fun x_1 => x_1 * x) f.support ⊢ y ∈ (f * single x r).support [PROOFSTEP] obtain ⟨y, yf, rfl⟩ : ∃ a : G, a ∈ f.support ∧ a * x = y := by simpa only [Finset.mem_image, exists_prop] using hy [GOAL] k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k hr : ∀ (y : k), y * r = 0 ↔ y = 0 x : G rx : IsRightRegular x y : G hy : y ∈ image (fun x_1 => x_1 * x) f.support ⊢ ∃ a, a ∈ f.support ∧ a * x = y [PROOFSTEP] simpa only [Finset.mem_image, exists_prop] using hy [GOAL] case intro.intro k : Type u₁ G : Type u₂ inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f : MonoidAlgebra k G r : k hr : ∀ (y : k), y * r = 0 ↔ y = 0 x : G rx : IsRightRegular x y : G yf : y ∈ f.support hy : y * x ∈ image (fun x_1 => x_1 * x) f.support ⊢ y * x ∈ (f * single x r).support [PROOFSTEP] simp only [mul_apply, mem_support_iff.mp yf, hr, mem_support_iff, sum_single_index, Finsupp.sum_ite_eq', Ne.def, not_false_iff, if_true, mul_zero, ite_self, sum_zero, rx.eq_iff] [GOAL] k : Type u₁ G : Type u₂ inst✝¹ : Semiring k inst✝ : RightCancelSemigroup G f : MonoidAlgebra k G r : k hr : ∀ (y : k), y * r = 0 ↔ y = 0 x : G ⊢ (f * single x r).support = map (mulRightEmbedding x) f.support [PROOFSTEP] classical ext simp only [support_mul_single_eq_image f hr (isRightRegular_of_rightCancelSemigroup x), mem_image, mem_map, mulRightEmbedding_apply] [GOAL] k : Type u₁ G : Type u₂ inst✝¹ : Semiring k inst✝ : RightCancelSemigroup G f : MonoidAlgebra k G r : k hr : ∀ (y : k), y * r = 0 ↔ y = 0 x : G ⊢ (f * single x r).support = map (mulRightEmbedding x) f.support [PROOFSTEP] ext [GOAL] case a k : Type u₁ G : Type u₂ inst✝¹ : Semiring k inst✝ : RightCancelSemigroup G f : MonoidAlgebra k G r : k hr : ∀ (y : k), y * r = 0 ↔ y = 0 x a✝ : G ⊢ a✝ ∈ (f * single x r).support ↔ a✝ ∈ map (mulRightEmbedding x) f.support [PROOFSTEP] simp only [support_mul_single_eq_image f hr (isRightRegular_of_rightCancelSemigroup x), mem_image, mem_map, mulRightEmbedding_apply] [GOAL] k : Type u₁ G : Type u₂ inst✝¹ : Semiring k inst✝ : LeftCancelSemigroup G f : MonoidAlgebra k G r : k hr : ∀ (y : k), r * y = 0 ↔ y = 0 x : G ⊢ (single x r * f).support = map (mulLeftEmbedding x) f.support [PROOFSTEP] classical ext simp only [support_single_mul_eq_image f hr (isLeftRegular_of_leftCancelSemigroup x), mem_image, mem_map, mulLeftEmbedding_apply] [GOAL] k : Type u₁ G : Type u₂ inst✝¹ : Semiring k inst✝ : LeftCancelSemigroup G f : MonoidAlgebra k G r : k hr : ∀ (y : k), r * y = 0 ↔ y = 0 x : G ⊢ (single x r * f).support = map (mulLeftEmbedding x) f.support [PROOFSTEP] ext [GOAL] case a k : Type u₁ G : Type u₂ inst✝¹ : Semiring k inst✝ : LeftCancelSemigroup G f : MonoidAlgebra k G r : k hr : ∀ (y : k), r * y = 0 ↔ y = 0 x a✝ : G ⊢ a✝ ∈ (single x r * f).support ↔ a✝ ∈ map (mulLeftEmbedding x) f.support [PROOFSTEP] simp only [support_single_mul_eq_image f hr (isLeftRegular_of_leftCancelSemigroup x), mem_image, mem_map, mulLeftEmbedding_apply] [GOAL] k : Type u₁ G : Type u₂ inst✝¹ : Semiring k inst✝ : MulOneClass G f : MonoidAlgebra k G ⊢ f ∈ Submodule.span k (↑(of k G) '' ↑f.support) [PROOFSTEP] erw [of, MonoidHom.coe_mk, ← supported_eq_span_single, Finsupp.mem_supported] [GOAL] k : Type u₁ G : Type u₂ inst✝¹ : Semiring k inst✝ : AddZeroClass G f : AddMonoidAlgebra k G ⊢ f ∈ Submodule.span k (↑(of k G) '' ↑f.support) [PROOFSTEP] erw [of, MonoidHom.coe_mk, ← Finsupp.supported_eq_span_single, Finsupp.mem_supported] [GOAL] k : Type u₁ G : Type u₂ inst✝ : Semiring k f : AddMonoidAlgebra k G ⊢ f ∈ Submodule.span k (of' k G '' ↑f.support) [PROOFSTEP] delta of' [GOAL] k : Type u₁ G : Type u₂ inst✝ : Semiring k f : AddMonoidAlgebra k G ⊢ f ∈ Submodule.span k ((fun a => single a 1) '' ↑f.support) [PROOFSTEP] rw [← Finsupp.supported_eq_span_single, Finsupp.mem_supported]
{"mathlib_filename": "Mathlib.Algebra.MonoidAlgebra.Support", "llama_tokens": 5151}
[GOAL] R : Type u_1 inst✝ : AddGroupWithOne R H : ∀ (n : ℕ), ↑n = 0 → n = 0 m n : ℕ h : ↑m = ↑n ⊢ m = n [PROOFSTEP] induction' m with m ih generalizing n [GOAL] case zero R : Type u_1 inst✝ : AddGroupWithOne R H : ∀ (n : ℕ), ↑n = 0 → n = 0 m n✝ : ℕ h✝ : ↑m = ↑n✝ n : ℕ h : ↑Nat.zero = ↑n ⊢ Nat.zero = n [PROOFSTEP] rw [H n] [GOAL] case zero R : Type u_1 inst✝ : AddGroupWithOne R H : ∀ (n : ℕ), ↑n = 0 → n = 0 m n✝ : ℕ h✝ : ↑m = ↑n✝ n : ℕ h : ↑Nat.zero = ↑n ⊢ ↑n = 0 [PROOFSTEP] rw [← h, Nat.cast_zero] [GOAL] case succ R : Type u_1 inst✝ : AddGroupWithOne R H : ∀ (n : ℕ), ↑n = 0 → n = 0 m✝ n✝ : ℕ h✝ : ↑m✝ = ↑n✝ m : ℕ ih : ∀ (n : ℕ), ↑m = ↑n → m = n n : ℕ h : ↑(Nat.succ m) = ↑n ⊢ Nat.succ m = n [PROOFSTEP] cases' n with n [GOAL] case succ.zero R : Type u_1 inst✝ : AddGroupWithOne R H : ∀ (n : ℕ), ↑n = 0 → n = 0 m✝ n : ℕ h✝ : ↑m✝ = ↑n m : ℕ ih : ∀ (n : ℕ), ↑m = ↑n → m = n h : ↑(Nat.succ m) = ↑Nat.zero ⊢ Nat.succ m = Nat.zero [PROOFSTEP] apply H [GOAL] case succ.zero.a R : Type u_1 inst✝ : AddGroupWithOne R H : ∀ (n : ℕ), ↑n = 0 → n = 0 m✝ n : ℕ h✝ : ↑m✝ = ↑n m : ℕ ih : ∀ (n : ℕ), ↑m = ↑n → m = n h : ↑(Nat.succ m) = ↑Nat.zero ⊢ ↑(Nat.succ m) = 0 [PROOFSTEP] rw [h, Nat.cast_zero] [GOAL] case succ.succ R : Type u_1 inst✝ : AddGroupWithOne R H : ∀ (n : ℕ), ↑n = 0 → n = 0 m✝ n✝ : ℕ h✝ : ↑m✝ = ↑n✝ m : ℕ ih : ∀ (n : ℕ), ↑m = ↑n → m = n n : ℕ h : ↑(Nat.succ m) = ↑(Nat.succ n) ⊢ Nat.succ m = Nat.succ n [PROOFSTEP] simp only [Nat.cast_succ, add_right_cancel_iff] at h [GOAL] case succ.succ R : Type u_1 inst✝ : AddGroupWithOne R H : ∀ (n : ℕ), ↑n = 0 → n = 0 m✝ n✝ : ℕ h✝ : ↑m✝ = ↑n✝ m : ℕ ih : ∀ (n : ℕ), ↑m = ↑n → m = n n : ℕ h : ↑m = ↑n ⊢ Nat.succ m = Nat.succ n [PROOFSTEP] rwa [ih] [GOAL] R : Type u_1 inst✝¹ : AddMonoidWithOne R inst✝ : CharZero R n : ℕ ⊢ ↑n = 0 ↔ n = 0 [PROOFSTEP] rw [← cast_zero, cast_inj] [GOAL] R : Type u_1 inst✝¹ : AddMonoidWithOne R inst✝ : CharZero R n : ℕ ⊢ ↑n + 1 ≠ 0 [PROOFSTEP] norm_cast [GOAL] R : Type u_1 inst✝¹ : AddMonoidWithOne R inst✝ : CharZero R n : ℕ ⊢ ¬n + 1 = 0 [PROOFSTEP] exact n.succ_ne_zero [GOAL] R : Type u_1 inst✝¹ : AddMonoidWithOne R inst✝ : CharZero R n : ℕ ⊢ ↑n = 1 ↔ n = 1 [PROOFSTEP] rw [← cast_one, cast_inj] [GOAL] R : Type u_1 inst✝¹ : AddMonoidWithOne R inst✝ : CharZero R n : ℕ h : Nat.AtLeastTwo n ⊢ ofNat n ≠ 1 [PROOFSTEP] rw [← Nat.cast_eq_ofNat, ← @Nat.cast_one R, Ne.def, Nat.cast_inj] [GOAL] R : Type u_1 inst✝¹ : AddMonoidWithOne R inst✝ : CharZero R n : ℕ h : Nat.AtLeastTwo n ⊢ ¬n = 1 [PROOFSTEP] exact ne_of_gt h.prop
{"mathlib_filename": "Mathlib.Algebra.CharZero.Defs", "llama_tokens": 1553}
[GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 ⊢ ∀ (a b c : FreeAlgebra R X), a * b * c = a * (b * c) [PROOFSTEP] rintro ⟨⟩ ⟨⟩ ⟨⟩ [GOAL] case mk.mk.mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a✝³ : FreeAlgebra R X a✝² : Pre R X b✝ : FreeAlgebra R X a✝¹ : Pre R X c✝ : FreeAlgebra R X a✝ : Pre R X ⊢ Quot.mk (Rel R X) a✝² * Quot.mk (Rel R X) a✝¹ * Quot.mk (Rel R X) a✝ = Quot.mk (Rel R X) a✝² * (Quot.mk (Rel R X) a✝¹ * Quot.mk (Rel R X) a✝) [PROOFSTEP] exact Quot.sound Rel.mul_assoc [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 ⊢ ∀ (a : FreeAlgebra R X), 1 * a = a [PROOFSTEP] rintro ⟨⟩ [GOAL] case mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a✝¹ : FreeAlgebra R X a✝ : Pre R X ⊢ 1 * Quot.mk (Rel R X) a✝ = Quot.mk (Rel R X) a✝ [PROOFSTEP] exact Quot.sound Rel.one_mul [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 ⊢ ∀ (a : FreeAlgebra R X), a * 1 = a [PROOFSTEP] rintro ⟨⟩ [GOAL] case mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a✝¹ : FreeAlgebra R X a✝ : Pre R X ⊢ Quot.mk (Rel R X) a✝ * 1 = Quot.mk (Rel R X) a✝ [PROOFSTEP] exact Quot.sound Rel.mul_one [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 ⊢ ∀ (a : FreeAlgebra R X), 0 * a = 0 [PROOFSTEP] rintro ⟨⟩ [GOAL] case mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a✝¹ : FreeAlgebra R X a✝ : Pre R X ⊢ 0 * Quot.mk (Rel R X) a✝ = 0 [PROOFSTEP] exact Quot.sound Rel.zero_mul [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 ⊢ ∀ (a : FreeAlgebra R X), a * 0 = 0 [PROOFSTEP] rintro ⟨⟩ [GOAL] case mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a✝¹ : FreeAlgebra R X a✝ : Pre R X ⊢ Quot.mk (Rel R X) a✝ * 0 = 0 [PROOFSTEP] exact Quot.sound Rel.mul_zero [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 ⊢ ∀ (a b c : FreeAlgebra R X), a * (b + c) = a * b + a * c [PROOFSTEP] rintro ⟨⟩ ⟨⟩ ⟨⟩ [GOAL] case mk.mk.mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a✝³ : FreeAlgebra R X a✝² : Pre R X b✝ : FreeAlgebra R X a✝¹ : Pre R X c✝ : FreeAlgebra R X a✝ : Pre R X ⊢ Quot.mk (Rel R X) a✝² * (Quot.mk (Rel R X) a✝¹ + Quot.mk (Rel R X) a✝) = Quot.mk (Rel R X) a✝² * Quot.mk (Rel R X) a✝¹ + Quot.mk (Rel R X) a✝² * Quot.mk (Rel R X) a✝ [PROOFSTEP] exact Quot.sound Rel.left_distrib [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 ⊢ ∀ (a b c : FreeAlgebra R X), (a + b) * c = a * c + b * c [PROOFSTEP] rintro ⟨⟩ ⟨⟩ ⟨⟩ [GOAL] case mk.mk.mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a✝³ : FreeAlgebra R X a✝² : Pre R X b✝ : FreeAlgebra R X a✝¹ : Pre R X c✝ : FreeAlgebra R X a✝ : Pre R X ⊢ (Quot.mk (Rel R X) a✝² + Quot.mk (Rel R X) a✝¹) * Quot.mk (Rel R X) a✝ = Quot.mk (Rel R X) a✝² * Quot.mk (Rel R X) a✝ + Quot.mk (Rel R X) a✝¹ * Quot.mk (Rel R X) a✝ [PROOFSTEP] exact Quot.sound Rel.right_distrib [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 ⊢ ∀ (a b c : FreeAlgebra R X), a + b + c = a + (b + c) [PROOFSTEP] rintro ⟨⟩ ⟨⟩ ⟨⟩ [GOAL] case mk.mk.mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a✝³ : FreeAlgebra R X a✝² : Pre R X b✝ : FreeAlgebra R X a✝¹ : Pre R X c✝ : FreeAlgebra R X a✝ : Pre R X ⊢ Quot.mk (Rel R X) a✝² + Quot.mk (Rel R X) a✝¹ + Quot.mk (Rel R X) a✝ = Quot.mk (Rel R X) a✝² + (Quot.mk (Rel R X) a✝¹ + Quot.mk (Rel R X) a✝) [PROOFSTEP] exact Quot.sound Rel.add_assoc [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 ⊢ ∀ (a : FreeAlgebra R X), 0 + a = a [PROOFSTEP] rintro ⟨⟩ [GOAL] case mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a✝¹ : FreeAlgebra R X a✝ : Pre R X ⊢ 0 + Quot.mk (Rel R X) a✝ = Quot.mk (Rel R X) a✝ [PROOFSTEP] exact Quot.sound Rel.zero_add [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 ⊢ ∀ (a : FreeAlgebra R X), a + 0 = a [PROOFSTEP] rintro ⟨⟩ [GOAL] case mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a✝¹ : FreeAlgebra R X a✝ : Pre R X ⊢ Quot.mk (Rel R X) a✝ + 0 = Quot.mk (Rel R X) a✝ [PROOFSTEP] change Quot.mk _ _ = _ [GOAL] case mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a✝¹ : FreeAlgebra R X a✝ : Pre R X ⊢ Quot.mk (Rel R X) (a✝ + 0) = Quot.mk (Rel R X) a✝ [PROOFSTEP] rw [Quot.sound Rel.add_comm, Quot.sound Rel.zero_add] [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 ⊢ ∀ (x : FreeAlgebra R X), (fun x x_1 => x • x_1) 0 x = 0 [PROOFSTEP] rintro ⟨⟩ [GOAL] case mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x✝ : FreeAlgebra R X a✝ : Pre R X ⊢ (fun x x_1 => x • x_1) 0 (Quot.mk (Rel R X) a✝) = 0 [PROOFSTEP] change Quot.mk _ (_ * _) = _ [GOAL] case mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x✝ : FreeAlgebra R X a✝ : Pre R X ⊢ Quot.mk (Rel R X) (Pre.of_scalar (↑(algebraMap ℕ R) 0) * a✝) = 0 [PROOFSTEP] rw [map_zero] [GOAL] case mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x✝ : FreeAlgebra R X a✝ : Pre R X ⊢ Quot.mk (Rel R X) (Pre.of_scalar 0 * a✝) = 0 [PROOFSTEP] exact Quot.sound Rel.zero_mul [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 n : ℕ ⊢ ∀ (x : FreeAlgebra R X), (fun x x_1 => x • x_1) (n + 1) x = x + (fun x x_1 => x • x_1) n x [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 n : ℕ x✝ : FreeAlgebra R X a : Pre R X ⊢ (fun x x_1 => x • x_1) (n + 1) (Quot.mk (Rel R X) a) = Quot.mk (Rel R X) a + (fun x x_1 => x • x_1) n (Quot.mk (Rel R X) a) [PROOFSTEP] dsimp only [HSMul.hSMul, instSMul, Quot.map] [GOAL] case mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 n : ℕ x✝ : FreeAlgebra R X a : Pre R X ⊢ Quot.mk (Rel R X) (Pre.of_scalar (↑(algebraMap ℕ R) (n + 1)) * a) = Quot.mk (Rel R X) a + Quot.mk (Rel R X) (Pre.of_scalar (↑(algebraMap ℕ R) n) * a) [PROOFSTEP] rw [map_add, map_one, add_comm, mk_mul, mk_mul, ← one_add_mul (_ : FreeAlgebra R X)] [GOAL] case mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 n : ℕ x✝ : FreeAlgebra R X a : Pre R X ⊢ Quot.mk (Rel R X) (Pre.of_scalar (1 + ↑(algebraMap ℕ R) n)) * Quot.mk (Rel R X) a = (1 + Quot.mk (Rel R X) (Pre.of_scalar (↑(algebraMap ℕ R) n))) * Quot.mk (Rel R X) a [PROOFSTEP] congr 1 [GOAL] case mk.e_a R : Type u_1 inst✝ : CommSemiring R X : Type u_2 n : ℕ x✝ : FreeAlgebra R X a : Pre R X ⊢ Quot.mk (Rel R X) (Pre.of_scalar (1 + ↑(algebraMap ℕ R) n)) = 1 + Quot.mk (Rel R X) (Pre.of_scalar (↑(algebraMap ℕ R) n)) [PROOFSTEP] exact Quot.sound Rel.add_scalar [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 ⊢ ∀ (a b : FreeAlgebra R X), a + b = b + a [PROOFSTEP] rintro ⟨⟩ ⟨⟩ [GOAL] case mk.mk R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a✝² : FreeAlgebra R X a✝¹ : Pre R X b✝ : FreeAlgebra R X a✝ : Pre R X ⊢ Quot.mk (Rel R X) a✝¹ + Quot.mk (Rel R X) a✝ = Quot.mk (Rel R X) a✝ + Quot.mk (Rel R X) a✝¹ [PROOFSTEP] exact Quot.sound Rel.add_comm [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 src✝² : MonoidWithZero (FreeAlgebra R X) := instMonoidWithZero R X src✝¹ : AddCommMonoid (FreeAlgebra R X) := instAddCommMonoid R X src✝ : Distrib (FreeAlgebra R X) := instDistrib R X ⊢ NatCast.natCast 0 = 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 src✝² : MonoidWithZero (FreeAlgebra R X) := instMonoidWithZero R X src✝¹ : AddCommMonoid (FreeAlgebra R X) := instAddCommMonoid R X src✝ : Distrib (FreeAlgebra R X) := instDistrib R X ⊢ Quot.mk (Rel R X) (Pre.of_scalar 0) = 0 [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 src✝² : MonoidWithZero (FreeAlgebra R X) := instMonoidWithZero R X src✝¹ : AddCommMonoid (FreeAlgebra R X) := instAddCommMonoid R X src✝ : Distrib (FreeAlgebra R X) := instDistrib R X n : ℕ ⊢ NatCast.natCast (n + 1) = NatCast.natCast n + 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 src✝² : MonoidWithZero (FreeAlgebra R X) := instMonoidWithZero R X src✝¹ : AddCommMonoid (FreeAlgebra R X) := instAddCommMonoid R X src✝ : Distrib (FreeAlgebra R X) := instDistrib R X n : ℕ ⊢ Quot.mk (Rel R X) (Pre.of_scalar (↑n + 1)) = Quot.mk (Rel R X) (Pre.of_scalar ↑n) + 1 [PROOFSTEP] exact Quot.sound Rel.add_scalar [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type ?u.69679 inst✝¹ : CommSemiring A inst✝ : Algebra R A x✝ : R ⊢ ∀ (x : (fun x => FreeAlgebra A X) x✝), ↑(RingHom.comp { toMonoidHom := { toOneHom := { toFun := fun r => Quot.mk (Rel A X) (Pre.of_scalar r), map_one' := (_ : (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1 = (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1) }, map_mul' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x * x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x * Pre.of_scalar x_1)) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun r => Quot.mk (Rel A X) (Pre.of_scalar r), map_one' := (_ : (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1 = (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1) }, map_mul' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x * x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x * Pre.of_scalar x_1)) }) 0 = OneHom.toFun (↑{ toOneHom := { toFun := fun r => Quot.mk (Rel A X) (Pre.of_scalar r), map_one' := (_ : (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1 = (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1) }, map_mul' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x * x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x * Pre.of_scalar x_1)) }) 0), map_add' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x + x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x + Pre.of_scalar x_1)) } (algebraMap R A)) x✝ * x = x * ↑(RingHom.comp { toMonoidHom := { toOneHom := { toFun := fun r => Quot.mk (Rel A X) (Pre.of_scalar r), map_one' := (_ : (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1 = (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1) }, map_mul' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x * x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x * Pre.of_scalar x_1)) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun r => Quot.mk (Rel A X) (Pre.of_scalar r), map_one' := (_ : (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1 = (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1) }, map_mul' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x * x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x * Pre.of_scalar x_1)) }) 0 = OneHom.toFun (↑{ toOneHom := { toFun := fun r => Quot.mk (Rel A X) (Pre.of_scalar r), map_one' := (_ : (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1 = (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1) }, map_mul' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x * x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x * Pre.of_scalar x_1)) }) 0), map_add' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x + x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x + Pre.of_scalar x_1)) } (algebraMap R A)) x✝ [PROOFSTEP] rintro ⟨⟩ [GOAL] case mk R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type ?u.69679 inst✝¹ : CommSemiring A inst✝ : Algebra R A x✝¹ : R x✝ : FreeAlgebra A X a✝ : Pre A X ⊢ ↑(RingHom.comp { toMonoidHom := { toOneHom := { toFun := fun r => Quot.mk (Rel A X) (Pre.of_scalar r), map_one' := (_ : (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1 = (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1) }, map_mul' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x * x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x * Pre.of_scalar x_1)) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun r => Quot.mk (Rel A X) (Pre.of_scalar r), map_one' := (_ : (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1 = (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1) }, map_mul' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x * x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x * Pre.of_scalar x_1)) }) 0 = OneHom.toFun (↑{ toOneHom := { toFun := fun r => Quot.mk (Rel A X) (Pre.of_scalar r), map_one' := (_ : (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1 = (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1) }, map_mul' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x * x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x * Pre.of_scalar x_1)) }) 0), map_add' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x + x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x + Pre.of_scalar x_1)) } (algebraMap R A)) x✝¹ * Quot.mk (Rel A X) a✝ = Quot.mk (Rel A X) a✝ * ↑(RingHom.comp { toMonoidHom := { toOneHom := { toFun := fun r => Quot.mk (Rel A X) (Pre.of_scalar r), map_one' := (_ : (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1 = (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1) }, map_mul' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x * x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x * Pre.of_scalar x_1)) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun r => Quot.mk (Rel A X) (Pre.of_scalar r), map_one' := (_ : (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1 = (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1) }, map_mul' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x * x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x * Pre.of_scalar x_1)) }) 0 = OneHom.toFun (↑{ toOneHom := { toFun := fun r => Quot.mk (Rel A X) (Pre.of_scalar r), map_one' := (_ : (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1 = (fun r => Quot.mk (Rel A X) (Pre.of_scalar r)) 1) }, map_mul' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x * x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x * Pre.of_scalar x_1)) }) 0), map_add' := (_ : ∀ (x x_1 : A), Quot.mk (Rel A X) (Pre.of_scalar (x + x_1)) = Quot.mk (Rel A X) (Pre.of_scalar x + Pre.of_scalar x_1)) } (algebraMap R A)) x✝¹ [PROOFSTEP] exact Quot.sound Rel.central_scalar [GOAL] R✝ : Type u_1 inst✝⁷ : CommSemiring R✝ X : Type u_2 R : Type ?u.71720 S : Type ?u.71723 A : Type ?u.71726 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring S inst✝⁴ : CommSemiring A inst✝³ : SMul R S inst✝² : Algebra R A inst✝¹ : Algebra S A inst✝ : IsScalarTower R S A r : R s : S x : FreeAlgebra A X ⊢ (r • s) • x = r • s • x [PROOFSTEP] change algebraMap S A (r • s) • x = algebraMap R A _ • (algebraMap S A _ • x) [GOAL] R✝ : Type u_1 inst✝⁷ : CommSemiring R✝ X : Type u_2 R : Type ?u.71720 S : Type ?u.71723 A : Type ?u.71726 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring S inst✝⁴ : CommSemiring A inst✝³ : SMul R S inst✝² : Algebra R A inst✝¹ : Algebra S A inst✝ : IsScalarTower R S A r : R s : S x : FreeAlgebra A X ⊢ ↑(algebraMap S A) (r • s) • x = ↑(algebraMap R A) r • ↑(algebraMap S A) s • x [PROOFSTEP] rw [← smul_assoc] [GOAL] R✝ : Type u_1 inst✝⁷ : CommSemiring R✝ X : Type u_2 R : Type ?u.71720 S : Type ?u.71723 A : Type ?u.71726 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring S inst✝⁴ : CommSemiring A inst✝³ : SMul R S inst✝² : Algebra R A inst✝¹ : Algebra S A inst✝ : IsScalarTower R S A r : R s : S x : FreeAlgebra A X ⊢ ↑(algebraMap S A) (r • s) • x = (↑(algebraMap R A) r • ↑(algebraMap S A) s) • x [PROOFSTEP] congr [GOAL] case e_a R✝ : Type u_1 inst✝⁷ : CommSemiring R✝ X : Type u_2 R : Type ?u.71720 S : Type ?u.71723 A : Type ?u.71726 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring S inst✝⁴ : CommSemiring A inst✝³ : SMul R S inst✝² : Algebra R A inst✝¹ : Algebra S A inst✝ : IsScalarTower R S A r : R s : S x : FreeAlgebra A X ⊢ ↑(algebraMap S A) (r • s) = ↑(algebraMap R A) r • ↑(algebraMap S A) s [PROOFSTEP] simp only [Algebra.algebraMap_eq_smul_one, smul_eq_mul] [GOAL] case e_a R✝ : Type u_1 inst✝⁷ : CommSemiring R✝ X : Type u_2 R : Type ?u.71720 S : Type ?u.71723 A : Type ?u.71726 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring S inst✝⁴ : CommSemiring A inst✝³ : SMul R S inst✝² : Algebra R A inst✝¹ : Algebra S A inst✝ : IsScalarTower R S A r : R s : S x : FreeAlgebra A X ⊢ (r • s) • 1 = r • 1 * s • 1 [PROOFSTEP] rw [smul_assoc, ← smul_one_mul] [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 m : X ⊢ Quot.mk (Rel R X) (Pre.of m) = ι R m [PROOFSTEP] rw [ι_def] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝ : FreeAlgebra R X a b : Pre R X h : Rel R X a b ⊢ liftFun R X f a = liftFun R X f b [PROOFSTEP] induction' h [GOAL] case add_scalar R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝ : FreeAlgebra R X a b : Pre R X r✝ s✝ : R ⊢ liftFun R X f (Pre.of_scalar (r✝ + s✝)) = liftFun R X f (Pre.of_scalar r✝ + Pre.of_scalar s✝) [PROOFSTEP] exact (algebraMap R A).map_add _ _ [GOAL] case mul_scalar R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝ : FreeAlgebra R X a b : Pre R X r✝ s✝ : R ⊢ liftFun R X f (Pre.of_scalar (r✝ * s✝)) = liftFun R X f (Pre.of_scalar r✝ * Pre.of_scalar s✝) [PROOFSTEP] exact (algebraMap R A).map_mul _ _ [GOAL] case central_scalar R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b : Pre R X r✝ : R a✝ : Pre R X ⊢ liftFun R X f (Pre.of_scalar r✝ * a✝) = liftFun R X f (a✝ * Pre.of_scalar r✝) [PROOFSTEP] apply Algebra.commutes [GOAL] case add_assoc R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ b✝ c✝ : Pre R X ⊢ liftFun R X f (a✝ + b✝ + c✝) = liftFun R X f (a✝ + (b✝ + c✝)) [PROOFSTEP] change _ + _ + _ = _ + (_ + _) [GOAL] case add_assoc R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ b✝ c✝ : Pre R X ⊢ liftFun R X f a✝ + liftFun R X f b✝ + liftFun R X f c✝ = liftFun R X f a✝ + (liftFun R X f b✝ + liftFun R X f c✝) [PROOFSTEP] rw [add_assoc] [GOAL] case add_comm R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ b✝ : Pre R X ⊢ liftFun R X f (a✝ + b✝) = liftFun R X f (b✝ + a✝) [PROOFSTEP] change _ + _ = _ + _ [GOAL] case add_comm R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ b✝ : Pre R X ⊢ liftFun R X f a✝ + liftFun R X f b✝ = liftFun R X f b✝ + liftFun R X f a✝ [PROOFSTEP] rw [add_comm] [GOAL] case zero_add R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ : Pre R X ⊢ liftFun R X f (0 + a✝) = liftFun R X f a✝ [PROOFSTEP] change algebraMap _ _ _ + liftFun R X f _ = liftFun R X f _ [GOAL] case zero_add R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ : Pre R X ⊢ ↑(algebraMap R A) 0 + liftFun R X f a✝ = liftFun R X f a✝ [PROOFSTEP] simp [GOAL] case mul_assoc R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ b✝ c✝ : Pre R X ⊢ liftFun R X f (a✝ * b✝ * c✝) = liftFun R X f (a✝ * (b✝ * c✝)) [PROOFSTEP] change _ * _ * _ = _ * (_ * _) [GOAL] case mul_assoc R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ b✝ c✝ : Pre R X ⊢ liftFun R X f a✝ * liftFun R X f b✝ * liftFun R X f c✝ = liftFun R X f a✝ * (liftFun R X f b✝ * liftFun R X f c✝) [PROOFSTEP] rw [mul_assoc] [GOAL] case one_mul R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ : Pre R X ⊢ liftFun R X f (1 * a✝) = liftFun R X f a✝ [PROOFSTEP] change algebraMap _ _ _ * liftFun R X f _ = liftFun R X f _ [GOAL] case one_mul R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ : Pre R X ⊢ ↑(algebraMap R A) 1 * liftFun R X f a✝ = liftFun R X f a✝ [PROOFSTEP] simp [GOAL] case mul_one R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ : Pre R X ⊢ liftFun R X f (a✝ * 1) = liftFun R X f a✝ [PROOFSTEP] change liftFun R X f _ * algebraMap _ _ _ = liftFun R X f _ [GOAL] case mul_one R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ : Pre R X ⊢ liftFun R X f a✝ * ↑(algebraMap R A) 1 = liftFun R X f a✝ [PROOFSTEP] simp [GOAL] case left_distrib R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ b✝ c✝ : Pre R X ⊢ liftFun R X f (a✝ * (b✝ + c✝)) = liftFun R X f (a✝ * b✝ + a✝ * c✝) [PROOFSTEP] change _ * (_ + _) = _ * _ + _ * _ [GOAL] case left_distrib R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ b✝ c✝ : Pre R X ⊢ liftFun R X f a✝ * (liftFun R X f b✝ + liftFun R X f c✝) = liftFun R X f a✝ * liftFun R X f b✝ + liftFun R X f a✝ * liftFun R X f c✝ [PROOFSTEP] rw [left_distrib] [GOAL] case right_distrib R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ b✝ c✝ : Pre R X ⊢ liftFun R X f ((a✝ + b✝) * c✝) = liftFun R X f (a✝ * c✝ + b✝ * c✝) [PROOFSTEP] change (_ + _) * _ = _ * _ + _ * _ [GOAL] case right_distrib R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ b✝ c✝ : Pre R X ⊢ (liftFun R X f a✝ + liftFun R X f b✝) * liftFun R X f c✝ = liftFun R X f a✝ * liftFun R X f c✝ + liftFun R X f b✝ * liftFun R X f c✝ [PROOFSTEP] rw [right_distrib] [GOAL] case zero_mul R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ : Pre R X ⊢ liftFun R X f (0 * a✝) = liftFun R X f 0 [PROOFSTEP] change algebraMap _ _ _ * _ = algebraMap _ _ _ [GOAL] case zero_mul R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ : Pre R X ⊢ ↑(algebraMap R A) 0 * liftFun R X f a✝ = ↑(algebraMap R A) 0 [PROOFSTEP] simp [GOAL] case mul_zero R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ : Pre R X ⊢ liftFun R X f (a✝ * 0) = liftFun R X f 0 [PROOFSTEP] change _ * algebraMap _ _ _ = algebraMap _ _ _ [GOAL] case mul_zero R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝¹ : FreeAlgebra R X a b a✝ : Pre R X ⊢ liftFun R X f a✝ * ↑(algebraMap R A) 0 = ↑(algebraMap R A) 0 [PROOFSTEP] simp [GOAL] case add_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (a✝¹ + c✝) = liftFun R X f (b✝ + c✝) case add_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ + a✝¹) = liftFun R X f (c✝ + b✝) case mul_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (a✝¹ * c✝) = liftFun R X f (b✝ * c✝) case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ * a✝¹) = liftFun R X f (c✝ * b✝) [PROOFSTEP] repeat change liftFun R X f _ + liftFun R X f _ = _ simp only [*] rfl [GOAL] case add_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (a✝¹ + c✝) = liftFun R X f (b✝ + c✝) case add_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ + a✝¹) = liftFun R X f (c✝ + b✝) case mul_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (a✝¹ * c✝) = liftFun R X f (b✝ * c✝) case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ * a✝¹) = liftFun R X f (c✝ * b✝) [PROOFSTEP] change liftFun R X f _ + liftFun R X f _ = _ [GOAL] case add_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f a✝¹ + liftFun R X f c✝ = liftFun R X f (b✝ + c✝) case add_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ + a✝¹) = liftFun R X f (c✝ + b✝) case mul_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (a✝¹ * c✝) = liftFun R X f (b✝ * c✝) case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ * a✝¹) = liftFun R X f (c✝ * b✝) [PROOFSTEP] simp only [*] [GOAL] case add_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f b✝ + liftFun R X f c✝ = liftFun R X f (b✝ + c✝) case add_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ + a✝¹) = liftFun R X f (c✝ + b✝) case mul_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (a✝¹ * c✝) = liftFun R X f (b✝ * c✝) case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ * a✝¹) = liftFun R X f (c✝ * b✝) [PROOFSTEP] rfl [GOAL] case add_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ + a✝¹) = liftFun R X f (c✝ + b✝) case mul_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (a✝¹ * c✝) = liftFun R X f (b✝ * c✝) case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ * a✝¹) = liftFun R X f (c✝ * b✝) [PROOFSTEP] change liftFun R X f _ + liftFun R X f _ = _ [GOAL] case add_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f c✝ + liftFun R X f a✝¹ = liftFun R X f (c✝ + b✝) case mul_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (a✝¹ * c✝) = liftFun R X f (b✝ * c✝) case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ * a✝¹) = liftFun R X f (c✝ * b✝) [PROOFSTEP] simp only [*] [GOAL] case add_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f c✝ + liftFun R X f b✝ = liftFun R X f (c✝ + b✝) case mul_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (a✝¹ * c✝) = liftFun R X f (b✝ * c✝) case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ * a✝¹) = liftFun R X f (c✝ * b✝) [PROOFSTEP] rfl [GOAL] case mul_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (a✝¹ * c✝) = liftFun R X f (b✝ * c✝) case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ * a✝¹) = liftFun R X f (c✝ * b✝) [PROOFSTEP] change liftFun R X f _ + liftFun R X f _ = _ [GOAL] case mul_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (a✝¹ * c✝) = liftFun R X f (b✝ * c✝) case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ * a✝¹) = liftFun R X f (c✝ * b✝) [PROOFSTEP] repeat change liftFun R X f _ * liftFun R X f _ = _ simp only [*] rfl [GOAL] case mul_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (a✝¹ * c✝) = liftFun R X f (b✝ * c✝) case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ * a✝¹) = liftFun R X f (c✝ * b✝) [PROOFSTEP] change liftFun R X f _ * liftFun R X f _ = _ [GOAL] case mul_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f a✝¹ * liftFun R X f c✝ = liftFun R X f (b✝ * c✝) case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ * a✝¹) = liftFun R X f (c✝ * b✝) [PROOFSTEP] simp only [*] [GOAL] case mul_compat_left R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f b✝ * liftFun R X f c✝ = liftFun R X f (b✝ * c✝) case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ * a✝¹) = liftFun R X f (c✝ * b✝) [PROOFSTEP] rfl [GOAL] case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f (c✝ * a✝¹) = liftFun R X f (c✝ * b✝) [PROOFSTEP] change liftFun R X f _ * liftFun R X f _ = _ [GOAL] case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f c✝ * liftFun R X f a✝¹ = liftFun R X f (c✝ * b✝) [PROOFSTEP] simp only [*] [GOAL] case mul_compat_right R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A a✝² : FreeAlgebra R X a b a✝¹ b✝ c✝ : Pre R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : liftFun R X f a✝¹ = liftFun R X f b✝ ⊢ liftFun R X f c✝ * liftFun R X f b✝ = liftFun R X f (c✝ * b✝) [PROOFSTEP] rfl [GOAL] [PROOFSTEP] change liftFun R X f _ * liftFun R X f _ = _ [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A ⊢ (fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b)) 1 = 1 [PROOFSTEP] change algebraMap _ _ _ = _ [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A ⊢ ↑(algebraMap R A) 1 = 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A ⊢ ∀ (x y : FreeAlgebra R X), OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } x * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } y [PROOFSTEP] rintro ⟨⟩ ⟨⟩ [GOAL] case mk.mk R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A x✝ : FreeAlgebra R X a✝¹ : Pre R X y✝ : FreeAlgebra R X a✝ : Pre R X ⊢ OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (Quot.mk (Rel R X) a✝¹ * Quot.mk (Rel R X) a✝) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (Quot.mk (Rel R X) a✝¹) * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (Quot.mk (Rel R X) a✝) [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) }, map_mul' := (_ : ∀ (x y : FreeAlgebra R X), OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } x * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } y) }) 0 = 0 [PROOFSTEP] dsimp [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A ⊢ Quot.liftOn 0 (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b) = 0 [PROOFSTEP] change algebraMap _ _ _ = _ [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A ⊢ ↑(algebraMap R A) 0 = 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A ⊢ ∀ (x y : FreeAlgebra R X), OneHom.toFun (↑{ toOneHom := { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) }, map_mul' := (_ : ∀ (x y : FreeAlgebra R X), OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } x * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) }, map_mul' := (_ : ∀ (x y : FreeAlgebra R X), OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } x * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) }, map_mul' := (_ : ∀ (x y : FreeAlgebra R X), OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } x * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } y) }) y [PROOFSTEP] rintro ⟨⟩ ⟨⟩ [GOAL] case mk.mk R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A x✝ : FreeAlgebra R X a✝¹ : Pre R X y✝ : FreeAlgebra R X a✝ : Pre R X ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) }, map_mul' := (_ : ∀ (x y : FreeAlgebra R X), OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } x * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } y) }) (Quot.mk (Rel R X) a✝¹ + Quot.mk (Rel R X) a✝) = OneHom.toFun (↑{ toOneHom := { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) }, map_mul' := (_ : ∀ (x y : FreeAlgebra R X), OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } x * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } y) }) (Quot.mk (Rel R X) a✝¹) + OneHom.toFun (↑{ toOneHom := { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) }, map_mul' := (_ : ∀ (x y : FreeAlgebra R X), OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } x * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } y) }) (Quot.mk (Rel R X) a✝) [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A ⊢ ∀ (r : R), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) }, map_mul' := (_ : ∀ (x y : FreeAlgebra R X), OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } x * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) }, map_mul' := (_ : ∀ (x y : FreeAlgebra R X), OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } x * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : FreeAlgebra R X), OneHom.toFun (↑{ toOneHom := { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) }, map_mul' := (_ : ∀ (x y : FreeAlgebra R X), OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } x * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) }, map_mul' := (_ : ∀ (x y : FreeAlgebra R X), OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } x * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) }, map_mul' := (_ : ∀ (x y : FreeAlgebra R X), OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } x * OneHom.toFun { toFun := fun a => Quot.liftOn a (liftFun R X f) (_ : ∀ (a b : Pre R X), Rel R X a b → liftFun R X f a = liftFun R X f b), map_one' := (_ : ↑(algebraMap R A) 1 = 1) } y) }) y) }) (↑(algebraMap R (FreeAlgebra R X)) r) = ↑(algebraMap R A) r [PROOFSTEP] tauto -- Porting note: removed #align declaration since it is a private lemma [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A ⊢ (fun F => ↑F ∘ ι R) (FreeAlgebra.liftAux R f) = f [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A x✝ : X ⊢ (fun F => ↑F ∘ ι R) (FreeAlgebra.liftAux R f) x✝ = f x✝ [PROOFSTEP] simp only [Function.comp_apply, ι_def] [GOAL] case h R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A x✝ : X ⊢ ↑(FreeAlgebra.liftAux R f) (Quot.mk (Rel R X) (Pre.of x✝)) = f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A ⊢ FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F) = F [PROOFSTEP] ext t [GOAL] case H R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) t = ↑F t [PROOFSTEP] rcases t with ⟨x⟩ [GOAL] case H.mk R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X x : Pre R X ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) x) = ↑F (Quot.mk (Rel R X) x) [PROOFSTEP] induction x [GOAL] case H.mk.of R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a✝ : X ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.of a✝)) = ↑F (Quot.mk (Rel R X) (Pre.of a✝)) case H.mk.of_scalar R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a✝ : R ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.of_scalar a✝)) = ↑F (Quot.mk (Rel R X) (Pre.of_scalar a✝)) case H.mk.add R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a✝¹ a✝ : Pre R X a_ih✝¹ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝¹) = ↑F (Quot.mk (Rel R X) a✝¹) a_ih✝ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝) = ↑F (Quot.mk (Rel R X) a✝) ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.add a✝¹ a✝)) = ↑F (Quot.mk (Rel R X) (Pre.add a✝¹ a✝)) case H.mk.mul R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a✝¹ a✝ : Pre R X a_ih✝¹ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝¹) = ↑F (Quot.mk (Rel R X) a✝¹) a_ih✝ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝) = ↑F (Quot.mk (Rel R X) a✝) ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.mul a✝¹ a✝)) = ↑F (Quot.mk (Rel R X) (Pre.mul a✝¹ a✝)) [PROOFSTEP] case of => change ((F : FreeAlgebra R X → A) ∘ ι R) _ = _ simp only [Function.comp_apply, ι_def] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a✝ : X ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.of a✝)) = ↑F (Quot.mk (Rel R X) (Pre.of a✝)) [PROOFSTEP] case of => change ((F : FreeAlgebra R X → A) ∘ ι R) _ = _ simp only [Function.comp_apply, ι_def] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a✝ : X ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.of a✝)) = ↑F (Quot.mk (Rel R X) (Pre.of a✝)) [PROOFSTEP] change ((F : FreeAlgebra R X → A) ∘ ι R) _ = _ [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a✝ : X ⊢ (↑F ∘ ι R) a✝ = ↑F (Quot.mk (Rel R X) (Pre.of a✝)) [PROOFSTEP] simp only [Function.comp_apply, ι_def] [GOAL] case H.mk.of_scalar R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a✝ : R ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.of_scalar a✝)) = ↑F (Quot.mk (Rel R X) (Pre.of_scalar a✝)) case H.mk.add R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a✝¹ a✝ : Pre R X a_ih✝¹ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝¹) = ↑F (Quot.mk (Rel R X) a✝¹) a_ih✝ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝) = ↑F (Quot.mk (Rel R X) a✝) ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.add a✝¹ a✝)) = ↑F (Quot.mk (Rel R X) (Pre.add a✝¹ a✝)) case H.mk.mul R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a✝¹ a✝ : Pre R X a_ih✝¹ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝¹) = ↑F (Quot.mk (Rel R X) a✝¹) a_ih✝ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝) = ↑F (Quot.mk (Rel R X) a✝) ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.mul a✝¹ a✝)) = ↑F (Quot.mk (Rel R X) (Pre.mul a✝¹ a✝)) [PROOFSTEP] case of_scalar x => change algebraMap _ _ x = F (algebraMap _ _ x) rw [AlgHom.commutes F _] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X x : R ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.of_scalar x)) = ↑F (Quot.mk (Rel R X) (Pre.of_scalar x)) [PROOFSTEP] case of_scalar x => change algebraMap _ _ x = F (algebraMap _ _ x) rw [AlgHom.commutes F _] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X x : R ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.of_scalar x)) = ↑F (Quot.mk (Rel R X) (Pre.of_scalar x)) [PROOFSTEP] change algebraMap _ _ x = F (algebraMap _ _ x) [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X x : R ⊢ ↑(algebraMap R A) x = ↑F (↑(algebraMap R (FreeAlgebra R X)) x) [PROOFSTEP] rw [AlgHom.commutes F _] [GOAL] case H.mk.add R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a✝¹ a✝ : Pre R X a_ih✝¹ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝¹) = ↑F (Quot.mk (Rel R X) a✝¹) a_ih✝ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝) = ↑F (Quot.mk (Rel R X) a✝) ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.add a✝¹ a✝)) = ↑F (Quot.mk (Rel R X) (Pre.add a✝¹ a✝)) case H.mk.mul R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a✝¹ a✝ : Pre R X a_ih✝¹ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝¹) = ↑F (Quot.mk (Rel R X) a✝¹) a_ih✝ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝) = ↑F (Quot.mk (Rel R X) a✝) ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.mul a✝¹ a✝)) = ↑F (Quot.mk (Rel R X) (Pre.mul a✝¹ a✝)) [PROOFSTEP] case add a b ha hb => -- Porting note: it is necessary to declare fa and fb explicitly otherwise Lean refuses -- to consider `Quot.mk (Rel R X) ·` as element of FreeAlgebra R X let fa : FreeAlgebra R X := Quot.mk (Rel R X) a let fb : FreeAlgebra R X := Quot.mk (Rel R X) b change liftAux R (F ∘ ι R) (fa + fb) = F (fa + fb) rw [AlgHom.map_add, AlgHom.map_add, ha, hb] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a b : Pre R X ha : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a) = ↑F (Quot.mk (Rel R X) a) hb : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) b) = ↑F (Quot.mk (Rel R X) b) ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.add a b)) = ↑F (Quot.mk (Rel R X) (Pre.add a b)) [PROOFSTEP] case add a b ha hb => -- Porting note: it is necessary to declare fa and fb explicitly otherwise Lean refuses -- to consider `Quot.mk (Rel R X) ·` as element of FreeAlgebra R X let fa : FreeAlgebra R X := Quot.mk (Rel R X) a let fb : FreeAlgebra R X := Quot.mk (Rel R X) b change liftAux R (F ∘ ι R) (fa + fb) = F (fa + fb) rw [AlgHom.map_add, AlgHom.map_add, ha, hb] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a b : Pre R X ha : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a) = ↑F (Quot.mk (Rel R X) a) hb : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) b) = ↑F (Quot.mk (Rel R X) b) ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.add a b)) = ↑F (Quot.mk (Rel R X) (Pre.add a b)) [PROOFSTEP] let fa : FreeAlgebra R X := Quot.mk (Rel R X) a [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a b : Pre R X ha : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a) = ↑F (Quot.mk (Rel R X) a) hb : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) b) = ↑F (Quot.mk (Rel R X) b) fa : FreeAlgebra R X := Quot.mk (Rel R X) a ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.add a b)) = ↑F (Quot.mk (Rel R X) (Pre.add a b)) [PROOFSTEP] let fb : FreeAlgebra R X := Quot.mk (Rel R X) b [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a b : Pre R X ha : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a) = ↑F (Quot.mk (Rel R X) a) hb : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) b) = ↑F (Quot.mk (Rel R X) b) fa : FreeAlgebra R X := Quot.mk (Rel R X) a fb : FreeAlgebra R X := Quot.mk (Rel R X) b ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.add a b)) = ↑F (Quot.mk (Rel R X) (Pre.add a b)) [PROOFSTEP] change liftAux R (F ∘ ι R) (fa + fb) = F (fa + fb) [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a b : Pre R X ha : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a) = ↑F (Quot.mk (Rel R X) a) hb : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) b) = ↑F (Quot.mk (Rel R X) b) fa : FreeAlgebra R X := Quot.mk (Rel R X) a fb : FreeAlgebra R X := Quot.mk (Rel R X) b ⊢ ↑(FreeAlgebra.liftAux R (↑F ∘ ι R)) (fa + fb) = ↑F (fa + fb) [PROOFSTEP] rw [AlgHom.map_add, AlgHom.map_add, ha, hb] [GOAL] case H.mk.mul R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a✝¹ a✝ : Pre R X a_ih✝¹ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝¹) = ↑F (Quot.mk (Rel R X) a✝¹) a_ih✝ : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a✝) = ↑F (Quot.mk (Rel R X) a✝) ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.mul a✝¹ a✝)) = ↑F (Quot.mk (Rel R X) (Pre.mul a✝¹ a✝)) [PROOFSTEP] case mul a b ha hb => let fa : FreeAlgebra R X := Quot.mk (Rel R X) a let fb : FreeAlgebra R X := Quot.mk (Rel R X) b change liftAux R (F ∘ ι R) (fa * fb) = F (fa * fb) rw [AlgHom.map_mul, AlgHom.map_mul, ha, hb] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a b : Pre R X ha : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a) = ↑F (Quot.mk (Rel R X) a) hb : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) b) = ↑F (Quot.mk (Rel R X) b) ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.mul a b)) = ↑F (Quot.mk (Rel R X) (Pre.mul a b)) [PROOFSTEP] case mul a b ha hb => let fa : FreeAlgebra R X := Quot.mk (Rel R X) a let fb : FreeAlgebra R X := Quot.mk (Rel R X) b change liftAux R (F ∘ ι R) (fa * fb) = F (fa * fb) rw [AlgHom.map_mul, AlgHom.map_mul, ha, hb] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a b : Pre R X ha : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a) = ↑F (Quot.mk (Rel R X) a) hb : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) b) = ↑F (Quot.mk (Rel R X) b) ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.mul a b)) = ↑F (Quot.mk (Rel R X) (Pre.mul a b)) [PROOFSTEP] let fa : FreeAlgebra R X := Quot.mk (Rel R X) a [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a b : Pre R X ha : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a) = ↑F (Quot.mk (Rel R X) a) hb : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) b) = ↑F (Quot.mk (Rel R X) b) fa : FreeAlgebra R X := Quot.mk (Rel R X) a ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.mul a b)) = ↑F (Quot.mk (Rel R X) (Pre.mul a b)) [PROOFSTEP] let fb : FreeAlgebra R X := Quot.mk (Rel R X) b [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a b : Pre R X ha : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a) = ↑F (Quot.mk (Rel R X) a) hb : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) b) = ↑F (Quot.mk (Rel R X) b) fa : FreeAlgebra R X := Quot.mk (Rel R X) a fb : FreeAlgebra R X := Quot.mk (Rel R X) b ⊢ ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) (Pre.mul a b)) = ↑F (Quot.mk (Rel R X) (Pre.mul a b)) [PROOFSTEP] change liftAux R (F ∘ ι R) (fa * fb) = F (fa * fb) [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A t : FreeAlgebra R X a b : Pre R X ha : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) a) = ↑F (Quot.mk (Rel R X) a) hb : ↑(FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F)) (Quot.mk (Rel R X) b) = ↑F (Quot.mk (Rel R X) b) fa : FreeAlgebra R X := Quot.mk (Rel R X) a fb : FreeAlgebra R X := Quot.mk (Rel R X) b ⊢ ↑(FreeAlgebra.liftAux R (↑F ∘ ι R)) (fa * fb) = ↑F (fa * fb) [PROOFSTEP] rw [AlgHom.map_mul, AlgHom.map_mul, ha, hb] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A ⊢ FreeAlgebra.liftAux R f = ↑(lift R) f [PROOFSTEP] rw [lift] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A ⊢ FreeAlgebra.liftAux R f = ↑{ toFun := FreeAlgebra.liftAux R, invFun := fun F => ↑F ∘ ι R, left_inv := (_ : ∀ (f : X → A), (fun F => ↑F ∘ ι R) (FreeAlgebra.liftAux R f) = f), right_inv := (_ : ∀ (F : FreeAlgebra R X →ₐ[R] A), FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F) = F) } f [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A ⊢ ↑(lift R).symm F = ↑F ∘ ι R [PROOFSTEP] rw [lift] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A F : FreeAlgebra R X →ₐ[R] A ⊢ ↑{ toFun := FreeAlgebra.liftAux R, invFun := fun F => ↑F ∘ ι R, left_inv := (_ : ∀ (f : X → A), (fun F => ↑F ∘ ι R) (FreeAlgebra.liftAux R f) = f), right_inv := (_ : ∀ (F : FreeAlgebra R X →ₐ[R] A), FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F) = F) }.symm F = ↑F ∘ ι R [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A ⊢ ↑(↑(lift R) f) ∘ ι R = f [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A x✝ : X ⊢ (↑(↑(lift R) f) ∘ ι R) x✝ = f x✝ [PROOFSTEP] rw [Function.comp_apply, ι_def, lift] [GOAL] case h R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A x✝ : X ⊢ ↑(↑{ toFun := FreeAlgebra.liftAux R, invFun := fun F => ↑F ∘ ι R, left_inv := (_ : ∀ (f : X → A), (fun F => ↑F ∘ ι R) (FreeAlgebra.liftAux R f) = f), right_inv := (_ : ∀ (F : FreeAlgebra R X →ₐ[R] A), FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F) = F) } f) (Quot.mk (Rel R X) (Pre.of x✝)) = f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A x : X ⊢ ↑(↑(lift R) f) (ι R x) = f x [PROOFSTEP] rw [ι_def, lift] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A x : X ⊢ ↑(↑{ toFun := FreeAlgebra.liftAux R, invFun := fun F => ↑F ∘ ι R, left_inv := (_ : ∀ (f : X → A), (fun F => ↑F ∘ ι R) (FreeAlgebra.liftAux R f) = f), right_inv := (_ : ∀ (F : FreeAlgebra R X →ₐ[R] A), FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F) = F) } f) (Quot.mk (Rel R X) (Pre.of x)) = f x [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A g : FreeAlgebra R X →ₐ[R] A ⊢ ↑g ∘ ι R = f ↔ g = ↑(lift R) f [PROOFSTEP] rw [← (lift R).symm_apply_eq, lift] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f : X → A g : FreeAlgebra R X →ₐ[R] A ⊢ ↑g ∘ ι R = f ↔ ↑{ toFun := FreeAlgebra.liftAux R, invFun := fun F => ↑F ∘ ι R, left_inv := (_ : ∀ (f : X → A), (fun F => ↑F ∘ ι R) (FreeAlgebra.liftAux R f) = f), right_inv := (_ : ∀ (F : FreeAlgebra R X →ₐ[R] A), FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F) = F) }.symm g = f [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A g : FreeAlgebra R X →ₐ[R] A ⊢ ↑(lift R) (↑g ∘ ι R) = g [PROOFSTEP] rw [← lift_symm_apply] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A g : FreeAlgebra R X →ₐ[R] A ⊢ ↑(lift R) (↑(lift R).symm g) = g [PROOFSTEP] exact (lift R).apply_symm_apply g [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f g : FreeAlgebra R X →ₐ[R] A w : ↑f ∘ ι R = ↑g ∘ ι R ⊢ f = g [PROOFSTEP] rw [← lift_symm_apply, ← lift_symm_apply] at w [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A f g : FreeAlgebra R X →ₐ[R] A w : ↑(lift R).symm f = ↑(lift R).symm g ⊢ f = g [PROOFSTEP] exact (lift R).symm.injective w [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A ⊢ AlgHom.comp (↑(lift R) fun x => ↑(MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x)) (↑(MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (↑FreeMonoid.lift (ι R))) = AlgHom.id R (MonoidAlgebra R (FreeMonoid X)) [PROOFSTEP] apply MonoidAlgebra.algHom_ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A ⊢ ∀ (x : FreeMonoid X), ↑(AlgHom.comp (↑(lift R) fun x => ↑(MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x)) (↑(MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (↑FreeMonoid.lift (ι R)))) (MonoidAlgebra.single x 1) = ↑(AlgHom.id R (MonoidAlgebra R (FreeMonoid X))) (MonoidAlgebra.single x 1) [PROOFSTEP] intro x [GOAL] case h R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A x : FreeMonoid X ⊢ ↑(AlgHom.comp (↑(lift R) fun x => ↑(MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x)) (↑(MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (↑FreeMonoid.lift (ι R)))) (MonoidAlgebra.single x 1) = ↑(AlgHom.id R (MonoidAlgebra R (FreeMonoid X))) (MonoidAlgebra.single x 1) [PROOFSTEP] refine FreeMonoid.recOn x ?_ ?_ [GOAL] case h.refine_1 R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A x : FreeMonoid X ⊢ ↑(AlgHom.comp (↑(lift R) fun x => ↑(MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x)) (↑(MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (↑FreeMonoid.lift (ι R)))) (MonoidAlgebra.single 1 1) = ↑(AlgHom.id R (MonoidAlgebra R (FreeMonoid X))) (MonoidAlgebra.single 1 1) [PROOFSTEP] simp [GOAL] case h.refine_1 R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A x : FreeMonoid X ⊢ 1 = MonoidAlgebra.single 1 1 [PROOFSTEP] rfl [GOAL] case h.refine_2 R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A x : FreeMonoid X ⊢ ∀ (x : X) (xs : FreeMonoid X), ↑(AlgHom.comp (↑(lift R) fun x => ↑(MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x)) (↑(MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (↑FreeMonoid.lift (ι R)))) (MonoidAlgebra.single xs 1) = ↑(AlgHom.id R (MonoidAlgebra R (FreeMonoid X))) (MonoidAlgebra.single xs 1) → ↑(AlgHom.comp (↑(lift R) fun x => ↑(MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x)) (↑(MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (↑FreeMonoid.lift (ι R)))) (MonoidAlgebra.single (FreeMonoid.of x * xs) 1) = ↑(AlgHom.id R (MonoidAlgebra R (FreeMonoid X))) (MonoidAlgebra.single (FreeMonoid.of x * xs) 1) [PROOFSTEP] intro x y ih [GOAL] case h.refine_2 R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A x✝ : FreeMonoid X x : X y : FreeMonoid X ih : ↑(AlgHom.comp (↑(lift R) fun x => ↑(MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x)) (↑(MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (↑FreeMonoid.lift (ι R)))) (MonoidAlgebra.single y 1) = ↑(AlgHom.id R (MonoidAlgebra R (FreeMonoid X))) (MonoidAlgebra.single y 1) ⊢ ↑(AlgHom.comp (↑(lift R) fun x => ↑(MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x)) (↑(MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (↑FreeMonoid.lift (ι R)))) (MonoidAlgebra.single (FreeMonoid.of x * y) 1) = ↑(AlgHom.id R (MonoidAlgebra R (FreeMonoid X))) (MonoidAlgebra.single (FreeMonoid.of x * y) 1) [PROOFSTEP] simp at ih [GOAL] case h.refine_2 R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A x✝ : FreeMonoid X x : X y : FreeMonoid X ih : ↑(↑(lift R) fun x => MonoidAlgebra.single (FreeMonoid.of x) 1) (↑(↑FreeMonoid.lift (ι R)) y) = MonoidAlgebra.single y 1 ⊢ ↑(AlgHom.comp (↑(lift R) fun x => ↑(MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x)) (↑(MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (↑FreeMonoid.lift (ι R)))) (MonoidAlgebra.single (FreeMonoid.of x * y) 1) = ↑(AlgHom.id R (MonoidAlgebra R (FreeMonoid X))) (MonoidAlgebra.single (FreeMonoid.of x * y) 1) [PROOFSTEP] simp [ih] [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A ⊢ AlgHom.comp (↑(MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (↑FreeMonoid.lift (ι R))) (↑(lift R) fun x => ↑(MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x)) = AlgHom.id R (FreeAlgebra R X) [PROOFSTEP] ext [GOAL] case w.h R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A x✝ : X ⊢ (↑(AlgHom.comp (↑(MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (↑FreeMonoid.lift (ι R))) (↑(lift R) fun x => ↑(MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x))) ∘ ι R) x✝ = (↑(AlgHom.id R (FreeAlgebra R X)) ∘ ι R) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommSemiring R X : Type u_2 A : Type u_3 inst✝¹ : Semiring A inst✝ : Algebra R A x : R ⊢ ↑algebraMapInv (↑(algebraMap R (FreeAlgebra R X)) x) = x [PROOFSTEP] simp [algebraMapInv] [GOAL] R : Type u_1 inst✝³ : CommSemiring R X : Type u_2 A : Type u_3 inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : Nontrivial R x y : X hoxy : ι R x = ι R y ⊢ ¬x = y → False [PROOFSTEP] classical exact fun hxy : x ≠ y ↦ let f : FreeAlgebra R X →ₐ[R] R := lift R fun z ↦ if x = z then (1 : R) else 0 have hfx1 : f (ι R x) = 1 := (lift_ι_apply _ _).trans <| if_pos rfl have hfy1 : f (ι R y) = 1 := hoxy ▸ hfx1 have hfy0 : f (ι R y) = 0 := (lift_ι_apply _ _).trans <| if_neg hxy one_ne_zero <| hfy1.symm.trans hfy0 [GOAL] R : Type u_1 inst✝³ : CommSemiring R X : Type u_2 A : Type u_3 inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : Nontrivial R x y : X hoxy : ι R x = ι R y ⊢ ¬x = y → False [PROOFSTEP] exact fun hxy : x ≠ y ↦ let f : FreeAlgebra R X →ₐ[R] R := lift R fun z ↦ if x = z then (1 : R) else 0 have hfx1 : f (ι R x) = 1 := (lift_ι_apply _ _).trans <| if_pos rfl have hfy1 : f (ι R y) = 1 := hoxy ▸ hfx1 have hfy0 : f (ι R y) = 0 := (lift_ι_apply _ _).trans <| if_neg hxy one_ne_zero <| hfy1.symm.trans hfy0 [GOAL] R : Type u_1 inst✝³ : CommSemiring R X : Type u_2 A : Type u_3 inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : Nontrivial R x : X r : R h : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r ⊢ False [PROOFSTEP] let f0 : FreeAlgebra R X →ₐ[R] R := lift R 0 [GOAL] R : Type u_1 inst✝³ : CommSemiring R X : Type u_2 A : Type u_3 inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : Nontrivial R x : X r : R h : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r f0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0 ⊢ False [PROOFSTEP] let f1 : FreeAlgebra R X →ₐ[R] R := lift R 1 [GOAL] R : Type u_1 inst✝³ : CommSemiring R X : Type u_2 A : Type u_3 inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : Nontrivial R x : X r : R h : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r f0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0 f1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1 ⊢ False [PROOFSTEP] have hf0 : f0 (ι R x) = 0 := lift_ι_apply _ _ [GOAL] R : Type u_1 inst✝³ : CommSemiring R X : Type u_2 A : Type u_3 inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : Nontrivial R x : X r : R h : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r f0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0 f1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1 hf0 : ↑f0 (ι R x) = 0 ⊢ False [PROOFSTEP] have hf1 : f1 (ι R x) = 1 := lift_ι_apply _ _ [GOAL] R : Type u_1 inst✝³ : CommSemiring R X : Type u_2 A : Type u_3 inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : Nontrivial R x : X r : R h : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r f0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0 f1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1 hf0 : ↑f0 (ι R x) = 0 hf1 : ↑f1 (ι R x) = 1 ⊢ False [PROOFSTEP] rw [h, f0.commutes, Algebra.id.map_eq_self] at hf0 [GOAL] R : Type u_1 inst✝³ : CommSemiring R X : Type u_2 A : Type u_3 inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : Nontrivial R x : X r : R h : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r f0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0 f1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1 hf0 : r = 0 hf1 : ↑f1 (ι R x) = 1 ⊢ False [PROOFSTEP] rw [h, f1.commutes, Algebra.id.map_eq_self] at hf1 [GOAL] R : Type u_1 inst✝³ : CommSemiring R X : Type u_2 A : Type u_3 inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : Nontrivial R x : X r : R h : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r f0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0 f1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1 hf0 : r = 0 hf1 : r = 1 ⊢ False [PROOFSTEP] exact zero_ne_one (hf0.symm.trans hf1) [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 C : FreeAlgebra R X → Prop h_grade0 : ∀ (r : R), C (↑(algebraMap R (FreeAlgebra R X)) r) h_grade1 : ∀ (x : X), C (ι R x) h_mul : ∀ (a b : FreeAlgebra R X), C a → C b → C (a * b) h_add : ∀ (a b : FreeAlgebra R X), C a → C b → C (a + b) a : FreeAlgebra R X ⊢ C a [PROOFSTEP] let s : Subalgebra R (FreeAlgebra R X) := { carrier := C mul_mem' := h_mul _ _ add_mem' := h_add _ _ algebraMap_mem' := h_grade0 } [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 C : FreeAlgebra R X → Prop h_grade0 : ∀ (r : R), C (↑(algebraMap R (FreeAlgebra R X)) r) h_grade1 : ∀ (x : X), C (ι R x) h_mul : ∀ (a b : FreeAlgebra R X), C a → C b → C (a * b) h_add : ∀ (a b : FreeAlgebra R X), C a → C b → C (a + b) a : FreeAlgebra R X s : Subalgebra R (FreeAlgebra R X) := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := C, mul_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a * b)) }, one_mem' := (_ : 1 ∈ C) }, add_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a + b)), zero_mem' := (_ : 0 ∈ C) }, algebraMap_mem' := h_grade0 } ⊢ C a [PROOFSTEP] let of : X → s := Subtype.coind (ι R) h_grade1 [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 C : FreeAlgebra R X → Prop h_grade0 : ∀ (r : R), C (↑(algebraMap R (FreeAlgebra R X)) r) h_grade1 : ∀ (x : X), C (ι R x) h_mul : ∀ (a b : FreeAlgebra R X), C a → C b → C (a * b) h_add : ∀ (a b : FreeAlgebra R X), C a → C b → C (a + b) a : FreeAlgebra R X s : Subalgebra R (FreeAlgebra R X) := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := C, mul_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a * b)) }, one_mem' := (_ : 1 ∈ C) }, add_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a + b)), zero_mem' := (_ : 0 ∈ C) }, algebraMap_mem' := h_grade0 } of : X → { x // x ∈ s } := Subtype.coind (ι R) h_grade1 ⊢ C a [PROOFSTEP] have of_id : AlgHom.id R (FreeAlgebra R X) = s.val.comp (lift R of) := by ext simp [Subtype.coind] -- finding a proof is finding an element of the subalgebra [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 C : FreeAlgebra R X → Prop h_grade0 : ∀ (r : R), C (↑(algebraMap R (FreeAlgebra R X)) r) h_grade1 : ∀ (x : X), C (ι R x) h_mul : ∀ (a b : FreeAlgebra R X), C a → C b → C (a * b) h_add : ∀ (a b : FreeAlgebra R X), C a → C b → C (a + b) a : FreeAlgebra R X s : Subalgebra R (FreeAlgebra R X) := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := C, mul_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a * b)) }, one_mem' := (_ : 1 ∈ C) }, add_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a + b)), zero_mem' := (_ : 0 ∈ C) }, algebraMap_mem' := h_grade0 } of : X → { x // x ∈ s } := Subtype.coind (ι R) h_grade1 ⊢ AlgHom.id R (FreeAlgebra R X) = AlgHom.comp (Subalgebra.val s) (↑(lift R) of) [PROOFSTEP] ext [GOAL] case w.h R : Type u_1 inst✝ : CommSemiring R X : Type u_2 C : FreeAlgebra R X → Prop h_grade0 : ∀ (r : R), C (↑(algebraMap R (FreeAlgebra R X)) r) h_grade1 : ∀ (x : X), C (ι R x) h_mul : ∀ (a b : FreeAlgebra R X), C a → C b → C (a * b) h_add : ∀ (a b : FreeAlgebra R X), C a → C b → C (a + b) a : FreeAlgebra R X s : Subalgebra R (FreeAlgebra R X) := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := C, mul_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a * b)) }, one_mem' := (_ : 1 ∈ C) }, add_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a + b)), zero_mem' := (_ : 0 ∈ C) }, algebraMap_mem' := h_grade0 } of : X → { x // x ∈ s } := Subtype.coind (ι R) h_grade1 x✝ : X ⊢ (↑(AlgHom.id R (FreeAlgebra R X)) ∘ ι R) x✝ = (↑(AlgHom.comp (Subalgebra.val s) (↑(lift R) of)) ∘ ι R) x✝ [PROOFSTEP] simp [Subtype.coind] -- finding a proof is finding an element of the subalgebra [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 C : FreeAlgebra R X → Prop h_grade0 : ∀ (r : R), C (↑(algebraMap R (FreeAlgebra R X)) r) h_grade1 : ∀ (x : X), C (ι R x) h_mul : ∀ (a b : FreeAlgebra R X), C a → C b → C (a * b) h_add : ∀ (a b : FreeAlgebra R X), C a → C b → C (a + b) a : FreeAlgebra R X s : Subalgebra R (FreeAlgebra R X) := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := C, mul_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a * b)) }, one_mem' := (_ : 1 ∈ C) }, add_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a + b)), zero_mem' := (_ : 0 ∈ C) }, algebraMap_mem' := h_grade0 } of : X → { x // x ∈ s } := Subtype.coind (ι R) h_grade1 of_id : AlgHom.id R (FreeAlgebra R X) = AlgHom.comp (Subalgebra.val s) (↑(lift R) of) ⊢ C a [PROOFSTEP] suffices : a = lift R of a [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 C : FreeAlgebra R X → Prop h_grade0 : ∀ (r : R), C (↑(algebraMap R (FreeAlgebra R X)) r) h_grade1 : ∀ (x : X), C (ι R x) h_mul : ∀ (a b : FreeAlgebra R X), C a → C b → C (a * b) h_add : ∀ (a b : FreeAlgebra R X), C a → C b → C (a + b) a : FreeAlgebra R X s : Subalgebra R (FreeAlgebra R X) := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := C, mul_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a * b)) }, one_mem' := (_ : 1 ∈ C) }, add_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a + b)), zero_mem' := (_ : 0 ∈ C) }, algebraMap_mem' := h_grade0 } of : X → { x // x ∈ s } := Subtype.coind (ι R) h_grade1 of_id : AlgHom.id R (FreeAlgebra R X) = AlgHom.comp (Subalgebra.val s) (↑(lift R) of) this : a = ↑(↑(↑(lift R) of) a) ⊢ C a [PROOFSTEP] rw [this] [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 C : FreeAlgebra R X → Prop h_grade0 : ∀ (r : R), C (↑(algebraMap R (FreeAlgebra R X)) r) h_grade1 : ∀ (x : X), C (ι R x) h_mul : ∀ (a b : FreeAlgebra R X), C a → C b → C (a * b) h_add : ∀ (a b : FreeAlgebra R X), C a → C b → C (a + b) a : FreeAlgebra R X s : Subalgebra R (FreeAlgebra R X) := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := C, mul_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a * b)) }, one_mem' := (_ : 1 ∈ C) }, add_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a + b)), zero_mem' := (_ : 0 ∈ C) }, algebraMap_mem' := h_grade0 } of : X → { x // x ∈ s } := Subtype.coind (ι R) h_grade1 of_id : AlgHom.id R (FreeAlgebra R X) = AlgHom.comp (Subalgebra.val s) (↑(lift R) of) this : a = ↑(↑(↑(lift R) of) a) ⊢ C ↑(↑(↑(lift R) of) a) [PROOFSTEP] exact Subtype.prop (lift R of a) [GOAL] case this R : Type u_1 inst✝ : CommSemiring R X : Type u_2 C : FreeAlgebra R X → Prop h_grade0 : ∀ (r : R), C (↑(algebraMap R (FreeAlgebra R X)) r) h_grade1 : ∀ (x : X), C (ι R x) h_mul : ∀ (a b : FreeAlgebra R X), C a → C b → C (a * b) h_add : ∀ (a b : FreeAlgebra R X), C a → C b → C (a + b) a : FreeAlgebra R X s : Subalgebra R (FreeAlgebra R X) := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := C, mul_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a * b)) }, one_mem' := (_ : 1 ∈ C) }, add_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a + b)), zero_mem' := (_ : 0 ∈ C) }, algebraMap_mem' := h_grade0 } of : X → { x // x ∈ s } := Subtype.coind (ι R) h_grade1 of_id : AlgHom.id R (FreeAlgebra R X) = AlgHom.comp (Subalgebra.val s) (↑(lift R) of) ⊢ a = ↑(↑(↑(lift R) of) a) [PROOFSTEP] simp [AlgHom.ext_iff] at of_id [GOAL] case this R : Type u_1 inst✝ : CommSemiring R X : Type u_2 C : FreeAlgebra R X → Prop h_grade0 : ∀ (r : R), C (↑(algebraMap R (FreeAlgebra R X)) r) h_grade1 : ∀ (x : X), C (ι R x) h_mul : ∀ (a b : FreeAlgebra R X), C a → C b → C (a * b) h_add : ∀ (a b : FreeAlgebra R X), C a → C b → C (a + b) a : FreeAlgebra R X s : Subalgebra R (FreeAlgebra R X) := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := C, mul_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a * b)) }, one_mem' := (_ : 1 ∈ C) }, add_mem' := (_ : ∀ {a b : FreeAlgebra R X}, C a → C b → C (a + b)), zero_mem' := (_ : 0 ∈ C) }, algebraMap_mem' := h_grade0 } of : X → { x // x ∈ s } := Subtype.coind (ι R) h_grade1 of_id : ∀ (x : FreeAlgebra R X), x = ↑(↑(↑(lift R) (Subtype.coind (ι R) h_grade1)) x) ⊢ a = ↑(↑(↑(lift R) of) a) [PROOFSTEP] exact of_id a
{"mathlib_filename": "Mathlib.Algebra.FreeAlgebra", "llama_tokens": 45849}
[GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G ⊢ x /ᵒᶠ 0 = x [PROOFSTEP] refine Finsupp.ext fun _ => ?_ -- porting note: `ext` doesn't work [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G x✝ : G ⊢ ↑(x /ᵒᶠ 0) x✝ = ↑x x✝ [PROOFSTEP] simp only [AddMonoidAlgebra.divOf_apply, zero_add] [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G a b : G ⊢ x /ᵒᶠ (a + b) = x /ᵒᶠ a /ᵒᶠ b [PROOFSTEP] refine Finsupp.ext fun _ => ?_ -- porting note: `ext` doesn't work [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G a b x✝ : G ⊢ ↑(x /ᵒᶠ (a + b)) x✝ = ↑(x /ᵒᶠ a /ᵒᶠ b) x✝ [PROOFSTEP] simp only [AddMonoidAlgebra.divOf_apply, add_assoc] [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G a : G x : AddMonoidAlgebra k G ⊢ of' k G a * x /ᵒᶠ a = x [PROOFSTEP] refine Finsupp.ext fun _ => ?_ -- porting note: `ext` doesn't work [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G a : G x : AddMonoidAlgebra k G x✝ : G ⊢ ↑(of' k G a * x /ᵒᶠ a) x✝ = ↑x x✝ [PROOFSTEP] rw [AddMonoidAlgebra.divOf_apply, of'_apply, single_mul_apply_aux, one_mul] [GOAL] case H k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G a : G x : AddMonoidAlgebra k G x✝ : G ⊢ ∀ (a_1 : G), a + a_1 = a + x✝ ↔ a_1 = x✝ [PROOFSTEP] intro c [GOAL] case H k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G a : G x : AddMonoidAlgebra k G x✝ c : G ⊢ a + c = a + x✝ ↔ c = x✝ [PROOFSTEP] exact add_right_inj _ [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G a : G ⊢ x * of' k G a /ᵒᶠ a = x [PROOFSTEP] refine Finsupp.ext fun _ => ?_ -- porting note: `ext` doesn't work [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G a x✝ : G ⊢ ↑(x * of' k G a /ᵒᶠ a) x✝ = ↑x x✝ [PROOFSTEP] rw [AddMonoidAlgebra.divOf_apply, of'_apply, mul_single_apply_aux, mul_one] [GOAL] case H k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G a x✝ : G ⊢ ∀ (a_1 : G), a_1 + a = a + x✝ ↔ a_1 = x✝ [PROOFSTEP] intro c [GOAL] case H k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G a x✝ c : G ⊢ c + a = a + x✝ ↔ c = x✝ [PROOFSTEP] rw [add_comm] [GOAL] case H k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G a x✝ c : G ⊢ a + c = a + x✝ ↔ c = x✝ [PROOFSTEP] exact add_right_inj _ [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G a : G ⊢ of' k G a /ᵒᶠ a = 1 [PROOFSTEP] simpa only [one_mul] using mul_of'_divOf (1 : AddMonoidAlgebra k G) a [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g g' : G h : ∃ d, g' = g + d ⊢ ¬¬∃ g₂, g' = g + g₂ [PROOFSTEP] rwa [Classical.not_not] [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G g : G x : AddMonoidAlgebra k G ⊢ of' k G g * x %ᵒᶠ g = 0 [PROOFSTEP] refine Finsupp.ext fun g' => ?_ -- porting note: `ext g'` doesn't work [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G g : G x : AddMonoidAlgebra k G g' : G ⊢ ↑(of' k G g * x %ᵒᶠ g) g' = ↑0 g' [PROOFSTEP] rw [Finsupp.zero_apply] [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G g : G x : AddMonoidAlgebra k G g' : G ⊢ ↑(of' k G g * x %ᵒᶠ g) g' = 0 [PROOFSTEP] obtain ⟨d, rfl⟩ | h := em (∃ d, g' = g + d) [GOAL] case inl.intro k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G g : G x : AddMonoidAlgebra k G d : G ⊢ ↑(of' k G g * x %ᵒᶠ g) (g + d) = 0 [PROOFSTEP] rw [modOf_apply_self_add] [GOAL] case inr k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G g : G x : AddMonoidAlgebra k G g' : G h : ¬∃ d, g' = g + d ⊢ ↑(of' k G g * x %ᵒᶠ g) g' = 0 [PROOFSTEP] rw [modOf_apply_of_not_exists_add _ _ _ h, of'_apply, single_mul_apply_of_not_exists_add _ _ h] [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g : G ⊢ x * of' k G g %ᵒᶠ g = 0 [PROOFSTEP] refine Finsupp.ext fun g' => ?_ -- porting note: `ext g'` doesn't work [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g g' : G ⊢ ↑(x * of' k G g %ᵒᶠ g) g' = ↑0 g' [PROOFSTEP] rw [Finsupp.zero_apply] [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g g' : G ⊢ ↑(x * of' k G g %ᵒᶠ g) g' = 0 [PROOFSTEP] obtain ⟨d, rfl⟩ | h := em (∃ d, g' = g + d) [GOAL] case inl.intro k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g d : G ⊢ ↑(x * of' k G g %ᵒᶠ g) (g + d) = 0 [PROOFSTEP] rw [modOf_apply_self_add] [GOAL] case inr k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g g' : G h : ¬∃ d, g' = g + d ⊢ ↑(x * of' k G g %ᵒᶠ g) g' = 0 [PROOFSTEP] rw [modOf_apply_of_not_exists_add _ _ _ h, of'_apply, mul_single_apply_of_not_exists_add] [GOAL] case inr.h k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g g' : G h : ¬∃ d, g' = g + d ⊢ ¬∃ d, g' = d + g [PROOFSTEP] simpa only [add_comm] using h [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G g : G ⊢ of' k G g %ᵒᶠ g = 0 [PROOFSTEP] simpa only [one_mul] using mul_of'_modOf (1 : AddMonoidAlgebra k G) g [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g : G ⊢ of' k G g * (x /ᵒᶠ g) + x %ᵒᶠ g = x [PROOFSTEP] refine Finsupp.ext fun g' => ?_ -- porting note: `ext` doesn't work [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g g' : G ⊢ ↑(of' k G g * (x /ᵒᶠ g) + x %ᵒᶠ g) g' = ↑x g' [PROOFSTEP] rw [Finsupp.add_apply] -- porting note: changed from `simp_rw` which can't see through the type [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g g' : G ⊢ ↑(of' k G g * (x /ᵒᶠ g)) g' + ↑(x %ᵒᶠ g) g' = ↑x g' [PROOFSTEP] obtain ⟨d, rfl⟩ | h := em (∃ d, g' = g + d) [GOAL] case inl.intro k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g d : G ⊢ ↑(of' k G g * (x /ᵒᶠ g)) (g + d) + ↑(x %ᵒᶠ g) (g + d) = ↑x (g + d) case inr k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g g' : G h : ¬∃ d, g' = g + d ⊢ ↑(of' k G g * (x /ᵒᶠ g)) g' + ↑(x %ᵒᶠ g) g' = ↑x g' [PROOFSTEP] swap [GOAL] case inr k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g g' : G h : ¬∃ d, g' = g + d ⊢ ↑(of' k G g * (x /ᵒᶠ g)) g' + ↑(x %ᵒᶠ g) g' = ↑x g' [PROOFSTEP] rw [modOf_apply_of_not_exists_add x _ _ h, of'_apply, single_mul_apply_of_not_exists_add _ _ h, zero_add] [GOAL] case inl.intro k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g d : G ⊢ ↑(of' k G g * (x /ᵒᶠ g)) (g + d) + ↑(x %ᵒᶠ g) (g + d) = ↑x (g + d) [PROOFSTEP] rw [modOf_apply_self_add, add_zero] [GOAL] case inl.intro k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g d : G ⊢ ↑(of' k G g * (x /ᵒᶠ g)) (g + d) = ↑x (g + d) [PROOFSTEP] rw [of'_apply, single_mul_apply_aux _ _ _, one_mul, divOf_apply] [GOAL] case inl.intro.H k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g d : G ⊢ ∀ (a : G), g + a = g + d ↔ a = d [PROOFSTEP] intro a [GOAL] case inl.intro.H k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g d a : G ⊢ g + a = g + d ↔ a = d [PROOFSTEP] exact add_right_inj _ [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g : G ⊢ x %ᵒᶠ g + of' k G g * (x /ᵒᶠ g) = x [PROOFSTEP] rw [add_comm, divOf_add_modOf] [GOAL] k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g : G ⊢ of' k G g ∣ x ↔ x %ᵒᶠ g = 0 [PROOFSTEP] constructor [GOAL] case mp k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g : G ⊢ of' k G g ∣ x → x %ᵒᶠ g = 0 [PROOFSTEP] rintro ⟨x, rfl⟩ [GOAL] case mp.intro k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G g : G x : AddMonoidAlgebra k G ⊢ of' k G g * x %ᵒᶠ g = 0 [PROOFSTEP] rw [of'_mul_modOf] [GOAL] case mpr k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g : G ⊢ x %ᵒᶠ g = 0 → of' k G g ∣ x [PROOFSTEP] intro h [GOAL] case mpr k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g : G h : x %ᵒᶠ g = 0 ⊢ of' k G g ∣ x [PROOFSTEP] rw [← divOf_add_modOf x g, h, add_zero] [GOAL] case mpr k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : AddMonoidAlgebra k G g : G h : x %ᵒᶠ g = 0 ⊢ of' k G g ∣ of' k G g * (x /ᵒᶠ g) [PROOFSTEP] exact dvd_mul_right _ _
{"mathlib_filename": "Mathlib.Algebra.MonoidAlgebra.Division", "llama_tokens": 5156}
[GOAL] β : Type u_1 f : β → ℕ s : Finset β x : β hx : x ∈ s hfz : f x ≠ 0 ⊢ (gcd s fun b => f b / gcd s f) = 1 [PROOFSTEP] obtain ⟨g, he, hg⟩ := Finset.extract_gcd f ⟨x, hx⟩ [GOAL] case intro.intro β : Type u_1 f : β → ℕ s : Finset β x : β hx : x ∈ s hfz : f x ≠ 0 g : β → ℕ he : ∀ (b : β), b ∈ s → f b = gcd s f * g b hg : gcd s g = 1 ⊢ (gcd s fun b => f b / gcd s f) = 1 [PROOFSTEP] refine' (Finset.gcd_congr rfl fun a ha => _).trans hg [GOAL] case intro.intro β : Type u_1 f : β → ℕ s : Finset β x : β hx : x ∈ s hfz : f x ≠ 0 g : β → ℕ he : ∀ (b : β), b ∈ s → f b = gcd s f * g b hg : gcd s g = 1 a : β ha : a ∈ s ⊢ f a / gcd s f = g a [PROOFSTEP] rw [he a ha, Nat.mul_div_cancel_left] [GOAL] case intro.intro.H β : Type u_1 f : β → ℕ s : Finset β x : β hx : x ∈ s hfz : f x ≠ 0 g : β → ℕ he : ∀ (b : β), b ∈ s → f b = gcd s f * g b hg : gcd s g = 1 a : β ha : a ∈ s ⊢ 0 < gcd s f [PROOFSTEP] exact Nat.pos_of_ne_zero (mt Finset.gcd_eq_zero_iff.1 fun h => hfz <| h x hx) [GOAL] β : Type u_1 f : β → ℤ s : Finset β x : β hx : x ∈ s hfz : f x ≠ 0 ⊢ (gcd s fun b => f b / gcd s f) = 1 [PROOFSTEP] obtain ⟨g, he, hg⟩ := Finset.extract_gcd f ⟨x, hx⟩ [GOAL] case intro.intro β : Type u_1 f : β → ℤ s : Finset β x : β hx : x ∈ s hfz : f x ≠ 0 g : β → ℤ he : ∀ (b : β), b ∈ s → f b = gcd s f * g b hg : gcd s g = 1 ⊢ (gcd s fun b => f b / gcd s f) = 1 [PROOFSTEP] refine' (Finset.gcd_congr rfl fun a ha => _).trans hg [GOAL] case intro.intro β : Type u_1 f : β → ℤ s : Finset β x : β hx : x ∈ s hfz : f x ≠ 0 g : β → ℤ he : ∀ (b : β), b ∈ s → f b = gcd s f * g b hg : gcd s g = 1 a : β ha : a ∈ s ⊢ f a / gcd s f = g a [PROOFSTEP] rw [he a ha, Int.mul_ediv_cancel_left] [GOAL] case intro.intro.H β : Type u_1 f : β → ℤ s : Finset β x : β hx : x ∈ s hfz : f x ≠ 0 g : β → ℤ he : ∀ (b : β), b ∈ s → f b = gcd s f * g b hg : gcd s g = 1 a : β ha : a ∈ s ⊢ gcd s f ≠ 0 [PROOFSTEP] exact mt Finset.gcd_eq_zero_iff.1 fun h => hfz <| h x hx [GOAL] K : Type u_1 inst✝ : Field K β : Type u_2 f : β → Polynomial K s : Finset β x : β hx : x ∈ s hfz : f x ≠ 0 ⊢ (gcd s fun b => f b / gcd s f) = 1 [PROOFSTEP] obtain ⟨g, he, hg⟩ := Finset.extract_gcd f ⟨x, hx⟩ [GOAL] case intro.intro K : Type u_1 inst✝ : Field K β : Type u_2 f : β → Polynomial K s : Finset β x : β hx : x ∈ s hfz : f x ≠ 0 g : β → Polynomial K he : ∀ (b : β), b ∈ s → f b = gcd s f * g b hg : gcd s g = 1 ⊢ (gcd s fun b => f b / gcd s f) = 1 [PROOFSTEP] refine' (Finset.gcd_congr rfl fun a ha => _).trans hg [GOAL] case intro.intro K : Type u_1 inst✝ : Field K β : Type u_2 f : β → Polynomial K s : Finset β x : β hx : x ∈ s hfz : f x ≠ 0 g : β → Polynomial K he : ∀ (b : β), b ∈ s → f b = gcd s f * g b hg : gcd s g = 1 a : β ha : a ∈ s ⊢ f a / gcd s f = g a [PROOFSTEP] rw [he a ha, EuclideanDomain.mul_div_cancel_left] [GOAL] case intro.intro.a0 K : Type u_1 inst✝ : Field K β : Type u_2 f : β → Polynomial K s : Finset β x : β hx : x ∈ s hfz : f x ≠ 0 g : β → Polynomial K he : ∀ (b : β), b ∈ s → f b = gcd s f * g b hg : gcd s g = 1 a : β ha : a ∈ s ⊢ gcd s f ≠ 0 [PROOFSTEP] exact mt Finset.gcd_eq_zero_iff.1 fun h => hfz <| h x hx
{"mathlib_filename": "Mathlib.Algebra.GCDMonoid.Div", "llama_tokens": 1787}
[GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝¹ : Semiring R inst✝ : CommRing S w x y z : S ⊢ ↑C w * (X - ↑C x) * (X - ↑C y) * (X - ↑C z) = toPoly { a := w, b := w * -(x + y + z), c := w * (x * y + x * z + y * z), d := w * -(x * y * z) } [PROOFSTEP] simp only [toPoly, C_neg, C_add, C_mul] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝¹ : Semiring R inst✝ : CommRing S w x y z : S ⊢ ↑C w * (X - ↑C x) * (X - ↑C y) * (X - ↑C z) = ↑C w * X ^ 3 + ↑C w * -(↑C x + ↑C y + ↑C z) * X ^ 2 + ↑C w * (↑C x * ↑C y + ↑C x * ↑C z + ↑C y * ↑C z) * X + ↑C w * -(↑C x * ↑C y * ↑C z) [PROOFSTEP] ring1 [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝¹ : Semiring R inst✝ : CommRing S x y z : S ⊢ (X - ↑C x) * (X - ↑C y) * (X - ↑C z) = toPoly { a := 1, b := -(x + y + z), c := x * y + x * z + y * z, d := -(x * y * z) } [PROOFSTEP] rw [← one_mul <| X - C x, ← C_1, C_mul_prod_X_sub_C_eq, one_mul, one_mul, one_mul] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ⊢ (∀ (n : ℕ), n > 3 → coeff (toPoly P) n = 0) ∧ coeff (toPoly P) 3 = P.a ∧ coeff (toPoly P) 2 = P.b ∧ coeff (toPoly P) 1 = P.c ∧ coeff (toPoly P) 0 = P.d [PROOFSTEP] simp only [toPoly, coeff_add, coeff_C, coeff_C_mul_X, coeff_C_mul_X_pow] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ⊢ (∀ (n : ℕ), n > 3 → ((((if n = 3 then P.a else 0) + if n = 2 then P.b else 0) + if n = 1 then P.c else 0) + if n = 0 then P.d else 0) = 0) ∧ ((((if True then P.a else 0) + if False then P.b else 0) + if False then P.c else 0) + if False then P.d else 0) = P.a ∧ ((((if False then P.a else 0) + if True then P.b else 0) + if False then P.c else 0) + if False then P.d else 0) = P.b ∧ ((((if False then P.a else 0) + if False then P.b else 0) + if True then P.c else 0) + if False then P.d else 0) = P.c ∧ ((((if False then P.a else 0) + if False then P.b else 0) + if False then P.c else 0) + if True then P.d else 0) = P.d [PROOFSTEP] norm_num [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ⊢ ∀ (n : ℕ), 3 < n → ((((if n = 3 then P.a else 0) + if n = 2 then P.b else 0) + if n = 1 then P.c else 0) + if n = 0 then P.d else 0) = 0 [PROOFSTEP] intro n hn [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ((((if n = 3 then P.a else 0) + if n = 2 then P.b else 0) + if n = 1 then P.c else 0) + if n = 0 then P.d else 0) = 0 [PROOFSTEP] repeat' rw [if_neg] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ((((if n = 3 then P.a else 0) + if n = 2 then P.b else 0) + if n = 1 then P.c else 0) + if n = 0 then P.d else 0) = 0 [PROOFSTEP] rw [if_neg] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ (((0 + if n = 2 then P.b else 0) + if n = 1 then P.c else 0) + if n = 0 then P.d else 0) = 0 [PROOFSTEP] rw [if_neg] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ((0 + 0 + if n = 1 then P.c else 0) + if n = 0 then P.d else 0) = 0 [PROOFSTEP] rw [if_neg] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ (0 + 0 + 0 + if n = 0 then P.d else 0) = 0 [PROOFSTEP] rw [if_neg] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ 0 + 0 + 0 + 0 = 0 [PROOFSTEP] rw [if_neg] [GOAL] case hnc R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ¬n = 0 [PROOFSTEP] rw [if_neg] [GOAL] case hnc R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ¬n = 1 [PROOFSTEP] rw [if_neg] [GOAL] case hnc R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ¬n = 2 [PROOFSTEP] rw [if_neg] [GOAL] case hnc R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ¬n = 3 [PROOFSTEP] rw [if_neg] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ 0 + 0 + 0 + 0 = 0 case hnc R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ¬n = 0 case hnc R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ¬n = 1 case hnc R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ¬n = 2 case hnc R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ¬n = 3 [PROOFSTEP] any_goals linarith only [hn] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ 0 + 0 + 0 + 0 = 0 [PROOFSTEP] linarith only [hn] [GOAL] case hnc R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ¬n = 0 [PROOFSTEP] linarith only [hn] [GOAL] case hnc R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ¬n = 1 [PROOFSTEP] linarith only [hn] [GOAL] case hnc R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ¬n = 2 [PROOFSTEP] linarith only [hn] [GOAL] case hnc R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ ¬n = 3 [PROOFSTEP] linarith only [hn] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ 0 + 0 + 0 + 0 = 0 [PROOFSTEP] repeat' rw [zero_add] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ 0 + 0 + 0 + 0 = 0 [PROOFSTEP] rw [zero_add] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ 0 + 0 + 0 = 0 [PROOFSTEP] rw [zero_add] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R n : ℕ hn : 3 < n ⊢ 0 + 0 = 0 [PROOFSTEP] rw [zero_add] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R h : toPoly P = toPoly Q ⊢ P.a = Q.a [PROOFSTEP] rw [← coeff_eq_a, h, coeff_eq_a] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R h : toPoly P = toPoly Q ⊢ P.b = Q.b [PROOFSTEP] rw [← coeff_eq_b, h, coeff_eq_b] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R h : toPoly P = toPoly Q ⊢ P.c = Q.c [PROOFSTEP] rw [← coeff_eq_c, h, coeff_eq_c] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R h : toPoly P = toPoly Q ⊢ P.d = Q.d [PROOFSTEP] rw [← coeff_eq_d, h, coeff_eq_d] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 ⊢ toPoly P = ↑C P.b * X ^ 2 + ↑C P.c * X + ↑C P.d [PROOFSTEP] rw [toPoly, ha, C_0, zero_mul, zero_add] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 ⊢ toPoly P = ↑C P.c * X + ↑C P.d [PROOFSTEP] rw [of_a_eq_zero ha, hb, C_0, zero_mul, zero_add] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 hc : P.c = 0 ⊢ toPoly P = ↑C P.d [PROOFSTEP] rw [of_b_eq_zero ha hb, hc, C_0, zero_mul, zero_add] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 hc : P.c = 0 hd : P.d = 0 ⊢ toPoly P = 0 [PROOFSTEP] rw [of_c_eq_zero ha hb hc, hd, C_0] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P✝ Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R P : Cubic R ⊢ toPoly P = 0 ↔ P = 0 [PROOFSTEP] rw [← zero, toPoly_injective] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R h0 : P.a ≠ 0 ∨ P.b ≠ 0 ∨ P.c ≠ 0 ∨ P.d ≠ 0 ⊢ toPoly P ≠ 0 [PROOFSTEP] contrapose! h0 [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R h0 : toPoly P = 0 ⊢ P.a = 0 ∧ P.b = 0 ∧ P.c = 0 ∧ P.d = 0 [PROOFSTEP] rw [(toPoly_eq_zero_iff P).mp h0] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R h0 : toPoly P = 0 ⊢ 0.a = 0 ∧ 0.b = 0 ∧ 0.c = 0 ∧ 0.d = 0 [PROOFSTEP] exact ⟨rfl, rfl, rfl, rfl⟩ [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b ≠ 0 ⊢ leadingCoeff (toPoly P) = P.b [PROOFSTEP] rw [of_a_eq_zero ha, leadingCoeff_quadratic hb] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 hc : P.c ≠ 0 ⊢ leadingCoeff (toPoly P) = P.c [PROOFSTEP] rw [of_b_eq_zero ha hb, leadingCoeff_linear hc] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 hc : P.c = 0 ⊢ leadingCoeff (toPoly P) = P.d [PROOFSTEP] rw [of_c_eq_zero ha hb hc, leadingCoeff_C] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 1 ⊢ Monic (toPoly P) [PROOFSTEP] nontriviality R [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 1 ✝ : Nontrivial R ⊢ Monic (toPoly P) [PROOFSTEP] rw [Monic, leadingCoeff_of_a_ne_zero (ha ▸ one_ne_zero), ha] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 1 ⊢ Monic (toPoly P) [PROOFSTEP] nontriviality R [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 1 ✝ : Nontrivial R ⊢ Monic (toPoly P) [PROOFSTEP] rw [Monic, leadingCoeff_of_b_ne_zero ha (hb ▸ one_ne_zero), hb] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 hc : P.c = 1 ⊢ Monic (toPoly P) [PROOFSTEP] nontriviality R [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 hc : P.c = 1 ✝ : Nontrivial R ⊢ Monic (toPoly P) [PROOFSTEP] rw [Monic, leadingCoeff_of_c_ne_zero ha hb (hc ▸ one_ne_zero), hc] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 hc : P.c = 0 hd : P.d = 1 ⊢ Monic (toPoly P) [PROOFSTEP] rw [Monic, leadingCoeff_of_c_eq_zero ha hb hc, hd] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P✝ Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R P : Cubic R ⊢ (fun f => { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) ((fun P => { val := toPoly P, property := (_ : degree (↑C P.a * X ^ 3 + ↑C P.b * X ^ 2 + ↑C P.c * X + ↑C P.d) ≤ 3) }) P) = P [PROOFSTEP] ext [GOAL] case a R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P✝ Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R P : Cubic R ⊢ ((fun f => { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) ((fun P => { val := toPoly P, property := (_ : degree (↑C P.a * X ^ 3 + ↑C P.b * X ^ 2 + ↑C P.c * X + ↑C P.d) ≤ 3) }) P)).a = P.a [PROOFSTEP] simp only [Subtype.coe_mk, coeffs] [GOAL] case b R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P✝ Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R P : Cubic R ⊢ ((fun f => { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) ((fun P => { val := toPoly P, property := (_ : degree (↑C P.a * X ^ 3 + ↑C P.b * X ^ 2 + ↑C P.c * X + ↑C P.d) ≤ 3) }) P)).b = P.b [PROOFSTEP] simp only [Subtype.coe_mk, coeffs] [GOAL] case c R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P✝ Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R P : Cubic R ⊢ ((fun f => { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) ((fun P => { val := toPoly P, property := (_ : degree (↑C P.a * X ^ 3 + ↑C P.b * X ^ 2 + ↑C P.c * X + ↑C P.d) ≤ 3) }) P)).c = P.c [PROOFSTEP] simp only [Subtype.coe_mk, coeffs] [GOAL] case d R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P✝ Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R P : Cubic R ⊢ ((fun f => { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) ((fun P => { val := toPoly P, property := (_ : degree (↑C P.a * X ^ 3 + ↑C P.b * X ^ 2 + ↑C P.c * X + ↑C P.d) ≤ 3) }) P)).d = P.d [PROOFSTEP] simp only [Subtype.coe_mk, coeffs] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ (fun P => { val := toPoly P, property := (_ : degree (↑C P.a * X ^ 3 + ↑C P.b * X ^ 2 + ↑C P.c * X + ↑C P.d) ≤ 3) }) ((fun f => { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) f) = f [PROOFSTEP] ext (_ | _ | _ | _ | n) [GOAL] case a.a.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (↑((fun P => { val := toPoly P, property := (_ : degree (↑C P.a * X ^ 3 + ↑C P.b * X ^ 2 + ↑C P.c * X + ↑C P.d) ≤ 3) }) ((fun f => { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) f))) Nat.zero = coeff (↑f) Nat.zero [PROOFSTEP] simp only [Nat.zero_eq, Nat.succ_eq_add_one] [GOAL] case a.a.succ.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (↑((fun P => { val := toPoly P, property := (_ : degree (↑C P.a * X ^ 3 + ↑C P.b * X ^ 2 + ↑C P.c * X + ↑C P.d) ≤ 3) }) ((fun f => { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) f))) (Nat.succ Nat.zero) = coeff (↑f) (Nat.succ Nat.zero) [PROOFSTEP] simp only [Nat.zero_eq, Nat.succ_eq_add_one] [GOAL] case a.a.succ.succ.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (↑((fun P => { val := toPoly P, property := (_ : degree (↑C P.a * X ^ 3 + ↑C P.b * X ^ 2 + ↑C P.c * X + ↑C P.d) ≤ 3) }) ((fun f => { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) f))) (Nat.succ (Nat.succ Nat.zero)) = coeff (↑f) (Nat.succ (Nat.succ Nat.zero)) [PROOFSTEP] simp only [Nat.zero_eq, Nat.succ_eq_add_one] [GOAL] case a.a.succ.succ.succ.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (↑((fun P => { val := toPoly P, property := (_ : degree (↑C P.a * X ^ 3 + ↑C P.b * X ^ 2 + ↑C P.c * X + ↑C P.d) ≤ 3) }) ((fun f => { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) f))) (Nat.succ (Nat.succ (Nat.succ Nat.zero))) = coeff (↑f) (Nat.succ (Nat.succ (Nat.succ Nat.zero))) [PROOFSTEP] simp only [Nat.zero_eq, Nat.succ_eq_add_one] [GOAL] case a.a.succ.succ.succ.succ R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } n : ℕ ⊢ coeff (↑((fun P => { val := toPoly P, property := (_ : degree (↑C P.a * X ^ 3 + ↑C P.b * X ^ 2 + ↑C P.c * X + ↑C P.d) ≤ 3) }) ((fun f => { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) f))) (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))) = coeff (↑f) (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))) [PROOFSTEP] simp only [Nat.zero_eq, Nat.succ_eq_add_one] [GOAL] case a.a.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) 0 = coeff (↑f) 0 [PROOFSTEP] ring_nf [GOAL] case a.a.succ.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) (0 + 1) = coeff (↑f) (0 + 1) [PROOFSTEP] ring_nf [GOAL] case a.a.succ.succ.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) (1 + 1) = coeff (↑f) (1 + 1) [PROOFSTEP] ring_nf [GOAL] case a.a.succ.succ.succ.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) (1 + 1 + 1) = coeff (↑f) (1 + 1 + 1) [PROOFSTEP] ring_nf [GOAL] case a.a.succ.succ.succ.succ R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } n : ℕ ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) (n + 3 + 1) = coeff (↑f) (n + 3 + 1) [PROOFSTEP] ring_nf [GOAL] case a.a.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) 0 = coeff (↑f) 0 [PROOFSTEP] try simp only [coeffs] [GOAL] case a.a.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) 0 = coeff (↑f) 0 [PROOFSTEP] simp only [coeffs] [GOAL] case a.a.succ.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) 1 = coeff (↑f) 1 [PROOFSTEP] try simp only [coeffs] [GOAL] case a.a.succ.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) 1 = coeff (↑f) 1 [PROOFSTEP] simp only [coeffs] [GOAL] case a.a.succ.succ.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) 2 = coeff (↑f) 2 [PROOFSTEP] try simp only [coeffs] [GOAL] case a.a.succ.succ.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) 2 = coeff (↑f) 2 [PROOFSTEP] simp only [coeffs] [GOAL] case a.a.succ.succ.succ.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) 3 = coeff (↑f) 3 [PROOFSTEP] try simp only [coeffs] [GOAL] case a.a.succ.succ.succ.zero R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) 3 = coeff (↑f) 3 [PROOFSTEP] simp only [coeffs] [GOAL] case a.a.succ.succ.succ.succ R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } n : ℕ ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) (4 + n) = coeff (↑f) (4 + n) [PROOFSTEP] try simp only [coeffs] [GOAL] case a.a.succ.succ.succ.succ R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } n : ℕ ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) (4 + n) = coeff (↑f) (4 + n) [PROOFSTEP] simp only [coeffs] [GOAL] case a.a.succ.succ.succ.succ R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } n : ℕ ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) (4 + n) = coeff (↑f) (4 + n) [PROOFSTEP] have h3 : 3 < 4 + n := by linarith only [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } n : ℕ ⊢ 3 < 4 + n [PROOFSTEP] linarith only [GOAL] case a.a.succ.succ.succ.succ R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } n : ℕ h3 : 3 < 4 + n ⊢ coeff (toPoly { a := coeff (↑f) 3, b := coeff (↑f) 2, c := coeff (↑f) 1, d := coeff (↑f) 0 }) (4 + n) = coeff (↑f) (4 + n) [PROOFSTEP] rw [coeff_eq_zero h3, (degree_le_iff_coeff_zero (f : R[X]) 3).mp f.2 _ <| WithBot.coe_lt_coe.mpr (by exact h3)] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R f : { p // degree p ≤ 3 } n : ℕ h3 : 3 < 4 + n ⊢ ↑3 < ↑(4 + n) [PROOFSTEP] exact h3 [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 ⊢ degree (toPoly P) ≤ 2 [PROOFSTEP] simpa only [of_a_eq_zero ha] using degree_quadratic_le [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b ≠ 0 ⊢ degree (toPoly P) = 2 [PROOFSTEP] rw [of_a_eq_zero ha, degree_quadratic hb] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 ⊢ degree (toPoly P) ≤ 1 [PROOFSTEP] simpa only [of_b_eq_zero ha hb] using degree_linear_le [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 hc : P.c ≠ 0 ⊢ degree (toPoly P) = 1 [PROOFSTEP] rw [of_b_eq_zero ha hb, degree_linear hc] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 hc : P.c = 0 ⊢ degree (toPoly P) ≤ 0 [PROOFSTEP] simpa only [of_c_eq_zero ha hb hc] using degree_C_le [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 hc : P.c = 0 hd : P.d ≠ 0 ⊢ degree (toPoly P) = 0 [PROOFSTEP] rw [of_c_eq_zero ha hb hc, degree_C hd] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 hc : P.c = 0 hd : P.d = 0 ⊢ degree (toPoly P) = ⊥ [PROOFSTEP] rw [of_d_eq_zero ha hb hc hd, degree_zero] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 ⊢ natDegree (toPoly P) ≤ 2 [PROOFSTEP] simpa only [of_a_eq_zero ha] using natDegree_quadratic_le [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b ≠ 0 ⊢ natDegree (toPoly P) = 2 [PROOFSTEP] rw [of_a_eq_zero ha, natDegree_quadratic hb] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 ⊢ natDegree (toPoly P) ≤ 1 [PROOFSTEP] simpa only [of_b_eq_zero ha hb] using natDegree_linear_le [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 hc : P.c ≠ 0 ⊢ natDegree (toPoly P) = 1 [PROOFSTEP] rw [of_b_eq_zero ha hb, natDegree_linear hc] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝ : Semiring R ha : P.a = 0 hb : P.b = 0 hc : P.c = 0 ⊢ natDegree (toPoly P) = 0 [PROOFSTEP] rw [of_c_eq_zero ha hb hc, natDegree_C] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P Q : Cubic R a b c d a' b' c' d' : R inst✝¹ : Semiring R inst✝ : Semiring S φ : R →+* S ⊢ toPoly (map φ P) = Polynomial.map φ (toPoly P) [PROOFSTEP] simp only [map, toPoly, map_C, map_X, Polynomial.map_add, Polynomial.map_mul, Polynomial.map_pow] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic R inst✝² : CommRing R inst✝¹ : CommRing S φ : R →+* S inst✝ : IsDomain S ⊢ roots (map φ P) = Polynomial.roots (Polynomial.map φ (toPoly P)) [PROOFSTEP] rw [roots, map_toPoly] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic R inst✝² : CommRing R inst✝¹ : CommRing S φ : R →+* S inst✝ : IsDomain R h0 : toPoly P ≠ 0 x : R ⊢ x ∈ roots P ↔ P.a * x ^ 3 + P.b * x ^ 2 + P.c * x + P.d = 0 [PROOFSTEP] rw [roots, mem_roots h0, IsRoot, toPoly] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic R inst✝² : CommRing R inst✝¹ : CommRing S φ : R →+* S inst✝ : IsDomain R h0 : toPoly P ≠ 0 x : R ⊢ eval x (↑C P.a * X ^ 3 + ↑C P.b * X ^ 2 + ↑C P.c * X + ↑C P.d) = 0 ↔ P.a * x ^ 3 + P.b * x ^ 2 + P.c * x + P.d = 0 [PROOFSTEP] simp only [eval_C, eval_X, eval_add, eval_mul, eval_pow] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic R inst✝³ : CommRing R inst✝² : CommRing S φ : R →+* S inst✝¹ : IsDomain R inst✝ : DecidableEq R ⊢ Finset.card (toFinset (roots P)) ≤ 3 [PROOFSTEP] apply (toFinset_card_le P.toPoly.roots).trans [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic R inst✝³ : CommRing R inst✝² : CommRing S φ : R →+* S inst✝¹ : IsDomain R inst✝ : DecidableEq R ⊢ ↑card (Polynomial.roots (toPoly P)) ≤ 3 [PROOFSTEP] by_cases hP : P.toPoly = 0 [GOAL] case pos R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic R inst✝³ : CommRing R inst✝² : CommRing S φ : R →+* S inst✝¹ : IsDomain R inst✝ : DecidableEq R hP : toPoly P = 0 ⊢ ↑card (Polynomial.roots (toPoly P)) ≤ 3 [PROOFSTEP] exact (card_roots' P.toPoly).trans (by rw [hP, natDegree_zero]; exact zero_le 3) [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic R inst✝³ : CommRing R inst✝² : CommRing S φ : R →+* S inst✝¹ : IsDomain R inst✝ : DecidableEq R hP : toPoly P = 0 ⊢ natDegree (toPoly P) ≤ 3 [PROOFSTEP] rw [hP, natDegree_zero] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic R inst✝³ : CommRing R inst✝² : CommRing S φ : R →+* S inst✝¹ : IsDomain R inst✝ : DecidableEq R hP : toPoly P = 0 ⊢ 0 ≤ 3 [PROOFSTEP] exact zero_le 3 [GOAL] case neg R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic R inst✝³ : CommRing R inst✝² : CommRing S φ : R →+* S inst✝¹ : IsDomain R inst✝ : DecidableEq R hP : ¬toPoly P = 0 ⊢ ↑card (Polynomial.roots (toPoly P)) ≤ 3 [PROOFSTEP] exact WithBot.coe_le_coe.1 ((card_roots hP).trans degree_cubic_le) [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 ⊢ Splits φ (toPoly P) ↔ ↑card (roots (map φ P)) = 3 [PROOFSTEP] replace ha : (map φ P).a ≠ 0 := (_root_.map_ne_zero φ).mpr ha [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : (map φ P).a ≠ 0 ⊢ Splits φ (toPoly P) ↔ ↑card (roots (map φ P)) = 3 [PROOFSTEP] nth_rw 1 [← RingHom.id_comp φ] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : (map φ P).a ≠ 0 ⊢ Splits (RingHom.comp (RingHom.id K) φ) (toPoly P) ↔ ↑card (roots (map φ P)) = 3 [PROOFSTEP] rw [roots, ← splits_map_iff, ← map_toPoly, Polynomial.splits_iff_card_roots, ← ((degree_eq_iff_natDegree_eq <| ne_zero_of_a_ne_zero ha).1 <| degree_of_a_ne_zero ha : _ = 3)] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 ⊢ Splits φ (toPoly P) ↔ ∃ x y z, roots (map φ P) = {x, y, z} [PROOFSTEP] rw [splits_iff_card_roots ha, card_eq_three] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ toPoly (map φ P) = ↑C (↑φ P.a) * (X - ↑C x) * (X - ↑C y) * (X - ↑C z) [PROOFSTEP] rw [map_toPoly, eq_prod_roots_of_splits <| (splits_iff_roots_eq_three ha).mpr <| Exists.intro x <| Exists.intro y <| Exists.intro z h3, leadingCoeff_of_a_ne_zero ha, ← map_roots, h3] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ ↑C (↑φ P.a) * prod (Multiset.map (fun a => X - ↑C a) {x, y, z}) = ↑C (↑φ P.a) * (X - ↑C x) * (X - ↑C y) * (X - ↑C z) [PROOFSTEP] change C (φ P.a) * ((X - C x) ::ₘ (X - C y) ::ₘ {X - C z}).prod = _ [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ ↑C (↑φ P.a) * prod ((X - ↑C x) ::ₘ (X - ↑C y) ::ₘ {X - ↑C z}) = ↑C (↑φ P.a) * (X - ↑C x) * (X - ↑C y) * (X - ↑C z) [PROOFSTEP] rw [prod_cons, prod_cons, prod_singleton, mul_assoc, mul_assoc] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ map φ P = { a := ↑φ P.a, b := ↑φ P.a * -(x + y + z), c := ↑φ P.a * (x * y + x * z + y * z), d := ↑φ P.a * -(x * y * z) } [PROOFSTEP] apply_fun @toPoly _ _ [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ toPoly (map φ P) = toPoly { a := ↑φ P.a, b := ↑φ P.a * -(x + y + z), c := ↑φ P.a * (x * y + x * z + y * z), d := ↑φ P.a * -(x * y * z) } [PROOFSTEP] rw [eq_prod_three_roots ha h3, C_mul_prod_X_sub_C_eq] [GOAL] case inj R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ Function.Injective toPoly [PROOFSTEP] exact fun P Q ↦ (toPoly_injective P Q).mp [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ ↑φ P.b = ↑φ P.a * -(x + y + z) [PROOFSTEP] injection eq_sum_three_roots ha h3 [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ ↑φ P.c = ↑φ P.a * (x * y + x * z + y * z) [PROOFSTEP] injection eq_sum_three_roots ha h3 [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ ↑φ P.d = ↑φ P.a * -(x * y * z) [PROOFSTEP] injection eq_sum_three_roots ha h3 [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ ↑φ (disc P) = (↑φ P.a * ↑φ P.a * (x - y) * (x - z) * (y - z)) ^ 2 [PROOFSTEP] simp only [disc, RingHom.map_add, RingHom.map_sub, RingHom.map_mul, map_pow] -- Porting note: Replaced `simp only [RingHom.map_one, map_bit0, map_bit1]` with f4, f18, f27 [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ ↑φ P.b ^ 2 * ↑φ P.c ^ 2 - ↑φ 4 * ↑φ P.a * ↑φ P.c ^ 3 - ↑φ 4 * ↑φ P.b ^ 3 * ↑φ P.d - ↑φ 27 * ↑φ P.a ^ 2 * ↑φ P.d ^ 2 + ↑φ 18 * ↑φ P.a * ↑φ P.b * ↑φ P.c * ↑φ P.d = (↑φ P.a * ↑φ P.a * (x - y) * (x - z) * (y - z)) ^ 2 [PROOFSTEP] have f4 : φ 4 = 4 := map_natCast φ 4 [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} f4 : ↑φ 4 = 4 ⊢ ↑φ P.b ^ 2 * ↑φ P.c ^ 2 - ↑φ 4 * ↑φ P.a * ↑φ P.c ^ 3 - ↑φ 4 * ↑φ P.b ^ 3 * ↑φ P.d - ↑φ 27 * ↑φ P.a ^ 2 * ↑φ P.d ^ 2 + ↑φ 18 * ↑φ P.a * ↑φ P.b * ↑φ P.c * ↑φ P.d = (↑φ P.a * ↑φ P.a * (x - y) * (x - z) * (y - z)) ^ 2 [PROOFSTEP] have f18 : φ 18 = 18 := map_natCast φ 18 [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} f4 : ↑φ 4 = 4 f18 : ↑φ 18 = 18 ⊢ ↑φ P.b ^ 2 * ↑φ P.c ^ 2 - ↑φ 4 * ↑φ P.a * ↑φ P.c ^ 3 - ↑φ 4 * ↑φ P.b ^ 3 * ↑φ P.d - ↑φ 27 * ↑φ P.a ^ 2 * ↑φ P.d ^ 2 + ↑φ 18 * ↑φ P.a * ↑φ P.b * ↑φ P.c * ↑φ P.d = (↑φ P.a * ↑φ P.a * (x - y) * (x - z) * (y - z)) ^ 2 [PROOFSTEP] have f27 : φ 27 = 27 := map_natCast φ 27 [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} f4 : ↑φ 4 = 4 f18 : ↑φ 18 = 18 f27 : ↑φ 27 = 27 ⊢ ↑φ P.b ^ 2 * ↑φ P.c ^ 2 - ↑φ 4 * ↑φ P.a * ↑φ P.c ^ 3 - ↑φ 4 * ↑φ P.b ^ 3 * ↑φ P.d - ↑φ 27 * ↑φ P.a ^ 2 * ↑φ P.d ^ 2 + ↑φ 18 * ↑φ P.a * ↑φ P.b * ↑φ P.c * ↑φ P.d = (↑φ P.a * ↑φ P.a * (x - y) * (x - z) * (y - z)) ^ 2 [PROOFSTEP] rw [f4, f18, f27, b_eq_three_roots ha h3, c_eq_three_roots ha h3, d_eq_three_roots ha h3] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} f4 : ↑φ 4 = 4 f18 : ↑φ 18 = 18 f27 : ↑φ 27 = 27 ⊢ (↑φ P.a * -(x + y + z)) ^ 2 * (↑φ P.a * (x * y + x * z + y * z)) ^ 2 - 4 * ↑φ P.a * (↑φ P.a * (x * y + x * z + y * z)) ^ 3 - 4 * (↑φ P.a * -(x + y + z)) ^ 3 * (↑φ P.a * -(x * y * z)) - 27 * ↑φ P.a ^ 2 * (↑φ P.a * -(x * y * z)) ^ 2 + 18 * ↑φ P.a * (↑φ P.a * -(x + y + z)) * (↑φ P.a * (x * y + x * z + y * z)) * (↑φ P.a * -(x * y * z)) = (↑φ P.a * ↑φ P.a * (x - y) * (x - z) * (y - z)) ^ 2 [PROOFSTEP] ring1 [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ disc P ≠ 0 ↔ x ≠ y ∧ x ≠ z ∧ y ≠ z [PROOFSTEP] rw [← _root_.map_ne_zero φ, disc_eq_prod_three_roots ha h3, pow_two] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ ↑φ P.a * ↑φ P.a * (x - y) * (x - z) * (y - z) * (↑φ P.a * ↑φ P.a * (x - y) * (x - z) * (y - z)) ≠ 0 ↔ x ≠ y ∧ x ≠ z ∧ y ≠ z [PROOFSTEP] simp_rw [mul_ne_zero_iff, sub_ne_zero, _root_.map_ne_zero, and_self_iff, and_iff_right ha, and_assoc] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ disc P ≠ 0 ↔ Nodup (roots (map φ P)) [PROOFSTEP] rw [disc_ne_zero_iff_roots_ne ha h3, h3] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ x ≠ y ∧ x ≠ z ∧ y ≠ z ↔ Nodup {x, y, z} [PROOFSTEP] change _ ↔ (x ::ₘ y ::ₘ { z }).Nodup [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ x ≠ y ∧ x ≠ z ∧ y ≠ z ↔ Nodup (x ::ₘ y ::ₘ {z}) [PROOFSTEP] rw [nodup_cons, nodup_cons, mem_cons, mem_singleton, mem_singleton] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ x ≠ y ∧ x ≠ z ∧ y ≠ z ↔ ¬(x = y ∨ x = z) ∧ ¬y = z ∧ Nodup {z} [PROOFSTEP] simp only [nodup_singleton] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} ⊢ x ≠ y ∧ x ≠ z ∧ y ≠ z ↔ ¬(x = y ∨ x = z) ∧ ¬y = z ∧ True [PROOFSTEP] tauto [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝² : Field F inst✝¹ : Field K φ : F →+* K x y z : K inst✝ : DecidableEq K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} hd : disc P ≠ 0 ⊢ Finset.card (toFinset (roots (map φ P))) = 3 [PROOFSTEP] rw [toFinset_card_of_nodup <| (disc_ne_zero_iff_roots_nodup ha h3).mp hd, ← splits_iff_card_roots ha, splits_iff_roots_eq_three ha] [GOAL] R : Type u_1 S : Type u_2 F : Type u_3 K : Type u_4 P : Cubic F inst✝² : Field F inst✝¹ : Field K φ : F →+* K x y z : K inst✝ : DecidableEq K ha : P.a ≠ 0 h3 : roots (map φ P) = {x, y, z} hd : disc P ≠ 0 ⊢ ∃ x y z, roots (map φ P) = {x, y, z} [PROOFSTEP] exact ⟨x, ⟨y, ⟨z, h3⟩⟩⟩
{"mathlib_filename": "Mathlib.Algebra.CubicDiscriminant", "llama_tokens": 21707}
[GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n ⊢ 0 ≤ ifp_n.fr ∧ ifp_n.fr < 1 [PROOFSTEP] cases n [GOAL] case zero K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v Nat.zero = some ifp_n ⊢ 0 ≤ ifp_n.fr ∧ ifp_n.fr < 1 case succ K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K n✝ : ℕ nth_stream_eq : IntFractPair.stream v (Nat.succ n✝) = some ifp_n ⊢ 0 ≤ ifp_n.fr ∧ ifp_n.fr < 1 [PROOFSTEP] case zero => have : IntFractPair.of v = ifp_n := by injection nth_stream_eq rw [← this, IntFractPair.of] exact ⟨fract_nonneg _, fract_lt_one _⟩ [GOAL] K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v Nat.zero = some ifp_n ⊢ 0 ≤ ifp_n.fr ∧ ifp_n.fr < 1 [PROOFSTEP] case zero => have : IntFractPair.of v = ifp_n := by injection nth_stream_eq rw [← this, IntFractPair.of] exact ⟨fract_nonneg _, fract_lt_one _⟩ [GOAL] K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v Nat.zero = some ifp_n ⊢ 0 ≤ ifp_n.fr ∧ ifp_n.fr < 1 [PROOFSTEP] have : IntFractPair.of v = ifp_n := by injection nth_stream_eq [GOAL] K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v Nat.zero = some ifp_n ⊢ IntFractPair.of v = ifp_n [PROOFSTEP] injection nth_stream_eq [GOAL] K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v Nat.zero = some ifp_n this : IntFractPair.of v = ifp_n ⊢ 0 ≤ ifp_n.fr ∧ ifp_n.fr < 1 [PROOFSTEP] rw [← this, IntFractPair.of] [GOAL] K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v Nat.zero = some ifp_n this : IntFractPair.of v = ifp_n ⊢ 0 ≤ { b := ⌊v⌋, fr := fract v }.fr ∧ { b := ⌊v⌋, fr := fract v }.fr < 1 [PROOFSTEP] exact ⟨fract_nonneg _, fract_lt_one _⟩ [GOAL] case succ K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K n✝ : ℕ nth_stream_eq : IntFractPair.stream v (Nat.succ n✝) = some ifp_n ⊢ 0 ≤ ifp_n.fr ∧ ifp_n.fr < 1 [PROOFSTEP] case succ => rcases succ_nth_stream_eq_some_iff.1 nth_stream_eq with ⟨_, _, _, ifp_of_eq_ifp_n⟩ rw [← ifp_of_eq_ifp_n, IntFractPair.of] exact ⟨fract_nonneg _, fract_lt_one _⟩ [GOAL] K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K n✝ : ℕ nth_stream_eq : IntFractPair.stream v (Nat.succ n✝) = some ifp_n ⊢ 0 ≤ ifp_n.fr ∧ ifp_n.fr < 1 [PROOFSTEP] case succ => rcases succ_nth_stream_eq_some_iff.1 nth_stream_eq with ⟨_, _, _, ifp_of_eq_ifp_n⟩ rw [← ifp_of_eq_ifp_n, IntFractPair.of] exact ⟨fract_nonneg _, fract_lt_one _⟩ [GOAL] K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K n✝ : ℕ nth_stream_eq : IntFractPair.stream v (Nat.succ n✝) = some ifp_n ⊢ 0 ≤ ifp_n.fr ∧ ifp_n.fr < 1 [PROOFSTEP] rcases succ_nth_stream_eq_some_iff.1 nth_stream_eq with ⟨_, _, _, ifp_of_eq_ifp_n⟩ [GOAL] case intro.intro.intro K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K n✝ : ℕ nth_stream_eq : IntFractPair.stream v (Nat.succ n✝) = some ifp_n w✝ : IntFractPair K left✝¹ : IntFractPair.stream v n✝ = some w✝ left✝ : w✝.fr ≠ 0 ifp_of_eq_ifp_n : IntFractPair.of w✝.fr⁻¹ = ifp_n ⊢ 0 ≤ ifp_n.fr ∧ ifp_n.fr < 1 [PROOFSTEP] rw [← ifp_of_eq_ifp_n, IntFractPair.of] [GOAL] case intro.intro.intro K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K n✝ : ℕ nth_stream_eq : IntFractPair.stream v (Nat.succ n✝) = some ifp_n w✝ : IntFractPair K left✝¹ : IntFractPair.stream v n✝ = some w✝ left✝ : w✝.fr ≠ 0 ifp_of_eq_ifp_n : IntFractPair.of w✝.fr⁻¹ = ifp_n ⊢ 0 ≤ { b := ⌊w✝.fr⁻¹⌋, fr := fract w✝.fr⁻¹ }.fr ∧ { b := ⌊w✝.fr⁻¹⌋, fr := fract w✝.fr⁻¹ }.fr < 1 [PROOFSTEP] exact ⟨fract_nonneg _, fract_lt_one _⟩ [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ⊢ 1 ≤ ifp_succ_n.b [PROOFSTEP] obtain ⟨ifp_n, nth_stream_eq, stream_nth_fr_ne_zero, ⟨-⟩⟩ : ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr ≠ 0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ⊢ ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr ≠ 0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n case intro.intro.intro.refl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some (IntFractPair.of ifp_n.fr⁻¹) ⊢ 1 ≤ (IntFractPair.of ifp_n.fr⁻¹).b [PROOFSTEP] exact succ_nth_stream_eq_some_iff.1 succ_nth_stream_eq [GOAL] case intro.intro.intro.refl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some (IntFractPair.of ifp_n.fr⁻¹) ⊢ 1 ≤ (IntFractPair.of ifp_n.fr⁻¹).b [PROOFSTEP] suffices 1 ≤ ifp_n.fr⁻¹ by rwa [IntFractPair.of, le_floor, cast_one] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some (IntFractPair.of ifp_n.fr⁻¹) this : 1 ≤ ifp_n.fr⁻¹ ⊢ 1 ≤ (IntFractPair.of ifp_n.fr⁻¹).b [PROOFSTEP] rwa [IntFractPair.of, le_floor, cast_one] [GOAL] case intro.intro.intro.refl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some (IntFractPair.of ifp_n.fr⁻¹) ⊢ 1 ≤ ifp_n.fr⁻¹ [PROOFSTEP] suffices ifp_n.fr ≤ 1 by have h : 0 < ifp_n.fr := lt_of_le_of_ne (nth_stream_fr_nonneg nth_stream_eq) stream_nth_fr_ne_zero.symm apply one_le_inv h this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some (IntFractPair.of ifp_n.fr⁻¹) this : ifp_n.fr ≤ 1 ⊢ 1 ≤ ifp_n.fr⁻¹ [PROOFSTEP] have h : 0 < ifp_n.fr := lt_of_le_of_ne (nth_stream_fr_nonneg nth_stream_eq) stream_nth_fr_ne_zero.symm [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some (IntFractPair.of ifp_n.fr⁻¹) this : ifp_n.fr ≤ 1 h : 0 < ifp_n.fr ⊢ 1 ≤ ifp_n.fr⁻¹ [PROOFSTEP] apply one_le_inv h this [GOAL] case intro.intro.intro.refl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some (IntFractPair.of ifp_n.fr⁻¹) ⊢ ifp_n.fr ≤ 1 [PROOFSTEP] simp only [le_of_lt (nth_stream_fr_lt_one nth_stream_eq)] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n ifp_succ_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ⊢ ↑ifp_succ_n.b ≤ ifp_n.fr⁻¹ [PROOFSTEP] suffices (⌊ifp_n.fr⁻¹⌋ : K) ≤ ifp_n.fr⁻¹ by cases' ifp_n with _ ifp_n_fr have : ifp_n_fr ≠ 0 := by intro h simp [h, IntFractPair.stream, nth_stream_eq] at succ_nth_stream_eq have : IntFractPair.of ifp_n_fr⁻¹ = ifp_succ_n := by simpa [this, IntFractPair.stream, nth_stream_eq, Option.coe_def] using succ_nth_stream_eq rwa [← this] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n ifp_succ_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n this : ↑⌊ifp_n.fr⁻¹⌋ ≤ ifp_n.fr⁻¹ ⊢ ↑ifp_succ_n.b ≤ ifp_n.fr⁻¹ [PROOFSTEP] cases' ifp_n with _ ifp_n_fr [GOAL] case mk K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n b✝ : ℤ ifp_n_fr : K nth_stream_eq : IntFractPair.stream v n = some { b := b✝, fr := ifp_n_fr } this : ↑⌊{ b := b✝, fr := ifp_n_fr }.fr⁻¹⌋ ≤ { b := b✝, fr := ifp_n_fr }.fr⁻¹ ⊢ ↑ifp_succ_n.b ≤ { b := b✝, fr := ifp_n_fr }.fr⁻¹ [PROOFSTEP] have : ifp_n_fr ≠ 0 := by intro h simp [h, IntFractPair.stream, nth_stream_eq] at succ_nth_stream_eq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n b✝ : ℤ ifp_n_fr : K nth_stream_eq : IntFractPair.stream v n = some { b := b✝, fr := ifp_n_fr } this : ↑⌊{ b := b✝, fr := ifp_n_fr }.fr⁻¹⌋ ≤ { b := b✝, fr := ifp_n_fr }.fr⁻¹ ⊢ ifp_n_fr ≠ 0 [PROOFSTEP] intro h [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n b✝ : ℤ ifp_n_fr : K nth_stream_eq : IntFractPair.stream v n = some { b := b✝, fr := ifp_n_fr } this : ↑⌊{ b := b✝, fr := ifp_n_fr }.fr⁻¹⌋ ≤ { b := b✝, fr := ifp_n_fr }.fr⁻¹ h : ifp_n_fr = 0 ⊢ False [PROOFSTEP] simp [h, IntFractPair.stream, nth_stream_eq] at succ_nth_stream_eq [GOAL] case mk K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n b✝ : ℤ ifp_n_fr : K nth_stream_eq : IntFractPair.stream v n = some { b := b✝, fr := ifp_n_fr } this✝ : ↑⌊{ b := b✝, fr := ifp_n_fr }.fr⁻¹⌋ ≤ { b := b✝, fr := ifp_n_fr }.fr⁻¹ this : ifp_n_fr ≠ 0 ⊢ ↑ifp_succ_n.b ≤ { b := b✝, fr := ifp_n_fr }.fr⁻¹ [PROOFSTEP] have : IntFractPair.of ifp_n_fr⁻¹ = ifp_succ_n := by simpa [this, IntFractPair.stream, nth_stream_eq, Option.coe_def] using succ_nth_stream_eq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n b✝ : ℤ ifp_n_fr : K nth_stream_eq : IntFractPair.stream v n = some { b := b✝, fr := ifp_n_fr } this✝ : ↑⌊{ b := b✝, fr := ifp_n_fr }.fr⁻¹⌋ ≤ { b := b✝, fr := ifp_n_fr }.fr⁻¹ this : ifp_n_fr ≠ 0 ⊢ IntFractPair.of ifp_n_fr⁻¹ = ifp_succ_n [PROOFSTEP] simpa [this, IntFractPair.stream, nth_stream_eq, Option.coe_def] using succ_nth_stream_eq [GOAL] case mk K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n b✝ : ℤ ifp_n_fr : K nth_stream_eq : IntFractPair.stream v n = some { b := b✝, fr := ifp_n_fr } this✝¹ : ↑⌊{ b := b✝, fr := ifp_n_fr }.fr⁻¹⌋ ≤ { b := b✝, fr := ifp_n_fr }.fr⁻¹ this✝ : ifp_n_fr ≠ 0 this : IntFractPair.of ifp_n_fr⁻¹ = ifp_succ_n ⊢ ↑ifp_succ_n.b ≤ { b := b✝, fr := ifp_n_fr }.fr⁻¹ [PROOFSTEP] rwa [← this] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp_n ifp_succ_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ⊢ ↑⌊ifp_n.fr⁻¹⌋ ≤ ifp_n.fr⁻¹ [PROOFSTEP] exact floor_le ifp_n.fr⁻¹ [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b ⊢ 1 ≤ b [PROOFSTEP] obtain ⟨gp_n, nth_s_eq, ⟨-⟩⟩ : ∃ gp_n, (of v).s.get? n = some gp_n ∧ gp_n.b = b [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b ⊢ ∃ gp_n, Stream'.Seq.get? (of v).s n = some gp_n ∧ gp_n.b = b case intro.intro.refl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp_n : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp_n nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some gp_n.b ⊢ 1 ≤ gp_n.b [PROOFSTEP] exact exists_s_b_of_part_denom nth_part_denom_eq [GOAL] case intro.intro.refl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp_n : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp_n nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some gp_n.b ⊢ 1 ≤ gp_n.b [PROOFSTEP] obtain ⟨ifp_n, succ_nth_stream_eq, ifp_n_b_eq_gp_n_b⟩ : ∃ ifp, IntFractPair.stream v (n + 1) = some ifp ∧ (ifp.b : K) = gp_n.b [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp_n : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp_n nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some gp_n.b ⊢ ∃ ifp, IntFractPair.stream v (n + 1) = some ifp ∧ ↑ifp.b = gp_n.b case intro.intro.refl.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp_n : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp_n nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some gp_n.b ifp_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_n ifp_n_b_eq_gp_n_b : ↑ifp_n.b = gp_n.b ⊢ 1 ≤ gp_n.b [PROOFSTEP] exact IntFractPair.exists_succ_get?_stream_of_gcf_of_get?_eq_some nth_s_eq [GOAL] case intro.intro.refl.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp_n : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp_n nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some gp_n.b ifp_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_n ifp_n_b_eq_gp_n_b : ↑ifp_n.b = gp_n.b ⊢ 1 ≤ gp_n.b [PROOFSTEP] rw [← ifp_n_b_eq_gp_n_b] [GOAL] case intro.intro.refl.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp_n : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp_n nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some gp_n.b ifp_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_n ifp_n_b_eq_gp_n_b : ↑ifp_n.b = gp_n.b ⊢ 1 ≤ ↑ifp_n.b [PROOFSTEP] exact_mod_cast IntFractPair.one_le_succ_nth_stream_b succ_nth_stream_eq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp ⊢ gp.a = 1 ∧ ∃ z, gp.b = ↑z [PROOFSTEP] obtain ⟨ifp, stream_succ_nth_eq, -⟩ : ∃ ifp, IntFractPair.stream v (n + 1) = some ifp ∧ _ [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp ⊢ ∃ ifp, IntFractPair.stream v (n + 1) = some ifp ∧ ?m.6997 ifp case intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp ifp : IntFractPair K stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some ifp ⊢ gp.a = 1 ∧ ∃ z, gp.b = ↑z [PROOFSTEP] exact IntFractPair.exists_succ_get?_stream_of_gcf_of_get?_eq_some nth_s_eq [GOAL] case intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp ifp : IntFractPair K stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some ifp ⊢ gp.a = 1 ∧ ∃ z, gp.b = ↑z [PROOFSTEP] have : gp = ⟨1, ifp.b⟩ := by have : (of v).s.get? n = some ⟨1, ifp.b⟩ := get?_of_eq_some_of_succ_get?_intFractPair_stream stream_succ_nth_eq have : some gp = some ⟨1, ifp.b⟩ := by rwa [nth_s_eq] at this injection this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp ifp : IntFractPair K stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some ifp ⊢ gp = { a := 1, b := ↑ifp.b } [PROOFSTEP] have : (of v).s.get? n = some ⟨1, ifp.b⟩ := get?_of_eq_some_of_succ_get?_intFractPair_stream stream_succ_nth_eq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp ifp : IntFractPair K stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some ifp this : Stream'.Seq.get? (of v).s n = some { a := 1, b := ↑ifp.b } ⊢ gp = { a := 1, b := ↑ifp.b } [PROOFSTEP] have : some gp = some ⟨1, ifp.b⟩ := by rwa [nth_s_eq] at this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp ifp : IntFractPair K stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some ifp this : Stream'.Seq.get? (of v).s n = some { a := 1, b := ↑ifp.b } ⊢ some gp = some { a := 1, b := ↑ifp.b } [PROOFSTEP] rwa [nth_s_eq] at this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp ifp : IntFractPair K stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some ifp this✝ : Stream'.Seq.get? (of v).s n = some { a := 1, b := ↑ifp.b } this : some gp = some { a := 1, b := ↑ifp.b } ⊢ gp = { a := 1, b := ↑ifp.b } [PROOFSTEP] injection this [GOAL] case intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp ifp : IntFractPair K stream_succ_nth_eq : IntFractPair.stream v (n + 1) = some ifp this : gp = { a := 1, b := ↑ifp.b } ⊢ gp.a = 1 ∧ ∃ z, gp.b = ↑z [PROOFSTEP] simp [this] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K a : K nth_part_num_eq : Stream'.Seq.get? (partialNumerators (of v)) n = some a ⊢ a = 1 [PROOFSTEP] obtain ⟨gp, nth_s_eq, gp_a_eq_a_n⟩ : ∃ gp, (of v).s.get? n = some gp ∧ gp.a = a [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K a : K nth_part_num_eq : Stream'.Seq.get? (partialNumerators (of v)) n = some a ⊢ ∃ gp, Stream'.Seq.get? (of v).s n = some gp ∧ gp.a = a case intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K a : K nth_part_num_eq : Stream'.Seq.get? (partialNumerators (of v)) n = some a gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp gp_a_eq_a_n : gp.a = a ⊢ a = 1 [PROOFSTEP] exact exists_s_a_of_part_num nth_part_num_eq [GOAL] case intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K a : K nth_part_num_eq : Stream'.Seq.get? (partialNumerators (of v)) n = some a gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp gp_a_eq_a_n : gp.a = a ⊢ a = 1 [PROOFSTEP] have : gp.a = 1 := (of_part_num_eq_one_and_exists_int_part_denom_eq nth_s_eq).left [GOAL] case intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K a : K nth_part_num_eq : Stream'.Seq.get? (partialNumerators (of v)) n = some a gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp gp_a_eq_a_n : gp.a = a this : gp.a = 1 ⊢ a = 1 [PROOFSTEP] rwa [gp_a_eq_a_n] at this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b ⊢ ∃ z, b = ↑z [PROOFSTEP] obtain ⟨gp, nth_s_eq, gp_b_eq_b_n⟩ : ∃ gp, (of v).s.get? n = some gp ∧ gp.b = b [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b ⊢ ∃ gp, Stream'.Seq.get? (of v).s n = some gp ∧ gp.b = b case intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp gp_b_eq_b_n : gp.b = b ⊢ ∃ z, b = ↑z [PROOFSTEP] exact exists_s_b_of_part_denom nth_part_denom_eq [GOAL] case intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp gp_b_eq_b_n : gp.b = b ⊢ ∃ z, b = ↑z [PROOFSTEP] have : ∃ z : ℤ, gp.b = (z : K) := (of_part_num_eq_one_and_exists_int_part_denom_eq nth_s_eq).right [GOAL] case intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b gp : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp gp_b_eq_b_n : gp.b = b this : ∃ z, gp.b = ↑z ⊢ ∃ z, b = ↑z [PROOFSTEP] rwa [gp_b_eq_b_n] at this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ⊢ ∀ (n : ℕ), (∀ (m : ℕ), m < n → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b) → n ≤ 1 ∨ ¬TerminatedAt (of v) (n - 2) → ↑(fib n) ≤ (continuantsAux (of v) n).b [PROOFSTEP] intro n IH hyp [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < n → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : n ≤ 1 ∨ ¬TerminatedAt (of v) (n - 2) ⊢ ↑(fib n) ≤ (continuantsAux (of v) n).b [PROOFSTEP] rcases n with (_ | _ | n) [GOAL] case zero K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K IH : ∀ (m : ℕ), m < zero → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : zero ≤ 1 ∨ ¬TerminatedAt (of v) (zero - 2) ⊢ ↑(fib zero) ≤ (continuantsAux (of v) zero).b [PROOFSTEP] simp [fib_add_two, continuantsAux] -- case n = 0 [GOAL] case succ.zero K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K IH : ∀ (m : ℕ), m < Nat.succ zero → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ zero ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ zero - 2) ⊢ ↑(fib (Nat.succ zero)) ≤ (continuantsAux (of v) (Nat.succ zero)).b [PROOFSTEP] simp [fib_add_two, continuantsAux] -- case n = 1 [GOAL] case succ.succ K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) ⊢ ↑(fib (Nat.succ (Nat.succ n))) ≤ (continuantsAux (of v) (Nat.succ (Nat.succ n))).b [PROOFSTEP] let g := of v [GOAL] case succ.succ K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v ⊢ ↑(fib (Nat.succ (Nat.succ n))) ≤ (continuantsAux (of v) (Nat.succ (Nat.succ n))).b [PROOFSTEP] have : ¬n + 2 ≤ 1 := by linarith [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v ⊢ ¬n + 2 ≤ 1 [PROOFSTEP] linarith [GOAL] case succ.succ K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 ⊢ ↑(fib (Nat.succ (Nat.succ n))) ≤ (continuantsAux (of v) (Nat.succ (Nat.succ n))).b [PROOFSTEP] have not_terminated_at_n : ¬g.TerminatedAt n := Or.resolve_left hyp this [GOAL] case succ.succ K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n ⊢ ↑(fib (Nat.succ (Nat.succ n))) ≤ (continuantsAux (of v) (Nat.succ (Nat.succ n))).b [PROOFSTEP] obtain ⟨gp, s_ppred_nth_eq⟩ : ∃ gp, g.s.get? n = some gp [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n ⊢ ∃ gp, Stream'.Seq.get? g.s n = some gp case succ.succ.intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp ⊢ ↑(fib (Nat.succ (Nat.succ n))) ≤ (continuantsAux (of v) (Nat.succ (Nat.succ n))).b [PROOFSTEP] exact Option.ne_none_iff_exists'.mp not_terminated_at_n [GOAL] case succ.succ.intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp ⊢ ↑(fib (Nat.succ (Nat.succ n))) ≤ (continuantsAux (of v) (Nat.succ (Nat.succ n))).b [PROOFSTEP] set pconts := g.continuantsAux (n + 1) with pconts_eq [GOAL] case succ.succ.intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ⊢ ↑(fib (Nat.succ (Nat.succ n))) ≤ (continuantsAux (of v) (Nat.succ (Nat.succ n))).b [PROOFSTEP] set ppconts := g.continuantsAux n with ppconts_eq [GOAL] case succ.succ.intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n ⊢ ↑(fib (Nat.succ (Nat.succ n))) ≤ (continuantsAux (of v) (Nat.succ (Nat.succ n))).b [PROOFSTEP] suffices (fib n : K) + fib (n + 1) ≤ gp.a * ppconts.b + gp.b * pconts.b by simpa [fib_add_two, add_comm, continuantsAux_recurrence s_ppred_nth_eq ppconts_eq pconts_eq] -- make use of the fact that `gp.a = 1` [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this✝ : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n this : ↑(fib n) + ↑(fib (n + 1)) ≤ gp.a * ppconts.b + gp.b * pconts.b ⊢ ↑(fib (Nat.succ (Nat.succ n))) ≤ (continuantsAux (of v) (Nat.succ (Nat.succ n))).b [PROOFSTEP] simpa [fib_add_two, add_comm, continuantsAux_recurrence s_ppred_nth_eq ppconts_eq pconts_eq] -- make use of the fact that `gp.a = 1` [GOAL] case succ.succ.intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n ⊢ ↑(fib n) + ↑(fib (n + 1)) ≤ gp.a * ppconts.b + gp.b * pconts.b [PROOFSTEP] suffices (fib n : K) + fib (n + 1) ≤ ppconts.b + gp.b * pconts.b by simpa [of_part_num_eq_one <| part_num_eq_s_a s_ppred_nth_eq] [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this✝ : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n this : ↑(fib n) + ↑(fib (n + 1)) ≤ ppconts.b + gp.b * pconts.b ⊢ ↑(fib n) + ↑(fib (n + 1)) ≤ gp.a * ppconts.b + gp.b * pconts.b [PROOFSTEP] simpa [of_part_num_eq_one <| part_num_eq_s_a s_ppred_nth_eq] [GOAL] case succ.succ.intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n ⊢ ↑(fib n) + ↑(fib (n + 1)) ≤ ppconts.b + gp.b * pconts.b [PROOFSTEP] have not_terminated_at_pred_n : ¬g.TerminatedAt (n - 1) := mt (terminated_stable <| Nat.sub_le n 1) not_terminated_at_n [GOAL] case succ.succ.intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) ⊢ ↑(fib n) + ↑(fib (n + 1)) ≤ ppconts.b + gp.b * pconts.b [PROOFSTEP] have not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) := mt (terminated_stable (n - 1).pred_le) not_terminated_at_pred_n [GOAL] case succ.succ.intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) ⊢ ↑(fib n) + ↑(fib (n + 1)) ≤ ppconts.b + gp.b * pconts.b [PROOFSTEP] have ppred_nth_fib_le_ppconts_B : (fib n : K) ≤ ppconts.b := IH n (lt_trans (Nat.lt.base n) <| Nat.lt.base <| n + 1) (Or.inr not_terminated_at_ppred_n) [GOAL] case succ.succ.intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) ppred_nth_fib_le_ppconts_B : ↑(fib n) ≤ ppconts.b ⊢ ↑(fib n) + ↑(fib (n + 1)) ≤ ppconts.b + gp.b * pconts.b [PROOFSTEP] suffices : (fib (n + 1) : K) ≤ gp.b * pconts.b [GOAL] case succ.succ.intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this✝ : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) ppred_nth_fib_le_ppconts_B : ↑(fib n) ≤ ppconts.b this : ↑(fib (n + 1)) ≤ gp.b * pconts.b ⊢ ↑(fib n) + ↑(fib (n + 1)) ≤ ppconts.b + gp.b * pconts.b case this K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) ppred_nth_fib_le_ppconts_B : ↑(fib n) ≤ ppconts.b ⊢ ↑(fib (n + 1)) ≤ gp.b * pconts.b [PROOFSTEP] solve_by_elim [_root_.add_le_add ppred_nth_fib_le_ppconts_B] -- finally use the fact that `1 ≤ gp.b` to solve the goal [GOAL] case this K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) ppred_nth_fib_le_ppconts_B : ↑(fib n) ≤ ppconts.b ⊢ ↑(fib (n + 1)) ≤ gp.b * pconts.b [PROOFSTEP] suffices 1 * (fib (n + 1) : K) ≤ gp.b * pconts.b by rwa [one_mul] at this [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this✝ : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) ppred_nth_fib_le_ppconts_B : ↑(fib n) ≤ ppconts.b this : 1 * ↑(fib (n + 1)) ≤ gp.b * pconts.b ⊢ ↑(fib (n + 1)) ≤ gp.b * pconts.b [PROOFSTEP] rwa [one_mul] at this [GOAL] case this K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) ppred_nth_fib_le_ppconts_B : ↑(fib n) ≤ ppconts.b ⊢ 1 * ↑(fib (n + 1)) ≤ gp.b * pconts.b [PROOFSTEP] have one_le_gp_b : (1 : K) ≤ gp.b := of_one_le_get?_part_denom (part_denom_eq_s_b s_ppred_nth_eq) [GOAL] case this K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) ppred_nth_fib_le_ppconts_B : ↑(fib n) ≤ ppconts.b one_le_gp_b : 1 ≤ gp.b ⊢ 1 * ↑(fib (n + 1)) ≤ gp.b * pconts.b [PROOFSTEP] have : (0 : K) ≤ fib (n + 1) := by exact_mod_cast (fib (n + 1)).zero_le [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) ppred_nth_fib_le_ppconts_B : ↑(fib n) ≤ ppconts.b one_le_gp_b : 1 ≤ gp.b ⊢ 0 ≤ ↑(fib (n + 1)) [PROOFSTEP] exact_mod_cast (fib (n + 1)).zero_le [GOAL] case this K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this✝ : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) ppred_nth_fib_le_ppconts_B : ↑(fib n) ≤ ppconts.b one_le_gp_b : 1 ≤ gp.b this : 0 ≤ ↑(fib (n + 1)) ⊢ 1 * ↑(fib (n + 1)) ≤ gp.b * pconts.b [PROOFSTEP] have : (0 : K) ≤ gp.b := le_trans zero_le_one one_le_gp_b [GOAL] case this K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this✝¹ : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) ppred_nth_fib_le_ppconts_B : ↑(fib n) ≤ ppconts.b one_le_gp_b : 1 ≤ gp.b this✝ : 0 ≤ ↑(fib (n + 1)) this : 0 ≤ gp.b ⊢ 1 * ↑(fib (n + 1)) ≤ gp.b * pconts.b [PROOFSTEP] mono [GOAL] case this.h₂.a K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this✝¹ : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) ppred_nth_fib_le_ppconts_B : ↑(fib n) ≤ ppconts.b one_le_gp_b : 1 ≤ gp.b this✝ : 0 ≤ ↑(fib (n + 1)) this : 0 ≤ gp.b s_ppred_nth_eq_symm : some gp = Stream'.Seq.get? g.s n ⊢ n + 1 < Nat.succ (Nat.succ n) [PROOFSTEP] norm_num [GOAL] case this.h₂.a K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → m ≤ 1 ∨ ¬TerminatedAt (of v) (m - 2) → ↑(fib m) ≤ (continuantsAux (of v) m).b hyp : Nat.succ (Nat.succ n) ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ (Nat.succ n) - 2) g : GeneralizedContinuedFraction K := of v this✝¹ : ¬n + 2 ≤ 1 not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp pconts : Pair K := continuantsAux g (n + 1) pconts_eq : pconts = continuantsAux g (n + 1) ppconts : Pair K := continuantsAux g n ppconts_eq : ppconts = continuantsAux g n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) not_terminated_at_ppred_n : ¬TerminatedAt g (n - 2) ppred_nth_fib_le_ppconts_B : ↑(fib n) ≤ ppconts.b one_le_gp_b : 1 ≤ gp.b this✝ : 0 ≤ ↑(fib (n + 1)) this : 0 ≤ gp.b s_ppred_nth_eq_symm : some gp = Stream'.Seq.get? g.s n ⊢ n + 1 ≤ 1 ∨ ¬TerminatedAt (of v) (n + 1 - 2) [PROOFSTEP] tauto [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) ⊢ ↑(fib (n + 1)) ≤ denominators (of v) n [PROOFSTEP] rw [denom_eq_conts_b, nth_cont_eq_succ_nth_cont_aux] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) ⊢ ↑(fib (n + 1)) ≤ (continuantsAux (of v) (n + 1)).b [PROOFSTEP] have : n + 1 ≤ 1 ∨ ¬(of v).TerminatedAt (n - 1) := by cases' n with n case zero => exact Or.inl <| le_refl 1 case succ => exact Or.inr (Or.resolve_left hyp n.succ_ne_zero) [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) ⊢ n + 1 ≤ 1 ∨ ¬TerminatedAt (of v) (n - 1) [PROOFSTEP] cases' n with n [GOAL] case zero K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp : zero = 0 ∨ ¬TerminatedAt (of v) (zero - 1) ⊢ zero + 1 ≤ 1 ∨ ¬TerminatedAt (of v) (zero - 1) case succ K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) ⊢ Nat.succ n + 1 ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) [PROOFSTEP] case zero => exact Or.inl <| le_refl 1 [GOAL] K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp : zero = 0 ∨ ¬TerminatedAt (of v) (zero - 1) ⊢ zero + 1 ≤ 1 ∨ ¬TerminatedAt (of v) (zero - 1) [PROOFSTEP] case zero => exact Or.inl <| le_refl 1 [GOAL] K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp : zero = 0 ∨ ¬TerminatedAt (of v) (zero - 1) ⊢ zero + 1 ≤ 1 ∨ ¬TerminatedAt (of v) (zero - 1) [PROOFSTEP] exact Or.inl <| le_refl 1 [GOAL] case succ K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) ⊢ Nat.succ n + 1 ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) [PROOFSTEP] case succ => exact Or.inr (Or.resolve_left hyp n.succ_ne_zero) [GOAL] K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) ⊢ Nat.succ n + 1 ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) [PROOFSTEP] case succ => exact Or.inr (Or.resolve_left hyp n.succ_ne_zero) [GOAL] K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) ⊢ Nat.succ n + 1 ≤ 1 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) [PROOFSTEP] exact Or.inr (Or.resolve_left hyp n.succ_ne_zero) [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) this : n + 1 ≤ 1 ∨ ¬TerminatedAt (of v) (n - 1) ⊢ ↑(fib (n + 1)) ≤ (continuantsAux (of v) (n + 1)).b [PROOFSTEP] exact fib_le_of_continuantsAux_b this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ⊢ 0 ≤ (continuantsAux (of v) n).b [PROOFSTEP] let g := of v [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ⊢ 0 ≤ (continuantsAux (of v) n).b [PROOFSTEP] induction' n with n IH [GOAL] case zero K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ⊢ 0 ≤ (continuantsAux (of v) zero).b case succ K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : 0 ≤ (continuantsAux (of v) n).b ⊢ 0 ≤ (continuantsAux (of v) (Nat.succ n)).b [PROOFSTEP] case zero => rfl [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ⊢ 0 ≤ (continuantsAux (of v) zero).b [PROOFSTEP] case zero => rfl [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ⊢ 0 ≤ (continuantsAux (of v) zero).b [PROOFSTEP] rfl [GOAL] case succ K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : 0 ≤ (continuantsAux (of v) n).b ⊢ 0 ≤ (continuantsAux (of v) (Nat.succ n)).b [PROOFSTEP] case succ => cases' Decidable.em <| g.TerminatedAt (n - 1) with terminated not_terminated · -- terminating case cases' n with n · simp [succ_eq_add_one, zero_le_one] · have : g.continuantsAux (n + 2) = g.continuantsAux (n + 1) := continuantsAux_stable_step_of_terminated terminated simp only [this, IH] · -- non-terminating casecalc (0 : K) ≤ fib (n + 1) := by exact_mod_cast (n + 1).fib.zero_le _ ≤ ((of v).continuantsAux (n + 1)).b := fib_le_of_continuantsAux_b (Or.inr not_terminated) [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : 0 ≤ (continuantsAux (of v) n).b ⊢ 0 ≤ (continuantsAux (of v) (Nat.succ n)).b [PROOFSTEP] case succ => cases' Decidable.em <| g.TerminatedAt (n - 1) with terminated not_terminated · -- terminating case cases' n with n · simp [succ_eq_add_one, zero_le_one] · have : g.continuantsAux (n + 2) = g.continuantsAux (n + 1) := continuantsAux_stable_step_of_terminated terminated simp only [this, IH] · -- non-terminating casecalc (0 : K) ≤ fib (n + 1) := by exact_mod_cast (n + 1).fib.zero_le _ ≤ ((of v).continuantsAux (n + 1)).b := fib_le_of_continuantsAux_b (Or.inr not_terminated) [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : 0 ≤ (continuantsAux (of v) n).b ⊢ 0 ≤ (continuantsAux (of v) (Nat.succ n)).b [PROOFSTEP] cases' Decidable.em <| g.TerminatedAt (n - 1) with terminated not_terminated [GOAL] case inl K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : 0 ≤ (continuantsAux (of v) n).b terminated : TerminatedAt g (n - 1) ⊢ 0 ≤ (continuantsAux (of v) (Nat.succ n)).b [PROOFSTEP] cases' n with n [GOAL] case inl.zero K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v IH : 0 ≤ (continuantsAux (of v) zero).b terminated : TerminatedAt g (zero - 1) ⊢ 0 ≤ (continuantsAux (of v) (Nat.succ zero)).b [PROOFSTEP] simp [succ_eq_add_one, zero_le_one] [GOAL] case inl.succ K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : 0 ≤ (continuantsAux (of v) (Nat.succ n)).b terminated : TerminatedAt g (Nat.succ n - 1) ⊢ 0 ≤ (continuantsAux (of v) (Nat.succ (Nat.succ n))).b [PROOFSTEP] have : g.continuantsAux (n + 2) = g.continuantsAux (n + 1) := continuantsAux_stable_step_of_terminated terminated [GOAL] case inl.succ K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : 0 ≤ (continuantsAux (of v) (Nat.succ n)).b terminated : TerminatedAt g (Nat.succ n - 1) this : continuantsAux g (n + 2) = continuantsAux g (n + 1) ⊢ 0 ≤ (continuantsAux (of v) (Nat.succ (Nat.succ n))).b [PROOFSTEP] simp only [this, IH] [GOAL] case inr K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : 0 ≤ (continuantsAux (of v) n).b not_terminated : ¬TerminatedAt g (n - 1) ⊢ 0 ≤ (continuantsAux (of v) (Nat.succ n)).b [PROOFSTEP] calc (0 : K) ≤ fib (n + 1) := by exact_mod_cast (n + 1).fib.zero_le _ ≤ ((of v).continuantsAux (n + 1)).b := fib_le_of_continuantsAux_b (Or.inr not_terminated) [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v n : ℕ IH : 0 ≤ (continuantsAux (of v) n).b not_terminated : ¬TerminatedAt g (n - 1) ⊢ 0 ≤ ↑(fib (n + 1)) [PROOFSTEP] exact_mod_cast (n + 1).fib.zero_le [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ⊢ 0 ≤ denominators (of v) n [PROOFSTEP] rw [denom_eq_conts_b, nth_cont_eq_succ_nth_cont_aux] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ⊢ 0 ≤ (continuantsAux (of v) (n + 1)).b [PROOFSTEP] exact zero_le_of_continuantsAux_b [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b ⊢ b * (continuantsAux (of v) (n + 1)).b ≤ (continuantsAux (of v) (n + 2)).b [PROOFSTEP] obtain ⟨gp_n, nth_s_eq, rfl⟩ : ∃ gp_n, (of v).s.get? n = some gp_n ∧ gp_n.b = b [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b ⊢ ∃ gp_n, Stream'.Seq.get? (of v).s n = some gp_n ∧ gp_n.b = b case intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp_n : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp_n nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some gp_n.b ⊢ gp_n.b * (continuantsAux (of v) (n + 1)).b ≤ (continuantsAux (of v) (n + 2)).b [PROOFSTEP] exact exists_s_b_of_part_denom nth_part_denom_eq [GOAL] case intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K gp_n : Pair K nth_s_eq : Stream'.Seq.get? (of v).s n = some gp_n nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some gp_n.b ⊢ gp_n.b * (continuantsAux (of v) (n + 1)).b ≤ (continuantsAux (of v) (n + 2)).b [PROOFSTEP] simp [of_part_num_eq_one (part_num_eq_s_a nth_s_eq), zero_le_of_continuantsAux_b, GeneralizedContinuedFraction.continuantsAux_recurrence nth_s_eq rfl rfl] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b ⊢ b * denominators (of v) n ≤ denominators (of v) (n + 1) [PROOFSTEP] rw [denom_eq_conts_b, nth_cont_eq_succ_nth_cont_aux] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b ⊢ b * (continuantsAux (of v) (n + 1)).b ≤ denominators (of v) (n + 1) [PROOFSTEP] exact le_of_succ_succ_get?_continuantsAux_b nth_part_denom_eq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ⊢ denominators (of v) n ≤ denominators (of v) (n + 1) [PROOFSTEP] let g := of v [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v ⊢ denominators (of v) n ≤ denominators (of v) (n + 1) [PROOFSTEP] cases' Decidable.em <| g.partialDenominators.TerminatedAt n with terminated not_terminated [GOAL] case inl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v terminated : Stream'.Seq.TerminatedAt (partialDenominators g) n ⊢ denominators (of v) n ≤ denominators (of v) (n + 1) [PROOFSTEP] have : g.partialDenominators.get? n = none := by rwa [Stream'.Seq.TerminatedAt] at terminated [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v terminated : Stream'.Seq.TerminatedAt (partialDenominators g) n ⊢ Stream'.Seq.get? (partialDenominators g) n = none [PROOFSTEP] rwa [Stream'.Seq.TerminatedAt] at terminated [GOAL] case inl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v terminated : Stream'.Seq.TerminatedAt (partialDenominators g) n this : Stream'.Seq.get? (partialDenominators g) n = none ⊢ denominators (of v) n ≤ denominators (of v) (n + 1) [PROOFSTEP] have : g.TerminatedAt n := terminatedAt_iff_part_denom_none.2 (by rwa [Stream'.Seq.TerminatedAt] at terminated ) [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v terminated : Stream'.Seq.TerminatedAt (partialDenominators g) n this : Stream'.Seq.get? (partialDenominators g) n = none ⊢ Stream'.Seq.get? (partialDenominators g) n = none [PROOFSTEP] rwa [Stream'.Seq.TerminatedAt] at terminated [GOAL] case inl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v terminated : Stream'.Seq.TerminatedAt (partialDenominators g) n this✝ : Stream'.Seq.get? (partialDenominators g) n = none this : TerminatedAt g n ⊢ denominators (of v) n ≤ denominators (of v) (n + 1) [PROOFSTEP] have : g.denominators (n + 1) = g.denominators n := denominators_stable_of_terminated n.le_succ this [GOAL] case inl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v terminated : Stream'.Seq.TerminatedAt (partialDenominators g) n this✝¹ : Stream'.Seq.get? (partialDenominators g) n = none this✝ : TerminatedAt g n this : denominators g (n + 1) = denominators g n ⊢ denominators (of v) n ≤ denominators (of v) (n + 1) [PROOFSTEP] rw [this] [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v not_terminated : ¬Stream'.Seq.TerminatedAt (partialDenominators g) n ⊢ denominators (of v) n ≤ denominators (of v) (n + 1) [PROOFSTEP] obtain ⟨b, nth_part_denom_eq⟩ : ∃ b, g.partialDenominators.get? n = some b [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v not_terminated : ¬Stream'.Seq.TerminatedAt (partialDenominators g) n ⊢ ∃ b, Stream'.Seq.get? (partialDenominators g) n = some b case inr.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v not_terminated : ¬Stream'.Seq.TerminatedAt (partialDenominators g) n b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators g) n = some b ⊢ denominators (of v) n ≤ denominators (of v) (n + 1) [PROOFSTEP] exact Option.ne_none_iff_exists'.mp not_terminated [GOAL] case inr.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v not_terminated : ¬Stream'.Seq.TerminatedAt (partialDenominators g) n b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators g) n = some b ⊢ denominators (of v) n ≤ denominators (of v) (n + 1) [PROOFSTEP] have : 1 ≤ b := of_one_le_get?_part_denom nth_part_denom_eq [GOAL] case inr.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v not_terminated : ¬Stream'.Seq.TerminatedAt (partialDenominators g) n b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators g) n = some b this : 1 ≤ b ⊢ denominators (of v) n ≤ denominators (of v) (n + 1) [PROOFSTEP] calc g.denominators n ≤ b * g.denominators n := by simpa using mul_le_mul_of_nonneg_right this zero_le_of_denom _ ≤ g.denominators (n + 1) := le_of_succ_get?_denom nth_part_denom_eq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K g : GeneralizedContinuedFraction K := of v not_terminated : ¬Stream'.Seq.TerminatedAt (partialDenominators g) n b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators g) n = some b this : 1 ≤ b ⊢ denominators g n ≤ b * denominators g n [PROOFSTEP] simpa using mul_le_mul_of_nonneg_right this zero_le_of_denom [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) ⊢ (continuantsAux (of v) n).a * (continuantsAux (of v) (n + 1)).b - (continuantsAux (of v) n).b * (continuantsAux (of v) (n + 1)).a = (-1) ^ n [PROOFSTEP] induction' n with n IH [GOAL] case zero K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) hyp : zero = 0 ∨ ¬TerminatedAt (of v) (zero - 1) ⊢ (continuantsAux (of v) zero).a * (continuantsAux (of v) (zero + 1)).b - (continuantsAux (of v) zero).b * (continuantsAux (of v) (zero + 1)).a = (-1) ^ zero case succ K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → (continuantsAux (of v) n).a * (continuantsAux (of v) (n + 1)).b - (continuantsAux (of v) n).b * (continuantsAux (of v) (n + 1)).a = (-1) ^ n hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) ⊢ (continuantsAux (of v) (Nat.succ n)).a * (continuantsAux (of v) (Nat.succ n + 1)).b - (continuantsAux (of v) (Nat.succ n)).b * (continuantsAux (of v) (Nat.succ n + 1)).a = (-1) ^ Nat.succ n [PROOFSTEP] case zero => simp [continuantsAux] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) hyp : zero = 0 ∨ ¬TerminatedAt (of v) (zero - 1) ⊢ (continuantsAux (of v) zero).a * (continuantsAux (of v) (zero + 1)).b - (continuantsAux (of v) zero).b * (continuantsAux (of v) (zero + 1)).a = (-1) ^ zero [PROOFSTEP] case zero => simp [continuantsAux] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) hyp : zero = 0 ∨ ¬TerminatedAt (of v) (zero - 1) ⊢ (continuantsAux (of v) zero).a * (continuantsAux (of v) (zero + 1)).b - (continuantsAux (of v) zero).b * (continuantsAux (of v) (zero + 1)).a = (-1) ^ zero [PROOFSTEP] simp [continuantsAux] [GOAL] case succ K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → (continuantsAux (of v) n).a * (continuantsAux (of v) (n + 1)).b - (continuantsAux (of v) n).b * (continuantsAux (of v) (n + 1)).a = (-1) ^ n hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) ⊢ (continuantsAux (of v) (Nat.succ n)).a * (continuantsAux (of v) (Nat.succ n + 1)).b - (continuantsAux (of v) (Nat.succ n)).b * (continuantsAux (of v) (Nat.succ n + 1)).a = (-1) ^ Nat.succ n [PROOFSTEP] case succ => -- set up some shorthand notation let g := of v let conts := continuantsAux g (n + 2) set pred_conts := continuantsAux g (n + 1) with pred_conts_eq set ppred_conts := continuantsAux g n with ppred_conts_eq let pA := pred_conts.a let pB := pred_conts.b let ppA := ppred_conts.a let ppB := ppred_conts.b change pA * conts.b - pB * conts.a = (-1) ^ (n + 1) have not_terminated_at_n : ¬TerminatedAt g n := Or.resolve_left hyp n.succ_ne_zero obtain ⟨gp, s_nth_eq⟩ : ∃ gp, g.s.get? n = some gp exact Option.ne_none_iff_exists'.1 not_terminated_at_n suffices pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = (-1) ^ (n + 1) by simp only [continuantsAux_recurrence s_nth_eq ppred_conts_eq pred_conts_eq] have gp_a_eq_one : gp.a = 1 := of_part_num_eq_one (part_num_eq_s_a s_nth_eq) rw [gp_a_eq_one, this.symm] ring suffices : pA * ppB - pB * ppA = (-1) ^ (n + 1); calc pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = pA * ppB + pA * gp.b * pB - pB * ppA - pB * gp.b * pA := by ring _ = pA * ppB - pB * ppA := by ring _ = (-1) ^ (n + 1) := by assumption suffices ppA * pB - ppB * pA = (-1) ^ n by have pow_succ_n : (-1 : K) ^ (n + 1) = -1 * (-1) ^ n := pow_succ (-1) n rw [pow_succ_n, ← this] ring exact IH <| Or.inr <| mt (terminated_stable <| n.sub_le 1) not_terminated_at_n [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → (continuantsAux (of v) n).a * (continuantsAux (of v) (n + 1)).b - (continuantsAux (of v) n).b * (continuantsAux (of v) (n + 1)).a = (-1) ^ n hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) ⊢ (continuantsAux (of v) (Nat.succ n)).a * (continuantsAux (of v) (Nat.succ n + 1)).b - (continuantsAux (of v) (Nat.succ n)).b * (continuantsAux (of v) (Nat.succ n + 1)).a = (-1) ^ Nat.succ n [PROOFSTEP] case succ => -- set up some shorthand notation let g := of v let conts := continuantsAux g (n + 2) set pred_conts := continuantsAux g (n + 1) with pred_conts_eq set ppred_conts := continuantsAux g n with ppred_conts_eq let pA := pred_conts.a let pB := pred_conts.b let ppA := ppred_conts.a let ppB := ppred_conts.b change pA * conts.b - pB * conts.a = (-1) ^ (n + 1) have not_terminated_at_n : ¬TerminatedAt g n := Or.resolve_left hyp n.succ_ne_zero obtain ⟨gp, s_nth_eq⟩ : ∃ gp, g.s.get? n = some gp exact Option.ne_none_iff_exists'.1 not_terminated_at_n suffices pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = (-1) ^ (n + 1) by simp only [continuantsAux_recurrence s_nth_eq ppred_conts_eq pred_conts_eq] have gp_a_eq_one : gp.a = 1 := of_part_num_eq_one (part_num_eq_s_a s_nth_eq) rw [gp_a_eq_one, this.symm] ring suffices : pA * ppB - pB * ppA = (-1) ^ (n + 1); calc pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = pA * ppB + pA * gp.b * pB - pB * ppA - pB * gp.b * pA := by ring _ = pA * ppB - pB * ppA := by ring _ = (-1) ^ (n + 1) := by assumption suffices ppA * pB - ppB * pA = (-1) ^ n by have pow_succ_n : (-1 : K) ^ (n + 1) = -1 * (-1) ^ n := pow_succ (-1) n rw [pow_succ_n, ← this] ring exact IH <| Or.inr <| mt (terminated_stable <| n.sub_le 1) not_terminated_at_n [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → (continuantsAux (of v) n).a * (continuantsAux (of v) (n + 1)).b - (continuantsAux (of v) n).b * (continuantsAux (of v) (n + 1)).a = (-1) ^ n hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) ⊢ (continuantsAux (of v) (Nat.succ n)).a * (continuantsAux (of v) (Nat.succ n + 1)).b - (continuantsAux (of v) (Nat.succ n)).b * (continuantsAux (of v) (Nat.succ n + 1)).a = (-1) ^ Nat.succ n [PROOFSTEP] let g := of v [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → (continuantsAux (of v) n).a * (continuantsAux (of v) (n + 1)).b - (continuantsAux (of v) n).b * (continuantsAux (of v) (n + 1)).a = (-1) ^ n hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v ⊢ (continuantsAux (of v) (Nat.succ n)).a * (continuantsAux (of v) (Nat.succ n + 1)).b - (continuantsAux (of v) (Nat.succ n)).b * (continuantsAux (of v) (Nat.succ n + 1)).a = (-1) ^ Nat.succ n [PROOFSTEP] let conts := continuantsAux g (n + 2) [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → (continuantsAux (of v) n).a * (continuantsAux (of v) (n + 1)).b - (continuantsAux (of v) n).b * (continuantsAux (of v) (n + 1)).a = (-1) ^ n hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) ⊢ (continuantsAux (of v) (Nat.succ n)).a * (continuantsAux (of v) (Nat.succ n + 1)).b - (continuantsAux (of v) (Nat.succ n)).b * (continuantsAux (of v) (Nat.succ n + 1)).a = (-1) ^ Nat.succ n [PROOFSTEP] set pred_conts := continuantsAux g (n + 1) with pred_conts_eq [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → (continuantsAux (of v) n).a * pred_conts.b - (continuantsAux (of v) n).b * pred_conts.a = (-1) ^ n pred_conts_eq : pred_conts = continuantsAux g (n + 1) ⊢ pred_conts.a * (continuantsAux (of v) (Nat.succ n + 1)).b - pred_conts.b * (continuantsAux (of v) (Nat.succ n + 1)).a = (-1) ^ Nat.succ n [PROOFSTEP] set ppred_conts := continuantsAux g n with ppred_conts_eq [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n ⊢ pred_conts.a * (continuantsAux (of v) (Nat.succ n + 1)).b - pred_conts.b * (continuantsAux (of v) (Nat.succ n + 1)).a = (-1) ^ Nat.succ n [PROOFSTEP] let pA := pred_conts.a [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a ⊢ pred_conts.a * (continuantsAux (of v) (Nat.succ n + 1)).b - pred_conts.b * (continuantsAux (of v) (Nat.succ n + 1)).a = (-1) ^ Nat.succ n [PROOFSTEP] let pB := pred_conts.b [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ⊢ pred_conts.a * (continuantsAux (of v) (Nat.succ n + 1)).b - pred_conts.b * (continuantsAux (of v) (Nat.succ n + 1)).a = (-1) ^ Nat.succ n [PROOFSTEP] let ppA := ppred_conts.a [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ⊢ pred_conts.a * (continuantsAux (of v) (Nat.succ n + 1)).b - pred_conts.b * (continuantsAux (of v) (Nat.succ n + 1)).a = (-1) ^ Nat.succ n [PROOFSTEP] let ppB := ppred_conts.b [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b ⊢ pred_conts.a * (continuantsAux (of v) (Nat.succ n + 1)).b - pred_conts.b * (continuantsAux (of v) (Nat.succ n + 1)).a = (-1) ^ Nat.succ n [PROOFSTEP] change pA * conts.b - pB * conts.a = (-1) ^ (n + 1) [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b ⊢ pA * conts.b - pB * conts.a = (-1) ^ (n + 1) [PROOFSTEP] have not_terminated_at_n : ¬TerminatedAt g n := Or.resolve_left hyp n.succ_ne_zero [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n ⊢ pA * conts.b - pB * conts.a = (-1) ^ (n + 1) [PROOFSTEP] obtain ⟨gp, s_nth_eq⟩ : ∃ gp, g.s.get? n = some gp [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n ⊢ ∃ gp, Stream'.Seq.get? g.s n = some gp case intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp ⊢ pA * conts.b - pB * conts.a = (-1) ^ (n + 1) [PROOFSTEP] exact Option.ne_none_iff_exists'.1 not_terminated_at_n [GOAL] case intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp ⊢ pA * conts.b - pB * conts.a = (-1) ^ (n + 1) [PROOFSTEP] suffices pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = (-1) ^ (n + 1) by simp only [continuantsAux_recurrence s_nth_eq ppred_conts_eq pred_conts_eq] have gp_a_eq_one : gp.a = 1 := of_part_num_eq_one (part_num_eq_s_a s_nth_eq) rw [gp_a_eq_one, this.symm] ring [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp this : pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = (-1) ^ (n + 1) ⊢ pA * conts.b - pB * conts.a = (-1) ^ (n + 1) [PROOFSTEP] simp only [continuantsAux_recurrence s_nth_eq ppred_conts_eq pred_conts_eq] [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp this : pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = (-1) ^ (n + 1) ⊢ (continuantsAux (of v) (n + 1)).a * (gp.b * (continuantsAux (of v) (n + 1)).b + gp.a * (continuantsAux (of v) n).b) - (continuantsAux (of v) (n + 1)).b * (gp.b * (continuantsAux (of v) (n + 1)).a + gp.a * (continuantsAux (of v) n).a) = (-1) ^ (n + 1) [PROOFSTEP] have gp_a_eq_one : gp.a = 1 := of_part_num_eq_one (part_num_eq_s_a s_nth_eq) [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp this : pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = (-1) ^ (n + 1) gp_a_eq_one : gp.a = 1 ⊢ (continuantsAux (of v) (n + 1)).a * (gp.b * (continuantsAux (of v) (n + 1)).b + gp.a * (continuantsAux (of v) n).b) - (continuantsAux (of v) (n + 1)).b * (gp.b * (continuantsAux (of v) (n + 1)).a + gp.a * (continuantsAux (of v) n).a) = (-1) ^ (n + 1) [PROOFSTEP] rw [gp_a_eq_one, this.symm] [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp this : pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = (-1) ^ (n + 1) gp_a_eq_one : gp.a = 1 ⊢ (continuantsAux (of v) (n + 1)).a * (gp.b * (continuantsAux (of v) (n + 1)).b + 1 * (continuantsAux (of v) n).b) - (continuantsAux (of v) (n + 1)).b * (gp.b * (continuantsAux (of v) (n + 1)).a + 1 * (continuantsAux (of v) n).a) = pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) [PROOFSTEP] ring [GOAL] case intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp ⊢ pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = (-1) ^ (n + 1) [PROOFSTEP] suffices : pA * ppB - pB * ppA = (-1) ^ (n + 1) [GOAL] case intro K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp this : pA * ppB - pB * ppA = (-1) ^ (n + 1) ⊢ pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = (-1) ^ (n + 1) case this K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp ⊢ pA * ppB - pB * ppA = (-1) ^ (n + 1) [PROOFSTEP] calc pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = pA * ppB + pA * gp.b * pB - pB * ppA - pB * gp.b * pA := by ring _ = pA * ppB - pB * ppA := by ring _ = (-1) ^ (n + 1) := by assumption [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp this : pA * ppB - pB * ppA = (-1) ^ (n + 1) ⊢ pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = pA * ppB + pA * gp.b * pB - pB * ppA - pB * gp.b * pA [PROOFSTEP] ring [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp this : pA * ppB - pB * ppA = (-1) ^ (n + 1) ⊢ pA * ppB + pA * gp.b * pB - pB * ppA - pB * gp.b * pA = pA * ppB - pB * ppA [PROOFSTEP] ring [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp this : pA * ppB - pB * ppA = (-1) ^ (n + 1) ⊢ pA * ppB - pB * ppA = (-1) ^ (n + 1) [PROOFSTEP] assumption [GOAL] case this K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp ⊢ pA * ppB - pB * ppA = (-1) ^ (n + 1) [PROOFSTEP] suffices ppA * pB - ppB * pA = (-1) ^ n by have pow_succ_n : (-1 : K) ^ (n + 1) = -1 * (-1) ^ n := pow_succ (-1) n rw [pow_succ_n, ← this] ring [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp this : ppA * pB - ppB * pA = (-1) ^ n ⊢ pA * ppB - pB * ppA = (-1) ^ (n + 1) [PROOFSTEP] have pow_succ_n : (-1 : K) ^ (n + 1) = -1 * (-1) ^ n := pow_succ (-1) n [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp this : ppA * pB - ppB * pA = (-1) ^ n pow_succ_n : (-1) ^ (n + 1) = -1 * (-1) ^ n ⊢ pA * ppB - pB * ppA = (-1) ^ (n + 1) [PROOFSTEP] rw [pow_succ_n, ← this] [GOAL] K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp this : ppA * pB - ppB * pA = (-1) ^ n pow_succ_n : (-1) ^ (n + 1) = -1 * (-1) ^ n ⊢ pA * ppB - pB * ppA = -1 * (ppA * pB - ppB * pA) [PROOFSTEP] ring [GOAL] case this K : Type u_1 v : K n✝ : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K hyp✝ : n✝ = 0 ∨ ¬TerminatedAt (of v) (n✝ - 1) n : ℕ hyp : Nat.succ n = 0 ∨ ¬TerminatedAt (of v) (Nat.succ n - 1) g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 2) pred_conts : Pair K := continuantsAux g (n + 1) pred_conts_eq : pred_conts = continuantsAux g (n + 1) ppred_conts : Pair K := continuantsAux g n IH : n = 0 ∨ ¬TerminatedAt (of v) (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = continuantsAux g n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬TerminatedAt g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp ⊢ ppA * pB - ppB * pA = (-1) ^ n [PROOFSTEP] exact IH <| Or.inr <| mt (terminated_stable <| n.sub_le 1) not_terminated_at_n [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp ⊢ let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp.fr = 0 then 0 else (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] let g := of v [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v ⊢ let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp.fr = 0 then 0 else (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] let conts := g.continuantsAux (n + 1) [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) ⊢ let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp.fr = 0 then 0 else (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] let pred_conts := g.continuantsAux n [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ⊢ let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp.fr = 0 then 0 else (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] have g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr := compExactValue_correctness_of_stream_eq_some stream_nth_eq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr ⊢ let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp.fr = 0 then 0 else (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] cases' Decidable.em (ifp.fr = 0) with ifp_fr_eq_zero ifp_fr_ne_zero [GOAL] case inl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr ifp_fr_eq_zero : ifp.fr = 0 ⊢ let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp.fr = 0 then 0 else (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] suffices v - g.convergents n = 0 by simpa [ifp_fr_eq_zero] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr ifp_fr_eq_zero : ifp.fr = 0 this : v - convergents g n = 0 ⊢ let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp.fr = 0 then 0 else (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] simpa [ifp_fr_eq_zero] [GOAL] case inl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr ifp_fr_eq_zero : ifp.fr = 0 ⊢ v - convergents g n = 0 [PROOFSTEP] replace g_finite_correctness : v = g.convergents n [GOAL] case g_finite_correctness K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr ifp_fr_eq_zero : ifp.fr = 0 ⊢ v = convergents g n [PROOFSTEP] simpa [GeneralizedContinuedFraction.compExactValue, ifp_fr_eq_zero] using g_finite_correctness [GOAL] case inl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_eq_zero : ifp.fr = 0 g_finite_correctness : v = convergents g n ⊢ v - convergents g n = 0 [PROOFSTEP] exact sub_eq_zero.2 g_finite_correctness [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr ifp_fr_ne_zero : ¬ifp.fr = 0 ⊢ let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp.fr = 0 then 0 else (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] let A := conts.a [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a ⊢ let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp.fr = 0 then 0 else (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] let B := conts.b [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b ⊢ let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp.fr = 0 then 0 else (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] let pA := pred_conts.a [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a ⊢ let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp.fr = 0 then 0 else (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] let pB := pred_conts.b [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b ⊢ let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp.fr = 0 then 0 else (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] suffices v - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) by simpa [ifp_fr_ne_zero] -- now we can unfold `g.compExactValue` to derive the following equality for `v` [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b this : v - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) ⊢ let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp.fr = 0 then 0 else (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] simpa [ifp_fr_ne_zero] -- now we can unfold `g.compExactValue` to derive the following equality for `v` [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b ⊢ v - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] replace g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) [GOAL] case g_finite_correctness K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n g_finite_correctness : v = GeneralizedContinuedFraction.compExactValue pred_conts conts ifp.fr ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b ⊢ v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) [PROOFSTEP] simpa [GeneralizedContinuedFraction.compExactValue, ifp_fr_ne_zero, nextContinuants, nextNumerator, nextDenominator, add_comm] using g_finite_correctness [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) ⊢ v - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] suffices (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) by rwa [g_finite_correctness] -- To continue, we need use the determinant equality. So let's derive the needed hypothesis. [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) this : (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) ⊢ v - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] rwa [g_finite_correctness] -- To continue, we need use the determinant equality. So let's derive the needed hypothesis. [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) ⊢ (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] have n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬g.TerminatedAt (n - 1) := by cases' n with n' · simp · have : IntFractPair.stream v (n' + 1) ≠ none := by simp [stream_nth_eq] have : ¬g.TerminatedAt n' := (not_congr of_terminatedAt_n_iff_succ_nth_intFractPair_stream_eq_none).2 this exact Or.inr this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) ⊢ n = 0 ∨ ¬TerminatedAt g (n - 1) [PROOFSTEP] cases' n with n' [GOAL] case zero K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K g : GeneralizedContinuedFraction K := of v ifp_fr_ne_zero : ¬ifp.fr = 0 stream_nth_eq : IntFractPair.stream v zero = some ifp conts : Pair K := continuantsAux g (zero + 1) pred_conts : Pair K := continuantsAux g zero A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) ⊢ zero = 0 ∨ ¬TerminatedAt g (zero - 1) [PROOFSTEP] simp [GOAL] case succ K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K g : GeneralizedContinuedFraction K := of v ifp_fr_ne_zero : ¬ifp.fr = 0 n' : ℕ stream_nth_eq : IntFractPair.stream v (Nat.succ n') = some ifp conts : Pair K := continuantsAux g (Nat.succ n' + 1) pred_conts : Pair K := continuantsAux g (Nat.succ n') A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) ⊢ Nat.succ n' = 0 ∨ ¬TerminatedAt g (Nat.succ n' - 1) [PROOFSTEP] have : IntFractPair.stream v (n' + 1) ≠ none := by simp [stream_nth_eq] [GOAL] K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K g : GeneralizedContinuedFraction K := of v ifp_fr_ne_zero : ¬ifp.fr = 0 n' : ℕ stream_nth_eq : IntFractPair.stream v (Nat.succ n') = some ifp conts : Pair K := continuantsAux g (Nat.succ n' + 1) pred_conts : Pair K := continuantsAux g (Nat.succ n') A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) ⊢ IntFractPair.stream v (n' + 1) ≠ none [PROOFSTEP] simp [stream_nth_eq] [GOAL] case succ K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K g : GeneralizedContinuedFraction K := of v ifp_fr_ne_zero : ¬ifp.fr = 0 n' : ℕ stream_nth_eq : IntFractPair.stream v (Nat.succ n') = some ifp conts : Pair K := continuantsAux g (Nat.succ n' + 1) pred_conts : Pair K := continuantsAux g (Nat.succ n') A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) this : IntFractPair.stream v (n' + 1) ≠ none ⊢ Nat.succ n' = 0 ∨ ¬TerminatedAt g (Nat.succ n' - 1) [PROOFSTEP] have : ¬g.TerminatedAt n' := (not_congr of_terminatedAt_n_iff_succ_nth_intFractPair_stream_eq_none).2 this [GOAL] case succ K : Type u_1 v : K inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K g : GeneralizedContinuedFraction K := of v ifp_fr_ne_zero : ¬ifp.fr = 0 n' : ℕ stream_nth_eq : IntFractPair.stream v (Nat.succ n') = some ifp conts : Pair K := continuantsAux g (Nat.succ n' + 1) pred_conts : Pair K := continuantsAux g (Nat.succ n') A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) this✝ : IntFractPair.stream v (n' + 1) ≠ none this : ¬TerminatedAt g n' ⊢ Nat.succ n' = 0 ∨ ¬TerminatedAt g (Nat.succ n' - 1) [PROOFSTEP] exact Or.inr this [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) ⊢ (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] have determinant_eq : pA * B - pB * A = (-1) ^ n := determinant_aux n_eq_zero_or_not_terminated_at_pred_n [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n ⊢ (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] have pB_ineq : (fib n : K) ≤ pB := haveI : n ≤ 1 ∨ ¬g.TerminatedAt (n - 2) := by cases' n_eq_zero_or_not_terminated_at_pred_n with n_eq_zero not_terminated_at_pred_n · simp [n_eq_zero] · exact Or.inr <| mt (terminated_stable (n - 1).pred_le) not_terminated_at_pred_n fib_le_of_continuantsAux_b this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n ⊢ n ≤ 1 ∨ ¬TerminatedAt g (n - 2) [PROOFSTEP] cases' n_eq_zero_or_not_terminated_at_pred_n with n_eq_zero not_terminated_at_pred_n [GOAL] case inl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) determinant_eq : pA * B - pB * A = (-1) ^ n n_eq_zero : n = 0 ⊢ n ≤ 1 ∨ ¬TerminatedAt g (n - 2) [PROOFSTEP] simp [n_eq_zero] [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) determinant_eq : pA * B - pB * A = (-1) ^ n not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) ⊢ n ≤ 1 ∨ ¬TerminatedAt g (n - 2) [PROOFSTEP] exact Or.inr <| mt (terminated_stable (n - 1).pred_le) not_terminated_at_pred_n [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB ⊢ (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] have B_ineq : (fib (n + 1) : K) ≤ B := haveI : n + 1 ≤ 1 ∨ ¬g.TerminatedAt (n + 1 - 2) := by cases' n_eq_zero_or_not_terminated_at_pred_n with n_eq_zero not_terminated_at_pred_n · simp [n_eq_zero, le_refl] · exact Or.inr not_terminated_at_pred_n fib_le_of_continuantsAux_b this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB ⊢ n + 1 ≤ 1 ∨ ¬TerminatedAt g (n + 1 - 2) [PROOFSTEP] cases' n_eq_zero_or_not_terminated_at_pred_n with n_eq_zero not_terminated_at_pred_n [GOAL] case inl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB n_eq_zero : n = 0 ⊢ n + 1 ≤ 1 ∨ ¬TerminatedAt g (n + 1 - 2) [PROOFSTEP] simp [n_eq_zero, le_refl] [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB not_terminated_at_pred_n : ¬TerminatedAt g (n - 1) ⊢ n + 1 ≤ 1 ∨ ¬TerminatedAt g (n + 1 - 2) [PROOFSTEP] exact Or.inr not_terminated_at_pred_n [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B ⊢ (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] have zero_lt_B : 0 < B := haveI : 1 ≤ B := le_trans (by exact_mod_cast fib_pos (lt_of_le_of_ne n.succ.zero_le n.succ_ne_zero.symm)) B_ineq lt_of_lt_of_le zero_lt_one this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B ⊢ 1 ≤ ↑(fib (n + 1)) [PROOFSTEP] exact_mod_cast fib_pos (lt_of_le_of_ne n.succ.zero_le n.succ_ne_zero.symm) [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B ⊢ (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] have zero_ne_B : 0 ≠ B := ne_of_lt zero_lt_B [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B ⊢ (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] have : 0 ≠ pB + ifp.fr⁻¹ * B := by have : (0 : K) ≤ fib n := by exact_mod_cast (fib n).zero_le have zero_le_pB : 0 ≤ pB := le_trans this pB_ineq have : 0 < ifp.fr⁻¹ := by suffices 0 < ifp.fr by rwa [inv_pos] have : 0 ≤ ifp.fr := IntFractPair.nth_stream_fr_nonneg stream_nth_eq change ifp.fr ≠ 0 at ifp_fr_ne_zero exact lt_of_le_of_ne this ifp_fr_ne_zero.symm have : 0 < ifp.fr⁻¹ * B := mul_pos this zero_lt_B have : 0 < pB + ifp.fr⁻¹ * B := add_pos_of_nonneg_of_pos zero_le_pB this exact ne_of_lt this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B ⊢ 0 ≠ pB + ifp.fr⁻¹ * B [PROOFSTEP] have : (0 : K) ≤ fib n := by exact_mod_cast (fib n).zero_le [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B ⊢ 0 ≤ ↑(fib n) [PROOFSTEP] exact_mod_cast (fib n).zero_le [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this : 0 ≤ ↑(fib n) ⊢ 0 ≠ pB + ifp.fr⁻¹ * B [PROOFSTEP] have zero_le_pB : 0 ≤ pB := le_trans this pB_ineq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this : 0 ≤ ↑(fib n) zero_le_pB : 0 ≤ pB ⊢ 0 ≠ pB + ifp.fr⁻¹ * B [PROOFSTEP] have : 0 < ifp.fr⁻¹ := by suffices 0 < ifp.fr by rwa [inv_pos] have : 0 ≤ ifp.fr := IntFractPair.nth_stream_fr_nonneg stream_nth_eq change ifp.fr ≠ 0 at ifp_fr_ne_zero exact lt_of_le_of_ne this ifp_fr_ne_zero.symm [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this : 0 ≤ ↑(fib n) zero_le_pB : 0 ≤ pB ⊢ 0 < ifp.fr⁻¹ [PROOFSTEP] suffices 0 < ifp.fr by rwa [inv_pos] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this✝ : 0 ≤ ↑(fib n) zero_le_pB : 0 ≤ pB this : 0 < ifp.fr ⊢ 0 < ifp.fr⁻¹ [PROOFSTEP] rwa [inv_pos] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this : 0 ≤ ↑(fib n) zero_le_pB : 0 ≤ pB ⊢ 0 < ifp.fr [PROOFSTEP] have : 0 ≤ ifp.fr := IntFractPair.nth_stream_fr_nonneg stream_nth_eq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this✝ : 0 ≤ ↑(fib n) zero_le_pB : 0 ≤ pB this : 0 ≤ ifp.fr ⊢ 0 < ifp.fr [PROOFSTEP] change ifp.fr ≠ 0 at ifp_fr_ne_zero [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this✝ : 0 ≤ ↑(fib n) zero_le_pB : 0 ≤ pB this : 0 ≤ ifp.fr ifp_fr_ne_zero : ifp.fr ≠ 0 ⊢ 0 < ifp.fr [PROOFSTEP] exact lt_of_le_of_ne this ifp_fr_ne_zero.symm [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this✝ : 0 ≤ ↑(fib n) zero_le_pB : 0 ≤ pB this : 0 < ifp.fr⁻¹ ⊢ 0 ≠ pB + ifp.fr⁻¹ * B [PROOFSTEP] have : 0 < ifp.fr⁻¹ * B := mul_pos this zero_lt_B [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this✝¹ : 0 ≤ ↑(fib n) zero_le_pB : 0 ≤ pB this✝ : 0 < ifp.fr⁻¹ this : 0 < ifp.fr⁻¹ * B ⊢ 0 ≠ pB + ifp.fr⁻¹ * B [PROOFSTEP] have : 0 < pB + ifp.fr⁻¹ * B := add_pos_of_nonneg_of_pos zero_le_pB this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this✝² : 0 ≤ ↑(fib n) zero_le_pB : 0 ≤ pB this✝¹ : 0 < ifp.fr⁻¹ this✝ : 0 < ifp.fr⁻¹ * B this : 0 < pB + ifp.fr⁻¹ * B ⊢ 0 ≠ pB + ifp.fr⁻¹ * B [PROOFSTEP] exact ne_of_lt this [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this : 0 ≠ pB + ifp.fr⁻¹ * B ⊢ (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) - A / B = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] calc (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) - A / B = ((pA + ifp.fr⁻¹ * A) * B - (pB + ifp.fr⁻¹ * B) * A) / ((pB + ifp.fr⁻¹ * B) * B) := by rw [div_sub_div _ _ this.symm zero_ne_B.symm] _ = (pA * B + ifp.fr⁻¹ * A * B - (pB * A + ifp.fr⁻¹ * B * A)) / _ := by repeat' rw [add_mul] _ = (pA * B - pB * A) / ((pB + ifp.fr⁻¹ * B) * B) := by ring _ = (-1) ^ n / ((pB + ifp.fr⁻¹ * B) * B) := by rw [determinant_eq] _ = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) := by ac_rfl [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this : 0 ≠ pB + ifp.fr⁻¹ * B ⊢ (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) - A / B = ((pA + ifp.fr⁻¹ * A) * B - (pB + ifp.fr⁻¹ * B) * A) / ((pB + ifp.fr⁻¹ * B) * B) [PROOFSTEP] rw [div_sub_div _ _ this.symm zero_ne_B.symm] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this : 0 ≠ pB + ifp.fr⁻¹ * B ⊢ ((pA + ifp.fr⁻¹ * A) * B - (pB + ifp.fr⁻¹ * B) * A) / ((pB + ifp.fr⁻¹ * B) * B) = (pA * B + ifp.fr⁻¹ * A * B - (pB * A + ifp.fr⁻¹ * B * A)) / ?m.95134 [PROOFSTEP] repeat' rw [add_mul] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this : 0 ≠ pB + ifp.fr⁻¹ * B ⊢ ((pA + ifp.fr⁻¹ * A) * B - (pB + ifp.fr⁻¹ * B) * A) / ((pB + ifp.fr⁻¹ * B) * B) = (pA * B + ifp.fr⁻¹ * A * B - (pB * A + ifp.fr⁻¹ * B * A)) / ?m.95134 [PROOFSTEP] rw [add_mul] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this : 0 ≠ pB + ifp.fr⁻¹ * B ⊢ (pA * B + ifp.fr⁻¹ * A * B - (pB + ifp.fr⁻¹ * B) * A) / ((pB + ifp.fr⁻¹ * B) * B) = (pA * B + ifp.fr⁻¹ * A * B - (pB * A + ifp.fr⁻¹ * B * A)) / ?m.95134 [PROOFSTEP] rw [add_mul] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this : 0 ≠ pB + ifp.fr⁻¹ * B ⊢ (pA * B + ifp.fr⁻¹ * A * B - (pB * A + ifp.fr⁻¹ * B * A)) / ((pB + ifp.fr⁻¹ * B) * B) = (pA * B - pB * A) / ((pB + ifp.fr⁻¹ * B) * B) [PROOFSTEP] ring [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this : 0 ≠ pB + ifp.fr⁻¹ * B ⊢ (pA * B - pB * A) / ((pB + ifp.fr⁻¹ * B) * B) = (-1) ^ n / ((pB + ifp.fr⁻¹ * B) * B) [PROOFSTEP] rw [determinant_eq] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K ifp : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp g : GeneralizedContinuedFraction K := of v conts : Pair K := continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n ifp_fr_ne_zero : ¬ifp.fr = 0 A : K := conts.a B : K := conts.b pA : K := pred_conts.a pB : K := pred_conts.b g_finite_correctness : v = (pA + ifp.fr⁻¹ * A) / (pB + ifp.fr⁻¹ * B) n_eq_zero_or_not_terminated_at_pred_n : n = 0 ∨ ¬TerminatedAt g (n - 1) determinant_eq : pA * B - pB * A = (-1) ^ n pB_ineq : ↑(fib n) ≤ pB B_ineq : ↑(fib (n + 1)) ≤ B zero_lt_B : 0 < B zero_ne_B : 0 ≠ B this : 0 ≠ pB + ifp.fr⁻¹ * B ⊢ (-1) ^ n / ((pB + ifp.fr⁻¹ * B) * B) = (-1) ^ n / (B * (ifp.fr⁻¹ * B + pB)) [PROOFSTEP] ac_rfl [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n ⊢ |v - convergents (of v) n| ≤ 1 / (denominators (of v) n * denominators (of v) (n + 1)) [PROOFSTEP] let g := of v [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v ⊢ |v - convergents (of v) n| ≤ 1 / (denominators (of v) n * denominators (of v) (n + 1)) [PROOFSTEP] let nextConts := g.continuantsAux (n + 2) [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) ⊢ |v - convergents (of v) n| ≤ 1 / (denominators (of v) n * denominators (of v) (n + 1)) [PROOFSTEP] set conts := continuantsAux g (n + 1) with conts_eq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) ⊢ |v - convergents (of v) n| ≤ 1 / (denominators (of v) n * denominators (of v) (n + 1)) [PROOFSTEP] set pred_conts := continuantsAux g n with pred_conts_eq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n ⊢ |v - convergents (of v) n| ≤ 1 / (denominators (of v) n * denominators (of v) (n + 1)) [PROOFSTEP] change |v - convergents g n| ≤ 1 / (conts.b * nextConts.b) [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n ⊢ |v - convergents g n| ≤ 1 / (conts.b * nextConts.b) [PROOFSTEP] obtain ⟨gp, s_nth_eq⟩ : ∃ gp, g.s.get? n = some gp [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n ⊢ ∃ gp, Stream'.Seq.get? g.s n = some gp case intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp ⊢ |v - convergents g n| ≤ 1 / (conts.b * nextConts.b) [PROOFSTEP] exact Option.ne_none_iff_exists'.1 not_terminated_at_n [GOAL] case intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp ⊢ |v - convergents g n| ≤ 1 / (conts.b * nextConts.b) [PROOFSTEP] have gp_a_eq_one : gp.a = 1 := of_part_num_eq_one (part_num_eq_s_a s_nth_eq) -- unfold the recurrence relation for `nextConts.b` [GOAL] case intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 ⊢ |v - convergents g n| ≤ 1 / (conts.b * nextConts.b) [PROOFSTEP] have nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b := by simp [continuantsAux_recurrence s_nth_eq pred_conts_eq conts_eq, gp_a_eq_one, pred_conts_eq.symm, conts_eq.symm, add_comm] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 ⊢ nextConts.b = pred_conts.b + gp.b * conts.b [PROOFSTEP] simp [continuantsAux_recurrence s_nth_eq pred_conts_eq conts_eq, gp_a_eq_one, pred_conts_eq.symm, conts_eq.symm, add_comm] [GOAL] case intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b ⊢ |v - convergents g n| ≤ 1 / (conts.b * nextConts.b) [PROOFSTEP] let denom := conts.b * (pred_conts.b + gp.b * conts.b) [GOAL] case intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ⊢ |v - convergents g n| ≤ 1 / (conts.b * nextConts.b) [PROOFSTEP] suffices |v - g.convergents n| ≤ 1 / denom by rw [nextConts_b_eq]; congr 1 [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) this : |v - convergents g n| ≤ 1 / denom ⊢ |v - convergents g n| ≤ 1 / (conts.b * nextConts.b) [PROOFSTEP] rw [nextConts_b_eq] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) this : |v - convergents g n| ≤ 1 / denom ⊢ |v - convergents g n| ≤ 1 / (conts.b * (pred_conts.b + gp.b * conts.b)) [PROOFSTEP] congr 1 [GOAL] case intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ⊢ |v - convergents g n| ≤ 1 / denom [PROOFSTEP] obtain ⟨ifp_succ_n, succ_nth_stream_eq, ifp_succ_n_b_eq_gp_b⟩ : ∃ ifp_succ_n, IntFractPair.stream v (n + 1) = some ifp_succ_n ∧ (ifp_succ_n.b : K) = gp.b [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ⊢ ∃ ifp_succ_n, IntFractPair.stream v (n + 1) = some ifp_succ_n ∧ ↑ifp_succ_n.b = gp.b case intro.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ⊢ |v - convergents g n| ≤ 1 / denom [PROOFSTEP] exact IntFractPair.exists_succ_get?_stream_of_gcf_of_get?_eq_some s_nth_eq [GOAL] case intro.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ⊢ |v - convergents g n| ≤ 1 / denom [PROOFSTEP] obtain ⟨ifp_n, stream_nth_eq, stream_nth_fr_ne_zero, if_of_eq_ifp_succ_n⟩ : ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr ≠ 0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ⊢ ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr ≠ 0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n case intro.intro.intro.intro.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n ⊢ |v - convergents g n| ≤ 1 / denom [PROOFSTEP] exact IntFractPair.succ_nth_stream_eq_some_iff.1 succ_nth_stream_eq [GOAL] case intro.intro.intro.intro.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n ⊢ |v - convergents g n| ≤ 1 / denom [PROOFSTEP] let denom' := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) -- now we can use `sub_convergents_eq` to simplify our goal [GOAL] case intro.intro.intro.intro.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) ⊢ |v - convergents g n| ≤ 1 / denom [PROOFSTEP] suffices |(-1) ^ n / denom'| ≤ 1 / denom by have : v - g.convergents n = (-1) ^ n / denom' := by -- apply `sub_convergents_eq` and simplify the result have tmp := sub_convergents_eq stream_nth_eq simp only [stream_nth_fr_ne_zero, conts_eq.symm, pred_conts_eq.symm, if_false] at tmp rw [tmp] ring rwa [this] -- derive some tedious inequalities that we need to rewrite our goal [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) this : |(-1) ^ n / denom'| ≤ 1 / denom ⊢ |v - convergents g n| ≤ 1 / denom [PROOFSTEP] have : v - g.convergents n = (-1) ^ n / denom' := by -- apply `sub_convergents_eq` and simplify the result have tmp := sub_convergents_eq stream_nth_eq simp only [stream_nth_fr_ne_zero, conts_eq.symm, pred_conts_eq.symm, if_false] at tmp rw [tmp] ring [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) this : |(-1) ^ n / denom'| ≤ 1 / denom ⊢ v - convergents g n = (-1) ^ n / denom' [PROOFSTEP] have tmp := sub_convergents_eq stream_nth_eq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) this : |(-1) ^ n / denom'| ≤ 1 / denom tmp : let g := of v; let B := (continuantsAux g (n + 1)).b; let pB := (continuantsAux g n).b; v - convergents g n = if ifp_n.fr = 0 then 0 else (-1) ^ n / (B * (ifp_n.fr⁻¹ * B + pB)) ⊢ v - convergents g n = (-1) ^ n / denom' [PROOFSTEP] simp only [stream_nth_fr_ne_zero, conts_eq.symm, pred_conts_eq.symm, if_false] at tmp [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) this : |(-1) ^ n / denom'| ≤ 1 / denom tmp : v - convergents (of v) n = (-1) ^ n / (conts.b * (ifp_n.fr⁻¹ * conts.b + pred_conts.b)) ⊢ v - convergents g n = (-1) ^ n / denom' [PROOFSTEP] rw [tmp] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) this : |(-1) ^ n / denom'| ≤ 1 / denom tmp : v - convergents (of v) n = (-1) ^ n / (conts.b * (ifp_n.fr⁻¹ * conts.b + pred_conts.b)) ⊢ (-1) ^ n / (conts.b * (ifp_n.fr⁻¹ * conts.b + pred_conts.b)) = (-1) ^ n / denom' [PROOFSTEP] ring [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) this✝ : |(-1) ^ n / denom'| ≤ 1 / denom this : v - convergents g n = (-1) ^ n / denom' ⊢ |v - convergents g n| ≤ 1 / denom [PROOFSTEP] rwa [this] -- derive some tedious inequalities that we need to rewrite our goal [GOAL] case intro.intro.intro.intro.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) ⊢ |(-1) ^ n / denom'| ≤ 1 / denom [PROOFSTEP] have nextConts_b_ineq : (fib (n + 2) : K) ≤ pred_conts.b + gp.b * conts.b := by have : (fib (n + 2) : K) ≤ nextConts.b := fib_le_of_continuantsAux_b (Or.inr not_terminated_at_n) rwa [nextConts_b_eq] at this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) ⊢ ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b [PROOFSTEP] have : (fib (n + 2) : K) ≤ nextConts.b := fib_le_of_continuantsAux_b (Or.inr not_terminated_at_n) [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) this : ↑(fib (n + 2)) ≤ nextConts.b ⊢ ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b [PROOFSTEP] rwa [nextConts_b_eq] at this [GOAL] case intro.intro.intro.intro.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b ⊢ |(-1) ^ n / denom'| ≤ 1 / denom [PROOFSTEP] have conts_b_ineq : (fib (n + 1) : K) ≤ conts.b := haveI : ¬g.TerminatedAt (n - 1) := mt (terminated_stable n.pred_le) not_terminated_at_n fib_le_of_continuantsAux_b <| Or.inr this [GOAL] case intro.intro.intro.intro.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b ⊢ |(-1) ^ n / denom'| ≤ 1 / denom [PROOFSTEP] have zero_lt_conts_b : 0 < conts.b := haveI : (0 : K) < fib (n + 1) := by exact_mod_cast fib_pos (lt_of_le_of_ne n.succ.zero_le n.succ_ne_zero.symm) lt_of_lt_of_le this conts_b_ineq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b ⊢ 0 < ↑(fib (n + 1)) [PROOFSTEP] exact_mod_cast fib_pos (lt_of_le_of_ne n.succ.zero_le n.succ_ne_zero.symm) [GOAL] case intro.intro.intro.intro.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b ⊢ |(-1) ^ n / denom'| ≤ 1 / denom [PROOFSTEP] suffices 1 / denom' ≤ 1 / denom by have : |(-1) ^ n / denom'| = 1 / denom' := by suffices 1 / |denom'| = 1 / denom' by rwa [abs_div, abs_neg_one_pow n] have : 0 < denom' := by have : 0 ≤ pred_conts.b := haveI : (fib n : K) ≤ pred_conts.b := haveI : ¬g.TerminatedAt (n - 2) := mt (terminated_stable (n.sub_le 2)) not_terminated_at_n fib_le_of_continuantsAux_b <| Or.inr this le_trans (by exact_mod_cast (fib n).zero_le) this have : 0 < ifp_n.fr⁻¹ := haveI zero_le_ifp_n_fract : 0 ≤ ifp_n.fr := IntFractPair.nth_stream_fr_nonneg stream_nth_eq inv_pos.2 (lt_of_le_of_ne zero_le_ifp_n_fract stream_nth_fr_ne_zero.symm) -- Porting note: replaced complicated positivity proof with tactic. positivity rw [abs_of_pos this] rwa [this] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this : 1 / denom' ≤ 1 / denom ⊢ |(-1) ^ n / denom'| ≤ 1 / denom [PROOFSTEP] have : |(-1) ^ n / denom'| = 1 / denom' := by suffices 1 / |denom'| = 1 / denom' by rwa [abs_div, abs_neg_one_pow n] have : 0 < denom' := by have : 0 ≤ pred_conts.b := haveI : (fib n : K) ≤ pred_conts.b := haveI : ¬g.TerminatedAt (n - 2) := mt (terminated_stable (n.sub_le 2)) not_terminated_at_n fib_le_of_continuantsAux_b <| Or.inr this le_trans (by exact_mod_cast (fib n).zero_le) this have : 0 < ifp_n.fr⁻¹ := haveI zero_le_ifp_n_fract : 0 ≤ ifp_n.fr := IntFractPair.nth_stream_fr_nonneg stream_nth_eq inv_pos.2 (lt_of_le_of_ne zero_le_ifp_n_fract stream_nth_fr_ne_zero.symm) -- Porting note: replaced complicated positivity proof with tactic. positivity rw [abs_of_pos this] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this : 1 / denom' ≤ 1 / denom ⊢ |(-1) ^ n / denom'| = 1 / denom' [PROOFSTEP] suffices 1 / |denom'| = 1 / denom' by rwa [abs_div, abs_neg_one_pow n] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this✝ : 1 / denom' ≤ 1 / denom this : 1 / |denom'| = 1 / denom' ⊢ |(-1) ^ n / denom'| = 1 / denom' [PROOFSTEP] rwa [abs_div, abs_neg_one_pow n] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this : 1 / denom' ≤ 1 / denom ⊢ 1 / |denom'| = 1 / denom' [PROOFSTEP] have : 0 < denom' := by have : 0 ≤ pred_conts.b := haveI : (fib n : K) ≤ pred_conts.b := haveI : ¬g.TerminatedAt (n - 2) := mt (terminated_stable (n.sub_le 2)) not_terminated_at_n fib_le_of_continuantsAux_b <| Or.inr this le_trans (by exact_mod_cast (fib n).zero_le) this have : 0 < ifp_n.fr⁻¹ := haveI zero_le_ifp_n_fract : 0 ≤ ifp_n.fr := IntFractPair.nth_stream_fr_nonneg stream_nth_eq inv_pos.2 (lt_of_le_of_ne zero_le_ifp_n_fract stream_nth_fr_ne_zero.symm) -- Porting note: replaced complicated positivity proof with tactic. positivity [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this : 1 / denom' ≤ 1 / denom ⊢ 0 < denom' [PROOFSTEP] have : 0 ≤ pred_conts.b := haveI : (fib n : K) ≤ pred_conts.b := haveI : ¬g.TerminatedAt (n - 2) := mt (terminated_stable (n.sub_le 2)) not_terminated_at_n fib_le_of_continuantsAux_b <| Or.inr this le_trans (by exact_mod_cast (fib n).zero_le) this [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this✝ : 1 / denom' ≤ 1 / denom this : ↑(fib n) ≤ pred_conts.b ⊢ 0 ≤ ↑(fib n) [PROOFSTEP] exact_mod_cast (fib n).zero_le [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this✝ : 1 / denom' ≤ 1 / denom this : 0 ≤ pred_conts.b ⊢ 0 < denom' [PROOFSTEP] have : 0 < ifp_n.fr⁻¹ := haveI zero_le_ifp_n_fract : 0 ≤ ifp_n.fr := IntFractPair.nth_stream_fr_nonneg stream_nth_eq inv_pos.2 (lt_of_le_of_ne zero_le_ifp_n_fract stream_nth_fr_ne_zero.symm) -- Porting note: replaced complicated positivity proof with tactic. [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this✝¹ : 1 / denom' ≤ 1 / denom this✝ : 0 ≤ pred_conts.b this : 0 < ifp_n.fr⁻¹ ⊢ 0 < denom' [PROOFSTEP] positivity [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this✝ : 1 / denom' ≤ 1 / denom this : 0 < denom' ⊢ 1 / |denom'| = 1 / denom' [PROOFSTEP] rw [abs_of_pos this] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this✝ : 1 / denom' ≤ 1 / denom this : |(-1) ^ n / denom'| = 1 / denom' ⊢ |(-1) ^ n / denom'| ≤ 1 / denom [PROOFSTEP] rwa [this] [GOAL] case intro.intro.intro.intro.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b ⊢ 1 / denom' ≤ 1 / denom [PROOFSTEP] suffices 0 < denom ∧ denom ≤ denom' from div_le_div_of_le_left zero_le_one this.left this.right [GOAL] case intro.intro.intro.intro.intro.intro K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b ⊢ 0 < denom ∧ denom ≤ denom' [PROOFSTEP] constructor [GOAL] case intro.intro.intro.intro.intro.intro.left K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b ⊢ 0 < denom [PROOFSTEP] have : 0 < pred_conts.b + gp.b * conts.b := lt_of_lt_of_le (by exact_mod_cast fib_pos (lt_of_le_of_ne n.succ.succ.zero_le n.succ.succ_ne_zero.symm)) nextConts_b_ineq [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b ⊢ 0 < ↑(fib (n + 2)) [PROOFSTEP] exact_mod_cast fib_pos (lt_of_le_of_ne n.succ.succ.zero_le n.succ.succ_ne_zero.symm) [GOAL] case intro.intro.intro.intro.intro.intro.left K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this : 0 < pred_conts.b + gp.b * conts.b ⊢ 0 < denom [PROOFSTEP] solve_by_elim [mul_pos] [GOAL] case intro.intro.intro.intro.intro.intro.right K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b ⊢ denom ≤ denom' [PROOFSTEP] suffices : gp.b * conts.b ≤ ifp_n.fr⁻¹ * conts.b [GOAL] case intro.intro.intro.intro.intro.intro.right K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this : gp.b * conts.b ≤ ifp_n.fr⁻¹ * conts.b ⊢ denom ≤ denom' case this K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b ⊢ gp.b * conts.b ≤ ifp_n.fr⁻¹ * conts.b [PROOFSTEP] exact (mul_le_mul_left zero_lt_conts_b).2 <| (add_le_add_iff_left pred_conts.b).2 this [GOAL] case this K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b ⊢ gp.b * conts.b ≤ ifp_n.fr⁻¹ * conts.b [PROOFSTEP] suffices (ifp_succ_n.b : K) * conts.b ≤ ifp_n.fr⁻¹ * conts.b by rwa [← ifp_succ_n_b_eq_gp_b] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this : ↑ifp_succ_n.b * conts.b ≤ ifp_n.fr⁻¹ * conts.b ⊢ gp.b * conts.b ≤ ifp_n.fr⁻¹ * conts.b [PROOFSTEP] rwa [← ifp_succ_n_b_eq_gp_b] [GOAL] case this K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b ⊢ ↑ifp_succ_n.b * conts.b ≤ ifp_n.fr⁻¹ * conts.b [PROOFSTEP] have : (ifp_succ_n.b : K) ≤ ifp_n.fr⁻¹ := IntFractPair.succ_nth_stream_b_le_nth_stream_fr_inv stream_nth_eq succ_nth_stream_eq [GOAL] case this K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this : ↑ifp_succ_n.b ≤ ifp_n.fr⁻¹ ⊢ ↑ifp_succ_n.b * conts.b ≤ ifp_n.fr⁻¹ * conts.b [PROOFSTEP] have : 0 ≤ conts.b := le_of_lt zero_lt_conts_b [GOAL] case this K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this✝ : ↑ifp_succ_n.b ≤ ifp_n.fr⁻¹ this : 0 ≤ conts.b ⊢ ↑ifp_succ_n.b * conts.b ≤ ifp_n.fr⁻¹ * conts.b [PROOFSTEP] refine' mul_le_mul_of_nonneg_right _ _ [GOAL] case this.refine'_1 K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this✝ : ↑ifp_succ_n.b ≤ ifp_n.fr⁻¹ this : 0 ≤ conts.b ⊢ ↑ifp_succ_n.b ≤ ifp_n.fr⁻¹ [PROOFSTEP] assumption [GOAL] case this.refine'_2 K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K not_terminated_at_n : ¬TerminatedAt (of v) n g : GeneralizedContinuedFraction K := of v nextConts : Pair K := continuantsAux g (n + 2) conts : Pair K := continuantsAux g (n + 1) conts_eq : conts = continuantsAux g (n + 1) pred_conts : Pair K := continuantsAux g n pred_conts_eq : pred_conts = continuantsAux g n gp : Pair K s_nth_eq : Stream'.Seq.get? g.s n = some gp gp_a_eq_one : gp.a = 1 nextConts_b_eq : nextConts.b = pred_conts.b + gp.b * conts.b denom : K := conts.b * (pred_conts.b + gp.b * conts.b) ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_succ_n_b_eq_gp_b : ↑ifp_succ_n.b = gp.b ifp_n : IntFractPair K stream_nth_eq : IntFractPair.stream v n = some ifp_n stream_nth_fr_ne_zero : ifp_n.fr ≠ 0 if_of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n denom' : K := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b) nextConts_b_ineq : ↑(fib (n + 2)) ≤ pred_conts.b + gp.b * conts.b conts_b_ineq : ↑(fib (n + 1)) ≤ conts.b zero_lt_conts_b : 0 < conts.b this✝ : ↑ifp_succ_n.b ≤ ifp_n.fr⁻¹ this : 0 ≤ conts.b ⊢ 0 ≤ conts.b [PROOFSTEP] assumption [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b ⊢ |v - convergents (of v) n| ≤ 1 / (b * denominators (of v) n * denominators (of v) n) [PROOFSTEP] have not_terminated_at_n : ¬(of v).TerminatedAt n := by simp [terminatedAt_iff_part_denom_none, nth_part_denom_eq] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b ⊢ ¬TerminatedAt (of v) n [PROOFSTEP] simp [terminatedAt_iff_part_denom_none, nth_part_denom_eq] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b not_terminated_at_n : ¬TerminatedAt (of v) n ⊢ |v - convergents (of v) n| ≤ 1 / (b * denominators (of v) n * denominators (of v) n) [PROOFSTEP] refine' (abs_sub_convergents_le not_terminated_at_n).trans _ -- One can show that `0 < (GeneralizedContinuedFraction.of v).denominators n` but it's easier -- to consider the case `(GeneralizedContinuedFraction.of v).denominators n = 0`. [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b not_terminated_at_n : ¬TerminatedAt (of v) n ⊢ 1 / (denominators (of v) n * denominators (of v) (n + 1)) ≤ 1 / (b * denominators (of v) n * denominators (of v) n) [PROOFSTEP] rcases(zero_le_of_denom (K := K)).eq_or_gt with ((hB : (GeneralizedContinuedFraction.of v).denominators n = 0) | hB) [GOAL] case inl K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b not_terminated_at_n : ¬TerminatedAt (of v) n hB : denominators (of v) n = 0 ⊢ 1 / (denominators (of v) n * denominators (of v) (n + 1)) ≤ 1 / (b * denominators (of v) n * denominators (of v) n) [PROOFSTEP] simp only [hB, mul_zero, zero_mul, div_zero, le_refl] [GOAL] case inr K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b not_terminated_at_n : ¬TerminatedAt (of v) n hB : 0 < denominators (of v) n ⊢ 1 / (denominators (of v) n * denominators (of v) (n + 1)) ≤ 1 / (b * denominators (of v) n * denominators (of v) n) [PROOFSTEP] apply one_div_le_one_div_of_le [GOAL] case inr.ha K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b not_terminated_at_n : ¬TerminatedAt (of v) n hB : 0 < denominators (of v) n ⊢ 0 < b * denominators (of v) n * denominators (of v) n [PROOFSTEP] have : 0 < b := zero_lt_one.trans_le (of_one_le_get?_part_denom nth_part_denom_eq) [GOAL] case inr.ha K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b not_terminated_at_n : ¬TerminatedAt (of v) n hB : 0 < denominators (of v) n this : 0 < b ⊢ 0 < b * denominators (of v) n * denominators (of v) n [PROOFSTEP] apply_rules [mul_pos] [GOAL] case inr.h K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b not_terminated_at_n : ¬TerminatedAt (of v) n hB : 0 < denominators (of v) n ⊢ b * denominators (of v) n * denominators (of v) n ≤ denominators (of v) n * denominators (of v) (n + 1) [PROOFSTEP] conv_rhs => rw [mul_comm] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b not_terminated_at_n : ¬TerminatedAt (of v) n hB : 0 < denominators (of v) n | denominators (of v) n * denominators (of v) (n + 1) [PROOFSTEP] rw [mul_comm] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b not_terminated_at_n : ¬TerminatedAt (of v) n hB : 0 < denominators (of v) n | denominators (of v) n * denominators (of v) (n + 1) [PROOFSTEP] rw [mul_comm] [GOAL] K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b not_terminated_at_n : ¬TerminatedAt (of v) n hB : 0 < denominators (of v) n | denominators (of v) n * denominators (of v) (n + 1) [PROOFSTEP] rw [mul_comm] [GOAL] case inr.h K : Type u_1 v : K n : ℕ inst✝¹ : LinearOrderedField K inst✝ : FloorRing K b : K nth_part_denom_eq : Stream'.Seq.get? (partialDenominators (of v)) n = some b not_terminated_at_n : ¬TerminatedAt (of v) n hB : 0 < denominators (of v) n ⊢ b * denominators (of v) n * denominators (of v) n ≤ denominators (of v) (n + 1) * denominators (of v) n [PROOFSTEP] exact mul_le_mul_of_nonneg_right (le_of_succ_get?_denom nth_part_denom_eq) hB.le
{"mathlib_filename": "Mathlib.Algebra.ContinuedFractions.Computation.Approximations", "llama_tokens": 104527}
[GOAL] R : Type u_1 A : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : GCDMonoid R inst✝² : CommRing A inst✝¹ : Algebra R A M : Submonoid R inst✝ : IsLocalization M A z : A ⊢ ∃ a b, IsUnit (gcd a b) ∧ z * ↑(algebraMap R A) b = ↑(algebraMap R A) a [PROOFSTEP] obtain ⟨x, ⟨y, hy⟩, rfl⟩ := IsLocalization.mk'_surjective M z [GOAL] case intro.intro.mk R : Type u_1 A : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : GCDMonoid R inst✝² : CommRing A inst✝¹ : Algebra R A M : Submonoid R inst✝ : IsLocalization M A x y : R hy : y ∈ M ⊢ ∃ a b, IsUnit (gcd a b) ∧ mk' A x { val := y, property := hy } * ↑(algebraMap R A) b = ↑(algebraMap R A) a [PROOFSTEP] obtain ⟨x', y', hx', hy', hu⟩ := extract_gcd x y [GOAL] case intro.intro.mk.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : GCDMonoid R inst✝² : CommRing A inst✝¹ : Algebra R A M : Submonoid R inst✝ : IsLocalization M A x y : R hy : y ∈ M x' y' : R hx' : x = gcd x y * x' hy' : y = gcd x y * y' hu : IsUnit (gcd x' y') ⊢ ∃ a b, IsUnit (gcd a b) ∧ mk' A x { val := y, property := hy } * ↑(algebraMap R A) b = ↑(algebraMap R A) a [PROOFSTEP] use x', y', hu [GOAL] case right R : Type u_1 A : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : GCDMonoid R inst✝² : CommRing A inst✝¹ : Algebra R A M : Submonoid R inst✝ : IsLocalization M A x y : R hy : y ∈ M x' y' : R hx' : x = gcd x y * x' hy' : y = gcd x y * y' hu : IsUnit (gcd x' y') ⊢ mk' A x { val := y, property := hy } * ↑(algebraMap R A) y' = ↑(algebraMap R A) x' [PROOFSTEP] rw [mul_comm, IsLocalization.mul_mk'_eq_mk'_of_mul] [GOAL] case right R : Type u_1 A : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : GCDMonoid R inst✝² : CommRing A inst✝¹ : Algebra R A M : Submonoid R inst✝ : IsLocalization M A x y : R hy : y ∈ M x' y' : R hx' : x = gcd x y * x' hy' : y = gcd x y * y' hu : IsUnit (gcd x' y') ⊢ mk' A (y' * x) { val := y, property := hy } = ↑(algebraMap R A) x' [PROOFSTEP] convert IsLocalization.mk'_mul_cancel_left (M := M) (S := A) _ _ using 2 [GOAL] case h.e'_2.h.e'_8 R : Type u_1 A : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : GCDMonoid R inst✝² : CommRing A inst✝¹ : Algebra R A M : Submonoid R inst✝ : IsLocalization M A x y : R hy : y ∈ M x' y' : R hx' : x = gcd x y * x' hy' : y = gcd x y * y' hu : IsUnit (gcd x' y') ⊢ y' * x = ↑{ val := y, property := hy } * x' [PROOFSTEP] rw [Subtype.coe_mk, hy', ← mul_comm y', mul_assoc] [GOAL] case h.e'_2.h.e'_8 R : Type u_1 A : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : GCDMonoid R inst✝² : CommRing A inst✝¹ : Algebra R A M : Submonoid R inst✝ : IsLocalization M A x y : R hy : y ∈ M x' y' : R hx' : x = gcd x y * x' hy' : y = gcd x y * y' hu : IsUnit (gcd x' y') ⊢ y' * x = y' * (gcd x y * x') [PROOFSTEP] conv_lhs => rw [hx'] [GOAL] R : Type u_1 A : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : GCDMonoid R inst✝² : CommRing A inst✝¹ : Algebra R A M : Submonoid R inst✝ : IsLocalization M A x y : R hy : y ∈ M x' y' : R hx' : x = gcd x y * x' hy' : y = gcd x y * y' hu : IsUnit (gcd x' y') | y' * x [PROOFSTEP] rw [hx'] [GOAL] R : Type u_1 A : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : GCDMonoid R inst✝² : CommRing A inst✝¹ : Algebra R A M : Submonoid R inst✝ : IsLocalization M A x y : R hy : y ∈ M x' y' : R hx' : x = gcd x y * x' hy' : y = gcd x y * y' hu : IsUnit (gcd x' y') | y' * x [PROOFSTEP] rw [hx'] [GOAL] R : Type u_1 A : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : GCDMonoid R inst✝² : CommRing A inst✝¹ : Algebra R A M : Submonoid R inst✝ : IsLocalization M A x y : R hy : y ∈ M x' y' : R hx' : x = gcd x y * x' hy' : y = gcd x y * y' hu : IsUnit (gcd x' y') | y' * x [PROOFSTEP] rw [hx'] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : GCDMonoid R inst✝¹ : CommRing A inst✝ : Algebra R A X : FractionRing R x✝ : IsIntegral R X p : R[X] hp₁ : Polynomial.Monic p hp₂ : Polynomial.eval₂ (algebraMap R (FractionRing R)) X p = 0 ⊢ ∃ y, ↑(algebraMap R (FractionRing R)) y = X [PROOFSTEP] obtain ⟨x, y, hg, he⟩ := IsLocalization.surj_of_gcd_domain (nonZeroDivisors R) X [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : GCDMonoid R inst✝¹ : CommRing A inst✝ : Algebra R A X : FractionRing R x✝ : IsIntegral R X p : R[X] hp₁ : Polynomial.Monic p hp₂ : Polynomial.eval₂ (algebraMap R (FractionRing R)) X p = 0 x y : R hg : IsUnit (gcd x y) he : X * ↑(algebraMap R (FractionRing R)) y = ↑(algebraMap R (FractionRing R)) x ⊢ ∃ y, ↑(algebraMap R (FractionRing R)) y = X [PROOFSTEP] have := Polynomial.dvd_pow_natDegree_of_eval₂_eq_zero (IsFractionRing.injective R <| FractionRing R) hp₁ y x _ hp₂ (by rw [mul_comm, he]) [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : GCDMonoid R inst✝¹ : CommRing A inst✝ : Algebra R A X : FractionRing R x✝ : IsIntegral R X p : R[X] hp₁ : Polynomial.Monic p hp₂ : Polynomial.eval₂ (algebraMap R (FractionRing R)) X p = 0 x y : R hg : IsUnit (gcd x y) he : X * ↑(algebraMap R (FractionRing R)) y = ↑(algebraMap R (FractionRing R)) x ⊢ ↑(algebraMap R (FractionRing R)) y * X = ↑(algebraMap R (FractionRing R)) x [PROOFSTEP] rw [mul_comm, he] [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : GCDMonoid R inst✝¹ : CommRing A inst✝ : Algebra R A X : FractionRing R x✝ : IsIntegral R X p : R[X] hp₁ : Polynomial.Monic p hp₂ : Polynomial.eval₂ (algebraMap R (FractionRing R)) X p = 0 x y : R hg : IsUnit (gcd x y) he : X * ↑(algebraMap R (FractionRing R)) y = ↑(algebraMap R (FractionRing R)) x this : y ∣ x ^ Polynomial.natDegree p ⊢ ∃ y, ↑(algebraMap R (FractionRing R)) y = X [PROOFSTEP] have : IsUnit y := by rw [isUnit_iff_dvd_one, ← one_pow] exact (dvd_gcd this <| dvd_refl y).trans (gcd_pow_left_dvd_pow_gcd.trans <| pow_dvd_pow_of_dvd (isUnit_iff_dvd_one.1 hg) _) [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : GCDMonoid R inst✝¹ : CommRing A inst✝ : Algebra R A X : FractionRing R x✝ : IsIntegral R X p : R[X] hp₁ : Polynomial.Monic p hp₂ : Polynomial.eval₂ (algebraMap R (FractionRing R)) X p = 0 x y : R hg : IsUnit (gcd x y) he : X * ↑(algebraMap R (FractionRing R)) y = ↑(algebraMap R (FractionRing R)) x this : y ∣ x ^ Polynomial.natDegree p ⊢ IsUnit y [PROOFSTEP] rw [isUnit_iff_dvd_one, ← one_pow] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : GCDMonoid R inst✝¹ : CommRing A inst✝ : Algebra R A X : FractionRing R x✝ : IsIntegral R X p : R[X] hp₁ : Polynomial.Monic p hp₂ : Polynomial.eval₂ (algebraMap R (FractionRing R)) X p = 0 x y : R hg : IsUnit (gcd x y) he : X * ↑(algebraMap R (FractionRing R)) y = ↑(algebraMap R (FractionRing R)) x this : y ∣ x ^ Polynomial.natDegree p ⊢ y ∣ 1 ^ ?m.56326 R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : GCDMonoid R inst✝¹ : CommRing A inst✝ : Algebra R A X : FractionRing R x✝ : IsIntegral R X p : R[X] hp₁ : Polynomial.Monic p hp₂ : Polynomial.eval₂ (algebraMap R (FractionRing R)) X p = 0 x y : R hg : IsUnit (gcd x y) he : X * ↑(algebraMap R (FractionRing R)) y = ↑(algebraMap R (FractionRing R)) x this : y ∣ x ^ Polynomial.natDegree p ⊢ ℕ [PROOFSTEP] exact (dvd_gcd this <| dvd_refl y).trans (gcd_pow_left_dvd_pow_gcd.trans <| pow_dvd_pow_of_dvd (isUnit_iff_dvd_one.1 hg) _) [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : GCDMonoid R inst✝¹ : CommRing A inst✝ : Algebra R A X : FractionRing R x✝ : IsIntegral R X p : R[X] hp₁ : Polynomial.Monic p hp₂ : Polynomial.eval₂ (algebraMap R (FractionRing R)) X p = 0 x y : R hg : IsUnit (gcd x y) he : X * ↑(algebraMap R (FractionRing R)) y = ↑(algebraMap R (FractionRing R)) x this✝ : y ∣ x ^ Polynomial.natDegree p this : IsUnit y ⊢ ∃ y, ↑(algebraMap R (FractionRing R)) y = X [PROOFSTEP] use x * (this.unit⁻¹ : _) [GOAL] case h R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : GCDMonoid R inst✝¹ : CommRing A inst✝ : Algebra R A X : FractionRing R x✝ : IsIntegral R X p : R[X] hp₁ : Polynomial.Monic p hp₂ : Polynomial.eval₂ (algebraMap R (FractionRing R)) X p = 0 x y : R hg : IsUnit (gcd x y) he : X * ↑(algebraMap R (FractionRing R)) y = ↑(algebraMap R (FractionRing R)) x this✝ : y ∣ x ^ Polynomial.natDegree p this : IsUnit y ⊢ ↑(algebraMap R (FractionRing R)) (x * ↑(IsUnit.unit this)⁻¹) = X [PROOFSTEP] erw [map_mul, ← Units.coe_map_inv, eq_comm, Units.eq_mul_inv_iff_mul_eq] [GOAL] case h R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : GCDMonoid R inst✝¹ : CommRing A inst✝ : Algebra R A X : FractionRing R x✝ : IsIntegral R X p : R[X] hp₁ : Polynomial.Monic p hp₂ : Polynomial.eval₂ (algebraMap R (FractionRing R)) X p = 0 x y : R hg : IsUnit (gcd x y) he : X * ↑(algebraMap R (FractionRing R)) y = ↑(algebraMap R (FractionRing R)) x this✝ : y ∣ x ^ Polynomial.natDegree p this : IsUnit y ⊢ X * ↑(↑(Units.map ↑(algebraMap R (FractionRing R))) (IsUnit.unit this)) = ↑(algebraMap R (FractionRing R)) x [PROOFSTEP] exact he
{"mathlib_filename": "Mathlib.Algebra.GCDMonoid.IntegrallyClosed", "llama_tokens": 4580}
{"mathlib_filename": "Mathlib.Algebra.CharZero.Infinite", "llama_tokens": 0}
[GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 ⊢ z • r ∈ zmultiples p ↔ ∃ k, r - ↑k • (p / ↑z) ∈ zmultiples p [PROOFSTEP] rw [AddSubgroup.mem_zmultiples_iff] [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 ⊢ (∃ k, k • p = z • r) ↔ ∃ k, r - ↑k • (p / ↑z) ∈ zmultiples p [PROOFSTEP] simp_rw [AddSubgroup.mem_zmultiples_iff, div_eq_mul_inv, ← smul_mul_assoc, eq_sub_iff_add_eq] [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 ⊢ (∃ k, k • p = z • r) ↔ ∃ k k_1, k_1 • p + ↑k • p * (↑z)⁻¹ = r [PROOFSTEP] have hz' : (z : R) ≠ 0 := Int.cast_ne_zero.mpr hz [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 ⊢ (∃ k, k • p = z • r) ↔ ∃ k k_1, k_1 • p + ↑k • p * (↑z)⁻¹ = r [PROOFSTEP] conv_rhs => simp (config := { singlePass := true }) only [← (mul_right_injective₀ hz').eq_iff] [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 | ∃ k k_1, k_1 • p + ↑k • p * (↑z)⁻¹ = r [PROOFSTEP] simp (config := { singlePass := true }) only [← (mul_right_injective₀ hz').eq_iff] [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 | ∃ k k_1, k_1 • p + ↑k • p * (↑z)⁻¹ = r [PROOFSTEP] simp (config := { singlePass := true }) only [← (mul_right_injective₀ hz').eq_iff] [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 | ∃ k k_1, k_1 • p + ↑k • p * (↑z)⁻¹ = r [PROOFSTEP] simp (config := { singlePass := true }) only [← (mul_right_injective₀ hz').eq_iff] [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 ⊢ (∃ k, k • p = z • r) ↔ ∃ k k_1, (fun x x_1 => x * x_1) (↑z) (k_1 • p + ↑k • p * (↑z)⁻¹) = (fun x x_1 => x * x_1) (↑z) r [PROOFSTEP] simp_rw [← zsmul_eq_mul, smul_add, ← mul_smul_comm, zsmul_eq_mul (z : R)⁻¹, mul_inv_cancel hz', mul_one, ← coe_nat_zsmul, smul_smul, ← add_smul] [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 ⊢ (∃ k, k • p = z • r) ↔ ∃ k k_1, (z * k_1 + ↑↑k) • p = z • r [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 ⊢ (∃ k, k • p = z • r) → ∃ k k_1, (z * k_1 + ↑↑k) • p = z • r [PROOFSTEP] rintro ⟨k, h⟩ [GOAL] case mp.intro R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 k : ℤ h : k • p = z • r ⊢ ∃ k k_1, (z * k_1 + ↑↑k) • p = z • r [PROOFSTEP] simp_rw [← h] [GOAL] case mp.intro R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 k : ℤ h : k • p = z • r ⊢ ∃ k_1 k_2, (z * k_2 + ↑↑k_1) • p = k • p [PROOFSTEP] refine' ⟨⟨(k % z).toNat, _⟩, k / z, _⟩ [GOAL] case mp.intro.refine'_1 R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 k : ℤ h : k • p = z • r ⊢ Int.toNat (k % z) < Int.natAbs z [PROOFSTEP] rw [← Int.ofNat_lt, Int.toNat_of_nonneg (Int.emod_nonneg _ hz)] [GOAL] case mp.intro.refine'_1 R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 k : ℤ h : k • p = z • r ⊢ k % z < ↑(Int.natAbs z) [PROOFSTEP] exact (Int.emod_lt _ hz).trans_eq (Int.abs_eq_natAbs _) [GOAL] case mp.intro.refine'_2 R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 k : ℤ h : k • p = z • r ⊢ (z * (k / z) + ↑↑{ val := Int.toNat (k % z), isLt := (_ : Int.toNat (k % z) < Int.natAbs z) }) • p = k • p [PROOFSTEP] rw [Fin.val_mk, Int.toNat_of_nonneg (Int.emod_nonneg _ hz)] [GOAL] case mp.intro.refine'_2 R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 k : ℤ h : k • p = z • r ⊢ (z * (k / z) + k % z) • p = k • p [PROOFSTEP] nth_rewrite 3 [← Int.div_add_mod k z] [GOAL] case mp.intro.refine'_2 R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 k : ℤ h : k • p = z • r ⊢ (z * (k / z) + k % z) • p = (z * Int.div k z + Int.mod k z) • p [PROOFSTEP] rw [Int.mod_def, ← Int.div_def', Int.emod_def] [GOAL] case mp.intro.refine'_2 R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 k : ℤ h : k • p = z • r ⊢ (z * (k / z) + (k - z * (k / z))) • p = (z * (k / z) + (k - z * (k / z))) • p [PROOFSTEP] simp only [add_sub_cancel'_right, zsmul_eq_mul, Int.div_def'] [GOAL] case mpr R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 ⊢ (∃ k k_1, (z * k_1 + ↑↑k) • p = z • r) → ∃ k, k • p = z • r [PROOFSTEP] rintro ⟨k, n, h⟩ [GOAL] case mpr.intro.intro R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R z : ℤ hz : z ≠ 0 hz' : ↑z ≠ 0 k : Fin (Int.natAbs z) n : ℤ h : (z * n + ↑↑k) • p = z • r ⊢ ∃ k, k • p = z • r [PROOFSTEP] exact ⟨_, h⟩ [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R n : ℕ hn : n ≠ 0 ⊢ n • r ∈ zmultiples p ↔ ∃ k, r - ↑k • (p / ↑n) ∈ zmultiples p [PROOFSTEP] rw [← coe_nat_zsmul r, zsmul_mem_zmultiples_iff_exists_sub_div (Int.coe_nat_ne_zero.mpr hn), Int.cast_ofNat] [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R n : ℕ hn : n ≠ 0 ⊢ (∃ k, r - ↑k • (p / ↑n) ∈ zmultiples p) ↔ ∃ k, r - ↑k • (p / ↑n) ∈ zmultiples p [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p : R ψ θ : R ⧸ AddSubgroup.zmultiples p z : ℤ hz : z ≠ 0 ⊢ z • ψ = z • θ ↔ ∃ k, ψ = θ + ↑(↑k • (p / ↑z)) [PROOFSTEP] induction ψ using Quotient.inductionOn' [GOAL] case h R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p : R θ : R ⧸ AddSubgroup.zmultiples p z : ℤ hz : z ≠ 0 a✝ : R ⊢ z • Quotient.mk'' a✝ = z • θ ↔ ∃ k, Quotient.mk'' a✝ = θ + ↑(↑k • (p / ↑z)) [PROOFSTEP] induction θ using Quotient.inductionOn' [GOAL] case h.h R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p : R z : ℤ hz : z ≠ 0 a✝¹ a✝ : R ⊢ z • Quotient.mk'' a✝¹ = z • Quotient.mk'' a✝ ↔ ∃ k, Quotient.mk'' a✝¹ = Quotient.mk'' a✝ + ↑(↑k • (p / ↑z)) [PROOFSTEP] let Zp := AddSubgroup.zmultiples p [GOAL] case h.h R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p : R z : ℤ hz : z ≠ 0 a✝¹ a✝ : R Zp : AddSubgroup R := AddSubgroup.zmultiples p ⊢ z • Quotient.mk'' a✝¹ = z • Quotient.mk'' a✝ ↔ ∃ k, Quotient.mk'' a✝¹ = Quotient.mk'' a✝ + ↑(↑k • (p / ↑z)) [PROOFSTEP] have : (Quotient.mk'' : R → R ⧸ Zp) = ((↑) : R → R ⧸ Zp) := rfl [GOAL] case h.h R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p : R z : ℤ hz : z ≠ 0 a✝¹ a✝ : R Zp : AddSubgroup R := AddSubgroup.zmultiples p this : Quotient.mk'' = mk ⊢ z • Quotient.mk'' a✝¹ = z • Quotient.mk'' a✝ ↔ ∃ k, Quotient.mk'' a✝¹ = Quotient.mk'' a✝ + ↑(↑k • (p / ↑z)) [PROOFSTEP] simp only [this] [GOAL] case h.h R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p : R z : ℤ hz : z ≠ 0 a✝¹ a✝ : R Zp : AddSubgroup R := AddSubgroup.zmultiples p this : Quotient.mk'' = mk ⊢ z • ↑a✝¹ = z • ↑a✝ ↔ ∃ k, ↑a✝¹ = ↑a✝ + ↑(↑k • (p / ↑z)) [PROOFSTEP] simp_rw [← QuotientAddGroup.mk_zsmul, ← QuotientAddGroup.mk_add, QuotientAddGroup.eq_iff_sub_mem, ← smul_sub, ← sub_sub] [GOAL] case h.h R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p : R z : ℤ hz : z ≠ 0 a✝¹ a✝ : R Zp : AddSubgroup R := AddSubgroup.zmultiples p this : Quotient.mk'' = mk ⊢ z • (a✝¹ - a✝) ∈ AddSubgroup.zmultiples p ↔ ∃ k, a✝¹ - a✝ - ↑k • (p / ↑z) ∈ AddSubgroup.zmultiples p [PROOFSTEP] exact AddSubgroup.zsmul_mem_zmultiples_iff_exists_sub_div hz [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p : R ψ θ : R ⧸ AddSubgroup.zmultiples p n : ℕ hz : n ≠ 0 ⊢ n • ψ = n • θ ↔ ∃ k, ψ = θ + ↑(↑k • (p / ↑n)) [PROOFSTEP] rw [← coe_nat_zsmul ψ, ← coe_nat_zsmul θ, zmultiples_zsmul_eq_zsmul_iff (Int.coe_nat_ne_zero.mpr hz), Int.cast_ofNat] [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p : R ψ θ : R ⧸ AddSubgroup.zmultiples p n : ℕ hz : n ≠ 0 ⊢ (∃ k, ψ = θ + ↑(↑k • (p / ↑n))) ↔ ∃ k, ψ = θ + ↑(↑k • (p / ↑n)) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.CharZero.Quotient", "llama_tokens": 4617}
{"mathlib_filename": "Mathlib.Algebra.GroupRingAction.Basic", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Algebra.GroupRingAction.Invariant", "llama_tokens": 0}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ lcm s f ∣ a ↔ ∀ (b : β), b ∈ s → f b ∣ a [PROOFSTEP] apply Iff.trans Multiset.lcm_dvd [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ (∀ (b : α), b ∈ Multiset.map f s.val → b ∣ a) ↔ ∀ (b : β), b ∈ s → f b ∣ a [PROOFSTEP] simp only [Multiset.mem_map, and_imp, exists_imp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ (∀ (b : α) (x : β), x ∈ s.val → f x = b → b ∣ a) ↔ ∀ (b : β), b ∈ s → f b ∣ a [PROOFSTEP] exact ⟨fun k b hb ↦ k _ _ hb rfl, fun k a' b hb h ↦ h ▸ k _ hb⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β b : β ⊢ lcm (insert b s) f = GCDMonoid.lcm (f b) (lcm s f) [PROOFSTEP] by_cases h : b ∈ s [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β b : β h : b ∈ s ⊢ lcm (insert b s) f = GCDMonoid.lcm (f b) (lcm s f) [PROOFSTEP] rw [insert_eq_of_mem h, (lcm_eq_right_iff (f b) (s.lcm f) (Multiset.normalize_lcm (s.1.map f))).2 (dvd_lcm h)] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β b : β h : ¬b ∈ s ⊢ lcm (insert b s) f = GCDMonoid.lcm (f b) (lcm s f) [PROOFSTEP] apply fold_insert h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α ⊢ ↑normalize (lcm s f) = lcm s f [PROOFSTEP] simp [lcm_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β ⊢ lcm (∅ ∪ s₂) f = GCDMonoid.lcm (lcm ∅ f) (lcm s₂ f) [PROOFSTEP] rw [empty_union, lcm_empty, lcm_one_left, normalize_lcm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s✝ s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β a : β s : Finset β x✝ : ¬a ∈ s ih : lcm (s ∪ s₂) f = GCDMonoid.lcm (lcm s f) (lcm s₂ f) ⊢ lcm (insert a s ∪ s₂) f = GCDMonoid.lcm (lcm (insert a s) f) (lcm s₂ f) [PROOFSTEP] rw [insert_union, lcm_insert, lcm_insert, ih, lcm_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f g : β → α hs : s₁ = s₂ hfg : ∀ (a : β), a ∈ s₂ → f a = g a ⊢ lcm s₁ f = lcm s₂ g [PROOFSTEP] subst hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ : Finset β f✝ f g : β → α hfg : ∀ (a : β), a ∈ s₁ → f a = g a ⊢ lcm s₁ f = lcm s₁ g [PROOFSTEP] exact Finset.fold_congr hfg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s✝ s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β g : γ → β s : Finset γ ⊢ lcm (image g s) f = lcm s (f ∘ g) [PROOFSTEP] classical induction' s using Finset.induction with c s _ ih <;> simp [*] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s✝ s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β g : γ → β s : Finset γ ⊢ lcm (image g s) f = lcm s (f ∘ g) [PROOFSTEP] induction' s using Finset.induction with c s _ ih [GOAL] case empty α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β g : γ → β ⊢ lcm (image g ∅) f = lcm ∅ (f ∘ g) [PROOFSTEP] simp [*] [GOAL] case insert α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s✝ s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β g : γ → β c : γ s : Finset γ a✝ : ¬c ∈ s ih : lcm (image g s) f = lcm s (f ∘ g) ⊢ lcm (image g (insert c s)) f = lcm (insert c s) (f ∘ g) [PROOFSTEP] simp [*] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : Nontrivial α ⊢ lcm s f = 0 ↔ 0 ∈ f '' ↑s [PROOFSTEP] simp only [Multiset.mem_map, lcm_def, Multiset.lcm_eq_zero_iff, Set.mem_image, mem_coe, ← Finset.mem_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ a ∣ gcd s f ↔ ∀ (b : β), b ∈ s → a ∣ f b [PROOFSTEP] apply Iff.trans Multiset.dvd_gcd [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ (∀ (b : α), b ∈ Multiset.map f s.val → a ∣ b) ↔ ∀ (b : β), b ∈ s → a ∣ f b [PROOFSTEP] simp only [Multiset.mem_map, and_imp, exists_imp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ (∀ (b : α) (x : β), x ∈ s.val → f x = b → a ∣ b) ↔ ∀ (b : β), b ∈ s → a ∣ f b [PROOFSTEP] exact ⟨fun k b hb ↦ k _ _ hb rfl, fun k a' b hb h ↦ h ▸ k _ hb⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β b : β ⊢ gcd (insert b s) f = GCDMonoid.gcd (f b) (gcd s f) [PROOFSTEP] by_cases h : b ∈ s [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β b : β h : b ∈ s ⊢ gcd (insert b s) f = GCDMonoid.gcd (f b) (gcd s f) [PROOFSTEP] rw [insert_eq_of_mem h, (gcd_eq_right_iff (f b) (s.gcd f) (Multiset.normalize_gcd (s.1.map f))).2 (gcd_dvd h)] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β b : β h : ¬b ∈ s ⊢ gcd (insert b s) f = GCDMonoid.gcd (f b) (gcd s f) [PROOFSTEP] apply fold_insert h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α ⊢ ↑normalize (gcd s f) = gcd s f [PROOFSTEP] simp [gcd_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β ⊢ gcd (∅ ∪ s₂) f = GCDMonoid.gcd (gcd ∅ f) (gcd s₂ f) [PROOFSTEP] rw [empty_union, gcd_empty, gcd_zero_left, normalize_gcd] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s✝ s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β a : β s : Finset β x✝ : ¬a ∈ s ih : gcd (s ∪ s₂) f = GCDMonoid.gcd (gcd s f) (gcd s₂ f) ⊢ gcd (insert a s ∪ s₂) f = GCDMonoid.gcd (gcd (insert a s) f) (gcd s₂ f) [PROOFSTEP] rw [insert_union, gcd_insert, gcd_insert, ih, gcd_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f g : β → α hs : s₁ = s₂ hfg : ∀ (a : β), a ∈ s₂ → f a = g a ⊢ gcd s₁ f = gcd s₂ g [PROOFSTEP] subst hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ : Finset β f✝ f g : β → α hfg : ∀ (a : β), a ∈ s₁ → f a = g a ⊢ gcd s₁ f = gcd s₁ g [PROOFSTEP] exact Finset.fold_congr hfg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s✝ s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β g : γ → β s : Finset γ ⊢ gcd (image g s) f = gcd s (f ∘ g) [PROOFSTEP] classical induction' s using Finset.induction with c s _ ih <;> simp [*] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s✝ s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β g : γ → β s : Finset γ ⊢ gcd (image g s) f = gcd s (f ∘ g) [PROOFSTEP] induction' s using Finset.induction with c s _ ih [GOAL] case empty α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β g : γ → β ⊢ gcd (image g ∅) f = gcd ∅ (f ∘ g) [PROOFSTEP] simp [*] [GOAL] case insert α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s✝ s₁ s₂ : Finset β f : β → α inst✝ : DecidableEq β g : γ → β c : γ s : Finset γ a✝ : ¬c ∈ s ih : gcd (image g s) f = gcd s (f ∘ g) ⊢ gcd (image g (insert c s)) f = gcd (insert c s) (f ∘ g) [PROOFSTEP] simp [*] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α ⊢ gcd s f = 0 ↔ ∀ (x : β), x ∈ s → f x = 0 [PROOFSTEP] rw [gcd_def, Multiset.gcd_eq_zero_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α ⊢ (∀ (x : α), x ∈ Multiset.map f s.val → x = 0) ↔ ∀ (x : β), x ∈ s → f x = 0 [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α ⊢ (∀ (x : α), x ∈ Multiset.map f s.val → x = 0) → ∀ (x : β), x ∈ s → f x = 0 [PROOFSTEP] intro h [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α ⊢ (∀ (x : β), x ∈ s → f x = 0) → ∀ (x : α), x ∈ Multiset.map f s.val → x = 0 [PROOFSTEP] intro h [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α h : ∀ (x : α), x ∈ Multiset.map f s.val → x = 0 ⊢ ∀ (x : β), x ∈ s → f x = 0 [PROOFSTEP] intro b bs [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α h : ∀ (x : α), x ∈ Multiset.map f s.val → x = 0 b : β bs : b ∈ s ⊢ f b = 0 [PROOFSTEP] apply h (f b) [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α h : ∀ (x : α), x ∈ Multiset.map f s.val → x = 0 b : β bs : b ∈ s ⊢ f b ∈ Multiset.map f s.val [PROOFSTEP] simp only [Multiset.mem_map, mem_def.1 bs] [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α h : ∀ (x : α), x ∈ Multiset.map f s.val → x = 0 b : β bs : b ∈ s ⊢ ∃ a, a ∈ s.val ∧ f a = f b [PROOFSTEP] use b [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α h : ∀ (x : α), x ∈ Multiset.map f s.val → x = 0 b : β bs : b ∈ s ⊢ b ∈ s.val ∧ f b = f b [PROOFSTEP] simp only [mem_def.1 bs, eq_self_iff_true, and_self] [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α h : ∀ (x : β), x ∈ s → f x = 0 ⊢ ∀ (x : α), x ∈ Multiset.map f s.val → x = 0 [PROOFSTEP] intro a as [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α h : ∀ (x : β), x ∈ s → f x = 0 a : α as : a ∈ Multiset.map f s.val ⊢ a = 0 [PROOFSTEP] rw [Multiset.mem_map] at as [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α h : ∀ (x : β), x ∈ s → f x = 0 a : α as : ∃ a_1, a_1 ∈ s.val ∧ f a_1 = a ⊢ a = 0 [PROOFSTEP] rcases as with ⟨b, ⟨bs, rfl⟩⟩ [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α h : ∀ (x : β), x ∈ s → f x = 0 b : β bs : b ∈ s.val ⊢ f b = 0 [PROOFSTEP] apply h b (mem_def.1 bs) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 ⊢ gcd s f = gcd (filter (fun x => f x ≠ 0) s) f [PROOFSTEP] classical trans ((s.filter fun x ↦ f x = 0) ∪ s.filter fun x ↦ (f x ≠ 0)).gcd f · rw [filter_union_filter_neg_eq] rw [gcd_union] refine' Eq.trans (_ : _ = GCDMonoid.gcd (0 : α) _) (_ : GCDMonoid.gcd (0 : α) _ = _) · exact (gcd (filter (fun x => (f x ≠ 0)) s) f) · refine' congr (congr rfl <| s.induction_on _ _) (by simp) · simp · intro a s _ h rw [filter_insert] split_ifs with h1 <;> simp [h, h1] simp only [gcd_zero_left, normalize_gcd] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 ⊢ gcd s f = gcd (filter (fun x => f x ≠ 0) s) f [PROOFSTEP] trans ((s.filter fun x ↦ f x = 0) ∪ s.filter fun x ↦ (f x ≠ 0)).gcd f [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 ⊢ gcd s f = gcd (filter (fun x => f x = 0) s ∪ filter (fun x => f x ≠ 0) s) f [PROOFSTEP] rw [filter_union_filter_neg_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 ⊢ gcd (filter (fun x => f x = 0) s ∪ filter (fun x => f x ≠ 0) s) f = gcd (filter (fun x => f x ≠ 0) s) f [PROOFSTEP] rw [gcd_union] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 ⊢ GCDMonoid.gcd (gcd (filter (fun x => f x = 0) s) f) (gcd (filter (fun x => f x ≠ 0) s) f) = gcd (filter (fun x => f x ≠ 0) s) f [PROOFSTEP] refine' Eq.trans (_ : _ = GCDMonoid.gcd (0 : α) _) (_ : GCDMonoid.gcd (0 : α) _ = _) [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 ⊢ α [PROOFSTEP] exact (gcd (filter (fun x => (f x ≠ 0)) s) f) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 ⊢ GCDMonoid.gcd (gcd (filter (fun x => f x = 0) s) f) (gcd (filter (fun x => f x ≠ 0) s) f) = GCDMonoid.gcd 0 (gcd (filter (fun x => f x ≠ 0) s) f) [PROOFSTEP] refine' congr (congr rfl <| s.induction_on _ _) (by simp) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 ⊢ gcd (filter (fun x => f x ≠ 0) s) f = gcd (filter (fun x => f x ≠ 0) s) f [PROOFSTEP] simp [GOAL] case refine'_2.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 ⊢ gcd (filter (fun x => f x = 0) ∅) f = 0 [PROOFSTEP] simp [GOAL] case refine'_2.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 ⊢ ∀ ⦃a : β⦄ {s : Finset β}, ¬a ∈ s → gcd (filter (fun x => f x = 0) s) f = 0 → gcd (filter (fun x => f x = 0) (insert a s)) f = 0 [PROOFSTEP] intro a s _ h [GOAL] case refine'_2.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s✝ s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 a : β s : Finset β a✝ : ¬a ∈ s h : gcd (filter (fun x => f x = 0) s) f = 0 ⊢ gcd (filter (fun x => f x = 0) (insert a s)) f = 0 [PROOFSTEP] rw [filter_insert] [GOAL] case refine'_2.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s✝ s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 a : β s : Finset β a✝ : ¬a ∈ s h : gcd (filter (fun x => f x = 0) s) f = 0 ⊢ gcd (if f a = 0 then insert a (filter (fun x => f x = 0) s) else filter (fun x => f x = 0) s) f = 0 [PROOFSTEP] split_ifs with h1 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s✝ s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 a : β s : Finset β a✝ : ¬a ∈ s h : gcd (filter (fun x => f x = 0) s) f = 0 h1 : f a = 0 ⊢ gcd (insert a (filter (fun x => f x = 0) s)) f = 0 [PROOFSTEP] simp [h, h1] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s✝ s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 a : β s : Finset β a✝ : ¬a ∈ s h : gcd (filter (fun x => f x = 0) s) f = 0 h1 : ¬f a = 0 ⊢ gcd (filter (fun x => f x = 0) s) f = 0 [PROOFSTEP] simp [h, h1] [GOAL] case refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α inst✝ : DecidablePred fun x => f x = 0 ⊢ GCDMonoid.gcd 0 (gcd (filter (fun x => f x ≠ 0) s) f) = gcd (filter (fun x => f x ≠ 0) s) f [PROOFSTEP] simp only [gcd_zero_left, normalize_gcd] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ (gcd s fun x => a * f x) = ↑normalize a * gcd s f [PROOFSTEP] classical refine' s.induction_on _ _ · simp · intro b t _ h rw [gcd_insert, gcd_insert, h, ← gcd_mul_left] apply ((normalize_associated a).mul_right _).gcd_eq_right [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ (gcd s fun x => a * f x) = ↑normalize a * gcd s f [PROOFSTEP] refine' s.induction_on _ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ (gcd ∅ fun x => a * f x) = ↑normalize a * gcd ∅ f [PROOFSTEP] simp [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ ∀ ⦃a_1 : β⦄ {s : Finset β}, ¬a_1 ∈ s → (gcd s fun x => a * f x) = ↑normalize a * gcd s f → (gcd (insert a_1 s) fun x => a * f x) = ↑normalize a * gcd (insert a_1 s) f [PROOFSTEP] intro b t _ h [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α b : β t : Finset β a✝ : ¬b ∈ t h : (gcd t fun x => a * f x) = ↑normalize a * gcd t f ⊢ (gcd (insert b t) fun x => a * f x) = ↑normalize a * gcd (insert b t) f [PROOFSTEP] rw [gcd_insert, gcd_insert, h, ← gcd_mul_left] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α b : β t : Finset β a✝ : ¬b ∈ t h : (gcd t fun x => a * f x) = ↑normalize a * gcd t f ⊢ GCDMonoid.gcd (a * f b) (↑normalize a * gcd t f) = GCDMonoid.gcd (a * f b) (a * gcd t f) [PROOFSTEP] apply ((normalize_associated a).mul_right _).gcd_eq_right [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ (gcd s fun x => f x * a) = gcd s f * ↑normalize a [PROOFSTEP] classical refine' s.induction_on _ _ · simp · intro b t _ h rw [gcd_insert, gcd_insert, h, ← gcd_mul_right] apply ((normalize_associated a).mul_left _).gcd_eq_right [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ (gcd s fun x => f x * a) = gcd s f * ↑normalize a [PROOFSTEP] refine' s.induction_on _ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ (gcd ∅ fun x => f x * a) = gcd ∅ f * ↑normalize a [PROOFSTEP] simp [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α ⊢ ∀ ⦃a_1 : β⦄ {s : Finset β}, ¬a_1 ∈ s → (gcd s fun x => f x * a) = gcd s f * ↑normalize a → (gcd (insert a_1 s) fun x => f x * a) = gcd (insert a_1 s) f * ↑normalize a [PROOFSTEP] intro b t _ h [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α b : β t : Finset β a✝ : ¬b ∈ t h : (gcd t fun x => f x * a) = gcd t f * ↑normalize a ⊢ (gcd (insert b t) fun x => f x * a) = gcd (insert b t) f * ↑normalize a [PROOFSTEP] rw [gcd_insert, gcd_insert, h, ← gcd_mul_right] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f : β → α a : α b : β t : Finset β a✝ : ¬b ∈ t h : (gcd t fun x => f x * a) = gcd t f * ↑normalize a ⊢ GCDMonoid.gcd (f b * a) (gcd t f * ↑normalize a) = GCDMonoid.gcd (f b * a) (gcd t f * a) [PROOFSTEP] apply ((normalize_associated a).mul_left _).gcd_eq_right [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f g : β → α hs : ∃ x, x ∈ s ∧ f x ≠ 0 hg : ∀ (b : β), b ∈ s → f b = gcd s f * g b ⊢ gcd s f * gcd s g = gcd s f [PROOFSTEP] conv_lhs => rw [← normalize_gcd, ← gcd_mul_left, ← gcd_congr rfl hg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f g : β → α hs : ∃ x, x ∈ s ∧ f x ≠ 0 hg : ∀ (b : β), b ∈ s → f b = gcd s f * g b | gcd s f * gcd s g [PROOFSTEP] rw [← normalize_gcd, ← gcd_mul_left, ← gcd_congr rfl hg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f g : β → α hs : ∃ x, x ∈ s ∧ f x ≠ 0 hg : ∀ (b : β), b ∈ s → f b = gcd s f * g b | gcd s f * gcd s g [PROOFSTEP] rw [← normalize_gcd, ← gcd_mul_left, ← gcd_congr rfl hg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f g : β → α hs : ∃ x, x ∈ s ∧ f x ≠ 0 hg : ∀ (b : β), b ∈ s → f b = gcd s f * g b | gcd s f * gcd s g [PROOFSTEP] rw [← normalize_gcd, ← gcd_mul_left, ← gcd_congr rfl hg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f g : β → α hs : ∃ x, x ∈ s ∧ f x ≠ 0 hg : ∀ (b : β), b ∈ s → f b = gcd s f * g b ⊢ ¬gcd s f = 0 [PROOFSTEP] contrapose! hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f g : β → α hg : ∀ (b : β), b ∈ s → f b = gcd s f * g b hs : gcd s f = 0 ⊢ ∀ (x : β), x ∈ s → f x = 0 [PROOFSTEP] exact gcd_eq_zero_iff.1 hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f : β → α hs : Finset.Nonempty s ⊢ ∃ g, (∀ (b : β), b ∈ s → f b = gcd s f * g b) ∧ gcd s g = 1 [PROOFSTEP] classical by_cases h : ∀ x ∈ s, f x = (0 : α) · refine' ⟨fun _ ↦ 1, fun b hb ↦ by rw [h b hb, gcd_eq_zero_iff.2 h, mul_one], _⟩ rw [gcd_eq_gcd_image, image_const hs, gcd_singleton, id, normalize_one] · choose g' hg using @gcd_dvd _ _ _ _ s f push_neg at h refine' ⟨fun b ↦ if hb : b ∈ s then g' hb else 0, fun b hb ↦ _, extract_gcd' f _ h <| fun b hb ↦ _⟩ simp only [hb, hg, dite_true] rw [dif_pos hb, hg hb] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f : β → α hs : Finset.Nonempty s ⊢ ∃ g, (∀ (b : β), b ∈ s → f b = gcd s f * g b) ∧ gcd s g = 1 [PROOFSTEP] by_cases h : ∀ x ∈ s, f x = (0 : α) [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f : β → α hs : Finset.Nonempty s h : ∀ (x : β), x ∈ s → f x = 0 ⊢ ∃ g, (∀ (b : β), b ∈ s → f b = gcd s f * g b) ∧ gcd s g = 1 [PROOFSTEP] refine' ⟨fun _ ↦ 1, fun b hb ↦ by rw [h b hb, gcd_eq_zero_iff.2 h, mul_one], _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f : β → α hs : Finset.Nonempty s h : ∀ (x : β), x ∈ s → f x = 0 b : β hb : b ∈ s ⊢ f b = gcd s f * (fun x => 1) b [PROOFSTEP] rw [h b hb, gcd_eq_zero_iff.2 h, mul_one] [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f : β → α hs : Finset.Nonempty s h : ∀ (x : β), x ∈ s → f x = 0 ⊢ (gcd s fun x => 1) = 1 [PROOFSTEP] rw [gcd_eq_gcd_image, image_const hs, gcd_singleton, id, normalize_one] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f : β → α hs : Finset.Nonempty s h : ¬∀ (x : β), x ∈ s → f x = 0 ⊢ ∃ g, (∀ (b : β), b ∈ s → f b = gcd s f * g b) ∧ gcd s g = 1 [PROOFSTEP] choose g' hg using @gcd_dvd _ _ _ _ s f [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f : β → α hs : Finset.Nonempty s h : ¬∀ (x : β), x ∈ s → f x = 0 g' : {b : β} → b ∈ s → α hg : ∀ {b : β} (hb : b ∈ s), f b = gcd s f * g' hb ⊢ ∃ g, (∀ (b : β), b ∈ s → f b = gcd s f * g b) ∧ gcd s g = 1 [PROOFSTEP] push_neg at h [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f : β → α hs : Finset.Nonempty s g' : {b : β} → b ∈ s → α hg : ∀ {b : β} (hb : b ∈ s), f b = gcd s f * g' hb h : ∃ x, x ∈ s ∧ f x ≠ 0 ⊢ ∃ g, (∀ (b : β), b ∈ s → f b = gcd s f * g b) ∧ gcd s g = 1 [PROOFSTEP] refine' ⟨fun b ↦ if hb : b ∈ s then g' hb else 0, fun b hb ↦ _, extract_gcd' f _ h <| fun b hb ↦ _⟩ [GOAL] case neg.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f : β → α hs : Finset.Nonempty s g' : {b : β} → b ∈ s → α hg : ∀ {b : β} (hb : b ∈ s), f b = gcd s f * g' hb h : ∃ x, x ∈ s ∧ f x ≠ 0 b : β hb : b ∈ s ⊢ f b = gcd s f * (fun b => if hb : b ∈ s then g' hb else 0) b case neg.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f : β → α hs : Finset.Nonempty s g' : {b : β} → b ∈ s → α hg : ∀ {b : β} (hb : b ∈ s), f b = gcd s f * g' hb h : ∃ x, x ∈ s ∧ f x ≠ 0 b : β hb : b ∈ s ⊢ f b = gcd s f * if hb : b ∈ s then g' hb else 0 [PROOFSTEP] simp only [hb, hg, dite_true] [GOAL] case neg.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s s₁ s₂ : Finset β f✝ f : β → α hs : Finset.Nonempty s g' : {b : β} → b ∈ s → α hg : ∀ {b : β} (hb : b ∈ s), f b = gcd s f * g' hb h : ∃ x, x ∈ s ∧ f x ≠ 0 b : β hb : b ∈ s ⊢ f b = gcd s f * if hb : b ∈ s then g' hb else 0 [PROOFSTEP] rw [dif_pos hb, hg hb] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α s : Finset β f g : β → α a : α h : ∀ (x : β), x ∈ s → a ∣ f x - g x ⊢ GCDMonoid.gcd a (gcd s f) = GCDMonoid.gcd a (gcd s g) [PROOFSTEP] classical revert h refine' s.induction_on _ _ · simp intro b s _ hi h rw [gcd_insert, gcd_insert, gcd_comm (f b), ← gcd_assoc, hi fun x hx ↦ h _ (mem_insert_of_mem hx), gcd_comm a, gcd_assoc, gcd_comm a (GCDMonoid.gcd _ _), gcd_comm (g b), gcd_assoc _ _ a, gcd_comm _ a] exact congr_arg _ (gcd_eq_of_dvd_sub_right (h _ (mem_insert_self _ _))) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α s : Finset β f g : β → α a : α h : ∀ (x : β), x ∈ s → a ∣ f x - g x ⊢ GCDMonoid.gcd a (gcd s f) = GCDMonoid.gcd a (gcd s g) [PROOFSTEP] revert h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α s : Finset β f g : β → α a : α ⊢ (∀ (x : β), x ∈ s → a ∣ f x - g x) → GCDMonoid.gcd a (gcd s f) = GCDMonoid.gcd a (gcd s g) [PROOFSTEP] refine' s.induction_on _ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α s : Finset β f g : β → α a : α ⊢ (∀ (x : β), x ∈ ∅ → a ∣ f x - g x) → GCDMonoid.gcd a (gcd ∅ f) = GCDMonoid.gcd a (gcd ∅ g) [PROOFSTEP] simp [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α s : Finset β f g : β → α a : α ⊢ ∀ ⦃a_1 : β⦄ {s : Finset β}, ¬a_1 ∈ s → ((∀ (x : β), x ∈ s → a ∣ f x - g x) → GCDMonoid.gcd a (gcd s f) = GCDMonoid.gcd a (gcd s g)) → (∀ (x : β), x ∈ insert a_1 s → a ∣ f x - g x) → GCDMonoid.gcd a (gcd (insert a_1 s) f) = GCDMonoid.gcd a (gcd (insert a_1 s) g) [PROOFSTEP] intro b s _ hi h [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α s✝ : Finset β f g : β → α a : α b : β s : Finset β a✝ : ¬b ∈ s hi : (∀ (x : β), x ∈ s → a ∣ f x - g x) → GCDMonoid.gcd a (gcd s f) = GCDMonoid.gcd a (gcd s g) h : ∀ (x : β), x ∈ insert b s → a ∣ f x - g x ⊢ GCDMonoid.gcd a (gcd (insert b s) f) = GCDMonoid.gcd a (gcd (insert b s) g) [PROOFSTEP] rw [gcd_insert, gcd_insert, gcd_comm (f b), ← gcd_assoc, hi fun x hx ↦ h _ (mem_insert_of_mem hx), gcd_comm a, gcd_assoc, gcd_comm a (GCDMonoid.gcd _ _), gcd_comm (g b), gcd_assoc _ _ a, gcd_comm _ a] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α s✝ : Finset β f g : β → α a : α b : β s : Finset β a✝ : ¬b ∈ s hi : (∀ (x : β), x ∈ s → a ∣ f x - g x) → GCDMonoid.gcd a (gcd s f) = GCDMonoid.gcd a (gcd s g) h : ∀ (x : β), x ∈ insert b s → a ∣ f x - g x ⊢ GCDMonoid.gcd (gcd s g) (GCDMonoid.gcd a (f b)) = GCDMonoid.gcd (gcd s g) (GCDMonoid.gcd a (g b)) [PROOFSTEP] exact congr_arg _ (gcd_eq_of_dvd_sub_right (h _ (mem_insert_self _ _)))
{"mathlib_filename": "Mathlib.Algebra.GCDMonoid.Finset", "llama_tokens": 16562}
[GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : Add A inst✝⁵ : Add B inst✝⁴ : Add T inst✝³ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degbm : ∀ {a b : A}, degb (a + b) ≤ degb a + degb b f g : AddMonoidAlgebra R A ⊢ Finset.sup (f * g).support degb ≤ Finset.sup f.support degb + Finset.sup g.support degb [PROOFSTEP] refine' (Finset.sup_mono <| support_mul _ _).trans _ [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : Add A inst✝⁵ : Add B inst✝⁴ : Add T inst✝³ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degbm : ∀ {a b : A}, degb (a + b) ≤ degb a + degb b f g : AddMonoidAlgebra R A ⊢ Finset.sup (Finset.biUnion f.support fun a₁ => Finset.biUnion g.support fun a₂ => {a₁ + a₂}) degb ≤ Finset.sup f.support degb + Finset.sup g.support degb [PROOFSTEP] simp_rw [Finset.sup_biUnion, Finset.sup_singleton] [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : Add A inst✝⁵ : Add B inst✝⁴ : Add T inst✝³ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degbm : ∀ {a b : A}, degb (a + b) ≤ degb a + degb b f g : AddMonoidAlgebra R A ⊢ (Finset.sup f.support fun x => Finset.sup g.support fun x_1 => degb (x + x_1)) ≤ Finset.sup f.support degb + Finset.sup g.support degb [PROOFSTEP] refine' Finset.sup_le fun fd fds => Finset.sup_le fun gd gds => degbm.trans <| add_le_add _ _ [GOAL] case refine'_1 R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : Add A inst✝⁵ : Add B inst✝⁴ : Add T inst✝³ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degbm : ∀ {a b : A}, degb (a + b) ≤ degb a + degb b f g : AddMonoidAlgebra R A fd : A fds : fd ∈ f.support gd : A gds : gd ∈ g.support ⊢ degb fd ≤ Finset.sup f.support degb [PROOFSTEP] exact Finset.le_sup ‹_› [GOAL] case refine'_2 R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : Add A inst✝⁵ : Add B inst✝⁴ : Add T inst✝³ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degbm : ∀ {a b : A}, degb (a + b) ≤ degb a + degb b f g : AddMonoidAlgebra R A fd : A fds : fd ∈ f.support gd : A gds : gd ∈ g.support ⊢ degb gd ≤ Finset.sup g.support degb [PROOFSTEP] exact Finset.le_sup ‹_› [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : Add A inst✝⁵ : Add B inst✝⁴ : Add T inst✝³ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degt : A → T degtm : ∀ {a b : A}, degt a + degt b ≤ degt (a + b) f g : AddMonoidAlgebra R A ⊢ Finset.inf f.support degt + Finset.inf g.support degt ≤ Finset.inf (f * g).support degt [PROOFSTEP] refine' OrderDual.ofDual_le_ofDual.mpr <| sup_support_mul_le (_) f g [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : Add A inst✝⁵ : Add B inst✝⁴ : Add T inst✝³ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degt : A → T degtm : ∀ {a b : A}, degt a + degt b ≤ degt (a + b) f g : AddMonoidAlgebra R A ⊢ ∀ {a b : A}, degt (a + b) ≤ degt a + degt b [PROOFSTEP] intros a b [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : Add A inst✝⁵ : Add B inst✝⁴ : Add T inst✝³ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degt : A → T degtm : ∀ {a b : A}, degt a + degt b ≤ degt (a + b) f g : AddMonoidAlgebra R A a b : A ⊢ degt (a + b) ≤ degt a + degt b [PROOFSTEP] exact OrderDual.ofDual_le_ofDual.mp degtm [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degb0 : degb 0 ≤ 0 degbm : ∀ (a b : A), degb (a + b) ≤ degb a + degb b ⊢ Finset.sup (List.prod []).support degb ≤ List.sum (List.map (fun f => Finset.sup f.support degb) []) [PROOFSTEP] rw [List.map_nil, Finset.sup_le_iff, List.prod_nil, List.sum_nil] [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degb0 : degb 0 ≤ 0 degbm : ∀ (a b : A), degb (a + b) ≤ degb a + degb b ⊢ ∀ (b : A), b ∈ 1.support → degb b ≤ 0 [PROOFSTEP] exact fun a ha => by rwa [Finset.mem_singleton.mp (Finsupp.support_single_subset ha)] [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degb0 : degb 0 ≤ 0 degbm : ∀ (a b : A), degb (a + b) ≤ degb a + degb b a : A ha : a ∈ 1.support ⊢ degb a ≤ 0 [PROOFSTEP] rwa [Finset.mem_singleton.mp (Finsupp.support_single_subset ha)] [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degb0 : degb 0 ≤ 0 degbm : ∀ (a b : A), degb (a + b) ≤ degb a + degb b f : AddMonoidAlgebra R A fs : List (AddMonoidAlgebra R A) ⊢ Finset.sup (List.prod (f :: fs)).support degb ≤ List.sum (List.map (fun f => Finset.sup f.support degb) (f :: fs)) [PROOFSTEP] rw [List.prod_cons, List.map_cons, List.sum_cons] [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degb0 : degb 0 ≤ 0 degbm : ∀ (a b : A), degb (a + b) ≤ degb a + degb b f : AddMonoidAlgebra R A fs : List (AddMonoidAlgebra R A) ⊢ Finset.sup (f * List.prod fs).support degb ≤ Finset.sup f.support degb + List.sum (List.map (fun f => Finset.sup f.support degb) fs) [PROOFSTEP] exact (sup_support_mul_le (@fun a b => degbm a b) _ _).trans (add_le_add_left (sup_support_list_prod_le degb0 degbm fs) _) [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) l : List (AddMonoidAlgebra R A) ⊢ List.sum (List.map (fun f => Finset.inf f.support degt) l) ≤ Finset.inf (List.prod l).support degt [PROOFSTEP] refine' OrderDual.ofDual_le_ofDual.mpr _ [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) l : List (AddMonoidAlgebra R A) ⊢ Quot.lift (fun l => List.foldr (fun x x_1 => x ⊓ x_1) ⊤ l) (_ : ∀ (_l₁ _l₂ : List T), Setoid.r _l₁ _l₂ → List.foldr (fun x x_1 => x ⊓ x_1) ⊤ _l₁ = List.foldr (fun x x_1 => x ⊓ x_1) ⊤ _l₂) (Multiset.map degt (List.prod l).support.val) ≤ List.foldl (fun x x_1 => x + x_1) 0 (List.map (fun f => Finset.inf f.support degt) l) [PROOFSTEP] refine' sup_support_list_prod_le _ _ l [GOAL] case refine'_1 R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) l : List (AddMonoidAlgebra R A) ⊢ degt 0 ≤ 0 [PROOFSTEP] refine' (OrderDual.ofDual_le_ofDual.mp _) [GOAL] case refine'_1 R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) l : List (AddMonoidAlgebra R A) ⊢ ↑OrderDual.ofDual 0 ≤ ↑OrderDual.ofDual (degt 0) [PROOFSTEP] exact degt0 [GOAL] case refine'_2 R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) l : List (AddMonoidAlgebra R A) ⊢ ∀ (a b : A), degt (a + b) ≤ degt a + degt b [PROOFSTEP] refine' (fun a b => OrderDual.ofDual_le_ofDual.mp _) [GOAL] case refine'_2 R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) l : List (AddMonoidAlgebra R A) a b : A ⊢ ↑OrderDual.ofDual (degt a + degt b) ≤ ↑OrderDual.ofDual (degt (a + b)) [PROOFSTEP] exact degtm a b [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degb0 : degb 0 ≤ 0 degbm : ∀ (a b : A), degb (a + b) ≤ degb a + degb b n : ℕ f : AddMonoidAlgebra R A ⊢ Finset.sup (f ^ n).support degb ≤ n • Finset.sup f.support degb [PROOFSTEP] rw [← List.prod_replicate, ← List.sum_replicate] [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degb0 : degb 0 ≤ 0 degbm : ∀ (a b : A), degb (a + b) ≤ degb a + degb b n : ℕ f : AddMonoidAlgebra R A ⊢ Finset.sup (List.prod (List.replicate n f)).support degb ≤ List.sum (List.replicate n (Finset.sup f.support degb)) [PROOFSTEP] refine' (sup_support_list_prod_le degb0 degbm _).trans_eq _ [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degb0 : degb 0 ≤ 0 degbm : ∀ (a b : A), degb (a + b) ≤ degb a + degb b n : ℕ f : AddMonoidAlgebra R A ⊢ List.sum (List.map (fun f => Finset.sup f.support degb) (List.replicate n f)) = List.sum (List.replicate n (Finset.sup f.support degb)) [PROOFSTEP] rw [List.map_replicate] [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) n : ℕ f : AddMonoidAlgebra R A ⊢ n • Finset.inf f.support degt ≤ Finset.inf (f ^ n).support degt [PROOFSTEP] refine' OrderDual.ofDual_le_ofDual.mpr <| sup_support_pow_le (OrderDual.ofDual_le_ofDual.mp _) (fun a b => OrderDual.ofDual_le_ofDual.mp _) n f [GOAL] case refine'_1 R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) n : ℕ f : AddMonoidAlgebra R A ⊢ ↑OrderDual.ofDual (degt 0) ≤ ↑OrderDual.ofDual 0 case refine'_2 R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) n : ℕ f : AddMonoidAlgebra R A a b : A ⊢ ↑OrderDual.ofDual (degt (a + b)) ≤ ↑OrderDual.ofDual (degt a + degt b) [PROOFSTEP] exact degt0 [GOAL] case refine'_2 R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : Semiring R inst✝⁶ : AddMonoid A inst✝⁵ : AddMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) n : ℕ f : AddMonoidAlgebra R A a b : A ⊢ ↑OrderDual.ofDual (degt (a + b)) ≤ ↑OrderDual.ofDual (degt a + degt b) [PROOFSTEP] exact degtm _ _ [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : CommSemiring R inst✝⁶ : AddCommMonoid A inst✝⁵ : AddCommMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddCommMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degb0 : degb 0 ≤ 0 degbm : ∀ (a b : A), degb (a + b) ≤ degb a + degb b m : Multiset (AddMonoidAlgebra R A) ⊢ Finset.sup (Multiset.prod m).support degb ≤ Multiset.sum (Multiset.map (fun f => Finset.sup f.support degb) m) [PROOFSTEP] induction m using Quot.inductionOn [GOAL] case h R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : CommSemiring R inst✝⁶ : AddCommMonoid A inst✝⁵ : AddCommMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddCommMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degb0 : degb 0 ≤ 0 degbm : ∀ (a b : A), degb (a + b) ≤ degb a + degb b a✝ : List (AddMonoidAlgebra R A) ⊢ Finset.sup (Multiset.prod (Quot.mk Setoid.r a✝)).support degb ≤ Multiset.sum (Multiset.map (fun f => Finset.sup f.support degb) (Quot.mk Setoid.r a✝)) [PROOFSTEP] rw [Multiset.quot_mk_to_coe'', Multiset.coe_map, Multiset.coe_sum, Multiset.coe_prod] [GOAL] case h R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : CommSemiring R inst✝⁶ : AddCommMonoid A inst✝⁵ : AddCommMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddCommMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degb0 : degb 0 ≤ 0 degbm : ∀ (a b : A), degb (a + b) ≤ degb a + degb b a✝ : List (AddMonoidAlgebra R A) ⊢ Finset.sup (List.prod a✝).support degb ≤ List.sum (List.map (fun f => Finset.sup f.support degb) a✝) [PROOFSTEP] exact sup_support_list_prod_le degb0 degbm _ [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : CommSemiring R inst✝⁶ : AddCommMonoid A inst✝⁵ : AddCommMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddCommMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) m : Multiset (AddMonoidAlgebra R A) ⊢ Multiset.sum (Multiset.map (fun f => Finset.inf f.support degt) m) ≤ Finset.inf (Multiset.prod m).support degt [PROOFSTEP] refine' OrderDual.ofDual_le_ofDual.mpr <| sup_support_multiset_prod_le (OrderDual.ofDual_le_ofDual.mp _) (fun a b => OrderDual.ofDual_le_ofDual.mp (_)) m [GOAL] case refine'_1 R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : CommSemiring R inst✝⁶ : AddCommMonoid A inst✝⁵ : AddCommMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddCommMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) m : Multiset (AddMonoidAlgebra R A) ⊢ ↑OrderDual.ofDual (degt 0) ≤ ↑OrderDual.ofDual 0 case refine'_2 R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : CommSemiring R inst✝⁶ : AddCommMonoid A inst✝⁵ : AddCommMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddCommMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) m : Multiset (AddMonoidAlgebra R A) a b : A ⊢ ↑OrderDual.ofDual (degt (a + b)) ≤ ↑OrderDual.ofDual (degt a + degt b) [PROOFSTEP] exact degt0 [GOAL] case refine'_2 R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : CommSemiring R inst✝⁶ : AddCommMonoid A inst✝⁵ : AddCommMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddCommMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) m : Multiset (AddMonoidAlgebra R A) a b : A ⊢ ↑OrderDual.ofDual (degt (a + b)) ≤ ↑OrderDual.ofDual (degt a + degt b) [PROOFSTEP] exact degtm _ _ [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : CommSemiring R inst✝⁶ : AddCommMonoid A inst✝⁵ : AddCommMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddCommMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) s : Finset ι f : ι → AddMonoidAlgebra R A ⊢ ∑ i in s, Finset.inf (f i).support degt = Multiset.sum (Multiset.map (fun f => Finset.inf f.support degt) (Multiset.map (fun i => f i) s.val)) [PROOFSTEP] rw [Multiset.map_map] [GOAL] R : Type u_1 A : Type u_2 T : Type u_3 B : Type u_4 ι : Type u_5 inst✝¹¹ : SemilatticeSup B inst✝¹⁰ : OrderBot B inst✝⁹ : SemilatticeInf T inst✝⁸ : OrderTop T inst✝⁷ : CommSemiring R inst✝⁶ : AddCommMonoid A inst✝⁵ : AddCommMonoid B inst✝⁴ : CovariantClass B B (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝³ : CovariantClass B B (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : AddCommMonoid T inst✝¹ : CovariantClass T T (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass T T (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 degb : A → B degt : A → T degt0 : 0 ≤ degt 0 degtm : ∀ (a b : A), degt a + degt b ≤ degt (a + b) s : Finset ι f : ι → AddMonoidAlgebra R A ⊢ ∑ i in s, Finset.inf (f i).support degt = Multiset.sum (Multiset.map ((fun f => Finset.inf f.support degt) ∘ fun i => f i) s.val) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.MonoidAlgebra.Degree", "llama_tokens": 15045}
[GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K ⊢ Stream'.IsSeq (IntFractPair.stream v) [PROOFSTEP] intro _ hyp [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ hyp : IntFractPair.stream v n✝ = none ⊢ IntFractPair.stream v (n✝ + 1) = none [PROOFSTEP] simp [IntFractPair.stream, hyp]
{"mathlib_filename": "Mathlib.Algebra.ContinuedFractions.Computation.Basic", "llama_tokens": 168}
[GOAL] R✝ : Type u_1 inst✝³ : AddMonoidWithOne R✝ inst✝² : CharZero R✝ R : Type u_2 inst✝¹ : Semiring R inst✝ : CharZero R q n : ℕ hn : n ≠ 0 ⊢ ↑q ^ n = 1 ↔ q = 1 [PROOFSTEP] rw [← cast_pow, cast_eq_one] [GOAL] R✝ : Type u_1 inst✝³ : AddMonoidWithOne R✝ inst✝² : CharZero R✝ R : Type u_2 inst✝¹ : Semiring R inst✝ : CharZero R q n : ℕ hn : n ≠ 0 ⊢ q ^ n = 1 ↔ q = 1 [PROOFSTEP] exact pow_eq_one_iff hn [GOAL] R : Type u_1 inst✝³ : AddMonoidWithOne R inst✝² : CharZero R k : Type u_2 inst✝¹ : DivisionSemiring k inst✝ : CharZero k m n : ℕ n_dvd : n ∣ m ⊢ ↑(m / n) = ↑m / ↑n [PROOFSTEP] rcases eq_or_ne n 0 with (rfl | hn) [GOAL] case inl R : Type u_1 inst✝³ : AddMonoidWithOne R inst✝² : CharZero R k : Type u_2 inst✝¹ : DivisionSemiring k inst✝ : CharZero k m : ℕ n_dvd : 0 ∣ m ⊢ ↑(m / 0) = ↑m / ↑0 [PROOFSTEP] simp [GOAL] case inr R : Type u_1 inst✝³ : AddMonoidWithOne R inst✝² : CharZero R k : Type u_2 inst✝¹ : DivisionSemiring k inst✝ : CharZero k m n : ℕ n_dvd : n ∣ m hn : n ≠ 0 ⊢ ↑(m / n) = ↑m / ↑n [PROOFSTEP] exact cast_div n_dvd (cast_ne_zero.2 hn) [GOAL] M : Type u_1 inst✝¹ : AddMonoidWithOne M inst✝ : CharZero M ⊢ 2 ≠ 0 [PROOFSTEP] have : ((2 : ℕ) : M) ≠ 0 := Nat.cast_ne_zero.2 (by decide) [GOAL] M : Type u_1 inst✝¹ : AddMonoidWithOne M inst✝ : CharZero M ⊢ 2 ≠ 0 [PROOFSTEP] decide [GOAL] M : Type u_1 inst✝¹ : AddMonoidWithOne M inst✝ : CharZero M this : ↑2 ≠ 0 ⊢ 2 ≠ 0 [PROOFSTEP] rwa [Nat.cast_two] at this [GOAL] R : Type u_1 inst✝² : NonAssocSemiring R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R a✝ a : R ⊢ a + a = 0 ↔ a = 0 [PROOFSTEP] simp only [(two_mul a).symm, mul_eq_zero, two_ne_zero, false_or_iff] [GOAL] R : Type u_1 inst✝² : NonAssocSemiring R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R a✝ a : R ⊢ 0 = bit0 a ↔ a = 0 [PROOFSTEP] rw [eq_comm] [GOAL] R : Type u_1 inst✝² : NonAssocSemiring R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R a✝ a : R ⊢ bit0 a = 0 ↔ a = 0 [PROOFSTEP] exact bit0_eq_zero [GOAL] R : Type u_1 inst✝² : NonAssocRing R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R n : ℕ a b : R h : ↑n * a = ↑n * b ⊢ n = 0 ∨ a = b [PROOFSTEP] rw [← sub_eq_zero, ← mul_sub, mul_eq_zero, sub_eq_zero] at h [GOAL] R : Type u_1 inst✝² : NonAssocRing R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R n : ℕ a b : R h✝ : ↑n * a = ↑n * b h : ↑n = 0 ∨ a = b ⊢ n = 0 ∨ a = b [PROOFSTEP] exact_mod_cast h [GOAL] R : Type u_1 inst✝² : NonAssocRing R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R n : ℕ a b : R h : ↑n * a = ↑n * b w : n ≠ 0 ⊢ a = b [PROOFSTEP] simpa [w] using nat_mul_inj h [GOAL] R : Type u_1 inst✝² : NonAssocRing R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R a b : R h : bit0 a = bit0 b ⊢ a = b [PROOFSTEP] dsimp [bit0] at h [GOAL] R : Type u_1 inst✝² : NonAssocRing R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R a b : R h : a + a = b + b ⊢ a = b [PROOFSTEP] simp only [(two_mul a).symm, (two_mul b).symm] at h [GOAL] R : Type u_1 inst✝² : NonAssocRing R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R a b : R h : 2 * a = 2 * b ⊢ a = b [PROOFSTEP] refine' nat_mul_inj' _ two_ne_zero [GOAL] R : Type u_1 inst✝² : NonAssocRing R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R a b : R h : 2 * a = 2 * b ⊢ ↑2 * a = ↑2 * b [PROOFSTEP] exact_mod_cast h [GOAL] R : Type u_1 inst✝² : NonAssocRing R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R a b : R h : bit1 a = bit1 b ⊢ a = b [PROOFSTEP] simp only [bit1, add_left_inj] at h [GOAL] R : Type u_1 inst✝² : NonAssocRing R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R a b : R h : bit0 a = bit0 b ⊢ a = b [PROOFSTEP] exact bit0_injective h [GOAL] R : Type u_1 inst✝² : NonAssocRing R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R a : R ⊢ bit1 a = 1 ↔ a = 0 [PROOFSTEP] rw [show (1 : R) = bit1 0 by simp, bit1_eq_bit1] [GOAL] R : Type u_1 inst✝² : NonAssocRing R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R a : R ⊢ 1 = bit1 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : NonAssocRing R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R a : R ⊢ 1 = bit1 a ↔ a = 0 [PROOFSTEP] rw [eq_comm] [GOAL] R : Type u_1 inst✝² : NonAssocRing R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R a : R ⊢ bit1 a = 1 ↔ a = 0 [PROOFSTEP] exact bit1_eq_one [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R a : R ⊢ (a + a) / 2 = a [PROOFSTEP] rw [← mul_two, mul_div_cancel a two_ne_zero] [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R a : R ⊢ a / 2 + a / 2 = a [PROOFSTEP] rw [← add_div, half_add_self] [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R a : R ⊢ a - a / 2 = a / 2 [PROOFSTEP] rw [sub_eq_iff_eq_add, add_halves'] [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R a : R ⊢ a / 2 - a = -(a / 2) [PROOFSTEP] rw [← neg_sub, sub_half] [GOAL] R : Type u_1 inst✝¹ : AddMonoidWithOne R inst✝ : CharZero R m n : ℕ h : ↑m = ↑n ⊢ m = n [PROOFSTEP] rwa [← coe_nat, ← coe_nat n, coe_eq_coe, Nat.cast_inj] at h [GOAL] R : Type u_1 inst✝¹ : AddMonoidWithOne R inst✝ : CharZero R m n : ℕ h : ↑m = ↑n ⊢ m = n [PROOFSTEP] rwa [← coe_nat, ← coe_nat n, coe_eq_coe, Nat.cast_inj] at h [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : NonAssocSemiring R inst✝ : NonAssocSemiring S ϕ : R →+* S hS : CharZero S a b : ℕ h : ↑a = ↑b ⊢ ↑a = ↑b [PROOFSTEP] rw [← map_natCast ϕ, ← map_natCast ϕ, h] [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : NonAssocSemiring R inst✝ : NonAssocSemiring S ϕ : R →+* S hϕ : Function.Injective ↑ϕ hR : CharZero R ⊢ Function.Injective Nat.cast [PROOFSTEP] intro a b h [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : NonAssocSemiring R inst✝ : NonAssocSemiring S ϕ : R →+* S hϕ : Function.Injective ↑ϕ hR : CharZero R a b : ℕ h : ↑a = ↑b ⊢ a = b [PROOFSTEP] rwa [← @Nat.cast_inj R, ← hϕ.eq_iff, map_natCast ϕ, map_natCast ϕ]
{"mathlib_filename": "Mathlib.Algebra.CharZero.Lemmas", "llama_tokens": 3122}
[GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : Semiring M f g : AddMonoidAlgebra M ι ⊢ toDirectSum (f * g) = toDirectSum f * toDirectSum g [PROOFSTEP] let to_hom : AddMonoidAlgebra M ι →+ ⨁ _ : ι, M := { toFun := toDirectSum map_zero' := toDirectSum_zero map_add' := toDirectSum_add } [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : Semiring M f g : AddMonoidAlgebra M ι to_hom : AddMonoidAlgebra M ι →+ ⨁ (x : ι), M := { toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } ⊢ toDirectSum (f * g) = toDirectSum f * toDirectSum g [PROOFSTEP] show to_hom (f * g) = to_hom f * to_hom g [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : Semiring M f g : AddMonoidAlgebra M ι to_hom : AddMonoidAlgebra M ι →+ ⨁ (x : ι), M := { toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } ⊢ ↑to_hom (f * g) = ↑to_hom f * ↑to_hom g [PROOFSTEP] let _ : NonUnitalNonAssocSemiring (ι →₀ M) := AddMonoidAlgebra.nonUnitalNonAssocSemiring [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : Semiring M f g : AddMonoidAlgebra M ι to_hom : AddMonoidAlgebra M ι →+ ⨁ (x : ι), M := { toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } x✝ : NonUnitalNonAssocSemiring (ι →₀ M) := nonUnitalNonAssocSemiring ⊢ ↑to_hom (f * g) = ↑to_hom f * ↑to_hom g [PROOFSTEP] revert f g [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : Semiring M to_hom : AddMonoidAlgebra M ι →+ ⨁ (x : ι), M := { toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } x✝ : NonUnitalNonAssocSemiring (ι →₀ M) := nonUnitalNonAssocSemiring ⊢ ∀ (f g : AddMonoidAlgebra M ι), ↑to_hom (f * g) = ↑to_hom f * ↑to_hom g [PROOFSTEP] rw [AddMonoidHom.map_mul_iff] -- porting note: does not find `addHom_ext'`, was `ext (xi xv yi yv) : 4` [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : Semiring M to_hom : AddMonoidAlgebra M ι →+ ⨁ (x : ι), M := { toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } x✝ : NonUnitalNonAssocSemiring (ι →₀ M) := nonUnitalNonAssocSemiring ⊢ AddMonoidHom.compr₂ AddMonoidHom.mul to_hom = AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul to_hom) to_hom [PROOFSTEP] refine Finsupp.addHom_ext' fun xi => AddMonoidHom.ext fun xv => ?_ [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : Semiring M to_hom : AddMonoidAlgebra M ι →+ ⨁ (x : ι), M := { toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } x✝ : NonUnitalNonAssocSemiring (ι →₀ M) := nonUnitalNonAssocSemiring xi : ι xv : M ⊢ ↑(AddMonoidHom.comp (AddMonoidHom.compr₂ AddMonoidHom.mul to_hom) (Finsupp.singleAddHom xi)) xv = ↑(AddMonoidHom.comp (AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul to_hom) to_hom) (Finsupp.singleAddHom xi)) xv [PROOFSTEP] refine Finsupp.addHom_ext' fun yi => AddMonoidHom.ext fun yv => ?_ [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : Semiring M to_hom : AddMonoidAlgebra M ι →+ ⨁ (x : ι), M := { toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } x✝ : NonUnitalNonAssocSemiring (ι →₀ M) := nonUnitalNonAssocSemiring xi : ι xv : M yi : ι yv : M ⊢ ↑(AddMonoidHom.comp (↑(AddMonoidHom.comp (AddMonoidHom.compr₂ AddMonoidHom.mul to_hom) (Finsupp.singleAddHom xi)) xv) (Finsupp.singleAddHom yi)) yv = ↑(AddMonoidHom.comp (↑(AddMonoidHom.comp (AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul to_hom) to_hom) (Finsupp.singleAddHom xi)) xv) (Finsupp.singleAddHom yi)) yv [PROOFSTEP] dsimp only [AddMonoidHom.comp_apply, AddMonoidHom.compl₂_apply, AddMonoidHom.compr₂_apply, AddMonoidHom.mul_apply, Finsupp.singleAddHom_apply] [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : Semiring M to_hom : AddMonoidAlgebra M ι →+ ⨁ (x : ι), M := { toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } x✝ : NonUnitalNonAssocSemiring (ι →₀ M) := nonUnitalNonAssocSemiring xi : ι xv : M yi : ι yv : M ⊢ ↑{ toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } (Finsupp.single xi xv * Finsupp.single yi yv) = ↑{ toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } (Finsupp.single xi xv) * ↑{ toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } (Finsupp.single yi yv) [PROOFSTEP] simp only [AddMonoidHom.coe_mk, ZeroHom.coe_mk, toDirectSum_single] [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : Semiring M to_hom : AddMonoidAlgebra M ι →+ ⨁ (x : ι), M := { toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } x✝ : NonUnitalNonAssocSemiring (ι →₀ M) := nonUnitalNonAssocSemiring xi : ι xv : M yi : ι yv : M ⊢ toDirectSum (Finsupp.single xi xv * Finsupp.single yi yv) = ↑(DirectSum.of (fun i => M) xi) xv * ↑(DirectSum.of (fun i => M) yi) yv [PROOFSTEP] erw [AddMonoidAlgebra.single_mul_single, AddMonoidHom.coe_mk, ZeroHom.coe_mk, AddMonoidAlgebra.toDirectSum_single] [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : Semiring M to_hom : AddMonoidAlgebra M ι →+ ⨁ (x : ι), M := { toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } x✝ : NonUnitalNonAssocSemiring (ι →₀ M) := nonUnitalNonAssocSemiring xi : ι xv : M yi : ι yv : M ⊢ ↑(DirectSum.of (fun i => M) (xi + yi)) (xv * yv) = DFinsupp.single xi xv * ↑(DirectSum.of (fun i => M) yi) yv [PROOFSTEP] simp only [AddMonoidHom.coe_comp, AddMonoidHom.coe_mul, AddMonoidHom.coe_mk, ZeroHom.coe_mk, Function.comp_apply, toDirectSum_single, AddMonoidHom.id_apply, Finsupp.singleAddHom_apply, AddMonoidHom.coe_mulLeft] [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : Semiring M to_hom : AddMonoidAlgebra M ι →+ ⨁ (x : ι), M := { toZeroHom := { toFun := toDirectSum, map_zero' := (_ : toDirectSum 0 = 0) }, map_add' := (_ : ∀ (f g : AddMonoidAlgebra M ι), toDirectSum (f + g) = toDirectSum f + toDirectSum g) } x✝ : NonUnitalNonAssocSemiring (ι →₀ M) := nonUnitalNonAssocSemiring xi : ι xv : M yi : ι yv : M ⊢ ↑(DirectSum.of (fun i => M) (xi + yi)) (xv * yv) = DFinsupp.single xi xv * ↑(DirectSum.of (fun i => M) yi) yv [PROOFSTEP] erw [DirectSum.of_mul_of, Mul.gMul_mul] [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝³ : DecidableEq ι inst✝² : AddMonoid ι inst✝¹ : Semiring M inst✝ : (m : M) → Decidable (m ≠ 0) f g : ⨁ (x : ι), M ⊢ toAddMonoidAlgebra (f * g) = toAddMonoidAlgebra f * toAddMonoidAlgebra g [PROOFSTEP] apply_fun AddMonoidAlgebra.toDirectSum [GOAL] ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝³ : DecidableEq ι inst✝² : AddMonoid ι inst✝¹ : Semiring M inst✝ : (m : M) → Decidable (m ≠ 0) f g : ⨁ (x : ι), M ⊢ AddMonoidAlgebra.toDirectSum (toAddMonoidAlgebra (f * g)) = AddMonoidAlgebra.toDirectSum (toAddMonoidAlgebra f * toAddMonoidAlgebra g) [PROOFSTEP] simp [GOAL] case inj ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝³ : DecidableEq ι inst✝² : AddMonoid ι inst✝¹ : Semiring M inst✝ : (m : M) → Decidable (m ≠ 0) f g : ⨁ (x : ι), M ⊢ Function.Injective AddMonoidAlgebra.toDirectSum [PROOFSTEP] apply Function.LeftInverse.injective [GOAL] case inj.a ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝³ : DecidableEq ι inst✝² : AddMonoid ι inst✝¹ : Semiring M inst✝ : (m : M) → Decidable (m ≠ 0) f g : ⨁ (x : ι), M ⊢ Function.LeftInverse ?inj.g AddMonoidAlgebra.toDirectSum case inj.g ι : Type u_1 R : Type u_2 M : Type u_3 A : Type u_4 inst✝³ : DecidableEq ι inst✝² : AddMonoid ι inst✝¹ : Semiring M inst✝ : (m : M) → Decidable (m ≠ 0) f g : ⨁ (x : ι), M ⊢ (⨁ (x : ι), M) → AddMonoidAlgebra M ι [PROOFSTEP] apply AddMonoidAlgebra.toDirectSum_toAddMonoidAlgebra
{"mathlib_filename": "Mathlib.Algebra.MonoidAlgebra.ToDirectSum", "llama_tokens": 4647}
[GOAL] R : Type u_1 inst✝¹ : Semigroup R inst✝ : StarSemigroup R a : R s : Set R ha : a ∈ center R ⊢ star a ∈ center R [PROOFSTEP] simpa only [star_mul, star_star] using fun g => congr_arg star ((Set.mem_center_iff R).mp ha <| star g).symm [GOAL] R : Type u_1 inst✝¹ : Semigroup R inst✝ : StarSemigroup R a : R s : Set R h : ∀ (a : R), a ∈ s → star a ∈ s ha : a ∈ centralizer s y : R hy : y ∈ s ⊢ y * star a = star a * y [PROOFSTEP] simpa using congr_arg star (ha _ (h _ hy)).symm
{"mathlib_filename": "Mathlib.Algebra.Star.Center", "llama_tokens": 227}
{"mathlib_filename": "Mathlib.Algebra.GroupRingAction.Subobjects", "llama_tokens": 0}
[GOAL] I✝ : Type u f : I✝ → Type v I : Type u_1 J : Type u_2 α : Type u_3 x : I → α y : J → α inst✝ : Star α ⊢ star (Sum.elim x y) = Sum.elim (star x) (star y) [PROOFSTEP] ext x [GOAL] case h I✝ : Type u f : I✝ → Type v I : Type u_1 J : Type u_2 α : Type u_3 x✝ : I → α y : J → α inst✝ : Star α x : I ⊕ J ⊢ star (Sum.elim x✝ y) x = Sum.elim (star x✝) (star y) x [PROOFSTEP] cases x [GOAL] case h.inl I✝ : Type u f : I✝ → Type v I : Type u_1 J : Type u_2 α : Type u_3 x : I → α y : J → α inst✝ : Star α val✝ : I ⊢ star (Sum.elim x y) (Sum.inl val✝) = Sum.elim (star x) (star y) (Sum.inl val✝) [PROOFSTEP] simp only [Pi.star_apply, Sum.elim_inl, Sum.elim_inr] [GOAL] case h.inr I✝ : Type u f : I✝ → Type v I : Type u_1 J : Type u_2 α : Type u_3 x : I → α y : J → α inst✝ : Star α val✝ : J ⊢ star (Sum.elim x y) (Sum.inr val✝) = Sum.elim (star x) (star y) (Sum.inr val✝) [PROOFSTEP] simp only [Pi.star_apply, Sum.elim_inl, Sum.elim_inr]
{"mathlib_filename": "Mathlib.Algebra.Star.Pi", "llama_tokens": 525}
[GOAL] α : Type u_1 s t : Set α a : α inst✝ : InvolutiveStar α ⊢ a⋆ ∈ s⋆ ↔ a ∈ s [PROOFSTEP] simp only [mem_star, star_star] [GOAL] α : Type u_1 s t : Set α a : α inst✝ : InvolutiveStar α ⊢ star '' s = s⋆ [PROOFSTEP] simp only [← star_preimage] [GOAL] α : Type u_1 s t : Set α a : α inst✝ : InvolutiveStar α ⊢ star '' s = star ⁻¹' s [PROOFSTEP] rw [image_eq_preimage_of_inverse] [GOAL] case h₁ α : Type u_1 s t : Set α a : α inst✝ : InvolutiveStar α ⊢ Function.LeftInverse star star [PROOFSTEP] intro [GOAL] case h₂ α : Type u_1 s t : Set α a : α inst✝ : InvolutiveStar α ⊢ Function.RightInverse star star [PROOFSTEP] intro [GOAL] case h₁ α : Type u_1 s t : Set α a : α inst✝ : InvolutiveStar α x✝ : α ⊢ x✝⋆⋆ = x✝ [PROOFSTEP] simp only [star_star] [GOAL] case h₂ α : Type u_1 s t : Set α a : α inst✝ : InvolutiveStar α x✝ : α ⊢ x✝⋆⋆ = x✝ [PROOFSTEP] simp only [star_star] [GOAL] α : Type u_1 s✝ t : Set α a : α inst✝ : InvolutiveStar α s : Set α ⊢ s⋆⋆ = s [PROOFSTEP] simp only [← star_preimage, preimage_preimage, star_star, preimage_id'] [GOAL] α : Type u_1 s✝ t✝ : Set α a : α inst✝ : InvolutiveStar α s t : Set α ⊢ s⋆ ⊆ t ↔ s ⊆ t⋆ [PROOFSTEP] rw [← star_subset_star, star_star] [GOAL] α : Type u_1 s t : Set α a : α β : Type u_2 inst✝ : InvolutiveStar β x : β ⊢ {x}⋆ = {x⋆} [PROOFSTEP] ext1 y [GOAL] case h α : Type u_1 s t : Set α a : α β : Type u_2 inst✝ : InvolutiveStar β x y : β ⊢ y ∈ {x}⋆ ↔ y ∈ {x⋆} [PROOFSTEP] rw [mem_star, mem_singleton_iff, mem_singleton_iff, star_eq_iff_star_eq, eq_comm] [GOAL] α : Type u_1 s✝ t✝ : Set α a : α inst✝¹ : Monoid α inst✝ : StarSemigroup α s t : Set α ⊢ (s * t)⋆ = t⋆ * s⋆ [PROOFSTEP] simp_rw [← image_star, ← image2_mul, image_image2, image2_image_left, image2_image_right, star_mul, image2_swap _ s t] [GOAL] α : Type u_1 s✝ t✝ : Set α a : α inst✝¹ : AddMonoid α inst✝ : StarAddMonoid α s t : Set α ⊢ (s + t)⋆ = s⋆ + t⋆ [PROOFSTEP] simp_rw [← image_star, ← image2_add, image_image2, image2_image_left, image2_image_right, star_add] [GOAL] α : Type u_1 s✝ t : Set α a : α inst✝¹ : Star α inst✝ : TrivialStar α s : Set α ⊢ s⋆ = s [PROOFSTEP] rw [← star_preimage] [GOAL] α : Type u_1 s✝ t : Set α a : α inst✝¹ : Star α inst✝ : TrivialStar α s : Set α ⊢ star ⁻¹' s = s [PROOFSTEP] ext1 [GOAL] case h α : Type u_1 s✝ t : Set α a : α inst✝¹ : Star α inst✝ : TrivialStar α s : Set α x✝ : α ⊢ x✝ ∈ star ⁻¹' s ↔ x✝ ∈ s [PROOFSTEP] simp [star_trivial] [GOAL] α : Type u_1 s✝ t : Set α a : α inst✝¹ : Group α inst✝ : StarSemigroup α s : Set α ⊢ s⁻¹⋆ = s⋆⁻¹ [PROOFSTEP] ext [GOAL] case h α : Type u_1 s✝ t : Set α a : α inst✝¹ : Group α inst✝ : StarSemigroup α s : Set α x✝ : α ⊢ x✝ ∈ s⁻¹⋆ ↔ x✝ ∈ s⋆⁻¹ [PROOFSTEP] simp only [mem_star, mem_inv, star_inv] [GOAL] α : Type u_1 s✝ t : Set α a : α inst✝¹ : DivisionSemiring α inst✝ : StarRing α s : Set α ⊢ s⁻¹⋆ = s⋆⁻¹ [PROOFSTEP] ext [GOAL] case h α : Type u_1 s✝ t : Set α a : α inst✝¹ : DivisionSemiring α inst✝ : StarRing α s : Set α x✝ : α ⊢ x✝ ∈ s⁻¹⋆ ↔ x✝ ∈ s⋆⁻¹ [PROOFSTEP] simp only [mem_star, mem_inv, star_inv'] [GOAL] S : Type u_1 α : Type u_2 inst✝² : InvolutiveStar α inst✝¹ : SetLike S α inst✝ : StarMemClass S α s : S ⊢ star ↑s = ↑s [PROOFSTEP] ext x [GOAL] case h S : Type u_1 α : Type u_2 inst✝² : InvolutiveStar α inst✝¹ : SetLike S α inst✝ : StarMemClass S α s : S x : α ⊢ x ∈ star ↑s ↔ x ∈ ↑s [PROOFSTEP] simp only [Set.mem_star, SetLike.mem_coe] [GOAL] case h S : Type u_1 α : Type u_2 inst✝² : InvolutiveStar α inst✝¹ : SetLike S α inst✝ : StarMemClass S α s : S x : α ⊢ star x ∈ s ↔ x ∈ s [PROOFSTEP] exact ⟨by simpa only [star_star] using star_mem (s := s) (r := star x), star_mem⟩ [GOAL] S : Type u_1 α : Type u_2 inst✝² : InvolutiveStar α inst✝¹ : SetLike S α inst✝ : StarMemClass S α s : S x : α ⊢ star x ∈ s → x ∈ s [PROOFSTEP] simpa only [star_star] using star_mem (s := s) (r := star x)
{"mathlib_filename": "Mathlib.Algebra.Star.Pointwise", "llama_tokens": 2083}
[GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x : FreeAlgebra R X ⊢ star (star x) = x [PROOFSTEP] unfold Star.star [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x : FreeAlgebra R X ⊢ { star := MulOpposite.unop ∘ ↑(↑(lift R) (MulOpposite.op ∘ ι R)) }.1 ({ star := MulOpposite.unop ∘ ↑(↑(lift R) (MulOpposite.op ∘ ι R)) }.1 x) = x [PROOFSTEP] simp only [Function.comp_apply] [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x : FreeAlgebra R X ⊢ MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) x))) = x [PROOFSTEP] refine' FreeAlgebra.induction R X _ _ _ _ x [GOAL] case refine'_1 R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x : FreeAlgebra R X ⊢ ∀ (r : R), MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (↑(algebraMap R (FreeAlgebra R X)) r)))) = ↑(algebraMap R (FreeAlgebra R X)) r [PROOFSTEP] intros [GOAL] case refine'_1 R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x : FreeAlgebra R X r✝ : R ⊢ MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (↑(algebraMap R (FreeAlgebra R X)) r✝)))) = ↑(algebraMap R (FreeAlgebra R X)) r✝ [PROOFSTEP] simp only [AlgHom.commutes, MulOpposite.algebraMap_apply, MulOpposite.unop_op] [GOAL] case refine'_2 R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x : FreeAlgebra R X ⊢ ∀ (x : X), MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (ι R x)))) = ι R x [PROOFSTEP] intros [GOAL] case refine'_2 R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x : FreeAlgebra R X x✝ : X ⊢ MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (ι R x✝)))) = ι R x✝ [PROOFSTEP] simp only [lift_ι_apply, Function.comp_apply, MulOpposite.unop_op] [GOAL] case refine'_3 R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x : FreeAlgebra R X ⊢ ∀ (a b : FreeAlgebra R X), MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) a))) = a → MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) b))) = b → MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (a * b)))) = a * b [PROOFSTEP] intros [GOAL] case refine'_3 R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x a✝² b✝ : FreeAlgebra R X a✝¹ : MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) a✝²))) = a✝² a✝ : MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) b✝))) = b✝ ⊢ MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (a✝² * b✝)))) = a✝² * b✝ [PROOFSTEP] simp only [*, map_mul, MulOpposite.unop_mul] [GOAL] case refine'_4 R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x : FreeAlgebra R X ⊢ ∀ (a b : FreeAlgebra R X), MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) a))) = a → MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) b))) = b → MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (a + b)))) = a + b [PROOFSTEP] intros [GOAL] case refine'_4 R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x a✝² b✝ : FreeAlgebra R X a✝¹ : MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) a✝²))) = a✝² a✝ : MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) b✝))) = b✝ ⊢ MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (MulOpposite.unop (↑(↑(lift R) (MulOpposite.op ∘ ι R)) (a✝² + b✝)))) = a✝² + b✝ [PROOFSTEP] simp only [*, map_add, MulOpposite.unop_add] [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a b : FreeAlgebra R X ⊢ star (a * b) = star b * star a [PROOFSTEP] simp only [Function.comp_apply, map_mul, MulOpposite.unop_mul] [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 a b : FreeAlgebra R X ⊢ star (a + b) = star a + star b [PROOFSTEP] simp only [Function.comp_apply, map_add, MulOpposite.unop_add] [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 x : X ⊢ star (ι R x) = ι R x [PROOFSTEP] simp [star, Star.star] [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 r : R ⊢ star (↑(algebraMap R (FreeAlgebra R X)) r) = ↑(algebraMap R (FreeAlgebra R X)) r [PROOFSTEP] simp [star, Star.star] [GOAL] R : Type u_1 inst✝ : CommSemiring R X : Type u_2 src✝ : FreeAlgebra R X ≃+* (FreeAlgebra R X)ᵐᵒᵖ := starRingEquiv r : R ⊢ Equiv.toFun src✝.toEquiv (↑(algebraMap R (FreeAlgebra R X)) r) = ↑(algebraMap R (FreeAlgebra R X)ᵐᵒᵖ) r [PROOFSTEP] simp [star_algebraMap]
{"mathlib_filename": "Mathlib.Algebra.Star.Free", "llama_tokens": 2764}
{"mathlib_filename": "Mathlib.Algebra.Star.Prod", "llama_tokens": 0}
[GOAL] R : Type u_1 inst✝ : CommRing R ⊢ ∀ (x y : ℍ[DualNumber R]), Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } (x * y) = Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } x * Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } y [PROOFSTEP] rintro ⟨⟨xr, xrε⟩, ⟨xi, xiε⟩, ⟨xj, xjε⟩, ⟨xk, xkε⟩⟩ [GOAL] case mk.mk.mk.mk.mk R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε : R ⊢ ∀ (y : ℍ[DualNumber R]), Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * y) = Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } { re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } y [PROOFSTEP] rintro ⟨⟨yr, yrε⟩, ⟨yi, yiε⟩, ⟨yj, yjε⟩, ⟨yk, ykε⟩⟩ [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε yr yrε yi yiε yj yjε yk ykε : R ⊢ Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) }) = Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } { re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) } [PROOFSTEP] ext : 1 [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk.h1 R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε yr yrε yi yiε yj yjε yk ykε : R ⊢ TrivSqZeroExt.fst (Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) })) = TrivSqZeroExt.fst (Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } { re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) }) [PROOFSTEP] rfl [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk.h2 R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε yr yrε yi yiε yj yjε yk ykε : R ⊢ TrivSqZeroExt.snd (Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) })) = TrivSqZeroExt.snd (Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } { re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) }) [PROOFSTEP] dsimp [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk.h2 R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε yr yrε yi yiε yj yjε yk ykε : R ⊢ { re := TrivSqZeroExt.snd ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) }).re, imI := TrivSqZeroExt.snd ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) }).imI, imJ := TrivSqZeroExt.snd ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) }).imJ, imK := TrivSqZeroExt.snd ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) }).imK } = { re := xr, imI := xi, imJ := xj, imK := xk } * { re := yrε, imI := yiε, imJ := yjε, imK := ykε } + { re := xrε, imI := xiε, imJ := xjε, imK := xkε } * { re := yr, imI := yi, imJ := yj, imK := yk } [PROOFSTEP] congr 1 [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk.h2.e_re R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε yr yrε yi yiε yj yjε yk ykε : R ⊢ TrivSqZeroExt.snd ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) }).re = ({ re := xr, imI := xi, imJ := xj, imK := xk } * { re := yrε, imI := yiε, imJ := yjε, imK := ykε }).re + ({ re := xrε, imI := xiε, imJ := xjε, imK := xkε } * { re := yr, imI := yi, imJ := yj, imK := yk }).re [PROOFSTEP] simp [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk.h2.e_imI R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε yr yrε yi yiε yj yjε yk ykε : R ⊢ TrivSqZeroExt.snd ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) }).imI = ({ re := xr, imI := xi, imJ := xj, imK := xk } * { re := yrε, imI := yiε, imJ := yjε, imK := ykε }).imI + ({ re := xrε, imI := xiε, imJ := xjε, imK := xkε } * { re := yr, imI := yi, imJ := yj, imK := yk }).imI [PROOFSTEP] simp [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk.h2.e_imJ R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε yr yrε yi yiε yj yjε yk ykε : R ⊢ TrivSqZeroExt.snd ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) }).imJ = ({ re := xr, imI := xi, imJ := xj, imK := xk } * { re := yrε, imI := yiε, imJ := yjε, imK := ykε }).imJ + ({ re := xrε, imI := xiε, imJ := xjε, imK := xkε } * { re := yr, imI := yi, imJ := yj, imK := yk }).imJ [PROOFSTEP] simp [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk.h2.e_imK R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε yr yrε yi yiε yj yjε yk ykε : R ⊢ TrivSqZeroExt.snd ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } * { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) }).imK = ({ re := xr, imI := xi, imJ := xj, imK := xk } * { re := yrε, imI := yiε, imJ := yjε, imK := ykε }).imK + ({ re := xrε, imI := xiε, imJ := xjε, imK := xkε } * { re := yr, imI := yi, imJ := yj, imK := yk }).imK [PROOFSTEP] simp [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk.h2.e_re R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε yr yrε yi yiε yj yjε yk ykε : R ⊢ xr * yrε + xrε * yr - (xi * yiε + xiε * yi) - (xj * yjε + xjε * yj) - (xk * ykε + xkε * yk) = xr * yrε - xi * yiε - xj * yjε - xk * ykε + (xrε * yr - xiε * yi - xjε * yj - xkε * yk) [PROOFSTEP] ring [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk.h2.e_imI R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε yr yrε yi yiε yj yjε yk ykε : R ⊢ xr * yiε + xrε * yi + (xi * yrε + xiε * yr) + (xj * ykε + xjε * yk) - (xk * yjε + xkε * yj) = xr * yiε + xi * yrε + xj * ykε - xk * yjε + (xrε * yi + xiε * yr + xjε * yk - xkε * yj) [PROOFSTEP] ring [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk.h2.e_imJ R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε yr yrε yi yiε yj yjε yk ykε : R ⊢ xr * yjε + xrε * yj - (xi * ykε + xiε * yk) + (xj * yrε + xjε * yr) + (xk * yiε + xkε * yi) = xr * yjε - xi * ykε + xj * yrε + xk * yiε + (xrε * yj - xiε * yk + xjε * yr + xkε * yi) [PROOFSTEP] ring [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk.h2.e_imK R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε yr yrε yi yiε yj yjε yk ykε : R ⊢ xr * ykε + xrε * yk + (xi * yjε + xiε * yj) - (xj * yiε + xjε * yi) + (xk * yrε + xkε * yr) = xr * ykε + xi * yjε - xj * yiε + xk * yrε + (xrε * yk + xiε * yj - xjε * yi + xkε * yr) [PROOFSTEP] ring [GOAL] R : Type u_1 inst✝ : CommRing R ⊢ ∀ (x y : ℍ[DualNumber R]), Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } (x + y) = Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } x + Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } y [PROOFSTEP] rintro ⟨⟨xr, xrε⟩, ⟨xi, xiε⟩, ⟨xj, xjε⟩, ⟨xk, xkε⟩⟩ [GOAL] case mk.mk.mk.mk.mk R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε : R ⊢ ∀ (y : ℍ[DualNumber R]), Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } + y) = Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } { re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } + Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } y [PROOFSTEP] rintro ⟨⟨yr, yrε⟩, ⟨yi, yiε⟩, ⟨yj, yjε⟩, ⟨yk, ykε⟩⟩ [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk R : Type u_1 inst✝ : CommRing R xr xrε xi xiε xj xjε xk xkε yr yrε yi yiε yj yjε yk ykε : R ⊢ Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } ({ re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } + { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) }) = Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } { re := (xr, xrε), imI := (xi, xiε), imJ := (xj, xjε), imK := (xk, xkε) } + Equiv.toFun { toFun := fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK }), invFun := fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }, left_inv := (_ : ∀ (x : ℍ[DualNumber R]), (fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) ((fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) x) = x), right_inv := (_ : ∀ (x : DualNumber ℍ[R]), (fun q => ({ re := TrivSqZeroExt.fst q.re, imI := TrivSqZeroExt.fst q.imI, imJ := TrivSqZeroExt.fst q.imJ, imK := TrivSqZeroExt.fst q.imK }, { re := TrivSqZeroExt.snd q.re, imI := TrivSqZeroExt.snd q.imI, imJ := TrivSqZeroExt.snd q.imJ, imK := TrivSqZeroExt.snd q.imK })) ((fun d => { re := ((TrivSqZeroExt.fst d).re, (TrivSqZeroExt.snd d).re), imI := ((TrivSqZeroExt.fst d).imI, (TrivSqZeroExt.snd d).imI), imJ := ((TrivSqZeroExt.fst d).imJ, (TrivSqZeroExt.snd d).imJ), imK := ((TrivSqZeroExt.fst d).imK, (TrivSqZeroExt.snd d).imK) }) x) = x) } { re := (yr, yrε), imI := (yi, yiε), imJ := (yj, yjε), imK := (yk, ykε) } [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.DualQuaternion", "llama_tokens": 28429}
[GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R x y : R hle : x ≤ y z : R ⊢ z + x ≤ z + y [PROOFSTEP] rw [StarOrderedRing.le_iff] at hle ⊢ [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R x y : R hle✝ : x ≤ y hle : ∃ p, p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ y = x + p z : R ⊢ ∃ p, p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ z + y = z + x + p [PROOFSTEP] refine hle.imp fun s hs ↦ ?_ [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R x y : R hle✝ : x ≤ y hle : ∃ p, p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ y = x + p z s : R hs : s ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ y = x + s ⊢ s ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ z + y = z + x + s [PROOFSTEP] rw [hs.2, add_assoc] [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R x y : R hle✝ : x ≤ y hle : ∃ p, p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ y = x + p z s : R hs : s ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ y = x + s ⊢ s ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ z + (x + s) = z + (x + s) [PROOFSTEP] exact ⟨hs.1, rfl⟩ [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarRing R h_le_iff : ∀ (x y : R), x ≤ y ↔ ∃ s, y = x + star s * s x y : R ⊢ x ≤ y ↔ ∃ p, p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ y = x + p [PROOFSTEP] refine' ⟨fun h => _, _⟩ [GOAL] case refine'_1 R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarRing R h_le_iff : ∀ (x y : R), x ≤ y ↔ ∃ s, y = x + star s * s x y : R h : x ≤ y ⊢ ∃ p, p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ y = x + p [PROOFSTEP] obtain ⟨p, hp⟩ := (h_le_iff x y).mp h [GOAL] case refine'_1.intro R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarRing R h_le_iff : ∀ (x y : R), x ≤ y ↔ ∃ s, y = x + star s * s x y : R h : x ≤ y p : R hp : y = x + star p * p ⊢ ∃ p, p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ y = x + p [PROOFSTEP] exact ⟨star p * p, AddSubmonoid.subset_closure ⟨p, rfl⟩, hp⟩ [GOAL] case refine'_2 R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarRing R h_le_iff : ∀ (x y : R), x ≤ y ↔ ∃ s, y = x + star s * s x y : R ⊢ (∃ p, p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ y = x + p) → x ≤ y [PROOFSTEP] rintro ⟨p, hp, hpxy⟩ [GOAL] case refine'_2.intro.intro R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarRing R h_le_iff : ∀ (x y : R), x ≤ y ↔ ∃ s, y = x + star s * s x y p : R hp : p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) hpxy : y = x + p ⊢ x ≤ y [PROOFSTEP] revert x y hpxy [GOAL] case refine'_2.intro.intro R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarRing R h_le_iff : ∀ (x y : R), x ≤ y ↔ ∃ s, y = x + star s * s p : R hp : p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ⊢ ∀ (x y : R), y = x + p → x ≤ y [PROOFSTEP] refine' AddSubmonoid.closure_induction hp _ (fun x y h => add_zero x ▸ h.ge) _ [GOAL] case refine'_2.intro.intro.refine'_1 R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarRing R h_le_iff : ∀ (x y : R), x ≤ y ↔ ∃ s, y = x + star s * s p : R hp : p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ⊢ ∀ (x : R), (x ∈ Set.range fun s => star s * s) → ∀ (x_1 y : R), y = x_1 + x → x_1 ≤ y [PROOFSTEP] rintro _ ⟨s, rfl⟩ x y rfl [GOAL] case refine'_2.intro.intro.refine'_1.intro R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarRing R h_le_iff : ∀ (x y : R), x ≤ y ↔ ∃ s, y = x + star s * s p : R hp : p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) s x : R ⊢ x ≤ x + (fun s => star s * s) s [PROOFSTEP] exact (h_le_iff _ _).mpr ⟨s, rfl⟩ [GOAL] case refine'_2.intro.intro.refine'_2 R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarRing R h_le_iff : ∀ (x y : R), x ≤ y ↔ ∃ s, y = x + star s * s p : R hp : p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ⊢ ∀ (x y : R), (∀ (x_1 y : R), y = x_1 + x → x_1 ≤ y) → (∀ (x y_1 : R), y_1 = x + y → x ≤ y_1) → ∀ (x_1 y_1 : R), y_1 = x_1 + (x + y) → x_1 ≤ y_1 [PROOFSTEP] rintro a b ha hb x y rfl [GOAL] case refine'_2.intro.intro.refine'_2 R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarRing R h_le_iff : ∀ (x y : R), x ≤ y ↔ ∃ s, y = x + star s * s p : R hp : p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) a b : R ha : ∀ (x y : R), y = x + a → x ≤ y hb : ∀ (x y : R), y = x + b → x ≤ y x : R ⊢ x ≤ x + (a + b) [PROOFSTEP] rw [← add_assoc] [GOAL] case refine'_2.intro.intro.refine'_2 R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarRing R h_le_iff : ∀ (x y : R), x ≤ y ↔ ∃ s, y = x + star s * s p : R hp : p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) a b : R ha : ∀ (x y : R), y = x + a → x ≤ y hb : ∀ (x y : R), y = x + b → x ≤ y x : R ⊢ x ≤ x + a + b [PROOFSTEP] exact (ha _ _ rfl).trans (hb _ _ rfl) [GOAL] R : Type u inst✝² : NonUnitalRing R inst✝¹ : PartialOrder R inst✝ : StarRing R h_add : ∀ {x y : R}, x ≤ y → ∀ (z : R), z + x ≤ z + y h_nonneg_iff : ∀ (x : R), 0 ≤ x ↔ x ∈ AddSubmonoid.closure (Set.range fun s => star s * s) x y : R ⊢ x ≤ y ↔ ∃ p, p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ y = x + p [PROOFSTEP] haveI : CovariantClass R R (· + ·) (· ≤ ·) := ⟨fun _ _ _ h => h_add h _⟩ [GOAL] R : Type u inst✝² : NonUnitalRing R inst✝¹ : PartialOrder R inst✝ : StarRing R h_add : ∀ {x y : R}, x ≤ y → ∀ (z : R), z + x ≤ z + y h_nonneg_iff : ∀ (x : R), 0 ≤ x ↔ x ∈ AddSubmonoid.closure (Set.range fun s => star s * s) x y : R this : CovariantClass R R (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ x ≤ y ↔ ∃ p, p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ y = x + p [PROOFSTEP] simpa only [← sub_eq_iff_eq_add', sub_nonneg, exists_eq_right'] using h_nonneg_iff (y - x) [GOAL] R : Type u inst✝² : NonUnitalRing R inst✝¹ : PartialOrder R inst✝ : StarRing R h_add : ∀ {x y : R}, x ≤ y → ∀ (z : R), z + x ≤ z + y h_nonneg_iff : ∀ (x : R), 0 ≤ x ↔ ∃ s, x = star s * s ⊢ ∀ (x y : R), x ≤ y ↔ ∃ s, y = x + star s * s [PROOFSTEP] haveI : CovariantClass R R (· + ·) (· ≤ ·) := ⟨fun _ _ _ h => h_add h _⟩ [GOAL] R : Type u inst✝² : NonUnitalRing R inst✝¹ : PartialOrder R inst✝ : StarRing R h_add : ∀ {x y : R}, x ≤ y → ∀ (z : R), z + x ≤ z + y h_nonneg_iff : ∀ (x : R), 0 ≤ x ↔ ∃ s, x = star s * s this : CovariantClass R R (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ ∀ (x y : R), x ≤ y ↔ ∃ s, y = x + star s * s [PROOFSTEP] simpa [sub_eq_iff_eq_add', sub_nonneg] using fun x y => h_nonneg_iff (y - x) [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R x : R ⊢ 0 ≤ x ↔ x ∈ AddSubmonoid.closure (Set.range fun s => star s * s) [PROOFSTEP] simp only [le_iff, zero_add, exists_eq_right'] [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R r : R ⊢ 0 ≤ r * star r [PROOFSTEP] simpa only [star_star] using star_mul_self_nonneg (star r) [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a : R ha : 0 ≤ a c : R ⊢ 0 ≤ star c * a * c [PROOFSTEP] rw [StarOrderedRing.nonneg_iff] at ha [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a : R ha✝ : 0 ≤ a ha : a ∈ AddSubmonoid.closure (Set.range fun s => star s * s) c : R ⊢ 0 ≤ star c * a * c [PROOFSTEP] refine' AddSubmonoid.closure_induction ha (fun x hx => _) (by rw [mul_zero, zero_mul]) fun x y hx hy => _ [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a : R ha✝ : 0 ≤ a ha : a ∈ AddSubmonoid.closure (Set.range fun s => star s * s) c : R ⊢ 0 ≤ star c * 0 * c [PROOFSTEP] rw [mul_zero, zero_mul] [GOAL] case refine'_1 R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a : R ha✝ : 0 ≤ a ha : a ∈ AddSubmonoid.closure (Set.range fun s => star s * s) c x : R hx : x ∈ Set.range fun s => star s * s ⊢ 0 ≤ star c * x * c [PROOFSTEP] obtain ⟨x, rfl⟩ := hx [GOAL] case refine'_1.intro R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a : R ha✝ : 0 ≤ a ha : a ∈ AddSubmonoid.closure (Set.range fun s => star s * s) c x : R ⊢ 0 ≤ star c * (fun s => star s * s) x * c [PROOFSTEP] convert star_mul_self_nonneg (x * c) using 1 [GOAL] case h.e'_4 R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a : R ha✝ : 0 ≤ a ha : a ∈ AddSubmonoid.closure (Set.range fun s => star s * s) c x : R ⊢ star c * (fun s => star s * s) x * c = star (x * c) * (x * c) [PROOFSTEP] rw [star_mul, ← mul_assoc, mul_assoc _ _ c] [GOAL] case refine'_2 R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a : R ha✝ : 0 ≤ a ha : a ∈ AddSubmonoid.closure (Set.range fun s => star s * s) c x y : R hx : 0 ≤ star c * x * c hy : 0 ≤ star c * y * c ⊢ 0 ≤ star c * (x + y) * c [PROOFSTEP] calc 0 ≤ star c * x * c + 0 := by rw [add_zero]; exact hx _ ≤ star c * x * c + star c * y * c := (add_le_add_left hy _) _ ≤ _ := by rw [mul_add, add_mul] [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a : R ha✝ : 0 ≤ a ha : a ∈ AddSubmonoid.closure (Set.range fun s => star s * s) c x y : R hx : 0 ≤ star c * x * c hy : 0 ≤ star c * y * c ⊢ 0 ≤ star c * x * c + 0 [PROOFSTEP] rw [add_zero] [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a : R ha✝ : 0 ≤ a ha : a ∈ AddSubmonoid.closure (Set.range fun s => star s * s) c x y : R hx : 0 ≤ star c * x * c hy : 0 ≤ star c * y * c ⊢ 0 ≤ star c * x * c [PROOFSTEP] exact hx [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a : R ha✝ : 0 ≤ a ha : a ∈ AddSubmonoid.closure (Set.range fun s => star s * s) c x y : R hx : 0 ≤ star c * x * c hy : 0 ≤ star c * y * c ⊢ star c * x * c + star c * y * c ≤ star c * (x + y) * c [PROOFSTEP] rw [mul_add, add_mul] [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a : R ha : 0 ≤ a c : R ⊢ 0 ≤ c * a * star c [PROOFSTEP] simpa only [star_star] using conjugate_nonneg ha (star c) [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a b : R hab : a ≤ b c : R ⊢ star c * a * c ≤ star c * b * c [PROOFSTEP] rw [StarOrderedRing.le_iff] at hab ⊢ [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a b : R hab✝ : a ≤ b hab : ∃ p, p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ b = a + p c : R ⊢ ∃ p, p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ star c * b * c = star c * a * c + p [PROOFSTEP] obtain ⟨p, hp, rfl⟩ := hab [GOAL] case intro.intro R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a c p : R hp : p ∈ AddSubmonoid.closure (Set.range fun s => star s * s) hab : a ≤ a + p ⊢ ∃ p_1, p_1 ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ∧ star c * (a + p) * c = star c * a * c + p_1 [PROOFSTEP] simp_rw [← StarOrderedRing.nonneg_iff] at hp ⊢ [GOAL] case intro.intro R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a c p : R hab : a ≤ a + p hp : 0 ≤ p ⊢ ∃ p_1, 0 ≤ p_1 ∧ star c * (a + p) * c = star c * a * c + p_1 [PROOFSTEP] exact ⟨star c * p * c, conjugate_nonneg hp c, by simp only [add_mul, mul_add]⟩ [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a c p : R hab : a ≤ a + p hp : 0 ≤ p ⊢ star c * (a + p) * c = star c * a * c + star c * p * c [PROOFSTEP] simp only [add_mul, mul_add] [GOAL] R : Type u inst✝² : NonUnitalSemiring R inst✝¹ : PartialOrder R inst✝ : StarOrderedRing R a b : R hab : a ≤ b c : R ⊢ c * a * star c ≤ c * b * star c [PROOFSTEP] simpa only [star_star] using conjugate_le_conjugate hab (star c)
{"mathlib_filename": "Mathlib.Algebra.Star.Order", "llama_tokens": 6101}
[GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R U B : R x✝¹ : U ∈ {U | star U * U = 1 ∧ U * star U = 1} x✝ : B ∈ {U | star U * U = 1 ∧ U * star U = 1} hA₁ : star U * U = 1 hA₂ : U * star U = 1 hB₁ : star B * B = 1 hB₂ : B * star B = 1 ⊢ U * B ∈ {U | star U * U = 1 ∧ U * star U = 1} [PROOFSTEP] refine' ⟨_, _⟩ [GOAL] case refine'_1 R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R U B : R x✝¹ : U ∈ {U | star U * U = 1 ∧ U * star U = 1} x✝ : B ∈ {U | star U * U = 1 ∧ U * star U = 1} hA₁ : star U * U = 1 hA₂ : U * star U = 1 hB₁ : star B * B = 1 hB₂ : B * star B = 1 ⊢ star (U * B) * (U * B) = 1 [PROOFSTEP] calc star (U * B) * (U * B) = star B * star U * U * B := by simp only [mul_assoc, star_mul] _ = star B * (star U * U) * B := by rw [← mul_assoc] _ = 1 := by rw [hA₁, mul_one, hB₁] [GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R U B : R x✝¹ : U ∈ {U | star U * U = 1 ∧ U * star U = 1} x✝ : B ∈ {U | star U * U = 1 ∧ U * star U = 1} hA₁ : star U * U = 1 hA₂ : U * star U = 1 hB₁ : star B * B = 1 hB₂ : B * star B = 1 ⊢ star (U * B) * (U * B) = star B * star U * U * B [PROOFSTEP] simp only [mul_assoc, star_mul] [GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R U B : R x✝¹ : U ∈ {U | star U * U = 1 ∧ U * star U = 1} x✝ : B ∈ {U | star U * U = 1 ∧ U * star U = 1} hA₁ : star U * U = 1 hA₂ : U * star U = 1 hB₁ : star B * B = 1 hB₂ : B * star B = 1 ⊢ star B * star U * U * B = star B * (star U * U) * B [PROOFSTEP] rw [← mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R U B : R x✝¹ : U ∈ {U | star U * U = 1 ∧ U * star U = 1} x✝ : B ∈ {U | star U * U = 1 ∧ U * star U = 1} hA₁ : star U * U = 1 hA₂ : U * star U = 1 hB₁ : star B * B = 1 hB₂ : B * star B = 1 ⊢ star B * (star U * U) * B = 1 [PROOFSTEP] rw [hA₁, mul_one, hB₁] [GOAL] case refine'_2 R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R U B : R x✝¹ : U ∈ {U | star U * U = 1 ∧ U * star U = 1} x✝ : B ∈ {U | star U * U = 1 ∧ U * star U = 1} hA₁ : star U * U = 1 hA₂ : U * star U = 1 hB₁ : star B * B = 1 hB₂ : B * star B = 1 ⊢ U * B * star (U * B) = 1 [PROOFSTEP] calc U * B * star (U * B) = U * B * (star B * star U) := by rw [star_mul] _ = U * (B * star B) * star U := by simp_rw [← mul_assoc] _ = 1 := by rw [hB₂, mul_one, hA₂] [GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R U B : R x✝¹ : U ∈ {U | star U * U = 1 ∧ U * star U = 1} x✝ : B ∈ {U | star U * U = 1 ∧ U * star U = 1} hA₁ : star U * U = 1 hA₂ : U * star U = 1 hB₁ : star B * B = 1 hB₂ : B * star B = 1 ⊢ U * B * star (U * B) = U * B * (star B * star U) [PROOFSTEP] rw [star_mul] [GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R U B : R x✝¹ : U ∈ {U | star U * U = 1 ∧ U * star U = 1} x✝ : B ∈ {U | star U * U = 1 ∧ U * star U = 1} hA₁ : star U * U = 1 hA₂ : U * star U = 1 hB₁ : star B * B = 1 hB₂ : B * star B = 1 ⊢ U * B * (star B * star U) = U * (B * star B) * star U [PROOFSTEP] simp_rw [← mul_assoc] [GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R U B : R x✝¹ : U ∈ {U | star U * U = 1 ∧ U * star U = 1} x✝ : B ∈ {U | star U * U = 1 ∧ U * star U = 1} hA₁ : star U * U = 1 hA₂ : U * star U = 1 hB₁ : star B * B = 1 hB₂ : B * star B = 1 ⊢ U * (B * star B) * star U = 1 [PROOFSTEP] rw [hB₂, mul_one, hA₂] [GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R ⊢ 1 ∈ { carrier := {U | star U * U = 1 ∧ U * star U = 1}, mul_mem' := (_ : ∀ (U B : R), U ∈ {U | star U * U = 1 ∧ U * star U = 1} → B ∈ {U | star U * U = 1 ∧ U * star U = 1} → U * B ∈ {U | star U * U = 1 ∧ U * star U = 1}) }.carrier [PROOFSTEP] simp only [mul_one, and_self_iff, Set.mem_setOf_eq, star_one] [GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R U : R hU : U ∈ unitary R ⊢ star (star U) * star U = 1 [PROOFSTEP] rw [star_star, mul_star_self_of_mem hU] [GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R U : R hU : U ∈ unitary R ⊢ star U * star (star U) = 1 [PROOFSTEP] rw [star_star, star_mul_self_of_mem hU] [GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R ⊢ Function.Involutive star [PROOFSTEP] intro x [GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R x : { x // x ∈ unitary R } ⊢ star (star x) = x [PROOFSTEP] ext [GOAL] case a R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R x : { x // x ∈ unitary R } ⊢ ↑(star (star x)) = ↑x [PROOFSTEP] rw [coe_star, coe_star, star_star] [GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R ⊢ ∀ (r s : { x // x ∈ unitary R }), star (r * s) = star s * star r [PROOFSTEP] intro x y [GOAL] R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R x y : { x // x ∈ unitary R } ⊢ star (x * y) = star y * star x [PROOFSTEP] ext [GOAL] case a R : Type u_1 inst✝¹ : Monoid R inst✝ : StarSemigroup R x y : { x // x ∈ unitary R } ⊢ ↑(star (x * y)) = ↑(star y * star x) [PROOFSTEP] rw [coe_star, Submonoid.coe_mul, Submonoid.coe_mul, coe_star, coe_star, star_mul] [GOAL] R : Type u_1 inst✝¹ : GroupWithZero R inst✝ : StarSemigroup R U₁ U₂ : { x // x ∈ unitary R } ⊢ ↑(U₁ / U₂) = ↑U₁ / ↑U₂ [PROOFSTEP] simp only [div_eq_mul_inv, coe_inv, Submonoid.coe_mul] [GOAL] R : Type u_1 inst✝¹ : GroupWithZero R inst✝ : StarSemigroup R U : { x // x ∈ unitary R } z : ℤ ⊢ ↑(U ^ z) = ↑U ^ z [PROOFSTEP] induction z [GOAL] case ofNat R : Type u_1 inst✝¹ : GroupWithZero R inst✝ : StarSemigroup R U : { x // x ∈ unitary R } a✝ : ℕ ⊢ ↑(U ^ Int.ofNat a✝) = ↑U ^ Int.ofNat a✝ [PROOFSTEP] simp [SubmonoidClass.coe_pow] [GOAL] case negSucc R : Type u_1 inst✝¹ : GroupWithZero R inst✝ : StarSemigroup R U : { x // x ∈ unitary R } a✝ : ℕ ⊢ ↑(U ^ Int.negSucc a✝) = ↑U ^ Int.negSucc a✝ [PROOFSTEP] simp [coe_inv] [GOAL] R : Type u_1 inst✝¹ : Ring R inst✝ : StarRing R U : { x // x ∈ unitary R } ⊢ -↑U ∈ unitary R [PROOFSTEP] simp [mem_iff, star_neg, neg_mul_neg]
{"mathlib_filename": "Mathlib.Algebra.Star.Unitary", "llama_tokens": 3132}
[GOAL] R : Type u inst✝ : InvolutiveStar R r s : R h : r = star s ⊢ s = star r [PROOFSTEP] simp [h] [GOAL] R : Type u inst✝¹ : Semigroup R inst✝ : StarSemigroup R x y : R ⊢ star (star x * y) = star y * x [PROOFSTEP] rw [star_mul, star_star] [GOAL] R : Type u inst✝¹ : Semigroup R inst✝ : StarSemigroup R x y : R ⊢ star (x * star y) = y * star x [PROOFSTEP] rw [star_mul, star_star] [GOAL] R : Type u inst✝¹ : Semigroup R inst✝ : StarSemigroup R x y z : R ⊢ SemiconjBy (star x) (star z) (star y) ↔ SemiconjBy x y z [PROOFSTEP] simp_rw [SemiconjBy, ← star_mul, star_inj, eq_comm] [GOAL] R : Type u inst✝¹ : Semigroup R inst✝ : StarSemigroup R x y : R ⊢ Commute (star x) y ↔ Commute x (star y) [PROOFSTEP] rw [← commute_star_star, star_star] [GOAL] R : Type u inst✝¹ : Semigroup R inst✝ : StarSemigroup R src✝ : R ≃ Rᵐᵒᵖ := (Function.Involutive.toPerm star (_ : Function.Involutive star)).trans opEquiv x y : R ⊢ Equiv.toFun { toFun := fun x => op (star x), invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (x * y) = Equiv.toFun { toFun := fun x => op (star x), invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } x * Equiv.toFun { toFun := fun x => op (star x), invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } y [PROOFSTEP] simp only [star_mul, op_mul] [GOAL] R : Type u inst✝¹ : AddMonoid R inst✝ : StarAddMonoid R x : R ⊢ star x ≠ 0 ↔ x ≠ 0 [PROOFSTEP] simp only [ne_eq, star_eq_zero] [GOAL] R : Type u S : Type u_1 inst✝² : NonAssocSemiring S inst✝¹ : CommSemiring R inst✝ : StarRing R ⊢ Function.Involutive star [PROOFSTEP] intro [GOAL] R : Type u S : Type u_1 inst✝² : NonAssocSemiring S inst✝¹ : CommSemiring R inst✝ : StarRing R x✝ : S →+* R ⊢ star (star x✝) = x✝ [PROOFSTEP] ext [GOAL] case a R : Type u S : Type u_1 inst✝² : NonAssocSemiring S inst✝¹ : CommSemiring R inst✝ : StarRing R x✝¹ : S →+* R x✝ : S ⊢ ↑(star (star x✝¹)) x✝ = ↑x✝¹ x✝ [PROOFSTEP] simp only [RingHom.coe_comp, Function.comp_apply, starRingEnd_self_apply] [GOAL] R : Type u inst✝¹ : Semifield R inst✝ : StarRing R x y : R ⊢ star (x / y) = star x / star y [PROOFSTEP] apply op_injective [GOAL] case a R : Type u inst✝¹ : Semifield R inst✝ : StarRing R x y : R ⊢ op (star (x / y)) = op (star x / star y) [PROOFSTEP] rw [division_def, op_div, mul_comm, star_mul, star_inv', op_mul, op_inv] [GOAL] R : Type u inst✝¹ : AddMonoid R inst✝ : StarAddMonoid R r : R ⊢ star (bit0 r) = bit0 (star r) [PROOFSTEP] simp [bit0] [GOAL] R : Type u inst✝¹ : Semiring R inst✝ : StarRing R r : R ⊢ star (bit1 r) = bit1 (star r) [PROOFSTEP] simp [bit1] [GOAL] R : Type u inst✝¹ : Semiring R inst✝ : StarRing R a : R ⊢ inverse (star a) = star (inverse a) [PROOFSTEP] by_cases ha : IsUnit a [GOAL] case pos R : Type u inst✝¹ : Semiring R inst✝ : StarRing R a : R ha : IsUnit a ⊢ inverse (star a) = star (inverse a) [PROOFSTEP] obtain ⟨u, rfl⟩ := ha [GOAL] case pos.intro R : Type u inst✝¹ : Semiring R inst✝ : StarRing R u : Rˣ ⊢ inverse (star ↑u) = star (inverse ↑u) [PROOFSTEP] rw [Ring.inverse_unit, ← Units.coe_star, Ring.inverse_unit, ← Units.coe_star_inv] [GOAL] case neg R : Type u inst✝¹ : Semiring R inst✝ : StarRing R a : R ha : ¬IsUnit a ⊢ inverse (star a) = star (inverse a) [PROOFSTEP] rw [Ring.inverse_non_unit _ ha, Ring.inverse_non_unit _ (mt isUnit_star.mp ha), star_zero] [GOAL] R✝ : Type u R : Type u_1 inst✝² : Monoid R inst✝¹ : StarSemigroup R r : R inst✝ : Invertible r ⊢ Star.star ⅟r * Star.star r = 1 [PROOFSTEP] rw [← star_mul, mul_invOf_self, star_one] [GOAL] R✝ : Type u R : Type u_1 inst✝² : Monoid R inst✝¹ : StarSemigroup R r : R inst✝ : Invertible r ⊢ Star.star r * Star.star ⅟r = 1 [PROOFSTEP] rw [← star_mul, invOf_mul_self, star_one] [GOAL] R✝ : Type u R : Type u_1 inst✝³ : Monoid R inst✝² : StarSemigroup R r : R inst✝¹ : Invertible r inst✝ : Invertible (star r) ⊢ star ⅟r = ⅟(star r) [PROOFSTEP] have : star (⅟r) = star (⅟r) * ((star r) * ⅟(star r)) := by simp only [mul_invOf_self, mul_one] [GOAL] R✝ : Type u R : Type u_1 inst✝³ : Monoid R inst✝² : StarSemigroup R r : R inst✝¹ : Invertible r inst✝ : Invertible (star r) ⊢ star ⅟r = star ⅟r * (star r * ⅟(star r)) [PROOFSTEP] simp only [mul_invOf_self, mul_one] [GOAL] R✝ : Type u R : Type u_1 inst✝³ : Monoid R inst✝² : StarSemigroup R r : R inst✝¹ : Invertible r inst✝ : Invertible (star r) this : star ⅟r = star ⅟r * (star r * ⅟(star r)) ⊢ star ⅟r = ⅟(star r) [PROOFSTEP] rw [this, ← mul_assoc] [GOAL] R✝ : Type u R : Type u_1 inst✝³ : Monoid R inst✝² : StarSemigroup R r : R inst✝¹ : Invertible r inst✝ : Invertible (star r) this : star ⅟r = star ⅟r * (star r * ⅟(star r)) ⊢ star ⅟r * star r * ⅟(star r) = ⅟(star r) [PROOFSTEP] have : (star (⅟r)) * (star r) = star 1 := by rw [← star_mul, mul_invOf_self] [GOAL] R✝ : Type u R : Type u_1 inst✝³ : Monoid R inst✝² : StarSemigroup R r : R inst✝¹ : Invertible r inst✝ : Invertible (star r) this : star ⅟r = star ⅟r * (star r * ⅟(star r)) ⊢ star ⅟r * star r = star 1 [PROOFSTEP] rw [← star_mul, mul_invOf_self] [GOAL] R✝ : Type u R : Type u_1 inst✝³ : Monoid R inst✝² : StarSemigroup R r : R inst✝¹ : Invertible r inst✝ : Invertible (star r) this✝ : star ⅟r = star ⅟r * (star r * ⅟(star r)) this : star ⅟r * star r = star 1 ⊢ star ⅟r * star r * ⅟(star r) = ⅟(star r) [PROOFSTEP] rw [this, star_one, one_mul]
{"mathlib_filename": "Mathlib.Algebra.Star.Basic", "llama_tokens": 2817}
[GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s₁ s₂ : Multiset α ⊢ lcm (s₁ + s₂) = fold GCDMonoid.lcm (GCDMonoid.lcm 1 1) (s₁ + s₂) [PROOFSTEP] simp [lcm] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α a : α ⊢ lcm 0 ∣ a ↔ ∀ (b : α), b ∈ 0 → b ∣ a [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α a : α ⊢ ∀ ⦃a_1 : α⦄ {s : Multiset α}, (lcm s ∣ a ↔ ∀ (b : α), b ∈ s → b ∣ a) → (lcm (a_1 ::ₘ s) ∣ a ↔ ∀ (b : α), b ∈ a_1 ::ₘ s → b ∣ a) [PROOFSTEP] simp (config := { contextual := true }) [or_imp, forall_and, lcm_dvd_iff] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α ⊢ ↑normalize (lcm 0) = lcm 0 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s✝ : Multiset α a : α s : Multiset α x✝ : ↑normalize (lcm s) = lcm s ⊢ ↑normalize (lcm (a ::ₘ s)) = lcm (a ::ₘ s) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : Nontrivial α s : Multiset α ⊢ lcm s = 0 ↔ 0 ∈ s [PROOFSTEP] induction' s using Multiset.induction_on with a s ihs [GOAL] case empty α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : Nontrivial α ⊢ lcm 0 = 0 ↔ 0 ∈ 0 [PROOFSTEP] simp only [lcm_zero, one_ne_zero, not_mem_zero] [GOAL] case cons α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : Nontrivial α a : α s : Multiset α ihs : lcm s = 0 ↔ 0 ∈ s ⊢ lcm (a ::ₘ s) = 0 ↔ 0 ∈ a ::ₘ s [PROOFSTEP] simp only [mem_cons, lcm_cons, lcm_eq_zero_iff, ihs, @eq_comm _ a] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s : Multiset α ⊢ lcm (dedup 0) = lcm 0 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s✝ : Multiset α a : α s : Multiset α IH : lcm (dedup s) = lcm s ⊢ lcm (dedup (a ::ₘ s)) = lcm (a ::ₘ s) [PROOFSTEP] by_cases h : a ∈ s [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s✝ : Multiset α a : α s : Multiset α IH : lcm (dedup s) = lcm s h : a ∈ s ⊢ lcm (dedup (a ::ₘ s)) = lcm (a ::ₘ s) [PROOFSTEP] simp [IH, h] [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s✝ : Multiset α a : α s : Multiset α IH : lcm (dedup s) = lcm s h : ¬a ∈ s ⊢ lcm (dedup (a ::ₘ s)) = lcm (a ::ₘ s) [PROOFSTEP] simp [IH, h] [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s✝ : Multiset α a : α s : Multiset α IH : lcm (dedup s) = lcm s h : a ∈ s ⊢ lcm s = GCDMonoid.lcm a (lcm s) [PROOFSTEP] unfold lcm [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s✝ : Multiset α a : α s : Multiset α IH : lcm (dedup s) = lcm s h : a ∈ s ⊢ fold GCDMonoid.lcm 1 s = GCDMonoid.lcm a (fold GCDMonoid.lcm 1 s) [PROOFSTEP] rw [← cons_erase h, fold_cons_left, ← lcm_assoc, lcm_same] [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s✝ : Multiset α a : α s : Multiset α IH : lcm (dedup s) = lcm s h : a ∈ s ⊢ GCDMonoid.lcm a (fold GCDMonoid.lcm 1 (erase s a)) = GCDMonoid.lcm (↑normalize a) (fold GCDMonoid.lcm 1 (erase s a)) [PROOFSTEP] apply lcm_eq_of_associated_left (associated_normalize _) [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ lcm (ndunion s₁ s₂) = GCDMonoid.lcm (lcm s₁) (lcm s₂) [PROOFSTEP] rw [← lcm_dedup, dedup_ext.2, lcm_dedup, lcm_add] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ ∀ (a : α), a ∈ ndunion s₁ s₂ ↔ a ∈ s₁ + s₂ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ lcm (s₁ ∪ s₂) = GCDMonoid.lcm (lcm s₁) (lcm s₂) [PROOFSTEP] rw [← lcm_dedup, dedup_ext.2, lcm_dedup, lcm_add] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ ∀ (a : α), a ∈ s₁ ∪ s₂ ↔ a ∈ s₁ + s₂ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α a : α s : Multiset α ⊢ lcm (ndinsert a s) = GCDMonoid.lcm a (lcm s) [PROOFSTEP] rw [← lcm_dedup, dedup_ext.2, lcm_dedup, lcm_cons] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α a : α s : Multiset α ⊢ ∀ (a_1 : α), a_1 ∈ ndinsert a s ↔ a_1 ∈ a ::ₘ s [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s₁ s₂ : Multiset α ⊢ gcd (s₁ + s₂) = fold GCDMonoid.gcd (GCDMonoid.gcd 0 0) (s₁ + s₂) [PROOFSTEP] simp [gcd] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α a : α ⊢ a ∣ gcd 0 ↔ ∀ (b : α), b ∈ 0 → a ∣ b [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α a : α ⊢ ∀ ⦃a_1 : α⦄ {s : Multiset α}, (a ∣ gcd s ↔ ∀ (b : α), b ∈ s → a ∣ b) → (a ∣ gcd (a_1 ::ₘ s) ↔ ∀ (b : α), b ∈ a_1 ::ₘ s → a ∣ b) [PROOFSTEP] simp (config := { contextual := true }) [or_imp, forall_and, dvd_gcd_iff] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α ⊢ ↑normalize (gcd 0) = gcd 0 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s✝ : Multiset α a : α s : Multiset α x✝ : ↑normalize (gcd s) = gcd s ⊢ ↑normalize (gcd (a ::ₘ s)) = gcd (a ::ₘ s) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α ⊢ gcd s = 0 ↔ ∀ (x : α), x ∈ s → x = 0 [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α ⊢ gcd s = 0 → ∀ (x : α), x ∈ s → x = 0 [PROOFSTEP] intro h x hx [GOAL] case mp α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α h : gcd s = 0 x : α hx : x ∈ s ⊢ x = 0 [PROOFSTEP] apply eq_zero_of_zero_dvd [GOAL] case mp.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α h : gcd s = 0 x : α hx : x ∈ s ⊢ 0 ∣ x [PROOFSTEP] rw [← h] [GOAL] case mp.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α h : gcd s = 0 x : α hx : x ∈ s ⊢ gcd s ∣ x [PROOFSTEP] apply gcd_dvd hx [GOAL] case mpr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α ⊢ (∀ (x : α), x ∈ s → x = 0) → gcd s = 0 [PROOFSTEP] refine' s.induction_on _ _ [GOAL] case mpr.refine'_1 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α ⊢ (∀ (x : α), x ∈ 0 → x = 0) → gcd 0 = 0 [PROOFSTEP] simp [GOAL] case mpr.refine'_2 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α ⊢ ∀ ⦃a : α⦄ {s : Multiset α}, ((∀ (x : α), x ∈ s → x = 0) → gcd s = 0) → (∀ (x : α), x ∈ a ::ₘ s → x = 0) → gcd (a ::ₘ s) = 0 [PROOFSTEP] intro a s sgcd h [GOAL] case mpr.refine'_2 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s✝ : Multiset α a : α s : Multiset α sgcd : (∀ (x : α), x ∈ s → x = 0) → gcd s = 0 h : ∀ (x : α), x ∈ a ::ₘ s → x = 0 ⊢ gcd (a ::ₘ s) = 0 [PROOFSTEP] simp [h a (mem_cons_self a s), sgcd fun x hx ↦ h x (mem_cons_of_mem hx)] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a : α s : Multiset α ⊢ gcd (map ((fun x x_1 => x * x_1) a) s) = ↑normalize a * gcd s [PROOFSTEP] refine' s.induction_on _ fun b s ih ↦ _ [GOAL] case refine'_1 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a : α s : Multiset α ⊢ gcd (map ((fun x x_1 => x * x_1) a) 0) = ↑normalize a * gcd 0 [PROOFSTEP] simp_rw [map_zero, gcd_zero, mul_zero] [GOAL] case refine'_2 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a : α s✝ : Multiset α b : α s : Multiset α ih : gcd (map ((fun x x_1 => x * x_1) a) s) = ↑normalize a * gcd s ⊢ gcd (map ((fun x x_1 => x * x_1) a) (b ::ₘ s)) = ↑normalize a * gcd (b ::ₘ s) [PROOFSTEP] simp_rw [map_cons, gcd_cons, ← gcd_mul_left] [GOAL] case refine'_2 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a : α s✝ : Multiset α b : α s : Multiset α ih : gcd (map ((fun x x_1 => x * x_1) a) s) = ↑normalize a * gcd s ⊢ GCDMonoid.gcd (a * b) (gcd (map (fun x => a * x) s)) = GCDMonoid.gcd (a * b) (a * gcd s) [PROOFSTEP] rw [ih] [GOAL] case refine'_2 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a : α s✝ : Multiset α b : α s : Multiset α ih : gcd (map ((fun x x_1 => x * x_1) a) s) = ↑normalize a * gcd s ⊢ GCDMonoid.gcd (a * b) (↑normalize a * gcd s) = GCDMonoid.gcd (a * b) (a * gcd s) [PROOFSTEP] apply ((normalize_associated a).mul_right _).gcd_eq_right [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s : Multiset α ⊢ gcd (dedup 0) = gcd 0 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s✝ : Multiset α a : α s : Multiset α IH : gcd (dedup s) = gcd s ⊢ gcd (dedup (a ::ₘ s)) = gcd (a ::ₘ s) [PROOFSTEP] by_cases h : a ∈ s [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s✝ : Multiset α a : α s : Multiset α IH : gcd (dedup s) = gcd s h : a ∈ s ⊢ gcd (dedup (a ::ₘ s)) = gcd (a ::ₘ s) [PROOFSTEP] simp [IH, h] [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s✝ : Multiset α a : α s : Multiset α IH : gcd (dedup s) = gcd s h : ¬a ∈ s ⊢ gcd (dedup (a ::ₘ s)) = gcd (a ::ₘ s) [PROOFSTEP] simp [IH, h] [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s✝ : Multiset α a : α s : Multiset α IH : gcd (dedup s) = gcd s h : a ∈ s ⊢ gcd s = GCDMonoid.gcd a (gcd s) [PROOFSTEP] unfold gcd [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s✝ : Multiset α a : α s : Multiset α IH : gcd (dedup s) = gcd s h : a ∈ s ⊢ fold GCDMonoid.gcd 0 s = GCDMonoid.gcd a (fold GCDMonoid.gcd 0 s) [PROOFSTEP] rw [← cons_erase h, fold_cons_left, ← gcd_assoc, gcd_same] [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s✝ : Multiset α a : α s : Multiset α IH : gcd (dedup s) = gcd s h : a ∈ s ⊢ GCDMonoid.gcd a (fold GCDMonoid.gcd 0 (erase s a)) = GCDMonoid.gcd (↑normalize a) (fold GCDMonoid.gcd 0 (erase s a)) [PROOFSTEP] apply (associated_normalize _).gcd_eq_left [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ gcd (ndunion s₁ s₂) = GCDMonoid.gcd (gcd s₁) (gcd s₂) [PROOFSTEP] rw [← gcd_dedup, dedup_ext.2, gcd_dedup, gcd_add] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ ∀ (a : α), a ∈ ndunion s₁ s₂ ↔ a ∈ s₁ + s₂ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ gcd (s₁ ∪ s₂) = GCDMonoid.gcd (gcd s₁) (gcd s₂) [PROOFSTEP] rw [← gcd_dedup, dedup_ext.2, gcd_dedup, gcd_add] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ ∀ (a : α), a ∈ s₁ ∪ s₂ ↔ a ∈ s₁ + s₂ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α a : α s : Multiset α ⊢ gcd (ndinsert a s) = GCDMonoid.gcd a (gcd s) [PROOFSTEP] rw [← gcd_dedup, dedup_ext.2, gcd_dedup, gcd_cons] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizedGCDMonoid α inst✝ : DecidableEq α a : α s : Multiset α ⊢ ∀ (a_1 : α), a_1 ∈ ndinsert a s ↔ a_1 ∈ a ::ₘ s [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s t : Multiset α hs : ∃ x, x ∈ s ∧ x ≠ 0 ht : s = map ((fun x x_1 => x * x_1) (gcd s)) t ⊢ gcd s * gcd t = gcd s [PROOFSTEP] conv_lhs => rw [← normalize_gcd, ← gcd_map_mul, ← ht] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s t : Multiset α hs : ∃ x, x ∈ s ∧ x ≠ 0 ht : s = map ((fun x x_1 => x * x_1) (gcd s)) t | gcd s * gcd t [PROOFSTEP] rw [← normalize_gcd, ← gcd_map_mul, ← ht] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s t : Multiset α hs : ∃ x, x ∈ s ∧ x ≠ 0 ht : s = map ((fun x x_1 => x * x_1) (gcd s)) t | gcd s * gcd t [PROOFSTEP] rw [← normalize_gcd, ← gcd_map_mul, ← ht] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s t : Multiset α hs : ∃ x, x ∈ s ∧ x ≠ 0 ht : s = map ((fun x x_1 => x * x_1) (gcd s)) t | gcd s * gcd t [PROOFSTEP] rw [← normalize_gcd, ← gcd_map_mul, ← ht] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s t : Multiset α hs : ∃ x, x ∈ s ∧ x ≠ 0 ht : s = map ((fun x x_1 => x * x_1) (gcd s)) t ⊢ ¬gcd s = 0 [PROOFSTEP] contrapose! hs [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s t : Multiset α ht : s = map ((fun x x_1 => x * x_1) (gcd s)) t hs : gcd s = 0 ⊢ ∀ (x : α), x ∈ s → x = 0 [PROOFSTEP] exact s.gcd_eq_zero_iff.1 hs [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 ⊢ ∃ t, s = map ((fun x x_1 => x * x_1) (gcd s)) t ∧ gcd t = 1 [PROOFSTEP] classical by_cases h : ∀ x ∈ s, x = (0 : α) · use replicate (card s) 1 simp only rw [map_replicate, eq_replicate, mul_one, s.gcd_eq_zero_iff.2 h, ← nsmul_singleton, ← gcd_dedup, dedup_nsmul (card_pos.2 hs).ne', dedup_singleton, gcd_singleton] exact ⟨⟨rfl, h⟩, normalize_one⟩ · choose f hf using @gcd_dvd _ _ _ s push_neg at h refine' ⟨s.pmap @f fun _ ↦ id, _, extract_gcd' s _ h _⟩ <;> · rw [map_pmap] conv_lhs => rw [← s.map_id, ← s.pmap_eq_map _ _ fun _ ↦ id] congr with (x hx) simp only rw [id] rw [← hf hx] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 ⊢ ∃ t, s = map ((fun x x_1 => x * x_1) (gcd s)) t ∧ gcd t = 1 [PROOFSTEP] by_cases h : ∀ x ∈ s, x = (0 : α) [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 h : ∀ (x : α), x ∈ s → x = 0 ⊢ ∃ t, s = map ((fun x x_1 => x * x_1) (gcd s)) t ∧ gcd t = 1 [PROOFSTEP] use replicate (card s) 1 [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 h : ∀ (x : α), x ∈ s → x = 0 ⊢ s = map ((fun x x_1 => x * x_1) (gcd s)) (replicate (↑card s) 1) ∧ gcd (replicate (↑card s) 1) = 1 [PROOFSTEP] simp only [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 h : ∀ (x : α), x ∈ s → x = 0 ⊢ s = map (fun x => gcd s * x) (replicate (↑card s) 1) ∧ gcd (replicate (↑card s) 1) = 1 [PROOFSTEP] rw [map_replicate, eq_replicate, mul_one, s.gcd_eq_zero_iff.2 h, ← nsmul_singleton, ← gcd_dedup, dedup_nsmul (card_pos.2 hs).ne', dedup_singleton, gcd_singleton] [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 h : ∀ (x : α), x ∈ s → x = 0 ⊢ (↑card s = ↑card s ∧ ∀ (b : α), b ∈ s → b = 0) ∧ ↑normalize 1 = 1 [PROOFSTEP] exact ⟨⟨rfl, h⟩, normalize_one⟩ [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 h : ¬∀ (x : α), x ∈ s → x = 0 ⊢ ∃ t, s = map ((fun x x_1 => x * x_1) (gcd s)) t ∧ gcd t = 1 [PROOFSTEP] choose f hf using @gcd_dvd _ _ _ s [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 h : ¬∀ (x : α), x ∈ s → x = 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h ⊢ ∃ t, s = map ((fun x x_1 => x * x_1) (gcd s)) t ∧ gcd t = 1 [PROOFSTEP] push_neg at h [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 ⊢ ∃ t, s = map ((fun x x_1 => x * x_1) (gcd s)) t ∧ gcd t = 1 [PROOFSTEP] refine' ⟨s.pmap @f fun _ ↦ id, _, extract_gcd' s _ h _⟩ [GOAL] case neg.refine'_1 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 ⊢ s = map ((fun x x_1 => x * x_1) (gcd s)) (pmap f s (_ : ∀ (x : α), x ∈ s → x ∈ s)) [PROOFSTEP] rw [map_pmap] [GOAL] case neg.refine'_1 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 ⊢ s = pmap (fun a h => (fun x x_1 => x * x_1) (gcd s) (f h)) s (_ : ∀ (x : α), x ∈ s → x ∈ s) [PROOFSTEP] conv_lhs => rw [← s.map_id, ← s.pmap_eq_map _ _ fun _ ↦ id] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 | s [PROOFSTEP] rw [← s.map_id, ← s.pmap_eq_map _ _ fun _ ↦ id] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 | s [PROOFSTEP] rw [← s.map_id, ← s.pmap_eq_map _ _ fun _ ↦ id] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 | s [PROOFSTEP] rw [← s.map_id, ← s.pmap_eq_map _ _ fun _ ↦ id] [GOAL] case neg.refine'_1 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 ⊢ pmap (fun a x => id a) s (_ : ∀ (x : α), x ∈ s → x ∈ s) = pmap (fun a h => (fun x x_1 => x * x_1) (gcd s) (f h)) s (_ : ∀ (x : α), x ∈ s → x ∈ s) [PROOFSTEP] congr with (x hx) [GOAL] case neg.refine'_1.e_f.h.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 x : α hx : x ∈ s ⊢ id x = (fun x x_1 => x * x_1) (gcd s) (f hx) [PROOFSTEP] simp only [GOAL] case neg.refine'_1.e_f.h.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 x : α hx : x ∈ s ⊢ id x = gcd s * f hx [PROOFSTEP] rw [id] [GOAL] case neg.refine'_1.e_f.h.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 x : α hx : x ∈ s ⊢ x = gcd s * f hx [PROOFSTEP] rw [← hf hx] [GOAL] case neg.refine'_2 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 ⊢ s = map ((fun x x_1 => x * x_1) (gcd s)) (pmap f s (_ : ∀ (x : α), x ∈ s → x ∈ s)) [PROOFSTEP] rw [map_pmap] [GOAL] case neg.refine'_2 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 ⊢ s = pmap (fun a h => (fun x x_1 => x * x_1) (gcd s) (f h)) s (_ : ∀ (x : α), x ∈ s → x ∈ s) [PROOFSTEP] conv_lhs => rw [← s.map_id, ← s.pmap_eq_map _ _ fun _ ↦ id] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 | s [PROOFSTEP] rw [← s.map_id, ← s.pmap_eq_map _ _ fun _ ↦ id] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 | s [PROOFSTEP] rw [← s.map_id, ← s.pmap_eq_map _ _ fun _ ↦ id] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 | s [PROOFSTEP] rw [← s.map_id, ← s.pmap_eq_map _ _ fun _ ↦ id] [GOAL] case neg.refine'_2 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 ⊢ pmap (fun a x => id a) s (_ : ∀ (x : α), x ∈ s → x ∈ s) = pmap (fun a h => (fun x x_1 => x * x_1) (gcd s) (f h)) s (_ : ∀ (x : α), x ∈ s → x ∈ s) [PROOFSTEP] congr with (x hx) [GOAL] case neg.refine'_2.e_f.h.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 x : α hx : x ∈ s ⊢ id x = (fun x x_1 => x * x_1) (gcd s) (f hx) [PROOFSTEP] simp only [GOAL] case neg.refine'_2.e_f.h.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 x : α hx : x ∈ s ⊢ id x = gcd s * f hx [PROOFSTEP] rw [id] [GOAL] case neg.refine'_2.e_f.h.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Multiset α hs : s ≠ 0 f : {a : α} → a ∈ s → α hf : ∀ {a : α} (h : a ∈ s), a = gcd s * f h h : ∃ x, x ∈ s ∧ x ≠ 0 x : α hx : x ∈ s ⊢ x = gcd s * f hx [PROOFSTEP] rw [← hf hx]
{"mathlib_filename": "Mathlib.Algebra.GCDMonoid.Multiset", "llama_tokens": 12328}
[GOAL] α : Type u_1 inst✝¹ : LinearOrderedSemiring α a : α inst✝ : Invertible a ⊢ 0 < a * ⅟a [PROOFSTEP] simp only [mul_invOf_self, zero_lt_one] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedSemiring α a : α inst✝ : Invertible a ⊢ ⅟a ≤ 0 ↔ a ≤ 0 [PROOFSTEP] simp only [← not_lt, invOf_pos] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedSemiring α a : α inst✝ : Invertible a ⊢ 0 < a * ⅟a [PROOFSTEP] simp only [mul_invOf_self, zero_lt_one] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedSemiring α a : α inst✝ : Invertible a ⊢ ⅟a < 0 ↔ a < 0 [PROOFSTEP] simp only [← not_le, invOf_nonneg]
{"mathlib_filename": "Mathlib.Algebra.Order.Invertible", "llama_tokens": 306}
[GOAL] R : Type u_1 A : Type u_2 inst✝ : InvolutiveStar R x : R ⊢ IsSelfAdjoint (star x) ↔ IsSelfAdjoint x [PROOFSTEP] simpa only [IsSelfAdjoint, star_star] using eq_comm [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semigroup R inst✝ : StarSemigroup R x : R ⊢ IsSelfAdjoint (star x * x) [PROOFSTEP] simp only [IsSelfAdjoint, star_mul, star_star] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semigroup R inst✝ : StarSemigroup R x : R ⊢ IsSelfAdjoint (x * star x) [PROOFSTEP] simpa only [star_star] using star_mul_self (star x) [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddMonoid R inst✝ : StarAddMonoid R x y : R hx : IsSelfAdjoint x hy : IsSelfAdjoint y ⊢ IsSelfAdjoint (x + y) [PROOFSTEP] simp only [isSelfAdjoint_iff, star_add, hx.star_eq, hy.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddMonoid R inst✝ : StarAddMonoid R x : R hx : IsSelfAdjoint x ⊢ IsSelfAdjoint (_root_.bit0 x) [PROOFSTEP] simp only [isSelfAdjoint_iff, star_bit0, hx.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddGroup R inst✝ : StarAddMonoid R x : R hx : IsSelfAdjoint x ⊢ IsSelfAdjoint (-x) [PROOFSTEP] simp only [isSelfAdjoint_iff, star_neg, hx.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddGroup R inst✝ : StarAddMonoid R x y : R hx : IsSelfAdjoint x hy : IsSelfAdjoint y ⊢ IsSelfAdjoint (x - y) [PROOFSTEP] simp only [isSelfAdjoint_iff, star_sub, hx.star_eq, hy.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddCommMonoid R inst✝ : StarAddMonoid R x : R ⊢ IsSelfAdjoint (x + star x) [PROOFSTEP] simp only [isSelfAdjoint_iff, add_comm, star_add, star_star] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddCommMonoid R inst✝ : StarAddMonoid R x : R ⊢ IsSelfAdjoint (star x + x) [PROOFSTEP] simp only [isSelfAdjoint_iff, add_comm, star_add, star_star] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semigroup R inst✝ : StarSemigroup R x : R hx : IsSelfAdjoint x z : R ⊢ IsSelfAdjoint (z * x * star z) [PROOFSTEP] simp only [isSelfAdjoint_iff, star_mul, star_star, mul_assoc, hx.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semigroup R inst✝ : StarSemigroup R x : R hx : IsSelfAdjoint x z : R ⊢ IsSelfAdjoint (star z * x * z) [PROOFSTEP] simp only [isSelfAdjoint_iff, star_mul, star_star, mul_assoc, hx.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semigroup R inst✝ : StarSemigroup R x : R hx : IsSelfAdjoint x ⊢ Commute (star x) x [PROOFSTEP] simp only [Commute, SemiconjBy, hx.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Monoid R inst✝ : StarSemigroup R x : R hx : IsSelfAdjoint x n : ℕ ⊢ IsSelfAdjoint (x ^ n) [PROOFSTEP] simp only [isSelfAdjoint_iff, star_pow, hx.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : StarRing R x : R hx : IsSelfAdjoint x ⊢ IsSelfAdjoint (_root_.bit1 x) [PROOFSTEP] simp only [isSelfAdjoint_iff, star_bit1, hx.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : CommSemigroup R inst✝ : StarSemigroup R x y : R hx : IsSelfAdjoint x hy : IsSelfAdjoint y ⊢ IsSelfAdjoint (x * y) [PROOFSTEP] simp only [isSelfAdjoint_iff, star_mul', hx.star_eq, hy.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : DivisionSemiring R inst✝ : StarRing R x : R hx : IsSelfAdjoint x ⊢ IsSelfAdjoint x⁻¹ [PROOFSTEP] simp only [isSelfAdjoint_iff, star_inv', hx.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : DivisionSemiring R inst✝ : StarRing R x : R hx : IsSelfAdjoint x n : ℤ ⊢ IsSelfAdjoint (x ^ n) [PROOFSTEP] simp only [isSelfAdjoint_iff, star_zpow₀, hx.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semifield R inst✝ : StarRing R x y : R hx : IsSelfAdjoint x hy : IsSelfAdjoint y ⊢ IsSelfAdjoint (x / y) [PROOFSTEP] simp only [isSelfAdjoint_iff, star_div', hx.star_eq, hy.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : Star R inst✝³ : AddMonoid A inst✝² : StarAddMonoid A inst✝¹ : SMul R A inst✝ : StarModule R A r : R hr : IsSelfAdjoint r x : A hx : IsSelfAdjoint x ⊢ IsSelfAdjoint (r • x) [PROOFSTEP] simp only [isSelfAdjoint_iff, star_smul, hr.star_eq, hx.star_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddCommGroup R inst✝ : StarAddMonoid R x y : R hx : star x = -x hy : star y = -y ⊢ star (x + y) = -(x + y) [PROOFSTEP] rw [star_add x y, hx, hy, neg_add] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddCommGroup R inst✝ : StarAddMonoid R ⊢ star 0 = -0 [PROOFSTEP] simp only [star_zero, neg_zero] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddCommGroup R inst✝ : StarAddMonoid R x : R hx : star x = -x ⊢ star (-x) = - -x [PROOFSTEP] simp only [hx, star_neg] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddGroup R inst✝ : StarAddMonoid R x : R ⊢ x ∈ selfAdjoint R ↔ star x = x [PROOFSTEP] rw [← AddSubgroup.mem_carrier] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddGroup R inst✝ : StarAddMonoid R x : R ⊢ x ∈ (selfAdjoint R).toAddSubmonoid.toAddSubsemigroup.carrier ↔ star x = x [PROOFSTEP] exact Iff.rfl [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Field R inst✝ : StarRing R a : ℚ x : { x // x ∈ selfAdjoint R } ⊢ a • ↑x ∈ selfAdjoint R [PROOFSTEP] rw [Rat.smul_def] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Field R inst✝ : StarRing R a : ℚ x : { x // x ∈ selfAdjoint R } ⊢ ↑a * ↑x ∈ selfAdjoint R [PROOFSTEP] exact IsSelfAdjoint.mul (isSelfAdjoint_ratCast a) x.prop [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddCommGroup R inst✝ : StarAddMonoid R x : R ⊢ x ∈ skewAdjoint R ↔ star x = -x [PROOFSTEP] rw [← AddSubgroup.mem_carrier] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddCommGroup R inst✝ : StarAddMonoid R x : R ⊢ x ∈ (skewAdjoint R).toAddSubmonoid.toAddSubsemigroup.carrier ↔ star x = -x [PROOFSTEP] exact Iff.rfl [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : AddCommGroup R inst✝ : StarAddMonoid R x : R hx : x ∈ skewAdjoint R ⊢ bit0 x ∈ skewAdjoint R [PROOFSTEP] rw [mem_iff, star_bit0, mem_iff.mp hx, bit0, bit0, neg_add] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Ring R inst✝ : StarRing R x : R hx : x ∈ skewAdjoint R z : R ⊢ z * x * star z ∈ skewAdjoint R [PROOFSTEP] simp only [mem_iff, star_mul, star_star, mem_iff.mp hx, neg_mul, mul_neg, mul_assoc] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Ring R inst✝ : StarRing R x : R hx : x ∈ skewAdjoint R z : R ⊢ star z * x * z ∈ skewAdjoint R [PROOFSTEP] simp only [mem_iff, star_mul, star_star, mem_iff.mp hx, neg_mul, mul_neg, mul_assoc] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Ring R inst✝ : StarRing R x : R hx : x ∈ skewAdjoint R ⊢ Commute (star x) x [PROOFSTEP] simp only [mem_iff] at hx [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Ring R inst✝ : StarRing R x : R hx : star x = -x ⊢ Commute (star x) x [PROOFSTEP] simp only [hx, Commute.neg_left, Commute.refl] [GOAL] R : Type u_1 A : Type u_2 inst✝⁶ : Star R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : StarAddMonoid A inst✝² : Monoid R inst✝¹ : DistribMulAction R A inst✝ : StarModule R A r : R x : A h : x ∈ skewAdjoint A ⊢ r • x ∈ skewAdjoint A [PROOFSTEP] rw [mem_iff, star_smul, star_trivial, mem_iff.mp h, smul_neg r] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Semiring R inst✝ : StarRing R ⊢ Commute (star 0) 0 [PROOFSTEP] simp only [Commute.refl, star_comm_self, star_zero] [GOAL] R : Type u_1 A : Type u_2 inst✝¹ : Monoid R inst✝ : StarSemigroup R ⊢ Commute (star 1) 1 [PROOFSTEP] simp only [Commute.refl, star_comm_self, star_one] [GOAL] R : Type u_1 A : Type u_2 inst✝² : Monoid R inst✝¹ : StarSemigroup R x : R inst✝ : IsStarNormal x ⊢ star (star x) * star x = star x * star (star x) [PROOFSTEP] rw [star_star, star_comm_self'] [GOAL] R : Type u_1 A : Type u_2 inst✝² : Monoid R inst✝¹ : StarSemigroup R inst✝ : TrivialStar R x : R ⊢ Commute (star x) x [PROOFSTEP] rw [star_trivial]
{"mathlib_filename": "Mathlib.Algebra.Star.SelfAdjoint", "llama_tokens": 3683}
[GOAL] R : Type u_1 A : Type u_2 a✝ b✝ : A r : R inst✝³ : OrderedCommRing R inst✝² : OrderedRing A inst✝¹ : Algebra R A inst✝ : OrderedSMul R A a b : R h : a ≤ b ⊢ ↑(algebraMap R A) a ≤ ↑(algebraMap R A) b [PROOFSTEP] rw [Algebra.algebraMap_eq_smul_one, Algebra.algebraMap_eq_smul_one, ← sub_nonneg, ← sub_smul] [GOAL] R : Type u_1 A : Type u_2 a✝ b✝ : A r : R inst✝³ : OrderedCommRing R inst✝² : OrderedRing A inst✝¹ : Algebra R A inst✝ : OrderedSMul R A a b : R h : a ≤ b ⊢ 0 ≤ (b - a) • 1 [PROOFSTEP] trans (b - a) • (0 : A) [GOAL] R : Type u_1 A : Type u_2 a✝ b✝ : A r : R inst✝³ : OrderedCommRing R inst✝² : OrderedRing A inst✝¹ : Algebra R A inst✝ : OrderedSMul R A a b : R h : a ≤ b ⊢ 0 ≤ (b - a) • 0 [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 a✝ b✝ : A r : R inst✝³ : OrderedCommRing R inst✝² : OrderedRing A inst✝¹ : Algebra R A inst✝ : OrderedSMul R A a b : R h : a ≤ b ⊢ (b - a) • 0 ≤ (b - a) • 1 [PROOFSTEP] exact smul_le_smul_of_nonneg zero_le_one (sub_nonneg.mpr h)
{"mathlib_filename": "Mathlib.Algebra.Order.Algebra", "llama_tokens": 565}
[GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b c : R h : Rel r b c ⊢ Rel r (a + b) (a + c) [PROOFSTEP] rw [add_comm a b, add_comm a c] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b c : R h : Rel r b c ⊢ Rel r (b + a) (c + a) [PROOFSTEP] exact Rel.add_left h [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A R : Type uR inst✝ : Ring R r : R → R → Prop a b : R h : Rel r a b ⊢ Rel r (-a) (-b) [PROOFSTEP] simp only [neg_eq_neg_one_mul a, neg_eq_neg_one_mul b, Rel.mul_right h] [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A R : Type uR inst✝ : Ring R r : R → R → Prop a b c : R h : Rel r a b ⊢ Rel r (a - c) (b - c) [PROOFSTEP] simp only [sub_eq_add_neg, h.add_left] [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A R : Type uR inst✝ : Ring R r : R → R → Prop a b c : R h : Rel r b c ⊢ Rel r (a - b) (a - c) [PROOFSTEP] simp only [sub_eq_add_neg, h.neg.add_right] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : A → A → Prop k : S a b : A h : Rel r a b ⊢ Rel r (k • a) (k • b) [PROOFSTEP] simp only [Algebra.smul_def, Rel.mul_right h] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b c d : R hab : Setoid.r a b hcd : Setoid.r c d ⊢ Setoid.r (a + c) (b + d) [PROOFSTEP] induction hab generalizing c d with | rel _ _ hab => refine' (EqvGen.rel _ _ hab.add_left).trans _ _ _ _ induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' | refl => induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' | symm x y _ hxy => exact (hxy hcd.symm).symm | trans x y z _ _ h h' => exact (h hcd).trans _ _ _ (h' <| EqvGen.refl _) [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b c d : R hab : Setoid.r a b hcd : Setoid.r c d ⊢ Setoid.r (a + c) (b + d) [PROOFSTEP] induction hab generalizing c d with | rel _ _ hab => refine' (EqvGen.rel _ _ hab.add_left).trans _ _ _ _ induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' | refl => induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' | symm x y _ hxy => exact (hxy hcd.symm).symm | trans x y z _ _ h h' => exact (h hcd).trans _ _ _ (h' <| EqvGen.refl _) [GOAL] case rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ y✝ : R hab : Rel r x✝ y✝ c d : R hcd : Setoid.r c d ⊢ Setoid.r (x✝ + c) (y✝ + d) [PROOFSTEP] | rel _ _ hab => refine' (EqvGen.rel _ _ hab.add_left).trans _ _ _ _ induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ y✝ : R hab : Rel r x✝ y✝ c d : R hcd : Setoid.r c d ⊢ Setoid.r (x✝ + c) (y✝ + d) [PROOFSTEP] refine' (EqvGen.rel _ _ hab.add_left).trans _ _ _ _ [GOAL] case rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ y✝ : R hab : Rel r x✝ y✝ c d : R hcd : Setoid.r c d ⊢ EqvGen (Rel r) (y✝ + c) (y✝ + d) [PROOFSTEP] induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ y✝ : R hab : Rel r x✝ y✝ c d : R hcd : Setoid.r c d ⊢ EqvGen (Rel r) (y✝ + c) (y✝ + d) [PROOFSTEP] induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case rel.rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝¹ : R hab : Rel r x✝¹ y✝¹ c d x✝ y✝ : R hcd : Rel r x✝ y✝ ⊢ EqvGen (Rel r) (y✝¹ + x✝) (y✝¹ + y✝) [PROOFSTEP] | rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right [GOAL] case rel.rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝¹ : R hab : Rel r x✝¹ y✝¹ c d x✝ y✝ : R hcd : Rel r x✝ y✝ ⊢ EqvGen (Rel r) (y✝¹ + x✝) (y✝¹ + y✝) [PROOFSTEP] exact EqvGen.rel _ _ hcd.add_right [GOAL] case rel.refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝ : R hab : Rel r x✝¹ y✝ c d x✝ : R ⊢ EqvGen (Rel r) (y✝ + x✝) (y✝ + x✝) [PROOFSTEP] | refl => exact EqvGen.refl _ [GOAL] case rel.refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝ : R hab : Rel r x✝¹ y✝ c d x✝ : R ⊢ EqvGen (Rel r) (y✝ + x✝) (y✝ + x✝) [PROOFSTEP] exact EqvGen.refl _ [GOAL] case rel.symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝¹ : R hab : Rel r x✝¹ y✝¹ c d x✝ y✝ : R a✝ : EqvGen (Rel r) x✝ y✝ h : EqvGen (Rel r) (y✝¹ + x✝) (y✝¹ + y✝) ⊢ EqvGen (Rel r) (y✝¹ + y✝) (y✝¹ + x✝) [PROOFSTEP] | symm _ _ _ h => exact h.symm _ _ [GOAL] case rel.symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝¹ : R hab : Rel r x✝¹ y✝¹ c d x✝ y✝ : R a✝ : EqvGen (Rel r) x✝ y✝ h : EqvGen (Rel r) (y✝¹ + x✝) (y✝¹ + y✝) ⊢ EqvGen (Rel r) (y✝¹ + y✝) (y✝¹ + x✝) [PROOFSTEP] exact h.symm _ _ [GOAL] case rel.trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝¹ : R hab : Rel r x✝¹ y✝¹ c d x✝ y✝ z✝ : R a✝¹ : EqvGen (Rel r) x✝ y✝ a✝ : EqvGen (Rel r) y✝ z✝ h : EqvGen (Rel r) (y✝¹ + x✝) (y✝¹ + y✝) h' : EqvGen (Rel r) (y✝¹ + y✝) (y✝¹ + z✝) ⊢ EqvGen (Rel r) (y✝¹ + x✝) (y✝¹ + z✝) [PROOFSTEP] | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case rel.trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝¹ : R hab : Rel r x✝¹ y✝¹ c d x✝ y✝ z✝ : R a✝¹ : EqvGen (Rel r) x✝ y✝ a✝ : EqvGen (Rel r) y✝ z✝ h : EqvGen (Rel r) (y✝¹ + x✝) (y✝¹ + y✝) h' : EqvGen (Rel r) (y✝¹ + y✝) (y✝¹ + z✝) ⊢ EqvGen (Rel r) (y✝¹ + x✝) (y✝¹ + z✝) [PROOFSTEP] exact h.trans _ _ _ h' [GOAL] case refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ c d : R hcd : Setoid.r c d ⊢ Setoid.r (x✝ + c) (x✝ + d) [PROOFSTEP] | refl => induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ c d : R hcd : Setoid.r c d ⊢ Setoid.r (x✝ + c) (x✝ + d) [PROOFSTEP] induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ c d : R hcd : Setoid.r c d ⊢ Setoid.r (x✝ + c) (x✝ + d) [PROOFSTEP] induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case refl.rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ y✝ : R hcd : Rel r x✝ y✝ ⊢ Setoid.r (x✝¹ + x✝) (x✝¹ + y✝) [PROOFSTEP] | rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right [GOAL] case refl.rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ y✝ : R hcd : Rel r x✝ y✝ ⊢ Setoid.r (x✝¹ + x✝) (x✝¹ + y✝) [PROOFSTEP] exact EqvGen.rel _ _ hcd.add_right [GOAL] case refl.refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ : R ⊢ Setoid.r (x✝¹ + x✝) (x✝¹ + x✝) [PROOFSTEP] | refl => exact EqvGen.refl _ [GOAL] case refl.refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ : R ⊢ Setoid.r (x✝¹ + x✝) (x✝¹ + x✝) [PROOFSTEP] exact EqvGen.refl _ [GOAL] case refl.symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ y✝ : R a✝ : EqvGen (Rel r) x✝ y✝ h : Setoid.r (x✝¹ + x✝) (x✝¹ + y✝) ⊢ Setoid.r (x✝¹ + y✝) (x✝¹ + x✝) [PROOFSTEP] | symm _ _ _ h => exact h.symm _ _ [GOAL] case refl.symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ y✝ : R a✝ : EqvGen (Rel r) x✝ y✝ h : Setoid.r (x✝¹ + x✝) (x✝¹ + y✝) ⊢ Setoid.r (x✝¹ + y✝) (x✝¹ + x✝) [PROOFSTEP] exact h.symm _ _ [GOAL] case refl.trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ y✝ z✝ : R a✝¹ : EqvGen (Rel r) x✝ y✝ a✝ : EqvGen (Rel r) y✝ z✝ h : Setoid.r (x✝¹ + x✝) (x✝¹ + y✝) h' : Setoid.r (x✝¹ + y✝) (x✝¹ + z✝) ⊢ Setoid.r (x✝¹ + x✝) (x✝¹ + z✝) [PROOFSTEP] | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case refl.trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ y✝ z✝ : R a✝¹ : EqvGen (Rel r) x✝ y✝ a✝ : EqvGen (Rel r) y✝ z✝ h : Setoid.r (x✝¹ + x✝) (x✝¹ + y✝) h' : Setoid.r (x✝¹ + y✝) (x✝¹ + z✝) ⊢ Setoid.r (x✝¹ + x✝) (x✝¹ + z✝) [PROOFSTEP] exact h.trans _ _ _ h' [GOAL] case symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x y : R a✝ : EqvGen (Rel r) x y hxy : ∀ {c d : R}, Setoid.r c d → Setoid.r (x + c) (y + d) c d : R hcd : Setoid.r c d ⊢ Setoid.r (y + c) (x + d) [PROOFSTEP] | symm x y _ hxy => exact (hxy hcd.symm).symm [GOAL] case symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x y : R a✝ : EqvGen (Rel r) x y hxy : ∀ {c d : R}, Setoid.r c d → Setoid.r (x + c) (y + d) c d : R hcd : Setoid.r c d ⊢ Setoid.r (y + c) (x + d) [PROOFSTEP] exact (hxy hcd.symm).symm [GOAL] case trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x y z : R a✝¹ : EqvGen (Rel r) x y a✝ : EqvGen (Rel r) y z h : ∀ {c d : R}, Setoid.r c d → Setoid.r (x + c) (y + d) h' : ∀ {c d : R}, Setoid.r c d → Setoid.r (y + c) (z + d) c d : R hcd : Setoid.r c d ⊢ Setoid.r (x + c) (z + d) [PROOFSTEP] | trans x y z _ _ h h' => exact (h hcd).trans _ _ _ (h' <| EqvGen.refl _) [GOAL] case trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x y z : R a✝¹ : EqvGen (Rel r) x y a✝ : EqvGen (Rel r) y z h : ∀ {c d : R}, Setoid.r c d → Setoid.r (x + c) (y + d) h' : ∀ {c d : R}, Setoid.r c d → Setoid.r (y + c) (z + d) c d : R hcd : Setoid.r c d ⊢ Setoid.r (x + c) (z + d) [PROOFSTEP] exact (h hcd).trans _ _ _ (h' <| EqvGen.refl _) [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b c d : R hab : Setoid.r a b hcd : Setoid.r c d ⊢ Setoid.r (a * c) (b * d) [PROOFSTEP] induction hab generalizing c d with | rel _ _ hab => refine' (EqvGen.rel _ _ hab.mul_left).trans _ _ _ _ induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' | refl => induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' | symm x y _ hxy => exact (hxy hcd.symm).symm | trans x y z _ _ h h' => exact (h hcd).trans _ _ _ (h' <| EqvGen.refl _) [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b c d : R hab : Setoid.r a b hcd : Setoid.r c d ⊢ Setoid.r (a * c) (b * d) [PROOFSTEP] induction hab generalizing c d with | rel _ _ hab => refine' (EqvGen.rel _ _ hab.mul_left).trans _ _ _ _ induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' | refl => induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' | symm x y _ hxy => exact (hxy hcd.symm).symm | trans x y z _ _ h h' => exact (h hcd).trans _ _ _ (h' <| EqvGen.refl _) [GOAL] case rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ y✝ : R hab : Rel r x✝ y✝ c d : R hcd : Setoid.r c d ⊢ Setoid.r (x✝ * c) (y✝ * d) [PROOFSTEP] | rel _ _ hab => refine' (EqvGen.rel _ _ hab.mul_left).trans _ _ _ _ induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ y✝ : R hab : Rel r x✝ y✝ c d : R hcd : Setoid.r c d ⊢ Setoid.r (x✝ * c) (y✝ * d) [PROOFSTEP] refine' (EqvGen.rel _ _ hab.mul_left).trans _ _ _ _ [GOAL] case rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ y✝ : R hab : Rel r x✝ y✝ c d : R hcd : Setoid.r c d ⊢ EqvGen (Rel r) (y✝ * c) (y✝ * d) [PROOFSTEP] induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ y✝ : R hab : Rel r x✝ y✝ c d : R hcd : Setoid.r c d ⊢ EqvGen (Rel r) (y✝ * c) (y✝ * d) [PROOFSTEP] induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case rel.rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝¹ : R hab : Rel r x✝¹ y✝¹ c d x✝ y✝ : R hcd : Rel r x✝ y✝ ⊢ EqvGen (Rel r) (y✝¹ * x✝) (y✝¹ * y✝) [PROOFSTEP] | rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right [GOAL] case rel.rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝¹ : R hab : Rel r x✝¹ y✝¹ c d x✝ y✝ : R hcd : Rel r x✝ y✝ ⊢ EqvGen (Rel r) (y✝¹ * x✝) (y✝¹ * y✝) [PROOFSTEP] exact EqvGen.rel _ _ hcd.mul_right [GOAL] case rel.refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝ : R hab : Rel r x✝¹ y✝ c d x✝ : R ⊢ EqvGen (Rel r) (y✝ * x✝) (y✝ * x✝) [PROOFSTEP] | refl => exact EqvGen.refl _ [GOAL] case rel.refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝ : R hab : Rel r x✝¹ y✝ c d x✝ : R ⊢ EqvGen (Rel r) (y✝ * x✝) (y✝ * x✝) [PROOFSTEP] exact EqvGen.refl _ [GOAL] case rel.symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝¹ : R hab : Rel r x✝¹ y✝¹ c d x✝ y✝ : R a✝ : EqvGen (Rel r) x✝ y✝ h : EqvGen (Rel r) (y✝¹ * x✝) (y✝¹ * y✝) ⊢ EqvGen (Rel r) (y✝¹ * y✝) (y✝¹ * x✝) [PROOFSTEP] | symm _ _ _ h => exact h.symm _ _ [GOAL] case rel.symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝¹ : R hab : Rel r x✝¹ y✝¹ c d x✝ y✝ : R a✝ : EqvGen (Rel r) x✝ y✝ h : EqvGen (Rel r) (y✝¹ * x✝) (y✝¹ * y✝) ⊢ EqvGen (Rel r) (y✝¹ * y✝) (y✝¹ * x✝) [PROOFSTEP] exact h.symm _ _ [GOAL] case rel.trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝¹ : R hab : Rel r x✝¹ y✝¹ c d x✝ y✝ z✝ : R a✝¹ : EqvGen (Rel r) x✝ y✝ a✝ : EqvGen (Rel r) y✝ z✝ h : EqvGen (Rel r) (y✝¹ * x✝) (y✝¹ * y✝) h' : EqvGen (Rel r) (y✝¹ * y✝) (y✝¹ * z✝) ⊢ EqvGen (Rel r) (y✝¹ * x✝) (y✝¹ * z✝) [PROOFSTEP] | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case rel.trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ y✝¹ : R hab : Rel r x✝¹ y✝¹ c d x✝ y✝ z✝ : R a✝¹ : EqvGen (Rel r) x✝ y✝ a✝ : EqvGen (Rel r) y✝ z✝ h : EqvGen (Rel r) (y✝¹ * x✝) (y✝¹ * y✝) h' : EqvGen (Rel r) (y✝¹ * y✝) (y✝¹ * z✝) ⊢ EqvGen (Rel r) (y✝¹ * x✝) (y✝¹ * z✝) [PROOFSTEP] exact h.trans _ _ _ h' [GOAL] case refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ c d : R hcd : Setoid.r c d ⊢ Setoid.r (x✝ * c) (x✝ * d) [PROOFSTEP] | refl => induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ c d : R hcd : Setoid.r c d ⊢ Setoid.r (x✝ * c) (x✝ * d) [PROOFSTEP] induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝ c d : R hcd : Setoid.r c d ⊢ Setoid.r (x✝ * c) (x✝ * d) [PROOFSTEP] induction hcd with | rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right | refl => exact EqvGen.refl _ | symm _ _ _ h => exact h.symm _ _ | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case refl.rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ y✝ : R hcd : Rel r x✝ y✝ ⊢ Setoid.r (x✝¹ * x✝) (x✝¹ * y✝) [PROOFSTEP] | rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right [GOAL] case refl.rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ y✝ : R hcd : Rel r x✝ y✝ ⊢ Setoid.r (x✝¹ * x✝) (x✝¹ * y✝) [PROOFSTEP] exact EqvGen.rel _ _ hcd.mul_right [GOAL] case refl.refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ : R ⊢ Setoid.r (x✝¹ * x✝) (x✝¹ * x✝) [PROOFSTEP] | refl => exact EqvGen.refl _ [GOAL] case refl.refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ : R ⊢ Setoid.r (x✝¹ * x✝) (x✝¹ * x✝) [PROOFSTEP] exact EqvGen.refl _ [GOAL] case refl.symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ y✝ : R a✝ : EqvGen (Rel r) x✝ y✝ h : Setoid.r (x✝¹ * x✝) (x✝¹ * y✝) ⊢ Setoid.r (x✝¹ * y✝) (x✝¹ * x✝) [PROOFSTEP] | symm _ _ _ h => exact h.symm _ _ [GOAL] case refl.symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ y✝ : R a✝ : EqvGen (Rel r) x✝ y✝ h : Setoid.r (x✝¹ * x✝) (x✝¹ * y✝) ⊢ Setoid.r (x✝¹ * y✝) (x✝¹ * x✝) [PROOFSTEP] exact h.symm _ _ [GOAL] case refl.trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ y✝ z✝ : R a✝¹ : EqvGen (Rel r) x✝ y✝ a✝ : EqvGen (Rel r) y✝ z✝ h : Setoid.r (x✝¹ * x✝) (x✝¹ * y✝) h' : Setoid.r (x✝¹ * y✝) (x✝¹ * z✝) ⊢ Setoid.r (x✝¹ * x✝) (x✝¹ * z✝) [PROOFSTEP] | trans _ _ _ _ _ h h' => exact h.trans _ _ _ h' [GOAL] case refl.trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x✝¹ c d x✝ y✝ z✝ : R a✝¹ : EqvGen (Rel r) x✝ y✝ a✝ : EqvGen (Rel r) y✝ z✝ h : Setoid.r (x✝¹ * x✝) (x✝¹ * y✝) h' : Setoid.r (x✝¹ * y✝) (x✝¹ * z✝) ⊢ Setoid.r (x✝¹ * x✝) (x✝¹ * z✝) [PROOFSTEP] exact h.trans _ _ _ h' [GOAL] case symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x y : R a✝ : EqvGen (Rel r) x y hxy : ∀ {c d : R}, Setoid.r c d → Setoid.r (x * c) (y * d) c d : R hcd : Setoid.r c d ⊢ Setoid.r (y * c) (x * d) [PROOFSTEP] | symm x y _ hxy => exact (hxy hcd.symm).symm [GOAL] case symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x y : R a✝ : EqvGen (Rel r) x y hxy : ∀ {c d : R}, Setoid.r c d → Setoid.r (x * c) (y * d) c d : R hcd : Setoid.r c d ⊢ Setoid.r (y * c) (x * d) [PROOFSTEP] exact (hxy hcd.symm).symm [GOAL] case trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x y z : R a✝¹ : EqvGen (Rel r) x y a✝ : EqvGen (Rel r) y z h : ∀ {c d : R}, Setoid.r c d → Setoid.r (x * c) (y * d) h' : ∀ {c d : R}, Setoid.r c d → Setoid.r (y * c) (z * d) c d : R hcd : Setoid.r c d ⊢ Setoid.r (x * c) (z * d) [PROOFSTEP] | trans x y z _ _ h h' => exact (h hcd).trans _ _ _ (h' <| EqvGen.refl _) [GOAL] case trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b x y z : R a✝¹ : EqvGen (Rel r) x y a✝ : EqvGen (Rel r) y z h : ∀ {c d : R}, Setoid.r c d → Setoid.r (x * c) (y * d) h' : ∀ {c d : R}, Setoid.r c d → Setoid.r (y * c) (z * d) c d : R hcd : Setoid.r c d ⊢ Setoid.r (x * c) (z * d) [PROOFSTEP] exact (h hcd).trans _ _ _ (h' <| EqvGen.refl _) [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop ⊢ EqvGen (Rel r) = RingConGen.Rel r [PROOFSTEP] ext x₁ x₂ [GOAL] case h.h.a R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ : R ⊢ EqvGen (Rel r) x₁ x₂ ↔ RingConGen.Rel r x₁ x₂ [PROOFSTEP] constructor [GOAL] case h.h.a.mp R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ : R ⊢ EqvGen (Rel r) x₁ x₂ → RingConGen.Rel r x₁ x₂ [PROOFSTEP] intro h [GOAL] case h.h.a.mp R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ : R h : EqvGen (Rel r) x₁ x₂ ⊢ RingConGen.Rel r x₁ x₂ [PROOFSTEP] induction h with | rel _ _ h => induction h with | of => exact RingConGen.Rel.of _ _ ‹_› | add_left _ h => exact h.add (RingConGen.Rel.refl _) | mul_left _ h => exact h.mul (RingConGen.Rel.refl _) | mul_right _ h => exact (RingConGen.Rel.refl _).mul h | refl => exact RingConGen.Rel.refl _ | symm => exact RingConGen.Rel.symm ‹_› | trans => exact RingConGen.Rel.trans ‹_› ‹_› [GOAL] case h.h.a.mp R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ : R h : EqvGen (Rel r) x₁ x₂ ⊢ RingConGen.Rel r x₁ x₂ [PROOFSTEP] induction h with | rel _ _ h => induction h with | of => exact RingConGen.Rel.of _ _ ‹_› | add_left _ h => exact h.add (RingConGen.Rel.refl _) | mul_left _ h => exact h.mul (RingConGen.Rel.refl _) | mul_right _ h => exact (RingConGen.Rel.refl _).mul h | refl => exact RingConGen.Rel.refl _ | symm => exact RingConGen.Rel.symm ‹_› | trans => exact RingConGen.Rel.trans ‹_› ‹_› [GOAL] case h.h.a.mp.rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ : R h : Rel r x✝ y✝ ⊢ RingConGen.Rel r x✝ y✝ [PROOFSTEP] | rel _ _ h => induction h with | of => exact RingConGen.Rel.of _ _ ‹_› | add_left _ h => exact h.add (RingConGen.Rel.refl _) | mul_left _ h => exact h.mul (RingConGen.Rel.refl _) | mul_right _ h => exact (RingConGen.Rel.refl _).mul h [GOAL] case h.h.a.mp.rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ : R h : Rel r x✝ y✝ ⊢ RingConGen.Rel r x✝ y✝ [PROOFSTEP] induction h with | of => exact RingConGen.Rel.of _ _ ‹_› | add_left _ h => exact h.add (RingConGen.Rel.refl _) | mul_left _ h => exact h.mul (RingConGen.Rel.refl _) | mul_right _ h => exact (RingConGen.Rel.refl _).mul h [GOAL] case h.h.a.mp.rel R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ : R h : Rel r x✝ y✝ ⊢ RingConGen.Rel r x✝ y✝ [PROOFSTEP] induction h with | of => exact RingConGen.Rel.of _ _ ‹_› | add_left _ h => exact h.add (RingConGen.Rel.refl _) | mul_left _ h => exact h.mul (RingConGen.Rel.refl _) | mul_right _ h => exact (RingConGen.Rel.refl _).mul h [GOAL] case h.h.a.mp.rel.of R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝¹ y✝¹ x✝ y✝ : R h✝ : r x✝ y✝ ⊢ RingConGen.Rel r x✝ y✝ [PROOFSTEP] | of => exact RingConGen.Rel.of _ _ ‹_› [GOAL] case h.h.a.mp.rel.of R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝¹ y✝¹ x✝ y✝ : R h✝ : r x✝ y✝ ⊢ RingConGen.Rel r x✝ y✝ [PROOFSTEP] exact RingConGen.Rel.of _ _ ‹_› [GOAL] case h.h.a.mp.rel.add_left R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ h : RingConGen.Rel r a✝¹ b✝ ⊢ RingConGen.Rel r (a✝¹ + c✝) (b✝ + c✝) [PROOFSTEP] | add_left _ h => exact h.add (RingConGen.Rel.refl _) [GOAL] case h.h.a.mp.rel.add_left R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ h : RingConGen.Rel r a✝¹ b✝ ⊢ RingConGen.Rel r (a✝¹ + c✝) (b✝ + c✝) [PROOFSTEP] exact h.add (RingConGen.Rel.refl _) [GOAL] case h.h.a.mp.rel.mul_left R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ h : RingConGen.Rel r a✝¹ b✝ ⊢ RingConGen.Rel r (a✝¹ * c✝) (b✝ * c✝) [PROOFSTEP] | mul_left _ h => exact h.mul (RingConGen.Rel.refl _) [GOAL] case h.h.a.mp.rel.mul_left R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ h : RingConGen.Rel r a✝¹ b✝ ⊢ RingConGen.Rel r (a✝¹ * c✝) (b✝ * c✝) [PROOFSTEP] exact h.mul (RingConGen.Rel.refl _) [GOAL] case h.h.a.mp.rel.mul_right R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ a✝¹ b✝ c✝ : R a✝ : Rel r b✝ c✝ h : RingConGen.Rel r b✝ c✝ ⊢ RingConGen.Rel r (a✝¹ * b✝) (a✝¹ * c✝) [PROOFSTEP] | mul_right _ h => exact (RingConGen.Rel.refl _).mul h [GOAL] case h.h.a.mp.rel.mul_right R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ a✝¹ b✝ c✝ : R a✝ : Rel r b✝ c✝ h : RingConGen.Rel r b✝ c✝ ⊢ RingConGen.Rel r (a✝¹ * b✝) (a✝¹ * c✝) [PROOFSTEP] exact (RingConGen.Rel.refl _).mul h [GOAL] case h.h.a.mp.refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ : R ⊢ RingConGen.Rel r x✝ x✝ [PROOFSTEP] | refl => exact RingConGen.Rel.refl _ [GOAL] case h.h.a.mp.refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ : R ⊢ RingConGen.Rel r x✝ x✝ [PROOFSTEP] exact RingConGen.Rel.refl _ [GOAL] case h.h.a.mp.symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ : R a✝ : EqvGen (Rel r) x✝ y✝ a_ih✝ : RingConGen.Rel r x✝ y✝ ⊢ RingConGen.Rel r y✝ x✝ [PROOFSTEP] | symm => exact RingConGen.Rel.symm ‹_› [GOAL] case h.h.a.mp.symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ : R a✝ : EqvGen (Rel r) x✝ y✝ a_ih✝ : RingConGen.Rel r x✝ y✝ ⊢ RingConGen.Rel r y✝ x✝ [PROOFSTEP] exact RingConGen.Rel.symm ‹_› [GOAL] case h.h.a.mp.trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ z✝ : R a✝¹ : EqvGen (Rel r) x✝ y✝ a✝ : EqvGen (Rel r) y✝ z✝ a_ih✝¹ : RingConGen.Rel r x✝ y✝ a_ih✝ : RingConGen.Rel r y✝ z✝ ⊢ RingConGen.Rel r x✝ z✝ [PROOFSTEP] | trans => exact RingConGen.Rel.trans ‹_› ‹_› [GOAL] case h.h.a.mp.trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ z✝ : R a✝¹ : EqvGen (Rel r) x✝ y✝ a✝ : EqvGen (Rel r) y✝ z✝ a_ih✝¹ : RingConGen.Rel r x✝ y✝ a_ih✝ : RingConGen.Rel r y✝ z✝ ⊢ RingConGen.Rel r x✝ z✝ [PROOFSTEP] exact RingConGen.Rel.trans ‹_› ‹_› [GOAL] case h.h.a.mpr R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ : R ⊢ RingConGen.Rel r x₁ x₂ → EqvGen (Rel r) x₁ x₂ [PROOFSTEP] intro h [GOAL] case h.h.a.mpr R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ : R h : RingConGen.Rel r x₁ x₂ ⊢ EqvGen (Rel r) x₁ x₂ [PROOFSTEP] induction h with | of => exact EqvGen.rel _ _ (Rel.of ‹_›) | refl => exact (RingQuot.ringCon r).refl _ | symm => exact (RingQuot.ringCon r).symm ‹_› | trans => exact (RingQuot.ringCon r).trans ‹_› ‹_› | add => exact (RingQuot.ringCon r).add ‹_› ‹_› | mul => exact (RingQuot.ringCon r).mul ‹_› ‹_› [GOAL] case h.h.a.mpr R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ : R h : RingConGen.Rel r x₁ x₂ ⊢ EqvGen (Rel r) x₁ x₂ [PROOFSTEP] induction h with | of => exact EqvGen.rel _ _ (Rel.of ‹_›) | refl => exact (RingQuot.ringCon r).refl _ | symm => exact (RingQuot.ringCon r).symm ‹_› | trans => exact (RingQuot.ringCon r).trans ‹_› ‹_› | add => exact (RingQuot.ringCon r).add ‹_› ‹_› | mul => exact (RingQuot.ringCon r).mul ‹_› ‹_› [GOAL] case h.h.a.mpr.of R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ : R a✝ : r x✝ y✝ ⊢ EqvGen (Rel r) x✝ y✝ [PROOFSTEP] | of => exact EqvGen.rel _ _ (Rel.of ‹_›) [GOAL] case h.h.a.mpr.of R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ : R a✝ : r x✝ y✝ ⊢ EqvGen (Rel r) x✝ y✝ [PROOFSTEP] exact EqvGen.rel _ _ (Rel.of ‹_›) [GOAL] case h.h.a.mpr.refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ : R ⊢ EqvGen (Rel r) x✝ x✝ [PROOFSTEP] | refl => exact (RingQuot.ringCon r).refl _ [GOAL] case h.h.a.mpr.refl R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ : R ⊢ EqvGen (Rel r) x✝ x✝ [PROOFSTEP] exact (RingQuot.ringCon r).refl _ [GOAL] case h.h.a.mpr.symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ : R a✝ : RingConGen.Rel r x✝ y✝ a_ih✝ : EqvGen (Rel r) x✝ y✝ ⊢ EqvGen (Rel r) y✝ x✝ [PROOFSTEP] | symm => exact (RingQuot.ringCon r).symm ‹_› [GOAL] case h.h.a.mpr.symm R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ : R a✝ : RingConGen.Rel r x✝ y✝ a_ih✝ : EqvGen (Rel r) x✝ y✝ ⊢ EqvGen (Rel r) y✝ x✝ [PROOFSTEP] exact (RingQuot.ringCon r).symm ‹_› [GOAL] case h.h.a.mpr.trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ z✝ : R a✝¹ : RingConGen.Rel r x✝ y✝ a✝ : RingConGen.Rel r y✝ z✝ a_ih✝¹ : EqvGen (Rel r) x✝ y✝ a_ih✝ : EqvGen (Rel r) y✝ z✝ ⊢ EqvGen (Rel r) x✝ z✝ [PROOFSTEP] | trans => exact (RingQuot.ringCon r).trans ‹_› ‹_› [GOAL] case h.h.a.mpr.trans R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ x✝ y✝ z✝ : R a✝¹ : RingConGen.Rel r x✝ y✝ a✝ : RingConGen.Rel r y✝ z✝ a_ih✝¹ : EqvGen (Rel r) x✝ y✝ a_ih✝ : EqvGen (Rel r) y✝ z✝ ⊢ EqvGen (Rel r) x✝ z✝ [PROOFSTEP] exact (RingQuot.ringCon r).trans ‹_› ‹_› [GOAL] case h.h.a.mpr.add R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ w✝ x✝ y✝ z✝ : R a✝¹ : RingConGen.Rel r w✝ x✝ a✝ : RingConGen.Rel r y✝ z✝ a_ih✝¹ : EqvGen (Rel r) w✝ x✝ a_ih✝ : EqvGen (Rel r) y✝ z✝ ⊢ EqvGen (Rel r) (w✝ + y✝) (x✝ + z✝) [PROOFSTEP] | add => exact (RingQuot.ringCon r).add ‹_› ‹_› [GOAL] case h.h.a.mpr.add R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ w✝ x✝ y✝ z✝ : R a✝¹ : RingConGen.Rel r w✝ x✝ a✝ : RingConGen.Rel r y✝ z✝ a_ih✝¹ : EqvGen (Rel r) w✝ x✝ a_ih✝ : EqvGen (Rel r) y✝ z✝ ⊢ EqvGen (Rel r) (w✝ + y✝) (x✝ + z✝) [PROOFSTEP] exact (RingQuot.ringCon r).add ‹_› ‹_› [GOAL] case h.h.a.mpr.mul R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ w✝ x✝ y✝ z✝ : R a✝¹ : RingConGen.Rel r w✝ x✝ a✝ : RingConGen.Rel r y✝ z✝ a_ih✝¹ : EqvGen (Rel r) w✝ x✝ a_ih✝ : EqvGen (Rel r) y✝ z✝ ⊢ EqvGen (Rel r) (w✝ * y✝) (x✝ * z✝) [PROOFSTEP] | mul => exact (RingQuot.ringCon r).mul ‹_› ‹_› [GOAL] case h.h.a.mpr.mul R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop x₁ x₂ w✝ x✝ y✝ z✝ : R a✝¹ : RingConGen.Rel r w✝ x✝ a✝ : RingConGen.Rel r y✝ z✝ a_ih✝¹ : EqvGen (Rel r) w✝ x✝ a_ih✝ : EqvGen (Rel r) y✝ z✝ ⊢ EqvGen (Rel r) (w✝ * y✝) (x✝ * z✝) [PROOFSTEP] exact (RingQuot.ringCon r).mul ‹_› ‹_› [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop n : ℕ a✝ : Quot (Rel r) a b : R h : Rel r a b ⊢ (fun a => Quot.mk (Rel r) (a ^ n)) a = (fun a => Quot.mk (Rel r) (a ^ n)) b [PROOFSTEP] dsimp only [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop n : ℕ a✝ : Quot (Rel r) a b : R h : Rel r a b ⊢ Quot.mk (Rel r) (a ^ n) = Quot.mk (Rel r) (b ^ n) [PROOFSTEP] induction n with | zero => rw [pow_zero, pow_zero] | succ n ih => rw [pow_succ, pow_succ] -- Porting note: -- `simpa [mul_def] using congr_arg₂ (fun x y ↦ mul r ⟨x⟩ ⟨y⟩) (Quot.sound h) ih` -- mysteriously doesn't work have := congr_arg₂ (fun x y ↦ mul r ⟨x⟩ ⟨y⟩) (Quot.sound h) ih dsimp only at this simp [mul_def] at this exact this [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop n : ℕ a✝ : Quot (Rel r) a b : R h : Rel r a b ⊢ Quot.mk (Rel r) (a ^ n) = Quot.mk (Rel r) (b ^ n) [PROOFSTEP] induction n with | zero => rw [pow_zero, pow_zero] | succ n ih => rw [pow_succ, pow_succ] -- Porting note: -- `simpa [mul_def] using congr_arg₂ (fun x y ↦ mul r ⟨x⟩ ⟨y⟩) (Quot.sound h) ih` -- mysteriously doesn't work have := congr_arg₂ (fun x y ↦ mul r ⟨x⟩ ⟨y⟩) (Quot.sound h) ih dsimp only at this simp [mul_def] at this exact this [GOAL] case zero R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a✝ : Quot (Rel r) a b : R h : Rel r a b ⊢ Quot.mk (Rel r) (a ^ Nat.zero) = Quot.mk (Rel r) (b ^ Nat.zero) [PROOFSTEP] | zero => rw [pow_zero, pow_zero] [GOAL] case zero R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a✝ : Quot (Rel r) a b : R h : Rel r a b ⊢ Quot.mk (Rel r) (a ^ Nat.zero) = Quot.mk (Rel r) (b ^ Nat.zero) [PROOFSTEP] rw [pow_zero, pow_zero] [GOAL] case succ R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a✝ : Quot (Rel r) a b : R h : Rel r a b n : ℕ ih : Quot.mk (Rel r) (a ^ n) = Quot.mk (Rel r) (b ^ n) ⊢ Quot.mk (Rel r) (a ^ Nat.succ n) = Quot.mk (Rel r) (b ^ Nat.succ n) [PROOFSTEP] | succ n ih => rw [pow_succ, pow_succ] -- Porting note: -- `simpa [mul_def] using congr_arg₂ (fun x y ↦ mul r ⟨x⟩ ⟨y⟩) (Quot.sound h) ih` -- mysteriously doesn't work have := congr_arg₂ (fun x y ↦ mul r ⟨x⟩ ⟨y⟩) (Quot.sound h) ih dsimp only at this simp [mul_def] at this exact this [GOAL] case succ R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a✝ : Quot (Rel r) a b : R h : Rel r a b n : ℕ ih : Quot.mk (Rel r) (a ^ n) = Quot.mk (Rel r) (b ^ n) ⊢ Quot.mk (Rel r) (a ^ Nat.succ n) = Quot.mk (Rel r) (b ^ Nat.succ n) [PROOFSTEP] rw [pow_succ, pow_succ] -- Porting note: -- `simpa [mul_def] using congr_arg₂ (fun x y ↦ mul r ⟨x⟩ ⟨y⟩) (Quot.sound h) ih` -- mysteriously doesn't work [GOAL] case succ R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a✝ : Quot (Rel r) a b : R h : Rel r a b n : ℕ ih : Quot.mk (Rel r) (a ^ n) = Quot.mk (Rel r) (b ^ n) ⊢ Quot.mk (Rel r) (a * a ^ n) = Quot.mk (Rel r) (b * b ^ n) [PROOFSTEP] have := congr_arg₂ (fun x y ↦ mul r ⟨x⟩ ⟨y⟩) (Quot.sound h) ih [GOAL] case succ R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a✝ : Quot (Rel r) a b : R h : Rel r a b n : ℕ ih : Quot.mk (Rel r) (a ^ n) = Quot.mk (Rel r) (b ^ n) this : (fun x y => RingQuot.mul r { toQuot := x } { toQuot := y }) (Quot.mk (Rel r) a) (Quot.mk (Rel r) (a ^ n)) = (fun x y => RingQuot.mul r { toQuot := x } { toQuot := y }) (Quot.mk (Rel r) b) (Quot.mk (Rel r) (b ^ n)) ⊢ Quot.mk (Rel r) (a * a ^ n) = Quot.mk (Rel r) (b * b ^ n) [PROOFSTEP] dsimp only at this [GOAL] case succ R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a✝ : Quot (Rel r) a b : R h : Rel r a b n : ℕ ih : Quot.mk (Rel r) (a ^ n) = Quot.mk (Rel r) (b ^ n) this : RingQuot.mul r { toQuot := Quot.mk (Rel r) a } { toQuot := Quot.mk (Rel r) (a ^ n) } = RingQuot.mul r { toQuot := Quot.mk (Rel r) b } { toQuot := Quot.mk (Rel r) (b ^ n) } ⊢ Quot.mk (Rel r) (a * a ^ n) = Quot.mk (Rel r) (b * b ^ n) [PROOFSTEP] simp [mul_def] at this [GOAL] case succ R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a✝ : Quot (Rel r) a b : R h : Rel r a b n : ℕ ih : Quot.mk (Rel r) (a ^ n) = Quot.mk (Rel r) (b ^ n) this : Quot.mk (Rel r) (a * a ^ n) = Quot.mk (Rel r) (b * b ^ n) ⊢ Quot.mk (Rel r) (a * a ^ n) = Quot.mk (Rel r) (b * b ^ n) [PROOFSTEP] exact this [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop ⊢ { toQuot := Quot.mk (Rel r) 0 } = RingQuot.zero r [PROOFSTEP] rw [zero_def] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop ⊢ { toQuot := Quot.mk (Rel r) 1 } = RingQuot.one r [PROOFSTEP] rw [one_def] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b : R ⊢ { toQuot := Quot.mk (Rel r) a } + { toQuot := Quot.mk (Rel r) b } = { toQuot := Quot.mk (Rel r) (a + b) } [PROOFSTEP] show add r _ _ = _ [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b : R ⊢ RingQuot.add r { toQuot := Quot.mk (Rel r) a } { toQuot := Quot.mk (Rel r) b } = { toQuot := Quot.mk (Rel r) (a + b) } [PROOFSTEP] rw [add_def] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b : R ⊢ (match { toQuot := Quot.mk (Rel r) a }, { toQuot := Quot.mk (Rel r) b } with | { toQuot := a }, { toQuot := b } => { toQuot := Quot.map₂ (fun x x_1 => x + x_1) (_ : ∀ ⦃a b c : R⦄, Rel r b c → Rel r (a + b) (a + c)) (_ : ∀ ⦃a b c : R⦄, Rel r a b → Rel r (a + c) (b + c)) a b }) = { toQuot := Quot.mk (Rel r) (a + b) } [PROOFSTEP] rfl [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b : R ⊢ { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) b } = { toQuot := Quot.mk (Rel r) (a * b) } [PROOFSTEP] show mul r _ _ = _ [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b : R ⊢ RingQuot.mul r { toQuot := Quot.mk (Rel r) a } { toQuot := Quot.mk (Rel r) b } = { toQuot := Quot.mk (Rel r) (a * b) } [PROOFSTEP] rw [mul_def] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a b : R ⊢ (match { toQuot := Quot.mk (Rel r) a }, { toQuot := Quot.mk (Rel r) b } with | { toQuot := a }, { toQuot := b } => { toQuot := Quot.map₂ (fun x x_1 => x * x_1) (_ : ∀ ⦃a b c : R⦄, Rel r b c → Rel r (a * b) (a * c)) (_ : ∀ ⦃a b c : R⦄, Rel r a b → Rel r (a * c) (b * c)) a b }) = { toQuot := Quot.mk (Rel r) (a * b) } [PROOFSTEP] rfl [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a : R n : ℕ ⊢ { toQuot := Quot.mk (Rel r) a } ^ n = { toQuot := Quot.mk (Rel r) (a ^ n) } [PROOFSTEP] show npow r _ _ = _ [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r : R → R → Prop a : R n : ℕ ⊢ RingQuot.npow r n { toQuot := Quot.mk (Rel r) a } = { toQuot := Quot.mk (Rel r) (a ^ n) } [PROOFSTEP] rw [npow_def] [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop a : R ⊢ -{ toQuot := Quot.mk (Rel r) a } = { toQuot := Quot.mk (Rel r) (-a) } [PROOFSTEP] show neg r _ = _ [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop a : R ⊢ RingQuot.neg r { toQuot := Quot.mk (Rel r) a } = { toQuot := Quot.mk (Rel r) (-a) } [PROOFSTEP] rw [neg_def] [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop a : R ⊢ (match { toQuot := Quot.mk (Rel r) a } with | { toQuot := a } => { toQuot := Quot.map (fun a => -a) (_ : ∀ ⦃a b : R⦄, Rel r a b → Rel r (-a) (-b)) a }) = { toQuot := Quot.mk (Rel r) (-a) } [PROOFSTEP] rfl [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop a b : R ⊢ { toQuot := Quot.mk (Rel r) a } - { toQuot := Quot.mk (Rel r) b } = { toQuot := Quot.mk (Rel r) (a - b) } [PROOFSTEP] show sub r _ _ = _ [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop a b : R ⊢ RingQuot.sub r { toQuot := Quot.mk (Rel r) a } { toQuot := Quot.mk (Rel r) b } = { toQuot := Quot.mk (Rel r) (a - b) } [PROOFSTEP] rw [sub_def] [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop a b : R ⊢ (match { toQuot := Quot.mk (Rel r) a }, { toQuot := Quot.mk (Rel r) b } with | { toQuot := a }, { toQuot := b } => { toQuot := Quot.map₂ Sub.sub (_ : ∀ ⦃a b c : R⦄, Rel r b c → Rel r (a - b) (a - c)) (_ : ∀ ⦃a b c : R⦄, Rel r a b → Rel r (a - c) (b - c)) a b }) = { toQuot := Quot.mk (Rel r) (a - b) } [PROOFSTEP] rfl [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r : R → R → Prop inst✝ : Algebra S R n : S a : R ⊢ n • { toQuot := Quot.mk (Rel r) a } = { toQuot := Quot.mk (Rel r) (n • a) } [PROOFSTEP] show smul r _ _ = _ [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r : R → R → Prop inst✝ : Algebra S R n : S a : R ⊢ RingQuot.smul r n { toQuot := Quot.mk (Rel r) a } = { toQuot := Quot.mk (Rel r) (n • a) } [PROOFSTEP] rw [smul] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r : R → R → Prop inst✝ : Algebra S R n : S a : R ⊢ (match { toQuot := Quot.mk (Rel r) a } with | { toQuot := a } => { toQuot := Quot.map (fun a => n • a) (_ : ∀ ⦃a b : R⦄, Rel r a b → Rel r (n • a) (n • b)) a }) = { toQuot := Quot.mk (Rel r) (n • a) } [PROOFSTEP] rfl [GOAL] R : Type uR inst✝⁸ : Semiring R S : Type uS inst✝⁷ : CommSemiring S T : Type uT A : Type uA inst✝⁶ : Semiring A inst✝⁵ : Algebra S A r : R → R → Prop inst✝⁴ : CommSemiring T inst✝³ : SMul S T inst✝² : Algebra S R inst✝¹ : Algebra T R inst✝ : IsScalarTower S T R s : S t : T x✝ : RingQuot r a : Quot (Rel r) a' : R ⊢ (s • t) • { toQuot := Quot.mk (Rel r) a' } = s • t • { toQuot := Quot.mk (Rel r) a' } [PROOFSTEP] simp only [RingQuot.smul_quot, smul_assoc] [GOAL] R : Type uR inst✝⁷ : Semiring R S : Type uS inst✝⁶ : CommSemiring S T : Type uT A : Type uA inst✝⁵ : Semiring A inst✝⁴ : Algebra S A r : R → R → Prop inst✝³ : CommSemiring T inst✝² : Algebra S R inst✝¹ : Algebra T R inst✝ : SMulCommClass S T R s : S t : T x✝ : RingQuot r a : Quot (Rel r) a' : R ⊢ s • t • { toQuot := Quot.mk (Rel r) a' } = t • s • { toQuot := Quot.mk (Rel r) a' } [PROOFSTEP] simp only [RingQuot.smul_quot, smul_comm] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (a b c : RingQuot r), a + b + c = a + (b + c) [PROOFSTEP] rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ [GOAL] case mk.mk.mk.mk.mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop toQuot✝² : Quot (Rel r) a✝² : R toQuot✝¹ : Quot (Rel r) a✝¹ : R toQuot✝ : Quot (Rel r) a✝ : R ⊢ { toQuot := Quot.mk (Rel r) a✝² } + { toQuot := Quot.mk (Rel r) a✝¹ } + { toQuot := Quot.mk (Rel r) a✝ } = { toQuot := Quot.mk (Rel r) a✝² } + ({ toQuot := Quot.mk (Rel r) a✝¹ } + { toQuot := Quot.mk (Rel r) a✝ }) [PROOFSTEP] simp only [add_quot, add_assoc] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (a : RingQuot r), 0 + a = a [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop toQuot✝ : Quot (Rel r) a✝ : R ⊢ 0 + { toQuot := Quot.mk (Rel r) a✝ } = { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp [add_quot, ← zero_quot, zero_add] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (a : RingQuot r), a + 0 = a [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop toQuot✝ : Quot (Rel r) a✝ : R ⊢ { toQuot := Quot.mk (Rel r) a✝ } + 0 = { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp only [add_quot, ← zero_quot, add_zero] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (x : RingQuot r), (fun x x_1 => x • x_1) 0 x = 0 [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop toQuot✝ : Quot (Rel r) a✝ : R ⊢ (fun x x_1 => x • x_1) 0 { toQuot := Quot.mk (Rel r) a✝ } = 0 [PROOFSTEP] simp only [smul_quot, zero_smul, zero_quot] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (n : ℕ) (x : RingQuot r), (fun x x_1 => x • x_1) (n + 1) x = x + (fun x x_1 => x • x_1) n x [PROOFSTEP] rintro n ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop n : ℕ toQuot✝ : Quot (Rel r) a✝ : R ⊢ (fun x x_1 => x • x_1) (n + 1) { toQuot := Quot.mk (Rel r) a✝ } = { toQuot := Quot.mk (Rel r) a✝ } + (fun x x_1 => x • x_1) n { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp only [smul_quot, nsmul_eq_mul, Nat.cast_add, Nat.cast_one, add_mul, one_mul, add_comm, add_quot] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (a b : RingQuot r), a + b = b + a [PROOFSTEP] rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ [GOAL] case mk.mk.mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop toQuot✝¹ : Quot (Rel r) a✝¹ : R toQuot✝ : Quot (Rel r) a✝ : R ⊢ { toQuot := Quot.mk (Rel r) a✝¹ } + { toQuot := Quot.mk (Rel r) a✝ } = { toQuot := Quot.mk (Rel r) a✝ } + { toQuot := Quot.mk (Rel r) a✝¹ } [PROOFSTEP] simp only [add_quot, add_comm] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (a b c : RingQuot r), a * b * c = a * (b * c) [PROOFSTEP] rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ [GOAL] case mk.mk.mk.mk.mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop toQuot✝² : Quot (Rel r) a✝² : R toQuot✝¹ : Quot (Rel r) a✝¹ : R toQuot✝ : Quot (Rel r) a✝ : R ⊢ { toQuot := Quot.mk (Rel r) a✝² } * { toQuot := Quot.mk (Rel r) a✝¹ } * { toQuot := Quot.mk (Rel r) a✝ } = { toQuot := Quot.mk (Rel r) a✝² } * ({ toQuot := Quot.mk (Rel r) a✝¹ } * { toQuot := Quot.mk (Rel r) a✝ }) [PROOFSTEP] simp only [mul_quot, mul_assoc] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (a : RingQuot r), 1 * a = a [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop toQuot✝ : Quot (Rel r) a✝ : R ⊢ 1 * { toQuot := Quot.mk (Rel r) a✝ } = { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp only [mul_quot, ← one_quot, one_mul] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (a : RingQuot r), a * 1 = a [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop toQuot✝ : Quot (Rel r) a✝ : R ⊢ { toQuot := Quot.mk (Rel r) a✝ } * 1 = { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp only [mul_quot, ← one_quot, mul_one] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (x : RingQuot r), (fun n x => x ^ n) 0 x = 1 [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop toQuot✝ : Quot (Rel r) a✝ : R ⊢ (fun n x => x ^ n) 0 { toQuot := Quot.mk (Rel r) a✝ } = 1 [PROOFSTEP] simp only [pow_quot, ← one_quot, pow_zero] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (n : ℕ) (x : RingQuot r), (fun n x => x ^ n) (n + 1) x = x * (fun n x => x ^ n) n x [PROOFSTEP] rintro n ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop n : ℕ toQuot✝ : Quot (Rel r) a✝ : R ⊢ (fun n x => x ^ n) (n + 1) { toQuot := Quot.mk (Rel r) a✝ } = { toQuot := Quot.mk (Rel r) a✝ } * (fun n x => x ^ n) n { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp only [pow_quot, mul_quot, pow_succ] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (a : RingQuot r), 0 * a = 0 [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop toQuot✝ : Quot (Rel r) a✝ : R ⊢ 0 * { toQuot := Quot.mk (Rel r) a✝ } = 0 [PROOFSTEP] simp only [mul_quot, ← zero_quot, zero_mul] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (a : RingQuot r), a * 0 = 0 [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop toQuot✝ : Quot (Rel r) a✝ : R ⊢ { toQuot := Quot.mk (Rel r) a✝ } * 0 = 0 [PROOFSTEP] simp only [mul_quot, ← zero_quot, mul_zero] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop src✝¹ : AddCommMonoid (RingQuot r) := instAddCommMonoid r src✝ : MonoidWithZero (RingQuot r) := instMonoidWithZero r ⊢ ∀ (x : RingQuot r), (fun x x_1 => x • x_1) 0 x = 0 [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop src✝¹ : AddCommMonoid (RingQuot r) := instAddCommMonoid r src✝ : MonoidWithZero (RingQuot r) := instMonoidWithZero r toQuot✝ : Quot (Rel r) a✝ : R ⊢ (fun x x_1 => x • x_1) 0 { toQuot := Quot.mk (Rel r) a✝ } = 0 [PROOFSTEP] simp only [smul_quot, zero_smul, zero_quot] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop src✝¹ : AddCommMonoid (RingQuot r) := instAddCommMonoid r src✝ : MonoidWithZero (RingQuot r) := instMonoidWithZero r ⊢ ∀ (n : ℕ) (x : RingQuot r), (fun x x_1 => x • x_1) (n + 1) x = x + (fun x x_1 => x • x_1) n x [PROOFSTEP] rintro n ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop src✝¹ : AddCommMonoid (RingQuot r) := instAddCommMonoid r src✝ : MonoidWithZero (RingQuot r) := instMonoidWithZero r n : ℕ toQuot✝ : Quot (Rel r) a✝ : R ⊢ (fun x x_1 => x • x_1) (n + 1) { toQuot := Quot.mk (Rel r) a✝ } = { toQuot := Quot.mk (Rel r) a✝ } + (fun x x_1 => x • x_1) n { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp only [smul_quot, nsmul_eq_mul, Nat.cast_add, Nat.cast_one, add_mul, one_mul, add_comm, add_quot] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop src✝¹ : AddCommMonoid (RingQuot r) := instAddCommMonoid r src✝ : MonoidWithZero (RingQuot r) := instMonoidWithZero r ⊢ ∀ (a b c : RingQuot r), a * (b + c) = a * b + a * c [PROOFSTEP] rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ [GOAL] case mk.mk.mk.mk.mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop src✝¹ : AddCommMonoid (RingQuot r) := instAddCommMonoid r src✝ : MonoidWithZero (RingQuot r) := instMonoidWithZero r toQuot✝² : Quot (Rel r) a✝² : R toQuot✝¹ : Quot (Rel r) a✝¹ : R toQuot✝ : Quot (Rel r) a✝ : R ⊢ { toQuot := Quot.mk (Rel r) a✝² } * ({ toQuot := Quot.mk (Rel r) a✝¹ } + { toQuot := Quot.mk (Rel r) a✝ }) = { toQuot := Quot.mk (Rel r) a✝² } * { toQuot := Quot.mk (Rel r) a✝¹ } + { toQuot := Quot.mk (Rel r) a✝² } * { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp only [mul_quot, add_quot, left_distrib] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop src✝¹ : AddCommMonoid (RingQuot r) := instAddCommMonoid r src✝ : MonoidWithZero (RingQuot r) := instMonoidWithZero r ⊢ ∀ (a b c : RingQuot r), (a + b) * c = a * c + b * c [PROOFSTEP] rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ [GOAL] case mk.mk.mk.mk.mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop src✝¹ : AddCommMonoid (RingQuot r) := instAddCommMonoid r src✝ : MonoidWithZero (RingQuot r) := instMonoidWithZero r toQuot✝² : Quot (Rel r) a✝² : R toQuot✝¹ : Quot (Rel r) a✝¹ : R toQuot✝ : Quot (Rel r) a✝ : R ⊢ ({ toQuot := Quot.mk (Rel r) a✝² } + { toQuot := Quot.mk (Rel r) a✝¹ }) * { toQuot := Quot.mk (Rel r) a✝ } = { toQuot := Quot.mk (Rel r) a✝² } * { toQuot := Quot.mk (Rel r) a✝ } + { toQuot := Quot.mk (Rel r) a✝¹ } * { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp only [mul_quot, add_quot, right_distrib] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop src✝¹ : AddCommMonoid (RingQuot r) := instAddCommMonoid r src✝ : MonoidWithZero (RingQuot r) := instMonoidWithZero r ⊢ NatCast.natCast 0 = 0 [PROOFSTEP] simp [Nat.cast, natCast, ← zero_quot] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop src✝¹ : AddCommMonoid (RingQuot r) := instAddCommMonoid r src✝ : MonoidWithZero (RingQuot r) := instMonoidWithZero r ⊢ ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1 [PROOFSTEP] simp [Nat.cast, natCast, ← one_quot, add_quot] [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r ⊢ ∀ (a b : RingQuot r), a - b = a + -b [PROOFSTEP] rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ [GOAL] case mk.mk.mk.mk R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r toQuot✝¹ : Quot (Rel r) a✝¹ : R toQuot✝ : Quot (Rel r) a✝ : R ⊢ { toQuot := Quot.mk (Rel r) a✝¹ } - { toQuot := Quot.mk (Rel r) a✝ } = { toQuot := Quot.mk (Rel r) a✝¹ } + -{ toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp [neg_quot, sub_quot, add_quot, sub_eq_add_neg] [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r ⊢ ∀ (a : RingQuot r), (fun x x_1 => x • x_1) 0 a = 0 [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.mk R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r toQuot✝ : Quot (Rel r) a✝ : R ⊢ (fun x x_1 => x • x_1) 0 { toQuot := Quot.mk (Rel r) a✝ } = 0 [PROOFSTEP] simp [smul_quot, ← zero_quot] [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r ⊢ ∀ (n : ℕ) (a : RingQuot r), (fun x x_1 => x • x_1) (Int.ofNat (Nat.succ n)) a = a + (fun x x_1 => x • x_1) (Int.ofNat n) a [PROOFSTEP] rintro n ⟨⟨⟩⟩ [GOAL] case mk.mk R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r n : ℕ toQuot✝ : Quot (Rel r) a✝ : R ⊢ (fun x x_1 => x • x_1) (Int.ofNat (Nat.succ n)) { toQuot := Quot.mk (Rel r) a✝ } = { toQuot := Quot.mk (Rel r) a✝ } + (fun x x_1 => x • x_1) (Int.ofNat n) { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp [smul_quot, add_quot, add_mul, add_comm] [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r ⊢ ∀ (n : ℕ) (a : RingQuot r), (fun x x_1 => x • x_1) (Int.negSucc n) a = -(fun x x_1 => x • x_1) (↑(Nat.succ n)) a [PROOFSTEP] rintro n ⟨⟨⟩⟩ [GOAL] case mk.mk R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r n : ℕ toQuot✝ : Quot (Rel r) a✝ : R ⊢ (fun x x_1 => x • x_1) (Int.negSucc n) { toQuot := Quot.mk (Rel r) a✝ } = -(fun x x_1 => x • x_1) ↑(Nat.succ n) { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp [smul_quot, neg_quot, add_mul] [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r ⊢ ∀ (a : RingQuot r), -a + a = 0 [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.mk R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r toQuot✝ : Quot (Rel r) a✝ : R ⊢ -{ toQuot := Quot.mk (Rel r) a✝ } + { toQuot := Quot.mk (Rel r) a✝ } = 0 [PROOFSTEP] simp [neg_quot, add_quot, ← zero_quot] [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r n : ℕ ⊢ Quot.mk (Rel r) ↑↑n = Quot.mk (Rel r) ↑n [PROOFSTEP] exact congrArg (Quot.mk _) (Int.cast_ofNat _) [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r n : ℕ ⊢ Quot.mk (Rel r) ↑(Int.negSucc n) = (RingQuot.neg r ↑(n + 1)).toQuot [PROOFSTEP] simp_rw [neg_def] [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : Ring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r n : ℕ ⊢ Quot.mk (Rel r) ↑(Int.negSucc n) = Quot.map (fun a => -a) (_ : ∀ ⦃a b : R⦄, Rel r a b → Rel r (-a) (-b)) (RingQuot.natCast r (n + 1)).toQuot [PROOFSTEP] exact congrArg (Quot.mk _) (Int.cast_negSucc n) [GOAL] R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : CommSemiring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r ⊢ ∀ (a b : RingQuot r), a * b = b * a [PROOFSTEP] rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ [GOAL] case mk.mk.mk.mk R✝ : Type uR inst✝⁴ : Semiring R✝ S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R✝ → R✝ → Prop R : Type uR inst✝ : CommSemiring R r : R → R → Prop src✝ : Semiring (RingQuot r) := instSemiring r toQuot✝¹ : Quot (Rel r) a✝¹ : R toQuot✝ : Quot (Rel r) a✝ : R ⊢ { toQuot := Quot.mk (Rel r) a✝¹ } * { toQuot := Quot.mk (Rel r) a✝ } = { toQuot := Quot.mk (Rel r) a✝ } * { toQuot := Quot.mk (Rel r) a✝¹ } [PROOFSTEP] simp [mul_quot, mul_comm] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Algebra S R r : R → R → Prop ⊢ (fun r_1 => { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) r_1) }) 1 = 1 [PROOFSTEP] simp [← one_quot] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Algebra S R r : R → R → Prop ⊢ ∀ (x y : S), OneHom.toFun { toFun := fun r_1 => { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) r_1) }, map_one' := (_ : { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) 1) } = 1) } (x * y) = OneHom.toFun { toFun := fun r_1 => { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) r_1) }, map_one' := (_ : { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) 1) } = 1) } x * OneHom.toFun { toFun := fun r_1 => { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) r_1) }, map_one' := (_ : { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) 1) } = 1) } y [PROOFSTEP] simp [mul_quot] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Algebra S R r : R → R → Prop ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun r_1 => { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) r_1) }, map_one' := (_ : { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) 1) } = 1) }, map_mul' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) (a * a_1)) } = { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) a) } * { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) a_1) }) }) 0 = 0 [PROOFSTEP] simp [← zero_quot] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Algebra S R r : R → R → Prop ⊢ ∀ (x y : S), OneHom.toFun (↑{ toOneHom := { toFun := fun r_1 => { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) r_1) }, map_one' := (_ : { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) 1) } = 1) }, map_mul' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) (a * a_1)) } = { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) a) } * { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) a_1) }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun r_1 => { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) r_1) }, map_one' := (_ : { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) 1) } = 1) }, map_mul' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) (a * a_1)) } = { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) a) } * { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) a_1) }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun r_1 => { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) r_1) }, map_one' := (_ : { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) 1) } = 1) }, map_mul' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) (a * a_1)) } = { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) a) } * { toQuot := Quot.mk (Rel r) (↑(algebraMap S R) a_1) }) }) y [PROOFSTEP] simp [add_quot] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝¹ : R → R → Prop inst✝ : Algebra S R r✝ : R → R → Prop r : S ⊢ ∀ (x : (fun x => RingQuot r✝) r), ↑{ toMonoidHom := { toOneHom := { toFun := fun r => { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) r) }, map_one' := (_ : { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) 1) } = 1) }, map_mul' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) (a * a_1)) } = { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a) } * { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a_1) }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) 0) } = 0), map_add' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) (a + a_1)) } = { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a) } + { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a_1) }) } r * x = x * ↑{ toMonoidHom := { toOneHom := { toFun := fun r => { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) r) }, map_one' := (_ : { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) 1) } = 1) }, map_mul' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) (a * a_1)) } = { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a) } * { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a_1) }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) 0) } = 0), map_add' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) (a + a_1)) } = { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a) } + { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a_1) }) } r [PROOFSTEP] rintro ⟨⟨a⟩⟩ [GOAL] case mk.mk R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝¹ : R → R → Prop inst✝ : Algebra S R r✝ : R → R → Prop r : S toQuot✝ : Quot (Rel r✝) a : R ⊢ ↑{ toMonoidHom := { toOneHom := { toFun := fun r => { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) r) }, map_one' := (_ : { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) 1) } = 1) }, map_mul' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) (a * a_1)) } = { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a) } * { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a_1) }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) 0) } = 0), map_add' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) (a + a_1)) } = { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a) } + { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a_1) }) } r * { toQuot := Quot.mk (Rel r✝) a } = { toQuot := Quot.mk (Rel r✝) a } * ↑{ toMonoidHom := { toOneHom := { toFun := fun r => { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) r) }, map_one' := (_ : { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) 1) } = 1) }, map_mul' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) (a * a_1)) } = { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a) } * { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a_1) }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) 0) } = 0), map_add' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) (a + a_1)) } = { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a) } + { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a_1) }) } r [PROOFSTEP] simp [Algebra.commutes, mul_quot] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝¹ : R → R → Prop inst✝ : Algebra S R r✝ : R → R → Prop r : S ⊢ ∀ (x : (fun x => RingQuot r✝) r), r • x = ↑{ toMonoidHom := { toOneHom := { toFun := fun r => { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) r) }, map_one' := (_ : { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) 1) } = 1) }, map_mul' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) (a * a_1)) } = { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a) } * { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a_1) }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) 0) } = 0), map_add' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) (a + a_1)) } = { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a) } + { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a_1) }) } r * x [PROOFSTEP] rintro ⟨⟨a⟩⟩ [GOAL] case mk.mk R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝¹ : R → R → Prop inst✝ : Algebra S R r✝ : R → R → Prop r : S toQuot✝ : Quot (Rel r✝) a : R ⊢ r • { toQuot := Quot.mk (Rel r✝) a } = ↑{ toMonoidHom := { toOneHom := { toFun := fun r => { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) r) }, map_one' := (_ : { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) 1) } = 1) }, map_mul' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) (a * a_1)) } = { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a) } * { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a_1) }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) 0) } = 0), map_add' := (_ : ∀ (a a_1 : S), { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) (a + a_1)) } = { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a) } + { toQuot := Quot.mk (Rel r✝) (↑(algebraMap S R) a_1) }) } r * { toQuot := Quot.mk (Rel r✝) a } [PROOFSTEP] simp [smul_quot, Algebra.smul_def, mul_quot] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ (fun x => { toQuot := Quot.mk (Rel r) x }) 1 = 1 [PROOFSTEP] simp [← one_quot] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (x y : R), OneHom.toFun { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) } (x * y) = OneHom.toFun { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) } x * OneHom.toFun { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) } y [PROOFSTEP] simp [mul_quot] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel r) (a * a_1) } = { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) a_1 }) }) 0 = 0 [PROOFSTEP] simp [← zero_quot] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ ∀ (x y : R), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel r) (a * a_1) } = { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel r) (a * a_1) } = { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel r) (a * a_1) } = { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) a_1 }) }) y [PROOFSTEP] simp [add_quot] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop x y : R w : r x y ⊢ ↑(mkRingHom r) x = ↑(mkRingHom r) y [PROOFSTEP] simp [mkRingHom_def, Quot.sound (Rel.of w)] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ Function.Surjective ↑(mkRingHom r) [PROOFSTEP] simp [mkRingHom_def] [GOAL] R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop ⊢ Function.Surjective fun x => { toQuot := Quot.mk (Rel r) x } [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type uR inst✝³ : Semiring R S : Type uS inst✝² : CommSemiring S T : Type uT A : Type uA inst✝¹ : Semiring A inst✝ : Algebra S A r✝ r : R → R → Prop toQuot✝ : Quot (Rel r) a✝ : R ⊢ ∃ a, (fun x => { toQuot := Quot.mk (Rel r) x }) a = { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f g : RingQuot r →+* T w : RingHom.comp f (mkRingHom r) = RingHom.comp g (mkRingHom r) ⊢ f = g [PROOFSTEP] ext x [GOAL] case a R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f g : RingQuot r →+* T w : RingHom.comp f (mkRingHom r) = RingHom.comp g (mkRingHom r) x : RingQuot r ⊢ ↑f x = ↑g x [PROOFSTEP] rcases mkRingHom_surjective r x with ⟨x, rfl⟩ [GOAL] case a.intro R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f g : RingQuot r →+* T w : RingHom.comp f (mkRingHom r) = RingHom.comp g (mkRingHom r) x : R ⊢ ↑f (↑(mkRingHom r) x) = ↑g (↑(mkRingHom r) x) [PROOFSTEP] exact (RingHom.congr_fun w x : _) [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y x : RingQuot r ⊢ ∀ (a b : R), Rel r a b → ↑f a = ↑f b [PROOFSTEP] rintro _ _ r [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝¹ : R → R → Prop inst✝ : Semiring T r✝ : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r✝ x y → ↑f x = ↑f y x : RingQuot r✝ a✝ b✝ : R r : Rel r✝ a✝ b✝ ⊢ ↑f a✝ = ↑f b✝ [PROOFSTEP] induction r with | of r => exact h r | add_left _ r' => rw [map_add, map_add, r'] | mul_left _ r' => rw [map_mul, map_mul, r'] | mul_right _ r' => rw [map_mul, map_mul, r'] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝¹ : R → R → Prop inst✝ : Semiring T r✝ : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r✝ x y → ↑f x = ↑f y x : RingQuot r✝ a✝ b✝ : R r : Rel r✝ a✝ b✝ ⊢ ↑f a✝ = ↑f b✝ [PROOFSTEP] induction r with | of r => exact h r | add_left _ r' => rw [map_add, map_add, r'] | mul_left _ r' => rw [map_mul, map_mul, r'] | mul_right _ r' => rw [map_mul, map_mul, r'] [GOAL] case of R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝¹ : R → R → Prop inst✝ : Semiring T r✝ : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r✝ x y → ↑f x = ↑f y x : RingQuot r✝ a✝ b✝ x✝ y✝ : R r : r✝ x✝ y✝ ⊢ ↑f x✝ = ↑f y✝ [PROOFSTEP] | of r => exact h r [GOAL] case of R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝¹ : R → R → Prop inst✝ : Semiring T r✝ : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r✝ x y → ↑f x = ↑f y x : RingQuot r✝ a✝ b✝ x✝ y✝ : R r : r✝ x✝ y✝ ⊢ ↑f x✝ = ↑f y✝ [PROOFSTEP] exact h r [GOAL] case add_left R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y x : RingQuot r a✝² b✝¹ a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ r' : ↑f a✝¹ = ↑f b✝ ⊢ ↑f (a✝¹ + c✝) = ↑f (b✝ + c✝) [PROOFSTEP] | add_left _ r' => rw [map_add, map_add, r'] [GOAL] case add_left R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y x : RingQuot r a✝² b✝¹ a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ r' : ↑f a✝¹ = ↑f b✝ ⊢ ↑f (a✝¹ + c✝) = ↑f (b✝ + c✝) [PROOFSTEP] rw [map_add, map_add, r'] [GOAL] case mul_left R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y x : RingQuot r a✝² b✝¹ a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ r' : ↑f a✝¹ = ↑f b✝ ⊢ ↑f (a✝¹ * c✝) = ↑f (b✝ * c✝) [PROOFSTEP] | mul_left _ r' => rw [map_mul, map_mul, r'] [GOAL] case mul_left R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y x : RingQuot r a✝² b✝¹ a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ r' : ↑f a✝¹ = ↑f b✝ ⊢ ↑f (a✝¹ * c✝) = ↑f (b✝ * c✝) [PROOFSTEP] rw [map_mul, map_mul, r'] [GOAL] case mul_right R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y x : RingQuot r a✝² b✝¹ a✝¹ b✝ c✝ : R a✝ : Rel r b✝ c✝ r' : ↑f b✝ = ↑f c✝ ⊢ ↑f (a✝¹ * b✝) = ↑f (a✝¹ * c✝) [PROOFSTEP] | mul_right _ r' => rw [map_mul, map_mul, r'] [GOAL] case mul_right R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y x : RingQuot r a✝² b✝¹ a✝¹ b✝ c✝ : R a✝ : Rel r b✝ c✝ r' : ↑f b✝ = ↑f c✝ ⊢ ↑f (a✝¹ * b✝) = ↑f (a✝¹ * c✝) [PROOFSTEP] rw [map_mul, map_mul, r'] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y ⊢ (fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot) 1 = 1 [PROOFSTEP] simp only [← one_quot, f.map_one] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y ⊢ ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } y [PROOFSTEP] rintro ⟨⟨x⟩⟩ ⟨⟨y⟩⟩ [GOAL] case mk.mk.mk.mk R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y toQuot✝¹ : Quot (Rel r) x : R toQuot✝ : Quot (Rel r) y : R ⊢ OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } ({ toQuot := Quot.mk (Rel r) x } * { toQuot := Quot.mk (Rel r) y }) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } { toQuot := Quot.mk (Rel r) x } * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } { toQuot := Quot.mk (Rel r) y } [PROOFSTEP] simp only [mul_quot, f.map_mul x y] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) 0 = 0 [PROOFSTEP] simp only [← zero_quot, f.map_zero] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y ⊢ ∀ (x y : RingQuot r), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) y [PROOFSTEP] rintro ⟨⟨x⟩⟩ ⟨⟨y⟩⟩ [GOAL] case mk.mk.mk.mk R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : R →+* T h : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y toQuot✝¹ : Quot (Rel r) x : R toQuot✝ : Quot (Rel r) y : R ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) ({ toQuot := Quot.mk (Rel r) x } + { toQuot := Quot.mk (Rel r) y }) = OneHom.toFun ↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } y) } { toQuot := Quot.mk (Rel r) x } + OneHom.toFun ↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : R), Rel r a b → ↑f a = ↑f b) 1.toQuot = 1) } y) } { toQuot := Quot.mk (Rel r) y } [PROOFSTEP] simp only [add_quot, f.map_add x y] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : { f // ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y } ⊢ (fun F => { val := RingHom.comp F (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑F (↑(mkRingHom r) x) = ↑F (↑(mkRingHom r) y)) }) ((fun f => preLift (_ : ∀ ⦃x y : R⦄, r x y → ↑↑f x = ↑↑f y)) f) = f [PROOFSTEP] ext [GOAL] case a.a R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : { f // ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y } x✝ : R ⊢ ↑↑((fun F => { val := RingHom.comp F (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑F (↑(mkRingHom r) x) = ↑F (↑(mkRingHom r) y)) }) ((fun f => preLift (_ : ∀ ⦃x y : R⦄, r x y → ↑↑f x = ↑↑f y)) f)) x✝ = ↑↑f x✝ [PROOFSTEP] simp only [preLift_def, mkRingHom_def, RingHom.coe_comp, RingHom.coe_mk, MonoidHom.coe_mk, OneHom.coe_mk, Function.comp_apply] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop F : RingQuot r →+* T ⊢ (fun f => preLift (_ : ∀ ⦃x y : R⦄, r x y → ↑↑f x = ↑↑f y)) ((fun F => { val := RingHom.comp F (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑F (↑(mkRingHom r) x) = ↑F (↑(mkRingHom r) y)) }) F) = F [PROOFSTEP] simp only [preLift_def] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop F : RingQuot r →+* T ⊢ { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot r), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } y) }) y) } = F [PROOFSTEP] ext [GOAL] case w.a R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop F : RingQuot r →+* T x✝ : R ⊢ ↑(RingHom.comp { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot r), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot r), OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) x.toQuot, map_one' := (_ : Quot.lift ↑(RingHom.comp F (mkRingHom r)) (_ : ∀ (a b : R), Rel r a b → ↑(RingHom.comp F (mkRingHom r)) a = ↑(RingHom.comp F (mkRingHom r)) b) 1.toQuot = 1) } y) }) y) } (mkRingHom r)) x✝ = ↑(RingHom.comp F (mkRingHom r)) x✝ [PROOFSTEP] simp only [mkRingHom_def, RingHom.coe_comp, RingHom.coe_mk, MonoidHom.coe_mk, OneHom.coe_mk, Function.comp_apply, forall_const] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T f : R →+* T r : R → R → Prop w : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y x : R ⊢ ↑(↑lift { val := f, property := w }) (↑(mkRingHom r) x) = ↑f x [PROOFSTEP] simp_rw [lift_def, preLift_def, mkRingHom_def] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T f : R →+* T r : R → R → Prop w : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y x : R ⊢ ↑(↑{ toFun := fun f => { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) y) }, invFun := fun F => { val := RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, property := (_ : (fun f => ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y) (RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) })) }, left_inv := (_ : Function.LeftInverse (fun F => { val := RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, property := (_ : (fun f => ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y) (RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) })) }) fun f => { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) y) }), right_inv := (_ : Function.RightInverse (fun F => { val := RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, property := (_ : (fun f => ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y) (RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) })) }) fun f => { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : R), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) y) }) } { val := f, property := w }) (↑{ toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel r) (a * a_1) } = { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r) 0 } = 0), map_add' := (_ : ∀ (a a_1 : R), { toQuot := Quot.mk (Rel r) (a + a_1) } = { toQuot := Quot.mk (Rel r) a } + { toQuot := Quot.mk (Rel r) a_1 }) } x) = ↑f x [PROOFSTEP] rfl [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T f : R →+* T r : R → R → Prop w : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y g : RingQuot r →+* T h : RingHom.comp g (mkRingHom r) = f ⊢ g = ↑lift { val := f, property := w } [PROOFSTEP] ext [GOAL] case w.a R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T f : R →+* T r : R → R → Prop w : ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y g : RingQuot r →+* T h : RingHom.comp g (mkRingHom r) = f x✝ : R ⊢ ↑(RingHom.comp g (mkRingHom r)) x✝ = ↑(RingHom.comp (↑lift { val := f, property := w }) (mkRingHom r)) x✝ [PROOFSTEP] simp [h] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : RingQuot r →+* T ⊢ f = ↑lift { val := RingHom.comp f (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑f (↑(mkRingHom r) x) = ↑f (↑(mkRingHom r) y)) } [PROOFSTEP] conv_lhs => rw [← lift.apply_symm_apply f] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : RingQuot r →+* T | f [PROOFSTEP] rw [← lift.apply_symm_apply f] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : RingQuot r →+* T | f [PROOFSTEP] rw [← lift.apply_symm_apply f] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : RingQuot r →+* T | f [PROOFSTEP] rw [← lift.apply_symm_apply f] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : RingQuot r →+* T ⊢ ↑lift (↑lift.symm f) = ↑lift { val := RingHom.comp f (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑f (↑(mkRingHom r) x) = ↑f (↑(mkRingHom r) y)) } [PROOFSTEP] rw [lift_def] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r✝ : R → R → Prop inst✝ : Semiring T r : R → R → Prop f : RingQuot r →+* T ⊢ ↑{ toFun := fun f => preLift (_ : ∀ ⦃x y : R⦄, r x y → ↑↑f x = ↑↑f y), invFun := fun F => { val := RingHom.comp F (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑F (↑(mkRingHom r) x) = ↑F (↑(mkRingHom r) y)) }, left_inv := (_ : ∀ (f : { f // ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y }), (fun F => { val := RingHom.comp F (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑F (↑(mkRingHom r) x) = ↑F (↑(mkRingHom r) y)) }) ((fun f => preLift (_ : ∀ ⦃x y : R⦄, r x y → ↑↑f x = ↑↑f y)) f) = f), right_inv := (_ : ∀ (F : RingQuot r →+* T), (fun f => preLift (_ : ∀ ⦃x y : R⦄, r x y → ↑↑f x = ↑↑f y)) ((fun F => { val := RingHom.comp F (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑F (↑(mkRingHom r) x) = ↑F (↑(mkRingHom r) y)) }) F) = F) } (↑{ toFun := fun f => preLift (_ : ∀ ⦃x y : R⦄, r x y → ↑↑f x = ↑↑f y), invFun := fun F => { val := RingHom.comp F (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑F (↑(mkRingHom r) x) = ↑F (↑(mkRingHom r) y)) }, left_inv := (_ : ∀ (f : { f // ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y }), (fun F => { val := RingHom.comp F (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑F (↑(mkRingHom r) x) = ↑F (↑(mkRingHom r) y)) }) ((fun f => preLift (_ : ∀ ⦃x y : R⦄, r x y → ↑↑f x = ↑↑f y)) f) = f), right_inv := (_ : ∀ (F : RingQuot r →+* T), (fun f => preLift (_ : ∀ ⦃x y : R⦄, r x y → ↑↑f x = ↑↑f y)) ((fun F => { val := RingHom.comp F (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑F (↑(mkRingHom r) x) = ↑F (↑(mkRingHom r) y)) }) F) = F) }.symm f) = ↑{ toFun := fun f => preLift (_ : ∀ ⦃x y : R⦄, r x y → ↑↑f x = ↑↑f y), invFun := fun F => { val := RingHom.comp F (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑F (↑(mkRingHom r) x) = ↑F (↑(mkRingHom r) y)) }, left_inv := (_ : ∀ (f : { f // ∀ ⦃x y : R⦄, r x y → ↑f x = ↑f y }), (fun F => { val := RingHom.comp F (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑F (↑(mkRingHom r) x) = ↑F (↑(mkRingHom r) y)) }) ((fun f => preLift (_ : ∀ ⦃x y : R⦄, r x y → ↑↑f x = ↑↑f y)) f) = f), right_inv := (_ : ∀ (F : RingQuot r →+* T), (fun f => preLift (_ : ∀ ⦃x y : R⦄, r x y → ↑↑f x = ↑↑f y)) ((fun F => { val := RingHom.comp F (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑F (↑(mkRingHom r) x) = ↑F (↑(mkRingHom r) y)) }) F) = F) } { val := RingHom.comp f (mkRingHom r), property := (_ : ∀ (x y : R), r x y → ↑f (↑(mkRingHom r) x) = ↑f (↑(mkRingHom r) y)) } [PROOFSTEP] rfl [GOAL] R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B ⊢ ↑(ringQuotToIdealQuotient r) (↑(mkRingHom r) x) = ↑(Ideal.Quotient.mk (Ideal.ofRel r)) x [PROOFSTEP] simp_rw [ringQuotToIdealQuotient, lift_def, preLift_def, mkRingHom_def] [GOAL] R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B ⊢ ↑(↑{ toFun := fun f => { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) y) }, invFun := fun F => { val := RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, property := (_ : (fun f => ∀ ⦃x y : B⦄, r x y → ↑f x = ↑f y) (RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) })) }, left_inv := (_ : Function.LeftInverse (fun F => { val := RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, property := (_ : (fun f => ∀ ⦃x y : B⦄, r x y → ↑f x = ↑f y) (RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) })) }) fun f => { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) y) }), right_inv := (_ : Function.RightInverse (fun F => { val := RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, property := (_ : (fun f => ∀ ⦃x y : B⦄, r x y → ↑f x = ↑f y) (RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) })) }) fun f => { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) y) }) } { val := Ideal.Quotient.mk (Ideal.ofRel r), property := (_ : ∀ (x y : B), r x y → ↑(Ideal.Quotient.mk (Ideal.ofRel r)) x = ↑(Ideal.Quotient.mk (Ideal.ofRel r)) y) }) (↑{ toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a * a_1) } = { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a + a_1) } = { toQuot := Quot.mk (Rel r) a } + { toQuot := Quot.mk (Rel r) a_1 }) } x) = ↑(Ideal.Quotient.mk (Ideal.ofRel r)) x [PROOFSTEP] rfl [GOAL] R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop ⊢ ∀ (a : B), a ∈ Ideal.ofRel r → ↑(mkRingHom r) a = 0 [PROOFSTEP] refine' fun x h ↦ Submodule.span_induction h _ _ _ _ [GOAL] case refine'_1 R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B h : x ∈ Ideal.ofRel r ⊢ ∀ (x : B), x ∈ {x | ∃ a b _h, x + b = a} → ↑(mkRingHom r) x = 0 [PROOFSTEP] rintro y ⟨a, b, h, su⟩ [GOAL] case refine'_1.intro.intro.intro R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B h✝ : x ∈ Ideal.ofRel r y a b : B h : r a b su : y + b = a ⊢ ↑(mkRingHom r) y = 0 [PROOFSTEP] symm at su [GOAL] case refine'_1.intro.intro.intro R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B h✝ : x ∈ Ideal.ofRel r y a b : B h : r a b su : a = y + b ⊢ ↑(mkRingHom r) y = 0 [PROOFSTEP] rw [← sub_eq_iff_eq_add] at su [GOAL] case refine'_1.intro.intro.intro R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B h✝ : x ∈ Ideal.ofRel r y a b : B h : r a b su : a - b = y ⊢ ↑(mkRingHom r) y = 0 [PROOFSTEP] rw [← su, RingHom.map_sub, mkRingHom_rel h, sub_self] [GOAL] case refine'_2 R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B h : x ∈ Ideal.ofRel r ⊢ ↑(mkRingHom r) 0 = 0 [PROOFSTEP] simp [GOAL] case refine'_3 R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B h : x ∈ Ideal.ofRel r ⊢ ∀ (x y : B), ↑(mkRingHom r) x = 0 → ↑(mkRingHom r) y = 0 → ↑(mkRingHom r) (x + y) = 0 [PROOFSTEP] intro a b ha hb [GOAL] case refine'_3 R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B h : x ∈ Ideal.ofRel r a b : B ha : ↑(mkRingHom r) a = 0 hb : ↑(mkRingHom r) b = 0 ⊢ ↑(mkRingHom r) (a + b) = 0 [PROOFSTEP] simp [ha, hb] [GOAL] case refine'_4 R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B h : x ∈ Ideal.ofRel r ⊢ ∀ (a x : B), ↑(mkRingHom r) x = 0 → ↑(mkRingHom r) (a • x) = 0 [PROOFSTEP] intro a x hx [GOAL] case refine'_4 R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x✝ : B h : x✝ ∈ Ideal.ofRel r a x : B hx : ↑(mkRingHom r) x = 0 ⊢ ↑(mkRingHom r) (a • x) = 0 [PROOFSTEP] simp [hx] [GOAL] R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop ⊢ RingHom.comp ↑(idealQuotientToRingQuot r) ↑(ringQuotToIdealQuotient r) = RingHom.id (RingQuot r) [PROOFSTEP] ext x [GOAL] case w.a R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B ⊢ ↑(RingHom.comp (RingHom.comp ↑(idealQuotientToRingQuot r) ↑(ringQuotToIdealQuotient r)) (mkRingHom r)) x = ↑(RingHom.comp (RingHom.id (RingQuot r)) (mkRingHom r)) x [PROOFSTEP] simp_rw [ringQuotToIdealQuotient, lift_def, preLift_def, mkRingHom_def] [GOAL] case w.a R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B ⊢ ↑(RingHom.comp (RingHom.comp ↑(idealQuotientToRingQuot r) ↑(↑{ toFun := fun f => { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) y) }, invFun := fun F => { val := RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, property := (_ : (fun f => ∀ ⦃x y : B⦄, r x y → ↑f x = ↑f y) (RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) })) }, left_inv := (_ : Function.LeftInverse (fun F => { val := RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, property := (_ : (fun f => ∀ ⦃x y : B⦄, r x y → ↑f x = ↑f y) (RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) })) }) fun f => { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) y) }), right_inv := (_ : Function.RightInverse (fun F => { val := RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, property := (_ : (fun f => ∀ ⦃x y : B⦄, r x y → ↑f x = ↑f y) (RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) })) }) fun f => { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) y) }) } { val := Ideal.Quotient.mk (Ideal.ofRel r), property := (_ : ∀ (x y : B), r x y → ↑(Ideal.Quotient.mk (Ideal.ofRel r)) x = ↑(Ideal.Quotient.mk (Ideal.ofRel r)) y) })) { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a * a_1) } = { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a + a_1) } = { toQuot := Quot.mk (Rel r) a } + { toQuot := Quot.mk (Rel r) a_1 }) }) x = ↑(RingHom.comp (RingHom.id (RingQuot r)) { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a * a_1) } = { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a + a_1) } = { toQuot := Quot.mk (Rel r) a } + { toQuot := Quot.mk (Rel r) a_1 }) }) x [PROOFSTEP] change mkRingHom r x = _ [GOAL] case w.a R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B ⊢ ↑(mkRingHom r) x = ↑(RingHom.comp (RingHom.id (RingQuot r)) { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a * a_1) } = { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a + a_1) } = { toQuot := Quot.mk (Rel r) a } + { toQuot := Quot.mk (Rel r) a_1 }) }) x [PROOFSTEP] rw [mkRingHom_def] [GOAL] case w.a R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B ⊢ ↑{ toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a * a_1) } = { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a + a_1) } = { toQuot := Quot.mk (Rel r) a } + { toQuot := Quot.mk (Rel r) a_1 }) } x = ↑(RingHom.comp (RingHom.id (RingQuot r)) { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a * a_1) } = { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a + a_1) } = { toQuot := Quot.mk (Rel r) a } + { toQuot := Quot.mk (Rel r) a_1 }) }) x [PROOFSTEP] rfl [GOAL] R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop ⊢ RingHom.comp ↑(ringQuotToIdealQuotient r) ↑(idealQuotientToRingQuot r) = RingHom.id (B ⧸ Ideal.ofRel r) [PROOFSTEP] ext x [GOAL] case h.a R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B ⊢ ↑(RingHom.comp (RingHom.comp ↑(ringQuotToIdealQuotient r) ↑(idealQuotientToRingQuot r)) (Ideal.Quotient.mk (Ideal.ofRel r))) x = ↑(RingHom.comp (RingHom.id (B ⧸ Ideal.ofRel r)) (Ideal.Quotient.mk (Ideal.ofRel r))) x [PROOFSTEP] simp_rw [ringQuotToIdealQuotient, lift_def, preLift_def, mkRingHom_def] [GOAL] case h.a R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B ⊢ ↑(RingHom.comp (RingHom.comp ↑(↑{ toFun := fun f => { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) y) }, invFun := fun F => { val := RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, property := (_ : (fun f => ∀ ⦃x y : B⦄, r x y → ↑f x = ↑f y) (RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) })) }, left_inv := (_ : Function.LeftInverse (fun F => { val := RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, property := (_ : (fun f => ∀ ⦃x y : B⦄, r x y → ↑f x = ↑f y) (RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) })) }) fun f => { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) y) }), right_inv := (_ : Function.RightInverse (fun F => { val := RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, property := (_ : (fun f => ∀ ⦃x y : B⦄, r x y → ↑f x = ↑f y) (RingHom.comp F { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => r x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } * { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel fun x y => r x y) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel fun x y => r x y) (a + a_1) } = { toQuot := Quot.mk (Rel fun x y => r x y) a } + { toQuot := Quot.mk (Rel fun x y => r x y) a_1 }) })) }) fun f => { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => r x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑f a = ↑↑f b) 1.toQuot = 1) } y) }) y) }) } { val := Ideal.Quotient.mk (Ideal.ofRel r), property := (_ : ∀ (x y : B), r x y → ↑(Ideal.Quotient.mk (Ideal.ofRel r)) x = ↑(Ideal.Quotient.mk (Ideal.ofRel r)) y) }) ↑(idealQuotientToRingQuot r)) (Ideal.Quotient.mk (Ideal.ofRel r))) x = ↑(RingHom.comp (RingHom.id (B ⧸ Ideal.ofRel r)) (Ideal.Quotient.mk (Ideal.ofRel r))) x [PROOFSTEP] change Quot.lift _ _ ((mkRingHom r) x).toQuot = _ [GOAL] case h.a R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B ⊢ Quot.lift ↑↑{ val := Ideal.Quotient.mk (Ideal.ofRel r), property := (_ : ∀ (x y : B), r x y → ↑(Ideal.Quotient.mk (Ideal.ofRel r)) x = ↑(Ideal.Quotient.mk (Ideal.ofRel r)) y) } (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑{ val := Ideal.Quotient.mk (Ideal.ofRel r), property := (_ : ∀ (x y : B), r x y → ↑(Ideal.Quotient.mk (Ideal.ofRel r)) x = ↑(Ideal.Quotient.mk (Ideal.ofRel r)) y) } a = ↑↑{ val := Ideal.Quotient.mk (Ideal.ofRel r), property := (_ : ∀ (x y : B), r x y → ↑(Ideal.Quotient.mk (Ideal.ofRel r)) x = ↑(Ideal.Quotient.mk (Ideal.ofRel r)) y) } b) (↑(mkRingHom r) x).toQuot = ↑(RingHom.comp (RingHom.id (B ⧸ Ideal.ofRel r)) (Ideal.Quotient.mk (Ideal.ofRel r))) x [PROOFSTEP] rw [mkRingHom_def] [GOAL] case h.a R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r✝ : R → R → Prop inst✝¹ : Semiring T B : Type uR inst✝ : CommRing B r : B → B → Prop x : B ⊢ Quot.lift ↑↑{ val := Ideal.Quotient.mk (Ideal.ofRel r), property := (_ : ∀ (x y : B), r x y → ↑(Ideal.Quotient.mk (Ideal.ofRel r)) x = ↑(Ideal.Quotient.mk (Ideal.ofRel r)) y) } (_ : ∀ (a b : B), Rel (fun x y => r x y) a b → ↑↑{ val := Ideal.Quotient.mk (Ideal.ofRel r), property := (_ : ∀ (x y : B), r x y → ↑(Ideal.Quotient.mk (Ideal.ofRel r)) x = ↑(Ideal.Quotient.mk (Ideal.ofRel r)) y) } a = ↑↑{ val := Ideal.Quotient.mk (Ideal.ofRel r), property := (_ : ∀ (x y : B), r x y → ↑(Ideal.Quotient.mk (Ideal.ofRel r)) x = ↑(Ideal.Quotient.mk (Ideal.ofRel r)) y) } b) (↑{ toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := (_ : { toQuot := Quot.mk (Rel r) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a * a_1) } = { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel r) 0 } = 0), map_add' := (_ : ∀ (a a_1 : B), { toQuot := Quot.mk (Rel r) (a + a_1) } = { toQuot := Quot.mk (Rel r) a } + { toQuot := Quot.mk (Rel r) a_1 }) } x).toQuot = ↑(RingHom.comp (RingHom.id (B ⧸ Ideal.ofRel r)) (Ideal.Quotient.mk (Ideal.ofRel r))) x [PROOFSTEP] rfl [GOAL] R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r : R → R → Prop inst✝¹ : Semiring T inst✝ : StarRing R hr : ∀ (a b : R), r a b → r (Star.star a) (Star.star b) a b : R h : Rel r a b ⊢ Rel r (Star.star a) (Star.star b) [PROOFSTEP] induction h with | of h => exact Rel.of (hr _ _ h) | add_left _ h => rw [star_add, star_add] exact Rel.add_left h | mul_left _ h => rw [star_mul, star_mul] exact Rel.mul_right h | mul_right _ h => rw [star_mul, star_mul] exact Rel.mul_left h [GOAL] R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r : R → R → Prop inst✝¹ : Semiring T inst✝ : StarRing R hr : ∀ (a b : R), r a b → r (Star.star a) (Star.star b) a b : R h : Rel r a b ⊢ Rel r (Star.star a) (Star.star b) [PROOFSTEP] induction h with | of h => exact Rel.of (hr _ _ h) | add_left _ h => rw [star_add, star_add] exact Rel.add_left h | mul_left _ h => rw [star_mul, star_mul] exact Rel.mul_right h | mul_right _ h => rw [star_mul, star_mul] exact Rel.mul_left h [GOAL] case of R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r : R → R → Prop inst✝¹ : Semiring T inst✝ : StarRing R hr : ∀ (a b : R), r a b → r (Star.star a) (Star.star b) a b x✝ y✝ : R h : r x✝ y✝ ⊢ Rel r (Star.star x✝) (Star.star y✝) [PROOFSTEP] | of h => exact Rel.of (hr _ _ h) [GOAL] case of R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r : R → R → Prop inst✝¹ : Semiring T inst✝ : StarRing R hr : ∀ (a b : R), r a b → r (Star.star a) (Star.star b) a b x✝ y✝ : R h : r x✝ y✝ ⊢ Rel r (Star.star x✝) (Star.star y✝) [PROOFSTEP] exact Rel.of (hr _ _ h) [GOAL] case add_left R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r : R → R → Prop inst✝¹ : Semiring T inst✝ : StarRing R hr : ∀ (a b : R), r a b → r (Star.star a) (Star.star b) a b a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ h : Rel r (Star.star a✝¹) (Star.star b✝) ⊢ Rel r (Star.star (a✝¹ + c✝)) (Star.star (b✝ + c✝)) [PROOFSTEP] | add_left _ h => rw [star_add, star_add] exact Rel.add_left h [GOAL] case add_left R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r : R → R → Prop inst✝¹ : Semiring T inst✝ : StarRing R hr : ∀ (a b : R), r a b → r (Star.star a) (Star.star b) a b a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ h : Rel r (Star.star a✝¹) (Star.star b✝) ⊢ Rel r (Star.star (a✝¹ + c✝)) (Star.star (b✝ + c✝)) [PROOFSTEP] rw [star_add, star_add] [GOAL] case add_left R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r : R → R → Prop inst✝¹ : Semiring T inst✝ : StarRing R hr : ∀ (a b : R), r a b → r (Star.star a) (Star.star b) a b a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ h : Rel r (Star.star a✝¹) (Star.star b✝) ⊢ Rel r (Star.star a✝¹ + Star.star c✝) (Star.star b✝ + Star.star c✝) [PROOFSTEP] exact Rel.add_left h [GOAL] case mul_left R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r : R → R → Prop inst✝¹ : Semiring T inst✝ : StarRing R hr : ∀ (a b : R), r a b → r (Star.star a) (Star.star b) a b a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ h : Rel r (Star.star a✝¹) (Star.star b✝) ⊢ Rel r (Star.star (a✝¹ * c✝)) (Star.star (b✝ * c✝)) [PROOFSTEP] | mul_left _ h => rw [star_mul, star_mul] exact Rel.mul_right h [GOAL] case mul_left R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r : R → R → Prop inst✝¹ : Semiring T inst✝ : StarRing R hr : ∀ (a b : R), r a b → r (Star.star a) (Star.star b) a b a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ h : Rel r (Star.star a✝¹) (Star.star b✝) ⊢ Rel r (Star.star (a✝¹ * c✝)) (Star.star (b✝ * c✝)) [PROOFSTEP] rw [star_mul, star_mul] [GOAL] case mul_left R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r : R → R → Prop inst✝¹ : Semiring T inst✝ : StarRing R hr : ∀ (a b : R), r a b → r (Star.star a) (Star.star b) a b a✝¹ b✝ c✝ : R a✝ : Rel r a✝¹ b✝ h : Rel r (Star.star a✝¹) (Star.star b✝) ⊢ Rel r (Star.star c✝ * Star.star a✝¹) (Star.star c✝ * Star.star b✝) [PROOFSTEP] exact Rel.mul_right h [GOAL] case mul_right R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r : R → R → Prop inst✝¹ : Semiring T inst✝ : StarRing R hr : ∀ (a b : R), r a b → r (Star.star a) (Star.star b) a b a✝¹ b✝ c✝ : R a✝ : Rel r b✝ c✝ h : Rel r (Star.star b✝) (Star.star c✝) ⊢ Rel r (Star.star (a✝¹ * b✝)) (Star.star (a✝¹ * c✝)) [PROOFSTEP] | mul_right _ h => rw [star_mul, star_mul] exact Rel.mul_left h [GOAL] case mul_right R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r : R → R → Prop inst✝¹ : Semiring T inst✝ : StarRing R hr : ∀ (a b : R), r a b → r (Star.star a) (Star.star b) a b a✝¹ b✝ c✝ : R a✝ : Rel r b✝ c✝ h : Rel r (Star.star b✝) (Star.star c✝) ⊢ Rel r (Star.star (a✝¹ * b✝)) (Star.star (a✝¹ * c✝)) [PROOFSTEP] rw [star_mul, star_mul] [GOAL] case mul_right R : Type uR inst✝⁵ : Semiring R S : Type uS inst✝⁴ : CommSemiring S T : Type uT A : Type uA inst✝³ : Semiring A inst✝² : Algebra S A r : R → R → Prop inst✝¹ : Semiring T inst✝ : StarRing R hr : ∀ (a b : R), r a b → r (Star.star a) (Star.star b) a b a✝¹ b✝ c✝ : R a✝ : Rel r b✝ c✝ h : Rel r (Star.star b✝) (Star.star c✝) ⊢ Rel r (Star.star b✝ * Star.star a✝¹) (Star.star c✝ * Star.star a✝¹) [PROOFSTEP] exact Rel.mul_left h [GOAL] R✝ : Type uR inst✝⁷ : Semiring R✝ S : Type uS inst✝⁶ : CommSemiring S T : Type uT A : Type uA inst✝⁵ : Semiring A inst✝⁴ : Algebra S A r✝ : R✝ → R✝ → Prop inst✝³ : Semiring T inst✝² : StarRing R✝ hr✝ : ∀ (a b : R✝), r✝ a b → r✝ (star a) (star b) R : Type uR inst✝¹ : Semiring R inst✝ : StarRing R r : R → R → Prop hr : ∀ (a b : R), r a b → r (star a) (star b) ⊢ Function.Involutive star [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.mk R✝ : Type uR inst✝⁷ : Semiring R✝ S : Type uS inst✝⁶ : CommSemiring S T : Type uT A : Type uA inst✝⁵ : Semiring A inst✝⁴ : Algebra S A r✝ : R✝ → R✝ → Prop inst✝³ : Semiring T inst✝² : StarRing R✝ hr✝ : ∀ (a b : R✝), r✝ a b → r✝ (star a) (star b) R : Type uR inst✝¹ : Semiring R inst✝ : StarRing R r : R → R → Prop hr : ∀ (a b : R), r a b → r (star a) (star b) toQuot✝ : Quot (Rel r) a✝ : R ⊢ star (star { toQuot := Quot.mk (Rel r) a✝ }) = { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp [star'_quot] [GOAL] R✝ : Type uR inst✝⁷ : Semiring R✝ S : Type uS inst✝⁶ : CommSemiring S T : Type uT A : Type uA inst✝⁵ : Semiring A inst✝⁴ : Algebra S A r✝ : R✝ → R✝ → Prop inst✝³ : Semiring T inst✝² : StarRing R✝ hr✝ : ∀ (a b : R✝), r✝ a b → r✝ (star a) (star b) R : Type uR inst✝¹ : Semiring R inst✝ : StarRing R r : R → R → Prop hr : ∀ (a b : R), r a b → r (star a) (star b) ⊢ ∀ (r_1 s : RingQuot r), star (r_1 * s) = star s * star r_1 [PROOFSTEP] rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ [GOAL] case mk.mk.mk.mk R✝ : Type uR inst✝⁷ : Semiring R✝ S : Type uS inst✝⁶ : CommSemiring S T : Type uT A : Type uA inst✝⁵ : Semiring A inst✝⁴ : Algebra S A r✝ : R✝ → R✝ → Prop inst✝³ : Semiring T inst✝² : StarRing R✝ hr✝ : ∀ (a b : R✝), r✝ a b → r✝ (star a) (star b) R : Type uR inst✝¹ : Semiring R inst✝ : StarRing R r : R → R → Prop hr : ∀ (a b : R), r a b → r (star a) (star b) toQuot✝¹ : Quot (Rel r) a✝¹ : R toQuot✝ : Quot (Rel r) a✝ : R ⊢ star ({ toQuot := Quot.mk (Rel r) a✝¹ } * { toQuot := Quot.mk (Rel r) a✝ }) = star { toQuot := Quot.mk (Rel r) a✝ } * star { toQuot := Quot.mk (Rel r) a✝¹ } [PROOFSTEP] simp [star'_quot, mul_quot, star_mul] [GOAL] R✝ : Type uR inst✝⁷ : Semiring R✝ S : Type uS inst✝⁶ : CommSemiring S T : Type uT A : Type uA inst✝⁵ : Semiring A inst✝⁴ : Algebra S A r✝ : R✝ → R✝ → Prop inst✝³ : Semiring T inst✝² : StarRing R✝ hr✝ : ∀ (a b : R✝), r✝ a b → r✝ (star a) (star b) R : Type uR inst✝¹ : Semiring R inst✝ : StarRing R r : R → R → Prop hr : ∀ (a b : R), r a b → r (star a) (star b) ⊢ ∀ (r_1 s : RingQuot r), star (r_1 + s) = star r_1 + star s [PROOFSTEP] rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ [GOAL] case mk.mk.mk.mk R✝ : Type uR inst✝⁷ : Semiring R✝ S : Type uS inst✝⁶ : CommSemiring S T : Type uT A : Type uA inst✝⁵ : Semiring A inst✝⁴ : Algebra S A r✝ : R✝ → R✝ → Prop inst✝³ : Semiring T inst✝² : StarRing R✝ hr✝ : ∀ (a b : R✝), r✝ a b → r✝ (star a) (star b) R : Type uR inst✝¹ : Semiring R inst✝ : StarRing R r : R → R → Prop hr : ∀ (a b : R), r a b → r (star a) (star b) toQuot✝¹ : Quot (Rel r) a✝¹ : R toQuot✝ : Quot (Rel r) a✝ : R ⊢ star ({ toQuot := Quot.mk (Rel r) a✝¹ } + { toQuot := Quot.mk (Rel r) a✝ }) = star { toQuot := Quot.mk (Rel r) a✝¹ } + star { toQuot := Quot.mk (Rel r) a✝ } [PROOFSTEP] simp [star'_quot, add_quot, star_add] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r : R → R → Prop inst✝ : Semiring T s : A → A → Prop src✝ : A →+* RingQuot s := mkRingHom s x✝ : S ⊢ OneHom.toFun (↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap S A) x✝) = ↑(algebraMap S (RingQuot s)) x✝ [PROOFSTEP] simp [mkRingHom_def] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r : R → R → Prop inst✝ : Semiring T s : A → A → Prop src✝ : A →+* RingQuot s := mkRingHom s x✝ : S ⊢ { toQuot := Quot.mk (Rel s) (↑(algebraMap S A) x✝) } = ↑(algebraMap S (RingQuot s)) x✝ [PROOFSTEP] rfl [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r : R → R → Prop inst✝ : Semiring T s : A → A → Prop ⊢ ↑(mkAlgHom S s) = mkRingHom s [PROOFSTEP] simp_rw [mkAlgHom_def, mkRingHom_def] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r : R → R → Prop inst✝ : Semiring T s : A → A → Prop ⊢ ↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) y) }, commutes' := (_ : ∀ (r : S), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) y) }) (↑(algebraMap S A) r) = ↑(algebraMap S (RingQuot s)) r) } = { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }, map_zero' := (_ : { toQuot := Quot.mk (Rel s) 0 } = 0), map_add' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a + a_1) } = { toQuot := Quot.mk (Rel s) a } + { toQuot := Quot.mk (Rel s) a_1 }) } [PROOFSTEP] rfl [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r : R → R → Prop inst✝ : Semiring T s : A → A → Prop x y : A w : s x y ⊢ ↑(mkAlgHom S s) x = ↑(mkAlgHom S s) y [PROOFSTEP] simp [mkAlgHom_def, mkRingHom_def, Quot.sound (Rel.of w)] [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r : R → R → Prop inst✝ : Semiring T s : A → A → Prop ⊢ Function.Surjective ↑(mkAlgHom S s) [PROOFSTEP] suffices : Function.Surjective fun x ↦ (⟨.mk (Rel s) x⟩ : RingQuot s) [GOAL] R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r : R → R → Prop inst✝ : Semiring T s : A → A → Prop this : Function.Surjective fun x => { toQuot := Quot.mk (Rel s) x } ⊢ Function.Surjective ↑(mkAlgHom S s) [PROOFSTEP] simpa [mkAlgHom_def, mkRingHom_def] [GOAL] case this R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r : R → R → Prop inst✝ : Semiring T s : A → A → Prop ⊢ Function.Surjective fun x => { toQuot := Quot.mk (Rel s) x } [PROOFSTEP] rintro ⟨⟨a⟩⟩ [GOAL] case this.mk.mk R : Type uR inst✝⁴ : Semiring R S : Type uS inst✝³ : CommSemiring S T : Type uT A : Type uA inst✝² : Semiring A inst✝¹ : Algebra S A r : R → R → Prop inst✝ : Semiring T s : A → A → Prop toQuot✝ : Quot (Rel s) a : A ⊢ ∃ a_1, (fun x => { toQuot := Quot.mk (Rel s) x }) a_1 = { toQuot := Quot.mk (Rel s) a } [PROOFSTEP] use a [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f g : RingQuot s →ₐ[S] B w : AlgHom.comp f (mkAlgHom S s) = AlgHom.comp g (mkAlgHom S s) ⊢ f = g [PROOFSTEP] ext x [GOAL] case H R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f g : RingQuot s →ₐ[S] B w : AlgHom.comp f (mkAlgHom S s) = AlgHom.comp g (mkAlgHom S s) x : RingQuot s ⊢ ↑f x = ↑g x [PROOFSTEP] rcases mkAlgHom_surjective S s x with ⟨x, rfl⟩ [GOAL] case H.intro R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f g : RingQuot s →ₐ[S] B w : AlgHom.comp f (mkAlgHom S s) = AlgHom.comp g (mkAlgHom S s) x : A ⊢ ↑f (↑(mkAlgHom S s) x) = ↑g (↑(mkAlgHom S s) x) [PROOFSTEP] exact AlgHom.congr_fun w x [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : RingQuot s ⊢ ∀ (a b : A), Rel s a b → ↑f a = ↑f b [PROOFSTEP] rintro _ _ r [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r✝ : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : RingQuot s a✝ b✝ : A r : Rel s a✝ b✝ ⊢ ↑f a✝ = ↑f b✝ [PROOFSTEP] induction r with | of r => exact h r | add_left _ r' => simp only [map_add, r'] | mul_left _ r' => simp only [map_mul, r'] | mul_right _ r' => simp only [map_mul, r'] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r✝ : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : RingQuot s a✝ b✝ : A r : Rel s a✝ b✝ ⊢ ↑f a✝ = ↑f b✝ [PROOFSTEP] induction r with | of r => exact h r | add_left _ r' => simp only [map_add, r'] | mul_left _ r' => simp only [map_mul, r'] | mul_right _ r' => simp only [map_mul, r'] [GOAL] case of R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r✝ : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : RingQuot s a✝ b✝ x✝ y✝ : A r : s x✝ y✝ ⊢ ↑f x✝ = ↑f y✝ [PROOFSTEP] | of r => exact h r [GOAL] case of R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r✝ : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : RingQuot s a✝ b✝ x✝ y✝ : A r : s x✝ y✝ ⊢ ↑f x✝ = ↑f y✝ [PROOFSTEP] exact h r [GOAL] case add_left R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : RingQuot s a✝² b✝¹ a✝¹ b✝ c✝ : A a✝ : Rel s a✝¹ b✝ r' : ↑f a✝¹ = ↑f b✝ ⊢ ↑f (a✝¹ + c✝) = ↑f (b✝ + c✝) [PROOFSTEP] | add_left _ r' => simp only [map_add, r'] [GOAL] case add_left R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : RingQuot s a✝² b✝¹ a✝¹ b✝ c✝ : A a✝ : Rel s a✝¹ b✝ r' : ↑f a✝¹ = ↑f b✝ ⊢ ↑f (a✝¹ + c✝) = ↑f (b✝ + c✝) [PROOFSTEP] simp only [map_add, r'] [GOAL] case mul_left R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : RingQuot s a✝² b✝¹ a✝¹ b✝ c✝ : A a✝ : Rel s a✝¹ b✝ r' : ↑f a✝¹ = ↑f b✝ ⊢ ↑f (a✝¹ * c✝) = ↑f (b✝ * c✝) [PROOFSTEP] | mul_left _ r' => simp only [map_mul, r'] [GOAL] case mul_left R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : RingQuot s a✝² b✝¹ a✝¹ b✝ c✝ : A a✝ : Rel s a✝¹ b✝ r' : ↑f a✝¹ = ↑f b✝ ⊢ ↑f (a✝¹ * c✝) = ↑f (b✝ * c✝) [PROOFSTEP] simp only [map_mul, r'] [GOAL] case mul_right R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : RingQuot s a✝² b✝¹ a✝¹ b✝ c✝ : A a✝ : Rel s b✝ c✝ r' : ↑f b✝ = ↑f c✝ ⊢ ↑f (a✝¹ * b✝) = ↑f (a✝¹ * c✝) [PROOFSTEP] | mul_right _ r' => simp only [map_mul, r'] [GOAL] case mul_right R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : RingQuot s a✝² b✝¹ a✝¹ b✝ c✝ : A a✝ : Rel s b✝ c✝ r' : ↑f b✝ = ↑f c✝ ⊢ ↑f (a✝¹ * b✝) = ↑f (a✝¹ * c✝) [PROOFSTEP] simp only [map_mul, r'] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y ⊢ (fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot) 1 = 1 [PROOFSTEP] simp only [← one_quot, f.map_one] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y ⊢ ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y [PROOFSTEP] rintro ⟨⟨x⟩⟩ ⟨⟨y⟩⟩ [GOAL] case mk.mk.mk.mk R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y toQuot✝¹ : Quot (Rel s) x : A toQuot✝ : Quot (Rel s) y : A ⊢ OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } ({ toQuot := Quot.mk (Rel s) x } * { toQuot := Quot.mk (Rel s) y }) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } { toQuot := Quot.mk (Rel s) x } * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } { toQuot := Quot.mk (Rel s) y } [PROOFSTEP] simp only [mul_quot, f.map_mul x y] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) 0 = 0 [PROOFSTEP] simp only [← zero_quot, f.map_zero] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y ⊢ ∀ (x y : RingQuot s), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) y [PROOFSTEP] rintro ⟨⟨x⟩⟩ ⟨⟨y⟩⟩ [GOAL] case mk.mk.mk.mk R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y toQuot✝¹ : Quot (Rel s) x : A toQuot✝ : Quot (Rel s) y : A ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) ({ toQuot := Quot.mk (Rel s) x } + { toQuot := Quot.mk (Rel s) y }) = OneHom.toFun ↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) } { toQuot := Quot.mk (Rel s) x } + OneHom.toFun ↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) } { toQuot := Quot.mk (Rel s) y } [PROOFSTEP] simp only [add_quot, f.map_add x y] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y ⊢ ∀ (r : S), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot s), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) y) }) (↑(algebraMap S (RingQuot s)) r) = ↑(algebraMap S B) r [PROOFSTEP] rintro x [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : A →ₐ[S] B h : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : S ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot s), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot s), OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) x.toQuot, map_one' := (_ : Quot.lift ↑f (_ : ∀ (a b : A), Rel s a b → ↑f a = ↑f b) 1.toQuot = 1) } y) }) y) }) (↑(algebraMap S (RingQuot s)) x) = ↑(algebraMap S B) x [PROOFSTEP] simp [← one_quot, smul_quot, Algebra.algebraMap_eq_smul_one] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : { f // ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y } ⊢ (fun F => { val := AlgHom.comp F (mkAlgHom S s), property := (_ : ∀ (x x_1 : A), s x x_1 → ↑F (↑↑(mkAlgHom S s) x) = ↑F (↑↑(mkAlgHom S s) x_1)) }) ((fun f' => preLiftAlgHom S (_ : ∀ ⦃x y : A⦄, s x y → ↑↑f' x = ↑↑f' y)) f) = f [PROOFSTEP] ext [GOAL] case a.H R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : { f // ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y } x✝ : A ⊢ ↑↑((fun F => { val := AlgHom.comp F (mkAlgHom S s), property := (_ : ∀ (x x_1 : A), s x x_1 → ↑F (↑↑(mkAlgHom S s) x) = ↑F (↑↑(mkAlgHom S s) x_1)) }) ((fun f' => preLiftAlgHom S (_ : ∀ ⦃x y : A⦄, s x y → ↑↑f' x = ↑↑f' y)) f)) x✝ = ↑↑f x✝ [PROOFSTEP] simp only [preLiftAlgHom_def, mkAlgHom_def, mkRingHom_def, RingHom.toMonoidHom_eq_coe, RingHom.coe_monoidHom_mk, AlgHom.coe_comp, AlgHom.coe_mk, RingHom.coe_mk, MonoidHom.coe_mk, OneHom.coe_mk, Function.comp_apply] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop F : RingQuot s →ₐ[S] B ⊢ (fun f' => preLiftAlgHom S (_ : ∀ ⦃x y : A⦄, s x y → ↑↑f' x = ↑↑f' y)) ((fun F => { val := AlgHom.comp F (mkAlgHom S s), property := (_ : ∀ (x x_1 : A), s x x_1 → ↑F (↑↑(mkAlgHom S s) x) = ↑F (↑↑(mkAlgHom S s) x_1)) }) F) = F [PROOFSTEP] ext [GOAL] case w.H R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop F : RingQuot s →ₐ[S] B x✝ : A ⊢ ↑(AlgHom.comp ((fun f' => preLiftAlgHom S (_ : ∀ ⦃x y : A⦄, s x y → ↑↑f' x = ↑↑f' y)) ((fun F => { val := AlgHom.comp F (mkAlgHom S s), property := (_ : ∀ (x x_1 : A), s x x_1 → ↑F (↑↑(mkAlgHom S s) x) = ↑F (↑↑(mkAlgHom S s) x_1)) }) F)) (mkAlgHom S s)) x✝ = ↑(AlgHom.comp F (mkAlgHom S s)) x✝ [PROOFSTEP] simp only [preLiftAlgHom_def, mkAlgHom_def, mkRingHom_def, RingHom.toMonoidHom_eq_coe, RingHom.coe_monoidHom_mk, AlgHom.coe_comp, AlgHom.coe_mk, RingHom.coe_mk, MonoidHom.coe_mk, OneHom.coe_mk, Function.comp_apply] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B f : A →ₐ[S] B s : A → A → Prop w : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : A ⊢ ↑(↑(liftAlgHom S) { val := f, property := w }) (↑(mkAlgHom S s) x) = ↑f x [PROOFSTEP] simp_rw [liftAlgHom_def, preLiftAlgHom_def, mkAlgHom_def, mkRingHom_def] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B f : A →ₐ[S] B s : A → A → Prop w : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y x : A ⊢ ↑(↑{ toFun := fun f' => { toRingHom := { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } y) }) y) }, commutes' := (_ : ∀ (x : S), Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) (↑(algebraMap S (RingQuot fun x y => s x y)) x).toQuot = ↑(algebraMap S B) x) }, invFun := fun F => { val := AlgHom.comp F { toRingHom := { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) y) }, commutes' := (_ : ∀ (r : S), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) y) }) (↑(algebraMap S A) r) = ↑(algebraMap S (RingQuot fun x y => s x y)) r) }, property := (_ : (fun f => ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y) (AlgHom.comp F { toRingHom := { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) y) }, commutes' := (_ : ∀ (r : S), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) y) }) (↑(algebraMap S A) r) = ↑(algebraMap S (RingQuot fun x y => s x y)) r) })) }, left_inv := (_ : Function.LeftInverse (fun F => { val := AlgHom.comp F { toRingHom := { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) y) }, commutes' := (_ : ∀ (r : S), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) y) }) (↑(algebraMap S A) r) = ↑(algebraMap S (RingQuot fun x y => s x y)) r) }, property := (_ : (fun f => ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y) (AlgHom.comp F { toRingHom := { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) y) }, commutes' := (_ : ∀ (r : S), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) y) }) (↑(algebraMap S A) r) = ↑(algebraMap S (RingQuot fun x y => s x y)) r) })) }) fun f' => { toRingHom := { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } y) }) y) }, commutes' := (_ : ∀ (x : S), Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) (↑(algebraMap S (RingQuot fun x y => s x y)) x).toQuot = ↑(algebraMap S B) x) }), right_inv := (_ : Function.RightInverse (fun F => { val := AlgHom.comp F { toRingHom := { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) y) }, commutes' := (_ : ∀ (r : S), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) y) }) (↑(algebraMap S A) r) = ↑(algebraMap S (RingQuot fun x y => s x y)) r) }, property := (_ : (fun f => ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y) (AlgHom.comp F { toRingHom := { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) y) }, commutes' := (_ : ∀ (r : S), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x }, map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } = { toQuot := Quot.mk (Rel fun x y => s x y) a } * { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) }) y) }) (↑(algebraMap S A) r) = ↑(algebraMap S (RingQuot fun x y => s x y)) r) })) }) fun f' => { toRingHom := { toMonoidHom := { toOneHom := { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } y) }, map_zero' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 0.toQuot = 0), map_add' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) }, map_mul' := (_ : ∀ (x y : RingQuot fun x y => s x y), OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } (x * y) = OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } x * OneHom.toFun { toFun := fun x => Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot, map_one' := (_ : Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 1.toQuot = 1) } y) }) y) }, commutes' := (_ : ∀ (x : S), Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) (↑(algebraMap S (RingQuot fun x y => s x y)) x).toQuot = ↑(algebraMap S B) x) }) } { val := f, property := w }) (↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) y) }, commutes' := (_ : ∀ (r : S), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => { toQuot := Quot.mk (Rel s) x }, map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) }, map_mul' := (_ : ∀ (a a_1 : A), { toQuot := Quot.mk (Rel s) (a * a_1) } = { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) }) y) }) (↑(algebraMap S A) r) = ↑(algebraMap S (RingQuot s)) r) } x) = ↑f x [PROOFSTEP] rfl [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B f : A →ₐ[S] B s : A → A → Prop w : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y g : RingQuot s →ₐ[S] B h : AlgHom.comp g (mkAlgHom S s) = f ⊢ g = ↑(liftAlgHom S) { val := f, property := w } [PROOFSTEP] ext [GOAL] case w.H R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B f : A →ₐ[S] B s : A → A → Prop w : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y g : RingQuot s →ₐ[S] B h : AlgHom.comp g (mkAlgHom S s) = f x✝ : A ⊢ ↑(AlgHom.comp g (mkAlgHom S s)) x✝ = ↑(AlgHom.comp (↑(liftAlgHom S) { val := f, property := w }) (mkAlgHom S s)) x✝ [PROOFSTEP] simp [h] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : RingQuot s →ₐ[S] B ⊢ f = ↑(liftAlgHom S) { val := AlgHom.comp f (mkAlgHom S s), property := (_ : ∀ (x y : A), s x y → ↑f (↑↑(mkAlgHom S s) x) = ↑f (↑↑(mkAlgHom S s) y)) } [PROOFSTEP] conv_lhs => rw [← (liftAlgHom S).apply_symm_apply f] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : RingQuot s →ₐ[S] B | f [PROOFSTEP] rw [← (liftAlgHom S).apply_symm_apply f] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : RingQuot s →ₐ[S] B | f [PROOFSTEP] rw [← (liftAlgHom S).apply_symm_apply f] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : RingQuot s →ₐ[S] B | f [PROOFSTEP] rw [← (liftAlgHom S).apply_symm_apply f] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : RingQuot s →ₐ[S] B ⊢ ↑(liftAlgHom S) (↑(liftAlgHom S).symm f) = ↑(liftAlgHom S) { val := AlgHom.comp f (mkAlgHom S s), property := (_ : ∀ (x y : A), s x y → ↑f (↑↑(mkAlgHom S s) x) = ↑f (↑↑(mkAlgHom S s) y)) } [PROOFSTEP] rw [liftAlgHom] [GOAL] R : Type uR inst✝⁶ : Semiring R S : Type uS inst✝⁵ : CommSemiring S T : Type uT A : Type uA inst✝⁴ : Semiring A inst✝³ : Algebra S A r : R → R → Prop inst✝² : Semiring T B : Type u₄ inst✝¹ : Semiring B inst✝ : Algebra S B s : A → A → Prop f : RingQuot s →ₐ[S] B ⊢ ↑{ toFun := fun f' => preLiftAlgHom S (_ : ∀ ⦃x y : A⦄, s x y → ↑↑f' x = ↑↑f' y), invFun := fun F => { val := AlgHom.comp F (mkAlgHom S s), property := (_ : ∀ (x x_1 : A), s x x_1 → ↑F (↑↑(mkAlgHom S s) x) = ↑F (↑↑(mkAlgHom S s) x_1)) }, left_inv := (_ : ∀ (f : { f // ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y }), (fun F => { val := AlgHom.comp F (mkAlgHom S s), property := (_ : ∀ (x x_1 : A), s x x_1 → ↑F (↑↑(mkAlgHom S s) x) = ↑F (↑↑(mkAlgHom S s) x_1)) }) ((fun f' => preLiftAlgHom S (_ : ∀ ⦃x y : A⦄, s x y → ↑↑f' x = ↑↑f' y)) f) = f), right_inv := (_ : ∀ (F : RingQuot s →ₐ[S] B), (fun f' => preLiftAlgHom S (_ : ∀ ⦃x y : A⦄, s x y → ↑↑f' x = ↑↑f' y)) ((fun F => { val := AlgHom.comp F (mkAlgHom S s), property := (_ : ∀ (x x_1 : A), s x x_1 → ↑F (↑↑(mkAlgHom S s) x) = ↑F (↑↑(mkAlgHom S s) x_1)) }) F) = F) } (↑{ toFun := fun f' => preLiftAlgHom S (_ : ∀ ⦃x y : A⦄, s x y → ↑↑f' x = ↑↑f' y), invFun := fun F => { val := AlgHom.comp F (mkAlgHom S s), property := (_ : ∀ (x x_1 : A), s x x_1 → ↑F (↑↑(mkAlgHom S s) x) = ↑F (↑↑(mkAlgHom S s) x_1)) }, left_inv := (_ : ∀ (f : { f // ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y }), (fun F => { val := AlgHom.comp F (mkAlgHom S s), property := (_ : ∀ (x x_1 : A), s x x_1 → ↑F (↑↑(mkAlgHom S s) x) = ↑F (↑↑(mkAlgHom S s) x_1)) }) ((fun f' => preLiftAlgHom S (_ : ∀ ⦃x y : A⦄, s x y → ↑↑f' x = ↑↑f' y)) f) = f), right_inv := (_ : ∀ (F : RingQuot s →ₐ[S] B), (fun f' => preLiftAlgHom S (_ : ∀ ⦃x y : A⦄, s x y → ↑↑f' x = ↑↑f' y)) ((fun F => { val := AlgHom.comp F (mkAlgHom S s), property := (_ : ∀ (x x_1 : A), s x x_1 → ↑F (↑↑(mkAlgHom S s) x) = ↑F (↑↑(mkAlgHom S s) x_1)) }) F) = F) }.symm f) = ↑{ toFun := fun f' => preLiftAlgHom S (_ : ∀ ⦃x y : A⦄, s x y → ↑↑f' x = ↑↑f' y), invFun := fun F => { val := AlgHom.comp F (mkAlgHom S s), property := (_ : ∀ (x x_1 : A), s x x_1 → ↑F (↑↑(mkAlgHom S s) x) = ↑F (↑↑(mkAlgHom S s) x_1)) }, left_inv := (_ : ∀ (f : { f // ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y }), (fun F => { val := AlgHom.comp F (mkAlgHom S s), property := (_ : ∀ (x x_1 : A), s x x_1 → ↑F (↑↑(mkAlgHom S s) x) = ↑F (↑↑(mkAlgHom S s) x_1)) }) ((fun f' => preLiftAlgHom S (_ : ∀ ⦃x y : A⦄, s x y → ↑↑f' x = ↑↑f' y)) f) = f), right_inv := (_ : ∀ (F : RingQuot s →ₐ[S] B), (fun f' => preLiftAlgHom S (_ : ∀ ⦃x y : A⦄, s x y → ↑↑f' x = ↑↑f' y)) ((fun F => { val := AlgHom.comp F (mkAlgHom S s), property := (_ : ∀ (x x_1 : A), s x x_1 → ↑F (↑↑(mkAlgHom S s) x) = ↑F (↑↑(mkAlgHom S s) x_1)) }) F) = F) } { val := AlgHom.comp f (mkAlgHom S s), property := (_ : ∀ (x y : A), s x y → ↑f (↑↑(mkAlgHom S s) x) = ↑f (↑↑(mkAlgHom S s) y)) } [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.RingQuot", "llama_tokens": 179861}
[GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x : A ⊢ ⅟2 • (x + star x) ∈ selfAdjoint A [PROOFSTEP] simp only [selfAdjoint.mem_iff, star_smul, add_comm, StarAddMonoid.star_add, star_inv', star_bit0, star_one, star_star, star_invOf (2 : R), star_trivial] [GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x y : A ⊢ (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) (x + y) = (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) x + (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) y [PROOFSTEP] ext [GOAL] case a R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x y : A ⊢ ↑((fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) (x + y)) = ↑((fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) x + (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) y) [PROOFSTEP] simp [add_add_add_comm] [GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 r : R x : A ⊢ AddHom.toFun { toFun := fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }, map_add' := (_ : ∀ (x y : A), (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) (x + y) = (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) x + (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }, map_add' := (_ : ∀ (x y : A), (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) (x + y) = (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) x + (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) y) } x [PROOFSTEP] ext [GOAL] case a R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 r : R x : A ⊢ ↑(AddHom.toFun { toFun := fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }, map_add' := (_ : ∀ (x y : A), (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) (x + y) = (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) x + (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) y) } (r • x)) = ↑(↑(RingHom.id R) r • AddHom.toFun { toFun := fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }, map_add' := (_ : ∀ (x y : A), (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) (x + y) = (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) x + (fun x => { val := ⅟2 • (x + star x), property := (_ : ⅟2 • (x + star x) ∈ selfAdjoint A) }) y) } x) [PROOFSTEP] simp [← mul_smul, show ⅟2 * r = r * ⅟2 from Commute.invOf_left <| (2 : ℕ).cast_commute r] [GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x : A ⊢ ⅟2 • (x - star x) ∈ skewAdjoint A [PROOFSTEP] simp only [skewAdjoint.mem_iff, star_smul, star_sub, star_star, star_trivial, ← smul_neg, neg_sub] [GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x y : A ⊢ (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) (x + y) = (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) x + (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) y [PROOFSTEP] ext [GOAL] case a R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x y : A ⊢ ↑((fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) (x + y)) = ↑((fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) x + (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) y) [PROOFSTEP] simp only [sub_add, ← smul_add, sub_sub_eq_add_sub, star_add, AddSubgroup.coe_mk, AddSubgroup.coe_add] [GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 r : R x : A ⊢ AddHom.toFun { toFun := fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }, map_add' := (_ : ∀ (x y : A), (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) (x + y) = (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) x + (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }, map_add' := (_ : ∀ (x y : A), (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) (x + y) = (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) x + (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) y) } x [PROOFSTEP] ext [GOAL] case a R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 r : R x : A ⊢ ↑(AddHom.toFun { toFun := fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }, map_add' := (_ : ∀ (x y : A), (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) (x + y) = (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) x + (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) y) } (r • x)) = ↑(↑(RingHom.id R) r • AddHom.toFun { toFun := fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }, map_add' := (_ : ∀ (x y : A), (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) (x + y) = (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) x + (fun x => { val := ⅟2 • (x - star x), property := (_ : ⅟2 • (x - star x) ∈ skewAdjoint A) }) y) } x) [PROOFSTEP] simp [← mul_smul, ← smul_sub, show r * ⅟2 = ⅟2 * r from Commute.invOf_right <| (2 : ℕ).commute_cast r] [GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x : A ⊢ ↑(↑(selfAdjointPart R) x) + ↑(↑(skewAdjointPart R) x) = x [PROOFSTEP] simp only [smul_sub, selfAdjointPart_apply_coe, smul_add, skewAdjointPart_apply_coe, add_add_sub_cancel, invOf_two_smul_add_invOf_two_smul] [GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x : A hx : IsSelfAdjoint x ⊢ ↑(↑(selfAdjointPart R) x) = x [PROOFSTEP] rw [selfAdjointPart_apply_coe, hx.star_eq, smul_add, invOf_two_smul_add_invOf_two_smul] [GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x : A hx : IsSelfAdjoint x ⊢ ↑(↑(skewAdjointPart R) x) = ↑0 [PROOFSTEP] rw [skewAdjointPart_apply_coe, hx.star_eq, sub_self, smul_zero, ZeroMemClass.coe_zero] -- porting note: todo: make it a `simp` [GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x✝ : { x // x ∈ skewAdjoint.submodule R A } x : A hx : star x = -x ⊢ ↑(↑(LinearMap.comp (selfAdjointPart R) (Submodule.subtype (skewAdjoint.submodule R A))) { val := x, property := hx }) = ↑(↑0 { val := x, property := hx }) [PROOFSTEP] simp [hx] -- porting note: todo: make it a `simp` [GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x✝ : { x // x ∈ skewAdjoint.submodule R A } x : A hx : star x = -x ⊢ ↑(↑(LinearMap.comp (skewAdjointPart R) (Submodule.subtype (skewAdjoint.submodule R A))) { val := x, property := hx }) = ↑(↑LinearMap.id { val := x, property := hx }) [PROOFSTEP] simp only [LinearMap.comp_apply, Submodule.subtype_apply, skewAdjointPart_apply_coe, hx, sub_neg_eq_add, smul_add, invOf_two_smul_add_invOf_two_smul] [GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x✝ : { x // x ∈ skewAdjoint.submodule R A } x : A hx : star x = -x ⊢ x = ↑(↑LinearMap.id { val := x, property := hx }) [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 ⊢ A ≃ₗ[R] { x // x ∈ selfAdjoint A } × { x // x ∈ skewAdjoint A } [PROOFSTEP] refine LinearEquiv.ofLinear ((selfAdjointPart R).prod (skewAdjointPart R)) (LinearMap.coprod ((selfAdjoint.submodule R A).subtype) (skewAdjoint.submodule R A).subtype) ?_ (LinearMap.ext <| StarModule.selfAdjointPart_add_skewAdjointPart R) [GOAL] R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 ⊢ LinearMap.comp (LinearMap.prod (selfAdjointPart R) (skewAdjointPart R)) (LinearMap.coprod (Submodule.subtype (selfAdjoint.submodule R A)) (Submodule.subtype (skewAdjoint.submodule R A))) = LinearMap.id [PROOFSTEP] ext [GOAL] case hl.h.h₁.a R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x✝ : { x // x ∈ selfAdjoint A } ⊢ ↑(↑(LinearMap.comp (LinearMap.comp (LinearMap.prod (selfAdjointPart R) (skewAdjointPart R)) (LinearMap.coprod (Submodule.subtype (selfAdjoint.submodule R A)) (Submodule.subtype (skewAdjoint.submodule R A)))) (LinearMap.inl R { x // x ∈ selfAdjoint A } { x // x ∈ skewAdjoint A })) x✝).fst = ↑(↑(LinearMap.comp LinearMap.id (LinearMap.inl R { x // x ∈ selfAdjoint A } { x // x ∈ skewAdjoint A })) x✝).fst [PROOFSTEP] simp [GOAL] case hl.h.h₂.a R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x✝ : { x // x ∈ selfAdjoint A } ⊢ ↑(↑(LinearMap.comp (LinearMap.comp (LinearMap.prod (selfAdjointPart R) (skewAdjointPart R)) (LinearMap.coprod (Submodule.subtype (selfAdjoint.submodule R A)) (Submodule.subtype (skewAdjoint.submodule R A)))) (LinearMap.inl R { x // x ∈ selfAdjoint A } { x // x ∈ skewAdjoint A })) x✝).snd = ↑(↑(LinearMap.comp LinearMap.id (LinearMap.inl R { x // x ∈ selfAdjoint A } { x // x ∈ skewAdjoint A })) x✝).snd [PROOFSTEP] simp [GOAL] case hr.h.h₁.a R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x✝ : { x // x ∈ skewAdjoint A } ⊢ ↑(↑(LinearMap.comp (LinearMap.comp (LinearMap.prod (selfAdjointPart R) (skewAdjointPart R)) (LinearMap.coprod (Submodule.subtype (selfAdjoint.submodule R A)) (Submodule.subtype (skewAdjoint.submodule R A)))) (LinearMap.inr R { x // x ∈ selfAdjoint A } { x // x ∈ skewAdjoint A })) x✝).fst = ↑(↑(LinearMap.comp LinearMap.id (LinearMap.inr R { x // x ∈ selfAdjoint A } { x // x ∈ skewAdjoint A })) x✝).fst [PROOFSTEP] simp [GOAL] case hr.h.h₂.a R : Type u_1 A : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : StarSemigroup R inst✝⁵ : TrivialStar R inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : StarAddMonoid A inst✝¹ : StarModule R A inst✝ : Invertible 2 x✝ : { x // x ∈ skewAdjoint A } ⊢ ↑(↑(LinearMap.comp (LinearMap.comp (LinearMap.prod (selfAdjointPart R) (skewAdjointPart R)) (LinearMap.coprod (Submodule.subtype (selfAdjoint.submodule R A)) (Submodule.subtype (skewAdjoint.submodule R A)))) (LinearMap.inr R { x // x ∈ selfAdjoint A } { x // x ∈ skewAdjoint A })) x✝).snd = ↑(↑(LinearMap.comp LinearMap.id (LinearMap.inr R { x // x ∈ selfAdjoint A } { x // x ∈ skewAdjoint A })) x✝).snd [PROOFSTEP] simp [GOAL] R✝ : Type u_1 A✝ : Type u_2 inst✝¹³ : Semiring R✝ inst✝¹² : StarSemigroup R✝ inst✝¹¹ : TrivialStar R✝ inst✝¹⁰ : AddCommGroup A✝ inst✝⁹ : Module R✝ A✝ inst✝⁸ : StarAddMonoid A✝ inst✝⁷ : StarModule R✝ A✝ inst✝⁶ : Invertible 2 R : Type u_3 A : Type u_4 inst✝⁵ : CommSemiring R inst✝⁴ : StarRing R inst✝³ : Semiring A inst✝² : StarSemigroup A inst✝¹ : Algebra R A inst✝ : StarModule R A r : R ⊢ ↑(algebraMap R A) (star r) = star (↑(algebraMap R A) r) [PROOFSTEP] simp only [Algebra.algebraMap_eq_smul_one, star_smul, star_one]
{"mathlib_filename": "Mathlib.Algebra.Star.Module", "llama_tokens": 7339}
[GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : Semiring α h : ∀ (a : α), a + a = a src✝ : Semiring α := inst✝ a b c : α hab : a ≤ b hbc : b ≤ c ⊢ a ≤ c [PROOFSTEP] simp only [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : Semiring α h : ∀ (a : α), a + a = a src✝ : Semiring α := inst✝ a b c : α hab : a ≤ b hbc : b ≤ c ⊢ a + c = c [PROOFSTEP] rw [← hbc, ← add_assoc, hab] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : Semiring α h : ∀ (a : α), a + a = a src✝ : Semiring α := inst✝ a b : α hab : a ≤ b hba : b ≤ a ⊢ a = b [PROOFSTEP] rwa [← hba, add_comm] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : Semiring α h : ∀ (a : α), a + a = a src✝ : Semiring α := inst✝ a b : α ⊢ a ≤ a ⊔ b [PROOFSTEP] simp only [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : Semiring α h : ∀ (a : α), a + a = a src✝ : Semiring α := inst✝ a b : α ⊢ a + (a + b) = a + b [PROOFSTEP] rw [← add_assoc, h] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : Semiring α h : ∀ (a : α), a + a = a src✝ : Semiring α := inst✝ a b : α ⊢ b ≤ a ⊔ b [PROOFSTEP] simp only [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : Semiring α h : ∀ (a : α), a + a = a src✝ : Semiring α := inst✝ a b : α ⊢ b + (a + b) = a + b [PROOFSTEP] rw [add_comm, add_assoc, h] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : Semiring α h : ∀ (a : α), a + a = a src✝ : Semiring α := inst✝ a b c : α hab : a ≤ c hbc : b ≤ c ⊢ a ⊔ b ≤ c [PROOFSTEP] simp only [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : Semiring α h : ∀ (a : α), a + a = a src✝ : Semiring α := inst✝ a b c : α hab : a ≤ c hbc : b ≤ c ⊢ a + b + c = c [PROOFSTEP] rwa [add_assoc, hbc] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : IdemSemiring α a✝ b c a : α ⊢ a + a = a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : IdemSemiring α a✝ b c : α n : ℕ x✝ : n + 2 ≠ 0 a : α ⊢ (n + 2) • a = a [PROOFSTEP] rw [succ_nsmul, nsmul_eq_self n.succ_ne_zero, add_idem] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : IdemSemiring α a b c : α ⊢ a + b = a ↔ b ≤ a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : IdemSemiring α a b c : α ⊢ a + b = b ↔ a ≤ b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : IdemSemiring α a b c : α ⊢ a + b ≤ c ↔ a ≤ c ∧ b ≤ c [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : IdemSemiring α a✝ b✝ c✝ : α src✝ : IdemSemiring α := inst✝ a b : α hbc : a ≤ b c : α ⊢ c + a ≤ c + b [PROOFSTEP] simp_rw [add_eq_sup] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : IdemSemiring α a✝ b✝ c✝ : α src✝ : IdemSemiring α := inst✝ a b : α hbc : a ≤ b c : α ⊢ c ⊔ a ≤ c ⊔ b [PROOFSTEP] exact sup_le_sup_left hbc _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : IdemSemiring α a✝ b✝ c : α src✝ : IdemSemiring α := inst✝ a b : α ⊢ a + (a + b) = a + b [PROOFSTEP] rw [← add_assoc, add_idem] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : IdemSemiring α a✝ b✝ c✝ a b c : α hbc : b ≤ c ⊢ a * c + a * b = a * c [PROOFSTEP] rw [← mul_add, hbc.add_eq_left] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : IdemSemiring α a✝ b✝ c✝ a b c : α hbc : b ≤ c ⊢ swap (fun x x_1 => x * x_1) a c + swap (fun x x_1 => x * x_1) a b = swap (fun x x_1 => x * x_1) a c [PROOFSTEP] rw [← add_mul, hbc.add_eq_left] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : KleeneAlgebra α a b c : α hb : 1 ≤ b ⊢ b * a ≤ b → a∗ ≤ b [PROOFSTEP] simpa using mul_kstar_le hb [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : KleeneAlgebra α a b c : α hb : 1 ≤ b ⊢ a * b ≤ b → a∗ ≤ b [PROOFSTEP] simpa using kstar_mul_le hb [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : KleeneAlgebra α a b c : α h : a ≤ 1 ⊢ 1 * a ≤ 1 [PROOFSTEP] rwa [one_mul] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : KleeneAlgebra α a b c : α h : a∗ = a ⊢ a * a = a [PROOFSTEP] rw [← h, kstar_mul_kstar] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : KleeneAlgebra α a b c : α n : ℕ ⊢ a ^ (n + 1) ≤ a∗ [PROOFSTEP] rw [pow_succ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝ : KleeneAlgebra α a b c : α n : ℕ ⊢ a * a ^ n ≤ a∗ [PROOFSTEP] exact (mul_le_mul_left' pow_le_kstar _).trans mul_kstar_le_kstar [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝⁹ : IdemSemiring α inst✝⁸ : Zero β inst✝⁷ : One β inst✝⁶ : Add β inst✝⁵ : Mul β inst✝⁴ : Pow β ℕ inst✝³ : SMul ℕ β inst✝² : NatCast β inst✝¹ : Sup β inst✝ : Bot β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ src✝² : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast src✝¹ : SemilatticeSup β := Injective.semilatticeSup f hf sup src✝ : Bot β := inst✝ a b : β ⊢ f (a + b) = f (a ⊔ b) [PROOFSTEP] erw [sup, add, add_eq_sup] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a : β ⊢ 1 ≤ f a∗ [PROOFSTEP] erw [kstar] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a : β ⊢ 1 ≤ (f a)∗ [PROOFSTEP] exact one_le_kstar [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a : β ⊢ a * a∗ ≤ a∗ [PROOFSTEP] change f _ ≤ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a : β ⊢ f (a * a∗) ≤ f a∗ [PROOFSTEP] erw [mul, kstar] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a : β ⊢ f a * (f a)∗ ≤ (f a)∗ [PROOFSTEP] exact mul_kstar_le_kstar [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a : β ⊢ a∗ * a ≤ a∗ [PROOFSTEP] change f _ ≤ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a : β ⊢ f (a∗ * a) ≤ f a∗ [PROOFSTEP] erw [mul, kstar] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a : β ⊢ (f a)∗ * f a ≤ (f a)∗ [PROOFSTEP] exact kstar_mul_le_kstar [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a b : β h : f (b * a) ≤ f b ⊢ b * a∗ ≤ b [PROOFSTEP] change f _ ≤ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a b : β h : f (b * a) ≤ f b ⊢ f (b * a∗) ≤ f b [PROOFSTEP] erw [mul, kstar] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a b : β h : f (b * a) ≤ f b ⊢ f b * (f a)∗ ≤ f b [PROOFSTEP] erw [mul] at h [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a b : β h : f b * f a ≤ f b ⊢ f b * (f a)∗ ≤ f b [PROOFSTEP] exact mul_kstar_le_self h [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a b : β h : f (a * b) ≤ f b ⊢ a∗ * b ≤ b [PROOFSTEP] change f _ ≤ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a b : β h : f (a * b) ≤ f b ⊢ f (a∗ * b) ≤ f b [PROOFSTEP] erw [mul, kstar] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a b : β h : f (a * b) ≤ f b ⊢ (f a)∗ * f b ≤ f b [PROOFSTEP] erw [mul] at h [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝¹⁰ : KleeneAlgebra α inst✝⁹ : Zero β inst✝⁸ : One β inst✝⁷ : Add β inst✝⁶ : Mul β inst✝⁵ : Pow β ℕ inst✝⁴ : SMul ℕ β inst✝³ : NatCast β inst✝² : Sup β inst✝¹ : Bot β inst✝ : KStar β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n sup : ∀ (a b : β), f (a ⊔ b) = f a ⊔ f b bot : f ⊥ = ⊥ kstar : ∀ (a : β), f a∗ = (f a)∗ src✝¹ : IdemSemiring β := Injective.idemSemiring f hf zero one add mul nsmul npow nat_cast sup bot src✝ : KStar β := inst✝ a b : β h : f a * f b ≤ f b ⊢ (f a)∗ * f b ≤ f b [PROOFSTEP] exact kstar_mul_le_self h
{"mathlib_filename": "Mathlib.Algebra.Order.Kleene", "llama_tokens": 10569}
[GOAL] x y : ℤ ⊢ |x| < |y| ↔ natAbs x < natAbs y [PROOFSTEP] rw [abs_eq_natAbs, abs_eq_natAbs, ofNat_lt]
{"mathlib_filename": "Mathlib.Algebra.Order.EuclideanAbsoluteValue", "llama_tokens": 63}
[GOAL] R : Type u inst✝ : CommRing R A₀ A₁ B₀ B₁ : R A₀_inv : A₀ ^ 2 = 1 A₁_inv : A₁ ^ 2 = 1 B₀_inv : B₀ ^ 2 = 1 B₁_inv : B₁ ^ 2 = 1 ⊢ (2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁) * (2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁) = 4 * (2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁) [PROOFSTEP] rw [← sub_eq_zero] [GOAL] R : Type u inst✝ : CommRing R A₀ A₁ B₀ B₁ : R A₀_inv : A₀ ^ 2 = 1 A₁_inv : A₁ ^ 2 = 1 B₀_inv : B₀ ^ 2 = 1 B₁_inv : B₁ ^ 2 = 1 ⊢ (2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁) * (2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁) - 4 * (2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁) = 0 [PROOFSTEP] repeat' ring_nf simp only [A₁_inv, B₁_inv, sub_eq_add_neg, add_mul, mul_add, sub_mul, mul_sub, add_assoc, neg_add, neg_sub, sub_add, sub_sub, neg_mul, ← sq, A₀_inv, B₀_inv, ← sq, ← mul_assoc, one_mul, mul_one, add_right_neg, add_zero, sub_eq_add_neg, A₀_inv, mul_one, add_right_neg, zero_mul] [GOAL] R : Type u inst✝ : CommRing R A₀ A₁ B₀ B₁ : R A₀_inv : A₀ ^ 2 = 1 A₁_inv : A₁ ^ 2 = 1 B₀_inv : B₀ ^ 2 = 1 B₁_inv : B₁ ^ 2 = 1 ⊢ (2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁) * (2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁) - 4 * (2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁) = 0 [PROOFSTEP] ring_nf [GOAL] R : Type u inst✝ : CommRing R A₀ A₁ B₀ B₁ : R A₀_inv : A₀ ^ 2 = 1 A₁_inv : A₁ ^ 2 = 1 B₀_inv : B₀ ^ 2 = 1 B₁_inv : B₁ ^ 2 = 1 ⊢ -4 + (A₀ * B₀ ^ 2 * A₁ * 2 - A₀ * B₁ ^ 2 * A₁ * 2) + A₀ ^ 2 * B₀ * B₁ * 2 + A₀ ^ 2 * B₀ ^ 2 + (A₀ ^ 2 * B₁ ^ 2 - B₀ * B₁ * A₁ ^ 2 * 2) + B₀ ^ 2 * A₁ ^ 2 + B₁ ^ 2 * A₁ ^ 2 = 0 [PROOFSTEP] simp only [A₁_inv, B₁_inv, sub_eq_add_neg, add_mul, mul_add, sub_mul, mul_sub, add_assoc, neg_add, neg_sub, sub_add, sub_sub, neg_mul, ← sq, A₀_inv, B₀_inv, ← sq, ← mul_assoc, one_mul, mul_one, add_right_neg, add_zero, sub_eq_add_neg, A₀_inv, mul_one, add_right_neg, zero_mul] [GOAL] R : Type u inst✝ : CommRing R A₀ A₁ B₀ B₁ : R A₀_inv : A₀ ^ 2 = 1 A₁_inv : A₁ ^ 2 = 1 B₀_inv : B₀ ^ 2 = 1 B₁_inv : B₁ ^ 2 = 1 ⊢ -4 + (B₀ * B₁ * 2 + (1 ^ 2 + (1 ^ 2 + (-(B₀ * B₁ * 2) + (1 ^ 2 + 1 ^ 2))))) = 0 [PROOFSTEP] ring_nf [GOAL] [PROOFSTEP] simp only [A₁_inv, B₁_inv, sub_eq_add_neg, add_mul, mul_add, sub_mul, mul_sub, add_assoc, neg_add, neg_sub, sub_add, sub_sub, neg_mul, ← sq, A₀_inv, B₀_inv, ← sq, ← mul_assoc, one_mul, mul_one, add_right_neg, add_zero, sub_eq_add_neg, A₀_inv, mul_one, add_right_neg, zero_mul] [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ ⊢ A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁ ≤ 2 [PROOFSTEP] let P := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ ⊢ A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁ ≤ 2 [PROOFSTEP] have i₁ : 0 ≤ P := by have idem : P * P = 4 * P := CHSH_id T.A₀_inv T.A₁_inv T.B₀_inv T.B₁_inv have idem' : P = (1 / 4 : ℝ) • (P * P) := by have h : 4 * P = (4 : ℝ) • P := by simp [Algebra.smul_def] rw [idem, h, ← mul_smul] norm_num have sa : star P = P := by dsimp simp only [star_add, star_sub, star_mul, star_ofNat, star_one, T.A₀_sa, T.A₁_sa, T.B₀_sa, T.B₁_sa, mul_comm B₀, mul_comm B₁] rw [idem'] conv_rhs => arg 2 arg 1 rw [← sa] convert smul_le_smul_of_nonneg (R := ℝ) (star_mul_self_nonneg P) _ · simp · norm_num [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ ⊢ 0 ≤ P [PROOFSTEP] have idem : P * P = 4 * P := CHSH_id T.A₀_inv T.A₁_inv T.B₀_inv T.B₁_inv [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P ⊢ 0 ≤ P [PROOFSTEP] have idem' : P = (1 / 4 : ℝ) • (P * P) := by have h : 4 * P = (4 : ℝ) • P := by simp [Algebra.smul_def] rw [idem, h, ← mul_smul] norm_num [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P ⊢ P = (1 / 4) • (P * P) [PROOFSTEP] have h : 4 * P = (4 : ℝ) • P := by simp [Algebra.smul_def] [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P ⊢ 4 * P = 4 • P [PROOFSTEP] simp [Algebra.smul_def] [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P h : 4 * P = 4 • P ⊢ P = (1 / 4) • (P * P) [PROOFSTEP] rw [idem, h, ← mul_smul] [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P h : 4 * P = 4 • P ⊢ P = (1 / 4 * 4) • P [PROOFSTEP] norm_num [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) ⊢ 0 ≤ P [PROOFSTEP] have sa : star P = P := by dsimp simp only [star_add, star_sub, star_mul, star_ofNat, star_one, T.A₀_sa, T.A₁_sa, T.B₀_sa, T.B₁_sa, mul_comm B₀, mul_comm B₁] [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) ⊢ star P = P [PROOFSTEP] dsimp [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) ⊢ star (2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁) = 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ [PROOFSTEP] simp only [star_add, star_sub, star_mul, star_ofNat, star_one, T.A₀_sa, T.A₁_sa, T.B₀_sa, T.B₁_sa, mul_comm B₀, mul_comm B₁] [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) sa : star P = P ⊢ 0 ≤ P [PROOFSTEP] rw [idem'] [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) sa : star P = P ⊢ 0 ≤ (1 / 4) • (P * P) [PROOFSTEP] conv_rhs => arg 2 arg 1 rw [← sa] [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) sa : star P = P | (1 / 4) • (P * P) [PROOFSTEP] arg 2 arg 1 rw [← sa] [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) sa : star P = P | (1 / 4) • (P * P) [PROOFSTEP] arg 2 arg 1 rw [← sa] [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) sa : star P = P | (1 / 4) • (P * P) [PROOFSTEP] arg 2 [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) sa : star P = P | P * P [PROOFSTEP] arg 1 [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) sa : star P = P | P [PROOFSTEP] rw [← sa] [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) sa : star P = P ⊢ 0 ≤ (1 / 4) • (star P * P) [PROOFSTEP] convert smul_le_smul_of_nonneg (R := ℝ) (star_mul_self_nonneg P) _ [GOAL] case h.e'_3 R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) sa : star P = P ⊢ 0 = (1 / 4) • 0 [PROOFSTEP] simp [GOAL] case convert_2 R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ idem : P * P = 4 * P idem' : P = (1 / 4) • (P * P) sa : star P = P ⊢ 0 ≤ 1 / 4 [PROOFSTEP] norm_num [GOAL] R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ i₁ : 0 ≤ P ⊢ A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁ ≤ 2 [PROOFSTEP] apply le_of_sub_nonneg [GOAL] case a R : Type u inst✝³ : OrderedCommRing R inst✝² : StarOrderedRing R inst✝¹ : Algebra ℝ R inst✝ : OrderedSMul ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ P : R := 2 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ i₁ : 0 ≤ P ⊢ 0 ≤ 2 - (A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁) [PROOFSTEP] simpa only [sub_add_eq_sub_sub, ← sub_add] using i₁ [GOAL] R : Type u ⊢ Real.sqrt 2 * Real.sqrt 2 ^ 3 = Real.sqrt 2 * (2 * (Real.sqrt 2)⁻¹ + 4 * ((Real.sqrt 2)⁻¹ * 2⁻¹)) [PROOFSTEP] ring_nf [GOAL] R : Type u ⊢ Real.sqrt 2 ^ 4 = Real.sqrt 2 * (Real.sqrt 2)⁻¹ * 4 [PROOFSTEP] rw [mul_inv_cancel (ne_of_gt (Real.sqrt_pos.2 (show (2 : ℝ) > 0 by norm_num)))] [GOAL] R : Type u ⊢ 2 > 0 [PROOFSTEP] norm_num [GOAL] R : Type u ⊢ Real.sqrt 2 ^ 4 = 1 * 4 [PROOFSTEP] convert congr_arg (· ^ 2) (@Real.sq_sqrt 2 (by norm_num)) using 1 [GOAL] R : Type u ⊢ 0 ≤ 2 [PROOFSTEP] norm_num [GOAL] case h.e'_2 R : Type u ⊢ Real.sqrt 2 ^ 4 = (Real.sqrt 2 ^ 2) ^ 2 [PROOFSTEP] try simp only [← pow_mul] [GOAL] case h.e'_2 R : Type u ⊢ Real.sqrt 2 ^ 4 = (Real.sqrt 2 ^ 2) ^ 2 [PROOFSTEP] simp only [← pow_mul] [GOAL] case h.e'_3 R : Type u ⊢ 1 * 4 = 2 ^ 2 [PROOFSTEP] try simp only [← pow_mul] [GOAL] case h.e'_3 R : Type u ⊢ 1 * 4 = 2 ^ 2 [PROOFSTEP] simp only [← pow_mul] [GOAL] case h.e'_2 R : Type u ⊢ Real.sqrt 2 ^ 4 = Real.sqrt 2 ^ (2 * 2) [PROOFSTEP] norm_num [GOAL] case h.e'_3 R : Type u ⊢ 1 * 4 = 2 ^ 2 [PROOFSTEP] norm_num [GOAL] R : Type u ⊢ (Real.sqrt 2)⁻¹ * (Real.sqrt 2)⁻¹ = 2⁻¹ [PROOFSTEP] rw [← mul_inv] [GOAL] R : Type u ⊢ (Real.sqrt 2 * Real.sqrt 2)⁻¹ = 2⁻¹ [PROOFSTEP] norm_num [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ ⊢ A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁ ≤ Real.sqrt 2 ^ 3 • 1 [PROOFSTEP] have M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = ((m : ℝ) * a) • x := fun m a x => by rw [zsmul_eq_smul_cast ℝ, ← mul_smul] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ m : ℤ a : ℝ x : R ⊢ m • a • x = (↑m * a) • x [PROOFSTEP] rw [zsmul_eq_smul_cast ℝ, ← mul_smul] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x ⊢ A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁ ≤ Real.sqrt 2 ^ 3 • 1 [PROOFSTEP] let P := √2⁻¹ • (A₁ + A₀) - B₀ [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ ⊢ A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁ ≤ Real.sqrt 2 ^ 3 • 1 [PROOFSTEP] let Q := √2⁻¹ • (A₁ - A₀) + B₁ [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ ⊢ A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁ ≤ Real.sqrt 2 ^ 3 • 1 [PROOFSTEP] have w : √2 ^ 3 • (1 : R) - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = √2⁻¹ • (P ^ 2 + Q ^ 2) := by dsimp -- distribute out all the powers and products appearing on the RHS simp only [sq, sub_mul, mul_sub, add_mul, mul_add, smul_add, smul_sub] -- pull all coefficients out to the front, and combine `√2`s where possible simp only [Algebra.mul_smul_comm, Algebra.smul_mul_assoc, ← mul_smul, sqrt_two_inv_mul_self] -- replace Aᵢ * Aᵢ = 1 and Bᵢ * Bᵢ = 1 simp only [← sq, T.A₀_inv, T.A₁_inv, T.B₀_inv, T.B₁_inv] -- move Aᵢ to the left of Bᵢ simp only [← T.A₀B₀_commutes, ← T.A₀B₁_commutes, ← T.A₁B₀_commutes, ← T.A₁B₁_commutes] -- collect terms, simplify coefficients, and collect terms again: abel_nf -- all terms coincide, but the last one. Simplify all other terms simp only [M] simp only [neg_mul, one_mul, mul_inv_cancel_of_invertible, Int.cast_one, add_assoc, add_comm, add_left_comm, one_smul, Int.cast_neg, neg_smul, Int.int_cast_ofNat] simp only [← add_assoc, ← add_smul] -- just look at the coefficients now: congr exact mul_left_cancel₀ (by norm_num) tsirelson_inequality_aux [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ ⊢ Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) [PROOFSTEP] dsimp -- distribute out all the powers and products appearing on the RHS [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ ⊢ Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (((Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀) ^ 2 + ((Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁) ^ 2) [PROOFSTEP] simp only [sq, sub_mul, mul_sub, add_mul, mul_add, smul_add, smul_sub] -- pull all coefficients out to the front, and combine `√2`s where possible [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ ⊢ Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • ((Real.sqrt 2)⁻¹ • A₁ * (Real.sqrt 2)⁻¹ • A₁) + (Real.sqrt 2)⁻¹ • ((Real.sqrt 2)⁻¹ • A₀ * (Real.sqrt 2)⁻¹ • A₁) - (Real.sqrt 2)⁻¹ • (B₀ * (Real.sqrt 2)⁻¹ • A₁) + ((Real.sqrt 2)⁻¹ • ((Real.sqrt 2)⁻¹ • A₁ * (Real.sqrt 2)⁻¹ • A₀) + (Real.sqrt 2)⁻¹ • ((Real.sqrt 2)⁻¹ • A₀ * (Real.sqrt 2)⁻¹ • A₀) - (Real.sqrt 2)⁻¹ • (B₀ * (Real.sqrt 2)⁻¹ • A₀)) - ((Real.sqrt 2)⁻¹ • ((Real.sqrt 2)⁻¹ • A₁ * B₀) + (Real.sqrt 2)⁻¹ • ((Real.sqrt 2)⁻¹ • A₀ * B₀) - (Real.sqrt 2)⁻¹ • (B₀ * B₀)) + ((Real.sqrt 2)⁻¹ • ((Real.sqrt 2)⁻¹ • A₁ * (Real.sqrt 2)⁻¹ • A₁) - (Real.sqrt 2)⁻¹ • ((Real.sqrt 2)⁻¹ • A₀ * (Real.sqrt 2)⁻¹ • A₁) + (Real.sqrt 2)⁻¹ • (B₁ * (Real.sqrt 2)⁻¹ • A₁) - ((Real.sqrt 2)⁻¹ • ((Real.sqrt 2)⁻¹ • A₁ * (Real.sqrt 2)⁻¹ • A₀) - (Real.sqrt 2)⁻¹ • ((Real.sqrt 2)⁻¹ • A₀ * (Real.sqrt 2)⁻¹ • A₀) + (Real.sqrt 2)⁻¹ • (B₁ * (Real.sqrt 2)⁻¹ • A₀)) + ((Real.sqrt 2)⁻¹ • ((Real.sqrt 2)⁻¹ • A₁ * B₁) - (Real.sqrt 2)⁻¹ • ((Real.sqrt 2)⁻¹ • A₀ * B₁) + (Real.sqrt 2)⁻¹ • (B₁ * B₁))) [PROOFSTEP] simp only [Algebra.mul_smul_comm, Algebra.smul_mul_assoc, ← mul_smul, sqrt_two_inv_mul_self] -- replace Aᵢ * Aᵢ = 1 and Bᵢ * Bᵢ = 1 [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ ⊢ Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = ((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₁ * A₁) + ((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₀ * A₁) - 2⁻¹ • (B₀ * A₁) + (((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₁ * A₀) + ((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₀ * A₀) - 2⁻¹ • (B₀ * A₀)) - (2⁻¹ • (A₁ * B₀) + 2⁻¹ • (A₀ * B₀) - (Real.sqrt 2)⁻¹ • (B₀ * B₀)) + (((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₁ * A₁) - ((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₀ * A₁) + 2⁻¹ • (B₁ * A₁) - (((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₁ * A₀) - ((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₀ * A₀) + 2⁻¹ • (B₁ * A₀)) + (2⁻¹ • (A₁ * B₁) - 2⁻¹ • (A₀ * B₁) + (Real.sqrt 2)⁻¹ • (B₁ * B₁))) [PROOFSTEP] simp only [← sq, T.A₀_inv, T.A₁_inv, T.B₀_inv, T.B₁_inv] -- move Aᵢ to the left of Bᵢ [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ ⊢ Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = ((Real.sqrt 2)⁻¹ * 2⁻¹) • 1 + ((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₀ * A₁) - 2⁻¹ • (B₀ * A₁) + (((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₁ * A₀) + ((Real.sqrt 2)⁻¹ * 2⁻¹) • 1 - 2⁻¹ • (B₀ * A₀)) - (2⁻¹ • (A₁ * B₀) + 2⁻¹ • (A₀ * B₀) - (Real.sqrt 2)⁻¹ • 1) + (((Real.sqrt 2)⁻¹ * 2⁻¹) • 1 - ((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₀ * A₁) + 2⁻¹ • (B₁ * A₁) - (((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₁ * A₀) - ((Real.sqrt 2)⁻¹ * 2⁻¹) • 1 + 2⁻¹ • (B₁ * A₀)) + (2⁻¹ • (A₁ * B₁) - 2⁻¹ • (A₀ * B₁) + (Real.sqrt 2)⁻¹ • 1)) [PROOFSTEP] simp only [← T.A₀B₀_commutes, ← T.A₀B₁_commutes, ← T.A₁B₀_commutes, ← T.A₁B₁_commutes] -- collect terms, simplify coefficients, and collect terms again: [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ ⊢ Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = ((Real.sqrt 2)⁻¹ * 2⁻¹) • 1 + ((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₀ * A₁) - 2⁻¹ • (A₁ * B₀) + (((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₁ * A₀) + ((Real.sqrt 2)⁻¹ * 2⁻¹) • 1 - 2⁻¹ • (A₀ * B₀)) - (2⁻¹ • (A₁ * B₀) + 2⁻¹ • (A₀ * B₀) - (Real.sqrt 2)⁻¹ • 1) + (((Real.sqrt 2)⁻¹ * 2⁻¹) • 1 - ((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₀ * A₁) + 2⁻¹ • (A₁ * B₁) - (((Real.sqrt 2)⁻¹ * 2⁻¹) • (A₁ * A₀) - ((Real.sqrt 2)⁻¹ * 2⁻¹) • 1 + 2⁻¹ • (A₀ * B₁)) + (2⁻¹ • (A₁ * B₁) - 2⁻¹ • (A₀ * B₁) + (Real.sqrt 2)⁻¹ • 1)) [PROOFSTEP] abel_nf -- all terms coincide, but the last one. Simplify all other terms [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ ⊢ Real.sqrt 2 ^ 3 • 1 + (-1 • (A₀ * B₀) + (-1 • (A₀ * B₁) + (-1 • (A₁ * B₀) + A₁ * B₁))) = 4 • ((Real.sqrt 2)⁻¹ * 2⁻¹) • 1 + (-2 • 2⁻¹ • (A₁ * B₀) + (-2 • 2⁻¹ • (A₀ * B₀) + (2 • (Real.sqrt 2)⁻¹ • 1 + (2 • 2⁻¹ • (A₁ * B₁) + -2 • 2⁻¹ • (A₀ * B₁))))) [PROOFSTEP] simp only [M] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ ⊢ Real.sqrt 2 ^ 3 • 1 + (-1 • (A₀ * B₀) + (-1 • (A₀ * B₁) + (-1 • (A₁ * B₀) + A₁ * B₁))) = (↑4 * ((Real.sqrt 2)⁻¹ * 2⁻¹)) • 1 + ((↑(-2) * 2⁻¹) • (A₁ * B₀) + ((↑(-2) * 2⁻¹) • (A₀ * B₀) + ((↑2 * (Real.sqrt 2)⁻¹) • 1 + ((↑2 * 2⁻¹) • (A₁ * B₁) + (↑(-2) * 2⁻¹) • (A₀ * B₁))))) [PROOFSTEP] simp only [neg_mul, one_mul, mul_inv_cancel_of_invertible, Int.cast_one, add_assoc, add_comm, add_left_comm, one_smul, Int.cast_neg, neg_smul, Int.int_cast_ofNat] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ ⊢ A₁ * B₁ + (-(A₀ * B₀) + (-(A₀ * B₁) + (-(A₁ * B₀) + Real.sqrt 2 ^ 3 • 1))) = A₁ * B₁ + (-(A₀ * B₀) + (-(A₀ * B₁) + (-(A₁ * B₀) + ((2 * (Real.sqrt 2)⁻¹) • 1 + (4 * ((Real.sqrt 2)⁻¹ * 2⁻¹)) • 1)))) [PROOFSTEP] simp only [← add_assoc, ← add_smul] -- just look at the coefficients now: [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ ⊢ A₁ * B₁ + -(A₀ * B₀) + -(A₀ * B₁) + -(A₁ * B₀) + Real.sqrt 2 ^ 3 • 1 = A₁ * B₁ + -(A₀ * B₀) + -(A₀ * B₁) + -(A₁ * B₀) + (2 * (Real.sqrt 2)⁻¹ + 4 * ((Real.sqrt 2)⁻¹ * 2⁻¹)) • 1 [PROOFSTEP] congr [GOAL] case e_a.e_a R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ ⊢ Real.sqrt 2 ^ 3 = 2 * (Real.sqrt 2)⁻¹ + 4 * ((Real.sqrt 2)⁻¹ * 2⁻¹) [PROOFSTEP] exact mul_left_cancel₀ (by norm_num) tsirelson_inequality_aux [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ ⊢ Real.sqrt 2 ≠ 0 [PROOFSTEP] norm_num [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) ⊢ A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁ ≤ Real.sqrt 2 ^ 3 • 1 [PROOFSTEP] have pos : 0 ≤ √2⁻¹ • (P ^ 2 + Q ^ 2) := by have P_sa : star P = P := by simp only [star_smul, star_add, star_sub, star_id_of_comm, T.A₀_sa, T.A₁_sa, T.B₀_sa, T.B₁_sa] have Q_sa : star Q = Q := by simp only [star_smul, star_add, star_sub, star_id_of_comm, T.A₀_sa, T.A₁_sa, T.B₀_sa, T.B₁_sa] have P2_nonneg : 0 ≤ P ^ 2 := by rw [sq] conv => congr skip congr rw [← P_sa] convert (star_mul_self_nonneg P) have Q2_nonneg : 0 ≤ Q ^ 2 := by rw [sq] conv => congr skip congr rw [← Q_sa] convert (star_mul_self_nonneg Q) convert smul_le_smul_of_nonneg (add_nonneg P2_nonneg Q2_nonneg) (le_of_lt (show 0 < √2⁻¹ by norm_num)) -- `norm_num` can't directly show `0 ≤ √2⁻¹` simp [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) ⊢ ↑0 ≤ (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) [PROOFSTEP] have P_sa : star P = P := by simp only [star_smul, star_add, star_sub, star_id_of_comm, T.A₀_sa, T.A₁_sa, T.B₀_sa, T.B₁_sa] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) ⊢ star P = P [PROOFSTEP] simp only [star_smul, star_add, star_sub, star_id_of_comm, T.A₀_sa, T.A₁_sa, T.B₀_sa, T.B₁_sa] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P ⊢ ↑0 ≤ (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) [PROOFSTEP] have Q_sa : star Q = Q := by simp only [star_smul, star_add, star_sub, star_id_of_comm, T.A₀_sa, T.A₁_sa, T.B₀_sa, T.B₁_sa] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P ⊢ star Q = Q [PROOFSTEP] simp only [star_smul, star_add, star_sub, star_id_of_comm, T.A₀_sa, T.A₁_sa, T.B₀_sa, T.B₁_sa] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q ⊢ ↑0 ≤ (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) [PROOFSTEP] have P2_nonneg : 0 ≤ P ^ 2 := by rw [sq] conv => congr skip congr rw [← P_sa] convert (star_mul_self_nonneg P) [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q ⊢ 0 ≤ P ^ 2 [PROOFSTEP] rw [sq] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q ⊢ 0 ≤ P * P [PROOFSTEP] conv => congr skip congr rw [← P_sa] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q | 0 ≤ P * P [PROOFSTEP] congr skip congr rw [← P_sa] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q | 0 ≤ P * P [PROOFSTEP] congr skip congr rw [← P_sa] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q | 0 ≤ P * P [PROOFSTEP] congr [GOAL] case a R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q | 0 case a R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q | P * P [PROOFSTEP] skip [GOAL] case a R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q | 0 case a R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q | P * P [PROOFSTEP] congr [GOAL] case a R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q | P * P [PROOFSTEP] rw [← P_sa] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q ⊢ 0 ≤ star P * star P [PROOFSTEP] convert (star_mul_self_nonneg P) [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 ⊢ ↑0 ≤ (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) [PROOFSTEP] have Q2_nonneg : 0 ≤ Q ^ 2 := by rw [sq] conv => congr skip congr rw [← Q_sa] convert (star_mul_self_nonneg Q) [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 ⊢ 0 ≤ Q ^ 2 [PROOFSTEP] rw [sq] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 ⊢ 0 ≤ Q * Q [PROOFSTEP] conv => congr skip congr rw [← Q_sa] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 | 0 ≤ Q * Q [PROOFSTEP] congr skip congr rw [← Q_sa] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 | 0 ≤ Q * Q [PROOFSTEP] congr skip congr rw [← Q_sa] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 | 0 ≤ Q * Q [PROOFSTEP] congr [GOAL] case a R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 | 0 case a R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 | Q * Q [PROOFSTEP] skip [GOAL] case a R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 | 0 case a R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 | Q * Q [PROOFSTEP] congr [GOAL] case a R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 | Q * Q [PROOFSTEP] rw [← Q_sa] [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 ⊢ 0 ≤ star Q * star Q [PROOFSTEP] convert (star_mul_self_nonneg Q) [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 Q2_nonneg : 0 ≤ Q ^ 2 ⊢ ↑0 ≤ (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) [PROOFSTEP] convert smul_le_smul_of_nonneg (add_nonneg P2_nonneg Q2_nonneg) (le_of_lt (show 0 < √2⁻¹ by norm_num)) -- `norm_num` can't directly show `0 ≤ √2⁻¹` [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 Q2_nonneg : 0 ≤ Q ^ 2 ⊢ 0 < (Real.sqrt 2)⁻¹ [PROOFSTEP] norm_num [GOAL] case h.e'_3 R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P Q_sa : star Q = Q P2_nonneg : 0 ≤ P ^ 2 Q2_nonneg : 0 ≤ Q ^ 2 ⊢ ↑0 = (Real.sqrt 2)⁻¹ • 0 [PROOFSTEP] simp [GOAL] R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) pos : ↑0 ≤ (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) ⊢ A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁ ≤ Real.sqrt 2 ^ 3 • 1 [PROOFSTEP] apply le_of_sub_nonneg [GOAL] case a R : Type u inst✝⁴ : OrderedRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (Real.sqrt 2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (Real.sqrt 2)⁻¹ • (A₁ - A₀) + B₁ w : Real.sqrt 2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) pos : ↑0 ≤ (Real.sqrt 2)⁻¹ • (P ^ 2 + Q ^ 2) ⊢ 0 ≤ Real.sqrt 2 ^ 3 • 1 - (A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁) [PROOFSTEP] simpa only [sub_add_eq_sub_sub, ← sub_add, w, Nat.cast_zero] using pos
{"mathlib_filename": "Mathlib.Algebra.Star.CHSH", "llama_tokens": 24489}
[GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α hs : IsUpperSet s ⊢ IsUpperSet (a • s) [PROOFSTEP] rintro _ y hxy ⟨x, hx, rfl⟩ [GOAL] case intro.intro α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α hs : IsUpperSet s y x : α hx : x ∈ s hxy : (fun x => a • x) x ≤ y ⊢ y ∈ a • s [PROOFSTEP] exact mem_smul_set_iff_inv_smul_mem.2 (hs (le_inv_mul_iff_mul_le.2 hxy) hx) [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α hs : OrdConnected s ⊢ OrdConnected (a • s) [PROOFSTEP] rw [← hs.upperClosure_inter_lowerClosure, smul_set_inter] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α hs : OrdConnected s ⊢ OrdConnected (a • ↑(upperClosure s) ∩ a • ↑(lowerClosure s)) [PROOFSTEP] exact (upperClosure _).upper.smul.ordConnected.inter (lowerClosure _).lower.smul.ordConnected [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ht : IsUpperSet t ⊢ IsUpperSet (s * t) [PROOFSTEP] rw [← smul_eq_mul, ← Set.iUnion_smul_set] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ht : IsUpperSet t ⊢ IsUpperSet (⋃ (a : α) (_ : a ∈ s), a • t) [PROOFSTEP] exact isUpperSet_iUnion₂ fun x _ ↦ ht.smul [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α hs : IsUpperSet s ⊢ IsUpperSet (s * t) [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α hs : IsUpperSet s ⊢ IsUpperSet (t * s) [PROOFSTEP] exact hs.mul_left [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ht : IsUpperSet t ⊢ IsLowerSet (s / t) [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ht : IsUpperSet t ⊢ IsLowerSet (s * t⁻¹) [PROOFSTEP] exact ht.inv.mul_left [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α hs : IsUpperSet s ⊢ IsUpperSet (s / t) [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α hs : IsUpperSet s ⊢ IsUpperSet (s * t⁻¹) [PROOFSTEP] exact hs.mul_right [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s✝ t : Set α a : α s : UpperSet α ⊢ Set.Ici 1 * ↑s ⊆ ↑s [PROOFSTEP] rw [← smul_eq_mul, ← Set.iUnion_smul_set] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s✝ t : Set α a : α s : UpperSet α ⊢ ⋃ (a : α) (_ : a ∈ Set.Ici 1), a • ↑s ⊆ ↑s [PROOFSTEP] exact Set.iUnion₂_subset fun _ ↦ s.upper.smul_subset [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s✝ t : Set α a : α src✝ : CommSemigroup (UpperSet α) := commSemigroup s : UpperSet α ⊢ s * 1 = s [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s✝ t : Set α a : α src✝ : CommSemigroup (UpperSet α) := commSemigroup s : UpperSet α ⊢ 1 * s = s [PROOFSTEP] exact one_mul _ [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s✝ t : Set α a : α s : LowerSet α ⊢ Set.Iic 1 * ↑s ⊆ ↑s [PROOFSTEP] rw [← smul_eq_mul, ← Set.iUnion_smul_set] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s✝ t : Set α a : α s : LowerSet α ⊢ ⋃ (a : α) (_ : a ∈ Set.Iic 1), a • ↑s ⊆ ↑s [PROOFSTEP] exact Set.iUnion₂_subset fun _ ↦ s.lower.smul_subset [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s✝ t : Set α a : α src✝ : CommSemigroup (LowerSet α) := commSemigroup s : LowerSet α ⊢ s * 1 = s [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s✝ t : Set α a : α src✝ : CommSemigroup (LowerSet α) := commSemigroup s : LowerSet α ⊢ 1 * s = s [PROOFSTEP] exact one_mul _ [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ⊢ s * ↑(upperClosure t) = ↑(upperClosure (s * t)) [PROOFSTEP] simp_rw [← smul_eq_mul, ← Set.iUnion_smul_set, upperClosure_iUnion, upperClosure_smul, UpperSet.coe_iInf₂] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ⊢ ⋃ (a : α) (_ : a ∈ s), a • ↑(upperClosure t) = ⋃ (i : α) (_ : i ∈ s), ↑(i • upperClosure t) [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ⊢ s * ↑(lowerClosure t) = ↑(lowerClosure (s * t)) [PROOFSTEP] simp_rw [← smul_eq_mul, ← Set.iUnion_smul_set, lowerClosure_iUnion, lowerClosure_smul, LowerSet.coe_iSup₂] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ⊢ ⋃ (a : α) (_ : a ∈ s), a • ↑(lowerClosure t) = ⋃ (i : α) (_ : i ∈ s), ↑(i • lowerClosure t) [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ⊢ ↑(upperClosure s) * t = ↑(upperClosure (s * t)) [PROOFSTEP] simp_rw [mul_comm _ t] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ⊢ t * ↑(upperClosure s) = ↑(upperClosure (t * s)) [PROOFSTEP] exact mul_upperClosure _ _ [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ⊢ ↑(lowerClosure s) * t = ↑(lowerClosure (s * t)) [PROOFSTEP] simp_rw [mul_comm _ t] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ⊢ t * ↑(lowerClosure s) = ↑(lowerClosure (t * s)) [PROOFSTEP] exact mul_lowerClosure _ _ [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ⊢ ↑(upperClosure (s * t)) = ↑(upperClosure s * upperClosure t) [PROOFSTEP] rw [UpperSet.coe_mul, mul_upperClosure, upperClosure_mul, UpperSet.upperClosure] [GOAL] α : Type u_1 inst✝ : OrderedCommGroup α s t : Set α a : α ⊢ ↑(lowerClosure (s * t)) = ↑(lowerClosure s * lowerClosure t) [PROOFSTEP] rw [LowerSet.coe_mul, mul_lowerClosure, lowerClosure_mul, LowerSet.lowerClosure]
{"mathlib_filename": "Mathlib.Algebra.Order.UpperLower", "llama_tokens": 2653}
[GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α ⊢ (fun x => x * ↑(normUnit x)) 0 = 0 [PROOFSTEP] simp only [normUnit_zero] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α ⊢ 0 * ↑1 = 0 [PROOFSTEP] exact mul_one (0 : α) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α ⊢ ZeroHom.toFun { toFun := fun x => x * ↑(normUnit x), map_zero' := (_ : (fun x => x * ↑(normUnit x)) 0 = 0) } 1 = 1 [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α ⊢ 1 * ↑(normUnit 1) = 1 [PROOFSTEP] rw [normUnit_one, one_mul] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α ⊢ ↑1 = 1 [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α x y : α hx : x = 0 ⊢ ZeroHom.toFun { toFun := fun x => x * ↑(normUnit x), map_zero' := (_ : (fun x => x * ↑(normUnit x)) 0 = 0) } (x * y) = ZeroHom.toFun { toFun := fun x => x * ↑(normUnit x), map_zero' := (_ : (fun x => x * ↑(normUnit x)) 0 = 0) } x * ZeroHom.toFun { toFun := fun x => x * ↑(normUnit x), map_zero' := (_ : (fun x => x * ↑(normUnit x)) 0 = 0) } y [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α x y : α hx : x = 0 ⊢ x * y * ↑(normUnit (x * y)) = x * ↑(normUnit x) * (y * ↑(normUnit y)) [PROOFSTEP] rw [hx, zero_mul, zero_mul, zero_mul] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α x y : α hx : ¬x = 0 hy : y = 0 ⊢ ZeroHom.toFun { toFun := fun x => x * ↑(normUnit x), map_zero' := (_ : (fun x => x * ↑(normUnit x)) 0 = 0) } (x * y) = ZeroHom.toFun { toFun := fun x => x * ↑(normUnit x), map_zero' := (_ : (fun x => x * ↑(normUnit x)) 0 = 0) } x * ZeroHom.toFun { toFun := fun x => x * ↑(normUnit x), map_zero' := (_ : (fun x => x * ↑(normUnit x)) 0 = 0) } y [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α x y : α hx : ¬x = 0 hy : y = 0 ⊢ x * y * ↑(normUnit (x * y)) = x * ↑(normUnit x) * (y * ↑(normUnit y)) [PROOFSTEP] rw [hy, mul_zero, zero_mul, mul_zero] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α x y : α hx : ¬x = 0 hy : ¬y = 0 ⊢ ZeroHom.toFun { toFun := fun x => x * ↑(normUnit x), map_zero' := (_ : (fun x => x * ↑(normUnit x)) 0 = 0) } (x * y) = ZeroHom.toFun { toFun := fun x => x * ↑(normUnit x), map_zero' := (_ : (fun x => x * ↑(normUnit x)) 0 = 0) } x * ZeroHom.toFun { toFun := fun x => x * ↑(normUnit x), map_zero' := (_ : (fun x => x * ↑(normUnit x)) 0 = 0) } y [PROOFSTEP] simp only [normUnit_mul hx hy, Units.val_mul] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α x y : α hx : ¬x = 0 hy : ¬y = 0 ⊢ x * y * (↑(normUnit x) * ↑(normUnit y)) = x * ↑(normUnit x) * (y * ↑(normUnit y)) [PROOFSTEP] simp only [mul_assoc, mul_left_comm y] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α u : αˣ ⊢ ↑normalize ↑u = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α x : α ⊢ x = 0 → ↑normalize x = 0 [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α ⊢ ↑normalize 0 = 0 [PROOFSTEP] exact normalize_zero [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a : α ⊢ normUnit (a * ↑(normUnit a)) = 1 [PROOFSTEP] nontriviality α using Subsingleton.elim a 0 [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a : α ✝ : Nontrivial α ⊢ normUnit (a * ↑(normUnit a)) = 1 [PROOFSTEP] obtain rfl | h := eq_or_ne a 0 [GOAL] case inl α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α ✝ : Nontrivial α ⊢ normUnit (0 * ↑(normUnit 0)) = 1 [PROOFSTEP] rw [normUnit_zero, zero_mul, normUnit_zero] [GOAL] case inr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a : α ✝ : Nontrivial α h : a ≠ 0 ⊢ normUnit (a * ↑(normUnit a)) = 1 [PROOFSTEP] rw [normUnit_mul h (Units.ne_zero _), normUnit_coe_units, mul_inv_eq_one] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α x : α ⊢ ↑normalize (↑normalize x) = ↑normalize x [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a b : α hab : a ∣ b hba : b ∣ a ⊢ ↑normalize a = ↑normalize b [PROOFSTEP] nontriviality α [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a b : α hab : a ∣ b hba : b ∣ a ✝ : Nontrivial α ⊢ ↑normalize a = ↑normalize b [PROOFSTEP] rcases associated_of_dvd_dvd hab hba with ⟨u, rfl⟩ [GOAL] case intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a : α ✝ : Nontrivial α u : αˣ hab : a ∣ a * ↑u hba : a * ↑u ∣ a ⊢ ↑normalize a = ↑normalize (a * ↑u) [PROOFSTEP] refine' by_cases (by rintro rfl; simp only [zero_mul]) fun ha : a ≠ 0 => _ [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a : α ✝ : Nontrivial α u : αˣ hab : a ∣ a * ↑u hba : a * ↑u ∣ a ⊢ a = 0 → ↑normalize a = ↑normalize (a * ↑u) [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α ✝ : Nontrivial α u : αˣ hab : 0 ∣ 0 * ↑u hba : 0 * ↑u ∣ 0 ⊢ ↑normalize 0 = ↑normalize (0 * ↑u) [PROOFSTEP] simp only [zero_mul] [GOAL] case intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a : α ✝ : Nontrivial α u : αˣ hab : a ∣ a * ↑u hba : a * ↑u ∣ a ha : a ≠ 0 ⊢ ↑normalize a = ↑normalize (a * ↑u) [PROOFSTEP] suffices a * ↑(normUnit a) = a * ↑u * ↑(normUnit a) * ↑u⁻¹ by simpa only [normalize_apply, mul_assoc, normUnit_mul ha u.ne_zero, normUnit_coe_units] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a : α ✝ : Nontrivial α u : αˣ hab : a ∣ a * ↑u hba : a * ↑u ∣ a ha : a ≠ 0 this : a * ↑(normUnit a) = a * ↑u * ↑(normUnit a) * ↑u⁻¹ ⊢ ↑normalize a = ↑normalize (a * ↑u) [PROOFSTEP] simpa only [normalize_apply, mul_assoc, normUnit_mul ha u.ne_zero, normUnit_coe_units] [GOAL] case intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a : α ✝ : Nontrivial α u : αˣ hab : a ∣ a * ↑u hba : a * ↑u ∣ a ha : a ≠ 0 ⊢ a * ↑(normUnit a) = a * ↑u * ↑(normUnit a) * ↑u⁻¹ [PROOFSTEP] calc a * ↑(normUnit a) = a * ↑(normUnit a) * ↑u * ↑u⁻¹ := (Units.mul_inv_cancel_right _ _).symm _ = a * ↑u * ↑(normUnit a) * ↑u⁻¹ := by rw [mul_right_comm a] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a : α ✝ : Nontrivial α u : αˣ hab : a ∣ a * ↑u hba : a * ↑u ∣ a ha : a ≠ 0 ⊢ a * ↑(normUnit a) * ↑u * ↑u⁻¹ = a * ↑u * ↑(normUnit a) * ↑u⁻¹ [PROOFSTEP] rw [mul_right_comm a] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a b : Associates α x✝¹ x✝ : α ⊢ Associates.out (Quotient.mk (Associated.setoid α) x✝¹ * Quotient.mk (Associated.setoid α) x✝) = Associates.out (Quotient.mk (Associated.setoid α) x✝¹) * Associates.out (Quotient.mk (Associated.setoid α) x✝) [PROOFSTEP] simp only [Associates.quotient_mk_eq_mk, out_mk, mk_mul_mk, normalize.map_mul] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a : α b : Associates α ⊢ ∀ (a_1 : α), a ∣ Associates.out (Quotient.mk (Associated.setoid α) a_1) ↔ Associates.mk a ≤ Quotient.mk (Associated.setoid α) a_1 [PROOFSTEP] simp [Associates.out_mk, Associates.quotient_mk_eq_mk, mk_le_mk_iff_dvd_iff] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizationMonoid α a : α b : Associates α ⊢ ∀ (a_1 : α), Associates.out (Quotient.mk (Associated.setoid α) a_1) ∣ a ↔ Quotient.mk (Associated.setoid α) a_1 ≤ Associates.mk a [PROOFSTEP] simp [Associates.out_mk, Associates.quotient_mk_eq_mk, mk_le_mk_iff_dvd_iff] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α h : gcd a b = 0 ⊢ a = 0 ∧ b = 0 [PROOFSTEP] let ⟨ca, ha⟩ := gcd_dvd_left a b [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α h : gcd a b = 0 ca : α ha : a = gcd a b * ca ⊢ a = 0 ∧ b = 0 [PROOFSTEP] let ⟨cb, hb⟩ := gcd_dvd_right a b [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α h : gcd a b = 0 ca : α ha : a = gcd a b * ca cb : α hb : b = gcd a b * cb ⊢ a = 0 ∧ b = 0 [PROOFSTEP] rw [h, zero_mul] at ha hb [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α h : gcd a b = 0 ca : α ha : a = 0 cb : α hb : b = 0 ⊢ a = 0 ∧ b = 0 [PROOFSTEP] exact ⟨ha, hb⟩ [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α x✝ : a = 0 ∧ b = 0 ha : a = 0 hb : b = 0 ⊢ gcd a b = 0 [PROOFSTEP] rw [ha, hb, ← zero_dvd_iff] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α x✝ : a = 0 ∧ b = 0 ha : a = 0 hb : b = 0 ⊢ 0 ∣ gcd 0 0 [PROOFSTEP] apply dvd_gcd [GOAL] case a α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α x✝ : a = 0 ∧ b = 0 ha : a = 0 hb : b = 0 ⊢ 0 ∣ 0 [PROOFSTEP] rfl [GOAL] case a α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α x✝ : a = 0 ∧ b = 0 ha : a = 0 hb : b = 0 ⊢ 0 ∣ 0 [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a b c : α ⊢ a = 0 → gcd (a * b) (a * c) = ↑normalize a * gcd b c [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α b c : α ⊢ gcd (0 * b) (0 * c) = ↑normalize 0 * gcd b c [PROOFSTEP] simp only [zero_mul, gcd_zero_left, normalize_zero] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a b c : α ha : a ≠ 0 this : gcd (a * b) (a * c) = ↑normalize (a * gcd b c) ⊢ gcd (a * b) (a * c) = ↑normalize a * gcd b c [PROOFSTEP] simpa [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α ⊢ Associated (gcd (a * b) (a * c)) (a * gcd b c) [PROOFSTEP] obtain rfl | ha := eq_or_ne a 0 [GOAL] case inl α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α b c : α ⊢ Associated (gcd (0 * b) (0 * c)) (0 * gcd b c) [PROOFSTEP] simp only [zero_mul, gcd_zero_left'] [GOAL] case inr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α ha : a ≠ 0 ⊢ Associated (gcd (a * b) (a * c)) (a * gcd b c) [PROOFSTEP] obtain ⟨d, eq⟩ := dvd_gcd (dvd_mul_right a b) (dvd_mul_right a c) [GOAL] case inr.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α ha : a ≠ 0 d : α eq : gcd (a * b) (a * c) = a * d ⊢ Associated (gcd (a * b) (a * c)) (a * gcd b c) [PROOFSTEP] apply associated_of_dvd_dvd [GOAL] case inr.intro.hab α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α ha : a ≠ 0 d : α eq : gcd (a * b) (a * c) = a * d ⊢ gcd (a * b) (a * c) ∣ a * gcd b c [PROOFSTEP] rw [eq] [GOAL] case inr.intro.hab α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α ha : a ≠ 0 d : α eq : gcd (a * b) (a * c) = a * d ⊢ a * d ∣ a * gcd b c [PROOFSTEP] apply mul_dvd_mul_left [GOAL] case inr.intro.hab.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α ha : a ≠ 0 d : α eq : gcd (a * b) (a * c) = a * d ⊢ d ∣ gcd b c [PROOFSTEP] exact dvd_gcd ((mul_dvd_mul_iff_left ha).1 <| eq ▸ gcd_dvd_left _ _) ((mul_dvd_mul_iff_left ha).1 <| eq ▸ gcd_dvd_right _ _) [GOAL] case inr.intro.hba α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α ha : a ≠ 0 d : α eq : gcd (a * b) (a * c) = a * d ⊢ a * gcd b c ∣ gcd (a * b) (a * c) [PROOFSTEP] exact dvd_gcd (mul_dvd_mul_left a <| gcd_dvd_left _ _) (mul_dvd_mul_left a <| gcd_dvd_right _ _) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a b c : α ⊢ gcd (b * a) (c * a) = gcd b c * ↑normalize a [PROOFSTEP] simp only [mul_comm, gcd_mul_left] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α ⊢ Associated (gcd (b * a) (c * a)) (gcd b c * a) [PROOFSTEP] simp only [mul_comm, gcd_mul_left'] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a b : α h : ↑normalize b = b ⊢ gcd a b = b ↔ b ∣ a [PROOFSTEP] simpa only [gcd_comm a b] using gcd_eq_left_iff b a h [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ m * n ⊢ k ∣ m * gcd k n [PROOFSTEP] rw [mul_comm] at H ⊢ [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ n * m ⊢ k ∣ gcd k n * m [PROOFSTEP] exact dvd_gcd_mul_of_dvd_mul H [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ m * n ⊢ ∃ d₁ d₂, d₁ ∣ m ∧ d₂ ∣ n ∧ k = d₁ * d₂ [PROOFSTEP] by_cases h0 : gcd k m = 0 [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ m * n h0 : gcd k m = 0 ⊢ ∃ d₁ d₂, d₁ ∣ m ∧ d₂ ∣ n ∧ k = d₁ * d₂ [PROOFSTEP] rw [gcd_eq_zero_iff] at h0 [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ m * n h0 : k = 0 ∧ m = 0 ⊢ ∃ d₁ d₂, d₁ ∣ m ∧ d₂ ∣ n ∧ k = d₁ * d₂ [PROOFSTEP] rcases h0 with ⟨rfl, rfl⟩ [GOAL] case pos.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α n : α H : 0 ∣ 0 * n ⊢ ∃ d₁ d₂, d₁ ∣ 0 ∧ d₂ ∣ n ∧ 0 = d₁ * d₂ [PROOFSTEP] refine' ⟨0, n, dvd_refl 0, dvd_refl n, _⟩ [GOAL] case pos.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α n : α H : 0 ∣ 0 * n ⊢ 0 = 0 * n [PROOFSTEP] simp [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ m * n h0 : ¬gcd k m = 0 ⊢ ∃ d₁ d₂, d₁ ∣ m ∧ d₂ ∣ n ∧ k = d₁ * d₂ [PROOFSTEP] obtain ⟨a, ha⟩ := gcd_dvd_left k m [GOAL] case neg.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ m * n h0 : ¬gcd k m = 0 a : α ha : k = gcd k m * a ⊢ ∃ d₁ d₂, d₁ ∣ m ∧ d₂ ∣ n ∧ k = d₁ * d₂ [PROOFSTEP] refine' ⟨gcd k m, a, gcd_dvd_right _ _, _, ha⟩ [GOAL] case neg.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ m * n h0 : ¬gcd k m = 0 a : α ha : k = gcd k m * a ⊢ a ∣ n [PROOFSTEP] suffices h : gcd k m * a ∣ gcd k m * n [GOAL] case neg.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ m * n h0 : ¬gcd k m = 0 a : α ha : k = gcd k m * a h : gcd k m * a ∣ gcd k m * n ⊢ a ∣ n [PROOFSTEP] cases' h with b hb [GOAL] case neg.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ m * n h0 : ¬gcd k m = 0 a : α ha : k = gcd k m * a b : α hb : gcd k m * n = gcd k m * a * b ⊢ a ∣ n [PROOFSTEP] use b [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ m * n h0 : ¬gcd k m = 0 a : α ha : k = gcd k m * a b : α hb : gcd k m * n = gcd k m * a * b ⊢ n = a * b [PROOFSTEP] rw [mul_assoc] at hb [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ m * n h0 : ¬gcd k m = 0 a : α ha : k = gcd k m * a b : α hb : gcd k m * n = gcd k m * (a * b) ⊢ n = a * b [PROOFSTEP] apply mul_left_cancel₀ h0 hb [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ m * n h0 : ¬gcd k m = 0 a : α ha : k = gcd k m * a ⊢ gcd k m * a ∣ gcd k m * n [PROOFSTEP] rw [← ha] [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n k : α H : k ∣ m * n h0 : ¬gcd k m = 0 a : α ha : k = gcd k m * a ⊢ k ∣ gcd k m * n [PROOFSTEP] exact dvd_gcd_mul_of_dvd_mul H [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α k m n : α ⊢ k ∣ m * n ↔ ∃ d₁ d₂, d₁ ∣ m ∧ d₂ ∣ n ∧ k = d₁ * d₂ [PROOFSTEP] refine' ⟨exists_dvd_and_dvd_of_dvd_mul, _⟩ [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α k m n : α ⊢ (∃ d₁ d₂, d₁ ∣ m ∧ d₂ ∣ n ∧ k = d₁ * d₂) → k ∣ m * n [PROOFSTEP] rintro ⟨d₁, d₂, hy, hz, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α m n d₁ d₂ : α hy : d₁ ∣ m hz : d₂ ∣ n ⊢ d₁ * d₂ ∣ m * n [PROOFSTEP] exact mul_dvd_mul hy hz [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α k m n : α ⊢ gcd k (m * n) ∣ gcd k m * gcd k n [PROOFSTEP] obtain ⟨m', n', hm', hn', h⟩ := exists_dvd_and_dvd_of_dvd_mul (gcd_dvd_right k (m * n)) [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α k m n m' n' : α hm' : m' ∣ m hn' : n' ∣ n h : gcd k (m * n) = m' * n' ⊢ gcd k (m * n) ∣ gcd k m * gcd k n [PROOFSTEP] replace h : gcd k (m * n) = m' * n' := h [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α k m n m' n' : α hm' : m' ∣ m hn' : n' ∣ n h : gcd k (m * n) = m' * n' ⊢ gcd k (m * n) ∣ gcd k m * gcd k n [PROOFSTEP] rw [h] [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α k m n m' n' : α hm' : m' ∣ m hn' : n' ∣ n h : gcd k (m * n) = m' * n' ⊢ m' * n' ∣ gcd k m * gcd k n [PROOFSTEP] have hm'n' : m' * n' ∣ k := h ▸ gcd_dvd_left _ _ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α k m n m' n' : α hm' : m' ∣ m hn' : n' ∣ n h : gcd k (m * n) = m' * n' hm'n' : m' * n' ∣ k ⊢ m' * n' ∣ gcd k m * gcd k n [PROOFSTEP] apply mul_dvd_mul [GOAL] case intro.intro.intro.intro.a α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α k m n m' n' : α hm' : m' ∣ m hn' : n' ∣ n h : gcd k (m * n) = m' * n' hm'n' : m' * n' ∣ k ⊢ m' ∣ gcd k m [PROOFSTEP] have hm'k : m' ∣ k := (dvd_mul_right m' n').trans hm'n' [GOAL] case intro.intro.intro.intro.a α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α k m n m' n' : α hm' : m' ∣ m hn' : n' ∣ n h : gcd k (m * n) = m' * n' hm'n' : m' * n' ∣ k hm'k : m' ∣ k ⊢ m' ∣ gcd k m [PROOFSTEP] exact dvd_gcd hm'k hm' [GOAL] case intro.intro.intro.intro.a α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α k m n m' n' : α hm' : m' ∣ m hn' : n' ∣ n h : gcd k (m * n) = m' * n' hm'n' : m' * n' ∣ k ⊢ n' ∣ gcd k n [PROOFSTEP] have hn'k : n' ∣ k := (dvd_mul_left n' m').trans hm'n' [GOAL] case intro.intro.intro.intro.a α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α k m n m' n' : α hm' : m' ∣ m hn' : n' ∣ n h : gcd k (m * n) = m' * n' hm'n' : m' * n' ∣ k hn'k : n' ∣ k ⊢ n' ∣ gcd k n [PROOFSTEP] exact dvd_gcd hn'k hn' [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α k : ℕ ⊢ gcd a (b ^ k) ∣ gcd a b ^ k [PROOFSTEP] by_cases hg : gcd a b = 0 [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α k : ℕ hg : gcd a b = 0 ⊢ gcd a (b ^ k) ∣ gcd a b ^ k [PROOFSTEP] rw [gcd_eq_zero_iff] at hg [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α k : ℕ hg : a = 0 ∧ b = 0 ⊢ gcd a (b ^ k) ∣ gcd a b ^ k [PROOFSTEP] rcases hg with ⟨rfl, rfl⟩ [GOAL] case pos.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α k : ℕ ⊢ gcd 0 (0 ^ k) ∣ gcd 0 0 ^ k [PROOFSTEP] exact (gcd_zero_left' (0 ^ k : α)).dvd.trans (pow_dvd_pow_of_dvd (gcd_zero_left' (0 : α)).symm.dvd _) [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α k : ℕ hg : ¬gcd a b = 0 ⊢ gcd a (b ^ k) ∣ gcd a b ^ k [PROOFSTEP] induction' k with k hk [GOAL] case neg.zero α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α hg : ¬gcd a b = 0 ⊢ gcd a (b ^ Nat.zero) ∣ gcd a b ^ Nat.zero [PROOFSTEP] rw [pow_zero, pow_zero] [GOAL] case neg.zero α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α hg : ¬gcd a b = 0 ⊢ gcd a 1 ∣ 1 [PROOFSTEP] exact (gcd_one_right' a).dvd [GOAL] case neg.succ α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α hg : ¬gcd a b = 0 k : ℕ hk : gcd a (b ^ k) ∣ gcd a b ^ k ⊢ gcd a (b ^ Nat.succ k) ∣ gcd a b ^ Nat.succ k [PROOFSTEP] rw [pow_succ, pow_succ] [GOAL] case neg.succ α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α hg : ¬gcd a b = 0 k : ℕ hk : gcd a (b ^ k) ∣ gcd a b ^ k ⊢ gcd a (b * b ^ k) ∣ gcd a b * gcd a b ^ k [PROOFSTEP] trans gcd a b * gcd a (b ^ k) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α hg : ¬gcd a b = 0 k : ℕ hk : gcd a (b ^ k) ∣ gcd a b ^ k ⊢ gcd a (b * b ^ k) ∣ gcd a b * gcd a (b ^ k) [PROOFSTEP] exact gcd_mul_dvd_mul_gcd a b (b ^ k) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α hg : ¬gcd a b = 0 k : ℕ hk : gcd a (b ^ k) ∣ gcd a b ^ k ⊢ gcd a b * gcd a (b ^ k) ∣ gcd a b * gcd a b ^ k [PROOFSTEP] exact (mul_dvd_mul_iff_left hg).mpr hk [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a ⊢ d₁ ^ k ≠ 0 ∧ d₁ ^ k ∣ a [PROOFSTEP] have h1 : IsUnit (gcd (d₁ ^ k) b) := by apply isUnit_of_dvd_one trans gcd d₁ b ^ k · exact gcd_pow_left_dvd_pow_gcd · apply IsUnit.dvd apply IsUnit.pow apply isUnit_of_dvd_one apply dvd_trans _ hab.dvd apply gcd_dvd_gcd hd₁ (dvd_refl b) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a ⊢ IsUnit (gcd (d₁ ^ k) b) [PROOFSTEP] apply isUnit_of_dvd_one [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a ⊢ gcd (d₁ ^ k) b ∣ 1 [PROOFSTEP] trans gcd d₁ b ^ k [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a ⊢ gcd (d₁ ^ k) b ∣ gcd d₁ b ^ k [PROOFSTEP] exact gcd_pow_left_dvd_pow_gcd [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a ⊢ gcd d₁ b ^ k ∣ 1 [PROOFSTEP] apply IsUnit.dvd [GOAL] case hu α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a ⊢ IsUnit (gcd d₁ b ^ k) [PROOFSTEP] apply IsUnit.pow [GOAL] case hu.a α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a ⊢ IsUnit (gcd d₁ b) [PROOFSTEP] apply isUnit_of_dvd_one [GOAL] case hu.a.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a ⊢ gcd d₁ b ∣ 1 [PROOFSTEP] apply dvd_trans _ hab.dvd [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a ⊢ gcd d₁ b ∣ gcd a b [PROOFSTEP] apply gcd_dvd_gcd hd₁ (dvd_refl b) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a h1 : IsUnit (gcd (d₁ ^ k) b) ⊢ d₁ ^ k ≠ 0 ∧ d₁ ^ k ∣ a [PROOFSTEP] have h2 : d₁ ^ k ∣ a * b := by use d₂ ^ k rw [h, hc] exact mul_pow d₁ d₂ k [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a h1 : IsUnit (gcd (d₁ ^ k) b) ⊢ d₁ ^ k ∣ a * b [PROOFSTEP] use d₂ ^ k [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a h1 : IsUnit (gcd (d₁ ^ k) b) ⊢ a * b = d₁ ^ k * d₂ ^ k [PROOFSTEP] rw [h, hc] [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a h1 : IsUnit (gcd (d₁ ^ k) b) ⊢ (d₁ * d₂) ^ k = d₁ ^ k * d₂ ^ k [PROOFSTEP] exact mul_pow d₁ d₂ k [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a h1 : IsUnit (gcd (d₁ ^ k) b) h2 : d₁ ^ k ∣ a * b ⊢ d₁ ^ k ≠ 0 ∧ d₁ ^ k ∣ a [PROOFSTEP] rw [mul_comm] at h2 [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a h1 : IsUnit (gcd (d₁ ^ k) b) h2 : d₁ ^ k ∣ b * a ⊢ d₁ ^ k ≠ 0 ∧ d₁ ^ k ∣ a [PROOFSTEP] have h3 : d₁ ^ k ∣ a := by apply (dvd_gcd_mul_of_dvd_mul h2).trans rw [IsUnit.mul_left_dvd _ _ _ h1] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a h1 : IsUnit (gcd (d₁ ^ k) b) h2 : d₁ ^ k ∣ b * a ⊢ d₁ ^ k ∣ a [PROOFSTEP] apply (dvd_gcd_mul_of_dvd_mul h2).trans [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a h1 : IsUnit (gcd (d₁ ^ k) b) h2 : d₁ ^ k ∣ b * a ⊢ gcd (d₁ ^ k) b * a ∣ a [PROOFSTEP] rw [IsUnit.mul_left_dvd _ _ _ h1] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a h1 : IsUnit (gcd (d₁ ^ k) b) h2 : d₁ ^ k ∣ b * a h3 : d₁ ^ k ∣ a ⊢ d₁ ^ k ≠ 0 ∧ d₁ ^ k ∣ a [PROOFSTEP] have h4 : d₁ ^ k ≠ 0 := by intro hdk rw [hdk] at h3 apply absurd (zero_dvd_iff.mp h3) ha [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a h1 : IsUnit (gcd (d₁ ^ k) b) h2 : d₁ ^ k ∣ b * a h3 : d₁ ^ k ∣ a ⊢ d₁ ^ k ≠ 0 [PROOFSTEP] intro hdk [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a h1 : IsUnit (gcd (d₁ ^ k) b) h2 : d₁ ^ k ∣ b * a h3 : d₁ ^ k ∣ a hdk : d₁ ^ k = 0 ⊢ False [PROOFSTEP] rw [hdk] at h3 [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a h1 : IsUnit (gcd (d₁ ^ k) b) h2 : d₁ ^ k ∣ b * a h3 : 0 ∣ a hdk : d₁ ^ k = 0 ⊢ False [PROOFSTEP] apply absurd (zero_dvd_iff.mp h3) ha [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c d₁ d₂ : α ha : a ≠ 0 hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k hc : c = d₁ * d₂ hd₁ : d₁ ∣ a h1 : IsUnit (gcd (d₁ ^ k) b) h2 : d₁ ^ k ∣ b * a h3 : d₁ ^ k ∣ a h4 : d₁ ^ k ≠ 0 ⊢ d₁ ^ k ≠ 0 ∧ d₁ ^ k ∣ a [PROOFSTEP] exact ⟨h4, h3⟩ [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k ⊢ ∃ d, Associated (d ^ k) a [PROOFSTEP] cases subsingleton_or_nontrivial α [GOAL] case inl α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Subsingleton α ⊢ ∃ d, Associated (d ^ k) a [PROOFSTEP] use 0 [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Subsingleton α ⊢ Associated (0 ^ k) a [PROOFSTEP] rw [Subsingleton.elim a (0 ^ k)] [GOAL] case inr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ⊢ ∃ d, Associated (d ^ k) a [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : a = 0 ⊢ ∃ d, Associated (d ^ k) a [PROOFSTEP] use 0 [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : a = 0 ⊢ Associated (0 ^ k) a [PROOFSTEP] rw [ha] [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : a = 0 ⊢ Associated (0 ^ k) 0 [PROOFSTEP] obtain rfl | hk := k.eq_zero_or_pos [GOAL] case h.inl α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) h✝ : Nontrivial α ha : a = 0 h : a * b = c ^ 0 ⊢ Associated (0 ^ 0) 0 [PROOFSTEP] exfalso [GOAL] case h.inl.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) h✝ : Nontrivial α ha : a = 0 h : a * b = c ^ 0 ⊢ False [PROOFSTEP] revert h [GOAL] case h.inl.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) h✝ : Nontrivial α ha : a = 0 ⊢ a * b = c ^ 0 → False [PROOFSTEP] rw [ha, zero_mul, pow_zero] [GOAL] case h.inl.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) h✝ : Nontrivial α ha : a = 0 ⊢ 0 = 1 → False [PROOFSTEP] apply zero_ne_one [GOAL] case h.inr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : a = 0 hk : k > 0 ⊢ Associated (0 ^ k) 0 [PROOFSTEP] rw [zero_pow hk] [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 ⊢ ∃ d, Associated (d ^ k) a [PROOFSTEP] by_cases hb : b = 0 [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : b = 0 ⊢ ∃ d, Associated (d ^ k) a [PROOFSTEP] use 1 [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : b = 0 ⊢ Associated (1 ^ k) a [PROOFSTEP] rw [one_pow] [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : b = 0 ⊢ Associated 1 a [PROOFSTEP] apply (associated_one_iff_isUnit.mpr hab).symm.trans [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : b = 0 ⊢ Associated (gcd a b) a [PROOFSTEP] rw [hb] [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : b = 0 ⊢ Associated (gcd a 0) a [PROOFSTEP] exact gcd_zero_right' a [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 ⊢ ∃ d, Associated (d ^ k) a [PROOFSTEP] obtain rfl | hk := k.eq_zero_or_pos [GOAL] case neg.inl α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 h : a * b = c ^ 0 ⊢ ∃ d, Associated (d ^ 0) a [PROOFSTEP] use 1 [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 h : a * b = c ^ 0 ⊢ Associated (1 ^ 0) a [PROOFSTEP] rw [pow_zero] at h ⊢ [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 h : a * b = 1 ⊢ Associated 1 a [PROOFSTEP] use Units.mkOfMulEqOne _ _ h [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 h : a * b = 1 ⊢ 1 * ↑(Units.mkOfMulEqOne a b h) = a [PROOFSTEP] rw [Units.val_mkOfMulEqOne, one_mul] [GOAL] case neg.inr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 ⊢ ∃ d, Associated (d ^ k) a [PROOFSTEP] have hc : c ∣ a * b := by rw [h] exact dvd_pow_self _ hk.ne' [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 ⊢ c ∣ a * b [PROOFSTEP] rw [h] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 ⊢ c ∣ c ^ k [PROOFSTEP] exact dvd_pow_self _ hk.ne' [GOAL] case neg.inr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc : c ∣ a * b ⊢ ∃ d, Associated (d ^ k) a [PROOFSTEP] obtain ⟨d₁, d₂, hd₁, hd₂, hc⟩ := exists_dvd_and_dvd_of_dvd_mul hc [GOAL] case neg.inr.intro.intro.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₁ * d₂ ⊢ ∃ d, Associated (d ^ k) a [PROOFSTEP] use d₁ [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₁ * d₂ ⊢ Associated (d₁ ^ k) a [PROOFSTEP] obtain ⟨h0₁, ⟨a', ha'⟩⟩ := pow_dvd_of_mul_eq_pow ha hab h hc hd₁ [GOAL] case h.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : a * b = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₁ * d₂ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' ⊢ Associated (d₁ ^ k) a [PROOFSTEP] rw [mul_comm] at h hc [GOAL] case h.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd a b) k : ℕ h : b * a = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₂ * d₁ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' ⊢ Associated (d₁ ^ k) a [PROOFSTEP] rw [(gcd_comm' a b).isUnit_iff] at hab [GOAL] case h.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd b a) k : ℕ h : b * a = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₂ * d₁ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' ⊢ Associated (d₁ ^ k) a [PROOFSTEP] obtain ⟨h0₂, ⟨b', hb'⟩⟩ := pow_dvd_of_mul_eq_pow hb hab h hc hd₂ [GOAL] case h.intro.intro.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd b a) k : ℕ h : b * a = c ^ k h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₂ * d₁ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' h0₂ : d₂ ^ k ≠ 0 b' : α hb' : b = d₂ ^ k * b' ⊢ Associated (d₁ ^ k) a [PROOFSTEP] rw [ha', hb', hc, mul_pow] at h [GOAL] case h.intro.intro.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd b a) k : ℕ h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₂ * d₁ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' h0₂ : d₂ ^ k ≠ 0 b' : α h : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k hb' : b = d₂ ^ k * b' ⊢ Associated (d₁ ^ k) a [PROOFSTEP] have h' : a' * b' = 1 := by apply (mul_right_inj' h0₁).mp rw [mul_one] apply (mul_right_inj' h0₂).mp rw [← h] rw [mul_assoc, mul_comm a', ← mul_assoc _ b', ← mul_assoc b', mul_comm b'] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd b a) k : ℕ h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₂ * d₁ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' h0₂ : d₂ ^ k ≠ 0 b' : α h : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k hb' : b = d₂ ^ k * b' ⊢ a' * b' = 1 [PROOFSTEP] apply (mul_right_inj' h0₁).mp [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd b a) k : ℕ h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₂ * d₁ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' h0₂ : d₂ ^ k ≠ 0 b' : α h : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k hb' : b = d₂ ^ k * b' ⊢ d₁ ^ k * (a' * b') = d₁ ^ k * 1 [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd b a) k : ℕ h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₂ * d₁ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' h0₂ : d₂ ^ k ≠ 0 b' : α h : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k hb' : b = d₂ ^ k * b' ⊢ d₁ ^ k * (a' * b') = d₁ ^ k [PROOFSTEP] apply (mul_right_inj' h0₂).mp [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd b a) k : ℕ h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₂ * d₁ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' h0₂ : d₂ ^ k ≠ 0 b' : α h : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k hb' : b = d₂ ^ k * b' ⊢ d₂ ^ k * (d₁ ^ k * (a' * b')) = d₂ ^ k * d₁ ^ k [PROOFSTEP] rw [← h] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd b a) k : ℕ h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₂ * d₁ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' h0₂ : d₂ ^ k ≠ 0 b' : α h : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k hb' : b = d₂ ^ k * b' ⊢ d₂ ^ k * (d₁ ^ k * (a' * b')) = d₂ ^ k * b' * (d₁ ^ k * a') [PROOFSTEP] rw [mul_assoc, mul_comm a', ← mul_assoc _ b', ← mul_assoc b', mul_comm b'] [GOAL] case h.intro.intro.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd b a) k : ℕ h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₂ * d₁ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' h0₂ : d₂ ^ k ≠ 0 b' : α h : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k hb' : b = d₂ ^ k * b' h' : a' * b' = 1 ⊢ Associated (d₁ ^ k) a [PROOFSTEP] use Units.mkOfMulEqOne _ _ h' [GOAL] case h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α hab : IsUnit (gcd b a) k : ℕ h✝ : Nontrivial α ha : ¬a = 0 hb : ¬b = 0 hk : k > 0 hc✝ : c ∣ a * b d₁ d₂ : α hd₁ : d₁ ∣ a hd₂ : d₂ ∣ b hc : c = d₂ * d₁ h0₁ : d₁ ^ k ≠ 0 a' : α ha' : a = d₁ ^ k * a' h0₂ : d₂ ^ k ≠ 0 b' : α h : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k hb' : b = d₂ ^ k * b' h' : a' * b' = 1 ⊢ d₁ ^ k * ↑(Units.mkOfMulEqOne a' b' h') = a [PROOFSTEP] rw [Units.val_mkOfMulEqOne, ha'] [GOAL] α✝ : Type u_1 inst✝² : CancelCommMonoidWithZero α✝ α : Type u_2 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x y x' y' : α ex : x = gcd x y * x' ey : y = gcd x y * y' h : gcd x y ≠ 0 ⊢ IsUnit (gcd x' y') [PROOFSTEP] rw [← associated_one_iff_isUnit] [GOAL] α✝ : Type u_1 inst✝² : CancelCommMonoidWithZero α✝ α : Type u_2 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x y x' y' : α ex : x = gcd x y * x' ey : y = gcd x y * y' h : gcd x y ≠ 0 ⊢ Associated (gcd x' y') 1 [PROOFSTEP] refine' Associated.of_mul_left _ (Associated.refl <| gcd x y) h [GOAL] α✝ : Type u_1 inst✝² : CancelCommMonoidWithZero α✝ α : Type u_2 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x y x' y' : α ex : x = gcd x y * x' ey : y = gcd x y * y' h : gcd x y ≠ 0 ⊢ Associated (gcd x y * gcd x' y') (gcd x y * 1) [PROOFSTEP] convert (gcd_mul_left' (gcd x y) x' y').symm using 1 [GOAL] case h.e'_4 α✝ : Type u_1 inst✝² : CancelCommMonoidWithZero α✝ α : Type u_2 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x y x' y' : α ex : x = gcd x y * x' ey : y = gcd x y * y' h : gcd x y ≠ 0 ⊢ gcd x y * 1 = gcd (gcd x y * x') (gcd x y * y') [PROOFSTEP] rw [← ex, ← ey, mul_one] [GOAL] α✝ : Type u_1 inst✝² : CancelCommMonoidWithZero α✝ α : Type u_2 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x y : α ⊢ ∃ x' y', x = gcd x y * x' ∧ y = gcd x y * y' ∧ IsUnit (gcd x' y') [PROOFSTEP] by_cases h : gcd x y = 0 [GOAL] case pos α✝ : Type u_1 inst✝² : CancelCommMonoidWithZero α✝ α : Type u_2 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x y : α h : gcd x y = 0 ⊢ ∃ x' y', x = gcd x y * x' ∧ y = gcd x y * y' ∧ IsUnit (gcd x' y') [PROOFSTEP] obtain ⟨rfl, rfl⟩ := (gcd_eq_zero_iff x y).1 h [GOAL] case pos.intro α✝ : Type u_1 inst✝² : CancelCommMonoidWithZero α✝ α : Type u_2 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α h : gcd 0 0 = 0 ⊢ ∃ x' y', 0 = gcd 0 0 * x' ∧ 0 = gcd 0 0 * y' ∧ IsUnit (gcd x' y') [PROOFSTEP] simp_rw [← associated_one_iff_isUnit] [GOAL] case pos.intro α✝ : Type u_1 inst✝² : CancelCommMonoidWithZero α✝ α : Type u_2 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α h : gcd 0 0 = 0 ⊢ ∃ x' y', 0 = gcd 0 0 * x' ∧ 0 = gcd 0 0 * y' ∧ Associated (gcd x' y') 1 [PROOFSTEP] exact ⟨1, 1, by rw [h, zero_mul], by rw [h, zero_mul], gcd_one_left' 1⟩ [GOAL] α✝ : Type u_1 inst✝² : CancelCommMonoidWithZero α✝ α : Type u_2 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α h : gcd 0 0 = 0 ⊢ 0 = gcd 0 0 * 1 [PROOFSTEP] rw [h, zero_mul] [GOAL] α✝ : Type u_1 inst✝² : CancelCommMonoidWithZero α✝ α : Type u_2 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α h : gcd 0 0 = 0 ⊢ 0 = gcd 0 0 * 1 [PROOFSTEP] rw [h, zero_mul] [GOAL] case neg α✝ : Type u_1 inst✝² : CancelCommMonoidWithZero α✝ α : Type u_2 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x y : α h : ¬gcd x y = 0 ⊢ ∃ x' y', x = gcd x y * x' ∧ y = gcd x y * y' ∧ IsUnit (gcd x' y') [PROOFSTEP] obtain ⟨x', ex⟩ := gcd_dvd_left x y [GOAL] case neg.intro α✝ : Type u_1 inst✝² : CancelCommMonoidWithZero α✝ α : Type u_2 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x y : α h : ¬gcd x y = 0 x' : α ex : x = gcd x y * x' ⊢ ∃ x' y', x = gcd x y * x' ∧ y = gcd x y * y' ∧ IsUnit (gcd x' y') [PROOFSTEP] obtain ⟨y', ey⟩ := gcd_dvd_right x y [GOAL] case neg.intro.intro α✝ : Type u_1 inst✝² : CancelCommMonoidWithZero α✝ α : Type u_2 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x y : α h : ¬gcd x y = 0 x' : α ex : x = gcd x y * x' y' : α ey : y = gcd x y * y' ⊢ ∃ x' y', x = gcd x y * x' ∧ y = gcd x y * y' ∧ IsUnit (gcd x' y') [PROOFSTEP] exact ⟨x', y', ex, ey, isUnit_gcd_of_eq_mul_gcd ex ey h⟩ [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α ⊢ lcm a b ∣ c ↔ a ∣ c ∧ b ∣ c [PROOFSTEP] by_cases h : a = 0 ∨ b = 0 [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α h : a = 0 ∨ b = 0 ⊢ lcm a b ∣ c ↔ a ∣ c ∧ b ∣ c [PROOFSTEP] rcases h with (rfl | rfl) [GOAL] case pos.inl α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α b c : α ⊢ lcm 0 b ∣ c ↔ 0 ∣ c ∧ b ∣ c [PROOFSTEP] simp (config := { contextual := true }) only [iff_def, lcm_zero_left, lcm_zero_right, zero_dvd_iff, dvd_zero, eq_self_iff_true, and_true_iff, imp_true_iff] [GOAL] case pos.inr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a c : α ⊢ lcm a 0 ∣ c ↔ a ∣ c ∧ 0 ∣ c [PROOFSTEP] simp (config := { contextual := true }) only [iff_def, lcm_zero_left, lcm_zero_right, zero_dvd_iff, dvd_zero, eq_self_iff_true, and_true_iff, imp_true_iff] [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α h : ¬(a = 0 ∨ b = 0) ⊢ lcm a b ∣ c ↔ a ∣ c ∧ b ∣ c [PROOFSTEP] obtain ⟨h1, h2⟩ := not_or.1 h [GOAL] case neg.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α h : ¬(a = 0 ∨ b = 0) h1 : ¬a = 0 h2 : ¬b = 0 ⊢ lcm a b ∣ c ↔ a ∣ c ∧ b ∣ c [PROOFSTEP] have h : gcd a b ≠ 0 := fun H => h1 ((gcd_eq_zero_iff _ _).1 H).1 [GOAL] case neg.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α h✝ : ¬(a = 0 ∨ b = 0) h1 : ¬a = 0 h2 : ¬b = 0 h : gcd a b ≠ 0 ⊢ lcm a b ∣ c ↔ a ∣ c ∧ b ∣ c [PROOFSTEP] rw [← mul_dvd_mul_iff_left h, (gcd_mul_lcm a b).dvd_iff_dvd_left, ← (gcd_mul_right' c a b).dvd_iff_dvd_right, dvd_gcd_iff, mul_comm b c, mul_dvd_mul_iff_left h1, mul_dvd_mul_iff_right h2, and_comm] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α h : lcm a b = 0 ⊢ a = 0 ∨ b = 0 [PROOFSTEP] have : Associated (a * b) 0 := (gcd_mul_lcm a b).symm.trans <| by rw [h, mul_zero] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α h : lcm a b = 0 ⊢ Associated (gcd a b * lcm a b) 0 [PROOFSTEP] rw [h, mul_zero] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α h : lcm a b = 0 this : Associated (a * b) 0 ⊢ a = 0 ∨ b = 0 [PROOFSTEP] rwa [← mul_eq_zero, ← associated_zero_iff_eq_zero] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α ⊢ a = 0 ∨ b = 0 → lcm a b = 0 [PROOFSTEP] rintro (rfl | rfl) <;> [apply lcm_zero_left; apply lcm_zero_right] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α ⊢ a = 0 ∨ b = 0 → lcm a b = 0 [PROOFSTEP] rintro (rfl | rfl) [GOAL] case inl α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α b : α ⊢ lcm 0 b = 0 [PROOFSTEP] apply lcm_zero_left [GOAL] case inr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a : α ⊢ lcm a 0 = 0 [PROOFSTEP] apply lcm_zero_right [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a b : α x✝ : a ∣ 1 ∧ b ∣ 1 c : α hc : 1 = a * c d : α hd : 1 = b * d ⊢ lcm ↑(Units.mkOfMulEqOne a c (_ : a * c = 1)) ↑(Units.mkOfMulEqOne b d (_ : b * d = 1)) = 1 [PROOFSTEP] rw [lcm_units_coe_left, normalize_coe_units] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a b c : α ⊢ a = 0 → lcm (a * b) (a * c) = ↑normalize a * lcm b c [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α b c : α ⊢ lcm (0 * b) (0 * c) = ↑normalize 0 * lcm b c [PROOFSTEP] simp only [zero_mul, lcm_zero_left, normalize_zero] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a b c : α ha : a ≠ 0 this : lcm (a * b) (a * c) = ↑normalize (a * lcm b c) ⊢ lcm (a * b) (a * c) = ↑normalize a * lcm b c [PROOFSTEP] simpa [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a b c : α ⊢ lcm (b * a) (c * a) = lcm b c * ↑normalize a [PROOFSTEP] simp only [mul_comm, lcm_mul_left] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α a b : α h : ↑normalize b = b ⊢ lcm a b = b ↔ a ∣ b [PROOFSTEP] simpa only [lcm_comm b a] using lcm_eq_left_iff b a h [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x : α hi : Irreducible x a b : α h : x ∣ a * b ⊢ x ∣ a ∨ x ∣ b [PROOFSTEP] cases' gcd_dvd_left x a with y hy [GOAL] case intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x : α hi : Irreducible x a b : α h : x ∣ a * b y : α hy : x = gcd x a * y ⊢ x ∣ a ∨ x ∣ b [PROOFSTEP] cases' hi.isUnit_or_isUnit hy with hu hu [GOAL] case intro.inl α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x : α hi : Irreducible x a b : α h : x ∣ a * b y : α hy : x = gcd x a * y hu : IsUnit (gcd x a) ⊢ x ∣ a ∨ x ∣ b [PROOFSTEP] right [GOAL] case intro.inl.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x : α hi : Irreducible x a b : α h : x ∣ a * b y : α hy : x = gcd x a * y hu : IsUnit (gcd x a) ⊢ x ∣ b [PROOFSTEP] trans gcd (x * b) (a * b) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x : α hi : Irreducible x a b : α h : x ∣ a * b y : α hy : x = gcd x a * y hu : IsUnit (gcd x a) ⊢ x ∣ gcd (x * b) (a * b) α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x : α hi : Irreducible x a b : α h : x ∣ a * b y : α hy : x = gcd x a * y hu : IsUnit (gcd x a) ⊢ gcd (x * b) (a * b) ∣ b [PROOFSTEP] apply dvd_gcd (dvd_mul_right x b) h [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x : α hi : Irreducible x a b : α h : x ∣ a * b y : α hy : x = gcd x a * y hu : IsUnit (gcd x a) ⊢ gcd (x * b) (a * b) ∣ b [PROOFSTEP] rw [(gcd_mul_right' b x a).dvd_iff_dvd_left] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x : α hi : Irreducible x a b : α h : x ∣ a * b y : α hy : x = gcd x a * y hu : IsUnit (gcd x a) ⊢ gcd x a * b ∣ b [PROOFSTEP] exact (associated_unit_mul_left _ _ hu).dvd [GOAL] case intro.inr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x : α hi : Irreducible x a b : α h : x ∣ a * b y : α hy : x = gcd x a * y hu : IsUnit y ⊢ x ∣ a ∨ x ∣ b [PROOFSTEP] left [GOAL] case intro.inr.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x : α hi : Irreducible x a b : α h : x ∣ a * b y : α hy : x = gcd x a * y hu : IsUnit y ⊢ x ∣ a [PROOFSTEP] rw [hy] [GOAL] case intro.inr.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α x : α hi : Irreducible x a b : α h : x ∣ a * b y : α hy : x = gcd x a * y hu : IsUnit y ⊢ gcd x a * y ∣ a [PROOFSTEP] exact dvd_trans (associated_mul_unit_left _ _ hu).dvd (gcd_dvd_right x a) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ x✝ : NormalizationMonoid α u : α → αˣ normUnit_zero✝ : u 0 = 1 normUnit_mul✝ : ∀ {a b : α}, a ≠ 0 → b ≠ 0 → u (a * b) = u a * u b normUnit_coe_units✝ : ∀ (u_1 : αˣ), u ↑u_1 = u_1⁻¹ ⊢ { normUnit := u, normUnit_zero := normUnit_zero✝, normUnit_mul := normUnit_mul✝, normUnit_coe_units := normUnit_coe_units✝ } = default [PROOFSTEP] congr [GOAL] case e_normUnit α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ x✝ : NormalizationMonoid α u : α → αˣ normUnit_zero✝ : u 0 = 1 normUnit_mul✝ : ∀ {a b : α}, a ≠ 0 → b ≠ 0 → u (a * b) = u a * u b normUnit_coe_units✝ : ∀ (u_1 : αˣ), u ↑u_1 = u_1⁻¹ ⊢ u = fun x => 1 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ g₁ g₂ : GCDMonoid α ⊢ g₁ = g₂ [PROOFSTEP] have hgcd : g₁.gcd = g₂.gcd := by ext a b refine' associated_iff_eq.mp (associated_of_dvd_dvd _ _) -- Porting note: Lean4 seems to need help specifying `g₁` and `g₂` · exact dvd_gcd (@gcd_dvd_left _ _ g₁ _ _) (@gcd_dvd_right _ _ g₁ _ _) · exact @dvd_gcd _ _ g₁ _ _ _ (@gcd_dvd_left _ _ g₂ _ _) (@gcd_dvd_right _ _ g₂ _ _) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ g₁ g₂ : GCDMonoid α ⊢ gcd = gcd [PROOFSTEP] ext a b [GOAL] case h.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ g₁ g₂ : GCDMonoid α a b : α ⊢ gcd a b = gcd a b [PROOFSTEP] refine' associated_iff_eq.mp (associated_of_dvd_dvd _ _) -- Porting note: Lean4 seems to need help specifying `g₁` and `g₂` [GOAL] case h.h.refine'_1 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ g₁ g₂ : GCDMonoid α a b : α ⊢ gcd a b ∣ gcd a b [PROOFSTEP] exact dvd_gcd (@gcd_dvd_left _ _ g₁ _ _) (@gcd_dvd_right _ _ g₁ _ _) [GOAL] case h.h.refine'_2 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ g₁ g₂ : GCDMonoid α a b : α ⊢ gcd a b ∣ gcd a b [PROOFSTEP] exact @dvd_gcd _ _ g₁ _ _ _ (@gcd_dvd_left _ _ g₂ _ _) (@gcd_dvd_right _ _ g₂ _ _) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ g₁ g₂ : GCDMonoid α hgcd : gcd = gcd ⊢ g₁ = g₂ [PROOFSTEP] have hlcm : g₁.lcm = g₂.lcm := by ext a b refine' associated_iff_eq.mp (associated_of_dvd_dvd _ _) · exact (@lcm_dvd_iff _ _ g₁ ..).mpr ⟨@dvd_lcm_left _ _ g₂ _ _, @dvd_lcm_right _ _ g₂ _ _⟩ · exact lcm_dvd_iff.mpr ⟨@dvd_lcm_left _ _ g₁ _ _, @dvd_lcm_right _ _ g₁ _ _⟩ [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ g₁ g₂ : GCDMonoid α hgcd : gcd = gcd ⊢ lcm = lcm [PROOFSTEP] ext a b [GOAL] case h.h α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ g₁ g₂ : GCDMonoid α hgcd : gcd = gcd a b : α ⊢ lcm a b = lcm a b [PROOFSTEP] refine' associated_iff_eq.mp (associated_of_dvd_dvd _ _) [GOAL] case h.h.refine'_1 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ g₁ g₂ : GCDMonoid α hgcd : gcd = gcd a b : α ⊢ lcm a b ∣ lcm a b [PROOFSTEP] exact (@lcm_dvd_iff _ _ g₁ ..).mpr ⟨@dvd_lcm_left _ _ g₂ _ _, @dvd_lcm_right _ _ g₂ _ _⟩ [GOAL] case h.h.refine'_2 α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ g₁ g₂ : GCDMonoid α hgcd : gcd = gcd a b : α ⊢ lcm a b ∣ lcm a b [PROOFSTEP] exact lcm_dvd_iff.mpr ⟨@dvd_lcm_left _ _ g₁ _ _, @dvd_lcm_right _ _ g₁ _ _⟩ [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ g₁ g₂ : GCDMonoid α hgcd : gcd = gcd hlcm : lcm = lcm ⊢ g₁ = g₂ [PROOFSTEP] cases g₁ [GOAL] case mk α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ g₂ : GCDMonoid α gcd✝ lcm✝ : α → α → α gcd_dvd_left✝ : ∀ (a b : α), gcd✝ a b ∣ a gcd_dvd_right✝ : ∀ (a b : α), gcd✝ a b ∣ b dvd_gcd✝ : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd✝ c b gcd_mul_lcm✝ : ∀ (a b : α), Associated (gcd✝ a b * lcm✝ a b) (a * b) lcm_zero_left✝ : ∀ (a : α), lcm✝ 0 a = 0 lcm_zero_right✝ : ∀ (a : α), lcm✝ a 0 = 0 hgcd : gcd = gcd hlcm : lcm = lcm ⊢ { gcd := gcd✝, lcm := lcm✝, gcd_dvd_left := gcd_dvd_left✝, gcd_dvd_right := gcd_dvd_right✝, dvd_gcd := dvd_gcd✝, gcd_mul_lcm := gcd_mul_lcm✝, lcm_zero_left := lcm_zero_left✝, lcm_zero_right := lcm_zero_right✝ } = g₂ [PROOFSTEP] cases g₂ [GOAL] case mk.mk α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ gcd✝¹ lcm✝¹ : α → α → α gcd_dvd_left✝¹ : ∀ (a b : α), gcd✝¹ a b ∣ a gcd_dvd_right✝¹ : ∀ (a b : α), gcd✝¹ a b ∣ b dvd_gcd✝¹ : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd✝¹ c b gcd_mul_lcm✝¹ : ∀ (a b : α), Associated (gcd✝¹ a b * lcm✝¹ a b) (a * b) lcm_zero_left✝¹ : ∀ (a : α), lcm✝¹ 0 a = 0 lcm_zero_right✝¹ : ∀ (a : α), lcm✝¹ a 0 = 0 gcd✝ lcm✝ : α → α → α gcd_dvd_left✝ : ∀ (a b : α), gcd✝ a b ∣ a gcd_dvd_right✝ : ∀ (a b : α), gcd✝ a b ∣ b dvd_gcd✝ : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd✝ c b gcd_mul_lcm✝ : ∀ (a b : α), Associated (gcd✝ a b * lcm✝ a b) (a * b) lcm_zero_left✝ : ∀ (a : α), lcm✝ 0 a = 0 lcm_zero_right✝ : ∀ (a : α), lcm✝ a 0 = 0 hgcd : gcd = gcd hlcm : lcm = lcm ⊢ { gcd := gcd✝¹, lcm := lcm✝¹, gcd_dvd_left := gcd_dvd_left✝¹, gcd_dvd_right := gcd_dvd_right✝¹, dvd_gcd := dvd_gcd✝¹, gcd_mul_lcm := gcd_mul_lcm✝¹, lcm_zero_left := lcm_zero_left✝¹, lcm_zero_right := lcm_zero_right✝¹ } = { gcd := gcd✝, lcm := lcm✝, gcd_dvd_left := gcd_dvd_left✝, gcd_dvd_right := gcd_dvd_right✝, dvd_gcd := dvd_gcd✝, gcd_mul_lcm := gcd_mul_lcm✝, lcm_zero_left := lcm_zero_left✝, lcm_zero_right := lcm_zero_right✝ } [PROOFSTEP] dsimp only at hgcd hlcm [GOAL] case mk.mk α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ gcd✝¹ lcm✝¹ : α → α → α gcd_dvd_left✝¹ : ∀ (a b : α), gcd✝¹ a b ∣ a gcd_dvd_right✝¹ : ∀ (a b : α), gcd✝¹ a b ∣ b dvd_gcd✝¹ : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd✝¹ c b gcd_mul_lcm✝¹ : ∀ (a b : α), Associated (gcd✝¹ a b * lcm✝¹ a b) (a * b) lcm_zero_left✝¹ : ∀ (a : α), lcm✝¹ 0 a = 0 lcm_zero_right✝¹ : ∀ (a : α), lcm✝¹ a 0 = 0 gcd✝ lcm✝ : α → α → α gcd_dvd_left✝ : ∀ (a b : α), gcd✝ a b ∣ a gcd_dvd_right✝ : ∀ (a b : α), gcd✝ a b ∣ b dvd_gcd✝ : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd✝ c b gcd_mul_lcm✝ : ∀ (a b : α), Associated (gcd✝ a b * lcm✝ a b) (a * b) lcm_zero_left✝ : ∀ (a : α), lcm✝ 0 a = 0 lcm_zero_right✝ : ∀ (a : α), lcm✝ a 0 = 0 hgcd : gcd✝¹ = gcd✝ hlcm : lcm✝¹ = lcm✝ ⊢ { gcd := gcd✝¹, lcm := lcm✝¹, gcd_dvd_left := gcd_dvd_left✝¹, gcd_dvd_right := gcd_dvd_right✝¹, dvd_gcd := dvd_gcd✝¹, gcd_mul_lcm := gcd_mul_lcm✝¹, lcm_zero_left := lcm_zero_left✝¹, lcm_zero_right := lcm_zero_right✝¹ } = { gcd := gcd✝, lcm := lcm✝, gcd_dvd_left := gcd_dvd_left✝, gcd_dvd_right := gcd_dvd_right✝, dvd_gcd := dvd_gcd✝, gcd_mul_lcm := gcd_mul_lcm✝, lcm_zero_left := lcm_zero_left✝, lcm_zero_right := lcm_zero_right✝ } [PROOFSTEP] simp only [hgcd, hlcm] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ ⊢ ∀ (a b : NormalizedGCDMonoid α), a = b [PROOFSTEP] intro a b [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ a b : NormalizedGCDMonoid α ⊢ a = b [PROOFSTEP] cases' a with a_norm a_gcd [GOAL] case mk α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ b : NormalizedGCDMonoid α a_norm : NormalizationMonoid α a_gcd : GCDMonoid α normalize_gcd✝ : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b normalize_lcm✝ : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b ⊢ NormalizedGCDMonoid.mk normalize_gcd✝ normalize_lcm✝ = b [PROOFSTEP] cases' b with b_norm b_gcd [GOAL] case mk.mk α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ a_norm : NormalizationMonoid α a_gcd : GCDMonoid α normalize_gcd✝¹ : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b normalize_lcm✝¹ : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b b_norm : NormalizationMonoid α b_gcd : GCDMonoid α normalize_gcd✝ : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b normalize_lcm✝ : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b ⊢ NormalizedGCDMonoid.mk normalize_gcd✝¹ normalize_lcm✝¹ = NormalizedGCDMonoid.mk normalize_gcd✝ normalize_lcm✝ [PROOFSTEP] have := Subsingleton.elim a_gcd b_gcd [GOAL] case mk.mk α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ a_norm : NormalizationMonoid α a_gcd : GCDMonoid α normalize_gcd✝¹ : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b normalize_lcm✝¹ : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b b_norm : NormalizationMonoid α b_gcd : GCDMonoid α normalize_gcd✝ : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b normalize_lcm✝ : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b this : a_gcd = b_gcd ⊢ NormalizedGCDMonoid.mk normalize_gcd✝¹ normalize_lcm✝¹ = NormalizedGCDMonoid.mk normalize_gcd✝ normalize_lcm✝ [PROOFSTEP] subst this [GOAL] case mk.mk α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ a_norm : NormalizationMonoid α a_gcd : GCDMonoid α normalize_gcd✝¹ : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b normalize_lcm✝¹ : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b b_norm : NormalizationMonoid α normalize_gcd✝ : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b normalize_lcm✝ : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b ⊢ NormalizedGCDMonoid.mk normalize_gcd✝¹ normalize_lcm✝¹ = NormalizedGCDMonoid.mk normalize_gcd✝ normalize_lcm✝ [PROOFSTEP] have := Subsingleton.elim a_norm b_norm [GOAL] case mk.mk α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ a_norm : NormalizationMonoid α a_gcd : GCDMonoid α normalize_gcd✝¹ : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b normalize_lcm✝¹ : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b b_norm : NormalizationMonoid α normalize_gcd✝ : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b normalize_lcm✝ : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b this : a_norm = b_norm ⊢ NormalizedGCDMonoid.mk normalize_gcd✝¹ normalize_lcm✝¹ = NormalizedGCDMonoid.mk normalize_gcd✝ normalize_lcm✝ [PROOFSTEP] subst this [GOAL] case mk.mk α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ a_norm : NormalizationMonoid α a_gcd : GCDMonoid α normalize_gcd✝¹ : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b normalize_lcm✝¹ : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b normalize_gcd✝ : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b normalize_lcm✝ : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b ⊢ NormalizedGCDMonoid.mk normalize_gcd✝¹ normalize_lcm✝¹ = NormalizedGCDMonoid.mk normalize_gcd✝ normalize_lcm✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c : α h : a ∣ b - c ⊢ gcd a b = gcd a c [PROOFSTEP] apply dvd_antisymm_of_normalize_eq (normalize_gcd _ _) (normalize_gcd _ _) [GOAL] case hab α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c : α h : a ∣ b - c ⊢ gcd a b ∣ gcd a c [PROOFSTEP] rw [dvd_gcd_iff] [GOAL] case hba α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c : α h : a ∣ b - c ⊢ gcd a c ∣ gcd a b [PROOFSTEP] rw [dvd_gcd_iff] [GOAL] case hab α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c : α h : a ∣ b - c ⊢ gcd a b ∣ a ∧ gcd a b ∣ c [PROOFSTEP] refine' ⟨gcd_dvd_left _ _, _⟩ [GOAL] case hba α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c : α h : a ∣ b - c ⊢ gcd a c ∣ a ∧ gcd a c ∣ b [PROOFSTEP] refine' ⟨gcd_dvd_left _ _, _⟩ [GOAL] case hab α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c : α h : a ∣ b - c ⊢ gcd a b ∣ c [PROOFSTEP] rcases h with ⟨d, hd⟩ [GOAL] case hab.intro α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c d : α hd : b - c = a * d ⊢ gcd a b ∣ c [PROOFSTEP] rcases gcd_dvd_right a b with ⟨e, he⟩ [GOAL] case hab.intro.intro α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c d : α hd : b - c = a * d e : α he : b = gcd a b * e ⊢ gcd a b ∣ c [PROOFSTEP] rcases gcd_dvd_left a b with ⟨f, hf⟩ [GOAL] case hab.intro.intro.intro α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c d : α hd : b - c = a * d e : α he : b = gcd a b * e f : α hf : a = gcd a b * f ⊢ gcd a b ∣ c [PROOFSTEP] use e - f * d [GOAL] case h α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c d : α hd : b - c = a * d e : α he : b = gcd a b * e f : α hf : a = gcd a b * f ⊢ c = gcd a b * (e - f * d) [PROOFSTEP] rw [mul_sub, ← he, ← mul_assoc, ← hf, ← hd, sub_sub_cancel] [GOAL] case hba α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c : α h : a ∣ b - c ⊢ gcd a c ∣ b [PROOFSTEP] rcases h with ⟨d, hd⟩ [GOAL] case hba.intro α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c d : α hd : b - c = a * d ⊢ gcd a c ∣ b [PROOFSTEP] rcases gcd_dvd_right a c with ⟨e, he⟩ [GOAL] case hba.intro.intro α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c d : α hd : b - c = a * d e : α he : c = gcd a c * e ⊢ gcd a c ∣ b [PROOFSTEP] rcases gcd_dvd_left a c with ⟨f, hf⟩ [GOAL] case hba.intro.intro.intro α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c d : α hd : b - c = a * d e : α he : c = gcd a c * e f : α hf : a = gcd a c * f ⊢ gcd a c ∣ b [PROOFSTEP] use e + f * d [GOAL] case h α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c d : α hd : b - c = a * d e : α he : c = gcd a c * e f : α hf : a = gcd a c * f ⊢ b = gcd a c * (e + f * d) [PROOFSTEP] rw [mul_add, ← he, ← mul_assoc, ← hf, ← hd, ← add_sub_assoc, add_comm c b, add_sub_cancel] [GOAL] α : Type u_1 inst✝² : CommRing α inst✝¹ : IsDomain α inst✝ : NormalizedGCDMonoid α a b c : α h : a ∣ b - c ⊢ gcd b a = gcd c a [PROOFSTEP] rw [gcd_comm _ a, gcd_comm _ a, gcd_eq_of_dvd_sub_right h] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α f : Associates α →* α hinv : Function.RightInverse (↑f) Associates.mk a b : α ha : a ≠ 0 hb : b ≠ 0 ⊢ (fun a => if a = 0 then 1 else Classical.choose (_ : Associated a (↑f (Associates.mk a)))) (a * b) = (fun a => if a = 0 then 1 else Classical.choose (_ : Associated a (↑f (Associates.mk a)))) a * (fun a => if a = 0 then 1 else Classical.choose (_ : Associated a (↑f (Associates.mk a)))) b [PROOFSTEP] simp_rw [if_neg (mul_ne_zero ha hb), if_neg ha, if_neg hb, Units.ext_iff, Units.val_mul] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α f : Associates α →* α hinv : Function.RightInverse (↑f) Associates.mk a b : α ha : a ≠ 0 hb : b ≠ 0 ⊢ ↑(Classical.choose (_ : Associated (a * b) (↑f (Associates.mk (a * b))))) = ↑(Classical.choose (_ : Associated a (↑f (Associates.mk a)))) * ↑(Classical.choose (_ : Associated b (↑f (Associates.mk b)))) [PROOFSTEP] suffices a * b * ↑(Classical.choose (associated_map_mk hinv (a * b))) = a * ↑(Classical.choose (associated_map_mk hinv a)) * (b * ↑(Classical.choose (associated_map_mk hinv b))) by apply mul_left_cancel₀ (mul_ne_zero ha hb) _ -- Porting note: original `simpa` fails with `unexpected bound variable #1` -- simpa only [mul_assoc, mul_comm, mul_left_comm] using this rw [this, mul_assoc, ← mul_assoc _ b, mul_comm _ b, ← mul_assoc, ← mul_assoc, mul_assoc (a * b)] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α f : Associates α →* α hinv : Function.RightInverse (↑f) Associates.mk a b : α ha : a ≠ 0 hb : b ≠ 0 this : a * b * ↑(Classical.choose (_ : Associated (a * b) (↑f (Associates.mk (a * b))))) = a * ↑(Classical.choose (_ : Associated a (↑f (Associates.mk a)))) * (b * ↑(Classical.choose (_ : Associated b (↑f (Associates.mk b))))) ⊢ ↑(Classical.choose (_ : Associated (a * b) (↑f (Associates.mk (a * b))))) = ↑(Classical.choose (_ : Associated a (↑f (Associates.mk a)))) * ↑(Classical.choose (_ : Associated b (↑f (Associates.mk b)))) [PROOFSTEP] apply mul_left_cancel₀ (mul_ne_zero ha hb) _ -- Porting note: original `simpa` fails with `unexpected bound variable #1` -- simpa only [mul_assoc, mul_comm, mul_left_comm] using this [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α f : Associates α →* α hinv : Function.RightInverse (↑f) Associates.mk a b : α ha : a ≠ 0 hb : b ≠ 0 this : a * b * ↑(Classical.choose (_ : Associated (a * b) (↑f (Associates.mk (a * b))))) = a * ↑(Classical.choose (_ : Associated a (↑f (Associates.mk a)))) * (b * ↑(Classical.choose (_ : Associated b (↑f (Associates.mk b))))) ⊢ a * b * ↑(Classical.choose (_ : Associated (a * b) (↑f (Associates.mk (a * b))))) = a * b * (↑(Classical.choose (_ : Associated a (↑f (Associates.mk a)))) * ↑(Classical.choose (_ : Associated b (↑f (Associates.mk b))))) [PROOFSTEP] rw [this, mul_assoc, ← mul_assoc _ b, mul_comm _ b, ← mul_assoc, ← mul_assoc, mul_assoc (a * b)] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α f : Associates α →* α hinv : Function.RightInverse (↑f) Associates.mk a b : α ha : a ≠ 0 hb : b ≠ 0 ⊢ a * b * ↑(Classical.choose (_ : Associated (a * b) (↑f (Associates.mk (a * b))))) = a * ↑(Classical.choose (_ : Associated a (↑f (Associates.mk a)))) * (b * ↑(Classical.choose (_ : Associated b (↑f (Associates.mk b))))) [PROOFSTEP] rw [map_mk_unit_aux hinv a, map_mk_unit_aux hinv (a * b), map_mk_unit_aux hinv b, ← MonoidHom.map_mul, Associates.mk_mul_mk] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α f : Associates α →* α hinv : Function.RightInverse (↑f) Associates.mk u : αˣ ⊢ (fun a => if a = 0 then 1 else Classical.choose (_ : Associated a (↑f (Associates.mk a)))) ↑u = u⁻¹ [PROOFSTEP] nontriviality α [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α f : Associates α →* α hinv : Function.RightInverse (↑f) Associates.mk u : αˣ ✝ : Nontrivial α ⊢ (fun a => if a = 0 then 1 else Classical.choose (_ : Associated a (↑f (Associates.mk a)))) ↑u = u⁻¹ [PROOFSTEP] simp_rw [if_neg (Units.ne_zero u), Units.ext_iff] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α f : Associates α →* α hinv : Function.RightInverse (↑f) Associates.mk u : αˣ ✝ : Nontrivial α ⊢ ↑(Classical.choose (_ : Associated (↑u) (↑f (Associates.mk ↑u)))) = ↑u⁻¹ [PROOFSTEP] apply mul_left_cancel₀ (Units.ne_zero u) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α f : Associates α →* α hinv : Function.RightInverse (↑f) Associates.mk u : αˣ ✝ : Nontrivial α ⊢ ↑u * ↑(Classical.choose (_ : Associated (↑u) (↑f (Associates.mk ↑u)))) = ↑u * ↑u⁻¹ [PROOFSTEP] rw [Units.mul_inv, map_mk_unit_aux hinv u, Associates.mk_eq_mk_iff_associated.2 (associated_one_iff_isUnit.2 ⟨u, rfl⟩), Associates.mk_one, MonoidHom.map_one] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a b : α ⊢ Associated (gcd a b * (fun a b => if a = 0 then 0 else Classical.choose (_ : gcd a b ∣ a * b)) a b) (a * b) [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a b : α ⊢ Associated (gcd a b * if a = 0 then 0 else Classical.choose (_ : gcd a b ∣ a * b)) (a * b) [PROOFSTEP] split_ifs with a0 [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a b : α a0 : a = 0 ⊢ Associated (gcd a b * 0) (a * b) [PROOFSTEP] rw [mul_zero, a0, zero_mul] [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a b : α a0 : ¬a = 0 ⊢ Associated (gcd a b * Classical.choose (_ : gcd a b ∣ a * b)) (a * b) [PROOFSTEP] rw [← Classical.choose_spec ((gcd_dvd_left a b).trans (Dvd.intro b rfl))] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a : α ⊢ (fun a b => if a = 0 then 0 else Classical.choose (_ : gcd a b ∣ a * b)) a 0 = 0 [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a : α ⊢ (if a = 0 then 0 else Classical.choose (_ : gcd a 0 ∣ a * 0)) = 0 [PROOFSTEP] split_ifs with a0 [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a : α a0 : a = 0 ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a : α a0 : ¬a = 0 ⊢ Classical.choose (_ : gcd a 0 ∣ a * 0) = 0 [PROOFSTEP] have h := (Classical.choose_spec ((gcd_dvd_left a 0).trans (Dvd.intro 0 rfl))).symm [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a : α a0 : ¬a = 0 h : gcd a 0 * Classical.choose (_ : gcd a 0 ∣ a * 0) = a * 0 ⊢ Classical.choose (_ : gcd a 0 ∣ a * 0) = 0 [PROOFSTEP] have a0' : gcd a 0 ≠ 0 := by contrapose! a0 rw [← associated_zero_iff_eq_zero, ← a0] exact associated_of_dvd_dvd (dvd_gcd (dvd_refl a) (dvd_zero a)) (gcd_dvd_left _ _) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a : α a0 : ¬a = 0 h : gcd a 0 * Classical.choose (_ : gcd a 0 ∣ a * 0) = a * 0 ⊢ gcd a 0 ≠ 0 [PROOFSTEP] contrapose! a0 [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a : α h : gcd a 0 * Classical.choose (_ : gcd a 0 ∣ a * 0) = a * 0 a0 : gcd a 0 = 0 ⊢ a = 0 [PROOFSTEP] rw [← associated_zero_iff_eq_zero, ← a0] [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a : α h : gcd a 0 * Classical.choose (_ : gcd a 0 ∣ a * 0) = a * 0 a0 : gcd a 0 = 0 ⊢ Associated a (gcd a 0) [PROOFSTEP] exact associated_of_dvd_dvd (dvd_gcd (dvd_refl a) (dvd_zero a)) (gcd_dvd_left _ _) [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a : α a0 : ¬a = 0 h : gcd a 0 * Classical.choose (_ : gcd a 0 ∣ a * 0) = a * 0 a0' : gcd a 0 ≠ 0 ⊢ Classical.choose (_ : gcd a 0 ∣ a * 0) = 0 [PROOFSTEP] apply Or.resolve_left (mul_eq_zero.1 _) a0' [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b a : α a0 : ¬a = 0 h : gcd a 0 * Classical.choose (_ : gcd a 0 ∣ a * 0) = a * 0 a0' : gcd a 0 ≠ 0 ⊢ gcd a 0 * Classical.choose (_ : gcd a 0 ∣ a * 0) = 0 [PROOFSTEP] rw [h, mul_zero] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α ⊢ Associated (gcd a b * (fun a b => if a = 0 then 0 else Classical.choose (_ : gcd a b ∣ ↑normalize (a * b))) a b) (a * b) [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α ⊢ Associated (gcd a b * if a = 0 then 0 else Classical.choose (_ : gcd a b ∣ ↑normalize (a * b))) (a * b) [PROOFSTEP] split_ifs with a0 [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : a = 0 ⊢ Associated (gcd a b * 0) (a * b) [PROOFSTEP] rw [mul_zero, a0, zero_mul] [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : ¬a = 0 ⊢ Associated (gcd a b * Classical.choose (_ : gcd a b ∣ ↑normalize (a * b))) (a * b) [PROOFSTEP] rw [← Classical.choose_spec (dvd_normalize_iff.2 ((gcd_dvd_left a b).trans (Dvd.intro b rfl)))] [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : ¬a = 0 ⊢ Associated (↑normalize (a * b)) (a * b) [PROOFSTEP] exact normalize_associated (a * b) [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α ⊢ (fun a b => if a = 0 then 0 else Classical.choose (_ : gcd a b ∣ ↑normalize (a * b))) a 0 = 0 [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α ⊢ (if a = 0 then 0 else Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0))) = 0 [PROOFSTEP] split_ifs with a0 [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0 : a = 0 ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0 : ¬a = 0 ⊢ Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) = 0 [PROOFSTEP] rw [← normalize_eq_zero] at a0 [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0✝ : ¬a = 0 a0 : ¬↑normalize a = 0 ⊢ Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) = 0 [PROOFSTEP] have h := (Classical.choose_spec (dvd_normalize_iff.2 ((gcd_dvd_left a 0).trans (Dvd.intro 0 rfl)))).symm [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0✝ : ¬a = 0 a0 : ¬↑normalize a = 0 h : gcd a 0 * Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) = ↑normalize (a * 0) ⊢ Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) = 0 [PROOFSTEP] have gcd0 : gcd a 0 = normalize a := by rw [← normalize_gcd] exact normalize_eq_normalize (gcd_dvd_left _ _) (dvd_gcd (dvd_refl a) (dvd_zero a)) [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0✝ : ¬a = 0 a0 : ¬↑normalize a = 0 h : gcd a 0 * Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) = ↑normalize (a * 0) ⊢ gcd a 0 = ↑normalize a [PROOFSTEP] rw [← normalize_gcd] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0✝ : ¬a = 0 a0 : ¬↑normalize a = 0 h : gcd a 0 * Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) = ↑normalize (a * 0) ⊢ ↑normalize (gcd a 0) = ↑normalize a [PROOFSTEP] exact normalize_eq_normalize (gcd_dvd_left _ _) (dvd_gcd (dvd_refl a) (dvd_zero a)) [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0✝ : ¬a = 0 a0 : ¬↑normalize a = 0 h : gcd a 0 * Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) = ↑normalize (a * 0) gcd0 : gcd a 0 = ↑normalize a ⊢ Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) = 0 [PROOFSTEP] rw [← gcd0] at a0 [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0✝ : ¬a = 0 a0 : ¬gcd a 0 = 0 h : gcd a 0 * Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) = ↑normalize (a * 0) gcd0 : gcd a 0 = ↑normalize a ⊢ Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) = 0 [PROOFSTEP] apply Or.resolve_left (mul_eq_zero.1 _) a0 [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0✝ : ¬a = 0 a0 : ¬gcd a 0 = 0 h : gcd a 0 * Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) = ↑normalize (a * 0) gcd0 : gcd a 0 = ↑normalize a ⊢ gcd a 0 * Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) = 0 [PROOFSTEP] rw [h, mul_zero, normalize_zero] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α ⊢ ↑normalize (lcm a b) = lcm a b [PROOFSTEP] dsimp [normalize] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α ⊢ (if a = 0 then 0 else Classical.choose (_ : gcd a b ∣ a * b * ↑(normUnit (a * b)))) * ↑(normUnit (if a = 0 then 0 else Classical.choose (_ : gcd a b ∣ a * b * ↑(normUnit (a * b))))) = if a = 0 then 0 else Classical.choose (_ : gcd a b ∣ a * b * ↑(normUnit (a * b))) [PROOFSTEP] split_ifs with a0 [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : a = 0 ⊢ 0 * ↑(normUnit 0) = 0 [PROOFSTEP] exact @normalize_zero α _ _ [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : ¬a = 0 ⊢ Classical.choose (_ : gcd a b ∣ a * b * ↑(normUnit (a * b))) * ↑(normUnit (Classical.choose (_ : gcd a b ∣ a * b * ↑(normUnit (a * b))))) = Classical.choose (_ : gcd a b ∣ a * b * ↑(normUnit (a * b))) [PROOFSTEP] have := (Classical.choose_spec (dvd_normalize_iff.2 ((gcd_dvd_left a b).trans (Dvd.intro b rfl)))).symm [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : ¬a = 0 this : gcd a b * Classical.choose (_ : gcd a b ∣ ↑normalize (a * b)) = ↑normalize (a * b) ⊢ Classical.choose (_ : gcd a b ∣ a * b * ↑(normUnit (a * b))) * ↑(normUnit (Classical.choose (_ : gcd a b ∣ a * b * ↑(normUnit (a * b))))) = Classical.choose (_ : gcd a b ∣ a * b * ↑(normUnit (a * b))) [PROOFSTEP] set l := Classical.choose (dvd_normalize_iff.2 ((gcd_dvd_left a b).trans (Dvd.intro b rfl))) [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a b ∣ ↑normalize (a * b)) this : gcd a b * l = ↑normalize (a * b) ⊢ l * ↑(normUnit l) = l [PROOFSTEP] obtain rfl | hb := eq_or_ne b 0 -- Porting note: using `simp only` causes the propositions inside `Classical.choose` to -- differ, so `set` is unable to produce `l = 0` inside `this`. See -- https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/ -- Classical.2Echoose/near/317491179 [GOAL] case neg.inl α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) this : gcd a 0 * l = ↑normalize (a * 0) ⊢ l * ↑(normUnit l) = l [PROOFSTEP] rw [mul_zero a, normalize_zero, mul_eq_zero] at this [GOAL] case neg.inl α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) this : gcd a 0 = 0 ∨ l = 0 ⊢ l * ↑(normUnit l) = l [PROOFSTEP] obtain ha | hl := this [GOAL] case neg.inl.inl α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) ha : gcd a 0 = 0 ⊢ l * ↑(normUnit l) = l [PROOFSTEP] apply (a0 _).elim [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) ha : gcd a 0 = 0 ⊢ a = 0 [PROOFSTEP] rw [← zero_dvd_iff, ← ha] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) ha : gcd a 0 = 0 ⊢ gcd a 0 ∣ a [PROOFSTEP] exact gcd_dvd_left _ _ [GOAL] case neg.inl.inr α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a 0 ∣ ↑normalize (a * 0)) hl : l = 0 ⊢ l * ↑(normUnit l) = l [PROOFSTEP] rw [hl, zero_mul] [GOAL] case neg.inr α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a b ∣ ↑normalize (a * b)) this : gcd a b * l = ↑normalize (a * b) hb : b ≠ 0 ⊢ l * ↑(normUnit l) = l [PROOFSTEP] have h1 : gcd a b ≠ 0 := by have hab : a * b ≠ 0 := mul_ne_zero a0 hb contrapose! hab rw [← normalize_eq_zero, ← this, hab, zero_mul] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a b ∣ ↑normalize (a * b)) this : gcd a b * l = ↑normalize (a * b) hb : b ≠ 0 ⊢ gcd a b ≠ 0 [PROOFSTEP] have hab : a * b ≠ 0 := mul_ne_zero a0 hb [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a b ∣ ↑normalize (a * b)) this : gcd a b * l = ↑normalize (a * b) hb : b ≠ 0 hab : a * b ≠ 0 ⊢ gcd a b ≠ 0 [PROOFSTEP] contrapose! hab [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a b ∣ ↑normalize (a * b)) this : gcd a b * l = ↑normalize (a * b) hb : b ≠ 0 hab : gcd a b = 0 ⊢ a * b = 0 [PROOFSTEP] rw [← normalize_eq_zero, ← this, hab, zero_mul] [GOAL] case neg.inr α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a b ∣ ↑normalize (a * b)) this : gcd a b * l = ↑normalize (a * b) hb : b ≠ 0 h1 : gcd a b ≠ 0 ⊢ l * ↑(normUnit l) = l [PROOFSTEP] have h2 : normalize (gcd a b * l) = gcd a b * l := by rw [this, normalize_idem] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a b ∣ ↑normalize (a * b)) this : gcd a b * l = ↑normalize (a * b) hb : b ≠ 0 h1 : gcd a b ≠ 0 ⊢ ↑normalize (gcd a b * l) = gcd a b * l [PROOFSTEP] rw [this, normalize_idem] [GOAL] case neg.inr α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a b ∣ ↑normalize (a * b)) this : gcd a b * l = ↑normalize (a * b) hb : b ≠ 0 h1 : gcd a b ≠ 0 h2 : ↑normalize (gcd a b * l) = gcd a b * l ⊢ l * ↑(normUnit l) = l [PROOFSTEP] rw [← normalize_gcd] at this [GOAL] case neg.inr α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α gcd : α → α → α gcd_dvd_left : ∀ (a b : α), gcd a b ∣ a gcd_dvd_right : ∀ (a b : α), gcd a b ∣ b dvd_gcd : ∀ {a b c : α}, a ∣ c → a ∣ b → a ∣ gcd c b normalize_gcd : ∀ (a b : α), ↑normalize (gcd a b) = gcd a b src✝ : NormalizationMonoid α := inferInstance a b : α a0 : ¬a = 0 l : α := Classical.choose (_ : gcd a b ∣ ↑normalize (a * b)) this : ↑normalize (gcd a b) * l = ↑normalize (a * b) hb : b ≠ 0 h1 : gcd a b ≠ 0 h2 : ↑normalize (gcd a b * l) = gcd a b * l ⊢ l * ↑(normUnit l) = l [PROOFSTEP] rwa [normalize.map_mul, normalize_gcd, mul_right_inj' h1] at h2 [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α ⊢ (fun a b => if a = 0 then b else if b = 0 then a else Classical.choose (_ : lcm a b ∣ a * b)) a b ∣ a [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α ⊢ (if a = 0 then b else if b = 0 then a else Classical.choose (_ : lcm a b ∣ a * b)) ∣ a [PROOFSTEP] split_ifs with h h_1 [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : a = 0 ⊢ b ∣ a [PROOFSTEP] rw [h] [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : a = 0 ⊢ b ∣ 0 [PROOFSTEP] apply dvd_zero [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : b = 0 ⊢ a ∣ a [PROOFSTEP] exact dvd_rfl [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 ⊢ Classical.choose (_ : lcm a b ∣ a * b) ∣ a [PROOFSTEP] have h0 : lcm a b ≠ 0 := by intro con have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) rw [con, zero_dvd_iff, mul_eq_zero] at h cases h · exact absurd ‹a = 0› h · exact absurd ‹b = 0› h_1 [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 ⊢ lcm a b ≠ 0 [PROOFSTEP] intro con [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 ⊢ False [PROOFSTEP] have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h✝ : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h : lcm a b ∣ a * b ⊢ False [PROOFSTEP] rw [con, zero_dvd_iff, mul_eq_zero] at h [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h✝ : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h : a = 0 ∨ b = 0 ⊢ False [PROOFSTEP] cases h [GOAL] case inl α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h✝ : a = 0 ⊢ False [PROOFSTEP] exact absurd ‹a = 0› h [GOAL] case inr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h✝ : b = 0 ⊢ False [PROOFSTEP] exact absurd ‹b = 0› h_1 [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 ⊢ Classical.choose (_ : lcm a b ∣ a * b) ∣ a [PROOFSTEP] rw [← mul_dvd_mul_iff_left h0, ← Classical.choose_spec (exists_gcd a b), mul_comm, mul_dvd_mul_iff_right h] [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 ⊢ b ∣ lcm a b [PROOFSTEP] apply dvd_lcm_right [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α ⊢ (fun a b => if a = 0 then b else if b = 0 then a else Classical.choose (_ : lcm a b ∣ a * b)) a b ∣ b [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α ⊢ (if a = 0 then b else if b = 0 then a else Classical.choose (_ : lcm a b ∣ a * b)) ∣ b [PROOFSTEP] split_ifs with h h_1 [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : a = 0 ⊢ b ∣ b [PROOFSTEP] exact dvd_rfl [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : b = 0 ⊢ a ∣ b [PROOFSTEP] rw [h_1] [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : b = 0 ⊢ a ∣ 0 [PROOFSTEP] apply dvd_zero [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 ⊢ Classical.choose (_ : lcm a b ∣ a * b) ∣ b [PROOFSTEP] have h0 : lcm a b ≠ 0 := by intro con have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) rw [con, zero_dvd_iff, mul_eq_zero] at h cases h · exact absurd ‹a = 0› h · exact absurd ‹b = 0› h_1 [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 ⊢ lcm a b ≠ 0 [PROOFSTEP] intro con [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 ⊢ False [PROOFSTEP] have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h✝ : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h : lcm a b ∣ a * b ⊢ False [PROOFSTEP] rw [con, zero_dvd_iff, mul_eq_zero] at h [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h✝ : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h : a = 0 ∨ b = 0 ⊢ False [PROOFSTEP] cases h [GOAL] case inl α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h✝ : a = 0 ⊢ False [PROOFSTEP] exact absurd ‹a = 0› h [GOAL] case inr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h✝ : b = 0 ⊢ False [PROOFSTEP] exact absurd ‹b = 0› h_1 [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 ⊢ Classical.choose (_ : lcm a b ∣ a * b) ∣ b [PROOFSTEP] rw [← mul_dvd_mul_iff_left h0, ← Classical.choose_spec (exists_gcd a b), mul_dvd_mul_iff_right h_1] [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 ⊢ a ∣ lcm a b [PROOFSTEP] apply dvd_lcm_left [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b c : α ac : a ∣ c ab : a ∣ b ⊢ a ∣ (fun a b => if a = 0 then b else if b = 0 then a else Classical.choose (_ : lcm a b ∣ a * b)) c b [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b c : α ac : a ∣ c ab : a ∣ b ⊢ a ∣ if c = 0 then b else if b = 0 then c else Classical.choose (_ : lcm c b ∣ c * b) [PROOFSTEP] split_ifs with h h_1 [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b c : α ac : a ∣ c ab : a ∣ b h : c = 0 ⊢ a ∣ b [PROOFSTEP] exact ab [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : b = 0 ⊢ a ∣ c [PROOFSTEP] exact ac [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 ⊢ a ∣ Classical.choose (_ : lcm c b ∣ c * b) [PROOFSTEP] have h0 : lcm c b ≠ 0 := by intro con have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left c rfl) rw [con, zero_dvd_iff, mul_eq_zero] at h cases h · exact absurd ‹c = 0› h · exact absurd ‹b = 0› h_1 [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 ⊢ lcm c b ≠ 0 [PROOFSTEP] intro con [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 con : lcm c b = 0 ⊢ False [PROOFSTEP] have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left c rfl) [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b c : α ac : a ∣ c ab : a ∣ b h✝ : ¬c = 0 h_1 : ¬b = 0 con : lcm c b = 0 h : lcm c b ∣ c * b ⊢ False [PROOFSTEP] rw [con, zero_dvd_iff, mul_eq_zero] at h [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b c : α ac : a ∣ c ab : a ∣ b h✝ : ¬c = 0 h_1 : ¬b = 0 con : lcm c b = 0 h : c = 0 ∨ b = 0 ⊢ False [PROOFSTEP] cases h [GOAL] case inl α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 con : lcm c b = 0 h✝ : c = 0 ⊢ False [PROOFSTEP] exact absurd ‹c = 0› h [GOAL] case inr α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 con : lcm c b = 0 h✝ : b = 0 ⊢ False [PROOFSTEP] exact absurd ‹b = 0› h_1 [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 h0 : lcm c b ≠ 0 ⊢ a ∣ Classical.choose (_ : lcm c b ∣ c * b) [PROOFSTEP] rw [← mul_dvd_mul_iff_left h0, ← Classical.choose_spec (exists_gcd c b)] [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 h0 : lcm c b ≠ 0 ⊢ lcm c b * a ∣ c * b [PROOFSTEP] rcases ab with ⟨d, rfl⟩ [GOAL] case neg.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a c : α ac : a ∣ c h : ¬c = 0 d : α h_1 : ¬a * d = 0 h0 : lcm c (a * d) ≠ 0 ⊢ lcm c (a * d) * a ∣ c * (a * d) [PROOFSTEP] rw [mul_eq_zero] at ‹a * d ≠ 0› [GOAL] case neg.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a c : α ac : a ∣ c h : ¬c = 0 d : α h_1 : ¬(a = 0 ∨ d = 0) h0 : lcm c (a * d) ≠ 0 ⊢ lcm c (a * d) * a ∣ c * (a * d) [PROOFSTEP] push_neg at h_1 [GOAL] case neg.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a c : α ac : a ∣ c h : ¬c = 0 d : α h0 : lcm c (a * d) ≠ 0 h_1 : a ≠ 0 ∧ d ≠ 0 ⊢ lcm c (a * d) * a ∣ c * (a * d) [PROOFSTEP] rw [mul_comm a, ← mul_assoc, mul_dvd_mul_iff_right h_1.1] [GOAL] case neg.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a c : α ac : a ∣ c h : ¬c = 0 d : α h0 : lcm c (a * d) ≠ 0 h_1 : a ≠ 0 ∧ d ≠ 0 ⊢ lcm c (d * a) ∣ c * d [PROOFSTEP] apply lcm_dvd (Dvd.intro d rfl) [GOAL] case neg.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a c : α ac : a ∣ c h : ¬c = 0 d : α h0 : lcm c (a * d) ≠ 0 h_1 : a ≠ 0 ∧ d ≠ 0 ⊢ d * a ∣ c * d [PROOFSTEP] rw [mul_comm, mul_dvd_mul_iff_right h_1.2] [GOAL] case neg.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a c : α ac : a ∣ c h : ¬c = 0 d : α h0 : lcm c (a * d) ≠ 0 h_1 : a ≠ 0 ∧ d ≠ 0 ⊢ a ∣ c [PROOFSTEP] apply ac [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α ⊢ Associated ((fun a b => if a = 0 then b else if b = 0 then a else Classical.choose (_ : lcm a b ∣ a * b)) a b * lcm a b) (a * b) [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α ⊢ Associated ((if a = 0 then b else if b = 0 then a else Classical.choose (_ : lcm a b ∣ a * b)) * lcm a b) (a * b) [PROOFSTEP] split_ifs with h h_1 [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : a = 0 ⊢ Associated (b * lcm a b) (a * b) [PROOFSTEP] rw [h, eq_zero_of_zero_dvd (dvd_lcm_left _ _), mul_zero, zero_mul] [GOAL] case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : b = 0 ⊢ Associated (a * lcm a b) (a * b) [PROOFSTEP] rw [h_1, eq_zero_of_zero_dvd (dvd_lcm_right _ _), mul_zero] [GOAL] case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a exists_gcd : ∀ (a b : α), lcm a b ∣ a * b := fun a b => lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) a b : α h : ¬a = 0 h_1 : ¬b = 0 ⊢ Associated (Classical.choose (_ : lcm a b ∣ a * b) * lcm a b) (a * b) [PROOFSTEP] rw [mul_comm, ← Classical.choose_spec (exists_gcd a b)] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α ⊢ (fun a b => if a = 0 then ↑normalize b else if b = 0 then ↑normalize a else Classical.choose (_ : lcm a b ∣ ↑normalize (a * b))) a b ∣ a [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α ⊢ (if a = 0 then ↑normalize b else if b = 0 then ↑normalize a else Classical.choose (_ : lcm a b ∣ ↑normalize (a * b))) ∣ a [PROOFSTEP] split_ifs with h h_1 [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : a = 0 ⊢ ↑normalize b ∣ a [PROOFSTEP] rw [h] [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : a = 0 ⊢ ↑normalize b ∣ 0 [PROOFSTEP] apply dvd_zero [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : b = 0 ⊢ ↑normalize a ∣ a [PROOFSTEP] exact (normalize_associated _).dvd [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 ⊢ Classical.choose (_ : lcm a b ∣ ↑normalize (a * b)) ∣ a [PROOFSTEP] have h0 : lcm a b ≠ 0 := by intro con have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) rw [con, zero_dvd_iff, mul_eq_zero] at h cases h · exact absurd ‹a = 0› h · exact absurd ‹b = 0› h_1 [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 ⊢ lcm a b ≠ 0 [PROOFSTEP] intro con [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 ⊢ False [PROOFSTEP] have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h✝ : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h : lcm a b ∣ a * b ⊢ False [PROOFSTEP] rw [con, zero_dvd_iff, mul_eq_zero] at h [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h✝ : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h : a = 0 ∨ b = 0 ⊢ False [PROOFSTEP] cases h [GOAL] case inl α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h✝ : a = 0 ⊢ False [PROOFSTEP] exact absurd ‹a = 0› h [GOAL] case inr α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h✝ : b = 0 ⊢ False [PROOFSTEP] exact absurd ‹b = 0› h_1 [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 ⊢ Classical.choose (_ : lcm a b ∣ ↑normalize (a * b)) ∣ a [PROOFSTEP] rw [← mul_dvd_mul_iff_left h0, ← Classical.choose_spec (exists_gcd a b), normalize_dvd_iff, mul_comm, mul_dvd_mul_iff_right h] [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 ⊢ b ∣ lcm a b [PROOFSTEP] apply dvd_lcm_right [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α ⊢ (fun a b => if a = 0 then ↑normalize b else if b = 0 then ↑normalize a else Classical.choose (_ : lcm a b ∣ ↑normalize (a * b))) a b ∣ b [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α ⊢ (if a = 0 then ↑normalize b else if b = 0 then ↑normalize a else Classical.choose (_ : lcm a b ∣ ↑normalize (a * b))) ∣ b [PROOFSTEP] split_ifs with h h_1 [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : a = 0 ⊢ ↑normalize b ∣ b [PROOFSTEP] exact (normalize_associated _).dvd [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : b = 0 ⊢ ↑normalize a ∣ b [PROOFSTEP] rw [h_1] [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : b = 0 ⊢ ↑normalize a ∣ 0 [PROOFSTEP] apply dvd_zero [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 ⊢ Classical.choose (_ : lcm a b ∣ ↑normalize (a * b)) ∣ b [PROOFSTEP] have h0 : lcm a b ≠ 0 := by intro con have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) rw [con, zero_dvd_iff, mul_eq_zero] at h cases h · exact absurd ‹a = 0› h · exact absurd ‹b = 0› h_1 [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 ⊢ lcm a b ≠ 0 [PROOFSTEP] intro con [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 ⊢ False [PROOFSTEP] have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h✝ : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h : lcm a b ∣ a * b ⊢ False [PROOFSTEP] rw [con, zero_dvd_iff, mul_eq_zero] at h [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h✝ : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h : a = 0 ∨ b = 0 ⊢ False [PROOFSTEP] cases h [GOAL] case inl α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h✝ : a = 0 ⊢ False [PROOFSTEP] exact absurd ‹a = 0› h [GOAL] case inr α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h✝ : b = 0 ⊢ False [PROOFSTEP] exact absurd ‹b = 0› h_1 [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 ⊢ Classical.choose (_ : lcm a b ∣ ↑normalize (a * b)) ∣ b [PROOFSTEP] rw [← mul_dvd_mul_iff_left h0, ← Classical.choose_spec (exists_gcd a b), normalize_dvd_iff, mul_dvd_mul_iff_right h_1] [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 ⊢ a ∣ lcm a b [PROOFSTEP] apply dvd_lcm_left [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b c : α ac : a ∣ c ab : a ∣ b ⊢ a ∣ (fun a b => if a = 0 then ↑normalize b else if b = 0 then ↑normalize a else Classical.choose (_ : lcm a b ∣ ↑normalize (a * b))) c b [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b c : α ac : a ∣ c ab : a ∣ b ⊢ a ∣ if c = 0 then ↑normalize b else if b = 0 then ↑normalize c else Classical.choose (_ : lcm c b ∣ ↑normalize (c * b)) [PROOFSTEP] split_ifs with h h_1 [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b c : α ac : a ∣ c ab : a ∣ b h : c = 0 ⊢ a ∣ ↑normalize b [PROOFSTEP] apply dvd_normalize_iff.2 ab [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : b = 0 ⊢ a ∣ ↑normalize c [PROOFSTEP] apply dvd_normalize_iff.2 ac [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 ⊢ a ∣ Classical.choose (_ : lcm c b ∣ ↑normalize (c * b)) [PROOFSTEP] have h0 : lcm c b ≠ 0 := by intro con have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left c rfl) rw [con, zero_dvd_iff, mul_eq_zero] at h cases h · exact absurd ‹c = 0› h · exact absurd ‹b = 0› h_1 [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 ⊢ lcm c b ≠ 0 [PROOFSTEP] intro con [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 con : lcm c b = 0 ⊢ False [PROOFSTEP] have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left c rfl) [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b c : α ac : a ∣ c ab : a ∣ b h✝ : ¬c = 0 h_1 : ¬b = 0 con : lcm c b = 0 h : lcm c b ∣ c * b ⊢ False [PROOFSTEP] rw [con, zero_dvd_iff, mul_eq_zero] at h [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b c : α ac : a ∣ c ab : a ∣ b h✝ : ¬c = 0 h_1 : ¬b = 0 con : lcm c b = 0 h : c = 0 ∨ b = 0 ⊢ False [PROOFSTEP] cases h [GOAL] case inl α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 con : lcm c b = 0 h✝ : c = 0 ⊢ False [PROOFSTEP] exact absurd ‹c = 0› h [GOAL] case inr α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 con : lcm c b = 0 h✝ : b = 0 ⊢ False [PROOFSTEP] exact absurd ‹b = 0› h_1 [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 h0 : lcm c b ≠ 0 ⊢ a ∣ Classical.choose (_ : lcm c b ∣ ↑normalize (c * b)) [PROOFSTEP] rw [← mul_dvd_mul_iff_left h0, ← Classical.choose_spec (dvd_normalize_iff.2 (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left c rfl))), dvd_normalize_iff] [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b c : α ac : a ∣ c ab : a ∣ b h : ¬c = 0 h_1 : ¬b = 0 h0 : lcm c b ≠ 0 ⊢ lcm c b * a ∣ c * b [PROOFSTEP] rcases ab with ⟨d, rfl⟩ [GOAL] case neg.intro α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a c : α ac : a ∣ c h : ¬c = 0 d : α h_1 : ¬a * d = 0 h0 : lcm c (a * d) ≠ 0 ⊢ lcm c (a * d) * a ∣ c * (a * d) [PROOFSTEP] rw [mul_eq_zero] at h_1 [GOAL] case neg.intro α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a c : α ac : a ∣ c h : ¬c = 0 d : α h_1 : ¬(a = 0 ∨ d = 0) h0 : lcm c (a * d) ≠ 0 ⊢ lcm c (a * d) * a ∣ c * (a * d) [PROOFSTEP] push_neg at h_1 [GOAL] case neg.intro α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a c : α ac : a ∣ c h : ¬c = 0 d : α h0 : lcm c (a * d) ≠ 0 h_1 : a ≠ 0 ∧ d ≠ 0 ⊢ lcm c (a * d) * a ∣ c * (a * d) [PROOFSTEP] rw [mul_comm a, ← mul_assoc, mul_dvd_mul_iff_right h_1.1] [GOAL] case neg.intro α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a c : α ac : a ∣ c h : ¬c = 0 d : α h0 : lcm c (a * d) ≠ 0 h_1 : a ≠ 0 ∧ d ≠ 0 ⊢ lcm c (d * a) ∣ c * d [PROOFSTEP] apply lcm_dvd (Dvd.intro d rfl) [GOAL] case neg.intro α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a c : α ac : a ∣ c h : ¬c = 0 d : α h0 : lcm c (a * d) ≠ 0 h_1 : a ≠ 0 ∧ d ≠ 0 ⊢ d * a ∣ c * d [PROOFSTEP] rw [mul_comm, mul_dvd_mul_iff_right h_1.2] [GOAL] case neg.intro α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a c : α ac : a ∣ c h : ¬c = 0 d : α h0 : lcm c (a * d) ≠ 0 h_1 : a ≠ 0 ∧ d ≠ 0 ⊢ a ∣ c [PROOFSTEP] apply ac [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α ⊢ Associated ((fun a b => if a = 0 then ↑normalize b else if b = 0 then ↑normalize a else Classical.choose (_ : lcm a b ∣ ↑normalize (a * b))) a b * lcm a b) (a * b) [PROOFSTEP] dsimp only [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α ⊢ Associated ((if a = 0 then ↑normalize b else if b = 0 then ↑normalize a else Classical.choose (_ : lcm a b ∣ ↑normalize (a * b))) * lcm a b) (a * b) [PROOFSTEP] split_ifs with h h_1 [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : a = 0 ⊢ Associated (↑normalize b * lcm a b) (a * b) [PROOFSTEP] rw [h, eq_zero_of_zero_dvd (dvd_lcm_left _ _), mul_zero, zero_mul] [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : b = 0 ⊢ Associated (↑normalize a * lcm a b) (a * b) [PROOFSTEP] rw [h_1, eq_zero_of_zero_dvd (dvd_lcm_right _ _), mul_zero, mul_zero] [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 ⊢ Associated (Classical.choose (_ : lcm a b ∣ ↑normalize (a * b)) * lcm a b) (a * b) [PROOFSTEP] rw [mul_comm, ← Classical.choose_spec (exists_gcd a b)] [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 ⊢ Associated (↑normalize (a * b)) (a * b) [PROOFSTEP] exact normalize_associated (a * b) [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α ⊢ ↑normalize (gcd a b) = gcd a b [PROOFSTEP] dsimp [normalize] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α ⊢ (if a = 0 then b * ↑(normUnit b) else if b = 0 then a * ↑(normUnit a) else Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b)))) * ↑(normUnit (if a = 0 then b * ↑(normUnit b) else if b = 0 then a * ↑(normUnit a) else Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))))) = if a = 0 then b * ↑(normUnit b) else if b = 0 then a * ↑(normUnit a) else Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))) [PROOFSTEP] split_ifs with h h_1 [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : a = 0 ⊢ b * ↑(normUnit b) * ↑(normUnit (b * ↑(normUnit b))) = b * ↑(normUnit b) [PROOFSTEP] apply normalize_idem [GOAL] case pos α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : b = 0 ⊢ a * ↑(normUnit a) * ↑(normUnit (a * ↑(normUnit a))) = a * ↑(normUnit a) [PROOFSTEP] apply normalize_idem [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 ⊢ Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))) * ↑(normUnit (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))))) = Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))) [PROOFSTEP] have h0 : lcm a b ≠ 0 := by intro con have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) rw [con, zero_dvd_iff, mul_eq_zero] at h cases h · exact absurd ‹a = 0› h · exact absurd ‹b = 0› h_1 [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 ⊢ lcm a b ≠ 0 [PROOFSTEP] intro con [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 ⊢ False [PROOFSTEP] have h := lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl) [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h✝ : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h : lcm a b ∣ a * b ⊢ False [PROOFSTEP] rw [con, zero_dvd_iff, mul_eq_zero] at h [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h✝ : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h : a = 0 ∨ b = 0 ⊢ False [PROOFSTEP] cases h [GOAL] case inl α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h✝ : a = 0 ⊢ False [PROOFSTEP] exact absurd ‹a = 0› h [GOAL] case inr α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 con : lcm a b = 0 h✝ : b = 0 ⊢ False [PROOFSTEP] exact absurd ‹b = 0› h_1 [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 ⊢ Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))) * ↑(normUnit (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))))) = Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))) [PROOFSTEP] apply mul_left_cancel₀ h0 [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 ⊢ lcm a b * (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))) * ↑(normUnit (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b)))))) = lcm a b * Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))) [PROOFSTEP] refine' _root_.trans _ (Classical.choose_spec (exists_gcd a b)) [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 ⊢ lcm a b * (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))) * ↑(normUnit (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b)))))) = ↑normalize (a * b) [PROOFSTEP] conv_lhs => congr rw [← normalize_lcm a b] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 | lcm a b * (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))) * ↑(normUnit (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b)))))) [PROOFSTEP] congr rw [← normalize_lcm a b] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 | lcm a b * (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))) * ↑(normUnit (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b)))))) [PROOFSTEP] congr rw [← normalize_lcm a b] [GOAL] α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 | lcm a b * (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))) * ↑(normUnit (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b)))))) [PROOFSTEP] congr [GOAL] case a α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 | lcm a b case a α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 | Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))) * ↑(normUnit (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))))) [PROOFSTEP] rw [← normalize_lcm a b] [GOAL] case neg α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : NormalizationMonoid α inst✝ : DecidableEq α lcm : α → α → α dvd_lcm_left : ∀ (a b : α), a ∣ lcm a b dvd_lcm_right : ∀ (a b : α), b ∣ lcm a b lcm_dvd : ∀ {a b c : α}, c ∣ a → b ∣ a → lcm c b ∣ a normalize_lcm : ∀ (a b : α), ↑normalize (lcm a b) = lcm a b exists_gcd : ∀ (a b : α), lcm a b ∣ ↑normalize (a * b) := fun a b => Iff.mpr dvd_normalize_iff (lcm_dvd (Dvd.intro b rfl) (Dvd.intro_left a rfl)) src✝ : NormalizationMonoid α := inferInstance a b : α h : ¬a = 0 h_1 : ¬b = 0 h0 : lcm a b ≠ 0 ⊢ ↑normalize (lcm a b) * (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b))) * ↑(normUnit (Classical.choose (_ : lcm a b ∣ a * b * ↑(normUnit (a * b)))))) = ↑normalize (a * b) [PROOFSTEP] erw [← normalize.map_mul, ← Classical.choose_spec (exists_gcd a b), normalize_idem] [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ x y : G₀ x0 : x ≠ 0 y0 : y ≠ 0 ⊢ ↑((fun x => if h : x = 0 then 1 else (Units.mk0 x h)⁻¹) (x * y)) = ↑((fun x => if h : x = 0 then 1 else (Units.mk0 x h)⁻¹) x * (fun x => if h : x = 0 then 1 else (Units.mk0 x h)⁻¹) y) [PROOFSTEP] dsimp only [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ x y : G₀ x0 : x ≠ 0 y0 : y ≠ 0 ⊢ ↑(if h : x * y = 0 then 1 else (Units.mk0 (x * y) h)⁻¹) = ↑((if h : x = 0 then 1 else (Units.mk0 x h)⁻¹) * if h : y = 0 then 1 else (Units.mk0 y h)⁻¹) [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ x y : G₀ x0 : x ≠ 0 y0 : y ≠ 0 h : x * y = 0 ⊢ ↑1 = ↑((Units.mk0 x x0)⁻¹ * (Units.mk0 y y0)⁻¹) [PROOFSTEP] rw [mul_eq_zero] at h [GOAL] case pos α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ x y : G₀ x0 : x ≠ 0 y0 : y ≠ 0 h : x = 0 ∨ y = 0 ⊢ ↑1 = ↑((Units.mk0 x x0)⁻¹ * (Units.mk0 y y0)⁻¹) [PROOFSTEP] cases h [GOAL] case pos.inl α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ x y : G₀ x0 : x ≠ 0 y0 : y ≠ 0 h✝ : x = 0 ⊢ ↑1 = ↑((Units.mk0 x x0)⁻¹ * (Units.mk0 y y0)⁻¹) [PROOFSTEP] exact absurd ‹x = 0› x0 [GOAL] case pos.inr α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ x y : G₀ x0 : x ≠ 0 y0 : y ≠ 0 h✝ : y = 0 ⊢ ↑1 = ↑((Units.mk0 x x0)⁻¹ * (Units.mk0 y y0)⁻¹) [PROOFSTEP] exact absurd ‹y = 0› y0 [GOAL] case neg α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ x y : G₀ x0 : x ≠ 0 y0 : y ≠ 0 h : ¬x * y = 0 ⊢ ↑(Units.mk0 (x * y) h)⁻¹ = ↑((Units.mk0 x x0)⁻¹ * (Units.mk0 y y0)⁻¹) [PROOFSTEP] rw [Units.mk0_mul, mul_inv_rev, mul_comm] [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ u : G₀ˣ ⊢ (fun x => if h : x = 0 then 1 else (Units.mk0 x h)⁻¹) ↑u = u⁻¹ [PROOFSTEP] dsimp only [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ u : G₀ˣ ⊢ (if h : ↑u = 0 then 1 else (Units.mk0 (↑u) h)⁻¹) = u⁻¹ [PROOFSTEP] rw [dif_neg (Units.ne_zero _), Units.mk0_val] [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ ⊢ (fun a b => if a = 0 ∧ b = 0 then 0 else 1) a b ∣ a [PROOFSTEP] dsimp only [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ ⊢ (if a = 0 ∧ b = 0 then 0 else 1) ∣ a [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ h : a = 0 ∧ b = 0 ⊢ 0 ∣ a [PROOFSTEP] rw [h.1] [GOAL] case neg α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ h : ¬(a = 0 ∧ b = 0) ⊢ 1 ∣ a [PROOFSTEP] exact one_dvd _ [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ ⊢ (fun a b => if a = 0 ∧ b = 0 then 0 else 1) a b ∣ b [PROOFSTEP] dsimp only [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ ⊢ (if a = 0 ∧ b = 0 then 0 else 1) ∣ b [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ h : a = 0 ∧ b = 0 ⊢ 0 ∣ b [PROOFSTEP] rw [h.2] [GOAL] case neg α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ h : ¬(a = 0 ∧ b = 0) ⊢ 1 ∣ b [PROOFSTEP] exact one_dvd _ [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b c : G₀ hac : a ∣ c hab : a ∣ b ⊢ a ∣ (fun a b => if a = 0 ∧ b = 0 then 0 else 1) c b [PROOFSTEP] dsimp only [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b c : G₀ hac : a ∣ c hab : a ∣ b ⊢ a ∣ if c = 0 ∧ b = 0 then 0 else 1 [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b c : G₀ hac : a ∣ c hab : a ∣ b h : c = 0 ∧ b = 0 ⊢ a ∣ 0 [PROOFSTEP] apply dvd_zero [GOAL] case neg α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b c : G₀ hac : a ∣ c hab : a ∣ b h : ¬(c = 0 ∧ b = 0) ⊢ a ∣ 1 [PROOFSTEP] rw [not_and_or] at h [GOAL] case neg α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b c : G₀ hac : a ∣ c hab : a ∣ b h : ¬c = 0 ∨ ¬b = 0 ⊢ a ∣ 1 [PROOFSTEP] cases h [GOAL] case neg.inl α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b c : G₀ hac : a ∣ c hab : a ∣ b h✝ : ¬c = 0 ⊢ a ∣ 1 [PROOFSTEP] refine' isUnit_iff_dvd_one.mp (isUnit_of_dvd_unit _ (IsUnit.mk0 _ ‹c ≠ 0›)) [GOAL] case neg.inl α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b c : G₀ hac : a ∣ c hab : a ∣ b h✝ : ¬c = 0 ⊢ a ∣ c [PROOFSTEP] exact hac [GOAL] case neg.inr α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b c : G₀ hac : a ∣ c hab : a ∣ b h✝ : ¬b = 0 ⊢ a ∣ 1 [PROOFSTEP] refine' isUnit_iff_dvd_one.mp (isUnit_of_dvd_unit _ (IsUnit.mk0 _ ‹b ≠ 0›)) [GOAL] case neg.inr α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b c : G₀ hac : a ∣ c hab : a ∣ b h✝ : ¬b = 0 ⊢ a ∣ b [PROOFSTEP] exact hab [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ ⊢ Associated ((fun a b => if a = 0 ∧ b = 0 then 0 else 1) a b * (fun a b => if a = 0 ∨ b = 0 then 0 else 1) a b) (a * b) [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ ha : a = 0 ⊢ Associated ((fun a b => if a = 0 ∧ b = 0 then 0 else 1) a b * (fun a b => if a = 0 ∨ b = 0 then 0 else 1) a b) (a * b) [PROOFSTEP] simp only [ha, true_and, true_or, ite_true, mul_zero, zero_mul] [GOAL] case pos α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ ha : a = 0 ⊢ Associated 0 0 [PROOFSTEP] exact Associated.refl _ [GOAL] case neg α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ ha : ¬a = 0 ⊢ Associated ((fun a b => if a = 0 ∧ b = 0 then 0 else 1) a b * (fun a b => if a = 0 ∨ b = 0 then 0 else 1) a b) (a * b) [PROOFSTEP] by_cases hb : b = 0 [GOAL] case pos α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ ha : ¬a = 0 hb : b = 0 ⊢ Associated ((fun a b => if a = 0 ∧ b = 0 then 0 else 1) a b * (fun a b => if a = 0 ∨ b = 0 then 0 else 1) a b) (a * b) [PROOFSTEP] simp only [hb, and_true, or_true, ite_true, mul_zero] [GOAL] case pos α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ ha : ¬a = 0 hb : b = 0 ⊢ Associated 0 0 [PROOFSTEP] exact Associated.refl _ -- Porting note: need `dsimp only` [GOAL] case neg α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ ha : ¬a = 0 hb : ¬b = 0 ⊢ Associated ((fun a b => if a = 0 ∧ b = 0 then 0 else 1) a b * (fun a b => if a = 0 ∨ b = 0 then 0 else 1) a b) (a * b) [PROOFSTEP] dsimp only [GOAL] case neg α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ ha : ¬a = 0 hb : ¬b = 0 ⊢ Associated ((if a = 0 ∧ b = 0 then 0 else 1) * if a = 0 ∨ b = 0 then 0 else 1) (a * b) [PROOFSTEP] rw [if_neg (not_and_of_not_left _ ha), one_mul, if_neg (not_or_of_not ha hb)] [GOAL] case neg α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ ha : ¬a = 0 hb : ¬b = 0 ⊢ Associated 1 (a * b) [PROOFSTEP] exact (associated_one_iff_isUnit.mpr ((IsUnit.mk0 _ ha).mul (IsUnit.mk0 _ hb))).symm [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ h : a = 0 ∧ b = 0 ⊢ ↑normalize (gcd a b) = gcd a b [PROOFSTEP] simp [if_pos h] [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ h : ¬(a = 0 ∧ b = 0) ⊢ ↑normalize (gcd a b) = gcd a b [PROOFSTEP] simp [if_neg h] [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ h : a = 0 ∨ b = 0 ⊢ ↑normalize (lcm a b) = lcm a b [PROOFSTEP] simp [if_pos h] [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a b : G₀ h : ¬(a = 0 ∨ b = 0) ⊢ ↑normalize (lcm a b) = lcm a b [PROOFSTEP] simp [if_neg h] [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a : G₀ h0 : a ≠ 0 ⊢ ↑(normUnit a) = a⁻¹ [PROOFSTEP] simp [normUnit, h0] [GOAL] α : Type u_1 G₀ : Type u_2 inst✝¹ : CommGroupWithZero G₀ inst✝ : DecidableEq G₀ a : G₀ h0 : a ≠ 0 ⊢ ↑normalize a = 1 [PROOFSTEP] simp [normalize_apply, h0]
{"mathlib_filename": "Mathlib.Algebra.GCDMonoid.Basic", "llama_tokens": 95177}
{"mathlib_filename": "Mathlib.Algebra.Order.ZeroLEOne", "llama_tokens": 0}
[GOAL] α : Type u_1 a b c d x y z : α inst✝⁶ : LinearOrderedCommMonoidWithZero α β : Type u_2 inst✝⁵ : Zero β inst✝⁴ : One β inst✝³ : Mul β inst✝² : Pow β ℕ inst✝¹ : Sup β inst✝ : Inf β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 mul : ∀ (x y : β), f (x * y) = f x * f y npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n hsup : ∀ (x y : β), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : β), f (x ⊓ y) = min (f x) (f y) src✝² : LinearOrder β := LinearOrder.lift f hf hsup hinf src✝¹ : OrderedCommMonoid β := orderedCommMonoid f hf one mul npow src✝ : CommMonoidWithZero β := Injective.commMonoidWithZero f hf zero one mul npow ⊢ f 0 ≤ f 1 [PROOFSTEP] simp only [zero, one, LinearOrderedCommMonoidWithZero.zero_le_one] [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommMonoidWithZero α ⊢ 0 ≤ a [PROOFSTEP] simpa only [mul_zero, mul_one] using mul_le_mul_left' zero_le_one a [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α h : c ≠ 0 hab : a * c ≤ b * c ⊢ a ≤ b [PROOFSTEP] simpa only [mul_inv_cancel_right₀ h] using mul_le_mul_right' hab c⁻¹ [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α h : c ≠ 0 hab : a * c ≤ b ⊢ a * c ≤ b * c⁻¹ * c [PROOFSTEP] simpa [h] using hab [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α hab : a ≤ b * c ⊢ a * c⁻¹ ≤ b [PROOFSTEP] by_cases h : c = 0 [GOAL] case pos α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α hab : a ≤ b * c h : c = 0 ⊢ a * c⁻¹ ≤ b [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α hab : a ≤ b * c h : ¬c = 0 ⊢ a * c⁻¹ ≤ b [PROOFSTEP] exact le_of_le_mul_right h (by simpa [h] using hab) [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α hab : a ≤ b * c h : ¬c = 0 ⊢ a * c⁻¹ * c ≤ b * c [PROOFSTEP] simpa [h] using hab [GOAL] α : Type u_1 a✝ b✝ c✝ d✝ x y z : α inst✝ : LinearOrderedCommGroupWithZero α a b c d : α hb : b ≠ 0 hd : d ≠ 0 ⊢ a * b⁻¹ ≤ c * d⁻¹ ↔ a * d ≤ c * b [PROOFSTEP] rw [mul_inv_le_iff₀ hb, mul_right_comm, le_mul_inv_iff₀ hd] [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α hab : a ≤ b hb : b ≠ 0 hcd : c < d hd : d ≠ 0 ha : a = 0 ⊢ a * c < b * d [PROOFSTEP] rw [ha, zero_mul, zero_lt_iff] [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α hab : a ≤ b hb : b ≠ 0 hcd : c < d hd : d ≠ 0 ha : a = 0 ⊢ b * d ≠ 0 [PROOFSTEP] exact mul_ne_zero hb hd [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α hab : a ≤ b hb : b ≠ 0 hcd : c < d hd : d ≠ 0 ha : ¬a = 0 hc : c = 0 ⊢ a * c < b * d [PROOFSTEP] rw [hc, mul_zero, zero_lt_iff] [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α hab : a ≤ b hb : b ≠ 0 hcd : c < d hd : d ≠ 0 ha : ¬a = 0 hc : c = 0 ⊢ b * d ≠ 0 [PROOFSTEP] exact mul_ne_zero hb hd [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α h : x < y * z ⊢ x * z⁻¹ < y [PROOFSTEP] contrapose! h [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α h : y ≤ x * z⁻¹ ⊢ y * z ≤ x [PROOFSTEP] simpa only [inv_inv] using mul_inv_le_of_le_mul h [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α h : x < y * z ⊢ y⁻¹ * x < z [PROOFSTEP] rw [mul_comm] at * [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α h : x < z * y ⊢ x * y⁻¹ < z [PROOFSTEP] exact mul_inv_lt_of_lt_mul₀ h [GOAL] α : Type u_1 a b c✝ d x y z : α inst✝ : LinearOrderedCommGroupWithZero α c : α h : a < b hc : c ≠ 0 ⊢ a * c < b * c [PROOFSTEP] contrapose! h [GOAL] α : Type u_1 a b c✝ d x y z : α inst✝ : LinearOrderedCommGroupWithZero α c : α hc : c ≠ 0 h : b * c ≤ a * c ⊢ b ≤ a [PROOFSTEP] exact le_of_le_mul_right hc h [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α h : a * b < c * d hc : 0 < c hh : c ≤ a ⊢ b < d [PROOFSTEP] have ha : a ≠ 0 := ne_of_gt (lt_of_lt_of_le hc hh) [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α h : a * b < c * d hc : 0 < c hh : c ≤ a ha : a ≠ 0 ⊢ b < d [PROOFSTEP] simp_rw [← inv_le_inv₀ ha (ne_of_gt hc)] at hh [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α h : a * b < c * d hc : 0 < c ha : a ≠ 0 hh : a⁻¹ ≤ c⁻¹ ⊢ b < d [PROOFSTEP] have := mul_lt_mul_of_lt_of_le₀ hh (inv_ne_zero (ne_of_gt hc)) h [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α h : a * b < c * d hc : 0 < c ha : a ≠ 0 hh : a⁻¹ ≤ c⁻¹ this : a⁻¹ * (a * b) < c⁻¹ * (c * d) ⊢ b < d [PROOFSTEP] simpa [inv_mul_cancel_left₀ ha, inv_mul_cancel_left₀ (ne_of_gt hc)] using this [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α ha : a ≠ 0 ⊢ a * b ≤ a * c ↔ b ≤ c [PROOFSTEP] simp only [mul_comm a] [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α ha : a ≠ 0 ⊢ b * a ≤ c * a ↔ b ≤ c [PROOFSTEP] exact mul_le_mul_right₀ ha [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α hc : c ≠ 0 ⊢ a / c ≤ b / c ↔ a ≤ b [PROOFSTEP] rw [div_eq_mul_inv, div_eq_mul_inv, mul_le_mul_right₀ (inv_ne_zero hc)] [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α ha : a ≠ 0 hb : b ≠ 0 hc : c ≠ 0 ⊢ a / b ≤ a / c ↔ c ≤ b [PROOFSTEP] simp only [div_eq_mul_inv, mul_le_mul_left₀ ha, inv_le_inv₀ hb hc] [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α hc : c ≠ 0 ⊢ a ≤ b / c ↔ a * c ≤ b [PROOFSTEP] rw [div_eq_mul_inv, le_mul_inv_iff₀ hc] [GOAL] α : Type u_1 a b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α hc : c ≠ 0 ⊢ a / c ≤ b ↔ a ≤ b * c [PROOFSTEP] rw [div_eq_mul_inv, mul_inv_le_iff₀ hc] [GOAL] α : Type u_1 a✝ b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α a : α ha : a ≠ 0 ⊢ symm (mulLeft₀' ha) = mulLeft₀' (_ : a⁻¹ ≠ 0) [PROOFSTEP] ext [GOAL] case h.h α : Type u_1 a✝ b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α a : α ha : a ≠ 0 x✝ : α ⊢ ↑(symm (mulLeft₀' ha)) x✝ = ↑(mulLeft₀' (_ : a⁻¹ ≠ 0)) x✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 a✝ b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α a : α ha : a ≠ 0 ⊢ symm (mulRight₀' ha) = mulRight₀' (_ : a⁻¹ ≠ 0) [PROOFSTEP] ext [GOAL] case h.h α : Type u_1 a✝ b c d x y z : α inst✝ : LinearOrderedCommGroupWithZero α a : α ha : a ≠ 0 x✝ : α ⊢ ↑(symm (mulRight₀' ha)) x✝ = ↑(mulRight₀' (_ : a⁻¹ ≠ 0)) x✝ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Order.WithZero", "llama_tokens": 3428}
{"mathlib_filename": "Mathlib.Algebra.Order.Pi", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝¹ : OrderedAddCommGroup α inst✝ : Archimedean α x y : αᵒᵈ hy : 0 < y n : ℕ hn : -↑ofDual x ≤ n • -y ⊢ x ≤ n • y [PROOFSTEP] rwa [neg_nsmul, neg_le_neg_iff] at hn [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α ⊢ ∃! k, k • a ≤ g ∧ g < (k + 1) • a [PROOFSTEP] let s : Set ℤ := {n : ℤ | n • a ≤ g} [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} ⊢ ∃! k, k • a ≤ g ∧ g < (k + 1) • a [PROOFSTEP] obtain ⟨k, hk : -g ≤ k • a⟩ := Archimedean.arch (-g) ha [GOAL] case intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k : ℕ hk : -g ≤ k • a ⊢ ∃! k, k • a ≤ g ∧ g < (k + 1) • a [PROOFSTEP] have h_ne : s.Nonempty := ⟨-k, by simpa using neg_le_neg hk⟩ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k : ℕ hk : -g ≤ k • a ⊢ -↑k ∈ s [PROOFSTEP] simpa using neg_le_neg hk [GOAL] case intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k : ℕ hk : -g ≤ k • a h_ne : Set.Nonempty s ⊢ ∃! k, k • a ≤ g ∧ g < (k + 1) • a [PROOFSTEP] obtain ⟨k, hk⟩ := Archimedean.arch g ha [GOAL] case intro.intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k✝ : ℕ hk✝ : -g ≤ k✝ • a h_ne : Set.Nonempty s k : ℕ hk : g ≤ k • a ⊢ ∃! k, k • a ≤ g ∧ g < (k + 1) • a [PROOFSTEP] have h_bdd : ∀ n ∈ s, n ≤ (k : ℤ) := by intro n hn apply (zsmul_le_zsmul_iff ha).mp rw [← coe_nat_zsmul] at hk exact le_trans hn hk [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k✝ : ℕ hk✝ : -g ≤ k✝ • a h_ne : Set.Nonempty s k : ℕ hk : g ≤ k • a ⊢ ∀ (n : ℤ), n ∈ s → n ≤ ↑k [PROOFSTEP] intro n hn [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k✝ : ℕ hk✝ : -g ≤ k✝ • a h_ne : Set.Nonempty s k : ℕ hk : g ≤ k • a n : ℤ hn : n ∈ s ⊢ n ≤ ↑k [PROOFSTEP] apply (zsmul_le_zsmul_iff ha).mp [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k✝ : ℕ hk✝ : -g ≤ k✝ • a h_ne : Set.Nonempty s k : ℕ hk : g ≤ k • a n : ℤ hn : n ∈ s ⊢ n • a ≤ ↑k • a [PROOFSTEP] rw [← coe_nat_zsmul] at hk [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k✝ : ℕ hk✝ : -g ≤ k✝ • a h_ne : Set.Nonempty s k : ℕ hk : g ≤ ↑k • a n : ℤ hn : n ∈ s ⊢ n • a ≤ ↑k • a [PROOFSTEP] exact le_trans hn hk [GOAL] case intro.intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k✝ : ℕ hk✝ : -g ≤ k✝ • a h_ne : Set.Nonempty s k : ℕ hk : g ≤ k • a h_bdd : ∀ (n : ℤ), n ∈ s → n ≤ ↑k ⊢ ∃! k, k • a ≤ g ∧ g < (k + 1) • a [PROOFSTEP] obtain ⟨m, hm, hm'⟩ := Int.exists_greatest_of_bdd ⟨k, h_bdd⟩ h_ne [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k✝ : ℕ hk✝ : -g ≤ k✝ • a h_ne : Set.Nonempty s k : ℕ hk : g ≤ k • a h_bdd : ∀ (n : ℤ), n ∈ s → n ≤ ↑k m : ℤ hm : m ∈ s hm' : ∀ (z : ℤ), z ∈ s → z ≤ m ⊢ ∃! k, k • a ≤ g ∧ g < (k + 1) • a [PROOFSTEP] have hm'' : g < (m + 1) • a := by contrapose! hm' exact ⟨m + 1, hm', lt_add_one _⟩ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k✝ : ℕ hk✝ : -g ≤ k✝ • a h_ne : Set.Nonempty s k : ℕ hk : g ≤ k • a h_bdd : ∀ (n : ℤ), n ∈ s → n ≤ ↑k m : ℤ hm : m ∈ s hm' : ∀ (z : ℤ), z ∈ s → z ≤ m ⊢ g < (m + 1) • a [PROOFSTEP] contrapose! hm' [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k✝ : ℕ hk✝ : -g ≤ k✝ • a h_ne : Set.Nonempty s k : ℕ hk : g ≤ k • a h_bdd : ∀ (n : ℤ), n ∈ s → n ≤ ↑k m : ℤ hm : m ∈ s hm' : (m + 1) • a ≤ g ⊢ ∃ z, z ∈ {n | n • a ≤ g} ∧ m < z [PROOFSTEP] exact ⟨m + 1, hm', lt_add_one _⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k✝ : ℕ hk✝ : -g ≤ k✝ • a h_ne : Set.Nonempty s k : ℕ hk : g ≤ k • a h_bdd : ∀ (n : ℤ), n ∈ s → n ≤ ↑k m : ℤ hm : m ∈ s hm' : ∀ (z : ℤ), z ∈ s → z ≤ m hm'' : g < (m + 1) • a ⊢ ∃! k, k • a ≤ g ∧ g < (k + 1) • a [PROOFSTEP] refine' ⟨m, ⟨hm, hm''⟩, fun n hn => (hm' n hn.1).antisymm <| Int.le_of_lt_add_one _⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k✝ : ℕ hk✝ : -g ≤ k✝ • a h_ne : Set.Nonempty s k : ℕ hk : g ≤ k • a h_bdd : ∀ (n : ℤ), n ∈ s → n ≤ ↑k m : ℤ hm : m ∈ s hm' : ∀ (z : ℤ), z ∈ s → z ≤ m hm'' : g < (m + 1) • a n : ℤ hn : (fun k => k • a ≤ g ∧ g < (k + 1) • a) n ⊢ m < n + 1 [PROOFSTEP] rw [← zsmul_lt_zsmul_iff ha] [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α s : Set ℤ := {n | n • a ≤ g} k✝ : ℕ hk✝ : -g ≤ k✝ • a h_ne : Set.Nonempty s k : ℕ hk : g ≤ k • a h_bdd : ∀ (n : ℤ), n ∈ s → n ≤ ↑k m : ℤ hm : m ∈ s hm' : ∀ (z : ℤ), z ∈ s → z ≤ m hm'' : g < (m + 1) • a n : ℤ hn : (fun k => k • a ≤ g ∧ g < (k + 1) • a) n ⊢ m • a < (n + 1) • a [PROOFSTEP] exact lt_of_le_of_lt hm hn.2 [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a g : α ⊢ ∃! k, 0 ≤ g - k • a ∧ g - k • a < a [PROOFSTEP] simpa only [sub_nonneg, add_zsmul, one_zsmul, sub_lt_iff_lt_add'] using existsUnique_zsmul_near_of_pos ha g [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a b c : α ⊢ ∃! m, b - m • a ∈ Ico c (c + a) [PROOFSTEP] simpa only [mem_Ico, le_sub_iff_add_le, zero_add, add_comm c, sub_lt_iff_lt_add', add_assoc] using existsUnique_zsmul_near_of_pos' ha (b - c) [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a b c : α ⊢ ∃! x, b + ↑(Equiv.neg ℤ) x • a ∈ Ico c (c + a) [PROOFSTEP] simpa only [Equiv.neg_apply, mem_Ico, neg_zsmul, ← sub_eq_add_neg, le_sub_iff_add_le, zero_add, add_comm c, sub_lt_iff_lt_add', add_assoc] using existsUnique_zsmul_near_of_pos' ha (b - c) [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a b c : α ⊢ ∃! x, b + ↑(Equiv.addRight 1) x • a ∈ Ioc c (c + a) [PROOFSTEP] simpa only [add_zsmul, sub_lt_iff_lt_add', le_sub_iff_add_le', ← add_assoc, and_comm, mem_Ioc, Equiv.coe_addRight, one_zsmul, add_le_add_iff_right] using existsUnique_zsmul_near_of_pos ha (c - b) [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α a : α ha : 0 < a b c : α ⊢ ∃! x, b - ↑(Equiv.neg ℤ) x • a ∈ Ioc c (c + a) [PROOFSTEP] simpa only [Equiv.neg_apply, neg_zsmul, sub_neg_eq_add] using existsUnique_add_zsmul_mem_Ioc ha b c [GOAL] α : Type u_1 inst✝¹ : StrictOrderedSemiring α inst✝ : Archimedean α x : α n : ℕ hn : x < n • 1 ⊢ x < ↑n [PROOFSTEP] rwa [← nsmul_one] [GOAL] α : Type u_1 inst✝¹ : OrderedSemiring α inst✝ : Archimedean α x : α ⊢ ∃ n, x ≤ ↑n [PROOFSTEP] nontriviality α [GOAL] α : Type u_1 inst✝¹ : OrderedSemiring α inst✝ : Archimedean α x : α ✝ : Nontrivial α ⊢ ∃ n, x ≤ ↑n [PROOFSTEP] exact (Archimedean.arch x one_pos).imp fun n h => by rwa [← nsmul_one] [GOAL] α : Type u_1 inst✝¹ : OrderedSemiring α inst✝ : Archimedean α x : α ✝ : Nontrivial α n : ℕ h : x ≤ n • 1 ⊢ x ≤ ↑n [PROOFSTEP] rwa [← nsmul_one] [GOAL] α : Type u_1 inst✝¹ : StrictOrderedSemiring α inst✝ : Archimedean α x y : α hy : 0 < y this : 0 ≤ 1 + y n : ℕ h : x ≤ n • y ⊢ (1 + y) ^ n = (y + 1) ^ n [PROOFSTEP] rw [add_comm] [GOAL] α : Type u_1 inst✝¹ : StrictOrderedRing α inst✝ : Archimedean α x : α n : ℕ h : x < ↑n ⊢ x < ↑↑n [PROOFSTEP] rwa [Int.cast_ofNat] [GOAL] α : Type u_1 inst✝¹ : StrictOrderedRing α inst✝ : Archimedean α x : α n : ℤ h : -x < ↑n ⊢ ↑(-n) < x [PROOFSTEP] rw [Int.cast_neg] [GOAL] α : Type u_1 inst✝¹ : StrictOrderedRing α inst✝ : Archimedean α x : α n : ℤ h : -x < ↑n ⊢ -↑n < x [PROOFSTEP] exact neg_lt.1 h [GOAL] α : Type u_1 inst✝¹ : StrictOrderedRing α inst✝ : Archimedean α x : α ⊢ ∃ fl, ∀ (z : ℤ), z ≤ fl ↔ ↑z ≤ x [PROOFSTEP] haveI := Classical.propDecidable [GOAL] α : Type u_1 inst✝¹ : StrictOrderedRing α inst✝ : Archimedean α x : α this : (a : Prop) → Decidable a ⊢ ∃ fl, ∀ (z : ℤ), z ≤ fl ↔ ↑z ≤ x [PROOFSTEP] have : ∃ ub : ℤ, (ub : α) ≤ x ∧ ∀ z : ℤ, (z : α) ≤ x → z ≤ ub := Int.exists_greatest_of_bdd (let ⟨n, hn⟩ := exists_int_gt x ⟨n, fun z h' => Int.cast_le.1 <| le_trans h' <| le_of_lt hn⟩) (let ⟨n, hn⟩ := exists_int_lt x ⟨n, le_of_lt hn⟩) [GOAL] α : Type u_1 inst✝¹ : StrictOrderedRing α inst✝ : Archimedean α x : α this✝ : (a : Prop) → Decidable a this : ∃ ub, ↑ub ≤ x ∧ ∀ (z : ℤ), ↑z ≤ x → z ≤ ub ⊢ ∃ fl, ∀ (z : ℤ), z ≤ fl ↔ ↑z ≤ x [PROOFSTEP] refine' this.imp fun fl h z => _ [GOAL] α : Type u_1 inst✝¹ : StrictOrderedRing α inst✝ : Archimedean α x : α this✝ : (a : Prop) → Decidable a this : ∃ ub, ↑ub ≤ x ∧ ∀ (z : ℤ), ↑z ≤ x → z ≤ ub fl : ℤ h : ↑fl ≤ x ∧ ∀ (z : ℤ), ↑z ≤ x → z ≤ fl z : ℤ ⊢ z ≤ fl ↔ ↑z ≤ x [PROOFSTEP] cases' h with h₁ h₂ [GOAL] case intro α : Type u_1 inst✝¹ : StrictOrderedRing α inst✝ : Archimedean α x : α this✝ : (a : Prop) → Decidable a this : ∃ ub, ↑ub ≤ x ∧ ∀ (z : ℤ), ↑z ≤ x → z ≤ ub fl z : ℤ h₁ : ↑fl ≤ x h₂ : ∀ (z : ℤ), ↑z ≤ x → z ≤ fl ⊢ z ≤ fl ↔ ↑z ≤ x [PROOFSTEP] exact ⟨fun h => le_trans (Int.cast_le.2 h) h₁, h₂ z⟩ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Archimedean α x y : α hx : 1 ≤ x hy : 1 < y ⊢ ∃ n, y ^ n ≤ x ∧ x < y ^ (n + 1) [PROOFSTEP] have h : ∃ n : ℕ, x < y ^ n := pow_unbounded_of_one_lt _ hy [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Archimedean α x y : α hx : 1 ≤ x hy : 1 < y h : ∃ n, x < y ^ n ⊢ ∃ n, y ^ n ≤ x ∧ x < y ^ (n + 1) [PROOFSTEP] classical exact let n := Nat.find h have hn : x < y ^ n := Nat.find_spec h have hnp : 0 < n := pos_iff_ne_zero.2 fun hn0 => by rw [hn0, pow_zero] at hn ; exact not_le_of_gt hn hx have hnsp : Nat.pred n + 1 = n := Nat.succ_pred_eq_of_pos hnp have hltn : Nat.pred n < n := Nat.pred_lt (ne_of_gt hnp) ⟨Nat.pred n, le_of_not_lt (Nat.find_min h hltn), by rwa [hnsp]⟩ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Archimedean α x y : α hx : 1 ≤ x hy : 1 < y h : ∃ n, x < y ^ n ⊢ ∃ n, y ^ n ≤ x ∧ x < y ^ (n + 1) [PROOFSTEP] exact let n := Nat.find h have hn : x < y ^ n := Nat.find_spec h have hnp : 0 < n := pos_iff_ne_zero.2 fun hn0 => by rw [hn0, pow_zero] at hn ; exact not_le_of_gt hn hx have hnsp : Nat.pred n + 1 = n := Nat.succ_pred_eq_of_pos hnp have hltn : Nat.pred n < n := Nat.pred_lt (ne_of_gt hnp) ⟨Nat.pred n, le_of_not_lt (Nat.find_min h hltn), by rwa [hnsp]⟩ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Archimedean α x y : α hx : 1 ≤ x hy : 1 < y h : ∃ n, x < y ^ n n : ℕ := Nat.find h hn : x < y ^ n hn0 : n = 0 ⊢ False [PROOFSTEP] rw [hn0, pow_zero] at hn [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Archimedean α x y : α hx : 1 ≤ x hy : 1 < y h : ∃ n, x < y ^ n n : ℕ := Nat.find h hn : x < 1 hn0 : n = 0 ⊢ False [PROOFSTEP] exact not_le_of_gt hn hx [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Archimedean α x y : α hx : 1 ≤ x hy : 1 < y h : ∃ n, x < y ^ n n : ℕ := Nat.find h hn : x < y ^ n hnp : 0 < n hnsp : Nat.pred n + 1 = n hltn : Nat.pred n < n ⊢ x < y ^ (Nat.pred n + 1) [PROOFSTEP] rwa [hnsp] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : 1 < y ⊢ ∃ n, x ∈ Ico (y ^ n) (y ^ (n + 1)) [PROOFSTEP] classical exact let ⟨N, hN⟩ := pow_unbounded_of_one_lt x⁻¹ hy have he : ∃ m : ℤ, y ^ m ≤ x := ⟨-N, le_of_lt (by rw [zpow_neg y ↑N, zpow_ofNat] exact (inv_lt hx (lt_trans (inv_pos.2 hx) hN)).1 hN)⟩ let ⟨M, hM⟩ := pow_unbounded_of_one_lt x hy have hb : ∃ b : ℤ, ∀ m, y ^ m ≤ x → m ≤ b := ⟨M, fun m hm => le_of_not_lt fun hlt => not_lt_of_ge (zpow_le_of_le hy.le hlt.le) (lt_of_le_of_lt hm (by rwa [← zpow_ofNat] at hM ))⟩ let ⟨n, hn₁, hn₂⟩ := Int.exists_greatest_of_bdd hb he ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : 1 < y ⊢ ∃ n, x ∈ Ico (y ^ n) (y ^ (n + 1)) [PROOFSTEP] exact let ⟨N, hN⟩ := pow_unbounded_of_one_lt x⁻¹ hy have he : ∃ m : ℤ, y ^ m ≤ x := ⟨-N, le_of_lt (by rw [zpow_neg y ↑N, zpow_ofNat] exact (inv_lt hx (lt_trans (inv_pos.2 hx) hN)).1 hN)⟩ let ⟨M, hM⟩ := pow_unbounded_of_one_lt x hy have hb : ∃ b : ℤ, ∀ m, y ^ m ≤ x → m ≤ b := ⟨M, fun m hm => le_of_not_lt fun hlt => not_lt_of_ge (zpow_le_of_le hy.le hlt.le) (lt_of_le_of_lt hm (by rwa [← zpow_ofNat] at hM ))⟩ let ⟨n, hn₁, hn₂⟩ := Int.exists_greatest_of_bdd hb he ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : 1 < y N : ℕ hN : x⁻¹ < y ^ N ⊢ y ^ (-↑N) < x [PROOFSTEP] rw [zpow_neg y ↑N, zpow_ofNat] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : 1 < y N : ℕ hN : x⁻¹ < y ^ N ⊢ (y ^ N)⁻¹ < x [PROOFSTEP] exact (inv_lt hx (lt_trans (inv_pos.2 hx) hN)).1 hN [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : 1 < y N : ℕ hN : x⁻¹ < y ^ N he : ∃ m, y ^ m ≤ x M : ℕ hM : x < y ^ M m : ℤ hm : y ^ m ≤ x hlt : ↑M < m ⊢ x < y ^ ↑M [PROOFSTEP] rwa [← zpow_ofNat] at hM [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : 1 < y m : ℤ hle : y ^ m ≤ x⁻¹ hlt : x⁻¹ < y ^ (m + 1) hyp : 0 < y ⊢ y ^ (-(m + 1)) < x [PROOFSTEP] rwa [zpow_neg, inv_lt (zpow_pos_of_pos hyp _) hx] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : 1 < y m : ℤ hle : y ^ m ≤ x⁻¹ hlt : x⁻¹ < y ^ (m + 1) hyp : 0 < y ⊢ x ≤ y ^ (-(m + 1) + 1) [PROOFSTEP] rwa [neg_add, neg_add_cancel_right, zpow_neg, le_inv hx (zpow_pos_of_pos hyp _)] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : y < 1 ⊢ ∃ n, y ^ n < x [PROOFSTEP] by_cases y_pos : y ≤ 0 [GOAL] case pos α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : y < 1 y_pos : y ≤ 0 ⊢ ∃ n, y ^ n < x [PROOFSTEP] use 1 [GOAL] case h α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : y < 1 y_pos : y ≤ 0 ⊢ y ^ 1 < x [PROOFSTEP] simp only [pow_one] [GOAL] case h α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : y < 1 y_pos : y ≤ 0 ⊢ y < x [PROOFSTEP] linarith [GOAL] case neg α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : y < 1 y_pos : ¬y ≤ 0 ⊢ ∃ n, y ^ n < x [PROOFSTEP] rw [not_le] at y_pos [GOAL] case neg α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : y < 1 y_pos : 0 < y ⊢ ∃ n, y ^ n < x [PROOFSTEP] rcases pow_unbounded_of_one_lt x⁻¹ (one_lt_inv y_pos hy) with ⟨q, hq⟩ [GOAL] case neg.intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : y < 1 y_pos : 0 < y q : ℕ hq : x⁻¹ < y⁻¹ ^ q ⊢ ∃ n, y ^ n < x [PROOFSTEP] exact ⟨q, by rwa [inv_pow, inv_lt_inv hx (pow_pos y_pos _)] at hq ⟩ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α hx : 0 < x hy : y < 1 y_pos : 0 < y q : ℕ hq : x⁻¹ < y⁻¹ ^ q ⊢ y ^ q < x [PROOFSTEP] rwa [inv_pow, inv_lt_inv hx (pow_pos y_pos _)] at hq [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α xpos : 0 < x hx : x ≤ 1 ypos : 0 < y hy : y < 1 ⊢ ∃ n, y ^ (n + 1) < x ∧ x ≤ y ^ n [PROOFSTEP] rcases exists_nat_pow_near (one_le_inv_iff.2 ⟨xpos, hx⟩) (one_lt_inv_iff.2 ⟨ypos, hy⟩) with ⟨n, hn, h'n⟩ [GOAL] case intro.intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α xpos : 0 < x hx : x ≤ 1 ypos : 0 < y hy : y < 1 n : ℕ hn : y⁻¹ ^ n ≤ x⁻¹ h'n : x⁻¹ < y⁻¹ ^ (n + 1) ⊢ ∃ n, y ^ (n + 1) < x ∧ x ≤ y ^ n [PROOFSTEP] refine' ⟨n, _, _⟩ [GOAL] case intro.intro.refine'_1 α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α xpos : 0 < x hx : x ≤ 1 ypos : 0 < y hy : y < 1 n : ℕ hn : y⁻¹ ^ n ≤ x⁻¹ h'n : x⁻¹ < y⁻¹ ^ (n + 1) ⊢ y ^ (n + 1) < x [PROOFSTEP] rwa [inv_pow, inv_lt_inv xpos (pow_pos ypos _)] at h'n [GOAL] case intro.intro.refine'_2 α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε : α xpos : 0 < x hx : x ≤ 1 ypos : 0 < y hy : y < 1 n : ℕ hn : y⁻¹ ^ n ≤ x⁻¹ h'n : x⁻¹ < y⁻¹ ^ (n + 1) ⊢ x ≤ y ^ n [PROOFSTEP] rwa [inv_pow, inv_le_inv (pow_pos ypos _) xpos] at hn [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y ε x : α n : ℕ h : x < ↑n ⊢ x < ↑↑n [PROOFSTEP] rwa [Rat.cast_coe_nat] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y ε x : α n : ℤ h : ↑n < x ⊢ ↑↑n < x [PROOFSTEP] rwa [Rat.cast_coe_int] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y ⊢ ∃ q, x < ↑q ∧ ↑q < y [PROOFSTEP] cases' exists_nat_gt (y - x)⁻¹ with n nh [GOAL] case intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n ⊢ ∃ q, x < ↑q ∧ ↑q < y [PROOFSTEP] cases' exists_floor (x * n) with z zh [GOAL] case intro.intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n ⊢ ∃ q, x < ↑q ∧ ↑q < y [PROOFSTEP] refine' ⟨(z + 1 : ℤ) / n, _⟩ [GOAL] case intro.intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n ⊢ x < ↑(↑(z + 1) / ↑n) ∧ ↑(↑(z + 1) / ↑n) < y [PROOFSTEP] have n0' := (inv_pos.2 (sub_pos.2 h)).trans nh [GOAL] case intro.intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n ⊢ x < ↑(↑(z + 1) / ↑n) ∧ ↑(↑(z + 1) / ↑n) < y [PROOFSTEP] have n0 := Nat.cast_pos.1 n0' [GOAL] case intro.intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ x < ↑(↑(z + 1) / ↑n) ∧ ↑(↑(z + 1) / ↑n) < y [PROOFSTEP] rw [Rat.cast_div_of_ne_zero, Rat.cast_coe_nat, Rat.cast_coe_int, div_lt_iff n0'] [GOAL] case intro.intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ x < ↑(z + 1) / ↑n ∧ ↑(z + 1) < y * ↑n case intro.intro.md α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑(z + 1)).den ≠ 0 case intro.intro.nn α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑n).num ≠ 0 case intro.intro.nd α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑n).den ≠ 0 [PROOFSTEP] refine' ⟨(lt_div_iff n0').2 <| (lt_iff_lt_of_le_iff_le (zh _)).1 (lt_add_one _), _⟩ [GOAL] case intro.intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(z + 1) < y * ↑n case intro.intro.md α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑(z + 1)).den ≠ 0 case intro.intro.nn α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑n).num ≠ 0 case intro.intro.nd α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑n).den ≠ 0 [PROOFSTEP] rw [Int.cast_add, Int.cast_one] [GOAL] case intro.intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑z + 1 < y * ↑n case intro.intro.md α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑(z + 1)).den ≠ 0 case intro.intro.nn α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑n).num ≠ 0 case intro.intro.nd α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑n).den ≠ 0 [PROOFSTEP] refine' lt_of_le_of_lt (add_le_add_right ((zh _).1 le_rfl) _) _ [GOAL] case intro.intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ x * ↑n + 1 < y * ↑n case intro.intro.md α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑(z + 1)).den ≠ 0 case intro.intro.nn α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑n).num ≠ 0 case intro.intro.nd α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑n).den ≠ 0 [PROOFSTEP] rwa [← lt_sub_iff_add_lt', ← sub_mul, ← div_lt_iff' (sub_pos.2 h), one_div] [GOAL] case intro.intro.md α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑(z + 1)).den ≠ 0 [PROOFSTEP] rw [Rat.coe_int_den, Nat.cast_one] [GOAL] case intro.intro.md α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ 1 ≠ 0 [PROOFSTEP] exact one_ne_zero [GOAL] case intro.intro.nn α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑n).num ≠ 0 [PROOFSTEP] intro H [GOAL] case intro.intro.nn α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n H : ↑(↑n).num = 0 ⊢ False [PROOFSTEP] rw [Rat.coe_nat_num, Int.cast_ofNat, Nat.cast_eq_zero] at H [GOAL] case intro.intro.nn α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n H : n = 0 ⊢ False [PROOFSTEP] subst H [GOAL] case intro.intro.nn α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y z : ℤ nh : (y - x)⁻¹ < ↑0 zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑0 n0' : 0 < ↑0 n0 : 0 < 0 ⊢ False [PROOFSTEP] cases n0 [GOAL] case intro.intro.nd α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ ↑(↑n).den ≠ 0 [PROOFSTEP] rw [Rat.coe_nat_den, Nat.cast_one] [GOAL] case intro.intro.nd α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y✝ ε x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ 1 ≠ 0 [PROOFSTEP] exact one_ne_zero [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε✝ ε : α hε : 0 < ε ⊢ ∃ n, 1 / (↑n + 1) < ε [PROOFSTEP] cases' exists_nat_gt (1 / ε) with n hn [GOAL] case intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε✝ ε : α hε : 0 < ε n : ℕ hn : 1 / ε < ↑n ⊢ ∃ n, 1 / (↑n + 1) < ε [PROOFSTEP] use n [GOAL] case h α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε✝ ε : α hε : 0 < ε n : ℕ hn : 1 / ε < ↑n ⊢ 1 / (↑n + 1) < ε [PROOFSTEP] rw [div_lt_iff, ← div_lt_iff' hε] [GOAL] case h α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε✝ ε : α hε : 0 < ε n : ℕ hn : 1 / ε < ↑n ⊢ 1 / ε < ↑n + 1 [PROOFSTEP] apply hn.trans [GOAL] case h α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε✝ ε : α hε : 0 < ε n : ℕ hn : 1 / ε < ↑n ⊢ ↑n < ↑n + 1 [PROOFSTEP] simp [zero_lt_one] [GOAL] case h α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y ε✝ ε : α hε : 0 < ε n : ℕ hn : 1 / ε < ↑n ⊢ 0 < ↑n + 1 [PROOFSTEP] exact n.cast_add_one_pos [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x✝ y ε x : α x0 : 0 < x ⊢ ∃ q, 0 < q ∧ ↑q < x [PROOFSTEP] simpa only [Rat.cast_pos] using exists_rat_btwn x0 [GOAL] α : Type u_1 inst✝ : LinearOrderedField α H : ∀ (x : α), ∃ n, x < ↑n x y : α y0 : 0 < y n : ℕ h : x / y < ↑n ⊢ x < n • y [PROOFSTEP] rwa [div_lt_iff y0, ← nsmul_eq_mul] at h [GOAL] α : Type u_1 inst✝ : LinearOrderedField α ⊢ (∀ (x : α), ∃ n, x < ↑n) → Archimedean α [PROOFSTEP] rw [archimedean_iff_nat_lt] [GOAL] α : Type u_1 inst✝ : LinearOrderedField α ⊢ (∀ (x : α), ∃ n, x < ↑n) → ∀ (x : α), ∃ n, x < ↑n [PROOFSTEP] intro h x [GOAL] α : Type u_1 inst✝ : LinearOrderedField α h : ∀ (x : α), ∃ n, x < ↑n x : α ⊢ ∃ n, x < ↑n [PROOFSTEP] obtain ⟨n, h⟩ := h x [GOAL] case intro α : Type u_1 inst✝ : LinearOrderedField α h✝ : ∀ (x : α), ∃ n, x < ↑n x : α n : ℤ h : x < ↑n ⊢ ∃ n, x < ↑n [PROOFSTEP] refine' ⟨n.toNat, h.trans_le _⟩ [GOAL] case intro α : Type u_1 inst✝ : LinearOrderedField α h✝ : ∀ (x : α), ∃ n, x < ↑n x : α n : ℤ h : x < ↑n ⊢ ↑n ≤ ↑(toNat n) [PROOFSTEP] exact_mod_cast Int.self_le_toNat _ [GOAL] α : Type u_1 inst✝ : LinearOrderedField α H : ∀ (x : α), ∃ q, x < ↑q x : α q : ℚ h : x < ↑q ⊢ ↑q ≤ ↑⌈q⌉₊ [PROOFSTEP] simpa only [Rat.cast_coe_nat] using (@Rat.cast_le α _ _ _).2 (Nat.le_ceil _) [GOAL] α : Type u_1 n m : ℕ m0 : 0 < m ⊢ n ≤ n • m [PROOFSTEP] rw [← mul_one n, smul_eq_mul, mul_assoc, one_mul m] [GOAL] α : Type u_1 n m : ℕ m0 : 0 < m ⊢ n * 1 ≤ n * m [PROOFSTEP] exact Nat.mul_le_mul_left n (by linarith) [GOAL] α : Type u_1 n m : ℕ m0 : 0 < m ⊢ 1 ≤ m [PROOFSTEP] linarith [GOAL] α : Type u_1 n m : ℤ m0 : 0 < m ⊢ ↑(toNat n) ≤ toNat n • m [PROOFSTEP] simpa only [nsmul_eq_mul, zero_add, mul_one] using mul_le_mul_of_nonneg_left (Int.add_one_le_iff.2 m0) (Int.ofNat_zero_le n.toNat) [GOAL] α : Type u_1 q : ℚ ⊢ q ≤ ↑q [PROOFSTEP] rw [Rat.cast_id] [GOAL] α✝ : Type u_1 α : Type ?u.91487 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α ⊢ Archimedean α [PROOFSTEP] rw [archimedean_iff_int_le] [GOAL] α✝ : Type u_1 α : Type ?u.91487 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α ⊢ ∀ (x : α), ∃ n, x ≤ ↑n [PROOFSTEP] exact fun x => ⟨⌈x⌉, Int.le_ceil x⟩
{"mathlib_filename": "Mathlib.Algebra.Order.Archimedean", "llama_tokens": 16687}
[GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedSemiring k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k hc : 0 < c ⊢ c • a < 0 ↔ a < 0 [PROOFSTEP] rw [← neg_neg a, smul_neg, neg_neg_iff_pos, neg_neg_iff_pos] [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedSemiring k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k hc : 0 < c ⊢ 0 < c • -a ↔ 0 < -a [PROOFSTEP] exact smul_pos_iff_of_pos hc [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k h : a < b hc : c < 0 ⊢ c • b < c • a [PROOFSTEP] rw [← neg_neg c, neg_smul, neg_smul (-c), neg_lt_neg_iff] [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k h : a < b hc : c < 0 ⊢ -c • a < -c • b [PROOFSTEP] exact smul_lt_smul_of_pos h (neg_pos_of_neg hc) [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k h : a ≤ b hc : c ≤ 0 ⊢ c • b ≤ c • a [PROOFSTEP] rw [← neg_neg c, neg_smul, neg_smul (-c), neg_le_neg_iff] [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k h : a ≤ b hc : c ≤ 0 ⊢ -c • a ≤ -c • b [PROOFSTEP] exact smul_le_smul_of_nonneg h (neg_nonneg_of_nonpos hc) [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k hab : c • a = c • b hc : c < 0 h : a ≤ b ⊢ a = b [PROOFSTEP] rw [← neg_neg c, neg_smul, neg_smul (-c), neg_inj] at hab [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k hab : -c • a = -c • b hc : c < 0 h : a ≤ b ⊢ a = b [PROOFSTEP] exact eq_of_smul_eq_smul_of_pos_of_le hab (neg_pos_of_neg hc) h [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k h : c • a < c • b hc : c ≤ 0 ⊢ b < a [PROOFSTEP] rw [← neg_neg c, neg_smul, neg_smul (-c), neg_lt_neg_iff] at h [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k h : -c • b < -c • a hc : c ≤ 0 ⊢ b < a [PROOFSTEP] exact lt_of_smul_lt_smul_of_nonneg h (neg_nonneg_of_nonpos hc) [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k hc : c < 0 ⊢ c • a < c • b ↔ b < a [PROOFSTEP] rw [← neg_neg c, neg_smul, neg_smul (-c), neg_lt_neg_iff] [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k hc : c < 0 ⊢ -c • b < -c • a ↔ b < a [PROOFSTEP] exact smul_lt_smul_iff_of_pos (neg_pos_of_neg hc) [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k hc : c < 0 ⊢ c • a < 0 ↔ 0 < a [PROOFSTEP] rw [← neg_neg c, neg_smul, neg_neg_iff_pos] [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k hc : c < 0 ⊢ 0 < -c • a ↔ 0 < a [PROOFSTEP] exact smul_pos_iff_of_pos (neg_pos_of_neg hc) [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k hc : c < 0 ⊢ 0 < c • a ↔ a < 0 [PROOFSTEP] rw [← neg_neg c, neg_smul, neg_pos] [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k hc : c < 0 ⊢ -c • a < 0 ↔ a < 0 [PROOFSTEP] exact smul_neg_iff_of_pos (neg_pos_of_neg hc) [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : OrderedRing k inst✝³ : OrderedAddCommGroup M inst✝² : Module k M inst✝¹ : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : k c d : M hab : a ≤ b hcd : c ≤ d ⊢ a • d + b • c ≤ a • c + b • d [PROOFSTEP] obtain ⟨b, rfl⟩ := exists_add_of_le hab [GOAL] case intro k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : OrderedRing k inst✝³ : OrderedAddCommGroup M inst✝² : Module k M inst✝¹ : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a : k c d : M hcd : c ≤ d b : k hab : a ≤ a + b ⊢ a • d + (a + b) • c ≤ a • c + (a + b) • d [PROOFSTEP] obtain ⟨d, rfl⟩ := exists_add_of_le hcd [GOAL] case intro.intro k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : OrderedRing k inst✝³ : OrderedAddCommGroup M inst✝² : Module k M inst✝¹ : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a : k c : M b : k hab : a ≤ a + b d : M hcd : c ≤ c + d ⊢ a • (c + d) + (a + b) • c ≤ a • c + (a + b) • (c + d) [PROOFSTEP] rw [smul_add, add_right_comm, smul_add, ← add_assoc, add_smul _ _ d] [GOAL] case intro.intro k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : OrderedRing k inst✝³ : OrderedAddCommGroup M inst✝² : Module k M inst✝¹ : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a : k c : M b : k hab : a ≤ a + b d : M hcd : c ≤ c + d ⊢ a • c + (a + b) • c + a • d ≤ a • c + (a + b) • c + (a • d + b • d) [PROOFSTEP] rw [le_add_iff_nonneg_right] at hab hcd [GOAL] case intro.intro k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : OrderedRing k inst✝³ : OrderedAddCommGroup M inst✝² : Module k M inst✝¹ : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a : k c : M b : k hab : 0 ≤ b d : M hcd : 0 ≤ d ⊢ a • c + (a + b) • c + a • d ≤ a • c + (a + b) • c + (a • d + b • d) [PROOFSTEP] exact add_le_add_left (le_add_of_nonneg_right <| smul_nonneg hab hcd) _ [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : OrderedRing k inst✝³ : OrderedAddCommGroup M inst✝² : Module k M inst✝¹ : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : k c d : M hba : b ≤ a hdc : d ≤ c ⊢ a • d + b • c ≤ a • c + b • d [PROOFSTEP] rw [add_comm (a • d), add_comm (a • c)] [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : OrderedRing k inst✝³ : OrderedAddCommGroup M inst✝² : Module k M inst✝¹ : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : k c d : M hba : b ≤ a hdc : d ≤ c ⊢ b • c + a • d ≤ b • d + a • c [PROOFSTEP] exact smul_add_smul_le_smul_add_smul hba hdc [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : OrderedRing k inst✝⁴ : OrderedAddCommGroup M inst✝³ : Module k M inst✝² : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝¹ : CovariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a b : k c d : M hab : a < b hcd : c < d ⊢ a • d + b • c < a • c + b • d [PROOFSTEP] obtain ⟨b, rfl⟩ := exists_add_of_le hab.le [GOAL] case intro k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : OrderedRing k inst✝⁴ : OrderedAddCommGroup M inst✝³ : Module k M inst✝² : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝¹ : CovariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : k c d : M hcd : c < d b : k hab : a < a + b ⊢ a • d + (a + b) • c < a • c + (a + b) • d [PROOFSTEP] obtain ⟨d, rfl⟩ := exists_add_of_le hcd.le [GOAL] case intro.intro k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : OrderedRing k inst✝⁴ : OrderedAddCommGroup M inst✝³ : Module k M inst✝² : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝¹ : CovariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : k c : M b : k hab : a < a + b d : M hcd : c < c + d ⊢ a • (c + d) + (a + b) • c < a • c + (a + b) • (c + d) [PROOFSTEP] rw [smul_add, add_right_comm, smul_add, ← add_assoc, add_smul _ _ d] [GOAL] case intro.intro k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : OrderedRing k inst✝⁴ : OrderedAddCommGroup M inst✝³ : Module k M inst✝² : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝¹ : CovariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : k c : M b : k hab : a < a + b d : M hcd : c < c + d ⊢ a • c + (a + b) • c + a • d < a • c + (a + b) • c + (a • d + b • d) [PROOFSTEP] rw [lt_add_iff_pos_right] at hab hcd [GOAL] case intro.intro k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : OrderedRing k inst✝⁴ : OrderedAddCommGroup M inst✝³ : Module k M inst✝² : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝¹ : CovariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : k c : M b : k hab : 0 < b d : M hcd : 0 < d ⊢ a • c + (a + b) • c + a • d < a • c + (a + b) • c + (a • d + b • d) [PROOFSTEP] exact add_lt_add_left (lt_add_of_pos_right _ <| smul_pos hab hcd) _ [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : OrderedRing k inst✝⁴ : OrderedAddCommGroup M inst✝³ : Module k M inst✝² : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝¹ : CovariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a b : k c d : M hba : b < a hdc : d < c ⊢ a • d + b • c < a • c + b • d [PROOFSTEP] rw [add_comm (a • d), add_comm (a • c)] [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : OrderedRing k inst✝⁴ : OrderedAddCommGroup M inst✝³ : Module k M inst✝² : OrderedSMul k M a✝ b✝ : M c✝ : k inst✝¹ : CovariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass M M (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a b : k c d : M hba : b < a hdc : d < c ⊢ b • c + a • d < b • d + a • c [PROOFSTEP] exact smul_add_smul_lt_smul_add_smul hba hdc [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k hc : c < 0 ⊢ c • a ≤ c • b ↔ b ≤ a [PROOFSTEP] rw [← neg_neg c, neg_smul, neg_smul (-c), neg_le_neg_iff] [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k hc : c < 0 ⊢ -c • b ≤ -c • a ↔ b ≤ a [PROOFSTEP] exact smul_le_smul_iff_of_pos (neg_pos_of_neg hc) [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k h : c < 0 ⊢ c⁻¹ • a ≤ b ↔ c • b ≤ a [PROOFSTEP] rw [← smul_le_smul_iff_of_neg h, smul_inv_smul₀ h.ne] [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k h : c < 0 ⊢ c⁻¹ • a < b ↔ c • b < a [PROOFSTEP] rw [← smul_lt_smul_iff_of_neg h, smul_inv_smul₀ h.ne] [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k h : c < 0 ⊢ a ≤ c⁻¹ • b ↔ b ≤ c • a [PROOFSTEP] rw [← smul_le_smul_iff_of_neg h, smul_inv_smul₀ h.ne] [GOAL] k : Type u_1 M : Type u_2 N : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup M inst✝¹ : Module k M inst✝ : OrderedSMul k M a b : M c : k h : c < 0 ⊢ a < c⁻¹ • b ↔ b < c • a [PROOFSTEP] rw [← smul_lt_smul_iff_of_neg h, smul_inv_smul₀ h.ne]
{"mathlib_filename": "Mathlib.Algebra.Order.Module", "llama_tokens": 6448}
[GOAL] R : Type u M : Type v inst✝³ : Monoid R inst✝² : AddMonoid M inst✝¹ : DistribMulAction R M inst✝ : DistribMulAction Rᵐᵒᵖ M r₁ r₂ : R ⊢ 0 = r₁ • 0 + op r₂ • 0 [PROOFSTEP] rw [smul_zero, zero_add, smul_zero] [GOAL] R : Type u M : Type v inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Module Rᵐᵒᵖ M m₁ m₂ : M ⊢ 0 • m₂ + 0 • m₁ = 0 [PROOFSTEP] rw [zero_smul, zero_add, zero_smul] [GOAL] R : Type u M : Type v inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Module Rᵐᵒᵖ M r : R m : M ⊢ r • m + 0 • 0 = r • m [PROOFSTEP] rw [smul_zero, add_zero] [GOAL] R : Type u M : Type v inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Module Rᵐᵒᵖ M r : R m : M ⊢ 0 • 0 + op r • m = op r • m [PROOFSTEP] rw [smul_zero, zero_add] [GOAL] R : Type u M : Type v inst✝³ : Monoid R inst✝² : AddMonoid M inst✝¹ : DistribMulAction R M inst✝ : DistribMulAction Rᵐᵒᵖ M src✝¹ : One (tsze R M) := one src✝ : Mul (tsze R M) := mul x : tsze R M ⊢ 1 • x.snd + op x.fst • 0 = x.snd [PROOFSTEP] rw [one_smul, smul_zero, add_zero] [GOAL] R : Type u M : Type v inst✝³ : Monoid R inst✝² : AddMonoid M inst✝¹ : DistribMulAction R M inst✝ : DistribMulAction Rᵐᵒᵖ M src✝¹ : One (tsze R M) := one src✝ : Mul (tsze R M) := mul x : tsze R M ⊢ x.fst • 0 + 1 • x.snd = x.snd [PROOFSTEP] rw [smul_zero, zero_add, one_smul] [GOAL] R : Type u M : Type v inst✝¹ : AddMonoidWithOne R inst✝ : AddMonoid M src✝¹ : AddMonoid (tsze R M) := addMonoid src✝ : One (tsze R M) := one ⊢ NatCast.natCast 0 = 0 [PROOFSTEP] simp [Nat.cast] [GOAL] R : Type u M : Type v inst✝¹ : AddMonoidWithOne R inst✝ : AddMonoid M src✝¹ : AddMonoid (tsze R M) := addMonoid src✝ : One (tsze R M) := one x✝ : ℕ ⊢ NatCast.natCast (x✝ + 1) = NatCast.natCast x✝ + 1 [PROOFSTEP] ext [GOAL] case h1 R : Type u M : Type v inst✝¹ : AddMonoidWithOne R inst✝ : AddMonoid M src✝¹ : AddMonoid (tsze R M) := addMonoid src✝ : One (tsze R M) := one x✝ : ℕ ⊢ fst (NatCast.natCast (x✝ + 1)) = fst (NatCast.natCast x✝ + 1) [PROOFSTEP] simp [Nat.cast] [GOAL] case h2 R : Type u M : Type v inst✝¹ : AddMonoidWithOne R inst✝ : AddMonoid M src✝¹ : AddMonoid (tsze R M) := addMonoid src✝ : One (tsze R M) := one x✝ : ℕ ⊢ snd (NatCast.natCast (x✝ + 1)) = snd (NatCast.natCast x✝ + 1) [PROOFSTEP] simp [Nat.cast] [GOAL] R : Type u M : Type v inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Module Rᵐᵒᵖ M src✝² : AddMonoidWithOne (tsze R M) := addMonoidWithOne src✝¹ : MulOneClass (tsze R M) := mulOneClass src✝ : AddCommMonoid (tsze R M) := addCommMonoid x₁ x₂ x₃ : tsze R M ⊢ x₁.fst • (x₂.snd + x₃.snd) + (op x₂.fst + op x₃.fst) • x₁.snd = x₁.fst • x₂.snd + op x₂.fst • x₁.snd + (x₁.fst • x₃.snd + op x₃.fst • x₁.snd) [PROOFSTEP] simp_rw [smul_add, add_smul, add_add_add_comm] [GOAL] R : Type u M : Type v inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Module Rᵐᵒᵖ M src✝² : AddMonoidWithOne (tsze R M) := addMonoidWithOne src✝¹ : MulOneClass (tsze R M) := mulOneClass src✝ : AddCommMonoid (tsze R M) := addCommMonoid x₁ x₂ x₃ : tsze R M ⊢ (x₁.fst + x₂.fst) • x₃.snd + op x₃.fst • (x₁.snd + x₂.snd) = x₁.fst • x₃.snd + op x₃.fst • x₁.snd + (x₂.fst • x₃.snd + op x₃.fst • x₂.snd) [PROOFSTEP] simp_rw [add_smul, smul_add, add_add_add_comm] [GOAL] R : Type u M : Type v inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Module Rᵐᵒᵖ M src✝² : AddMonoidWithOne (tsze R M) := addMonoidWithOne src✝¹ : MulOneClass (tsze R M) := mulOneClass src✝ : AddCommMonoid (tsze R M) := addCommMonoid x : tsze R M ⊢ 0 • x.snd + op x.fst • 0 = 0 [PROOFSTEP] rw [zero_smul, zero_add, smul_zero] [GOAL] R : Type u M : Type v inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Module Rᵐᵒᵖ M src✝² : AddMonoidWithOne (tsze R M) := addMonoidWithOne src✝¹ : MulOneClass (tsze R M) := mulOneClass src✝ : AddCommMonoid (tsze R M) := addCommMonoid x : tsze R M ⊢ x.fst • 0 + 0 • x.snd = 0 [PROOFSTEP] rw [smul_zero, zero_add, zero_smul] [GOAL] R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n : ℕ h : op (fst x) • snd x = fst x • snd x ⊢ snd (x ^ n) = n • fst x ^ Nat.pred n • snd x [PROOFSTEP] have : ∀ n : ℕ, op (x.fst ^ n) • x.snd = x.fst ^ n • x.snd := by intro n induction' n with n ih · simp · rw [pow_succ', MulOpposite.op_mul, mul_smul, mul_smul, ← h, smul_comm (_ : R) (op x.fst) x.snd, ih] [GOAL] R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n : ℕ h : op (fst x) • snd x = fst x • snd x ⊢ ∀ (n : ℕ), op (fst x ^ n) • snd x = fst x ^ n • snd x [PROOFSTEP] intro n [GOAL] R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n✝ : ℕ h : op (fst x) • snd x = fst x • snd x n : ℕ ⊢ op (fst x ^ n) • snd x = fst x ^ n • snd x [PROOFSTEP] induction' n with n ih [GOAL] case zero R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n : ℕ h : op (fst x) • snd x = fst x • snd x ⊢ op (fst x ^ Nat.zero) • snd x = fst x ^ Nat.zero • snd x [PROOFSTEP] simp [GOAL] case succ R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n✝ : ℕ h : op (fst x) • snd x = fst x • snd x n : ℕ ih : op (fst x ^ n) • snd x = fst x ^ n • snd x ⊢ op (fst x ^ Nat.succ n) • snd x = fst x ^ Nat.succ n • snd x [PROOFSTEP] rw [pow_succ', MulOpposite.op_mul, mul_smul, mul_smul, ← h, smul_comm (_ : R) (op x.fst) x.snd, ih] [GOAL] R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n : ℕ h : op (fst x) • snd x = fst x • snd x this : ∀ (n : ℕ), op (fst x ^ n) • snd x = fst x ^ n • snd x ⊢ snd (x ^ n) = n • fst x ^ Nat.pred n • snd x [PROOFSTEP] simp_rw [snd_pow_eq_sum, this, smul_smul, ← pow_add] [GOAL] R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n : ℕ h : op (fst x) • snd x = fst x • snd x this : ∀ (n : ℕ), op (fst x ^ n) • snd x = fst x ^ n • snd x ⊢ List.sum (List.map (fun i => fst x ^ (Nat.pred n - i + i) • snd x) (List.range n)) = n • fst x ^ Nat.pred n • snd x [PROOFSTEP] match n with | 0 => rw [Nat.pred_zero, pow_zero, List.range_zero, zero_smul, List.map_nil, List.sum_nil] | (Nat.succ n) => simp_rw [Nat.pred_succ] refine' (List.sum_eq_card_nsmul _ (x.fst ^ n • x.snd) _).trans _ · rintro m hm simp_rw [List.mem_map, List.mem_range] at hm obtain ⟨i, hi, rfl⟩ := hm rw [tsub_add_cancel_of_le (Nat.lt_succ_iff.mp hi)] · rw [List.length_map, List.length_range] [GOAL] R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n : ℕ h : op (fst x) • snd x = fst x • snd x this : ∀ (n : ℕ), op (fst x ^ n) • snd x = fst x ^ n • snd x ⊢ List.sum (List.map (fun i => fst x ^ (Nat.pred 0 - i + i) • snd x) (List.range 0)) = 0 • fst x ^ Nat.pred 0 • snd x [PROOFSTEP] rw [Nat.pred_zero, pow_zero, List.range_zero, zero_smul, List.map_nil, List.sum_nil] [GOAL] R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n✝ : ℕ h : op (fst x) • snd x = fst x • snd x this : ∀ (n : ℕ), op (fst x ^ n) • snd x = fst x ^ n • snd x n : ℕ ⊢ List.sum (List.map (fun i => fst x ^ (Nat.pred (Nat.succ n) - i + i) • snd x) (List.range (Nat.succ n))) = Nat.succ n • fst x ^ Nat.pred (Nat.succ n) • snd x [PROOFSTEP] simp_rw [Nat.pred_succ] [GOAL] R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n✝ : ℕ h : op (fst x) • snd x = fst x • snd x this : ∀ (n : ℕ), op (fst x ^ n) • snd x = fst x ^ n • snd x n : ℕ ⊢ List.sum (List.map (fun i => fst x ^ (n - i + i) • snd x) (List.range (Nat.succ n))) = Nat.succ n • fst x ^ n • snd x [PROOFSTEP] refine' (List.sum_eq_card_nsmul _ (x.fst ^ n • x.snd) _).trans _ [GOAL] case refine'_1 R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n✝ : ℕ h : op (fst x) • snd x = fst x • snd x this : ∀ (n : ℕ), op (fst x ^ n) • snd x = fst x ^ n • snd x n : ℕ ⊢ ∀ (x_1 : M), x_1 ∈ List.map (fun i => fst x ^ (n - i + i) • snd x) (List.range (Nat.succ n)) → x_1 = fst x ^ n • snd x [PROOFSTEP] rintro m hm [GOAL] case refine'_1 R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n✝ : ℕ h : op (fst x) • snd x = fst x • snd x this : ∀ (n : ℕ), op (fst x ^ n) • snd x = fst x ^ n • snd x n : ℕ m : M hm : m ∈ List.map (fun i => fst x ^ (n - i + i) • snd x) (List.range (Nat.succ n)) ⊢ m = fst x ^ n • snd x [PROOFSTEP] simp_rw [List.mem_map, List.mem_range] at hm [GOAL] case refine'_1 R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n✝ : ℕ h : op (fst x) • snd x = fst x • snd x this : ∀ (n : ℕ), op (fst x ^ n) • snd x = fst x ^ n • snd x n : ℕ m : M hm : ∃ a, a < Nat.succ n ∧ fst x ^ (n - a + a) • snd x = m ⊢ m = fst x ^ n • snd x [PROOFSTEP] obtain ⟨i, hi, rfl⟩ := hm [GOAL] case refine'_1.intro.intro R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n✝ : ℕ h : op (fst x) • snd x = fst x • snd x this : ∀ (n : ℕ), op (fst x ^ n) • snd x = fst x ^ n • snd x n i : ℕ hi : i < Nat.succ n ⊢ fst x ^ (n - i + i) • snd x = fst x ^ n • snd x [PROOFSTEP] rw [tsub_add_cancel_of_le (Nat.lt_succ_iff.mp hi)] [GOAL] case refine'_2 R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M n✝ : ℕ h : op (fst x) • snd x = fst x • snd x this : ∀ (n : ℕ), op (fst x ^ n) • snd x = fst x ^ n • snd x n : ℕ ⊢ List.length (List.map (fun i => fst x ^ (n - i + i) • snd x) (List.range (Nat.succ n))) • fst x ^ n • snd x = Nat.succ n • fst x ^ n • snd x [PROOFSTEP] rw [List.length_map, List.length_range] [GOAL] R : Type u M : Type v inst✝³ : Monoid R inst✝² : AddMonoid M inst✝¹ : DistribMulAction R M inst✝ : DistribMulAction Rᵐᵒᵖ M r : R n : ℕ ⊢ snd (inl r ^ n) = snd (inl (r ^ n)) [PROOFSTEP] simp [snd_pow_eq_sum] [GOAL] R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M src✝ : MulOneClass (tsze R M) := mulOneClass x y z : tsze R M ⊢ (x.fst * y.fst) • z.snd + op z.fst • (x.fst • y.snd + op y.fst • x.snd) = x.fst • (y.fst • z.snd + op z.fst • y.snd) + (op z.fst * op y.fst) • x.snd [PROOFSTEP] simp_rw [smul_add, ← mul_smul, add_assoc, smul_comm] [GOAL] R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M src✝ : MulOneClass (tsze R M) := mulOneClass x : tsze R M ⊢ snd ((fun n x => x ^ n) 0 x) = snd 1 [PROOFSTEP] simp [snd_pow_eq_sum] [GOAL] R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M src✝ : MulOneClass (tsze R M) := mulOneClass n : ℕ x : tsze R M ⊢ snd ((fun n x => x ^ n) (n + 1) x) = snd (x * (fun n x => x ^ n) n x) [PROOFSTEP] simp_rw [snd_mul, snd_pow_eq_sum, Nat.pred_succ] [GOAL] R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M src✝ : MulOneClass (tsze R M) := mulOneClass n : ℕ x : tsze R M ⊢ List.sum (List.map (fun i => fst x ^ (n - i) • op (fst x ^ i) • snd x) (List.range (n + 1))) = fst x • List.sum (List.map (fun i => fst x ^ (Nat.pred n - i) • op (fst x ^ i) • snd x) (List.range n)) + op (fst (x ^ n)) • snd x [PROOFSTEP] cases n [GOAL] case zero R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M src✝ : MulOneClass (tsze R M) := mulOneClass x : tsze R M ⊢ List.sum (List.map (fun i => fst x ^ (Nat.zero - i) • op (fst x ^ i) • snd x) (List.range (Nat.zero + 1))) = fst x • List.sum (List.map (fun i => fst x ^ (Nat.pred Nat.zero - i) • op (fst x ^ i) • snd x) (List.range Nat.zero)) + op (fst (x ^ Nat.zero)) • snd x [PROOFSTEP] simp [List.range_succ] [GOAL] case succ R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M src✝ : MulOneClass (tsze R M) := mulOneClass x : tsze R M n✝ : ℕ ⊢ List.sum (List.map (fun i => fst x ^ (Nat.succ n✝ - i) • op (fst x ^ i) • snd x) (List.range (Nat.succ n✝ + 1))) = fst x • List.sum (List.map (fun i => fst x ^ (Nat.pred (Nat.succ n✝) - i) • op (fst x ^ i) • snd x) (List.range (Nat.succ n✝))) + op (fst (x ^ Nat.succ n✝)) • snd x [PROOFSTEP] simp_rw [Nat.pred_succ] [GOAL] case succ R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M src✝ : MulOneClass (tsze R M) := mulOneClass x : tsze R M n✝ : ℕ ⊢ List.sum (List.map (fun i => fst x ^ (Nat.succ n✝ - i) • op (fst x ^ i) • snd x) (List.range (Nat.succ n✝ + 1))) = fst x • List.sum (List.map (fun i => fst x ^ (n✝ - i) • op (fst x ^ i) • snd x) (List.range (Nat.succ n✝))) + op (fst (x ^ Nat.succ n✝)) • snd x [PROOFSTEP] rw [List.range_succ, List.map_append, List.sum_append, List.map_singleton, List.sum_singleton, Nat.sub_self, pow_zero, one_smul, List.smul_sum, List.map_map, fst_pow] --porting note: `Function.comp` no longer works in `rw` so move to `simp_rw` [GOAL] case succ R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M src✝ : MulOneClass (tsze R M) := mulOneClass x : tsze R M n✝ : ℕ ⊢ List.sum (List.map (fun i => fst x ^ (Nat.succ n✝ - i) • op (fst x ^ i) • snd x) (List.range (n✝ + 1))) + op (fst x ^ (n✝ + 1)) • snd x = List.sum (List.map ((fun x x_1 => x • x_1) (fst x) ∘ fun i => fst x ^ (n✝ - i) • op (fst x ^ i) • snd x) (List.range (Nat.succ n✝))) + op (fst x ^ Nat.succ n✝) • snd x [PROOFSTEP] simp_rw [Function.comp, smul_smul, ← pow_succ, Nat.succ_eq_add_one] [GOAL] case succ R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M src✝ : MulOneClass (tsze R M) := mulOneClass x : tsze R M n✝ : ℕ ⊢ List.sum (List.map (fun i => fst x ^ (n✝ + 1 - i) • op (fst x ^ i) • snd x) (List.range (n✝ + 1))) + op (fst x ^ (n✝ + 1)) • snd x = List.sum (List.map (fun x_1 => fst x ^ (n✝ - x_1 + 1) • op (fst x ^ x_1) • snd x) (List.range (n✝ + 1))) + op (fst x ^ (n✝ + 1)) • snd x [PROOFSTEP] congr 2 [GOAL] case succ.e_a.e_a R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M src✝ : MulOneClass (tsze R M) := mulOneClass x : tsze R M n✝ : ℕ ⊢ List.map (fun i => fst x ^ (n✝ + 1 - i) • op (fst x ^ i) • snd x) (List.range (n✝ + 1)) = List.map (fun x_1 => fst x ^ (n✝ - x_1 + 1) • op (fst x ^ x_1) • snd x) (List.range (n✝ + 1)) [PROOFSTEP] refine' List.map_congr fun i hi => _ [GOAL] case succ.e_a.e_a R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M src✝ : MulOneClass (tsze R M) := mulOneClass x : tsze R M n✝ i : ℕ hi : i ∈ List.range (n✝ + 1) ⊢ fst x ^ (n✝ + 1 - i) • op (fst x ^ i) • snd x = fst x ^ (n✝ - i + 1) • op (fst x ^ i) • snd x [PROOFSTEP] rw [List.mem_range, Nat.lt_succ_iff] at hi [GOAL] case succ.e_a.e_a R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : AddMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M src✝ : MulOneClass (tsze R M) := mulOneClass x : tsze R M n✝ i : ℕ hi : i ≤ n✝ ⊢ fst x ^ (n✝ + 1 - i) • op (fst x ^ i) • snd x = fst x ^ (n✝ - i + 1) • op (fst x ^ i) • snd x [PROOFSTEP] rw [Nat.sub_add_comm hi] [GOAL] R : Type u M : Type v inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Module Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M l : List (tsze R M) ⊢ snd (List.prod l) = List.sum (List.map (fun x => List.prod (List.take x.fst (List.map fst l)) • op (List.prod (List.drop (Nat.succ x.fst) (List.map fst l))) • snd x.snd) (List.enum l)) [PROOFSTEP] induction' l with x xs ih [GOAL] case nil R : Type u M : Type v inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Module Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M ⊢ snd (List.prod []) = List.sum (List.map (fun x => List.prod (List.take x.fst (List.map fst [])) • op (List.prod (List.drop (Nat.succ x.fst) (List.map fst []))) • snd x.snd) (List.enum [])) [PROOFSTEP] simp [GOAL] case cons R : Type u M : Type v inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Module Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M xs : List (tsze R M) ih : snd (List.prod xs) = List.sum (List.map (fun x => List.prod (List.take x.fst (List.map fst xs)) • op (List.prod (List.drop (Nat.succ x.fst) (List.map fst xs))) • snd x.snd) (List.enum xs)) ⊢ snd (List.prod (x :: xs)) = List.sum (List.map (fun x_1 => List.prod (List.take x_1.fst (List.map fst (x :: xs))) • op (List.prod (List.drop (Nat.succ x_1.fst) (List.map fst (x :: xs)))) • snd x_1.snd) (List.enum (x :: xs))) [PROOFSTEP] rw [List.enum_cons, ← List.map_fst_add_enum_eq_enumFrom] [GOAL] case cons R : Type u M : Type v inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Module Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M xs : List (tsze R M) ih : snd (List.prod xs) = List.sum (List.map (fun x => List.prod (List.take x.fst (List.map fst xs)) • op (List.prod (List.drop (Nat.succ x.fst) (List.map fst xs))) • snd x.snd) (List.enum xs)) ⊢ snd (List.prod (x :: xs)) = List.sum (List.map (fun x_1 => List.prod (List.take x_1.fst (List.map fst (x :: xs))) • op (List.prod (List.drop (Nat.succ x_1.fst) (List.map fst (x :: xs)))) • snd x_1.snd) ((0, x) :: List.map (Prod.map (fun x => x + 1) id) (List.enum xs))) [PROOFSTEP] simp_rw [List.map_cons, List.map_map, Function.comp, Prod.map_snd, Prod.map_fst, id, List.take_zero, List.take_cons, List.prod_nil, List.prod_cons, snd_mul, one_smul, List.drop, mul_smul, List.sum_cons, fst_list_prod, ih, List.smul_sum, List.map_map] [GOAL] case cons R : Type u M : Type v inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Module Rᵐᵒᵖ M inst✝ : SMulCommClass R Rᵐᵒᵖ M x : tsze R M xs : List (tsze R M) ih : snd (List.prod xs) = List.sum (List.map (fun x => List.prod (List.take x.fst (List.map fst xs)) • op (List.prod (List.drop (Nat.succ x.fst) (List.map fst xs))) • snd x.snd) (List.enum xs)) ⊢ List.sum (List.map ((fun x_1 => fst x • x_1) ∘ fun x => List.prod (List.take x.fst (List.map fst xs)) • op (List.prod (List.drop (Nat.succ x.fst) (List.map fst xs))) • snd x.snd) (List.enum xs)) + op (List.prod (List.map fst xs)) • snd x = op (List.prod (List.map fst xs)) • snd x + List.sum (List.map (fun x_1 => fst x • List.prod (List.take x_1.fst (List.map fst xs)) • op (List.prod (List.drop (x_1.fst + 1) (List.map fst xs))) • snd x_1.snd) (List.enum xs)) [PROOFSTEP] exact add_comm _ _ [GOAL] R : Type u M : Type v inst✝⁴ : CommMonoid R inst✝³ : AddCommMonoid M inst✝² : DistribMulAction R M inst✝¹ : DistribMulAction Rᵐᵒᵖ M inst✝ : IsCentralScalar R M src✝ : Monoid (tsze R M) := monoid x₁ x₂ : tsze R M ⊢ x₁.fst • x₂.snd + op x₂.fst • x₁.snd = x₂.fst • x₁.snd + op x₁.fst • x₂.snd [PROOFSTEP] rw [op_smul_eq_smul, op_smul_eq_smul, add_comm] [GOAL] S : Type u_1 R R' : Type u M : Type v inst✝¹⁵ : CommSemiring S inst✝¹⁴ : Semiring R inst✝¹³ : CommSemiring R' inst✝¹² : AddCommMonoid M inst✝¹¹ : Algebra S R inst✝¹⁰ : Algebra S R' inst✝⁹ : Module S M inst✝⁸ : Module R M inst✝⁷ : Module Rᵐᵒᵖ M inst✝⁶ : SMulCommClass R Rᵐᵒᵖ M inst✝⁵ : IsScalarTower S R M inst✝⁴ : IsScalarTower S Rᵐᵒᵖ M inst✝³ : Module R' M inst✝² : Module R'ᵐᵒᵖ M inst✝¹ : IsCentralScalar R' M inst✝ : IsScalarTower S R' M src✝ : S →+* tsze R M := RingHom.comp (inlHom R M) (algebraMap S R) s : S x : (fun x => tsze R M) s ⊢ ↑(algebraMap S R) s • snd x + op (fst x) • 0 = fst x • 0 + op (↑(algebraMap S R) s) • snd x [PROOFSTEP] rw [smul_zero, smul_zero, add_zero, zero_add] [GOAL] S : Type u_1 R R' : Type u M : Type v inst✝¹⁵ : CommSemiring S inst✝¹⁴ : Semiring R inst✝¹³ : CommSemiring R' inst✝¹² : AddCommMonoid M inst✝¹¹ : Algebra S R inst✝¹⁰ : Algebra S R' inst✝⁹ : Module S M inst✝⁸ : Module R M inst✝⁷ : Module Rᵐᵒᵖ M inst✝⁶ : SMulCommClass R Rᵐᵒᵖ M inst✝⁵ : IsScalarTower S R M inst✝⁴ : IsScalarTower S Rᵐᵒᵖ M inst✝³ : Module R' M inst✝² : Module R'ᵐᵒᵖ M inst✝¹ : IsCentralScalar R' M inst✝ : IsScalarTower S R' M src✝ : S →+* tsze R M := RingHom.comp (inlHom R M) (algebraMap S R) s : S x : (fun x => tsze R M) s ⊢ ↑(algebraMap S R) s • snd x = op (↑(algebraMap S R) s) • snd x [PROOFSTEP] rw [Algebra.algebraMap_eq_smul_one, MulOpposite.op_smul, MulOpposite.op_one, smul_assoc, one_smul, smul_assoc, one_smul] [GOAL] S : Type u_1 R R' : Type u M : Type v inst✝¹⁵ : CommSemiring S inst✝¹⁴ : Semiring R inst✝¹³ : CommSemiring R' inst✝¹² : AddCommMonoid M inst✝¹¹ : Algebra S R inst✝¹⁰ : Algebra S R' inst✝⁹ : Module S M inst✝⁸ : Module R M inst✝⁷ : Module Rᵐᵒᵖ M inst✝⁶ : SMulCommClass R Rᵐᵒᵖ M inst✝⁵ : IsScalarTower S R M inst✝⁴ : IsScalarTower S Rᵐᵒᵖ M inst✝³ : Module R' M inst✝² : Module R'ᵐᵒᵖ M inst✝¹ : IsCentralScalar R' M inst✝ : IsScalarTower S R' M src✝ : S →+* tsze R M := RingHom.comp (inlHom R M) (algebraMap S R) r : S x : (fun x => tsze R M) r ⊢ r • x.snd = ↑(algebraMap S R) r • x.snd + op x.fst • 0 [PROOFSTEP] rw [smul_zero, add_zero, algebraMap_smul] [GOAL] S : Type u_1 R R' : Type u M : Type v inst✝¹⁷ : CommSemiring S inst✝¹⁶ : Semiring R inst✝¹⁵ : CommSemiring R' inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Algebra S R inst✝¹² : Algebra S R' inst✝¹¹ : Module S M inst✝¹⁰ : Module R M inst✝⁹ : Module Rᵐᵒᵖ M inst✝⁸ : SMulCommClass R Rᵐᵒᵖ M inst✝⁷ : IsScalarTower S R M inst✝⁶ : IsScalarTower S Rᵐᵒᵖ M inst✝⁵ : Module R' M inst✝⁴ : Module R'ᵐᵒᵖ M inst✝³ : IsCentralScalar R' M inst✝² : IsScalarTower S R' M A : Type u_2 inst✝¹ : Semiring A inst✝ : Algebra R' A f : M →ₗ[R'] A hf : ∀ (x y : M), ↑f x * ↑f y = 0 ⊢ ↑(algebraMap R' A) 1 + ↑f 0 = 1 [PROOFSTEP] rw [map_zero, map_one, add_zero] [GOAL] S : Type u_1 R R' : Type u M : Type v inst✝¹⁷ : CommSemiring S inst✝¹⁶ : Semiring R inst✝¹⁵ : CommSemiring R' inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Algebra S R inst✝¹² : Algebra S R' inst✝¹¹ : Module S M inst✝¹⁰ : Module R M inst✝⁹ : Module Rᵐᵒᵖ M inst✝⁸ : SMulCommClass R Rᵐᵒᵖ M inst✝⁷ : IsScalarTower S R M inst✝⁶ : IsScalarTower S Rᵐᵒᵖ M inst✝⁵ : Module R' M inst✝⁴ : Module R'ᵐᵒᵖ M inst✝³ : IsCentralScalar R' M inst✝² : IsScalarTower S R' M A : Type u_2 inst✝¹ : Semiring A inst✝ : Algebra R' A f : M →ₗ[R'] A hf : ∀ (x y : M), ↑f x * ↑f y = 0 r₁ : R' m₁ : M r₂ : R' m₂ : M ⊢ ↑(LinearMap.comp (Algebra.linearMap R' A) (AlgHom.toLinearMap (fstHom R' R' M)) + LinearMap.comp f (sndHom R' M)) ((inl r₁ + inr m₁) * (inl r₂ + inr m₂)) = ↑(LinearMap.comp (Algebra.linearMap R' A) (AlgHom.toLinearMap (fstHom R' R' M)) + LinearMap.comp f (sndHom R' M)) (inl r₁ + inr m₁) * ↑(LinearMap.comp (Algebra.linearMap R' A) (AlgHom.toLinearMap (fstHom R' R' M)) + LinearMap.comp f (sndHom R' M)) (inl r₂ + inr m₂) [PROOFSTEP] dsimp [GOAL] S : Type u_1 R R' : Type u M : Type v inst✝¹⁷ : CommSemiring S inst✝¹⁶ : Semiring R inst✝¹⁵ : CommSemiring R' inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Algebra S R inst✝¹² : Algebra S R' inst✝¹¹ : Module S M inst✝¹⁰ : Module R M inst✝⁹ : Module Rᵐᵒᵖ M inst✝⁸ : SMulCommClass R Rᵐᵒᵖ M inst✝⁷ : IsScalarTower S R M inst✝⁶ : IsScalarTower S Rᵐᵒᵖ M inst✝⁵ : Module R' M inst✝⁴ : Module R'ᵐᵒᵖ M inst✝³ : IsCentralScalar R' M inst✝² : IsScalarTower S R' M A : Type u_2 inst✝¹ : Semiring A inst✝ : Algebra R' A f : M →ₗ[R'] A hf : ∀ (x y : M), ↑f x * ↑f y = 0 r₁ : R' m₁ : M r₂ : R' m₂ : M ⊢ ↑(algebraMap R' A) ((r₁ + 0) * (r₂ + 0)) + ↑f ((r₁ + 0) • (0 + m₂) + (op r₂ + 0) • (0 + m₁)) = (↑(algebraMap R' A) (r₁ + 0) + ↑f (0 + m₁)) * (↑(algebraMap R' A) (r₂ + 0) + ↑f (0 + m₂)) [PROOFSTEP] simp only [add_zero, zero_add, add_mul, mul_add, smul_mul_smul, hf, smul_zero, op_smul_eq_smul] [GOAL] S : Type u_1 R R' : Type u M : Type v inst✝¹⁷ : CommSemiring S inst✝¹⁶ : Semiring R inst✝¹⁵ : CommSemiring R' inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Algebra S R inst✝¹² : Algebra S R' inst✝¹¹ : Module S M inst✝¹⁰ : Module R M inst✝⁹ : Module Rᵐᵒᵖ M inst✝⁸ : SMulCommClass R Rᵐᵒᵖ M inst✝⁷ : IsScalarTower S R M inst✝⁶ : IsScalarTower S Rᵐᵒᵖ M inst✝⁵ : Module R' M inst✝⁴ : Module R'ᵐᵒᵖ M inst✝³ : IsCentralScalar R' M inst✝² : IsScalarTower S R' M A : Type u_2 inst✝¹ : Semiring A inst✝ : Algebra R' A f : M →ₗ[R'] A hf : ∀ (x y : M), ↑f x * ↑f y = 0 r₁ : R' m₁ : M r₂ : R' m₂ : M ⊢ ↑(algebraMap R' A) (r₁ * r₂) + ↑f (r₁ • m₂ + r₂ • m₁) = ↑(algebraMap R' A) r₁ * ↑(algebraMap R' A) r₂ + ↑f m₁ * ↑(algebraMap R' A) r₂ + ↑(algebraMap R' A) r₁ * ↑f m₂ [PROOFSTEP] rw [← RingHom.map_mul, LinearMap.map_add, ← Algebra.commutes _ (f _), ← Algebra.smul_def, ← Algebra.smul_def, add_right_comm, add_assoc, LinearMap.map_smul, LinearMap.map_smul] [GOAL] S : Type u_1 R R' : Type u M : Type v inst✝¹⁷ : CommSemiring S inst✝¹⁶ : Semiring R inst✝¹⁵ : CommSemiring R' inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Algebra S R inst✝¹² : Algebra S R' inst✝¹¹ : Module S M inst✝¹⁰ : Module R M inst✝⁹ : Module Rᵐᵒᵖ M inst✝⁸ : SMulCommClass R Rᵐᵒᵖ M inst✝⁷ : IsScalarTower S R M inst✝⁶ : IsScalarTower S Rᵐᵒᵖ M inst✝⁵ : Module R' M inst✝⁴ : Module R'ᵐᵒᵖ M inst✝³ : IsCentralScalar R' M inst✝² : IsScalarTower S R' M A : Type u_2 inst✝¹ : Semiring A inst✝ : Algebra R' A f : M →ₗ[R'] A hf : ∀ (x y : M), ↑f x * ↑f y = 0 m : M ⊢ ↑(algebraMap R' A) 0 + ↑f m = ↑f m [PROOFSTEP] rw [RingHom.map_zero, zero_add]
{"mathlib_filename": "Mathlib.Algebra.TrivSqZeroExt", "llama_tokens": 14735}
{"mathlib_filename": "Mathlib.Algebra.Order.Positive.Field", "llama_tokens": 0}
[GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s ⊢ (∑ i in s, f i) • ∑ i in s, g i ≤ card s • ∑ i in s, f i • g i [PROOFSTEP] classical obtain ⟨σ, hσ, hs⟩ := s.countable_toSet.exists_cycleOn rw [← card_range s.card, sum_smul_sum_eq_sum_perm hσ] exact sum_le_card_nsmul _ _ _ fun n _ => hfg.sum_smul_comp_perm_le_sum_smul fun x hx => hs fun h => hx <| IsFixedPt.perm_pow h _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s ⊢ (∑ i in s, f i) • ∑ i in s, g i ≤ card s • ∑ i in s, f i • g i [PROOFSTEP] obtain ⟨σ, hσ, hs⟩ := s.countable_toSet.exists_cycleOn [GOAL] case intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ✝ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s σ : Perm ι hσ : IsCycleOn σ ↑s hs : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ (∑ i in s, f i) • ∑ i in s, g i ≤ card s • ∑ i in s, f i • g i [PROOFSTEP] rw [← card_range s.card, sum_smul_sum_eq_sum_perm hσ] [GOAL] case intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ✝ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s σ : Perm ι hσ : IsCycleOn σ ↑s hs : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ ∑ k in range (card s), ∑ i in s, f i • g (↑(σ ^ k) i) ≤ card (range (card s)) • ∑ i in s, f i • g i [PROOFSTEP] exact sum_le_card_nsmul _ _ _ fun n _ => hfg.sum_smul_comp_perm_le_sum_smul fun x hx => hs fun h => hx <| IsFixedPt.perm_pow h _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : AntivaryOn f g ↑s ⊢ card s • ∑ i in s, f i • g i ≤ (∑ i in s, f i) • ∑ i in s, g i [PROOFSTEP] refine hfg.dual_right.sum_smul_sum_le_card_smul_sum [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module α β inst✝¹ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β inst✝ : Fintype ι hfg : Antivary f g ⊢ Fintype.card ι • ∑ i : ι, f i • g i ≤ (∑ i : ι, f i) • ∑ i : ι, g i [PROOFSTEP] refine (hfg.dual_right.monovaryOn _).sum_smul_sum_le_card_smul_sum [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedRing α s : Finset ι σ : Perm ι f g : ι → α hfg : MonovaryOn f g ↑s ⊢ (∑ i in s, f i) * ∑ i in s, g i ≤ ↑(card s) * ∑ i in s, f i * g i [PROOFSTEP] rw [← nsmul_eq_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedRing α s : Finset ι σ : Perm ι f g : ι → α hfg : MonovaryOn f g ↑s ⊢ (∑ i in s, f i) * ∑ i in s, g i ≤ card s • ∑ i in s, f i * g i [PROOFSTEP] exact hfg.sum_smul_sum_le_card_smul_sum [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedRing α s : Finset ι σ : Perm ι f g : ι → α hfg : AntivaryOn f g ↑s ⊢ ↑(card s) * ∑ i in s, f i * g i ≤ (∑ i in s, f i) * ∑ i in s, g i [PROOFSTEP] rw [← nsmul_eq_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedRing α s : Finset ι σ : Perm ι f g : ι → α hfg : AntivaryOn f g ↑s ⊢ card s • ∑ i in s, f i * g i ≤ (∑ i in s, f i) * ∑ i in s, g i [PROOFSTEP] exact hfg.card_smul_sum_le_sum_smul_sum [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedRing α s : Finset ι σ : Perm ι f g : ι → α ⊢ (∑ i in s, f i) ^ 2 ≤ ↑(card s) * ∑ i in s, f i ^ 2 [PROOFSTEP] simp_rw [sq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedRing α s : Finset ι σ : Perm ι f g : ι → α ⊢ (∑ i in s, f i) * ∑ i in s, f i ≤ ↑(card s) * ∑ x in s, f x * f x [PROOFSTEP] exact (monovaryOn_self _ _).sum_mul_sum_le_card_mul_sum [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α s : Finset ι f : ι → α ⊢ ((∑ i in s, f i) / ↑(card s)) ^ 2 ≤ (∑ i in s, f i ^ 2) / ↑(card s) [PROOFSTEP] obtain rfl | hs := s.eq_empty_or_nonempty [GOAL] case inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α f : ι → α ⊢ ((∑ i in ∅, f i) / ↑(card ∅)) ^ 2 ≤ (∑ i in ∅, f i ^ 2) / ↑(card ∅) [PROOFSTEP] simp [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α s : Finset ι f : ι → α hs : Finset.Nonempty s ⊢ ((∑ i in s, f i) / ↑(card s)) ^ 2 ≤ (∑ i in s, f i ^ 2) / ↑(card s) [PROOFSTEP] rw [← card_pos, ← @Nat.cast_pos α] at hs [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α s : Finset ι f : ι → α hs : 0 < ↑(card s) ⊢ ((∑ i in s, f i) / ↑(card s)) ^ 2 ≤ (∑ i in s, f i ^ 2) / ↑(card s) [PROOFSTEP] rw [div_pow, div_le_div_iff (sq_pos_of_ne_zero _ hs.ne') hs, sq (s.card : α), mul_left_comm, ← mul_assoc] [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α s : Finset ι f : ι → α hs : 0 < ↑(card s) ⊢ (∑ i in s, f i) ^ 2 * ↑(card s) ≤ (↑(card s) * ∑ i in s, f i ^ 2) * ↑(card s) [PROOFSTEP] exact mul_le_mul_of_nonneg_right sq_sum_le_card_mul_sum_sq hs.le
{"mathlib_filename": "Mathlib.Algebra.Order.Chebyshev", "llama_tokens": 2845}
[GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Sub α inst✝ : Zero α a : WithTop α ⊢ a - ⊤ = 0 [PROOFSTEP] cases a [GOAL] case none α : Type u_1 β : Type u_2 inst✝¹ : Sub α inst✝ : Zero α ⊢ none - ⊤ = 0 [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 inst✝¹ : Sub α inst✝ : Zero α val✝ : α ⊢ Option.some val✝ - ⊤ = 0 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Sub α inst✝ : Zero α a b : WithTop α ⊢ a - b = ⊤ ↔ a = ⊤ ∧ b ≠ ⊤ [PROOFSTEP] induction a using recTopCoe [GOAL] case top α : Type u_1 β : Type u_2 inst✝¹ : Sub α inst✝ : Zero α b : WithTop α ⊢ ⊤ - b = ⊤ ↔ ⊤ = ⊤ ∧ b ≠ ⊤ [PROOFSTEP] induction b using recTopCoe [GOAL] case coe α : Type u_1 β : Type u_2 inst✝¹ : Sub α inst✝ : Zero α b : WithTop α a✝ : α ⊢ ↑a✝ - b = ⊤ ↔ ↑a✝ = ⊤ ∧ b ≠ ⊤ [PROOFSTEP] induction b using recTopCoe [GOAL] case top.top α : Type u_1 β : Type u_2 inst✝¹ : Sub α inst✝ : Zero α ⊢ ⊤ - ⊤ = ⊤ ↔ ⊤ = ⊤ ∧ ⊤ ≠ ⊤ [PROOFSTEP] simp only [← coe_sub, coe_ne_top, sub_top, zero_ne_top, coe_ne_top, top_sub_coe, false_and, Ne.def] [GOAL] case top.coe α : Type u_1 β : Type u_2 inst✝¹ : Sub α inst✝ : Zero α a✝ : α ⊢ ⊤ - ↑a✝ = ⊤ ↔ ⊤ = ⊤ ∧ ↑a✝ ≠ ⊤ [PROOFSTEP] simp only [← coe_sub, coe_ne_top, sub_top, zero_ne_top, coe_ne_top, top_sub_coe, false_and, Ne.def] [GOAL] case coe.top α : Type u_1 β : Type u_2 inst✝¹ : Sub α inst✝ : Zero α a✝ : α ⊢ ↑a✝ - ⊤ = ⊤ ↔ ↑a✝ = ⊤ ∧ ⊤ ≠ ⊤ [PROOFSTEP] simp only [← coe_sub, coe_ne_top, sub_top, zero_ne_top, coe_ne_top, top_sub_coe, false_and, Ne.def] [GOAL] case coe.coe α : Type u_1 β : Type u_2 inst✝¹ : Sub α inst✝ : Zero α a✝¹ a✝ : α ⊢ ↑a✝¹ - ↑a✝ = ⊤ ↔ ↑a✝¹ = ⊤ ∧ ↑a✝ ≠ ⊤ [PROOFSTEP] simp only [← coe_sub, coe_ne_top, sub_top, zero_ne_top, coe_ne_top, top_sub_coe, false_and, Ne.def] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Sub α inst✝² : Zero α inst✝¹ : Sub β inst✝ : Zero β f : α → β h : ∀ (x y : α), f (x - y) = f x - f y h₀ : f 0 = 0 x✝ : WithTop α ⊢ map f (x✝ - ⊤) = map f x✝ - map f ⊤ [PROOFSTEP] simp only [h₀, sub_top, WithTop.map_zero, coe_zero, map_top] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Sub α inst✝² : Zero α inst✝¹ : Sub β inst✝ : Zero β f : α → β h : ∀ (x y : α), f (x - y) = f x - f y h₀ : f 0 = 0 x y : α ⊢ map f (↑x - ↑y) = map f ↑x - map f ↑y [PROOFSTEP] simp only [← coe_sub, map_coe, h] [GOAL] α : Type u_1 β : Type u_2 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α ⊢ OrderedSub (WithTop α) [PROOFSTEP] constructor [GOAL] case tsub_le_iff_right α : Type u_1 β : Type u_2 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α ⊢ ∀ (a b c : WithTop α), a - b ≤ c ↔ a ≤ c + b [PROOFSTEP] rintro x y z [GOAL] case tsub_le_iff_right α : Type u_1 β : Type u_2 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α x y z : WithTop α ⊢ x - y ≤ z ↔ x ≤ z + y [PROOFSTEP] induction y using WithTop.recTopCoe [GOAL] case tsub_le_iff_right.top α : Type u_1 β : Type u_2 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α x z : WithTop α ⊢ x - ⊤ ≤ z ↔ x ≤ z + ⊤ [PROOFSTEP] simp [GOAL] case tsub_le_iff_right.coe α : Type u_1 β : Type u_2 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α x z : WithTop α a✝ : α ⊢ x - ↑a✝ ≤ z ↔ x ≤ z + ↑a✝ [PROOFSTEP] induction x using WithTop.recTopCoe [GOAL] case tsub_le_iff_right.coe.top α : Type u_1 β : Type u_2 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α z : WithTop α a✝ : α ⊢ ⊤ - ↑a✝ ≤ z ↔ ⊤ ≤ z + ↑a✝ [PROOFSTEP] simp [GOAL] case tsub_le_iff_right.coe.coe α : Type u_1 β : Type u_2 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α z : WithTop α a✝¹ a✝ : α ⊢ ↑a✝ - ↑a✝¹ ≤ z ↔ ↑a✝ ≤ z + ↑a✝¹ [PROOFSTEP] induction z using WithTop.recTopCoe [GOAL] case tsub_le_iff_right.coe.coe.top α : Type u_1 β : Type u_2 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a✝¹ a✝ : α ⊢ ↑a✝ - ↑a✝¹ ≤ ⊤ ↔ ↑a✝ ≤ ⊤ + ↑a✝¹ [PROOFSTEP] simp [GOAL] case tsub_le_iff_right.coe.coe.coe α : Type u_1 β : Type u_2 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a✝² a✝¹ a✝ : α ⊢ ↑a✝¹ - ↑a✝² ≤ ↑a✝ ↔ ↑a✝¹ ≤ ↑a✝ + ↑a✝² [PROOFSTEP] norm_cast [GOAL] case tsub_le_iff_right.coe.coe.coe α : Type u_1 β : Type u_2 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a✝² a✝¹ a✝ : α ⊢ a✝¹ - a✝² ≤ a✝ ↔ a✝¹ ≤ a✝ + a✝² [PROOFSTEP] exact tsub_le_iff_right
{"mathlib_filename": "Mathlib.Algebra.Order.Sub.WithTop", "llama_tokens": 2533}
{"mathlib_filename": "Mathlib.Algebra.Order.Positive.Ring", "llama_tokens": 0}
[GOAL] R : Type u_1 S : Type u_2 inst✝¹ : Semiring R inst✝ : OrderedSemiring S abv f g : AbsoluteValue R S h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk R : Type u_1 S : Type u_2 inst✝¹ : Semiring R inst✝ : OrderedSemiring S abv g : AbsoluteValue R S toFun✝ : R → S map_mul'✝ : ∀ (x y : R), toFun✝ (x * y) = toFun✝ x * toFun✝ y nonneg'✝ : ∀ (x : R), 0 ≤ MulHom.toFun { toFun := toFun✝, map_mul' := map_mul'✝ } x eq_zero'✝ : ∀ (x : R), MulHom.toFun { toFun := toFun✝, map_mul' := map_mul'✝ } x = 0 ↔ x = 0 add_le'✝ : ∀ (x y : R), MulHom.toFun { toFun := toFun✝, map_mul' := map_mul'✝ } (x + y) ≤ MulHom.toFun { toFun := toFun✝, map_mul' := map_mul'✝ } x + MulHom.toFun { toFun := toFun✝, map_mul' := map_mul'✝ } y h : (fun f => f.toFun) { toMulHom := { toFun := toFun✝, map_mul' := map_mul'✝ }, nonneg' := nonneg'✝, eq_zero' := eq_zero'✝, add_le' := add_le'✝ } = (fun f => f.toFun) g ⊢ { toMulHom := { toFun := toFun✝, map_mul' := map_mul'✝ }, nonneg' := nonneg'✝, eq_zero' := eq_zero'✝, add_le' := add_le'✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk R : Type u_1 S : Type u_2 inst✝¹ : Semiring R inst✝ : OrderedSemiring S abv : AbsoluteValue R S toFun✝¹ : R → S map_mul'✝¹ : ∀ (x y : R), toFun✝¹ (x * y) = toFun✝¹ x * toFun✝¹ y nonneg'✝¹ : ∀ (x : R), 0 ≤ MulHom.toFun { toFun := toFun✝¹, map_mul' := map_mul'✝¹ } x eq_zero'✝¹ : ∀ (x : R), MulHom.toFun { toFun := toFun✝¹, map_mul' := map_mul'✝¹ } x = 0 ↔ x = 0 add_le'✝¹ : ∀ (x y : R), MulHom.toFun { toFun := toFun✝¹, map_mul' := map_mul'✝¹ } (x + y) ≤ MulHom.toFun { toFun := toFun✝¹, map_mul' := map_mul'✝¹ } x + MulHom.toFun { toFun := toFun✝¹, map_mul' := map_mul'✝¹ } y toFun✝ : R → S map_mul'✝ : ∀ (x y : R), toFun✝ (x * y) = toFun✝ x * toFun✝ y nonneg'✝ : ∀ (x : R), 0 ≤ MulHom.toFun { toFun := toFun✝, map_mul' := map_mul'✝ } x eq_zero'✝ : ∀ (x : R), MulHom.toFun { toFun := toFun✝, map_mul' := map_mul'✝ } x = 0 ↔ x = 0 add_le'✝ : ∀ (x y : R), MulHom.toFun { toFun := toFun✝, map_mul' := map_mul'✝ } (x + y) ≤ MulHom.toFun { toFun := toFun✝, map_mul' := map_mul'✝ } x + MulHom.toFun { toFun := toFun✝, map_mul' := map_mul'✝ } y h : (fun f => f.toFun) { toMulHom := { toFun := toFun✝¹, map_mul' := map_mul'✝¹ }, nonneg' := nonneg'✝¹, eq_zero' := eq_zero'✝¹, add_le' := add_le'✝¹ } = (fun f => f.toFun) { toMulHom := { toFun := toFun✝, map_mul' := map_mul'✝ }, nonneg' := nonneg'✝, eq_zero' := eq_zero'✝, add_le' := add_le'✝ } ⊢ { toMulHom := { toFun := toFun✝¹, map_mul' := map_mul'✝¹ }, nonneg' := nonneg'✝¹, eq_zero' := eq_zero'✝¹, add_le' := add_le'✝¹ } = { toMulHom := { toFun := toFun✝, map_mul' := map_mul'✝ }, nonneg' := nonneg'✝, eq_zero' := eq_zero'✝, add_le' := add_le'✝ } [PROOFSTEP] congr [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : Semiring R inst✝ : OrderedSemiring S abv : AbsoluteValue R S h : IsLeftRegular (↑abv 1) ⊢ (fun x => ↑abv 1 * x) (↑abv 1) = (fun x => ↑abv 1 * x) 1 [PROOFSTEP] simp [← abv.map_mul] [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : Ring R inst✝ : OrderedSemiring S abv : AbsoluteValue R S a b c : R ⊢ ↑abv (a - c) ≤ ↑abv (a - b) + ↑abv (b - c) [PROOFSTEP] simpa [sub_eq_add_neg, add_assoc] using abv.add_le (a - b) (b - c) [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : Ring R inst✝ : OrderedRing S abv : AbsoluteValue R S a b : R ⊢ ↑abv a ≤ ↑abv (a - b) + ↑abv b [PROOFSTEP] simpa using abv.add_le (a - b) b [GOAL] R : Type u_1 S : Type u_2 inst✝² : Ring R inst✝¹ : OrderedCommRing S abv : AbsoluteValue R S inst✝ : NoZeroDivisors S a : R ⊢ ↑abv (-a) = ↑abv a [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos R : Type u_1 S : Type u_2 inst✝² : Ring R inst✝¹ : OrderedCommRing S abv : AbsoluteValue R S inst✝ : NoZeroDivisors S a : R ha : a = 0 ⊢ ↑abv (-a) = ↑abv a [PROOFSTEP] simp [ha] [GOAL] case neg R : Type u_1 S : Type u_2 inst✝² : Ring R inst✝¹ : OrderedCommRing S abv : AbsoluteValue R S inst✝ : NoZeroDivisors S a : R ha : ¬a = 0 ⊢ ↑abv (-a) = ↑abv a [PROOFSTEP] refine' (mul_self_eq_mul_self_iff.mp (by rw [← abv.map_mul, neg_mul_neg, abv.map_mul])).resolve_right _ [GOAL] R : Type u_1 S : Type u_2 inst✝² : Ring R inst✝¹ : OrderedCommRing S abv : AbsoluteValue R S inst✝ : NoZeroDivisors S a : R ha : ¬a = 0 ⊢ ↑abv (-a) * ↑abv (-a) = ↑abv a * ↑abv a [PROOFSTEP] rw [← abv.map_mul, neg_mul_neg, abv.map_mul] [GOAL] case neg R : Type u_1 S : Type u_2 inst✝² : Ring R inst✝¹ : OrderedCommRing S abv : AbsoluteValue R S inst✝ : NoZeroDivisors S a : R ha : ¬a = 0 ⊢ ¬↑abv (-a) = -↑abv a [PROOFSTEP] exact ((neg_lt_zero.mpr (abv.pos ha)).trans (abv.pos (neg_ne_zero.mpr ha))).ne' [GOAL] R : Type u_1 S : Type u_2 inst✝² : Ring R inst✝¹ : OrderedCommRing S abv : AbsoluteValue R S inst✝ : NoZeroDivisors S a b : R ⊢ ↑abv (a - b) = ↑abv (b - a) [PROOFSTEP] rw [← neg_sub, abv.map_neg] [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : Ring R inst✝ : LinearOrderedCommRing S abv : AbsoluteValue R S a b : R ⊢ ↑abv b - ↑abv a ≤ ↑abv (a - b) [PROOFSTEP] rw [abv.map_sub] [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : Ring R inst✝ : LinearOrderedCommRing S abv : AbsoluteValue R S a b : R ⊢ ↑abv b - ↑abv a ≤ ↑abv (b - a) [PROOFSTEP] apply abv.le_sub [GOAL] S : Type u_1 inst✝² : OrderedRing S R : Type u_2 inst✝¹ : Ring R abv : R → S inst✝ : IsAbsoluteValue abv a b c : R ⊢ abv (a - c) ≤ abv (a - b) + abv (b - c) [PROOFSTEP] simpa [sub_eq_add_neg, add_assoc] using abv_add abv (a - b) (b - c)
{"mathlib_filename": "Mathlib.Algebra.Order.AbsoluteValue", "llama_tokens": 2968}
[GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : OrderedSemiring R inst✝² : OrderedAddCommMonoid M inst✝¹ : SMulWithZero R M inst✝ : OrderedSMul R M s : Set M a b : M c : R h₁ : a ≤ b h₂ : 0 ≤ c ⊢ c • a ≤ c • b [PROOFSTEP] rcases h₁.eq_or_lt with (rfl | hab) [GOAL] case inl ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : OrderedSemiring R inst✝² : OrderedAddCommMonoid M inst✝¹ : SMulWithZero R M inst✝ : OrderedSMul R M s : Set M a : M c : R h₂ : 0 ≤ c h₁ : a ≤ a ⊢ c • a ≤ c • a [PROOFSTEP] rfl [GOAL] case inr ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : OrderedSemiring R inst✝² : OrderedAddCommMonoid M inst✝¹ : SMulWithZero R M inst✝ : OrderedSMul R M s : Set M a b : M c : R h₁ : a ≤ b h₂ : 0 ≤ c hab : a < b ⊢ c • a ≤ c • b [PROOFSTEP] rcases h₂.eq_or_lt with (rfl | hc) [GOAL] case inr.inl ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : OrderedSemiring R inst✝² : OrderedAddCommMonoid M inst✝¹ : SMulWithZero R M inst✝ : OrderedSMul R M s : Set M a b : M h₁ : a ≤ b hab : a < b h₂ : 0 ≤ 0 ⊢ 0 • a ≤ 0 • b [PROOFSTEP] rw [zero_smul, zero_smul] [GOAL] case inr.inr ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : OrderedSemiring R inst✝² : OrderedAddCommMonoid M inst✝¹ : SMulWithZero R M inst✝ : OrderedSMul R M s : Set M a b : M c : R h₁ : a ≤ b h₂ : 0 ≤ c hab : a < b hc : 0 < c ⊢ c • a ≤ c • b [PROOFSTEP] exact (smul_lt_smul_of_pos hab hc).le [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : OrderedSemiring R inst✝² : OrderedAddCommMonoid M inst✝¹ : SMulWithZero R M inst✝ : OrderedSMul R M s : Set M a b : M c : R h : c • a < c • b hc✝ : 0 ≤ c hc : 0 = c ⊢ 0 < 0 [PROOFSTEP] rwa [← hc, zero_smul, zero_smul] at h [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : OrderedSemiring R inst✝² : OrderedAddCommMonoid M inst✝¹ : SMulWithZero R M inst✝ : OrderedSMul R M s : Set M a b : M c : R hc : 0 < c ⊢ 0 < c • a ↔ c • 0 < c • a [PROOFSTEP] rw [smul_zero] [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedCancelAddCommMonoid M n : ℕ hn : 0 < n a b : M hab : a < b ⊢ (fun a => n • a) a < (fun a => n • a) b [PROOFSTEP] cases n with | zero => cases hn | succ n => induction n with | zero => dsimp; rwa [one_nsmul, one_nsmul] | succ n ih => simp only [succ_nsmul _ n.succ, _root_.add_lt_add hab (ih n.succ_pos)] [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedCancelAddCommMonoid M n : ℕ hn : 0 < n a b : M hab : a < b ⊢ (fun a => n • a) a < (fun a => n • a) b [PROOFSTEP] cases n with | zero => cases hn | succ n => induction n with | zero => dsimp; rwa [one_nsmul, one_nsmul] | succ n ih => simp only [succ_nsmul _ n.succ, _root_.add_lt_add hab (ih n.succ_pos)] [GOAL] case zero ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedCancelAddCommMonoid M a b : M hab : a < b hn : 0 < zero ⊢ (fun a => zero • a) a < (fun a => zero • a) b [PROOFSTEP] | zero => cases hn [GOAL] case zero ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedCancelAddCommMonoid M a b : M hab : a < b hn : 0 < zero ⊢ (fun a => zero • a) a < (fun a => zero • a) b [PROOFSTEP] cases hn [GOAL] case succ ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedCancelAddCommMonoid M a b : M hab : a < b n : ℕ hn : 0 < succ n ⊢ (fun a => succ n • a) a < (fun a => succ n • a) b [PROOFSTEP] | succ n => induction n with | zero => dsimp; rwa [one_nsmul, one_nsmul] | succ n ih => simp only [succ_nsmul _ n.succ, _root_.add_lt_add hab (ih n.succ_pos)] [GOAL] case succ ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedCancelAddCommMonoid M a b : M hab : a < b n : ℕ hn : 0 < succ n ⊢ (fun a => succ n • a) a < (fun a => succ n • a) b [PROOFSTEP] induction n with | zero => dsimp; rwa [one_nsmul, one_nsmul] | succ n ih => simp only [succ_nsmul _ n.succ, _root_.add_lt_add hab (ih n.succ_pos)] [GOAL] case succ ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedCancelAddCommMonoid M a b : M hab : a < b n : ℕ hn : 0 < succ n ⊢ (fun a => succ n • a) a < (fun a => succ n • a) b [PROOFSTEP] induction n with | zero => dsimp; rwa [one_nsmul, one_nsmul] | succ n ih => simp only [succ_nsmul _ n.succ, _root_.add_lt_add hab (ih n.succ_pos)] [GOAL] case succ.zero ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedCancelAddCommMonoid M a b : M hab : a < b hn : 0 < succ zero ⊢ (fun a => succ zero • a) a < (fun a => succ zero • a) b [PROOFSTEP] | zero => dsimp; rwa [one_nsmul, one_nsmul] [GOAL] case succ.zero ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedCancelAddCommMonoid M a b : M hab : a < b hn : 0 < succ zero ⊢ (fun a => succ zero • a) a < (fun a => succ zero • a) b [PROOFSTEP] dsimp [GOAL] case succ.zero ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedCancelAddCommMonoid M a b : M hab : a < b hn : 0 < succ zero ⊢ succ 0 • a < succ 0 • b [PROOFSTEP] rwa [one_nsmul, one_nsmul] [GOAL] case succ.succ ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedCancelAddCommMonoid M a b : M hab : a < b n : ℕ ih : 0 < succ n → (fun a => succ n • a) a < (fun a => succ n • a) b hn : 0 < succ (succ n) ⊢ (fun a => succ (succ n) • a) a < (fun a => succ (succ n) • a) b [PROOFSTEP] | succ n ih => simp only [succ_nsmul _ n.succ, _root_.add_lt_add hab (ih n.succ_pos)] [GOAL] case succ.succ ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedCancelAddCommMonoid M a b : M hab : a < b n : ℕ ih : 0 < succ n → (fun a => succ n • a) a < (fun a => succ n • a) b hn : 0 < succ (succ n) ⊢ (fun a => succ (succ n) • a) a < (fun a => succ (succ n) • a) b [PROOFSTEP] simp only [succ_nsmul _ n.succ, _root_.add_lt_add hab (ih n.succ_pos)] [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedAddCommGroup M n : ℤ hn : 0 < n ⊢ StrictMono fun a => n • a [PROOFSTEP] cases n [GOAL] case ofNat ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedAddCommGroup M a✝ : ℕ hn : 0 < ofNat a✝ ⊢ StrictMono fun a => ofNat a✝ • a [PROOFSTEP] simp only [Int.ofNat_eq_coe, Int.coe_nat_pos, coe_nat_zsmul] at hn ⊢ [GOAL] case ofNat ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedAddCommGroup M a✝ : ℕ hn : 0 < a✝ ⊢ StrictMono fun a => a✝ • a [PROOFSTEP] exact strictMono_smul_left hn [GOAL] case negSucc ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝ : LinearOrderedAddCommGroup M a✝ : ℕ hn : 0 < -[a✝+1] ⊢ StrictMono fun a => -[a✝+1] • a [PROOFSTEP] cases (Int.negSucc_not_pos _).1 hn [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁴ : LinearOrderedSemifield 𝕜 inst✝³ : OrderedAddCommMonoid M inst✝² : OrderedAddCommMonoid N inst✝¹ : MulActionWithZero 𝕜 M inst✝ : MulActionWithZero 𝕜 N h : ∀ ⦃a b : M⦄ ⦃c : 𝕜⦄, a < b → 0 < c → c • a ≤ c • b ⊢ OrderedSMul 𝕜 M [PROOFSTEP] have hlt' : ∀ (a b : M) (c : 𝕜), a < b → 0 < c → c • a < c • b := by refine' fun a b c hab hc => (h hab hc).lt_of_ne _ rw [Ne.def, hc.ne'.isUnit.smul_left_cancel] exact hab.ne [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁴ : LinearOrderedSemifield 𝕜 inst✝³ : OrderedAddCommMonoid M inst✝² : OrderedAddCommMonoid N inst✝¹ : MulActionWithZero 𝕜 M inst✝ : MulActionWithZero 𝕜 N h : ∀ ⦃a b : M⦄ ⦃c : 𝕜⦄, a < b → 0 < c → c • a ≤ c • b ⊢ ∀ (a b : M) (c : 𝕜), a < b → 0 < c → c • a < c • b [PROOFSTEP] refine' fun a b c hab hc => (h hab hc).lt_of_ne _ [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁴ : LinearOrderedSemifield 𝕜 inst✝³ : OrderedAddCommMonoid M inst✝² : OrderedAddCommMonoid N inst✝¹ : MulActionWithZero 𝕜 M inst✝ : MulActionWithZero 𝕜 N h : ∀ ⦃a b : M⦄ ⦃c : 𝕜⦄, a < b → 0 < c → c • a ≤ c • b a b : M c : 𝕜 hab : a < b hc : 0 < c ⊢ c • a ≠ c • b [PROOFSTEP] rw [Ne.def, hc.ne'.isUnit.smul_left_cancel] [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁴ : LinearOrderedSemifield 𝕜 inst✝³ : OrderedAddCommMonoid M inst✝² : OrderedAddCommMonoid N inst✝¹ : MulActionWithZero 𝕜 M inst✝ : MulActionWithZero 𝕜 N h : ∀ ⦃a b : M⦄ ⦃c : 𝕜⦄, a < b → 0 < c → c • a ≤ c • b a b : M c : 𝕜 hab : a < b hc : 0 < c ⊢ ¬a = b [PROOFSTEP] exact hab.ne [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁴ : LinearOrderedSemifield 𝕜 inst✝³ : OrderedAddCommMonoid M inst✝² : OrderedAddCommMonoid N inst✝¹ : MulActionWithZero 𝕜 M inst✝ : MulActionWithZero 𝕜 N h : ∀ ⦃a b : M⦄ ⦃c : 𝕜⦄, a < b → 0 < c → c • a ≤ c • b hlt' : ∀ (a b : M) (c : 𝕜), a < b → 0 < c → c • a < c • b ⊢ OrderedSMul 𝕜 M [PROOFSTEP] refine' { smul_lt_smul_of_pos := fun {a b c} => hlt' a b c .. } [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁴ : LinearOrderedSemifield 𝕜 inst✝³ : OrderedAddCommMonoid M inst✝² : OrderedAddCommMonoid N inst✝¹ : MulActionWithZero 𝕜 M inst✝ : MulActionWithZero 𝕜 N h : ∀ ⦃a b : M⦄ ⦃c : 𝕜⦄, a < b → 0 < c → c • a ≤ c • b hlt' : ∀ (a b : M) (c : 𝕜), a < b → 0 < c → c • a < c • b ⊢ ∀ {a b : M} {c : 𝕜}, c • a < c • b → 0 < c → a < b [PROOFSTEP] intro a b c hab hc [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁴ : LinearOrderedSemifield 𝕜 inst✝³ : OrderedAddCommMonoid M inst✝² : OrderedAddCommMonoid N inst✝¹ : MulActionWithZero 𝕜 M inst✝ : MulActionWithZero 𝕜 N h : ∀ ⦃a b : M⦄ ⦃c : 𝕜⦄, a < b → 0 < c → c • a ≤ c • b hlt' : ∀ (a b : M) (c : 𝕜), a < b → 0 < c → c • a < c • b a b : M c : 𝕜 hab : c • a < c • b hc : 0 < c ⊢ a < b [PROOFSTEP] obtain ⟨c, rfl⟩ := hc.ne'.isUnit [GOAL] case intro ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁴ : LinearOrderedSemifield 𝕜 inst✝³ : OrderedAddCommMonoid M inst✝² : OrderedAddCommMonoid N inst✝¹ : MulActionWithZero 𝕜 M inst✝ : MulActionWithZero 𝕜 N h : ∀ ⦃a b : M⦄ ⦃c : 𝕜⦄, a < b → 0 < c → c • a ≤ c • b hlt' : ∀ (a b : M) (c : 𝕜), a < b → 0 < c → c • a < c • b a b : M c : 𝕜ˣ hab : ↑c • a < ↑c • b hc : 0 < ↑c ⊢ a < b [PROOFSTEP] rw [← inv_smul_smul c a, ← inv_smul_smul c b] [GOAL] case intro ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁴ : LinearOrderedSemifield 𝕜 inst✝³ : OrderedAddCommMonoid M inst✝² : OrderedAddCommMonoid N inst✝¹ : MulActionWithZero 𝕜 M inst✝ : MulActionWithZero 𝕜 N h : ∀ ⦃a b : M⦄ ⦃c : 𝕜⦄, a < b → 0 < c → c • a ≤ c • b hlt' : ∀ (a b : M) (c : 𝕜), a < b → 0 < c → c • a < c • b a b : M c : 𝕜ˣ hab : ↑c • a < ↑c • b hc : 0 < ↑c ⊢ c⁻¹ • c • a < c⁻¹ • c • b [PROOFSTEP] refine' hlt' _ _ _ hab (pos_of_mul_pos_right _ hc.le) [GOAL] case intro ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁴ : LinearOrderedSemifield 𝕜 inst✝³ : OrderedAddCommMonoid M inst✝² : OrderedAddCommMonoid N inst✝¹ : MulActionWithZero 𝕜 M inst✝ : MulActionWithZero 𝕜 N h : ∀ ⦃a b : M⦄ ⦃c : 𝕜⦄, a < b → 0 < c → c • a ≤ c • b hlt' : ∀ (a b : M) (c : 𝕜), a < b → 0 < c → c • a < c • b a b : M c : 𝕜ˣ hab : ↑c • a < ↑c • b hc : 0 < ↑c ⊢ 0 < ↑c * ↑c⁻¹ [PROOFSTEP] simp only [c.mul_inv, zero_lt_one] [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁵ : LinearOrderedSemifield 𝕜 inst✝⁴ : OrderedAddCommMonoid M inst✝³ : OrderedAddCommMonoid N inst✝² : MulActionWithZero 𝕜 M inst✝¹ : MulActionWithZero 𝕜 N inst✝ : OrderedSMul 𝕜 M s : Set M a b : M c : 𝕜 h : 0 < c ⊢ c⁻¹ • a ≤ b ↔ a ≤ c • b [PROOFSTEP] rw [← smul_le_smul_iff_of_pos h, smul_inv_smul₀ h.ne'] [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁵ : LinearOrderedSemifield 𝕜 inst✝⁴ : OrderedAddCommMonoid M inst✝³ : OrderedAddCommMonoid N inst✝² : MulActionWithZero 𝕜 M inst✝¹ : MulActionWithZero 𝕜 N inst✝ : OrderedSMul 𝕜 M s : Set M a b : M c : 𝕜 h : 0 < c ⊢ c⁻¹ • a < b ↔ a < c • b [PROOFSTEP] rw [← smul_lt_smul_iff_of_pos h, smul_inv_smul₀ h.ne'] [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁵ : LinearOrderedSemifield 𝕜 inst✝⁴ : OrderedAddCommMonoid M inst✝³ : OrderedAddCommMonoid N inst✝² : MulActionWithZero 𝕜 M inst✝¹ : MulActionWithZero 𝕜 N inst✝ : OrderedSMul 𝕜 M s : Set M a b : M c : 𝕜 h : 0 < c ⊢ a ≤ c⁻¹ • b ↔ c • a ≤ b [PROOFSTEP] rw [← smul_le_smul_iff_of_pos h, smul_inv_smul₀ h.ne'] [GOAL] ι : Type u_1 𝕜 : Type u_2 R : Type u_3 M : Type u_4 N : Type u_5 inst✝⁵ : LinearOrderedSemifield 𝕜 inst✝⁴ : OrderedAddCommMonoid M inst✝³ : OrderedAddCommMonoid N inst✝² : MulActionWithZero 𝕜 M inst✝¹ : MulActionWithZero 𝕜 N inst✝ : OrderedSMul 𝕜 M s : Set M a b : M c : 𝕜 h : 0 < c ⊢ a < c⁻¹ • b ↔ c • a < b [PROOFSTEP] rw [← smul_lt_smul_iff_of_pos h, smul_inv_smul₀ h.ne']
{"mathlib_filename": "Mathlib.Algebra.Order.SMul", "llama_tokens": 6751}
[GOAL] α : Type u β : Type v inst✝¹ : Lattice α inst✝ : Group α ⊢ 1⁻ = 1 [PROOFSTEP] rw [m_neg_part_def, inv_one, sup_idem] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ a⁻ = (a ⊓ 1)⁻¹ [PROOFSTEP] rw [m_neg_part_def, ← inv_inj, inv_sup_eq_inv_inf_inv, inv_inv, inv_inv, inv_one] [GOAL] α : Type u β : Type v inst✝¹ : Lattice α inst✝ : Group α a : α ⊢ a⁻¹ ⊔ a⁻¹⁻¹ = a ⊔ a⁻¹ [PROOFSTEP] rw [inv_inv, sup_comm] -- 0 ≤ a⁺ [GOAL] α : Type u β : Type v inst✝¹ : Lattice α inst✝ : Group α a : α ⊢ a⁺ ≤ 1 ↔ a ≤ 1 [PROOFSTEP] rw [m_pos_part_def, sup_le_iff, and_iff_left le_rfl] [GOAL] α : Type u β : Type v inst✝¹ : Lattice α inst✝ : Group α a : α ⊢ a⁻ ≤ 1 ↔ a⁻¹ ≤ 1 [PROOFSTEP] rw [m_neg_part_def, sup_le_iff, and_iff_left le_rfl] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : Group α inst✝ : CovariantClass α α Mul.mul LE.le a : α ⊢ a⁻ = 1 ↔ 1 ≤ a [PROOFSTEP] rw [le_antisymm_iff, neg_le_one_iff, inv_le_one', and_iff_left (one_le_neg _)] [GOAL] α : Type u β : Type v inst✝¹ : Lattice α inst✝ : Group α a : α ⊢ a⁺ = a⁻¹⁻ [PROOFSTEP] rw [neg_eq_pos_inv, inv_inv] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : Group α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ c * (a ⊓ b) = c * a ⊓ c * b [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 α : Type u β : Type v inst✝² : Lattice α inst✝¹ : Group α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ c * (a ⊓ b) ≤ c * a ⊓ c * b case refine'_2 α : Type u β : Type v inst✝² : Lattice α inst✝¹ : Group α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ c * a ⊓ c * b ≤ c * (a ⊓ b) [PROOFSTEP] rw [le_inf_iff, mul_le_mul_iff_left, mul_le_mul_iff_left] [GOAL] case refine'_1 α : Type u β : Type v inst✝² : Lattice α inst✝¹ : Group α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ a ⊓ b ≤ a ∧ a ⊓ b ≤ b case refine'_2 α : Type u β : Type v inst✝² : Lattice α inst✝¹ : Group α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ c * a ⊓ c * b ≤ c * (a ⊓ b) [PROOFSTEP] simp [GOAL] case refine'_2 α : Type u β : Type v inst✝² : Lattice α inst✝¹ : Group α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ c * a ⊓ c * b ≤ c * (a ⊓ b) [PROOFSTEP] rw [← mul_le_mul_iff_left c⁻¹, ← mul_assoc, inv_mul_self, one_mul, le_inf_iff, inv_mul_le_iff_le_mul, inv_mul_le_iff_le_mul] [GOAL] case refine'_2 α : Type u β : Type v inst✝² : Lattice α inst✝¹ : Group α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ c * a ⊓ c * b ≤ c * a ∧ c * a ⊓ c * b ≤ c * b [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : Group α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ a⁺ / a⁻ = a [PROOFSTEP] symm [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : Group α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ a = a⁺ / a⁻ [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : Group α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ a = a⁺ * a⁻⁻¹ [PROOFSTEP] apply eq_mul_inv_of_mul_eq [GOAL] case h α : Type u β : Type v inst✝² : Lattice α inst✝¹ : Group α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ a * a⁻ = a⁺ [PROOFSTEP] rw [m_neg_part_def, mul_sup, mul_one, mul_right_inv, sup_comm, m_pos_part_def] [GOAL] α : Type u β : Type v inst✝¹ : Lattice α inst✝ : Group α a : α h : 1 ≤ a ⊢ a⁺ = a [PROOFSTEP] rw [m_pos_part_def] [GOAL] α : Type u β : Type v inst✝¹ : Lattice α inst✝ : Group α a : α h : 1 ≤ a ⊢ a ⊔ 1 = a [PROOFSTEP] exact sup_of_le_left h [GOAL] α : Type u β : Type v inst✝¹ : Lattice α inst✝ : Group α a : α h : 1 ≤ a⁻¹ ⊢ a⁻ = a⁻¹ [PROOFSTEP] rw [neg_eq_pos_inv] [GOAL] α : Type u β : Type v inst✝¹ : Lattice α inst✝ : Group α a : α h : 1 ≤ a⁻¹ ⊢ a⁻¹⁺ = a⁻¹ [PROOFSTEP] exact pos_of_one_le _ h [GOAL] α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : Group α✝ α : Type u_1 inst✝¹ : LinearOrder α inst✝ : CommGroup α x : α hx : 1 < x⁺ ⊢ x⁺ = x [PROOFSTEP] rw [m_pos_part_def, right_lt_sup, not_le] at hx [GOAL] α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : Group α✝ α : Type u_1 inst✝¹ : LinearOrder α inst✝ : CommGroup α x : α hx : 1 < x ⊢ x⁺ = x [PROOFSTEP] rw [m_pos_part_def, sup_eq_left] [GOAL] α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : Group α✝ α : Type u_1 inst✝¹ : LinearOrder α inst✝ : CommGroup α x : α hx : 1 < x ⊢ 1 ≤ x [PROOFSTEP] exact hx.le [GOAL] α : Type u β : Type v inst✝¹ : Lattice α inst✝ : Group α a b : α ⊢ |a / b| = |b / a| [PROOFSTEP] dsimp only [Abs.abs] [GOAL] α : Type u β : Type v inst✝¹ : Lattice α inst✝ : Group α a b : α ⊢ a / b ⊔ (a / b)⁻¹ = b / a ⊔ (b / a)⁻¹ [PROOFSTEP] rw [inv_div a b, ← inv_inv (a / b), inv_div, sup_comm] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ 1 ≤ a ^ 2 → 1 ≤ a [PROOFSTEP] intro h [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α h : 1 ≤ a ^ 2 ⊢ 1 ≤ a [PROOFSTEP] have e1 : (a ⊓ 1) * (a ⊓ 1) = a ⊓ 1 := by rw [mul_inf, inf_mul, ← pow_two, mul_one, one_mul, inf_assoc, inf_left_idem, inf_comm, inf_assoc, (inf_of_le_left h)] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α h : 1 ≤ a ^ 2 ⊢ (a ⊓ 1) * (a ⊓ 1) = a ⊓ 1 [PROOFSTEP] rw [mul_inf, inf_mul, ← pow_two, mul_one, one_mul, inf_assoc, inf_left_idem, inf_comm, inf_assoc, (inf_of_le_left h)] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α h : 1 ≤ a ^ 2 e1 : (a ⊓ 1) * (a ⊓ 1) = a ⊓ 1 ⊢ 1 ≤ a [PROOFSTEP] rw [← inf_eq_right] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α h : 1 ≤ a ^ 2 e1 : (a ⊓ 1) * (a ⊓ 1) = a ⊓ 1 ⊢ a ⊓ 1 = 1 [PROOFSTEP] exact mul_right_eq_self.mp e1 [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ 1 ≤ |a| [PROOFSTEP] apply pow_two_semiclosed _ _ [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ 1 ≤ |a| ^ 2 [PROOFSTEP] rw [abs_eq_sup_inv, pow_two, mul_sup, sup_mul, ← pow_two, mul_left_inv, sup_comm, ← sup_assoc] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ 1 ≤ (a ⊔ a⁻¹) * a⁻¹ ⊔ a ^ 2 ⊔ 1 [PROOFSTEP] apply le_sup_right [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ |a| = a⁺ * a⁻ [PROOFSTEP] rw [m_pos_part_def, sup_mul, one_mul, m_neg_part_def, mul_sup, mul_one, mul_inv_self, sup_assoc, ← @sup_assoc _ _ a, sup_eq_right.2 le_sup_right] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ |a| = a ⊔ a⁻¹ ⊔ 1 [PROOFSTEP] exact (sup_eq_left.2 <| one_le_abs a).symm [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ |a|⁺ = |a| [PROOFSTEP] rw [m_pos_part_def] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ |a| ⊔ 1 = |a| [PROOFSTEP] apply sup_of_le_left [GOAL] case a α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ 1 ≤ |a| [PROOFSTEP] apply one_le_abs [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ |a|⁻ = 1 [PROOFSTEP] rw [m_neg_part_def] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ |a|⁻¹ ⊔ 1 = 1 [PROOFSTEP] apply sup_of_le_right [GOAL] case a α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ |a|⁻¹ ≤ 1 [PROOFSTEP] rw [Left.inv_le_one_iff] [GOAL] case a α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ 1 ≤ |a| [PROOFSTEP] apply one_le_abs [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ (a ⊔ b) / (a ⊓ b) = (a ⊔ b) * (a⁻¹ ⊔ b⁻¹) [PROOFSTEP] rw [div_eq_mul_inv, ← inv_inf_eq_sup_inv] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ (a ⊔ b) * (a⁻¹ ⊔ b⁻¹) = a * a⁻¹ ⊔ b * a⁻¹ ⊔ (a * b⁻¹ ⊔ b * b⁻¹) [PROOFSTEP] rw [mul_sup, sup_mul, sup_mul] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a * a⁻¹ ⊔ b * a⁻¹ ⊔ (a * b⁻¹ ⊔ b * b⁻¹) = 1 ⊔ b / a ⊔ (a / b ⊔ 1) [PROOFSTEP] rw [mul_right_inv, mul_right_inv, ← div_eq_mul_inv, ← div_eq_mul_inv] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ 1 ⊔ b / a ⊔ (a / b ⊔ 1) = 1 ⊔ b / a ⊔ (1 / (b / a) ⊔ 1) [PROOFSTEP] rw [one_div_div] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ 1 ⊔ b / a ⊔ (1 / (b / a) ⊔ 1) = 1 ⊔ b / a ⊔ ((b / a)⁻¹ ⊔ 1) [PROOFSTEP] rw [inv_eq_one_div] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ 1 ⊔ b / a ⊔ ((b / a)⁻¹ ⊔ 1) = 1 ⊔ (b / a ⊔ (b / a)⁻¹ ⊔ 1) [PROOFSTEP] rw [sup_assoc, sup_assoc] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ 1 ⊔ (b / a ⊔ (b / a)⁻¹ ⊔ 1) = 1 ⊔ (|b / a| ⊔ 1) [PROOFSTEP] rw [abs_eq_sup_inv] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ 1 ⊔ (|b / a| ⊔ 1) = 1 ⊔ |b / a| [PROOFSTEP] rw [← m_pos_part_def, m_pos_abs] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ 1 ⊔ |b / a| = |b / a| ⊔ 1 [PROOFSTEP] rw [sup_comm] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ |b / a| ⊔ 1 = |b / a| [PROOFSTEP] rw [← m_pos_part_def, m_pos_abs] [GOAL] α : Type u β : Type v inst✝³ : Lattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ a⁺ ⊓ a⁻ = 1 [PROOFSTEP] rw [← mul_left_inj (a⁻)⁻¹, inf_mul, one_mul, mul_right_inv, ← div_eq_mul_inv, pos_div_neg, neg_eq_inv_inf_one, inv_inv] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ (a ⊓ b) * (a ⊔ b) = (a ⊓ b) * (a * b * (b⁻¹ ⊔ a⁻¹)) [PROOFSTEP] rw [mul_sup b⁻¹ a⁻¹ (a * b), mul_inv_cancel_right, mul_inv_cancel_comm] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ (a ⊓ b) * (a * b * (b⁻¹ ⊔ a⁻¹)) = (a ⊓ b) * (a * b * (a ⊓ b)⁻¹) [PROOFSTEP] rw [inv_inf_eq_sup_inv, sup_comm] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ (a ⊓ b) * (a * b * (a ⊓ b)⁻¹) = a * b [PROOFSTEP] rw [mul_comm, inv_mul_cancel_right] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a ⊔ b = b * (a / b) ⊔ b * 1 [PROOFSTEP] rw [mul_one b, div_eq_mul_inv, mul_comm a, mul_inv_cancel_left] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ b * (a / b) ⊔ b * 1 = b * (a / b ⊔ 1) [PROOFSTEP] rw [← mul_sup (a / b) 1 b] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a ⊓ b = a * 1 ⊓ a * (b / a) [PROOFSTEP] rw [mul_one a, div_eq_mul_inv, mul_comm b, mul_inv_cancel_left] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a * 1 ⊓ a * (b / a) = a * (1 ⊓ b / a) [PROOFSTEP] rw [← mul_inf 1 (b / a) a] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a * (1 ⊓ b / a) = a * (b / a ⊓ 1) [PROOFSTEP] rw [inf_comm] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a * (b / a ⊓ 1) = a * ((a / b)⁻¹ ⊓ 1) [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a * (b * a⁻¹ ⊓ 1) = a * ((a / b)⁻¹ ⊓ 1) [PROOFSTEP] nth_rw 1 [← inv_inv b] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a * (b⁻¹⁻¹ * a⁻¹ ⊓ 1) = a * ((a / b)⁻¹ ⊓ 1) [PROOFSTEP] rw [← mul_inv, mul_comm b⁻¹, ← div_eq_mul_inv] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a * ((a / b)⁻¹ ⊓ 1) = a * ((a / b)⁻¹ ⊓ 1⁻¹) [PROOFSTEP] rw [inv_one] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a * ((a / b)⁻¹ ⊓ 1⁻¹) = a / (a / b ⊔ 1) [PROOFSTEP] rw [← inv_sup_eq_inv_inf_inv, ← div_eq_mul_inv] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a ≤ b ↔ a⁺ ≤ b⁺ ∧ b⁻ ≤ a⁻ [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a ≤ b → a⁺ ≤ b⁺ ∧ b⁻ ≤ a⁻ [PROOFSTEP] intro h [GOAL] case mpr α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a⁺ ≤ b⁺ ∧ b⁻ ≤ a⁻ → a ≤ b [PROOFSTEP] intro h [GOAL] case mp α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α h : a ≤ b ⊢ a⁺ ≤ b⁺ ∧ b⁻ ≤ a⁻ [PROOFSTEP] constructor [GOAL] case mp.left α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α h : a ≤ b ⊢ a⁺ ≤ b⁺ [PROOFSTEP] exact sup_le (h.trans (m_le_pos b)) (one_le_pos b) [GOAL] case mp.right α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α h : a ≤ b ⊢ b⁻ ≤ a⁻ [PROOFSTEP] rw [← inv_le_inv_iff] at h [GOAL] case mp.right α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α h✝ : a ≤ b h : b⁻¹ ≤ a⁻¹ ⊢ b⁻ ≤ a⁻ [PROOFSTEP] exact sup_le (h.trans (inv_le_neg a)) (one_le_neg a) [GOAL] case mpr α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α h : a⁺ ≤ b⁺ ∧ b⁻ ≤ a⁻ ⊢ a ≤ b [PROOFSTEP] rw [← pos_div_neg a, ← pos_div_neg b] [GOAL] case mpr α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α h : a⁺ ≤ b⁺ ∧ b⁻ ≤ a⁻ ⊢ a⁺ / a⁻ ≤ b⁺ / b⁻ [PROOFSTEP] exact div_le_div'' h.1 h.2 [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ (a ⊔ b) ^ 2 = a * b * |b / a| [PROOFSTEP] rw [← inf_mul_sup a b, ← sup_div_inf_eq_abs_div, div_eq_mul_inv, ← mul_assoc, mul_comm, mul_assoc, ← pow_two, inv_mul_cancel_left] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ (a ⊓ b) ^ 2 = a * b / |b / a| [PROOFSTEP] rw [← inf_mul_sup a b, ← sup_div_inf_eq_abs_div, div_eq_mul_inv, div_eq_mul_inv, mul_inv_rev, inv_inv, mul_assoc, mul_inv_cancel_comm_assoc, ← pow_two] [GOAL] α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : CommGroup α✝ α : Type u s : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 ⊢ ∀ (x y z : α), (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z [PROOFSTEP] intros x y z [GOAL] α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : CommGroup α✝ α : Type u s : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 x y z : α ⊢ (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z [PROOFSTEP] rw [← mul_le_mul_iff_left (x ⊓ (y ⊓ z)), inf_mul_sup x (y ⊓ z), ← inv_mul_le_iff_le_mul, le_inf_iff] [GOAL] α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : CommGroup α✝ α : Type u s : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 x y z : α ⊢ x⁻¹ * ((x ⊓ (y ⊓ z)) * ((x ⊔ y) ⊓ (x ⊔ z))) ≤ y ∧ x⁻¹ * ((x ⊓ (y ⊓ z)) * ((x ⊔ y) ⊓ (x ⊔ z))) ≤ z [PROOFSTEP] constructor [GOAL] case left α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : CommGroup α✝ α : Type u s : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 x y z : α ⊢ x⁻¹ * ((x ⊓ (y ⊓ z)) * ((x ⊔ y) ⊓ (x ⊔ z))) ≤ y [PROOFSTEP] rw [inv_mul_le_iff_le_mul, ← inf_mul_sup x y] [GOAL] case left α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : CommGroup α✝ α : Type u s : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 x y z : α ⊢ (x ⊓ (y ⊓ z)) * ((x ⊔ y) ⊓ (x ⊔ z)) ≤ (x ⊓ y) * (x ⊔ y) [PROOFSTEP] apply mul_le_mul' [GOAL] case left.h₁ α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : CommGroup α✝ α : Type u s : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 x y z : α ⊢ x ⊓ (y ⊓ z) ≤ x ⊓ y [PROOFSTEP] apply inf_le_inf_left [GOAL] case left.h₁.h α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : CommGroup α✝ α : Type u s : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 x y z : α ⊢ y ⊓ z ≤ y [PROOFSTEP] apply inf_le_left [GOAL] case left.h₂ α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : CommGroup α✝ α : Type u s : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 x y z : α ⊢ (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y [PROOFSTEP] apply inf_le_left [GOAL] case right α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : CommGroup α✝ α : Type u s : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 x y z : α ⊢ x⁻¹ * ((x ⊓ (y ⊓ z)) * ((x ⊔ y) ⊓ (x ⊔ z))) ≤ z [PROOFSTEP] rw [inv_mul_le_iff_le_mul, ← inf_mul_sup x z] [GOAL] case right α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : CommGroup α✝ α : Type u s : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 x y z : α ⊢ (x ⊓ (y ⊓ z)) * ((x ⊔ y) ⊓ (x ⊔ z)) ≤ (x ⊓ z) * (x ⊔ z) [PROOFSTEP] apply mul_le_mul' [GOAL] case right.h₁ α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : CommGroup α✝ α : Type u s : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 x y z : α ⊢ x ⊓ (y ⊓ z) ≤ x ⊓ z [PROOFSTEP] apply inf_le_inf_left [GOAL] case right.h₁.h α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : CommGroup α✝ α : Type u s : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 x y z : α ⊢ y ⊓ z ≤ z [PROOFSTEP] apply inf_le_right [GOAL] case right.h₂ α✝ : Type u β : Type v inst✝³ : Lattice α✝ inst✝² : CommGroup α✝ α : Type u s : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 x y z : α ⊢ (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ z [PROOFSTEP] apply inf_le_right [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ |(a ⊔ c) / (b ⊔ c)| * |(a ⊓ c) / (b ⊓ c)| = |a / b| [PROOFSTEP] letI : DistribLattice α := LatticeOrderedCommGroup.latticeOrderedCommGroupToDistribLattice α [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α this : DistribLattice α := latticeOrderedCommGroupToDistribLattice α ⊢ |(a ⊔ c) / (b ⊔ c)| * |(a ⊓ c) / (b ⊓ c)| = |a / b| [PROOFSTEP] calc |(a ⊔ c) / (b ⊔ c)| * |(a ⊓ c) / (b ⊓ c)| = (b ⊔ c ⊔ (a ⊔ c)) / ((b ⊔ c) ⊓ (a ⊔ c)) * |(a ⊓ c) / (b ⊓ c)| := by rw [sup_div_inf_eq_abs_div] _ = (b ⊔ c ⊔ (a ⊔ c)) / ((b ⊔ c) ⊓ (a ⊔ c)) * ((b ⊓ c ⊔ a ⊓ c) / (b ⊓ c ⊓ (a ⊓ c))) := by rw [sup_div_inf_eq_abs_div (b ⊓ c) (a ⊓ c)] _ = (b ⊔ a ⊔ c) / (b ⊓ a ⊔ c) * (((b ⊔ a) ⊓ c) / (b ⊓ a ⊓ c)) := by rw [← sup_inf_right, ← inf_sup_right, sup_assoc, @sup_comm _ _ c (a ⊔ c), sup_right_idem, sup_assoc, inf_assoc, @inf_comm _ _ c (a ⊓ c), inf_right_idem, inf_assoc] _ = (b ⊔ a ⊔ c) * ((b ⊔ a) ⊓ c) / ((b ⊓ a ⊔ c) * (b ⊓ a ⊓ c)) := by rw [div_mul_div_comm] _ = (b ⊔ a) * c / ((b ⊓ a) * c) := by rw [mul_comm, inf_mul_sup, mul_comm (b ⊓ a ⊔ c), inf_mul_sup] _ = (b ⊔ a) / (b ⊓ a) := by rw [div_eq_mul_inv, mul_inv_rev, mul_assoc, mul_inv_cancel_left, ← div_eq_mul_inv] _ = |a / b| := by rw [sup_div_inf_eq_abs_div] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α this : DistribLattice α := latticeOrderedCommGroupToDistribLattice α ⊢ |(a ⊔ c) / (b ⊔ c)| * |(a ⊓ c) / (b ⊓ c)| = (b ⊔ c ⊔ (a ⊔ c)) / ((b ⊔ c) ⊓ (a ⊔ c)) * |(a ⊓ c) / (b ⊓ c)| [PROOFSTEP] rw [sup_div_inf_eq_abs_div] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α this : DistribLattice α := latticeOrderedCommGroupToDistribLattice α ⊢ (b ⊔ c ⊔ (a ⊔ c)) / ((b ⊔ c) ⊓ (a ⊔ c)) * |(a ⊓ c) / (b ⊓ c)| = (b ⊔ c ⊔ (a ⊔ c)) / ((b ⊔ c) ⊓ (a ⊔ c)) * ((b ⊓ c ⊔ a ⊓ c) / (b ⊓ c ⊓ (a ⊓ c))) [PROOFSTEP] rw [sup_div_inf_eq_abs_div (b ⊓ c) (a ⊓ c)] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α this : DistribLattice α := latticeOrderedCommGroupToDistribLattice α ⊢ (b ⊔ c ⊔ (a ⊔ c)) / ((b ⊔ c) ⊓ (a ⊔ c)) * ((b ⊓ c ⊔ a ⊓ c) / (b ⊓ c ⊓ (a ⊓ c))) = (b ⊔ a ⊔ c) / (b ⊓ a ⊔ c) * (((b ⊔ a) ⊓ c) / (b ⊓ a ⊓ c)) [PROOFSTEP] rw [← sup_inf_right, ← inf_sup_right, sup_assoc, @sup_comm _ _ c (a ⊔ c), sup_right_idem, sup_assoc, inf_assoc, @inf_comm _ _ c (a ⊓ c), inf_right_idem, inf_assoc] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α this : DistribLattice α := latticeOrderedCommGroupToDistribLattice α ⊢ (b ⊔ a ⊔ c) / (b ⊓ a ⊔ c) * (((b ⊔ a) ⊓ c) / (b ⊓ a ⊓ c)) = (b ⊔ a ⊔ c) * ((b ⊔ a) ⊓ c) / ((b ⊓ a ⊔ c) * (b ⊓ a ⊓ c)) [PROOFSTEP] rw [div_mul_div_comm] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α this : DistribLattice α := latticeOrderedCommGroupToDistribLattice α ⊢ (b ⊔ a ⊔ c) * ((b ⊔ a) ⊓ c) / ((b ⊓ a ⊔ c) * (b ⊓ a ⊓ c)) = (b ⊔ a) * c / ((b ⊓ a) * c) [PROOFSTEP] rw [mul_comm, inf_mul_sup, mul_comm (b ⊓ a ⊔ c), inf_mul_sup] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α this : DistribLattice α := latticeOrderedCommGroupToDistribLattice α ⊢ (b ⊔ a) * c / ((b ⊓ a) * c) = (b ⊔ a) / (b ⊓ a) [PROOFSTEP] rw [div_eq_mul_inv, mul_inv_rev, mul_assoc, mul_inv_cancel_left, ← div_eq_mul_inv] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α this : DistribLattice α := latticeOrderedCommGroupToDistribLattice α ⊢ (b ⊔ a) / (b ⊓ a) = |a / b| [PROOFSTEP] rw [sup_div_inf_eq_abs_div] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ |(a ⊔ c) / (b ⊔ c)| ≤ |a / b| [PROOFSTEP] apply le_of_mul_le_of_one_le_left [GOAL] case h α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ |(a ⊔ c) / (b ⊔ c)| * ?b ≤ |a / b| [PROOFSTEP] rw [abs_div_sup_mul_abs_div_inf] [GOAL] case hle α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ 1 ≤ |(a ⊓ c) / (b ⊓ c)| [PROOFSTEP] exact one_le_abs _ [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ |(a ⊓ c) / (b ⊓ c)| ≤ |a / b| [PROOFSTEP] apply le_of_mul_le_of_one_le_right [GOAL] case h α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ ?a * |(a ⊓ c) / (b ⊓ c)| ≤ |a / b| [PROOFSTEP] rw [abs_div_sup_mul_abs_div_inf] [GOAL] case hle α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ 1 ≤ |(a ⊔ c) / (b ⊔ c)| [PROOFSTEP] exact one_le_abs _ [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ |a * b| ≤ |a| * |b| [PROOFSTEP] apply sup_le [GOAL] case a α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a * b ≤ |a| * |b| [PROOFSTEP] exact mul_le_mul' (le_mabs a) (le_mabs b) [GOAL] case a α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ (a * b)⁻¹ ≤ |a| * |b| [PROOFSTEP] rw [mul_inv] [GOAL] case a α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a⁻¹ * b⁻¹ ≤ |a| * |b| [PROOFSTEP] exact mul_le_mul' (inv_le_abs _) (inv_le_abs _) [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ ||a| / |b|| ≤ |a / b| [PROOFSTEP] rw [abs_eq_sup_inv, sup_le_iff] [GOAL] α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ |a| / |b| ≤ |a / b| ∧ (|a| / |b|)⁻¹ ≤ |a / b| [PROOFSTEP] constructor [GOAL] case left α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ |a| / |b| ≤ |a / b| [PROOFSTEP] apply div_le_iff_le_mul.2 [GOAL] case left α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ |a| ≤ |a / b| * |b| [PROOFSTEP] convert mabs_mul_le (a / b) b [GOAL] case h.e'_3.h.e'_3 α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a = a / b * b [PROOFSTEP] rw [div_mul_cancel'] [GOAL] case right α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ (|a| / |b|)⁻¹ ≤ |a / b| [PROOFSTEP] rw [div_eq_mul_inv, mul_inv_rev, inv_inv, mul_inv_le_iff_le_mul, abs_div_comm] [GOAL] case right α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ |b| ≤ |b / a| * |a| [PROOFSTEP] convert mabs_mul_le (b / a) a [GOAL] case h.e'_3.h.e'_3 α : Type u β : Type v inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ b = b / a * a [PROOFSTEP] rw [div_mul_cancel'] [GOAL] α : Type u β : Type v inst✝⁷ : Lattice α inst✝⁶ : CommGroup α inst✝⁵ : Semiring α inst✝⁴ : Invertible 2 inst✝³ : Lattice β inst✝² : AddCommGroup β inst✝¹ : Module α β inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 x y : β ⊢ x ⊓ y = ⅟2 • (x + y - |y - x|) [PROOFSTEP] rw [← LatticeOrderedCommGroup.two_inf_eq_add_sub_abs_sub x y, two_smul, ← two_smul α, smul_smul, invOf_mul_self, one_smul] [GOAL] α : Type u β : Type v inst✝⁷ : Lattice α inst✝⁶ : CommGroup α inst✝⁵ : Semiring α inst✝⁴ : Invertible 2 inst✝³ : Lattice β inst✝² : AddCommGroup β inst✝¹ : Module α β inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 x y : β ⊢ x ⊔ y = ⅟2 • (x + y + |y - x|) [PROOFSTEP] rw [← LatticeOrderedCommGroup.two_sup_eq_add_add_abs_sub x y, two_smul, ← two_smul α, smul_smul, invOf_mul_self, one_smul] [GOAL] α : Type u β : Type v inst✝⁷ : Lattice α inst✝⁶ : CommGroup α inst✝⁵ : DivisionSemiring α inst✝⁴ : NeZero 2 inst✝³ : Lattice β inst✝² : AddCommGroup β inst✝¹ : Module α β inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 x y : β ⊢ x ⊓ y = 2⁻¹ • (x + y - |y - x|) [PROOFSTEP] letI := invertibleOfNonzero (two_ne_zero' α) [GOAL] α : Type u β : Type v inst✝⁷ : Lattice α inst✝⁶ : CommGroup α inst✝⁵ : DivisionSemiring α inst✝⁴ : NeZero 2 inst✝³ : Lattice β inst✝² : AddCommGroup β inst✝¹ : Module α β inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 x y : β this : Invertible 2 := invertibleOfNonzero (_ : 2 ≠ 0) ⊢ x ⊓ y = 2⁻¹ • (x + y - |y - x|) [PROOFSTEP] exact inf_eq_half_smul_add_sub_abs_sub α x y [GOAL] α : Type u β : Type v inst✝⁷ : Lattice α inst✝⁶ : CommGroup α inst✝⁵ : DivisionSemiring α inst✝⁴ : NeZero 2 inst✝³ : Lattice β inst✝² : AddCommGroup β inst✝¹ : Module α β inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 x y : β ⊢ x ⊔ y = 2⁻¹ • (x + y + |y - x|) [PROOFSTEP] letI := invertibleOfNonzero (two_ne_zero' α) [GOAL] α : Type u β : Type v inst✝⁷ : Lattice α inst✝⁶ : CommGroup α inst✝⁵ : DivisionSemiring α inst✝⁴ : NeZero 2 inst✝³ : Lattice β inst✝² : AddCommGroup β inst✝¹ : Module α β inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 x y : β this : Invertible 2 := invertibleOfNonzero (_ : 2 ≠ 0) ⊢ x ⊔ y = 2⁻¹ • (x + y + |y - x|) [PROOFSTEP] exact sup_eq_half_smul_add_add_abs_sub α x y
{"mathlib_filename": "Mathlib.Algebra.Order.LatticeGroup", "llama_tokens": 19134}
[GOAL] α : Type u_1 inst✝³ : CompleteLattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 s✝ t s : Set α ⊢ sSup s⁻¹ = (sInf s)⁻¹ [PROOFSTEP] rw [← image_inv, sSup_image] [GOAL] α : Type u_1 inst✝³ : CompleteLattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 s✝ t s : Set α ⊢ ⨆ (a : α) (_ : a ∈ s), a⁻¹ = (sInf s)⁻¹ [PROOFSTEP] exact ((OrderIso.inv α).map_sInf _).symm [GOAL] α : Type u_1 inst✝³ : CompleteLattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 s✝ t s : Set α ⊢ sInf s⁻¹ = (sSup s)⁻¹ [PROOFSTEP] rw [← image_inv, sInf_image] [GOAL] α : Type u_1 inst✝³ : CompleteLattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 s✝ t s : Set α ⊢ ⨅ (a : α) (_ : a ∈ s), a⁻¹ = (sSup s)⁻¹ [PROOFSTEP] exact ((OrderIso.inv α).map_sSup _).symm [GOAL] α : Type u_1 inst✝³ : CompleteLattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 s t : Set α ⊢ sSup (s / t) = sSup s / sInf t [PROOFSTEP] simp_rw [div_eq_mul_inv, sSup_mul, sSup_inv] [GOAL] α : Type u_1 inst✝³ : CompleteLattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 s t : Set α ⊢ sInf (s / t) = sInf s / sSup t [PROOFSTEP] simp_rw [div_eq_mul_inv, sInf_mul, sInf_inv] [GOAL] α : Type u_1 inst✝³ : ConditionallyCompleteLattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 s t : Set α hs₀ : Set.Nonempty s hs₁ : BddBelow s ⊢ sSup s⁻¹ = (sInf s)⁻¹ [PROOFSTEP] rw [← image_inv] [GOAL] α : Type u_1 inst✝³ : ConditionallyCompleteLattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 s t : Set α hs₀ : Set.Nonempty s hs₁ : BddBelow s ⊢ sSup (Inv.inv '' s) = (sInf s)⁻¹ [PROOFSTEP] exact ((OrderIso.inv α).map_csInf' hs₀ hs₁).symm [GOAL] α : Type u_1 inst✝³ : ConditionallyCompleteLattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 s t : Set α hs₀ : Set.Nonempty s hs₁ : BddAbove s ⊢ sInf s⁻¹ = (sSup s)⁻¹ [PROOFSTEP] rw [← image_inv] [GOAL] α : Type u_1 inst✝³ : ConditionallyCompleteLattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 s t : Set α hs₀ : Set.Nonempty s hs₁ : BddAbove s ⊢ sInf (Inv.inv '' s) = (sSup s)⁻¹ [PROOFSTEP] exact ((OrderIso.inv α).map_csSup' hs₀ hs₁).symm [GOAL] α : Type u_1 inst✝³ : ConditionallyCompleteLattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 s t : Set α hs₀ : Set.Nonempty s hs₁ : BddAbove s ht₀ : Set.Nonempty t ht₁ : BddBelow t ⊢ sSup (s / t) = sSup s / sInf t [PROOFSTEP] rw [div_eq_mul_inv, csSup_mul hs₀ hs₁ ht₀.inv ht₁.inv, csSup_inv ht₀ ht₁, div_eq_mul_inv] [GOAL] α : Type u_1 inst✝³ : ConditionallyCompleteLattice α inst✝² : Group α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 s t : Set α hs₀ : Set.Nonempty s hs₁ : BddBelow s ht₀ : Set.Nonempty t ht₁ : BddAbove t ⊢ sInf (s / t) = sInf s / sSup t [PROOFSTEP] rw [div_eq_mul_inv, csInf_mul hs₀ hs₁ ht₀.inv ht₁.inv, csInf_inv ht₀ ht₁, div_eq_mul_inv] [GOAL] α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r ⊢ r • Ioo a b = Ioo (r • a) (r • b) [PROOFSTEP] ext x [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ x ∈ r • Ioo a b ↔ x ∈ Ioo (r • a) (r • b) [PROOFSTEP] simp only [mem_smul_set, smul_eq_mul, mem_Ioo] [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, (a < y ∧ y < b) ∧ r * y = x) ↔ r * a < x ∧ x < r * b [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, (a < y ∧ y < b) ∧ r * y = x) → r * a < x ∧ x < r * b [PROOFSTEP] rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩ [GOAL] case h.mp.intro.intro.intro α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ < a a_h_left_right : a < b ⊢ r * a✝ < r * a ∧ r * a < r * b [PROOFSTEP] constructor [GOAL] case h.mp.intro.intro.intro.left α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ < a a_h_left_right : a < b ⊢ r * a✝ < r * a case h.mp.intro.intro.intro.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ < a a_h_left_right : a < b ⊢ r * a < r * b [PROOFSTEP] exact (mul_lt_mul_left hr).mpr a_h_left_left [GOAL] case h.mp.intro.intro.intro.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ < a a_h_left_right : a < b ⊢ r * a < r * b [PROOFSTEP] exact (mul_lt_mul_left hr).mpr a_h_left_right [GOAL] case h.mpr α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ r * a < x ∧ x < r * b → ∃ y, (a < y ∧ y < b) ∧ r * y = x [PROOFSTEP] rintro ⟨a_left, a_right⟩ [GOAL] case h.mpr.intro α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K a_left : r * a < x a_right : x < r * b ⊢ ∃ y, (a < y ∧ y < b) ∧ r * y = x [PROOFSTEP] use x / r [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K a_left : r * a < x a_right : x < r * b ⊢ (a < x / r ∧ x / r < b) ∧ r * (x / r) = x [PROOFSTEP] refine' ⟨⟨(lt_div_iff' hr).mpr a_left, (div_lt_iff' hr).mpr a_right⟩, _⟩ [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K a_left : r * a < x a_right : x < r * b ⊢ r * (x / r) = x [PROOFSTEP] rw [mul_div_cancel' _ (ne_of_gt hr)] [GOAL] α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r ⊢ r • Icc a b = Icc (r • a) (r • b) [PROOFSTEP] ext x [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ x ∈ r • Icc a b ↔ x ∈ Icc (r • a) (r • b) [PROOFSTEP] simp only [mem_smul_set, smul_eq_mul, mem_Icc] [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, (a ≤ y ∧ y ≤ b) ∧ r * y = x) ↔ r * a ≤ x ∧ x ≤ r * b [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, (a ≤ y ∧ y ≤ b) ∧ r * y = x) → r * a ≤ x ∧ x ≤ r * b [PROOFSTEP] rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩ [GOAL] case h.mp.intro.intro.intro α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ ≤ a a_h_left_right : a ≤ b ⊢ r * a✝ ≤ r * a ∧ r * a ≤ r * b [PROOFSTEP] constructor [GOAL] case h.mp.intro.intro.intro.left α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ ≤ a a_h_left_right : a ≤ b ⊢ r * a✝ ≤ r * a case h.mp.intro.intro.intro.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ ≤ a a_h_left_right : a ≤ b ⊢ r * a ≤ r * b [PROOFSTEP] exact (mul_le_mul_left hr).mpr a_h_left_left [GOAL] case h.mp.intro.intro.intro.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ ≤ a a_h_left_right : a ≤ b ⊢ r * a ≤ r * b [PROOFSTEP] exact (mul_le_mul_left hr).mpr a_h_left_right [GOAL] case h.mpr α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ r * a ≤ x ∧ x ≤ r * b → ∃ y, (a ≤ y ∧ y ≤ b) ∧ r * y = x [PROOFSTEP] rintro ⟨a_left, a_right⟩ [GOAL] case h.mpr.intro α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K a_left : r * a ≤ x a_right : x ≤ r * b ⊢ ∃ y, (a ≤ y ∧ y ≤ b) ∧ r * y = x [PROOFSTEP] use x / r [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K a_left : r * a ≤ x a_right : x ≤ r * b ⊢ (a ≤ x / r ∧ x / r ≤ b) ∧ r * (x / r) = x [PROOFSTEP] refine' ⟨⟨(le_div_iff' hr).mpr a_left, (div_le_iff' hr).mpr a_right⟩, _⟩ [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K a_left : r * a ≤ x a_right : x ≤ r * b ⊢ r * (x / r) = x [PROOFSTEP] rw [mul_div_cancel' _ (ne_of_gt hr)] [GOAL] α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r ⊢ r • Ico a b = Ico (r • a) (r • b) [PROOFSTEP] ext x [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ x ∈ r • Ico a b ↔ x ∈ Ico (r • a) (r • b) [PROOFSTEP] simp only [mem_smul_set, smul_eq_mul, mem_Ico] [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, (a ≤ y ∧ y < b) ∧ r * y = x) ↔ r * a ≤ x ∧ x < r * b [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, (a ≤ y ∧ y < b) ∧ r * y = x) → r * a ≤ x ∧ x < r * b [PROOFSTEP] rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩ [GOAL] case h.mp.intro.intro.intro α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ ≤ a a_h_left_right : a < b ⊢ r * a✝ ≤ r * a ∧ r * a < r * b [PROOFSTEP] constructor [GOAL] case h.mp.intro.intro.intro.left α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ ≤ a a_h_left_right : a < b ⊢ r * a✝ ≤ r * a case h.mp.intro.intro.intro.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ ≤ a a_h_left_right : a < b ⊢ r * a < r * b [PROOFSTEP] exact (mul_le_mul_left hr).mpr a_h_left_left [GOAL] case h.mp.intro.intro.intro.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ ≤ a a_h_left_right : a < b ⊢ r * a < r * b [PROOFSTEP] exact (mul_lt_mul_left hr).mpr a_h_left_right [GOAL] case h.mpr α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ r * a ≤ x ∧ x < r * b → ∃ y, (a ≤ y ∧ y < b) ∧ r * y = x [PROOFSTEP] rintro ⟨a_left, a_right⟩ [GOAL] case h.mpr.intro α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K a_left : r * a ≤ x a_right : x < r * b ⊢ ∃ y, (a ≤ y ∧ y < b) ∧ r * y = x [PROOFSTEP] use x / r [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K a_left : r * a ≤ x a_right : x < r * b ⊢ (a ≤ x / r ∧ x / r < b) ∧ r * (x / r) = x [PROOFSTEP] refine' ⟨⟨(le_div_iff' hr).mpr a_left, (div_lt_iff' hr).mpr a_right⟩, _⟩ [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K a_left : r * a ≤ x a_right : x < r * b ⊢ r * (x / r) = x [PROOFSTEP] rw [mul_div_cancel' _ (ne_of_gt hr)] [GOAL] α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r ⊢ r • Ioc a b = Ioc (r • a) (r • b) [PROOFSTEP] ext x [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ x ∈ r • Ioc a b ↔ x ∈ Ioc (r • a) (r • b) [PROOFSTEP] simp only [mem_smul_set, smul_eq_mul, mem_Ioc] [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, (a < y ∧ y ≤ b) ∧ r * y = x) ↔ r * a < x ∧ x ≤ r * b [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, (a < y ∧ y ≤ b) ∧ r * y = x) → r * a < x ∧ x ≤ r * b [PROOFSTEP] rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩ [GOAL] case h.mp.intro.intro.intro α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ < a a_h_left_right : a ≤ b ⊢ r * a✝ < r * a ∧ r * a ≤ r * b [PROOFSTEP] constructor [GOAL] case h.mp.intro.intro.intro.left α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ < a a_h_left_right : a ≤ b ⊢ r * a✝ < r * a case h.mp.intro.intro.intro.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ < a a_h_left_right : a ≤ b ⊢ r * a ≤ r * b [PROOFSTEP] exact (mul_lt_mul_left hr).mpr a_h_left_left [GOAL] case h.mp.intro.intro.intro.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a✝ b r : K hr : 0 < r a : K a_h_left_left : a✝ < a a_h_left_right : a ≤ b ⊢ r * a ≤ r * b [PROOFSTEP] exact (mul_le_mul_left hr).mpr a_h_left_right [GOAL] case h.mpr α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ r * a < x ∧ x ≤ r * b → ∃ y, (a < y ∧ y ≤ b) ∧ r * y = x [PROOFSTEP] rintro ⟨a_left, a_right⟩ [GOAL] case h.mpr.intro α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K a_left : r * a < x a_right : x ≤ r * b ⊢ ∃ y, (a < y ∧ y ≤ b) ∧ r * y = x [PROOFSTEP] use x / r [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K a_left : r * a < x a_right : x ≤ r * b ⊢ (a < x / r ∧ x / r ≤ b) ∧ r * (x / r) = x [PROOFSTEP] refine' ⟨⟨(lt_div_iff' hr).mpr a_left, (div_le_iff' hr).mpr a_right⟩, _⟩ [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K a_left : r * a < x a_right : x ≤ r * b ⊢ r * (x / r) = x [PROOFSTEP] rw [mul_div_cancel' _ (ne_of_gt hr)] [GOAL] α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r ⊢ r • Ioi a = Ioi (r • a) [PROOFSTEP] ext x [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ x ∈ r • Ioi a ↔ x ∈ Ioi (r • a) [PROOFSTEP] simp only [mem_smul_set, smul_eq_mul, mem_Ioi] [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, a < y ∧ r * y = x) ↔ r * a < x [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, a < y ∧ r * y = x) → r * a < x [PROOFSTEP] rintro ⟨a_w, a_h_left, rfl⟩ [GOAL] case h.mp.intro.intro α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r a_w : K a_h_left : a < a_w ⊢ r * a < r * a_w [PROOFSTEP] exact (mul_lt_mul_left hr).mpr a_h_left [GOAL] case h.mpr α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ r * a < x → ∃ y, a < y ∧ r * y = x [PROOFSTEP] rintro h [GOAL] case h.mpr α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : r * a < x ⊢ ∃ y, a < y ∧ r * y = x [PROOFSTEP] use x / r [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : r * a < x ⊢ a < x / r ∧ r * (x / r) = x [PROOFSTEP] constructor [GOAL] case h.left α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : r * a < x ⊢ a < x / r case h.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : r * a < x ⊢ r * (x / r) = x [PROOFSTEP] exact (lt_div_iff' hr).mpr h [GOAL] case h.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : r * a < x ⊢ r * (x / r) = x [PROOFSTEP] exact mul_div_cancel' _ (ne_of_gt hr) [GOAL] α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r ⊢ r • Iio a = Iio (r • a) [PROOFSTEP] ext x [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ x ∈ r • Iio a ↔ x ∈ Iio (r • a) [PROOFSTEP] simp only [mem_smul_set, smul_eq_mul, mem_Iio] [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, y < a ∧ r * y = x) ↔ x < r * a [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, y < a ∧ r * y = x) → x < r * a [PROOFSTEP] rintro ⟨a_w, a_h_left, rfl⟩ [GOAL] case h.mp.intro.intro α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r a_w : K a_h_left : a_w < a ⊢ r * a_w < r * a [PROOFSTEP] exact (mul_lt_mul_left hr).mpr a_h_left [GOAL] case h.mpr α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ x < r * a → ∃ y, y < a ∧ r * y = x [PROOFSTEP] rintro h [GOAL] case h.mpr α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x < r * a ⊢ ∃ y, y < a ∧ r * y = x [PROOFSTEP] use x / r [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x < r * a ⊢ x / r < a ∧ r * (x / r) = x [PROOFSTEP] constructor [GOAL] case h.left α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x < r * a ⊢ x / r < a case h.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x < r * a ⊢ r * (x / r) = x [PROOFSTEP] exact (div_lt_iff' hr).mpr h [GOAL] case h.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x < r * a ⊢ r * (x / r) = x [PROOFSTEP] exact mul_div_cancel' _ (ne_of_gt hr) [GOAL] α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r ⊢ r • Ici a = Ici (r • a) [PROOFSTEP] ext x [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ x ∈ r • Ici a ↔ x ∈ Ici (r • a) [PROOFSTEP] simp only [mem_smul_set, smul_eq_mul, mem_Ioi] [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, y ∈ Ici a ∧ r * y = x) ↔ x ∈ Ici (r * a) [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, y ∈ Ici a ∧ r * y = x) → x ∈ Ici (r * a) [PROOFSTEP] rintro ⟨a_w, a_h_left, rfl⟩ [GOAL] case h.mp.intro.intro α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r a_w : K a_h_left : a_w ∈ Ici a ⊢ r * a_w ∈ Ici (r * a) [PROOFSTEP] exact (mul_le_mul_left hr).mpr a_h_left [GOAL] case h.mpr α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ x ∈ Ici (r * a) → ∃ y, y ∈ Ici a ∧ r * y = x [PROOFSTEP] rintro h [GOAL] case h.mpr α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x ∈ Ici (r * a) ⊢ ∃ y, y ∈ Ici a ∧ r * y = x [PROOFSTEP] use x / r [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x ∈ Ici (r * a) ⊢ x / r ∈ Ici a ∧ r * (x / r) = x [PROOFSTEP] constructor [GOAL] case h.left α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x ∈ Ici (r * a) ⊢ x / r ∈ Ici a case h.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x ∈ Ici (r * a) ⊢ r * (x / r) = x [PROOFSTEP] exact (le_div_iff' hr).mpr h [GOAL] case h.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x ∈ Ici (r * a) ⊢ r * (x / r) = x [PROOFSTEP] exact mul_div_cancel' _ (ne_of_gt hr) [GOAL] α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r ⊢ r • Iic a = Iic (r • a) [PROOFSTEP] ext x [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ x ∈ r • Iic a ↔ x ∈ Iic (r • a) [PROOFSTEP] simp only [mem_smul_set, smul_eq_mul, mem_Iio] [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, y ∈ Iic a ∧ r * y = x) ↔ x ∈ Iic (r * a) [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ (∃ y, y ∈ Iic a ∧ r * y = x) → x ∈ Iic (r * a) [PROOFSTEP] rintro ⟨a_w, a_h_left, rfl⟩ [GOAL] case h.mp.intro.intro α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r a_w : K a_h_left : a_w ∈ Iic a ⊢ r * a_w ∈ Iic (r * a) [PROOFSTEP] exact (mul_le_mul_left hr).mpr a_h_left [GOAL] case h.mpr α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K ⊢ x ∈ Iic (r * a) → ∃ y, y ∈ Iic a ∧ r * y = x [PROOFSTEP] rintro h [GOAL] case h.mpr α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x ∈ Iic (r * a) ⊢ ∃ y, y ∈ Iic a ∧ r * y = x [PROOFSTEP] use x / r [GOAL] case h α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x ∈ Iic (r * a) ⊢ x / r ∈ Iic a ∧ r * (x / r) = x [PROOFSTEP] constructor [GOAL] case h.left α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x ∈ Iic (r * a) ⊢ x / r ∈ Iic a case h.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x ∈ Iic (r * a) ⊢ r * (x / r) = x [PROOFSTEP] exact (div_le_iff' hr).mpr h [GOAL] case h.right α : Type u_1 K : Type u_2 inst✝ : LinearOrderedField K a b r : K hr : 0 < r x : K h : x ∈ Iic (r * a) ⊢ r * (x / r) = x [PROOFSTEP] exact mul_div_cancel' _ (ne_of_gt hr)
{"mathlib_filename": "Mathlib.Algebra.Order.Pointwise", "llama_tokens": 11612}
[GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ a - b ≤ c ↔ a ≤ b + c [PROOFSTEP] rw [tsub_le_iff_right, add_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ a - b ≤ c ↔ a - c ≤ b [PROOFSTEP] rw [tsub_le_iff_left, tsub_le_iff_right] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a + b - c ≤ a + (b - c) [PROOFSTEP] rw [tsub_le_iff_left, add_left_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a + b ≤ a + (c + (b - c)) [PROOFSTEP] exact add_le_add_left le_add_tsub a [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a + b - c ≤ a - c + b [PROOFSTEP] rw [add_comm, add_comm _ b] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ b + a - c ≤ b + (a - c) [PROOFSTEP] exact add_tsub_le_assoc [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a + b ≤ a + c + (b - c) [PROOFSTEP] rw [add_assoc] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a + b ≤ a + (c + (b - c)) [PROOFSTEP] exact add_le_add_left le_add_tsub a [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a + b ≤ a - c + (b + c) [PROOFSTEP] rw [add_comm a, add_comm (a - c)] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ b + a ≤ b + c + (a - c) [PROOFSTEP] exact add_le_add_add_tsub [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a - c ≤ a - b + (b - c) [PROOFSTEP] rw [tsub_le_iff_left, ← add_assoc, add_right_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a ≤ c + (b - c) + (a - b) [PROOFSTEP] exact le_add_tsub.trans (add_le_add_right le_add_tsub _) [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ c - a - (c - b) ≤ b - a [PROOFSTEP] rw [tsub_le_iff_left, tsub_le_iff_left, add_left_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ c ≤ c - b + (a + (b - a)) [PROOFSTEP] exact le_tsub_add.trans (add_le_add_left le_add_tsub _) [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a + b - (c + d) ≤ a - c + (b - d) [PROOFSTEP] rw [add_comm c, tsub_le_iff_left, add_assoc, ← tsub_le_iff_left, ← tsub_le_iff_left] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a + b - d - c ≤ a - c + (b - d) [PROOFSTEP] refine' (tsub_le_tsub_right add_tsub_le_assoc c).trans _ [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a + (b - d) - c ≤ a - c + (b - d) [PROOFSTEP] rw [add_comm a, add_comm (a - c)] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ b - d + a - c ≤ b - d + (a - c) [PROOFSTEP] exact add_tsub_le_assoc [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a + b - (a + c) ≤ b - c [PROOFSTEP] rw [tsub_le_iff_left, add_assoc] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a + b ≤ a + (c + (b - c)) [PROOFSTEP] exact add_le_add_left le_add_tsub _ [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a + c - (b + c) ≤ a - b [PROOFSTEP] rw [tsub_le_iff_left, add_right_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : AddCommSemigroup α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ a + c ≤ b + (a - b) + c [PROOFSTEP] exact add_le_add_right le_add_tsub c [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b ⊢ a ≤ a + b - b [PROOFSTEP] rw [add_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b ⊢ a ≤ b + a - b [PROOFSTEP] exact hb.le_add_tsub_swap [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b h : a + b ≤ c ⊢ b + a ≤ c [PROOFSTEP] rwa [add_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α inst✝² : AddCommMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ a - b ≤ 0 ↔ a ≤ b [PROOFSTEP] rw [tsub_le_iff_left, add_zero] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a✝ b✝ c✝ d b a c : α ⊢ b - a - c = b - (a + c) [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a✝ b✝ c✝ d b a c : α ⊢ b - a - c ≤ b - (a + c) [PROOFSTEP] rw [tsub_le_iff_left, tsub_le_iff_left, ← add_assoc, ← tsub_le_iff_left] [GOAL] case a α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a✝ b✝ c✝ d b a c : α ⊢ b - (a + c) ≤ b - a - c [PROOFSTEP] rw [tsub_le_iff_left, add_assoc, ← tsub_le_iff_left, ← tsub_le_iff_left] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a✝ b✝ c✝ d a b c : α ⊢ a - (b + c) = a - c - b [PROOFSTEP] rw [add_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a✝ b✝ c✝ d a b c : α ⊢ a - (c + b) = a - c - b [PROOFSTEP] apply tsub_add_eq_tsub_tsub [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ a - b - c = a - c - b [PROOFSTEP] rw [← tsub_add_eq_tsub_tsub, tsub_add_eq_tsub_tsub_swap] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b h : a = c + b ⊢ c ≤ a - b [PROOFSTEP] rw [h] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b h : a = c + b ⊢ c ≤ c + b - b [PROOFSTEP] exact hb.le_add_tsub [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b h : a = b + c ⊢ a = c + b [PROOFSTEP] rw [add_comm, h] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b ⊢ a + b = a + b [PROOFSTEP] rw [add_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b h : a - b < c ⊢ a < b + c [PROOFSTEP] rw [lt_iff_le_and_ne, ← tsub_le_iff_left] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b h : a - b < c ⊢ a - b ≤ c ∧ a ≠ b + c [PROOFSTEP] refine' ⟨h.le, _⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b h : a - b < c ⊢ a ≠ b + c [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α b c d : α hb : AddLECancellable b h : b + c - b < c ⊢ False [PROOFSTEP] simp [hb] at h [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hc : AddLECancellable c h : a - c < b ⊢ a < b + c [PROOFSTEP] rw [lt_iff_le_and_ne, ← tsub_le_iff_right] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hc : AddLECancellable c h : a - c < b ⊢ a - c ≤ b ∧ a ≠ b + c [PROOFSTEP] refine' ⟨h.le, _⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hc : AddLECancellable c h : a - c < b ⊢ a ≠ b + c [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α b c d : α hc : AddLECancellable c h : b + c - c < b ⊢ False [PROOFSTEP] simp [hc] at h [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hc : AddLECancellable c h : a + c < b ⊢ a ≠ b - c [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α b c d : α hc : AddLECancellable c h : b - c + c < b ⊢ False [PROOFSTEP] exact h.not_le le_tsub_add [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : AddCommSemigroup α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ha : AddLECancellable a h : a + c < b ⊢ c + a < b [PROOFSTEP] rwa [add_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α inst✝⁴ : AddCommSemigroup α inst✝³ : Sub α inst✝² : OrderedSub α a✝ b✝ c✝ d : α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a c b : α ⊢ a + c - (b + c) = a - b [PROOFSTEP] refine' add_tsub_add_le_tsub_right.antisymm (tsub_le_iff_right.2 <| le_of_add_le_add_right _) [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α inst✝⁴ : AddCommSemigroup α inst✝³ : Sub α inst✝² : OrderedSub α a✝ b✝ c✝ d : α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a c b : α ⊢ α case refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α inst✝⁴ : AddCommSemigroup α inst✝³ : Sub α inst✝² : OrderedSub α a✝ b✝ c✝ d : α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a c b : α ⊢ a + ?refine'_1 ≤ a + c - (b + c) + b + ?refine'_1 [PROOFSTEP] exact c [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α inst✝⁴ : AddCommSemigroup α inst✝³ : Sub α inst✝² : OrderedSub α a✝ b✝ c✝ d : α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a c b : α ⊢ a + c ≤ a + c - (b + c) + b + c [PROOFSTEP] rw [add_assoc] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α inst✝⁴ : AddCommSemigroup α inst✝³ : Sub α inst✝² : OrderedSub α a✝ b✝ c✝ d : α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a c b : α ⊢ a + c ≤ a + c - (b + c) + (b + c) [PROOFSTEP] exact le_tsub_add [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α inst✝⁴ : AddCommSemigroup α inst✝³ : Sub α inst✝² : OrderedSub α a✝ b✝ c✝ d : α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ a + b - (a + c) = b - c [PROOFSTEP] rw [add_comm a b, add_comm a c, add_tsub_add_eq_tsub_right]
{"mathlib_filename": "Mathlib.Algebra.Order.Sub.Defs", "llama_tokens": 7281}
[GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i [PROOFSTEP] classical revert hσ σ hfg apply Finset.induction_on_max_value (fun i ↦ toLex (g i, f i)) (p := fun t ↦ ∀ {σ : Perm ι}, MonovaryOn f g t → {x | σ x ≠ x} ⊆ t → (∑ i in t, f i • g (σ i)) ≤ ∑ i in t, f i • g i) s · simp only [le_rfl, Finset.sum_empty, imp_true_iff] intro a s has hamax hind σ hfg hσ set τ : Perm ι := σ.trans (swap a (σ a)) with hτ have hτs : {x | τ x ≠ x} ⊆ s := by intro x hx simp only [Ne.def, Set.mem_setOf_eq, Equiv.coe_trans, Equiv.swap_comp_apply] at hx split_ifs at hx with h₁ h₂ · obtain rfl | hax := eq_or_ne x a · contradiction · exact mem_of_mem_insert_of_ne (hσ fun h ↦ hax <| h.symm.trans h₁) hax · exact (hx <| σ.injective h₂.symm).elim · exact mem_of_mem_insert_of_ne (hσ hx) (ne_of_apply_ne _ h₂) specialize hind (hfg.subset <| subset_insert _ _) hτs simp_rw [sum_insert has] refine' le_trans _ (add_le_add_left hind _) obtain hσa | hσa := eq_or_ne a (σ a) · rw [hτ, ← hσa, swap_self, trans_refl] have h1s : σ⁻¹ a ∈ s := by rw [Ne.def, ← inv_eq_iff_eq] at hσa refine' mem_of_mem_insert_of_ne (hσ fun h ↦ hσa _) hσa rwa [apply_inv_self, eq_comm] at h simp only [← s.sum_erase_add _ h1s, add_comm] rw [← add_assoc, ← add_assoc] simp only [hτ, swap_apply_left, Function.comp_apply, Equiv.coe_trans, apply_inv_self] refine' add_le_add (smul_add_smul_le_smul_add_smul' _ _) (sum_congr rfl fun x hx ↦ _).le · specialize hamax (σ⁻¹ a) h1s rw [Prod.Lex.le_iff] at hamax cases' hamax with hamax hamax · exact hfg (mem_insert_of_mem h1s) (mem_insert_self _ _) hamax · exact hamax.2 · specialize hamax (σ a) (mem_of_mem_insert_of_ne (hσ <| σ.injective.ne hσa.symm) hσa.symm) rw [Prod.Lex.le_iff] at hamax cases' hamax with hamax hamax · exact hamax.le · exact hamax.1.le · rw [mem_erase, Ne.def, eq_inv_iff_eq] at hx rw [swap_apply_of_ne_of_ne hx.1 (σ.injective.ne _)] rintro rfl exact has hx.2 [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i [PROOFSTEP] revert hσ σ hfg [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι f : ι → α g : ι → β ⊢ ∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | ↑σ x ≠ x} ⊆ ↑s → ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i [PROOFSTEP] apply Finset.induction_on_max_value (fun i ↦ toLex (g i, f i)) (p := fun t ↦ ∀ {σ : Perm ι}, MonovaryOn f g t → {x | σ x ≠ x} ⊆ t → (∑ i in t, f i • g (σ i)) ≤ ∑ i in t, f i • g i) s [GOAL] case h0 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι f : ι → α g : ι → β ⊢ ∀ {σ : Perm ι}, MonovaryOn f g ↑∅ → {x | ↑σ x ≠ x} ⊆ ↑∅ → ∑ i in ∅, f i • g (↑σ i) ≤ ∑ i in ∅, f i • g i [PROOFSTEP] simp only [le_rfl, Finset.sum_empty, imp_true_iff] [GOAL] case step ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι f : ι → α g : ι → β ⊢ ∀ (a : ι) (s : Finset ι), ¬a ∈ s → (∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a)) → (∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | ↑σ x ≠ x} ⊆ ↑s → ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i) → ∀ {σ : Perm ι}, MonovaryOn f g ↑(insert a s) → {x | ↑σ x ≠ x} ⊆ ↑(insert a s) → ∑ i in insert a s, f i • g (↑σ i) ≤ ∑ i in insert a s, f i • g i [PROOFSTEP] intro a s has hamax hind σ hfg hσ [GOAL] case step ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) hind : ∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | ↑σ x ≠ x} ⊆ ↑s → ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) ⊢ ∑ i in insert a s, f i • g (↑σ i) ≤ ∑ i in insert a s, f i • g i [PROOFSTEP] set τ : Perm ι := σ.trans (swap a (σ a)) with hτ [GOAL] case step ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) hind : ∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | ↑σ x ≠ x} ⊆ ↑s → ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) ⊢ ∑ i in insert a s, f i • g (↑σ i) ≤ ∑ i in insert a s, f i • g i [PROOFSTEP] have hτs : {x | τ x ≠ x} ⊆ s := by intro x hx simp only [Ne.def, Set.mem_setOf_eq, Equiv.coe_trans, Equiv.swap_comp_apply] at hx split_ifs at hx with h₁ h₂ · obtain rfl | hax := eq_or_ne x a · contradiction · exact mem_of_mem_insert_of_ne (hσ fun h ↦ hax <| h.symm.trans h₁) hax · exact (hx <| σ.injective h₂.symm).elim · exact mem_of_mem_insert_of_ne (hσ hx) (ne_of_apply_ne _ h₂) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) hind : ∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | ↑σ x ≠ x} ⊆ ↑s → ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) ⊢ {x | ↑τ x ≠ x} ⊆ ↑s [PROOFSTEP] intro x hx [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) hind : ∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | ↑σ x ≠ x} ⊆ ↑s → ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) x : ι hx : x ∈ {x | ↑τ x ≠ x} ⊢ x ∈ ↑s [PROOFSTEP] simp only [Ne.def, Set.mem_setOf_eq, Equiv.coe_trans, Equiv.swap_comp_apply] at hx [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) hind : ∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | ↑σ x ≠ x} ⊆ ↑s → ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) x : ι hx : ¬(if ↑σ x = a then ↑σ a else if ↑σ x = ↑σ a then a else ↑σ x) = x ⊢ x ∈ ↑s [PROOFSTEP] split_ifs at hx with h₁ h₂ [GOAL] case pos ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) hind : ∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | ↑σ x ≠ x} ⊆ ↑s → ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) x : ι h₁ : ↑σ x = a hx : ¬↑σ a = x ⊢ x ∈ ↑s [PROOFSTEP] obtain rfl | hax := eq_or_ne x a [GOAL] case pos.inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β s : Finset ι hind : ∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | ↑σ x ≠ x} ⊆ ↑s → ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i σ : Perm ι x : ι has : ¬x ∈ s hamax : ∀ (x_1 : ι), x_1 ∈ s → ↑toLex (g x_1, f x_1) ≤ ↑toLex (g x, f x) hfg : MonovaryOn f g ↑(insert x s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert x s) τ : Perm ι := σ.trans (Equiv.swap x (↑σ x)) hτ : τ = σ.trans (Equiv.swap x (↑σ x)) h₁ : ↑σ x = x hx : ¬↑σ x = x ⊢ x ∈ ↑s [PROOFSTEP] contradiction [GOAL] case pos.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) hind : ∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | ↑σ x ≠ x} ⊆ ↑s → ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) x : ι h₁ : ↑σ x = a hx : ¬↑σ a = x hax : x ≠ a ⊢ x ∈ ↑s [PROOFSTEP] exact mem_of_mem_insert_of_ne (hσ fun h ↦ hax <| h.symm.trans h₁) hax [GOAL] case pos ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) hind : ∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | ↑σ x ≠ x} ⊆ ↑s → ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) x : ι h₁ : ¬↑σ x = a h₂ : ↑σ x = ↑σ a hx : ¬a = x ⊢ x ∈ ↑s [PROOFSTEP] exact (hx <| σ.injective h₂.symm).elim [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) hind : ∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | ↑σ x ≠ x} ⊆ ↑s → ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) x : ι h₁ : ¬↑σ x = a h₂ : ¬↑σ x = ↑σ a hx : ¬↑σ x = x ⊢ x ∈ ↑s [PROOFSTEP] exact mem_of_mem_insert_of_ne (hσ hx) (ne_of_apply_ne _ h₂) [GOAL] case step ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) hind : ∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | ↑σ x ≠ x} ⊆ ↑s → ∑ i in s, f i • g (↑σ i) ≤ ∑ i in s, f i • g i σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s ⊢ ∑ i in insert a s, f i • g (↑σ i) ≤ ∑ i in insert a s, f i • g i [PROOFSTEP] specialize hind (hfg.subset <| subset_insert _ _) hτs [GOAL] case step ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i ⊢ ∑ i in insert a s, f i • g (↑σ i) ≤ ∑ i in insert a s, f i • g i [PROOFSTEP] simp_rw [sum_insert has] [GOAL] case step ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i ⊢ f a • g (↑σ a) + ∑ x in s, f x • g (↑σ x) ≤ f a • g a + ∑ i in s, f i • g i [PROOFSTEP] refine' le_trans _ (add_le_add_left hind _) [GOAL] case step ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i ⊢ f a • g (↑σ a) + ∑ x in s, f x • g (↑σ x) ≤ f a • g a + ∑ i in s, f i • g (↑τ i) [PROOFSTEP] obtain hσa | hσa := eq_or_ne a (σ a) [GOAL] case step.inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a = ↑σ a ⊢ f a • g (↑σ a) + ∑ x in s, f x • g (↑σ x) ≤ f a • g a + ∑ i in s, f i • g (↑τ i) [PROOFSTEP] rw [hτ, ← hσa, swap_self, trans_refl] [GOAL] case step.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a ⊢ f a • g (↑σ a) + ∑ x in s, f x • g (↑σ x) ≤ f a • g a + ∑ i in s, f i • g (↑τ i) [PROOFSTEP] have h1s : σ⁻¹ a ∈ s := by rw [Ne.def, ← inv_eq_iff_eq] at hσa refine' mem_of_mem_insert_of_ne (hσ fun h ↦ hσa _) hσa rwa [apply_inv_self, eq_comm] at h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a ⊢ ↑σ⁻¹ a ∈ s [PROOFSTEP] rw [Ne.def, ← inv_eq_iff_eq] at hσa [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : ¬↑σ⁻¹ a = a ⊢ ↑σ⁻¹ a ∈ s [PROOFSTEP] refine' mem_of_mem_insert_of_ne (hσ fun h ↦ hσa _) hσa [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : ¬↑σ⁻¹ a = a h : ↑σ (↑σ⁻¹ a) = ↑σ⁻¹ a ⊢ ↑σ⁻¹ a = a [PROOFSTEP] rwa [apply_inv_self, eq_comm] at h [GOAL] case step.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s ⊢ f a • g (↑σ a) + ∑ x in s, f x • g (↑σ x) ≤ f a • g a + ∑ i in s, f i • g (↑τ i) [PROOFSTEP] simp only [← s.sum_erase_add _ h1s, add_comm] [GOAL] case step.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s ⊢ f a • g (↑σ a) + (f (↑σ⁻¹ a) • g (↑σ (↑σ⁻¹ a)) + ∑ x in erase s (↑σ⁻¹ a), f x • g (↑σ x)) ≤ f a • g a + (f (↑σ⁻¹ a) • g (↑(σ.trans (Equiv.swap a (↑σ a))) (↑σ⁻¹ a)) + ∑ x in erase s (↑σ⁻¹ a), f x • g (↑(σ.trans (Equiv.swap a (↑σ a))) x)) [PROOFSTEP] rw [← add_assoc, ← add_assoc] [GOAL] case step.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s ⊢ f a • g (↑σ a) + f (↑σ⁻¹ a) • g (↑σ (↑σ⁻¹ a)) + ∑ x in erase s (↑σ⁻¹ a), f x • g (↑σ x) ≤ f a • g a + f (↑σ⁻¹ a) • g (↑(σ.trans (Equiv.swap a (↑σ a))) (↑σ⁻¹ a)) + ∑ x in erase s (↑σ⁻¹ a), f x • g (↑(σ.trans (Equiv.swap a (↑σ a))) x) [PROOFSTEP] simp only [hτ, swap_apply_left, Function.comp_apply, Equiv.coe_trans, apply_inv_self] [GOAL] case step.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s ⊢ f a • g (↑σ a) + f (↑σ⁻¹ a) • g a + ∑ x in erase s (↑σ⁻¹ a), f x • g (↑σ x) ≤ f a • g a + f (↑σ⁻¹ a) • g (↑σ a) + ∑ x in erase s (↑σ⁻¹ a), f x • g (↑(Equiv.swap a (↑σ a)) (↑σ x)) [PROOFSTEP] refine' add_le_add (smul_add_smul_le_smul_add_smul' _ _) (sum_congr rfl fun x hx ↦ _).le [GOAL] case step.inr.refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s ⊢ f (↑σ⁻¹ a) ≤ f a [PROOFSTEP] specialize hamax (σ⁻¹ a) h1s [GOAL] case step.inr.refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s hamax : ↑toLex (g (↑σ⁻¹ a), f (↑σ⁻¹ a)) ≤ ↑toLex (g a, f a) ⊢ f (↑σ⁻¹ a) ≤ f a [PROOFSTEP] rw [Prod.Lex.le_iff] at hamax [GOAL] case step.inr.refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s hamax : (g (↑σ⁻¹ a), f (↑σ⁻¹ a)).fst < (g a, f a).fst ∨ (g (↑σ⁻¹ a), f (↑σ⁻¹ a)).fst = (g a, f a).fst ∧ (g (↑σ⁻¹ a), f (↑σ⁻¹ a)).snd ≤ (g a, f a).snd ⊢ f (↑σ⁻¹ a) ≤ f a [PROOFSTEP] cases' hamax with hamax hamax [GOAL] case step.inr.refine'_1.inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s hamax : (g (↑σ⁻¹ a), f (↑σ⁻¹ a)).fst < (g a, f a).fst ⊢ f (↑σ⁻¹ a) ≤ f a [PROOFSTEP] exact hfg (mem_insert_of_mem h1s) (mem_insert_self _ _) hamax [GOAL] case step.inr.refine'_1.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s hamax : (g (↑σ⁻¹ a), f (↑σ⁻¹ a)).fst = (g a, f a).fst ∧ (g (↑σ⁻¹ a), f (↑σ⁻¹ a)).snd ≤ (g a, f a).snd ⊢ f (↑σ⁻¹ a) ≤ f a [PROOFSTEP] exact hamax.2 [GOAL] case step.inr.refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s ⊢ g (↑σ a) ≤ g a [PROOFSTEP] specialize hamax (σ a) (mem_of_mem_insert_of_ne (hσ <| σ.injective.ne hσa.symm) hσa.symm) [GOAL] case step.inr.refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s hamax : ↑toLex (g (↑σ a), f (↑σ a)) ≤ ↑toLex (g a, f a) ⊢ g (↑σ a) ≤ g a [PROOFSTEP] rw [Prod.Lex.le_iff] at hamax [GOAL] case step.inr.refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s hamax : (g (↑σ a), f (↑σ a)).fst < (g a, f a).fst ∨ (g (↑σ a), f (↑σ a)).fst = (g a, f a).fst ∧ (g (↑σ a), f (↑σ a)).snd ≤ (g a, f a).snd ⊢ g (↑σ a) ≤ g a [PROOFSTEP] cases' hamax with hamax hamax [GOAL] case step.inr.refine'_2.inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s hamax : (g (↑σ a), f (↑σ a)).fst < (g a, f a).fst ⊢ g (↑σ a) ≤ g a [PROOFSTEP] exact hamax.le [GOAL] case step.inr.refine'_2.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s hamax : (g (↑σ a), f (↑σ a)).fst = (g a, f a).fst ∧ (g (↑σ a), f (↑σ a)).snd ≤ (g a, f a).snd ⊢ g (↑σ a) ≤ g a [PROOFSTEP] exact hamax.1.le [GOAL] case step.inr.refine'_3 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s x : ι hx : x ∈ erase s (↑σ⁻¹ a) ⊢ f x • g (↑σ x) = f x • g (↑(Equiv.swap a (↑σ a)) (↑σ x)) [PROOFSTEP] rw [mem_erase, Ne.def, eq_inv_iff_eq] at hx [GOAL] case step.inr.refine'_3 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s x : ι hx : ¬↑σ x = a ∧ x ∈ s ⊢ f x • g (↑σ x) = f x • g (↑(Equiv.swap a (↑σ a)) (↑σ x)) [PROOFSTEP] rw [swap_apply_of_ne_of_ne hx.1 (σ.injective.ne _)] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : ¬a ∈ s hamax : ∀ (x : ι), x ∈ s → ↑toLex (g x, f x) ≤ ↑toLex (g a, f a) σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := σ.trans (Equiv.swap a (↑σ a)) hτ : τ = σ.trans (Equiv.swap a (↑σ a)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : a ≠ ↑σ a h1s : ↑σ⁻¹ a ∈ s x : ι hx : ¬↑σ x = a ∧ x ∈ s ⊢ x ≠ a [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s✝ : Finset ι f : ι → α g : ι → β s : Finset ι σ : Perm ι x : ι has : ¬x ∈ s hamax : ∀ (x_1 : ι), x_1 ∈ s → ↑toLex (g x_1, f x_1) ≤ ↑toLex (g x, f x) hfg : MonovaryOn f g ↑(insert x s) hσ : {x | ↑σ x ≠ x} ⊆ ↑(insert x s) τ : Perm ι := σ.trans (Equiv.swap x (↑σ x)) hτ : τ = σ.trans (Equiv.swap x (↑σ x)) hτs : {x | ↑τ x ≠ x} ⊆ ↑s hind : ∑ i in s, f i • g (↑τ i) ≤ ∑ i in s, f i • g i hσa : x ≠ ↑σ x h1s : ↑σ⁻¹ x ∈ s hx : ¬↑σ x = x ∧ x ∈ s ⊢ False [PROOFSTEP] exact has hx.2 [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f i • g (↑σ i) = ∑ i in s, f i • g i ↔ MonovaryOn f (g ∘ ↑σ) ↑s [PROOFSTEP] classical refine' ⟨not_imp_not.1 fun h ↦ _, fun h ↦ (hfg.sum_smul_comp_perm_le_sum_smul hσ).antisymm _⟩ · rw [MonovaryOn] at h push_neg at h obtain ⟨x, hx, y, hy, hgxy, hfxy⟩ := h set τ : Perm ι := (Equiv.swap x y).trans σ have hτs : {x | τ x ≠ x} ⊆ s := by refine' (set_support_mul_subset σ <| swap x y).trans (Set.union_subset hσ fun z hz ↦ _) obtain ⟨_, rfl | rfl⟩ := swap_apply_ne_self_iff.1 hz <;> assumption refine' ((hfg.sum_smul_comp_perm_le_sum_smul hτs).trans_lt' _).ne obtain rfl | hxy := eq_or_ne x y · cases lt_irrefl _ hfxy simp only [← s.sum_erase_add _ hx, ← (s.erase x).sum_erase_add _ (mem_erase.2 ⟨hxy.symm, hy⟩), add_assoc, Equiv.coe_trans, Function.comp_apply, swap_apply_right, swap_apply_left] refine' add_lt_add_of_le_of_lt (Finset.sum_congr rfl fun z hz ↦ _).le (smul_add_smul_lt_smul_add_smul hfxy hgxy) simp_rw [mem_erase] at hz rw [swap_apply_of_ne_of_ne hz.2.1 hz.1] · convert h.sum_smul_comp_perm_le_sum_smul ((set_support_inv_eq _).subset.trans hσ) using 1 simp_rw [Function.comp_apply, apply_inv_self] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f i • g (↑σ i) = ∑ i in s, f i • g i ↔ MonovaryOn f (g ∘ ↑σ) ↑s [PROOFSTEP] refine' ⟨not_imp_not.1 fun h ↦ _, fun h ↦ (hfg.sum_smul_comp_perm_le_sum_smul hσ).antisymm _⟩ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s h : ¬MonovaryOn f (g ∘ ↑σ) ↑s ⊢ ¬∑ i in s, f i • g (↑σ i) = ∑ i in s, f i • g i [PROOFSTEP] rw [MonovaryOn] at h [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s h : ¬∀ ⦃i : ι⦄, i ∈ ↑s → ∀ ⦃j : ι⦄, j ∈ ↑s → (g ∘ ↑σ) i < (g ∘ ↑σ) j → f i ≤ f j ⊢ ¬∑ i in s, f i • g (↑σ i) = ∑ i in s, f i • g i [PROOFSTEP] push_neg at h [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s h : Exists fun ⦃i⦄ => i ∈ ↑s ∧ Exists fun ⦃j⦄ => j ∈ ↑s ∧ (g ∘ ↑σ) i < (g ∘ ↑σ) j ∧ f j < f i ⊢ ¬∑ i in s, f i • g (↑σ i) = ∑ i in s, f i • g i [PROOFSTEP] obtain ⟨x, hx, y, hy, hgxy, hfxy⟩ := h [GOAL] case refine'_1.intro.intro.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s x : ι hx : x ∈ ↑s y : ι hy : y ∈ ↑s hgxy : (g ∘ ↑σ) x < (g ∘ ↑σ) y hfxy : f y < f x ⊢ ¬∑ i in s, f i • g (↑σ i) = ∑ i in s, f i • g i [PROOFSTEP] set τ : Perm ι := (Equiv.swap x y).trans σ [GOAL] case refine'_1.intro.intro.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s x : ι hx : x ∈ ↑s y : ι hy : y ∈ ↑s hgxy : (g ∘ ↑σ) x < (g ∘ ↑σ) y hfxy : f y < f x τ : Perm ι := (Equiv.swap x y).trans σ ⊢ ¬∑ i in s, f i • g (↑σ i) = ∑ i in s, f i • g i [PROOFSTEP] have hτs : {x | τ x ≠ x} ⊆ s := by refine' (set_support_mul_subset σ <| swap x y).trans (Set.union_subset hσ fun z hz ↦ _) obtain ⟨_, rfl | rfl⟩ := swap_apply_ne_self_iff.1 hz <;> assumption [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s x : ι hx : x ∈ ↑s y : ι hy : y ∈ ↑s hgxy : (g ∘ ↑σ) x < (g ∘ ↑σ) y hfxy : f y < f x τ : Perm ι := (Equiv.swap x y).trans σ ⊢ {x | ↑τ x ≠ x} ⊆ ↑s [PROOFSTEP] refine' (set_support_mul_subset σ <| swap x y).trans (Set.union_subset hσ fun z hz ↦ _) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s x : ι hx : x ∈ ↑s y : ι hy : y ∈ ↑s hgxy : (g ∘ ↑σ) x < (g ∘ ↑σ) y hfxy : f y < f x τ : Perm ι := (Equiv.swap x y).trans σ z : ι hz : z ∈ {x_1 | ↑(Equiv.swap x y) x_1 ≠ x_1} ⊢ z ∈ ↑s [PROOFSTEP] obtain ⟨_, rfl | rfl⟩ := swap_apply_ne_self_iff.1 hz [GOAL] case intro.inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s y : ι hy : y ∈ ↑s z : ι hx : z ∈ ↑s hgxy : (g ∘ ↑σ) z < (g ∘ ↑σ) y hfxy : f y < f z τ : Perm ι := (Equiv.swap z y).trans σ hz : z ∈ {x | ↑(Equiv.swap z y) x ≠ x} left✝ : z ≠ y ⊢ z ∈ ↑s [PROOFSTEP] assumption [GOAL] case intro.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s x : ι hx : x ∈ ↑s z : ι hy : z ∈ ↑s hgxy : (g ∘ ↑σ) x < (g ∘ ↑σ) z hfxy : f z < f x τ : Perm ι := (Equiv.swap x z).trans σ hz : z ∈ {x_1 | ↑(Equiv.swap x z) x_1 ≠ x_1} left✝ : x ≠ z ⊢ z ∈ ↑s [PROOFSTEP] assumption [GOAL] case refine'_1.intro.intro.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s x : ι hx : x ∈ ↑s y : ι hy : y ∈ ↑s hgxy : (g ∘ ↑σ) x < (g ∘ ↑σ) y hfxy : f y < f x τ : Perm ι := (Equiv.swap x y).trans σ hτs : {x | ↑τ x ≠ x} ⊆ ↑s ⊢ ¬∑ i in s, f i • g (↑σ i) = ∑ i in s, f i • g i [PROOFSTEP] refine' ((hfg.sum_smul_comp_perm_le_sum_smul hτs).trans_lt' _).ne [GOAL] case refine'_1.intro.intro.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s x : ι hx : x ∈ ↑s y : ι hy : y ∈ ↑s hgxy : (g ∘ ↑σ) x < (g ∘ ↑σ) y hfxy : f y < f x τ : Perm ι := (Equiv.swap x y).trans σ hτs : {x | ↑τ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f i • g (↑σ i) < ∑ i in s, f i • g (↑τ i) [PROOFSTEP] obtain rfl | hxy := eq_or_ne x y [GOAL] case refine'_1.intro.intro.intro.intro.intro.inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s x : ι hx hy : x ∈ ↑s hgxy : (g ∘ ↑σ) x < (g ∘ ↑σ) x hfxy : f x < f x τ : Perm ι := (Equiv.swap x x).trans σ hτs : {x | ↑τ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f i • g (↑σ i) < ∑ i in s, f i • g (↑τ i) [PROOFSTEP] cases lt_irrefl _ hfxy [GOAL] case refine'_1.intro.intro.intro.intro.intro.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s x : ι hx : x ∈ ↑s y : ι hy : y ∈ ↑s hgxy : (g ∘ ↑σ) x < (g ∘ ↑σ) y hfxy : f y < f x τ : Perm ι := (Equiv.swap x y).trans σ hτs : {x | ↑τ x ≠ x} ⊆ ↑s hxy : x ≠ y ⊢ ∑ i in s, f i • g (↑σ i) < ∑ i in s, f i • g (↑τ i) [PROOFSTEP] simp only [← s.sum_erase_add _ hx, ← (s.erase x).sum_erase_add _ (mem_erase.2 ⟨hxy.symm, hy⟩), add_assoc, Equiv.coe_trans, Function.comp_apply, swap_apply_right, swap_apply_left] [GOAL] case refine'_1.intro.intro.intro.intro.intro.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s x : ι hx : x ∈ ↑s y : ι hy : y ∈ ↑s hgxy : (g ∘ ↑σ) x < (g ∘ ↑σ) y hfxy : f y < f x τ : Perm ι := (Equiv.swap x y).trans σ hτs : {x | ↑τ x ≠ x} ⊆ ↑s hxy : x ≠ y ⊢ ∑ x in erase (erase s x) y, f x • g (↑σ x) + (f y • g (↑σ y) + f x • g (↑σ x)) < ∑ x_1 in erase (erase s x) y, f x_1 • g (↑σ (↑(Equiv.swap x y) x_1)) + (f y • g (↑σ x) + f x • g (↑σ y)) [PROOFSTEP] refine' add_lt_add_of_le_of_lt (Finset.sum_congr rfl fun z hz ↦ _).le (smul_add_smul_lt_smul_add_smul hfxy hgxy) [GOAL] case refine'_1.intro.intro.intro.intro.intro.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s x : ι hx : x ∈ ↑s y : ι hy : y ∈ ↑s hgxy : (g ∘ ↑σ) x < (g ∘ ↑σ) y hfxy : f y < f x τ : Perm ι := (Equiv.swap x y).trans σ hτs : {x | ↑τ x ≠ x} ⊆ ↑s hxy : x ≠ y z : ι hz : z ∈ erase (erase s x) y ⊢ f z • g (↑σ z) = f z • g (↑σ (↑(Equiv.swap x y) z)) [PROOFSTEP] simp_rw [mem_erase] at hz [GOAL] case refine'_1.intro.intro.intro.intro.intro.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s x : ι hx : x ∈ ↑s y : ι hy : y ∈ ↑s hgxy : (g ∘ ↑σ) x < (g ∘ ↑σ) y hfxy : f y < f x τ : Perm ι := (Equiv.swap x y).trans σ hτs : {x | ↑τ x ≠ x} ⊆ ↑s hxy : x ≠ y z : ι hz : z ≠ y ∧ z ≠ x ∧ z ∈ s ⊢ f z • g (↑σ z) = f z • g (↑σ (↑(Equiv.swap x y) z)) [PROOFSTEP] rw [swap_apply_of_ne_of_ne hz.2.1 hz.1] [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s h : MonovaryOn f (g ∘ ↑σ) ↑s ⊢ ∑ i in s, f i • g i ≤ ∑ i in s, f i • g (↑σ i) [PROOFSTEP] convert h.sum_smul_comp_perm_le_sum_smul ((set_support_inv_eq _).subset.trans hσ) using 1 [GOAL] case h.e'_3 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s h : MonovaryOn f (g ∘ ↑σ) ↑s ⊢ ∑ i in s, f i • g i = ∑ i in s, f i • (g ∘ ↑σ) (↑σ⁻¹ i) [PROOFSTEP] simp_rw [Function.comp_apply, apply_inv_self] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f i • g (↑σ i) < ∑ i in s, f i • g i ↔ ¬MonovaryOn f (g ∘ ↑σ) ↑s [PROOFSTEP] simp [← hfg.sum_smul_comp_perm_eq_sum_smul_iff hσ, lt_iff_le_and_ne, hfg.sum_smul_comp_perm_le_sum_smul hσ] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f (↑σ i) • g i ≤ ∑ i in s, f i • g i [PROOFSTEP] convert hfg.sum_smul_comp_perm_le_sum_smul (show {x | σ⁻¹ x ≠ x} ⊆ s by simp only [set_support_inv_eq, hσ]) using 1 [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ {x | ↑σ⁻¹ x ≠ x} ⊆ ↑s [PROOFSTEP] simp only [set_support_inv_eq, hσ] [GOAL] case h.e'_3 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f (↑σ i) • g i = ∑ i in s, f i • g (↑σ⁻¹ i) [PROOFSTEP] exact σ.sum_comp' s (fun i j ↦ f i • g j) hσ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f (↑σ i) • g i = ∑ i in s, f i • g i ↔ MonovaryOn (f ∘ ↑σ) g ↑s [PROOFSTEP] have hσinv : {x | σ⁻¹ x ≠ x} ⊆ s := (set_support_inv_eq _).subset.trans hσ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s hσinv : {x | ↑σ⁻¹ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f (↑σ i) • g i = ∑ i in s, f i • g i ↔ MonovaryOn (f ∘ ↑σ) g ↑s [PROOFSTEP] refine' (Iff.trans _ <| hfg.sum_smul_comp_perm_eq_sum_smul_iff hσinv).trans ⟨fun h ↦ _, fun h ↦ _⟩ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s hσinv : {x | ↑σ⁻¹ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f (↑σ i) • g i = ∑ i in s, f i • g i ↔ ∑ i in s, f i • g (↑σ⁻¹ i) = ∑ i in s, f i • g i [PROOFSTEP] apply eq_iff_eq_cancel_right.2 [GOAL] case refine'_1.a ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s hσinv : {x | ↑σ⁻¹ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f (↑σ i) • g i = ∑ i in s, f i • g (↑σ⁻¹ i) [PROOFSTEP] rw [σ.sum_comp' s (fun i j ↦ f i • g j) hσ] [GOAL] case refine'_1.a ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s hσinv : {x | ↑σ⁻¹ x ≠ x} ⊆ ↑s ⊢ ∑ x in s, f x • g (↑σ.symm x) = ∑ i in s, f i • g (↑σ⁻¹ i) [PROOFSTEP] congr [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s hσinv : {x | ↑σ⁻¹ x ≠ x} ⊆ ↑s h : MonovaryOn f (g ∘ ↑σ⁻¹) ↑s ⊢ MonovaryOn (f ∘ ↑σ) g ↑s [PROOFSTEP] convert h.comp_right σ [GOAL] case h.e'_7 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s hσinv : {x | ↑σ⁻¹ x ≠ x} ⊆ ↑s h : MonovaryOn f (g ∘ ↑σ⁻¹) ↑s ⊢ g = (g ∘ ↑σ⁻¹) ∘ ↑σ [PROOFSTEP] rw [comp.assoc, inv_def, symm_comp_self, comp.right_id] [GOAL] case h.e'_8 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s hσinv : {x | ↑σ⁻¹ x ≠ x} ⊆ ↑s h : MonovaryOn f (g ∘ ↑σ⁻¹) ↑s ⊢ ↑s = ↑σ ⁻¹' ↑s [PROOFSTEP] rw [σ.eq_preimage_iff_image_eq, Set.image_perm hσ] [GOAL] case refine'_3 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s hσinv : {x | ↑σ⁻¹ x ≠ x} ⊆ ↑s h : MonovaryOn (f ∘ ↑σ) g ↑s ⊢ MonovaryOn f (g ∘ ↑σ⁻¹) ↑s [PROOFSTEP] convert h.comp_right σ.symm [GOAL] case h.e'_6 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s hσinv : {x | ↑σ⁻¹ x ≠ x} ⊆ ↑s h : MonovaryOn (f ∘ ↑σ) g ↑s ⊢ f = (f ∘ ↑σ) ∘ ↑σ.symm [PROOFSTEP] rw [comp.assoc, self_comp_symm, comp.right_id] [GOAL] case h.e'_8 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s hσinv : {x | ↑σ⁻¹ x ≠ x} ⊆ ↑s h : MonovaryOn (f ∘ ↑σ) g ↑s ⊢ ↑s = ↑σ.symm ⁻¹' ↑s [PROOFSTEP] rw [σ.symm.eq_preimage_iff_image_eq] [GOAL] case h.e'_8 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s hσinv : {x | ↑σ⁻¹ x ≠ x} ⊆ ↑s h : MonovaryOn (f ∘ ↑σ) g ↑s ⊢ ↑σ.symm '' ↑s = ↑s [PROOFSTEP] exact Set.image_perm hσinv [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : MonovaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f (↑σ i) • g i < ∑ i in s, f i • g i ↔ ¬MonovaryOn (f ∘ ↑σ) g ↑s [PROOFSTEP] simp [← hfg.sum_comp_perm_smul_eq_sum_smul_iff hσ, lt_iff_le_and_ne, hfg.sum_comp_perm_smul_le_sum_smul hσ] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : AntivaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f i • g i < ∑ i in s, f i • g (↑σ i) ↔ ¬AntivaryOn f (g ∘ ↑σ) ↑s [PROOFSTEP] simp [← hfg.sum_smul_eq_sum_smul_comp_perm_iff hσ, lt_iff_le_and_ne, eq_comm, hfg.sum_smul_le_sum_smul_comp_perm hσ] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : LinearOrderedAddCommGroup β inst✝¹ : Module α β inst✝ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β hfg : AntivaryOn f g ↑s hσ : {x | ↑σ x ≠ x} ⊆ ↑s ⊢ ∑ i in s, f i • g i < ∑ i in s, f (↑σ i) • g i ↔ ¬AntivaryOn (f ∘ ↑σ) g ↑s [PROOFSTEP] simp [← hfg.sum_smul_eq_sum_comp_perm_smul_iff hσ, eq_comm, lt_iff_le_and_ne, hfg.sum_smul_le_sum_comp_perm_smul hσ] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module α β inst✝¹ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β inst✝ : Fintype ι hfg : Monovary f g ⊢ ∑ i : ι, f i • g (↑σ i) = ∑ i : ι, f i • g i ↔ Monovary f (g ∘ ↑σ) [PROOFSTEP] simp [(hfg.monovaryOn _).sum_smul_comp_perm_eq_sum_smul_iff fun _ _ ↦ mem_univ _] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module α β inst✝¹ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β inst✝ : Fintype ι hfg : Monovary f g ⊢ ∑ i : ι, f i • g (↑σ i) < ∑ i : ι, f i • g i ↔ ¬Monovary f (g ∘ ↑σ) [PROOFSTEP] simp [(hfg.monovaryOn _).sum_smul_comp_perm_lt_sum_smul_iff fun _ _ ↦ mem_univ _] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module α β inst✝¹ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β inst✝ : Fintype ι hfg : Monovary f g ⊢ ∑ i : ι, f (↑σ i) • g i = ∑ i : ι, f i • g i ↔ Monovary (f ∘ ↑σ) g [PROOFSTEP] simp [(hfg.monovaryOn _).sum_comp_perm_smul_eq_sum_smul_iff fun _ _ ↦ mem_univ _] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module α β inst✝¹ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β inst✝ : Fintype ι hfg : Monovary f g ⊢ ∑ i : ι, f (↑σ i) • g i < ∑ i : ι, f i • g i ↔ ¬Monovary (f ∘ ↑σ) g [PROOFSTEP] simp [(hfg.monovaryOn _).sum_comp_perm_smul_lt_sum_smul_iff fun _ _ ↦ mem_univ _] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module α β inst✝¹ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β inst✝ : Fintype ι hfg : Antivary f g ⊢ ∑ i : ι, f i • g (↑σ i) = ∑ i : ι, f i • g i ↔ Antivary f (g ∘ ↑σ) [PROOFSTEP] simp [(hfg.antivaryOn _).sum_smul_eq_sum_smul_comp_perm_iff fun _ _ ↦ mem_univ _] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module α β inst✝¹ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β inst✝ : Fintype ι hfg : Antivary f g ⊢ ∑ i : ι, f i • g i < ∑ i : ι, f i • g (↑σ i) ↔ ¬Antivary f (g ∘ ↑σ) [PROOFSTEP] simp [(hfg.antivaryOn _).sum_smul_lt_sum_smul_comp_perm_iff fun _ _ ↦ mem_univ _] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module α β inst✝¹ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β inst✝ : Fintype ι hfg : Antivary f g ⊢ ∑ i : ι, f (↑σ i) • g i = ∑ i : ι, f i • g i ↔ Antivary (f ∘ ↑σ) g [PROOFSTEP] simp [(hfg.antivaryOn _).sum_smul_eq_sum_comp_perm_smul_iff fun _ _ ↦ mem_univ _] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : LinearOrderedAddCommGroup β inst✝² : Module α β inst✝¹ : OrderedSMul α β s : Finset ι σ : Perm ι f : ι → α g : ι → β inst✝ : Fintype ι hfg : Antivary f g ⊢ ∑ i : ι, f i • g i < ∑ i : ι, f (↑σ i) • g i ↔ ¬Antivary (f ∘ ↑σ) g [PROOFSTEP] simp [(hfg.antivaryOn _).sum_smul_lt_sum_comp_perm_smul_iff fun _ _ ↦ mem_univ _]
{"mathlib_filename": "Mathlib.Algebra.Order.Rearrangement", "llama_tokens": 29925}
{"mathlib_filename": "Mathlib.Algebra.Order.Sub.Prod", "llama_tokens": 0}
[GOAL] α : Type u_1 β : Type u_2 inst✝⁷ : Preorder α inst✝⁶ : Add α inst✝⁵ : Sub α inst✝⁴ : OrderedSub α a✝ b✝ c d : α inst✝³ : Preorder β inst✝² : Add β inst✝¹ : Sub β inst✝ : OrderedSub β f : AddHom α β hf : Monotone ↑f a b : α ⊢ ↑f a - ↑f b ≤ ↑f (a - b) [PROOFSTEP] rw [tsub_le_iff_right, ← f.map_add] [GOAL] α : Type u_1 β : Type u_2 inst✝⁷ : Preorder α inst✝⁶ : Add α inst✝⁵ : Sub α inst✝⁴ : OrderedSub α a✝ b✝ c d : α inst✝³ : Preorder β inst✝² : Add β inst✝¹ : Sub β inst✝ : OrderedSub β f : AddHom α β hf : Monotone ↑f a b : α ⊢ ↑f a ≤ ↑f (a - b + b) [PROOFSTEP] exact hf le_tsub_add [GOAL] α : Type u_1 β : Type u_2 inst✝⁸ : Preorder α inst✝⁷ : Add α inst✝⁶ : Sub α inst✝⁵ : OrderedSub α a✝ b✝ c✝ d : α R : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : Preorder R inst✝² : Sub R inst✝¹ : OrderedSub R inst✝ : CovariantClass R R (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : R ⊢ a * c - b * c ≤ (a - b) * c [PROOFSTEP] simpa only [mul_comm _ c] using le_mul_tsub [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 inst✝⁷ : Preorder M inst✝⁶ : Add M inst✝⁵ : Sub M inst✝⁴ : OrderedSub M inst✝³ : PartialOrder N inst✝² : Add N inst✝¹ : Sub N inst✝ : OrderedSub N e : M ≃o N h_add : ∀ (a b : M), ↑e (a + b) = ↑e a + ↑e b a b : M ⊢ ↑e (a - b) = ↑e a - ↑e b [PROOFSTEP] let e_add : M ≃+ N := { e with map_add' := h_add } [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 inst✝⁷ : Preorder M inst✝⁶ : Add M inst✝⁵ : Sub M inst✝⁴ : OrderedSub M inst✝³ : PartialOrder N inst✝² : Add N inst✝¹ : Sub N inst✝ : OrderedSub N e : M ≃o N h_add : ∀ (a b : M), ↑e (a + b) = ↑e a + ↑e b a b : M e_add : M ≃+ N := { toEquiv := e.toEquiv, map_add' := h_add } ⊢ ↑e (a - b) = ↑e a - ↑e b [PROOFSTEP] refine' le_antisymm _ (e_add.toAddHom.le_map_tsub e.monotone a b) [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 inst✝⁷ : Preorder M inst✝⁶ : Add M inst✝⁵ : Sub M inst✝⁴ : OrderedSub M inst✝³ : PartialOrder N inst✝² : Add N inst✝¹ : Sub N inst✝ : OrderedSub N e : M ≃o N h_add : ∀ (a b : M), ↑e (a + b) = ↑e a + ↑e b a b : M e_add : M ≃+ N := { toEquiv := e.toEquiv, map_add' := h_add } ⊢ ↑e (a - b) ≤ ↑e a - ↑e b [PROOFSTEP] suffices e (e.symm (e a) - e.symm (e b)) ≤ e (e.symm (e a - e b)) by simpa [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 inst✝⁷ : Preorder M inst✝⁶ : Add M inst✝⁵ : Sub M inst✝⁴ : OrderedSub M inst✝³ : PartialOrder N inst✝² : Add N inst✝¹ : Sub N inst✝ : OrderedSub N e : M ≃o N h_add : ∀ (a b : M), ↑e (a + b) = ↑e a + ↑e b a b : M e_add : M ≃+ N := { toEquiv := e.toEquiv, map_add' := h_add } this : ↑e (↑(symm e) (↑e a) - ↑(symm e) (↑e b)) ≤ ↑e (↑(symm e) (↑e a - ↑e b)) ⊢ ↑e (a - b) ≤ ↑e a - ↑e b [PROOFSTEP] simpa [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 inst✝⁷ : Preorder M inst✝⁶ : Add M inst✝⁵ : Sub M inst✝⁴ : OrderedSub M inst✝³ : PartialOrder N inst✝² : Add N inst✝¹ : Sub N inst✝ : OrderedSub N e : M ≃o N h_add : ∀ (a b : M), ↑e (a + b) = ↑e a + ↑e b a b : M e_add : M ≃+ N := { toEquiv := e.toEquiv, map_add' := h_add } ⊢ ↑e (↑(symm e) (↑e a) - ↑(symm e) (↑e b)) ≤ ↑e (↑(symm e) (↑e a - ↑e b)) [PROOFSTEP] exact e.monotone (e_add.symm.toAddHom.le_map_tsub e.symm.monotone _ _)
{"mathlib_filename": "Mathlib.Algebra.Order.Sub.Basic", "llama_tokens": 1823}
[GOAL] α : Type u_1 inst✝¹ : OrderedAddCommMonoid α inst✝ : Archimedean α x y : { x // 0 ≤ x } hy : 0 < y n : ℕ hr : ↑x ≤ n • (fun a => ↑a) y ⊢ ↑x ≤ ↑(n • y) [PROOFSTEP] simp [*, -nsmul_eq_mul, nsmul_coe]
{"mathlib_filename": "Mathlib.Algebra.Order.Nonneg.Floor", "llama_tokens": 122}
[GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a✝ b c d a : α ⊢ symm (mulRight a) = mulRight a⁻¹ [PROOFSTEP] ext x [GOAL] case h.h α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a✝ b c d a x : α ⊢ ↑(symm (mulRight a)) x = ↑(mulRight a⁻¹) x [PROOFSTEP] rfl [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ symm (mulLeft a) = mulLeft a⁻¹ [PROOFSTEP] ext x [GOAL] case h.h α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a x : α ⊢ ↑(symm (mulLeft a)) x = ↑(mulLeft a⁻¹) x [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Order.Group.OrderIso", "llama_tokens": 422}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : ConditionallyCompleteLinearOrderedField α ⊢ ∀ (x : α), ∃ n, x < ↑n [PROOFSTEP] by_contra' h [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : ConditionallyCompleteLinearOrderedField α h : ∃ x, ∀ (n : ℕ), ↑n ≤ x ⊢ False [PROOFSTEP] obtain ⟨x, h⟩ := h [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : ConditionallyCompleteLinearOrderedField α x : α h : ∀ (n : ℕ), ↑n ≤ x ⊢ False [PROOFSTEP] have := csSup_le _ _ (range_nonempty Nat.cast) (forall_range_iff.2 fun m => le_sub_iff_add_le.2 <| le_csSup _ _ ⟨x, forall_range_iff.2 h⟩ ⟨m + 1, Nat.cast_succ m⟩) [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : ConditionallyCompleteLinearOrderedField α x : α h : ∀ (n : ℕ), ↑n ≤ x this : sSup (range Nat.cast) ≤ sSup (range fun i => ↑i) - 1 ⊢ False [PROOFSTEP] linarith [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : LinearOrderedField α inst✝ : DivisionRing β a✝ a₁ a₂ : α b : β q : ℚ a : α ⊢ cutMap α a = Iio a ∩ range Rat.cast [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : LinearOrderedField α inst✝ : DivisionRing β a✝ a₁ a₂ : α b : β q : ℚ a x✝ : α ⊢ x✝ ∈ cutMap α a ↔ x✝ ∈ Iio a ∩ range Rat.cast [PROOFSTEP] constructor [GOAL] case h.mp F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : LinearOrderedField α inst✝ : DivisionRing β a✝ a₁ a₂ : α b : β q : ℚ a x✝ : α ⊢ x✝ ∈ cutMap α a → x✝ ∈ Iio a ∩ range Rat.cast [PROOFSTEP] rintro ⟨q, h, rfl⟩ [GOAL] case h.mp.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : LinearOrderedField α inst✝ : DivisionRing β a✝ a₁ a₂ : α b : β q✝ : ℚ a : α q : ℚ h : q ∈ {t | ↑t < a} ⊢ ↑q ∈ Iio a ∩ range Rat.cast [PROOFSTEP] exact ⟨h, q, rfl⟩ [GOAL] case h.mpr F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : LinearOrderedField α inst✝ : DivisionRing β a✝ a₁ a₂ : α b : β q : ℚ a x✝ : α ⊢ x✝ ∈ Iio a ∩ range Rat.cast → x✝ ∈ cutMap α a [PROOFSTEP] rintro ⟨h, q, rfl⟩ [GOAL] case h.mpr.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : LinearOrderedField α inst✝ : DivisionRing β a✝ a₁ a₂ : α b : β q✝ : ℚ a : α q : ℚ h : ↑q ∈ Iio a ⊢ ↑q ∈ cutMap α a [PROOFSTEP] exact ⟨q, h, rfl⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : LinearOrderedField α inst✝ : LinearOrderedField β a a₁ a₂ : α b : β q✝ q : ℚ ⊢ cutMap β ↑q = Rat.cast '' {r | ↑r < ↑q} [PROOFSTEP] simp_rw [cutMap, Rat.cast_lt] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b : β q : ℚ inst✝ : Archimedean α a : α ⊢ BddAbove (cutMap β a) [PROOFSTEP] obtain ⟨q, hq⟩ := exists_rat_gt a [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b : β q✝ : ℚ inst✝ : Archimedean α a : α q : ℚ hq : a < ↑q ⊢ BddAbove (cutMap β a) [PROOFSTEP] exact ⟨q, ball_image_iff.2 fun r hr => by exact_mod_cast (hq.trans' hr).le⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b : β q✝ : ℚ inst✝ : Archimedean α a : α q : ℚ hq : a < ↑q r : ℚ hr : r ∈ {t | ↑t < a} ⊢ ↑r ≤ ↑q [PROOFSTEP] exact_mod_cast (hq.trans' hr).le [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b✝ : β q : ℚ inst✝ : Archimedean α a b : α ⊢ cutMap β (a + b) = cutMap β a + cutMap β b [PROOFSTEP] refine (image_subset_iff.2 fun q hq => ?_).antisymm ?_ [GOAL] case refine_1 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b✝ : β q✝ : ℚ inst✝ : Archimedean α a b : α q : ℚ hq : q ∈ {t | ↑t < a + b} ⊢ q ∈ Rat.cast ⁻¹' (cutMap β a + cutMap β b) [PROOFSTEP] rw [mem_setOf_eq, ← sub_lt_iff_lt_add] at hq [GOAL] case refine_1 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b✝ : β q✝ : ℚ inst✝ : Archimedean α a b : α q : ℚ hq : ↑q - b < a ⊢ q ∈ Rat.cast ⁻¹' (cutMap β a + cutMap β b) [PROOFSTEP] obtain ⟨q₁, hq₁q, hq₁ab⟩ := exists_rat_btwn hq [GOAL] case refine_1.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b✝ : β q✝ : ℚ inst✝ : Archimedean α a b : α q : ℚ hq : ↑q - b < a q₁ : ℚ hq₁q : ↑q - b < ↑q₁ hq₁ab : ↑q₁ < a ⊢ q ∈ Rat.cast ⁻¹' (cutMap β a + cutMap β b) [PROOFSTEP] refine ⟨q₁, q - q₁, by rwa [coe_mem_cutMap_iff], ?_, add_sub_cancel'_right _ _⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b✝ : β q✝ : ℚ inst✝ : Archimedean α a b : α q : ℚ hq : ↑q - b < a q₁ : ℚ hq₁q : ↑q - b < ↑q₁ hq₁ab : ↑q₁ < a ⊢ ↑q₁ ∈ cutMap β a [PROOFSTEP] rwa [coe_mem_cutMap_iff] [GOAL] case refine_1.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b✝ : β q✝ : ℚ inst✝ : Archimedean α a b : α q : ℚ hq : ↑q - b < a q₁ : ℚ hq₁q : ↑q - b < ↑q₁ hq₁ab : ↑q₁ < a ⊢ ↑q - ↑q₁ ∈ cutMap β b [PROOFSTEP] norm_cast [GOAL] case refine_1.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b✝ : β q✝ : ℚ inst✝ : Archimedean α a b : α q : ℚ hq : ↑q - b < a q₁ : ℚ hq₁q : ↑q - b < ↑q₁ hq₁ab : ↑q₁ < a ⊢ ↑(q - q₁) ∈ cutMap β b [PROOFSTEP] rw [coe_mem_cutMap_iff] [GOAL] case refine_1.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b✝ : β q✝ : ℚ inst✝ : Archimedean α a b : α q : ℚ hq : ↑q - b < a q₁ : ℚ hq₁q : ↑q - b < ↑q₁ hq₁ab : ↑q₁ < a ⊢ ↑(q - q₁) < b [PROOFSTEP] exact_mod_cast sub_lt_comm.mp hq₁q [GOAL] case refine_2 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b✝ : β q : ℚ inst✝ : Archimedean α a b : α ⊢ cutMap β a + cutMap β b ⊆ Rat.cast '' {t | ↑t < a + b} [PROOFSTEP] rintro _ ⟨_, _, ⟨qa, ha, rfl⟩, ⟨qb, hb, rfl⟩, rfl⟩ [GOAL] case refine_2.intro.intro.intro.intro.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b✝ : β q : ℚ inst✝ : Archimedean α a b : α qa : ℚ ha : qa ∈ {t | ↑t < a} qb : ℚ hb : qb ∈ {t | ↑t < b} ⊢ (fun x x_1 => x + x_1) ↑qa ↑qb ∈ Rat.cast '' {t | ↑t < a + b} [PROOFSTEP] refine' ⟨qa + qb, _, by norm_cast⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b✝ : β q : ℚ inst✝ : Archimedean α a b : α qa : ℚ ha : qa ∈ {t | ↑t < a} qb : ℚ hb : qb ∈ {t | ↑t < b} ⊢ ↑(qa + qb) = (fun x x_1 => x + x_1) ↑qa ↑qb [PROOFSTEP] norm_cast [GOAL] case refine_2.intro.intro.intro.intro.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b✝ : β q : ℚ inst✝ : Archimedean α a b : α qa : ℚ ha : qa ∈ {t | ↑t < a} qb : ℚ hb : qb ∈ {t | ↑t < b} ⊢ qa + qb ∈ {t | ↑t < a + b} [PROOFSTEP] rw [mem_setOf_eq, cast_add] [GOAL] case refine_2.intro.intro.intro.intro.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β a✝ a₁ a₂ : α b✝ : β q : ℚ inst✝ : Archimedean α a b : α qa : ℚ ha : qa ∈ {t | ↑t < a} qb : ℚ hb : qb ∈ {t | ↑t < b} ⊢ ↑qa + ↑qb < a + b [PROOFSTEP] exact add_lt_add ha hb [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α q : ℚ ⊢ inducedMap α β ↑q = ↑q [PROOFSTEP] refine csSup_eq_of_forall_le_of_forall_lt_exists_gt (cutMap_nonempty β (q : α)) (fun x h => ?_) fun w h => ?_ [GOAL] case refine_1 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α q : ℚ x : β h : x ∈ cutMap β ↑q ⊢ x ≤ ↑q [PROOFSTEP] rw [cutMap_coe] at h [GOAL] case refine_1 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α q : ℚ x : β h : x ∈ Rat.cast '' {r | ↑r < ↑q} ⊢ x ≤ ↑q [PROOFSTEP] obtain ⟨r, h, rfl⟩ := h [GOAL] case refine_1.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α q r : ℚ h : r ∈ {r | ↑r < ↑q} ⊢ ↑r ≤ ↑q [PROOFSTEP] exact le_of_lt h [GOAL] case refine_2 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α q : ℚ w : β h : w < ↑q ⊢ ∃ a, a ∈ cutMap β ↑q ∧ w < a [PROOFSTEP] obtain ⟨q', hwq, hq⟩ := exists_rat_btwn h [GOAL] case refine_2.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α q : ℚ w : β h : w < ↑q q' : ℚ hwq : w < ↑q' hq : ↑q' < ↑q ⊢ ∃ a, a ∈ cutMap β ↑q ∧ w < a [PROOFSTEP] rw [cutMap_coe] [GOAL] case refine_2.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α q : ℚ w : β h : w < ↑q q' : ℚ hwq : w < ↑q' hq : ↑q' < ↑q ⊢ ∃ a, a ∈ Rat.cast '' {r | ↑r < ↑q} ∧ w < a [PROOFSTEP] exact ⟨q', ⟨_, hq, rfl⟩, hwq⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α ⊢ inducedMap α β 0 = 0 [PROOFSTEP] exact_mod_cast inducedMap_rat α β 0 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α ⊢ inducedMap α β 1 = 1 [PROOFSTEP] exact_mod_cast inducedMap_rat α β 1 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ ⊢ ↑q < inducedMap α β a ↔ ↑q < a [PROOFSTEP] refine ⟨fun h => ?_, fun hq => ?_⟩ [GOAL] case refine_1 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ h : ↑q < inducedMap α β a ⊢ ↑q < a [PROOFSTEP] rw [← inducedMap_rat α] at h [GOAL] case refine_1 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ h : inducedMap α β ↑q < inducedMap α β a ⊢ ↑q < a [PROOFSTEP] exact (inducedMap_mono α β).reflect_lt h [GOAL] case refine_2 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ hq : ↑q < a ⊢ ↑q < inducedMap α β a [PROOFSTEP] obtain ⟨q', hq, hqa⟩ := exists_rat_btwn hq [GOAL] case refine_2.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ hq✝ : ↑q < a q' : ℚ hq : ↑q < ↑q' hqa : ↑q' < a ⊢ ↑q < inducedMap α β a [PROOFSTEP] apply lt_csSup_of_lt (cutMap_bddAbove β a) (coe_mem_cutMap_iff.mpr hqa) [GOAL] case refine_2.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ hq✝ : ↑q < a q' : ℚ hq : ↑q < ↑q' hqa : ↑q' < a ⊢ ↑q < ↑q' [PROOFSTEP] exact_mod_cast hq [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q✝ : ℚ x✝ : ∃ q, b < ↑q ∧ ↑q < a q : ℚ hbq : b < ↑q hqa : ↑q < a ⊢ ↑q < inducedMap α β a [PROOFSTEP] rwa [coe_lt_inducedMap_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a✝ : α b : β q✝ : ℚ a : α q : ℚ ⊢ ↑q < inducedMap β γ (inducedMap α β a) ↔ ↑q < inducedMap α γ a [PROOFSTEP] rw [coe_lt_inducedMap_iff, coe_lt_inducedMap_iff, Iff.comm, coe_lt_inducedMap_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q : ℚ b : β ⊢ inducedMap γ β (inducedMap β γ b) = b [PROOFSTEP] rw [inducedMap_inducedMap, inducedMap_self] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ x y : α ⊢ inducedMap α β (x + y) = inducedMap α β x + inducedMap α β y [PROOFSTEP] rw [inducedMap, cutMap_add] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ x y : α ⊢ sSup (cutMap β x + cutMap β y) = inducedMap α β x + inducedMap α β y [PROOFSTEP] exact csSup_add (cutMap_nonempty β x) (cutMap_bddAbove β x) (cutMap_nonempty β y) (cutMap_bddAbove β y) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q : ℚ ha : 0 < a b : β hb : b ∈ cutMap β (a * a) ⊢ b ≤ inducedMap α β a * inducedMap α β a [PROOFSTEP] obtain ⟨q, hb, rfl⟩ := hb [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q✝ : ℚ ha : 0 < a q : ℚ hb : q ∈ {t | ↑t < a * a} ⊢ ↑q ≤ inducedMap α β a * inducedMap α β a [PROOFSTEP] obtain ⟨q', hq', hqq', hqa⟩ := exists_rat_pow_btwn two_ne_zero hb (mul_self_pos.2 ha.ne') [GOAL] case intro.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q✝ : ℚ ha : 0 < a q : ℚ hb : q ∈ {t | ↑t < a * a} q' : ℚ hq' : 0 < q' hqq' : ↑q < ↑q' ^ 2 hqa : ↑q' ^ 2 < a * a ⊢ ↑q ≤ inducedMap α β a * inducedMap α β a [PROOFSTEP] trans (q' : β) ^ 2 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q✝ : ℚ ha : 0 < a q : ℚ hb : q ∈ {t | ↑t < a * a} q' : ℚ hq' : 0 < q' hqq' : ↑q < ↑q' ^ 2 hqa : ↑q' ^ 2 < a * a ⊢ ↑q ≤ ↑q' ^ 2 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q✝ : ℚ ha : 0 < a q : ℚ hb : q ∈ {t | ↑t < a * a} q' : ℚ hq' : 0 < q' hqq' : ↑q < ↑q' ^ 2 hqa : ↑q' ^ 2 < a * a ⊢ ↑q' ^ 2 ≤ inducedMap α β a * inducedMap α β a [PROOFSTEP] exact_mod_cast hqq'.le [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q✝ : ℚ ha : 0 < a q : ℚ hb : q ∈ {t | ↑t < a * a} q' : ℚ hq' : 0 < q' hqq' : ↑q < ↑q' ^ 2 hqa : ↑q' ^ 2 < a * a ⊢ ↑q' ^ 2 ≤ inducedMap α β a * inducedMap α β a [PROOFSTEP] rw [pow_two] at hqa ⊢ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q✝ : ℚ ha : 0 < a q : ℚ hb : q ∈ {t | ↑t < a * a} q' : ℚ hq' : 0 < q' hqq' : ↑q < ↑q' ^ 2 hqa : ↑q' * ↑q' < a * a ⊢ ↑q' * ↑q' ≤ inducedMap α β a * inducedMap α β a [PROOFSTEP] exact mul_self_le_mul_self (by exact_mod_cast hq'.le) (le_csSup (cutMap_bddAbove β a) <| coe_mem_cutMap_iff.2 <| lt_of_mul_self_lt_mul_self ha.le hqa) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q✝ : ℚ ha : 0 < a q : ℚ hb : q ∈ {t | ↑t < a * a} q' : ℚ hq' : 0 < q' hqq' : ↑q < ↑q' ^ 2 hqa : ↑q' * ↑q' < a * a ⊢ 0 ≤ ↑q' [PROOFSTEP] exact_mod_cast hq'.le [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q : ℚ ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a ⊢ ∃ c, c ∈ cutMap β (a * a) ∧ b < c [PROOFSTEP] obtain hb | hb := lt_or_le b 0 [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q : ℚ ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : b < 0 ⊢ ∃ c, c ∈ cutMap β (a * a) ∧ b < c [PROOFSTEP] refine ⟨0, ?_, hb⟩ [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q : ℚ ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : b < 0 ⊢ 0 ∈ cutMap β (a * a) [PROOFSTEP] rw [← Rat.cast_zero, coe_mem_cutMap_iff, Rat.cast_zero] [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q : ℚ ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : b < 0 ⊢ 0 < a * a [PROOFSTEP] exact mul_self_pos.2 ha.ne' [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q : ℚ ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : 0 ≤ b ⊢ ∃ c, c ∈ cutMap β (a * a) ∧ b < c [PROOFSTEP] obtain ⟨q, hq, hbq, hqa⟩ := exists_rat_pow_btwn two_ne_zero hba (hb.trans_lt hba) [GOAL] case inr.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q✝ : ℚ ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : 0 ≤ b q : ℚ hq : 0 < q hbq : b < ↑q ^ 2 hqa : ↑q ^ 2 < inducedMap α β a * inducedMap α β a ⊢ ∃ c, c ∈ cutMap β (a * a) ∧ b < c [PROOFSTEP] rw [← cast_pow] at hbq [GOAL] case inr.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q✝ : ℚ ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : 0 ≤ b q : ℚ hq : 0 < q hbq : b < ↑(q ^ 2) hqa : ↑q ^ 2 < inducedMap α β a * inducedMap α β a ⊢ ∃ c, c ∈ cutMap β (a * a) ∧ b < c [PROOFSTEP] refine ⟨(q ^ 2 : ℚ), coe_mem_cutMap_iff.2 ?_, hbq⟩ [GOAL] case inr.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q✝ : ℚ ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : 0 ≤ b q : ℚ hq : 0 < q hbq : b < ↑(q ^ 2) hqa : ↑q ^ 2 < inducedMap α β a * inducedMap α β a ⊢ ↑(q ^ 2) < a * a [PROOFSTEP] rw [pow_two] at hqa ⊢ [GOAL] case inr.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q✝ : ℚ ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : 0 ≤ b q : ℚ hq : 0 < q hbq : b < ↑(q ^ 2) hqa : ↑q * ↑q < inducedMap α β a * inducedMap α β a ⊢ ↑(q * q) < a * a [PROOFSTEP] push_cast [GOAL] case inr.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q✝ : ℚ ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : 0 ≤ b q : ℚ hq : 0 < q hbq : b < ↑(q ^ 2) hqa : ↑q * ↑q < inducedMap α β a * inducedMap α β a ⊢ ↑q * ↑q < a * a [PROOFSTEP] obtain ⟨q', hq', hqa'⟩ := lt_inducedMap_iff.1 (lt_of_mul_self_lt_mul_self (inducedMap_nonneg ha.le) hqa) [GOAL] case inr.intro.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q✝ : ℚ ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : 0 ≤ b q : ℚ hq : 0 < q hbq : b < ↑(q ^ 2) hqa : ↑q * ↑q < inducedMap α β a * inducedMap α β a q' : ℚ hq' : ↑q < ↑q' hqa' : ↑q' < a ⊢ ↑q * ↑q < a * a [PROOFSTEP] exact mul_self_lt_mul_self (by exact_mod_cast hq.le) (hqa'.trans' <| by assumption_mod_cast) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q✝ : ℚ ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : 0 ≤ b q : ℚ hq : 0 < q hbq : b < ↑(q ^ 2) hqa : ↑q * ↑q < inducedMap α β a * inducedMap α β a q' : ℚ hq' : ↑q < ↑q' hqa' : ↑q' < a ⊢ 0 ≤ ↑q [PROOFSTEP] exact_mod_cast hq.le [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b✝ : β q✝ : ℚ ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : 0 ≤ b q : ℚ hq : 0 < q hbq : b < ↑(q ^ 2) hqa : ↑q * ↑q < inducedMap α β a * inducedMap α β a q' : ℚ hq' : ↑q < ↑q' hqa' : ↑q' < a ⊢ ↑q < ↑q' [PROOFSTEP] assumption_mod_cast [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ ⊢ ∀ (x : α), ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x [PROOFSTEP] suffices : ∀ x, 0 < x → inducedAddHom α β (x * x) = inducedAddHom α β x * inducedAddHom α β x [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ this : ∀ (x : α), 0 < x → ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x ⊢ ∀ (x : α), ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x [PROOFSTEP] intro x [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ this : ∀ (x : α), 0 < x → ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x x : α ⊢ ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x [PROOFSTEP] obtain h | rfl | h := lt_trichotomy x 0 [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ this : ∀ (x : α), 0 < x → ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x x : α h : x < 0 ⊢ ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x [PROOFSTEP] convert this (-x) (neg_pos.2 h) using 1 [GOAL] case h.e'_2 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ this : ∀ (x : α), 0 < x → ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x x : α h : x < 0 ⊢ ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) (-x * -x) [PROOFSTEP] rw [neg_mul, mul_neg, neg_neg] [GOAL] case h.e'_3 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ this : ∀ (x : α), 0 < x → ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x x : α h : x < 0 ⊢ ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x = ↑(inducedAddHom α β) (-x) * ↑(inducedAddHom α β) (-x) [PROOFSTEP] simp_rw [AddMonoidHom.map_neg, neg_mul, mul_neg, neg_neg] [GOAL] case inr.inl F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ this : ∀ (x : α), 0 < x → ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x ⊢ ↑(inducedAddHom α β) (0 * 0) = ↑(inducedAddHom α β) 0 * ↑(inducedAddHom α β) 0 [PROOFSTEP] simp only [mul_zero, AddMonoidHom.map_zero] [GOAL] case inr.inr F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ this : ∀ (x : α), 0 < x → ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x x : α h : 0 < x ⊢ ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x [PROOFSTEP] exact this x h [GOAL] case this F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ ⊢ ∀ (x : α), 0 < x → ↑(inducedAddHom α β) (x * x) = ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x [PROOFSTEP] refine fun x hx => csSup_eq_of_forall_le_of_forall_lt_exists_gt (cutMap_nonempty β _) ?_ ?_ [GOAL] case this.refine_1 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ x : α hx : 0 < x ⊢ ∀ (a : (fun x => β) (x * x)), a ∈ cutMap β (x * x) → a ≤ ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x [PROOFSTEP] exact le_inducedMap_mul_self_of_mem_cutMap hx [GOAL] case this.refine_2 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ x : α hx : 0 < x ⊢ ∀ (w : (fun x => β) (x * x)), w < ↑(inducedAddHom α β) x * ↑(inducedAddHom α β) x → ∃ a, a ∈ cutMap β (x * x) ∧ w < a [PROOFSTEP] exact exists_mem_cutMap_mul_self_of_lt_inducedMap_mul_self hx [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ src✝ : β →+*o γ := inducedOrderRingHom β γ ⊢ ∀ {a b : β}, Equiv.toFun { toEquiv := { toFun := src✝.toFun, invFun := inducedMap γ β, left_inv := (_ : ∀ (b : β), inducedMap γ β (inducedMap β γ b) = b), right_inv := (_ : ∀ (b : γ), inducedMap β γ (inducedMap γ β b) = b) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun (↑↑src✝.toRingHom) (x * y) = OneHom.toFun (↑↑src✝.toRingHom) x * OneHom.toFun (↑↑src✝.toRingHom) y), map_add' := (_ : ∀ (x y : β), OneHom.toFun (↑↑src✝.toRingHom) (x + y) = OneHom.toFun (↑↑src✝.toRingHom) x + OneHom.toFun (↑↑src✝.toRingHom) y) }.toEquiv a ≤ Equiv.toFun { toEquiv := { toFun := src✝.toFun, invFun := inducedMap γ β, left_inv := (_ : ∀ (b : β), inducedMap γ β (inducedMap β γ b) = b), right_inv := (_ : ∀ (b : γ), inducedMap β γ (inducedMap γ β b) = b) }, map_mul' := (_ : ∀ (x y : β), OneHom.toFun (↑↑src✝.toRingHom) (x * y) = OneHom.toFun (↑↑src✝.toRingHom) x * OneHom.toFun (↑↑src✝.toRingHom) y), map_add' := (_ : ∀ (x y : β), OneHom.toFun (↑↑src✝.toRingHom) (x + y) = OneHom.toFun (↑↑src✝.toRingHom) x + OneHom.toFun (↑↑src✝.toRingHom) y) }.toEquiv b ↔ a ≤ b [PROOFSTEP] dsimp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ src✝ : β →+*o γ := inducedOrderRingHom β γ ⊢ ∀ {a b : β}, ↑(inducedOrderRingHom β γ).toRingHom a ≤ ↑(inducedOrderRingHom β γ).toRingHom b ↔ a ≤ b [PROOFSTEP] refine ⟨fun h => ?_, fun h => inducedMap_mono _ _ h⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ src✝ : β →+*o γ := inducedOrderRingHom β γ a✝ b✝ : β h : ↑(inducedOrderRingHom β γ).toRingHom a✝ ≤ ↑(inducedOrderRingHom β γ).toRingHom b✝ ⊢ a✝ ≤ b✝ [PROOFSTEP] convert inducedMap_mono γ β h [GOAL] case h.e'_3 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ src✝ : β →+*o γ := inducedOrderRingHom β γ a✝ b✝ : β h : ↑(inducedOrderRingHom β γ).toRingHom a✝ ≤ ↑(inducedOrderRingHom β γ).toRingHom b✝ ⊢ a✝ = inducedMap γ β (↑(inducedOrderRingHom β γ).toRingHom a✝) [PROOFSTEP] rw [inducedOrderRingHom, AddMonoidHom.coe_fn_mkRingHomOfMulSelfOfTwoNeZero, inducedAddHom] [GOAL] case h.e'_3 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ src✝ : β →+*o γ := inducedOrderRingHom β γ a✝ b✝ : β h : ↑(inducedOrderRingHom β γ).toRingHom a✝ ≤ ↑(inducedOrderRingHom β γ).toRingHom b✝ ⊢ a✝ = inducedMap γ β (↑{ toZeroHom := { toFun := inducedMap β γ, map_zero' := (_ : inducedMap β γ 0 = 0) }, map_add' := (_ : ∀ (x y : β), inducedMap β γ (x + y) = inducedMap β γ x + inducedMap β γ y) } a✝) [PROOFSTEP] dsimp [GOAL] case h.e'_3 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ src✝ : β →+*o γ := inducedOrderRingHom β γ a✝ b✝ : β h : ↑(inducedOrderRingHom β γ).toRingHom a✝ ≤ ↑(inducedOrderRingHom β γ).toRingHom b✝ ⊢ a✝ = inducedMap γ β (inducedMap β γ a✝) [PROOFSTEP] rw [inducedMap_inv_self β γ _] [GOAL] case h.e'_4 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ src✝ : β →+*o γ := inducedOrderRingHom β γ a✝ b✝ : β h : ↑(inducedOrderRingHom β γ).toRingHom a✝ ≤ ↑(inducedOrderRingHom β γ).toRingHom b✝ ⊢ b✝ = inducedMap γ β (↑(inducedOrderRingHom β γ).toRingHom b✝) [PROOFSTEP] rw [inducedOrderRingHom, AddMonoidHom.coe_fn_mkRingHomOfMulSelfOfTwoNeZero, inducedAddHom] [GOAL] case h.e'_4 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ src✝ : β →+*o γ := inducedOrderRingHom β γ a✝ b✝ : β h : ↑(inducedOrderRingHom β γ).toRingHom a✝ ≤ ↑(inducedOrderRingHom β γ).toRingHom b✝ ⊢ b✝ = inducedMap γ β (↑{ toZeroHom := { toFun := inducedMap β γ, map_zero' := (_ : inducedMap β γ 0 = 0) }, map_add' := (_ : ∀ (x y : β), inducedMap β γ (x + y) = inducedMap β γ x + inducedMap β γ y) } b✝) [PROOFSTEP] dsimp [GOAL] case h.e'_4 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : LinearOrderedField α inst✝² : ConditionallyCompleteLinearOrderedField β inst✝¹ : ConditionallyCompleteLinearOrderedField γ inst✝ : Archimedean α a : α b : β q : ℚ src✝ : β →+*o γ := inducedOrderRingHom β γ a✝ b✝ : β h : ↑(inducedOrderRingHom β γ).toRingHom a✝ ≤ ↑(inducedOrderRingHom β γ).toRingHom b✝ ⊢ b✝ = inducedMap γ β (inducedMap β γ b✝) [PROOFSTEP] rw [inducedMap_inv_self β γ _] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 R : Type u_5 S : Type u_6 inst✝¹ : OrderedRing R inst✝ : LinearOrderedRing S hR : ∀ (r : R), 0 ≤ r → ∃ s, s ^ 2 = r f : R →+* S r : R h : 0 ≤ r ⊢ 0 ≤ ↑f r [PROOFSTEP] obtain ⟨s, rfl⟩ := hR r h [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 R : Type u_5 S : Type u_6 inst✝¹ : OrderedRing R inst✝ : LinearOrderedRing S hR : ∀ (r : R), 0 ≤ r → ∃ s, s ^ 2 = r f : R →+* S s : R h : 0 ≤ s ^ 2 ⊢ 0 ≤ ↑f (s ^ 2) [PROOFSTEP] rw [map_pow] [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 R : Type u_5 S : Type u_6 inst✝¹ : OrderedRing R inst✝ : LinearOrderedRing S hR : ∀ (r : R), 0 ≤ r → ∃ s, s ^ 2 = r f : R →+* S s : R h : 0 ≤ s ^ 2 ⊢ 0 ≤ ↑f s ^ 2 [PROOFSTEP] apply sq_nonneg
{"mathlib_filename": "Mathlib.Algebra.Order.CompleteField", "llama_tokens": 18288}
{"mathlib_filename": "Mathlib.Algebra.Order.Group.Units", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Algebra.Order.Group.Prod", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α h : a ≤ b ⊢ a + (b - a) = b [PROOFSTEP] refine' le_antisymm _ le_add_tsub [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α h : a ≤ b ⊢ a + (b - a) ≤ b [PROOFSTEP] obtain ⟨c, rfl⟩ := exists_add_of_le h [GOAL] case intro α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a c✝ d c : α h : a ≤ a + c ⊢ a + (a + c - a) ≤ a + c [PROOFSTEP] exact add_le_add_left add_tsub_le_left a [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α h : a ≤ b ⊢ b - a + a = b [PROOFSTEP] rw [add_comm] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α h : a ≤ b ⊢ a + (b - a) = b [PROOFSTEP] exact add_tsub_cancel_of_le h [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α h : c ≤ b ⊢ a - c ≤ b - c ↔ a ≤ b [PROOFSTEP] rw [tsub_le_iff_right, tsub_add_cancel_of_le h] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α h1 : c ≤ a h2 : c ≤ b ⊢ a - c = b - c ↔ a = b [PROOFSTEP] simp_rw [le_antisymm_iff, tsub_le_tsub_iff_right h1, tsub_le_tsub_iff_right h2] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α h : c ≤ b h2 : a - c < b - c ⊢ a < b [PROOFSTEP] refine' ((tsub_le_tsub_iff_right h).mp h2.le).lt_of_ne _ [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α h : c ≤ b h2 : a - c < b - c ⊢ a ≠ b [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a c d : α h : c ≤ a h2 : a - c < a - c ⊢ False [PROOFSTEP] exact h2.false [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hab : b ≤ a hcb : c ≤ b ⊢ a - b + (b - c) = a - c [PROOFSTEP] convert tsub_add_cancel_of_le (tsub_le_tsub_right hab c) using 2 [GOAL] case h.e'_2.h.e'_5 α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hab : b ≤ a hcb : c ≤ b ⊢ a - b = a - c - (b - c) [PROOFSTEP] rw [tsub_tsub, add_tsub_cancel_of_le hcb] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α h : c ≤ b ⊢ a - c - (b - c) = a - b [PROOFSTEP] rw [tsub_tsub, add_tsub_cancel_of_le h] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hc : AddLECancellable c h : c ≤ b ⊢ a = b - c → a + c = b [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α b c d : α hc : AddLECancellable c h : c ≤ b ⊢ b - c + c = b [PROOFSTEP] exact tsub_add_cancel_of_le h [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b h : b ≤ a ⊢ a - b = c ↔ a = c + b [PROOFSTEP] rw [eq_comm, hb.eq_tsub_iff_add_eq_of_le h, eq_comm] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a✝ b c d : α hc : AddLECancellable c h : c ≤ b a : α ⊢ a + b - c = a + (b - c) [PROOFSTEP] conv_lhs => rw [← add_tsub_cancel_of_le h, add_comm c, ← add_assoc, hc.add_tsub_cancel_right] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a✝ b c d : α hc : AddLECancellable c h : c ≤ b a : α | a + b - c [PROOFSTEP] rw [← add_tsub_cancel_of_le h, add_comm c, ← add_assoc, hc.add_tsub_cancel_right] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a✝ b c d : α hc : AddLECancellable c h : c ≤ b a : α | a + b - c [PROOFSTEP] rw [← add_tsub_cancel_of_le h, add_comm c, ← add_assoc, hc.add_tsub_cancel_right] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a✝ b c d : α hc : AddLECancellable c h : c ≤ b a : α | a + b - c [PROOFSTEP] rw [← add_tsub_cancel_of_le h, add_comm c, ← add_assoc, hc.add_tsub_cancel_right] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b h : b ≤ a ⊢ a - b + c = a + c - b [PROOFSTEP] rw [add_comm a, hb.add_tsub_assoc_of_le h, add_comm] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hbc : AddLECancellable (b - c) h₁ : b ≤ a h₂ : c ≤ b ⊢ a = a - b + c + (b - c) [PROOFSTEP] rw [add_assoc, add_tsub_cancel_of_le h₂, tsub_add_cancel_of_le h₁] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b hd : AddLECancellable d hba : b ≤ a hdc : d ≤ c ⊢ a - b + (c - d) = a + c - (b + d) [PROOFSTEP] rw [hb.tsub_add_eq_add_tsub hba, ← hd.add_tsub_assoc_of_le hdc, tsub_tsub, add_comm d] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ha : AddLECancellable a h : a ≤ c ⊢ b ≤ c - a ↔ b + a ≤ c [PROOFSTEP] rw [add_comm] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ha : AddLECancellable a h : a ≤ c ⊢ b ≤ c - a ↔ a + b ≤ c [PROOFSTEP] exact ha.le_tsub_iff_left h [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b hba : b ≤ a ⊢ a - b < c ↔ a < b + c [PROOFSTEP] refine' ⟨hb.lt_add_of_tsub_lt_left, _⟩ [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b hba : b ≤ a ⊢ a < b + c → a - b < c [PROOFSTEP] intro h [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b hba : b ≤ a h : a < b + c ⊢ a - b < c [PROOFSTEP] refine' (tsub_le_iff_left.mpr h.le).lt_of_ne _ [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b hba : b ≤ a h : a < b + c ⊢ a - b ≠ c [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b d : α hb : AddLECancellable b hba : b ≤ a h : a < b + (a - b) ⊢ False [PROOFSTEP] exact h.ne' (add_tsub_cancel_of_le hba) [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b hba : b ≤ a ⊢ a - b < c ↔ a < c + b [PROOFSTEP] rw [add_comm] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b hba : b ≤ a ⊢ a - b < c ↔ a < b + c [PROOFSTEP] exact hb.tsub_lt_iff_left hba [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b hc : AddLECancellable c h₁ : b ≤ a h₂ : c ≤ a ⊢ a - b < c ↔ a - c < b [PROOFSTEP] rw [hb.tsub_lt_iff_left h₁, hc.tsub_lt_iff_right h₂] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ha : AddLECancellable a hc : AddLECancellable c h₁ : a ≤ b h₂ : c ≤ b ⊢ a ≤ b - c ↔ c ≤ b - a [PROOFSTEP] rw [ha.le_tsub_iff_left h₁, hc.le_tsub_iff_right h₂] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hc : AddLECancellable c h : c ≤ b ⊢ a < b - c ↔ a + c < b [PROOFSTEP] refine' ⟨fun h' => (add_le_of_le_tsub_right_of_le h h'.le).lt_of_ne _, hc.lt_tsub_of_add_lt_right⟩ [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hc : AddLECancellable c h : c ≤ b h' : a < b - c ⊢ a + c ≠ b [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a c d : α hc : AddLECancellable c h : c ≤ a + c h' : a < a + c - c ⊢ False [PROOFSTEP] exact h'.ne' hc.add_tsub_cancel_right [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hc : AddLECancellable c h : c ≤ b ⊢ a < b - c ↔ c + a < b [PROOFSTEP] rw [add_comm] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hc : AddLECancellable c h : c ≤ b ⊢ a < b - c ↔ a + c < b [PROOFSTEP] exact hc.lt_tsub_iff_right_of_le h [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hab : AddLECancellable (a - b) h₁ : b ≤ a h₂ : c ≤ a h₃ : a - b = a - c ⊢ b = c [PROOFSTEP] rw [← hab.inj] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hab : AddLECancellable (a - b) h₁ : b ≤ a h₂ : c ≤ a h₃ : a - b = a - c ⊢ a - b + b = a - b + c [PROOFSTEP] rw [tsub_add_cancel_of_le h₁, h₃, tsub_add_cancel_of_le h₂] [GOAL] α : Type u_1 inst✝⁶ : AddCommSemigroup α inst✝⁵ : PartialOrder α inst✝⁴ : ExistsAddOfLE α inst✝³ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 hb : AddLECancellable b hca : c ≤ a h : a - b < a - c ⊢ c < b [PROOFSTEP] conv_lhs at h => rw [← tsub_add_cancel_of_le hca] [GOAL] α : Type u_1 inst✝⁶ : AddCommSemigroup α inst✝⁵ : PartialOrder α inst✝⁴ : ExistsAddOfLE α inst✝³ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 hb : AddLECancellable b hca : c ≤ a h : a - b < a - c | a - b [PROOFSTEP] rw [← tsub_add_cancel_of_le hca] [GOAL] α : Type u_1 inst✝⁶ : AddCommSemigroup α inst✝⁵ : PartialOrder α inst✝⁴ : ExistsAddOfLE α inst✝³ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 hb : AddLECancellable b hca : c ≤ a h : a - b < a - c | a - b [PROOFSTEP] rw [← tsub_add_cancel_of_le hca] [GOAL] α : Type u_1 inst✝⁶ : AddCommSemigroup α inst✝⁵ : PartialOrder α inst✝⁴ : ExistsAddOfLE α inst✝³ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 hb : AddLECancellable b hca : c ≤ a h : a - b < a - c | a - b [PROOFSTEP] rw [← tsub_add_cancel_of_le hca] [GOAL] α : Type u_1 inst✝⁶ : AddCommSemigroup α inst✝⁵ : PartialOrder α inst✝⁴ : ExistsAddOfLE α inst✝³ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 hb : AddLECancellable b hca : c ≤ a h : a - c + c - b < a - c ⊢ c < b [PROOFSTEP] exact lt_of_add_lt_add_left (hb.lt_add_of_tsub_lt_right h) [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hc : AddLECancellable c h : c ≤ a h2 : a < b ⊢ a - c < b - c [PROOFSTEP] apply hc.lt_tsub_of_add_lt_left [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hc : AddLECancellable c h : c ≤ a h2 : a < b ⊢ c + (a - c) < b [PROOFSTEP] rwa [add_tsub_cancel_of_le h] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hac : AddLECancellable (a - c) h : c ≤ a ⊢ a + b = b + c + (a - c) [PROOFSTEP] rw [add_assoc, add_tsub_cancel_of_le h, add_comm] [GOAL] α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hab : AddLECancellable (a - b) h : b ≤ a ⊢ a - c - (a - b) = b - c [PROOFSTEP] rw [tsub_right_comm, hab.tsub_tsub_cancel_of_le h] [GOAL] α : Type u_1 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ b - a + a = b ↔ a ≤ b [PROOFSTEP] rw [add_comm] [GOAL] α : Type u_1 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ a + (b - a) = b ↔ a ≤ b [PROOFSTEP] exact add_tsub_cancel_iff_le [GOAL] α : Type u_1 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ a - b = 0 ↔ a ≤ b [PROOFSTEP] rw [← nonpos_iff_eq_zero, tsub_le_iff_left, add_zero] [GOAL] α : Type u_1 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ 0 < a - b ↔ ¬a ≤ b [PROOFSTEP] rw [pos_iff_ne_zero, Ne.def, tsub_eq_zero_iff_le] [GOAL] α : Type u_1 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ha : AddLECancellable a hc : AddLECancellable c h : c ≤ a ⊢ a - b ≤ a - c ↔ c ≤ b [PROOFSTEP] refine' ⟨_, fun h => tsub_le_tsub_left h a⟩ [GOAL] α : Type u_1 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ha : AddLECancellable a hc : AddLECancellable c h : c ≤ a ⊢ a - b ≤ a - c → c ≤ b [PROOFSTEP] rw [tsub_le_iff_left, ← hc.add_tsub_assoc_of_le h, hc.le_tsub_iff_right (h.trans le_add_self), add_comm b] [GOAL] α : Type u_1 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ha : AddLECancellable a hc : AddLECancellable c h : c ≤ a ⊢ a + c ≤ a + b → c ≤ b [PROOFSTEP] apply ha [GOAL] α : Type u_1 inst✝² : CanonicallyOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ha : AddLECancellable a hb : AddLECancellable b hc : AddLECancellable c hba : b ≤ a hca : c ≤ a ⊢ a - b = a - c ↔ b = c [PROOFSTEP] simp_rw [le_antisymm_iff, ha.tsub_le_tsub_iff_left hb hba, ha.tsub_le_tsub_iff_left hc hca, and_comm] [GOAL] α : Type u_1 inst✝³ : CanonicallyOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α a b c d : α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ AddCommMonoid α [PROOFSTEP] infer_instance [GOAL] α : Type u_1 inst✝³ : CanonicallyOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α a✝ b✝ c✝ d : α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 src✝ : AddCommMonoid α := inferInstance a b c : α h : a + b = a + c ⊢ b = c [PROOFSTEP] simpa only [add_tsub_cancel_left] using congr_arg (fun x => x - a) h [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ 0 < a - b ↔ b < a [PROOFSTEP] rw [tsub_pos_iff_not_le, not_le] [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a✝ b✝ c d a b : α ⊢ a - b = a - min a b [PROOFSTEP] cases' le_total a b with h h [GOAL] case inl α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a✝ b✝ c d a b : α h : a ≤ b ⊢ a - b = a - min a b [PROOFSTEP] rw [min_eq_left h, tsub_self, tsub_eq_zero_of_le h] [GOAL] case inr α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a✝ b✝ c d a b : α h : b ≤ a ⊢ a - b = a - min a b [PROOFSTEP] rw [min_eq_right h] [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hc : AddLECancellable c h : c ≤ a ⊢ a - c < b - c ↔ a < b [PROOFSTEP] rw [hc.lt_tsub_iff_left, add_tsub_cancel_of_le h] [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ha : AddLECancellable a h₁ : 0 < a h₂ : 0 < b ⊢ a - b < a [PROOFSTEP] refine' tsub_le_self.lt_of_ne fun h => _ [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ha : AddLECancellable a h₁ : 0 < a h₂ : 0 < b h : a - b = a ⊢ False [PROOFSTEP] rw [← h, tsub_pos_iff_lt] at h₁ [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ha : AddLECancellable a h₁ : b < a h₂ : 0 < b h : a - b = a ⊢ False [PROOFSTEP] exact h₂.not_le (ha.add_le_iff_nonpos_left.1 <| add_le_of_le_tsub_left_of_le h₁.le h.ge) [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ha : AddLECancellable a ⊢ a - b < a ↔ 0 < a ∧ 0 < b [PROOFSTEP] refine' ⟨fun h => ⟨(zero_le _).trans_lt h, (zero_le b).lt_of_ne _⟩, fun h => ha.tsub_lt_self h.1 h.2⟩ [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ha : AddLECancellable a h : a - b < a ⊢ 0 ≠ b [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a c d : α ha : AddLECancellable a h : a - 0 < a ⊢ False [PROOFSTEP] rw [tsub_zero] at h [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a c d : α ha : AddLECancellable a h : a < a ⊢ False [PROOFSTEP] exact h.false [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ a - b + b = max a b [PROOFSTEP] cases' le_total a b with h h [GOAL] case inl α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α h : a ≤ b ⊢ a - b + b = max a b [PROOFSTEP] rw [max_eq_right h, tsub_eq_zero_of_le h, zero_add] [GOAL] case inr α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α h : b ≤ a ⊢ a - b + b = max a b [PROOFSTEP] rw [max_eq_left h, tsub_add_cancel_of_le h] [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ a + (b - a) = max a b [PROOFSTEP] rw [add_comm, max_comm, tsub_add_eq_max] [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ a - min a b = a - b [PROOFSTEP] cases' le_total a b with h h [GOAL] case inl α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α h : a ≤ b ⊢ a - min a b = a - b [PROOFSTEP] rw [min_eq_left h, tsub_self, tsub_eq_zero_of_le h] [GOAL] case inr α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α h : b ≤ a ⊢ a - min a b = a - b [PROOFSTEP] rw [min_eq_right h] [GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ a - b + min a b = a [PROOFSTEP] rw [← tsub_min, @tsub_add_cancel_of_le] [GOAL] case h α : Type u_1 inst✝² : CanonicallyLinearOrderedAddMonoid α inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α ⊢ min a b ≤ a [PROOFSTEP] apply min_le_left
{"mathlib_filename": "Mathlib.Algebra.Order.Sub.Canonical", "llama_tokens": 12336}
{"mathlib_filename": "Mathlib.Algebra.Order.Nonneg.Field", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Algebra.Order.Group.InjSurj", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a b c d : α src✝¹ : LinearOrderedAddCommMonoidWithTop (WithTop α) := linearOrderedAddCommMonoidWithTop src✝ : Nontrivial (Option α) := Option.nontrivial ⊢ ∀ (a : WithTop α), a ≠ ⊤ → a + -a = 0 [PROOFSTEP] rintro (a | a) ha [GOAL] case none α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a b c d : α src✝¹ : LinearOrderedAddCommMonoidWithTop (WithTop α) := linearOrderedAddCommMonoidWithTop src✝ : Nontrivial (Option α) := Option.nontrivial ha : none ≠ ⊤ ⊢ none + -none = 0 [PROOFSTEP] exact (ha rfl).elim [GOAL] case some α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b c d : α src✝¹ : LinearOrderedAddCommMonoidWithTop (WithTop α) := linearOrderedAddCommMonoidWithTop src✝ : Nontrivial (Option α) := Option.nontrivial a : α ha : Option.some a ≠ ⊤ ⊢ Option.some a + -Option.some a = 0 [PROOFSTEP] exact WithTop.coe_add.symm.trans (WithTop.coe_eq_coe.2 (add_neg_self a))
{"mathlib_filename": "Mathlib.Algebra.Order.Group.WithTop", "llama_tokens": 408}
{"mathlib_filename": "Mathlib.Algebra.Order.Group.Instances", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝¹ : AddGroup α inst✝ : LinearOrder α a : α ⊢ |(-a)| = |a| [PROOFSTEP] rw [abs_eq_max_neg, max_comm, neg_neg, abs_eq_max_neg] [GOAL] α : Type u_1 inst✝¹ : AddGroup α inst✝ : LinearOrder α a b : α h : |a| = b ⊢ a = b ∨ a = -b [PROOFSTEP] simpa only [← h, eq_comm (a := |a|), neg_eq_iff_eq_neg] using abs_choice a [GOAL] α : Type u_1 inst✝¹ : AddGroup α inst✝ : LinearOrder α a b : α ⊢ |a| = |b| ↔ a = b ∨ a = -b [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 α : Type u_1 inst✝¹ : AddGroup α inst✝ : LinearOrder α a b : α h : |a| = |b| ⊢ a = b ∨ a = -b [PROOFSTEP] obtain rfl | rfl := eq_or_eq_neg_of_abs_eq h [GOAL] case refine'_1.inl α : Type u_1 inst✝¹ : AddGroup α inst✝ : LinearOrder α b : α h : |(|b|)| = |b| ⊢ |b| = b ∨ |b| = -b [PROOFSTEP] simpa only [neg_eq_iff_eq_neg (a := |b|), neg_inj, or_comm] using abs_choice b [GOAL] case refine'_1.inr α : Type u_1 inst✝¹ : AddGroup α inst✝ : LinearOrder α b : α h : |(-|b|)| = |b| ⊢ -|b| = b ∨ -|b| = -b [PROOFSTEP] simpa only [neg_eq_iff_eq_neg (a := |b|), neg_inj, or_comm] using abs_choice b [GOAL] case refine'_2 α : Type u_1 inst✝¹ : AddGroup α inst✝ : LinearOrder α a b : α h : a = b ∨ a = -b ⊢ |a| = |b| [PROOFSTEP] cases' h with h h [GOAL] case refine'_2.inl α : Type u_1 inst✝¹ : AddGroup α inst✝ : LinearOrder α a b : α h : a = b ⊢ |a| = |b| [PROOFSTEP] simp [h, abs_neg] [GOAL] case refine'_2.inr α : Type u_1 inst✝¹ : AddGroup α inst✝ : LinearOrder α a b : α h : a = -b ⊢ |a| = |b| [PROOFSTEP] simp [h, abs_neg] [GOAL] α : Type u_1 inst✝² : AddGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b c : α ha : 0 ≤ a hab : a ≤ b ⊢ |a| ≤ |b| [PROOFSTEP] rwa [abs_of_nonneg ha, abs_of_nonneg (ha.trans hab)] [GOAL] α : Type u_1 inst✝² : AddGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ 0 < |a| ↔ a ≠ 0 [PROOFSTEP] rcases lt_trichotomy a 0 with (ha | rfl | ha) [GOAL] case inl α : Type u_1 inst✝² : AddGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b c : α ha : a < 0 ⊢ 0 < |a| ↔ a ≠ 0 [PROOFSTEP] simp [abs_of_neg ha, neg_pos, ha.ne, ha] [GOAL] case inr.inl α : Type u_1 inst✝² : AddGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b c : α ⊢ 0 < |0| ↔ 0 ≠ 0 [PROOFSTEP] simp [GOAL] case inr.inr α : Type u_1 inst✝² : AddGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b c : α ha : 0 < a ⊢ 0 < |a| ↔ a ≠ 0 [PROOFSTEP] simp [abs_of_pos ha, ha, ha.ne.symm] [GOAL] α : Type u_1 inst✝² : AddGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b c a : α ⊢ -|a| ≤ a [PROOFSTEP] cases' le_total 0 a with h h [GOAL] case inl α : Type u_1 inst✝² : AddGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b c a : α h : 0 ≤ a ⊢ -|a| ≤ a [PROOFSTEP] calc -|a| = -a := congr_arg Neg.neg (abs_of_nonneg h) _ ≤ 0 := (neg_nonpos.mpr h) _ ≤ a := h [GOAL] case inr α : Type u_1 inst✝² : AddGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b c a : α h : a ≤ 0 ⊢ -|a| ≤ a [PROOFSTEP] calc -|a| = - -a := congr_arg Neg.neg (abs_of_nonpos h) _ ≤ a := (neg_neg a).le [GOAL] α : Type u_1 inst✝² : AddGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b c a : α ⊢ 0 ≤ a + |a| [PROOFSTEP] rw [← add_right_neg a] [GOAL] α : Type u_1 inst✝² : AddGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b c a : α ⊢ a + -a ≤ a + |a| [PROOFSTEP] apply add_le_add_left [GOAL] case bc α : Type u_1 inst✝² : AddGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b c a : α ⊢ -a ≤ |a| [PROOFSTEP] exact neg_le_abs_self a [GOAL] α : Type u_1 inst✝² : AddGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b c a : α ⊢ -|a| ≤ -a [PROOFSTEP] simpa using neg_abs_le_self (-a) [GOAL] α : Type u_1 inst✝³ : AddGroup α inst✝² : LinearOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b c : α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ha : a ≤ 0 hab : b ≤ a ⊢ |a| ≤ |b| [PROOFSTEP] rw [abs_of_nonpos ha, abs_of_nonpos (hab.trans ha)] [GOAL] α : Type u_1 inst✝³ : AddGroup α inst✝² : LinearOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b c : α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ha : a ≤ 0 hab : b ≤ a ⊢ -a ≤ -b [PROOFSTEP] exact neg_le_neg_iff.mpr hab [GOAL] α : Type u_1 inst✝³ : AddGroup α inst✝² : LinearOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b c : α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ -a < b ∧ a < b ↔ -b < a ∧ a < b [PROOFSTEP] rw [neg_lt] [GOAL] α : Type u_1 inst✝³ : AddGroup α inst✝² : LinearOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b✝ c : α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ max a b - min a b = |a - b| [PROOFSTEP] cases' le_total a b with ab ba [GOAL] case inl α : Type u_1 inst✝³ : AddGroup α inst✝² : LinearOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b✝ c : α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : α ab : a ≤ b ⊢ max a b - min a b = |a - b| [PROOFSTEP] rw [max_eq_right ab, min_eq_left ab, abs_of_nonpos, neg_sub] [GOAL] case inl α : Type u_1 inst✝³ : AddGroup α inst✝² : LinearOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b✝ c : α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : α ab : a ≤ b ⊢ a - b ≤ 0 [PROOFSTEP] rwa [sub_nonpos] [GOAL] case inr α : Type u_1 inst✝³ : AddGroup α inst✝² : LinearOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b✝ c : α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : α ba : b ≤ a ⊢ max a b - min a b = |a - b| [PROOFSTEP] rw [max_eq_left ba, min_eq_right ba, abs_of_nonneg] [GOAL] case inr α : Type u_1 inst✝³ : AddGroup α inst✝² : LinearOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b✝ c : α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : α ba : b ≤ a ⊢ 0 ≤ a - b [PROOFSTEP] rwa [sub_nonneg] [GOAL] α : Type u_1 inst✝³ : AddGroup α inst✝² : LinearOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b✝ c : α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ max a b - min a b = |b - a| [PROOFSTEP] rw [abs_sub_comm] [GOAL] α : Type u_1 inst✝³ : AddGroup α inst✝² : LinearOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a✝ b✝ c : α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ max a b - min a b = |a - b| [PROOFSTEP] exact max_sub_min_eq_abs' _ _ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a b c d : α ⊢ |a| ≤ b ↔ -b ≤ a ∧ a ≤ b [PROOFSTEP] rw [abs_le', and_comm, @neg_le α] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a b c d : α ⊢ a ≤ |b| ↔ b ≤ -a ∨ a ≤ b [PROOFSTEP] rw [le_abs, or_comm, @le_neg α] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c d a b : α ⊢ |a| ≤ |b| + |b + a| [PROOFSTEP] simpa using abs_add (-b) (b + a) [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c d a b : α ⊢ |a - b| ≤ |a| + |b| [PROOFSTEP] rw [sub_eq_add_neg, ← abs_neg b] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c d a b : α ⊢ |a + -b| ≤ |a| + |(-b)| [PROOFSTEP] exact abs_add a _ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a b c d : α ⊢ |a - b| ≤ c ↔ a - b ≤ c ∧ b - a ≤ c [PROOFSTEP] rw [abs_le, neg_le_sub_iff_le_add, sub_le_iff_le_add', and_comm, sub_le_iff_le_add'] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a b c d : α ⊢ |a - b| < c ↔ a - b < c ∧ b - a < c [PROOFSTEP] rw [@abs_lt α, neg_lt_sub_iff_lt_add', sub_lt_iff_lt_add', and_comm, sub_lt_iff_lt_add'] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c d a b : α ⊢ |a| = |a - b + b| [PROOFSTEP] rw [sub_add_cancel] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c d a b : α ⊢ |b| - |a| ≤ |a - b| [PROOFSTEP] rw [abs_sub_comm] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c d a b : α ⊢ |b| - |a| ≤ |b - a| [PROOFSTEP] apply abs_sub_abs_le_abs_sub [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a b c d : α hb : 0 ≤ b ⊢ |a| = b ↔ a = b ∨ a = -b [PROOFSTEP] refine' ⟨eq_or_eq_neg_of_abs_eq, _⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a b c d : α hb : 0 ≤ b ⊢ a = b ∨ a = -b → |a| = b [PROOFSTEP] rintro (rfl | rfl) [GOAL] case inl α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a c d : α hb : 0 ≤ a ⊢ |a| = a [PROOFSTEP] simp only [abs_neg, abs_of_nonneg hb] [GOAL] case inr α : Type u_1 inst✝ : LinearOrderedAddCommGroup α b c d : α hb : 0 ≤ b ⊢ |(-b)| = b [PROOFSTEP] simp only [abs_neg, abs_of_nonneg hb] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a b c d : α hab : a ≤ b hbc : b ≤ c ⊢ b ≤ max |a| |c| [PROOFSTEP] simp [hbc.trans (le_abs_self c)] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a b c d : α hab : a ≤ b hbc : b ≤ c ⊢ -b ≤ max |a| |c| [PROOFSTEP] simp [((@neg_le_neg_iff α ..).mpr hab).trans (neg_le_abs_self a)] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c✝ d a b c : α ⊢ |a - c| = |a - b + (b - c)| [PROOFSTEP] rw [sub_add_sub_cancel]
{"mathlib_filename": "Mathlib.Algebra.Order.Group.Abs", "llama_tokens": 5312}
{"mathlib_filename": "Mathlib.Algebra.Order.Field.InjSurj", "llama_tokens": 0}
[GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedCommMonoid α s : Interval α ⊢ Option.map (fun b => NonemptyInterval.pure 1 * b) s = s [PROOFSTEP] simp_rw [NonemptyInterval.pure_one, one_mul, ← id_def, Option.map_id, id] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedCommMonoid α s : Interval α ⊢ Option.map (fun a => a * NonemptyInterval.pure 1) s = s [PROOFSTEP] simp_rw [NonemptyInterval.pure_one, mul_one, ← id_def, Option.map_id, id] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : NonemptyInterval α ⊢ s * t = 1 ↔ ∃ a b, s = pure a ∧ t = pure b ∧ a * b = 1 [PROOFSTEP] refine' ⟨fun h => _, _⟩ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : NonemptyInterval α h : s * t = 1 ⊢ ∃ a b, s = pure a ∧ t = pure b ∧ a * b = 1 [PROOFSTEP] rw [ext_iff, Prod.ext_iff] at h [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : NonemptyInterval α h : (s * t).fst = 1.fst ∧ (s * t).snd = 1.snd ⊢ ∃ a b, s = pure a ∧ t = pure b ∧ a * b = 1 [PROOFSTEP] have := (mul_le_mul_iff_of_ge s.fst_le_snd t.fst_le_snd).1 (h.2.trans h.1.symm).le [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : NonemptyInterval α h : (s * t).fst = 1.fst ∧ (s * t).snd = 1.snd this : s.fst = s.snd ∧ t.fst = t.snd ⊢ ∃ a b, s = pure a ∧ t = pure b ∧ a * b = 1 [PROOFSTEP] refine' ⟨s.fst, t.fst, _, _, h.1⟩ [GOAL] case refine'_1.refine'_1 ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : NonemptyInterval α h : (s * t).fst = 1.fst ∧ (s * t).snd = 1.snd this : s.fst = s.snd ∧ t.fst = t.snd ⊢ s = pure s.fst [PROOFSTEP] apply NonemptyInterval.ext [GOAL] case refine'_1.refine'_2 ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : NonemptyInterval α h : (s * t).fst = 1.fst ∧ (s * t).snd = 1.snd this : s.fst = s.snd ∧ t.fst = t.snd ⊢ t = pure t.fst [PROOFSTEP] apply NonemptyInterval.ext [GOAL] case refine'_1.refine'_1.h ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : NonemptyInterval α h : (s * t).fst = 1.fst ∧ (s * t).snd = 1.snd this : s.fst = s.snd ∧ t.fst = t.snd ⊢ s.toProd = (pure s.fst).toProd [PROOFSTEP] dsimp [pure] [GOAL] case refine'_1.refine'_2.h ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : NonemptyInterval α h : (s * t).fst = 1.fst ∧ (s * t).snd = 1.snd this : s.fst = s.snd ∧ t.fst = t.snd ⊢ t.toProd = (pure t.fst).toProd [PROOFSTEP] dsimp [pure] [GOAL] case refine'_1.refine'_1.h ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : NonemptyInterval α h : (s * t).fst = 1.fst ∧ (s * t).snd = 1.snd this : s.fst = s.snd ∧ t.fst = t.snd ⊢ s.toProd = (s.fst, s.fst) [PROOFSTEP] nth_rw 2 [this.1] [GOAL] case refine'_1.refine'_2.h ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : NonemptyInterval α h : (s * t).fst = 1.fst ∧ (s * t).snd = 1.snd this : s.fst = s.snd ∧ t.fst = t.snd ⊢ t.toProd = (t.fst, t.fst) [PROOFSTEP] nth_rw 2 [this.2] [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : NonemptyInterval α ⊢ (∃ a b, s = pure a ∧ t = pure b ∧ a * b = 1) → s * t = 1 [PROOFSTEP] rintro ⟨b, c, rfl, rfl, h⟩ [GOAL] case refine'_2.intro.intro.intro.intro ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α b c : α h : b * c = 1 ⊢ pure b * pure c = 1 [PROOFSTEP] rw [pure_mul_pure, h, pure_one] [GOAL] ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : NonemptyInterval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (NonemptyInterval α) := addCommMonoid s t : NonemptyInterval α ⊢ s - t = s + -t [PROOFSTEP] refine NonemptyInterval.ext _ _ (Prod.ext ?_ ?_) [GOAL] case refine_1 ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : NonemptyInterval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (NonemptyInterval α) := addCommMonoid s t : NonemptyInterval α ⊢ (s - t).fst = (s + -t).fst [PROOFSTEP] exact sub_eq_add_neg _ _ [GOAL] case refine_2 ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : NonemptyInterval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (NonemptyInterval α) := addCommMonoid s t : NonemptyInterval α ⊢ (s - t).snd = (s + -t).snd [PROOFSTEP] exact sub_eq_add_neg _ _ [GOAL] ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t : NonemptyInterval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (NonemptyInterval α) := addCommMonoid s : NonemptyInterval α ⊢ - -s = s [PROOFSTEP] apply NonemptyInterval.ext [GOAL] case h ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t : NonemptyInterval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (NonemptyInterval α) := addCommMonoid s : NonemptyInterval α ⊢ (- -s).toProd = s.toProd [PROOFSTEP] exact neg_neg _ [GOAL] ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : NonemptyInterval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (NonemptyInterval α) := addCommMonoid s t : NonemptyInterval α ⊢ -(s + t) = -t + -s [PROOFSTEP] refine NonemptyInterval.ext _ _ (Prod.ext ?_ ?_) [GOAL] case refine_1 ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : NonemptyInterval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (NonemptyInterval α) := addCommMonoid s t : NonemptyInterval α ⊢ (-(s + t)).fst = (-t + -s).fst [PROOFSTEP] exact neg_add_rev _ _ [GOAL] case refine_2 ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : NonemptyInterval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (NonemptyInterval α) := addCommMonoid s t : NonemptyInterval α ⊢ (-(s + t)).snd = (-t + -s).snd [PROOFSTEP] exact neg_add_rev _ _ [GOAL] ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : NonemptyInterval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (NonemptyInterval α) := addCommMonoid s t : NonemptyInterval α h : s + t = 0 ⊢ -s = t [PROOFSTEP] obtain ⟨a, b, rfl, rfl, hab⟩ := NonemptyInterval.add_eq_zero_iff.1 h [GOAL] case intro.intro.intro.intro ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t : NonemptyInterval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (NonemptyInterval α) := addCommMonoid a b : α hab : a + b = 0 h : pure a + pure b = 0 ⊢ -pure a = pure b [PROOFSTEP] rw [neg_pure, neg_eq_of_add_eq_zero_right hab] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : NonemptyInterval α src✝ : CommMonoid (NonemptyInterval α) := commMonoid s t : NonemptyInterval α ⊢ s / t = s * t⁻¹ [PROOFSTEP] refine NonemptyInterval.ext _ _ (Prod.ext ?_ ?_) [GOAL] case refine_1 ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : NonemptyInterval α src✝ : CommMonoid (NonemptyInterval α) := commMonoid s t : NonemptyInterval α ⊢ (s / t).fst = (s * t⁻¹).fst [PROOFSTEP] exact div_eq_mul_inv _ _ [GOAL] case refine_2 ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : NonemptyInterval α src✝ : CommMonoid (NonemptyInterval α) := commMonoid s t : NonemptyInterval α ⊢ (s / t).snd = (s * t⁻¹).snd [PROOFSTEP] exact div_eq_mul_inv _ _ [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t : NonemptyInterval α src✝ : CommMonoid (NonemptyInterval α) := commMonoid s : NonemptyInterval α ⊢ s⁻¹⁻¹ = s [PROOFSTEP] apply NonemptyInterval.ext [GOAL] case h ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t : NonemptyInterval α src✝ : CommMonoid (NonemptyInterval α) := commMonoid s : NonemptyInterval α ⊢ s⁻¹⁻¹.toProd = s.toProd [PROOFSTEP] exact inv_inv _ [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : NonemptyInterval α src✝ : CommMonoid (NonemptyInterval α) := commMonoid s t : NonemptyInterval α ⊢ (s * t)⁻¹ = t⁻¹ * s⁻¹ [PROOFSTEP] refine NonemptyInterval.ext _ _ (Prod.ext ?_ ?_) [GOAL] case refine_1 ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : NonemptyInterval α src✝ : CommMonoid (NonemptyInterval α) := commMonoid s t : NonemptyInterval α ⊢ (s * t)⁻¹.fst = (t⁻¹ * s⁻¹).fst [PROOFSTEP] exact mul_inv_rev _ _ [GOAL] case refine_2 ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : NonemptyInterval α src✝ : CommMonoid (NonemptyInterval α) := commMonoid s t : NonemptyInterval α ⊢ (s * t)⁻¹.snd = (t⁻¹ * s⁻¹).snd [PROOFSTEP] exact mul_inv_rev _ _ [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : NonemptyInterval α src✝ : CommMonoid (NonemptyInterval α) := commMonoid s t : NonemptyInterval α h : s * t = 1 ⊢ s⁻¹ = t [PROOFSTEP] obtain ⟨a, b, rfl, rfl, hab⟩ := NonemptyInterval.mul_eq_one_iff.1 h [GOAL] case intro.intro.intro.intro ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : NonemptyInterval α src✝ : CommMonoid (NonemptyInterval α) := commMonoid a b : α hab : a * b = 1 h : pure a * pure b = 1 ⊢ (pure a)⁻¹ = pure b [PROOFSTEP] rw [inv_pure, inv_eq_of_mul_eq_one_right hab] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : Interval α ⊢ s * t = 1 ↔ ∃ a b, s = pure a ∧ t = pure b ∧ a * b = 1 [PROOFSTEP] cases s [GOAL] case none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α t : Interval α ⊢ none * t = 1 ↔ ∃ a b, none = pure a ∧ t = pure b ∧ a * b = 1 [PROOFSTEP] simp [WithBot.none_eq_bot] [GOAL] case some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α t : Interval α val✝ : NonemptyInterval α ⊢ some val✝ * t = 1 ↔ ∃ a b, some val✝ = pure a ∧ t = pure b ∧ a * b = 1 [PROOFSTEP] cases t [GOAL] case some.none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α val✝ : NonemptyInterval α ⊢ some val✝ * none = 1 ↔ ∃ a b, some val✝ = pure a ∧ none = pure b ∧ a * b = 1 [PROOFSTEP] simp [WithBot.none_eq_bot] [GOAL] case some.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α val✝¹ val✝ : NonemptyInterval α ⊢ some val✝¹ * some val✝ = 1 ↔ ∃ a b, some val✝¹ = pure a ∧ some val✝ = pure b ∧ a * b = 1 [PROOFSTEP] simp_rw [WithBot.some_eq_coe, ← NonemptyInterval.coe_mul_interval, ← NonemptyInterval.coe_one_interval, WithBot.coe_inj, NonemptyInterval.coe_eq_pure] [GOAL] case some.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α val✝¹ val✝ : NonemptyInterval α ⊢ val✝¹ * val✝ = 1 ↔ ∃ a b, val✝¹ = NonemptyInterval.pure a ∧ val✝ = NonemptyInterval.pure b ∧ a * b = 1 [PROOFSTEP] exact NonemptyInterval.mul_eq_one_iff [GOAL] ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid ⊢ ∀ (a b : Interval α), a - b = a + -b [PROOFSTEP] rintro (_ | s) (_ | t) [GOAL] case none.none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid ⊢ none - none = none + -none [PROOFSTEP] first | rfl | exact congr_arg some (sub_eq_add_neg _ _) [GOAL] case none.none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid ⊢ none - none = none + -none [PROOFSTEP] rfl [GOAL] case none.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid t : NonemptyInterval α ⊢ none - some t = none + -some t [PROOFSTEP] first | rfl | exact congr_arg some (sub_eq_add_neg _ _) [GOAL] case none.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid t : NonemptyInterval α ⊢ none - some t = none + -some t [PROOFSTEP] rfl [GOAL] case some.none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s : NonemptyInterval α ⊢ some s - none = some s + -none [PROOFSTEP] first | rfl | exact congr_arg some (sub_eq_add_neg _ _) [GOAL] case some.none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s : NonemptyInterval α ⊢ some s - none = some s + -none [PROOFSTEP] rfl [GOAL] case some.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s t : NonemptyInterval α ⊢ some s - some t = some s + -some t [PROOFSTEP] first | rfl | exact congr_arg some (sub_eq_add_neg _ _) [GOAL] case some.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s t : NonemptyInterval α ⊢ some s - some t = some s + -some t [PROOFSTEP] rfl [GOAL] case some.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s t : NonemptyInterval α ⊢ some s - some t = some s + -some t [PROOFSTEP] exact congr_arg some (sub_eq_add_neg _ _) [GOAL] ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid ⊢ ∀ (x : Interval α), - -x = x [PROOFSTEP] rintro (_ | s) [GOAL] case none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid ⊢ - -none = none [PROOFSTEP] first | rfl | exact congr_arg some (neg_neg _) [GOAL] case none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid ⊢ - -none = none [PROOFSTEP] rfl [GOAL] case some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s : NonemptyInterval α ⊢ - -some s = some s [PROOFSTEP] first | rfl | exact congr_arg some (neg_neg _) [GOAL] case some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s : NonemptyInterval α ⊢ - -some s = some s [PROOFSTEP] rfl [GOAL] case some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s : NonemptyInterval α ⊢ - -some s = some s [PROOFSTEP] exact congr_arg some (neg_neg _) [GOAL] ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid ⊢ ∀ (a b : Interval α), -(a + b) = -b + -a [PROOFSTEP] rintro (_ | s) (_ | t) [GOAL] case none.none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid ⊢ -(none + none) = -none + -none [PROOFSTEP] first | rfl | exact congr_arg some (neg_add_rev _ _) [GOAL] case none.none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid ⊢ -(none + none) = -none + -none [PROOFSTEP] rfl [GOAL] case none.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid t : NonemptyInterval α ⊢ -(none + some t) = -some t + -none [PROOFSTEP] first | rfl | exact congr_arg some (neg_add_rev _ _) [GOAL] case none.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid t : NonemptyInterval α ⊢ -(none + some t) = -some t + -none [PROOFSTEP] rfl [GOAL] case some.none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s : NonemptyInterval α ⊢ -(some s + none) = -none + -some s [PROOFSTEP] first | rfl | exact congr_arg some (neg_add_rev _ _) [GOAL] case some.none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s : NonemptyInterval α ⊢ -(some s + none) = -none + -some s [PROOFSTEP] rfl [GOAL] case some.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s t : NonemptyInterval α ⊢ -(some s + some t) = -some t + -some s [PROOFSTEP] first | rfl | exact congr_arg some (neg_add_rev _ _) [GOAL] case some.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s t : NonemptyInterval α ⊢ -(some s + some t) = -some t + -some s [PROOFSTEP] rfl [GOAL] case some.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s t : NonemptyInterval α ⊢ -(some s + some t) = -some t + -some s [PROOFSTEP] exact congr_arg some (neg_add_rev _ _) [GOAL] ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid ⊢ ∀ (a b : Interval α), a + b = 0 → -a = b [PROOFSTEP] rintro (_ | s) (_ | t) h [GOAL] case none.none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid h : none + none = 0 ⊢ -none = none [PROOFSTEP] first | cases h | exact congr_arg some (neg_eq_of_add_eq_zero_right <| Option.some_injective _ h) [GOAL] case none.none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid h : none + none = 0 ⊢ -none = none [PROOFSTEP] cases h [GOAL] case none.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid t : NonemptyInterval α h : none + some t = 0 ⊢ -none = some t [PROOFSTEP] first | cases h | exact congr_arg some (neg_eq_of_add_eq_zero_right <| Option.some_injective _ h) [GOAL] case none.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid t : NonemptyInterval α h : none + some t = 0 ⊢ -none = some t [PROOFSTEP] cases h [GOAL] case some.none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s : NonemptyInterval α h : some s + none = 0 ⊢ -some s = none [PROOFSTEP] first | cases h | exact congr_arg some (neg_eq_of_add_eq_zero_right <| Option.some_injective _ h) [GOAL] case some.none ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s : NonemptyInterval α h : some s + none = 0 ⊢ -some s = none [PROOFSTEP] cases h [GOAL] case some.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s t : NonemptyInterval α h : some s + some t = 0 ⊢ -some s = some t [PROOFSTEP] first | cases h | exact congr_arg some (neg_eq_of_add_eq_zero_right <| Option.some_injective _ h) [GOAL] case some.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s t : NonemptyInterval α h : some s + some t = 0 ⊢ -some s = some t [PROOFSTEP] cases h [GOAL] case some.some ι : Type u_1 α✝ : Type u_2 inst✝¹ : OrderedCommGroup α✝ s✝ t✝ : Interval α✝ α : Type u inst✝ : OrderedAddCommGroup α src✝ : AddCommMonoid (Interval α) := addCommMonoid s t : NonemptyInterval α h : some s + some t = 0 ⊢ -some s = some t [PROOFSTEP] exact congr_arg some (neg_eq_of_add_eq_zero_right <| Option.some_injective _ h) [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : Interval α src✝ : CommMonoid (Interval α) := commMonoid ⊢ ∀ (a b : Interval α), a / b = a * b⁻¹ [PROOFSTEP] rintro (_ | s) (_ | t) [GOAL] case none.none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : Interval α src✝ : CommMonoid (Interval α) := commMonoid ⊢ none / none = none * none⁻¹ [PROOFSTEP] first | rfl | exact congr_arg some (div_eq_mul_inv _ _) [GOAL] case none.none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : Interval α src✝ : CommMonoid (Interval α) := commMonoid ⊢ none / none = none * none⁻¹ [PROOFSTEP] rfl [GOAL] case none.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid t : NonemptyInterval α ⊢ none / some t = none * (some t)⁻¹ [PROOFSTEP] first | rfl | exact congr_arg some (div_eq_mul_inv _ _) [GOAL] case none.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid t : NonemptyInterval α ⊢ none / some t = none * (some t)⁻¹ [PROOFSTEP] rfl [GOAL] case some.none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t : Interval α src✝ : CommMonoid (Interval α) := commMonoid s : NonemptyInterval α ⊢ some s / none = some s * none⁻¹ [PROOFSTEP] first | rfl | exact congr_arg some (div_eq_mul_inv _ _) [GOAL] case some.none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t : Interval α src✝ : CommMonoid (Interval α) := commMonoid s : NonemptyInterval α ⊢ some s / none = some s * none⁻¹ [PROOFSTEP] rfl [GOAL] case some.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid s t : NonemptyInterval α ⊢ some s / some t = some s * (some t)⁻¹ [PROOFSTEP] first | rfl | exact congr_arg some (div_eq_mul_inv _ _) [GOAL] case some.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid s t : NonemptyInterval α ⊢ some s / some t = some s * (some t)⁻¹ [PROOFSTEP] rfl [GOAL] case some.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid s t : NonemptyInterval α ⊢ some s / some t = some s * (some t)⁻¹ [PROOFSTEP] exact congr_arg some (div_eq_mul_inv _ _) [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : Interval α src✝ : CommMonoid (Interval α) := commMonoid ⊢ ∀ (x : Interval α), x⁻¹⁻¹ = x [PROOFSTEP] rintro (_ | s) [GOAL] case none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : Interval α src✝ : CommMonoid (Interval α) := commMonoid ⊢ none⁻¹⁻¹ = none [PROOFSTEP] first | rfl | exact congr_arg some (inv_inv _) [GOAL] case none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : Interval α src✝ : CommMonoid (Interval α) := commMonoid ⊢ none⁻¹⁻¹ = none [PROOFSTEP] rfl [GOAL] case some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t : Interval α src✝ : CommMonoid (Interval α) := commMonoid s : NonemptyInterval α ⊢ (some s)⁻¹⁻¹ = some s [PROOFSTEP] first | rfl | exact congr_arg some (inv_inv _) [GOAL] case some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t : Interval α src✝ : CommMonoid (Interval α) := commMonoid s : NonemptyInterval α ⊢ (some s)⁻¹⁻¹ = some s [PROOFSTEP] rfl [GOAL] case some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t : Interval α src✝ : CommMonoid (Interval α) := commMonoid s : NonemptyInterval α ⊢ (some s)⁻¹⁻¹ = some s [PROOFSTEP] exact congr_arg some (inv_inv _) [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : Interval α src✝ : CommMonoid (Interval α) := commMonoid ⊢ ∀ (a b : Interval α), (a * b)⁻¹ = b⁻¹ * a⁻¹ [PROOFSTEP] rintro (_ | s) (_ | t) [GOAL] case none.none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : Interval α src✝ : CommMonoid (Interval α) := commMonoid ⊢ (none * none)⁻¹ = none⁻¹ * none⁻¹ [PROOFSTEP] first | rfl | exact congr_arg some (mul_inv_rev _ _) [GOAL] case none.none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : Interval α src✝ : CommMonoid (Interval α) := commMonoid ⊢ (none * none)⁻¹ = none⁻¹ * none⁻¹ [PROOFSTEP] rfl [GOAL] case none.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid t : NonemptyInterval α ⊢ (none * some t)⁻¹ = (some t)⁻¹ * none⁻¹ [PROOFSTEP] first | rfl | exact congr_arg some (mul_inv_rev _ _) [GOAL] case none.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid t : NonemptyInterval α ⊢ (none * some t)⁻¹ = (some t)⁻¹ * none⁻¹ [PROOFSTEP] rfl [GOAL] case some.none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t : Interval α src✝ : CommMonoid (Interval α) := commMonoid s : NonemptyInterval α ⊢ (some s * none)⁻¹ = none⁻¹ * (some s)⁻¹ [PROOFSTEP] first | rfl | exact congr_arg some (mul_inv_rev _ _) [GOAL] case some.none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t : Interval α src✝ : CommMonoid (Interval α) := commMonoid s : NonemptyInterval α ⊢ (some s * none)⁻¹ = none⁻¹ * (some s)⁻¹ [PROOFSTEP] rfl [GOAL] case some.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid s t : NonemptyInterval α ⊢ (some s * some t)⁻¹ = (some t)⁻¹ * (some s)⁻¹ [PROOFSTEP] first | rfl | exact congr_arg some (mul_inv_rev _ _) [GOAL] case some.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid s t : NonemptyInterval α ⊢ (some s * some t)⁻¹ = (some t)⁻¹ * (some s)⁻¹ [PROOFSTEP] rfl [GOAL] case some.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid s t : NonemptyInterval α ⊢ (some s * some t)⁻¹ = (some t)⁻¹ * (some s)⁻¹ [PROOFSTEP] exact congr_arg some (mul_inv_rev _ _) [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : Interval α src✝ : CommMonoid (Interval α) := commMonoid ⊢ ∀ (a b : Interval α), a * b = 1 → a⁻¹ = b [PROOFSTEP] rintro (_ | s) (_ | t) h [GOAL] case none.none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : Interval α src✝ : CommMonoid (Interval α) := commMonoid h : none * none = 1 ⊢ none⁻¹ = none [PROOFSTEP] first | cases h | exact congr_arg some (inv_eq_of_mul_eq_one_right <| Option.some_injective _ h) [GOAL] case none.none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t : Interval α src✝ : CommMonoid (Interval α) := commMonoid h : none * none = 1 ⊢ none⁻¹ = none [PROOFSTEP] cases h [GOAL] case none.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid t : NonemptyInterval α h : none * some t = 1 ⊢ none⁻¹ = some t [PROOFSTEP] first | cases h | exact congr_arg some (inv_eq_of_mul_eq_one_right <| Option.some_injective _ h) [GOAL] case none.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid t : NonemptyInterval α h : none * some t = 1 ⊢ none⁻¹ = some t [PROOFSTEP] cases h [GOAL] case some.none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t : Interval α src✝ : CommMonoid (Interval α) := commMonoid s : NonemptyInterval α h : some s * none = 1 ⊢ (some s)⁻¹ = none [PROOFSTEP] first | cases h | exact congr_arg some (inv_eq_of_mul_eq_one_right <| Option.some_injective _ h) [GOAL] case some.none ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t : Interval α src✝ : CommMonoid (Interval α) := commMonoid s : NonemptyInterval α h : some s * none = 1 ⊢ (some s)⁻¹ = none [PROOFSTEP] cases h [GOAL] case some.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid s t : NonemptyInterval α h : some s * some t = 1 ⊢ (some s)⁻¹ = some t [PROOFSTEP] first | cases h | exact congr_arg some (inv_eq_of_mul_eq_one_right <| Option.some_injective _ h) [GOAL] case some.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid s t : NonemptyInterval α h : some s * some t = 1 ⊢ (some s)⁻¹ = some t [PROOFSTEP] cases h [GOAL] case some.some ι : Type u_1 α : Type u_2 inst✝ : OrderedCommGroup α s✝ t✝ : Interval α src✝ : CommMonoid (Interval α) := commMonoid s t : NonemptyInterval α h : some s * some t = 1 ⊢ (some s)⁻¹ = some t [PROOFSTEP] exact congr_arg some (inv_eq_of_mul_eq_one_right <| Option.some_injective _ h) [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedAddCommGroup α s t : NonemptyInterval α a : α ⊢ length (s - t) = length s + length t [PROOFSTEP] simp [sub_eq_add_neg] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedAddCommGroup α s t : Interval α a : α x✝ : Interval α ⊢ length (⊥ + x✝) ≤ length ⊥ + length x✝ [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedAddCommGroup α s t : Interval α a : α x✝ : Interval α ⊢ length (x✝ + ⊥) ≤ length x✝ + length ⊥ [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedAddCommGroup α s t : Interval α a : α ⊢ length (s - t) ≤ length s + length t [PROOFSTEP] simpa [sub_eq_add_neg] using length_add_le s (-t) [GOAL] ι : Type u_1 α : Type u_2 inst✝ : OrderedAddCommGroup α s✝ t : Interval α a : α f : ι → Interval α s : Finset ι ⊢ length (∑ i in s, f i) ≤ ∑ i in s, length (f i) [PROOFSTEP] apply Finset.le_sum_of_subadditive [GOAL] case h_one ι : Type u_1 α : Type u_2 inst✝ : OrderedAddCommGroup α s✝ t : Interval α a : α f : ι → Interval α s : Finset ι ⊢ length 0 = 0 case h_mul ι : Type u_1 α : Type u_2 inst✝ : OrderedAddCommGroup α s✝ t : Interval α a : α f : ι → Interval α s : Finset ι ⊢ ∀ (x y : Interval α), length (x + y) ≤ length x + length y [PROOFSTEP] exact length_zero [GOAL] case h_mul ι : Type u_1 α : Type u_2 inst✝ : OrderedAddCommGroup α s✝ t : Interval α a : α f : ι → Interval α s : Finset ι ⊢ ∀ (x y : Interval α), length (x + y) ≤ length x + length y [PROOFSTEP] exact length_add_le
{"mathlib_filename": "Mathlib.Algebra.Order.Interval", "llama_tokens": 14360}
{"mathlib_filename": "Mathlib.Algebra.Order.Field.Canonical.Defs", "llama_tokens": 0}
[GOAL] α : Type u_1 ι : Type u_2 inst✝² : LinearOrderedSemifield α inst✝¹ : ExistsAddOfLE α inst✝ : Finite ι x y : ι → α h : ∀ (i : ι), x i < y i ⊢ ∃ ε, 0 < ε ∧ ∀ (i : ι), x i + ε < y i [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro α : Type u_1 ι : Type u_2 inst✝² : LinearOrderedSemifield α inst✝¹ : ExistsAddOfLE α inst✝ : Finite ι x y : ι → α h : ∀ (i : ι), x i < y i val✝ : Fintype ι ⊢ ∃ ε, 0 < ε ∧ ∀ (i : ι), x i + ε < y i [PROOFSTEP] cases isEmpty_or_nonempty ι [GOAL] case intro.inl α : Type u_1 ι : Type u_2 inst✝² : LinearOrderedSemifield α inst✝¹ : ExistsAddOfLE α inst✝ : Finite ι x y : ι → α h : ∀ (i : ι), x i < y i val✝ : Fintype ι h✝ : IsEmpty ι ⊢ ∃ ε, 0 < ε ∧ ∀ (i : ι), x i + ε < y i [PROOFSTEP] exact ⟨1, zero_lt_one, isEmptyElim⟩ [GOAL] case intro.inr α : Type u_1 ι : Type u_2 inst✝² : LinearOrderedSemifield α inst✝¹ : ExistsAddOfLE α inst✝ : Finite ι x y : ι → α h : ∀ (i : ι), x i < y i val✝ : Fintype ι h✝ : Nonempty ι ⊢ ∃ ε, 0 < ε ∧ ∀ (i : ι), x i + ε < y i [PROOFSTEP] choose ε hε hxε using fun i => exists_pos_add_of_lt' (h i) [GOAL] case intro.inr α : Type u_1 ι : Type u_2 inst✝² : LinearOrderedSemifield α inst✝¹ : ExistsAddOfLE α inst✝ : Finite ι x y : ι → α h : ∀ (i : ι), x i < y i val✝ : Fintype ι h✝ : Nonempty ι ε : ι → α hε : ∀ (i : ι), 0 < ε i hxε : ∀ (i : ι), x i + ε i = y i ⊢ ∃ ε, 0 < ε ∧ ∀ (i : ι), x i + ε < y i [PROOFSTEP] obtain rfl : x + ε = y := funext hxε [GOAL] case intro.inr α : Type u_1 ι : Type u_2 inst✝² : LinearOrderedSemifield α inst✝¹ : ExistsAddOfLE α inst✝ : Finite ι x : ι → α val✝ : Fintype ι h✝ : Nonempty ι ε : ι → α hε : ∀ (i : ι), 0 < ε i h : ∀ (i : ι), x i < (x + ε) i hxε : ∀ (i : ι), x i + ε i = (x + ε) i ⊢ ∃ ε_1, 0 < ε_1 ∧ ∀ (i : ι), x i + ε_1 < (x + ε) i [PROOFSTEP] have hε : 0 < Finset.univ.inf' Finset.univ_nonempty ε := (Finset.lt_inf'_iff _).2 fun i _ => hε _ [GOAL] case intro.inr α : Type u_1 ι : Type u_2 inst✝² : LinearOrderedSemifield α inst✝¹ : ExistsAddOfLE α inst✝ : Finite ι x : ι → α val✝ : Fintype ι h✝ : Nonempty ι ε : ι → α hε✝ : ∀ (i : ι), 0 < ε i h : ∀ (i : ι), x i < (x + ε) i hxε : ∀ (i : ι), x i + ε i = (x + ε) i hε : 0 < Finset.inf' Finset.univ (_ : Finset.Nonempty Finset.univ) ε ⊢ ∃ ε_1, 0 < ε_1 ∧ ∀ (i : ι), x i + ε_1 < (x + ε) i [PROOFSTEP] exact ⟨_, half_pos hε, fun i => add_lt_add_left ((half_lt_self hε).trans_le <| Finset.inf'_le _ <| Finset.mem_univ _) _⟩
{"mathlib_filename": "Mathlib.Algebra.Order.Field.Pi", "llama_tokens": 1369}
{"mathlib_filename": "Mathlib.Algebra.Order.Field.Defs", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝² : CanonicallyLinearOrderedSemifield α inst✝¹ : Sub α inst✝ : OrderedSub α a b c : α ⊢ (a - b) / c = a / c - b / c [PROOFSTEP] simp_rw [div_eq_mul_inv, tsub_mul]
{"mathlib_filename": "Mathlib.Algebra.Order.Field.Canonical.Basic", "llama_tokens": 96}
[GOAL] α : Type u_1 inst✝² : Group α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α ⊢ max a 1 / max a⁻¹ 1 = a [PROOFSTEP] rcases le_total a 1 with (h | h) [GOAL] case inl α : Type u_1 inst✝² : Group α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α h : a ≤ 1 ⊢ max a 1 / max a⁻¹ 1 = a [PROOFSTEP] simp [h] [GOAL] case inr α : Type u_1 inst✝² : Group α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a : α h : 1 ≤ a ⊢ max a 1 / max a⁻¹ 1 = a [PROOFSTEP] simp [h] [GOAL] α : Type u_1 inst✝ : LinearOrderedCommGroup α a✝ b✝ c✝ a b c : α ⊢ min (a / c) (b / c) = min a b / c [PROOFSTEP] simpa only [div_eq_mul_inv] using min_mul_mul_right a b c⁻¹ [GOAL] α : Type u_1 inst✝ : LinearOrderedCommGroup α a✝ b✝ c✝ a b c : α ⊢ max (a / c) (b / c) = max a b / c [PROOFSTEP] simpa only [div_eq_mul_inv] using max_mul_mul_right a b c⁻¹ [GOAL] α : Type u_1 inst✝ : LinearOrderedCommGroup α a✝ b✝ c✝ a b c : α ⊢ min (a / b) (a / c) = a / max b c [PROOFSTEP] simp only [div_eq_mul_inv, min_mul_mul_left, min_inv_inv'] [GOAL] α : Type u_1 inst✝ : LinearOrderedCommGroup α a✝ b✝ c✝ a b c : α ⊢ max (a / b) (a / c) = a / min b c [PROOFSTEP] simp only [div_eq_mul_inv, max_mul_mul_left, max_inv_inv'] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c✝ a b c d : α ⊢ max a b - max c d ≤ max (a - c) (b - d) [PROOFSTEP] simp only [sub_le_iff_le_add, max_le_iff] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c✝ a b c d : α ⊢ a ≤ max (a - c) (b - d) + max c d ∧ b ≤ max (a - c) (b - d) + max c d [PROOFSTEP] constructor [GOAL] case left α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c✝ a b c d : α ⊢ a ≤ max (a - c) (b - d) + max c d case right α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c✝ a b c d : α ⊢ b ≤ max (a - c) (b - d) + max c d [PROOFSTEP] calc a = a - c + c := (sub_add_cancel a c).symm _ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_left _ _) (le_max_left _ _) [GOAL] case right α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c✝ a b c d : α ⊢ b ≤ max (a - c) (b - d) + max c d [PROOFSTEP] calc b = b - d + d := (sub_add_cancel b d).symm _ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_right _ _) (le_max_right _ _) [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c✝ a b c d : α ⊢ |max a b - max c d| ≤ max |a - c| |b - d| [PROOFSTEP] refine' abs_sub_le_iff.2 ⟨_, _⟩ [GOAL] case refine'_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c✝ a b c d : α ⊢ max a b - max c d ≤ max |a - c| |b - d| [PROOFSTEP] exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _)) [GOAL] case refine'_2 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c✝ a b c d : α ⊢ max c d - max a b ≤ max |a - c| |b - d| [PROOFSTEP] rw [abs_sub_comm a c, abs_sub_comm b d] [GOAL] case refine'_2 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c✝ a b c d : α ⊢ max c d - max a b ≤ max |c - a| |d - b| [PROOFSTEP] exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _)) [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c✝ a b c d : α ⊢ |min a b - min c d| ≤ max |a - c| |b - d| [PROOFSTEP] simpa only [max_neg_neg, neg_sub_neg, abs_sub_comm] using abs_max_sub_max_le_max (-a) (-b) (-c) (-d) [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α a✝ b✝ c✝ a b c : α ⊢ |max a c - max b c| ≤ |a - b| [PROOFSTEP] simpa only [sub_self, abs_zero, max_eq_left (abs_nonneg (a - b))] using abs_max_sub_max_le_max a c b c
{"mathlib_filename": "Mathlib.Algebra.Order.Group.MinMax", "llama_tokens": 1894}