text
stringlengths
0
3.06M
meta
stringlengths
57
121
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Defs", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Algebra.Order.Group.Bounds", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b✝ c : α n : ℤ b : α ⊢ toIcoMod hp 0 b ∈ Set.Ico 0 p [PROOFSTEP] convert toIcoMod_mem_Ico hp 0 b [GOAL] case h.e'_5.h.e'_4 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b✝ c : α n : ℤ b : α ⊢ p = 0 + p [PROOFSTEP] exact (zero_add p).symm [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoDiv hp a b • p - b = -toIcoMod hp a b [PROOFSTEP] rw [toIcoMod, neg_sub] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp a b • p - b = -toIocMod hp a b [PROOFSTEP] rw [toIocMod, neg_sub] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp a b - b = -toIcoDiv hp a b • p [PROOFSTEP] rw [toIcoMod, sub_sub_cancel_left, neg_smul] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp a b - b = -toIocDiv hp a b • p [PROOFSTEP] rw [toIocMod, sub_sub_cancel_left, neg_smul] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ b - toIcoMod hp a b = toIcoDiv hp a b • p [PROOFSTEP] rw [toIcoMod, sub_sub_cancel] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ b - toIocMod hp a b = toIocDiv hp a b • p [PROOFSTEP] rw [toIocMod, sub_sub_cancel] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp a b + toIcoDiv hp a b • p = b [PROOFSTEP] rw [toIcoMod, sub_add_cancel] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp a b + toIocDiv hp a b • p = b [PROOFSTEP] rw [toIocMod, sub_add_cancel] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoDiv hp a b • p + toIcoMod hp a b = b [PROOFSTEP] rw [add_comm, toIcoMod_add_toIcoDiv_zsmul] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp a b • p + toIocMod hp a b = b [PROOFSTEP] rw [add_comm, toIocMod_add_toIocDiv_zsmul] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ toIcoMod hp a b = c ↔ c ∈ Set.Ico a (a + p) ∧ ∃ z, b = c + z • p [PROOFSTEP] refine' ⟨fun h => ⟨h ▸ toIcoMod_mem_Ico hp a b, toIcoDiv hp a b, h ▸ (toIcoMod_add_toIcoDiv_zsmul _ _ _).symm⟩, _⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ (c ∈ Set.Ico a (a + p) ∧ ∃ z, b = c + z • p) → toIcoMod hp a b = c [PROOFSTEP] simp_rw [← @sub_eq_iff_eq_add] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ (c ∈ Set.Ico a (a + p) ∧ ∃ z, b - z • p = c) → toIcoMod hp a b = c [PROOFSTEP] rintro ⟨hc, n, rfl⟩ [GOAL] case intro.intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b : α n✝ n : ℤ hc : b - n • p ∈ Set.Ico a (a + p) ⊢ toIcoMod hp a b = b - n • p [PROOFSTEP] rw [← toIcoDiv_eq_of_sub_zsmul_mem_Ico hp hc, toIcoMod] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ toIocMod hp a b = c ↔ c ∈ Set.Ioc a (a + p) ∧ ∃ z, b = c + z • p [PROOFSTEP] refine' ⟨fun h => ⟨h ▸ toIocMod_mem_Ioc hp a b, toIocDiv hp a b, h ▸ (toIocMod_add_toIocDiv_zsmul hp _ _).symm⟩, _⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ (c ∈ Set.Ioc a (a + p) ∧ ∃ z, b = c + z • p) → toIocMod hp a b = c [PROOFSTEP] simp_rw [← @sub_eq_iff_eq_add] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ (c ∈ Set.Ioc a (a + p) ∧ ∃ z, b - z • p = c) → toIocMod hp a b = c [PROOFSTEP] rintro ⟨hc, n, rfl⟩ [GOAL] case intro.intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b : α n✝ n : ℤ hc : b - n • p ∈ Set.Ioc a (a + p) ⊢ toIocMod hp a b = b - n • p [PROOFSTEP] rw [← toIocDiv_eq_of_sub_zsmul_mem_Ioc hp hc, toIocMod] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ a - 0 • p ∈ Set.Ico a (a + p) [PROOFSTEP] simp [hp] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ a - -1 • p ∈ Set.Ioc a (a + p) [PROOFSTEP] simp [hp] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ toIcoMod hp a a = a [PROOFSTEP] rw [toIcoMod_eq_iff hp, Set.left_mem_Ico] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ a < a + p ∧ ∃ z, a = a + z • p [PROOFSTEP] exact ⟨lt_add_of_pos_right _ hp, 0, by simp⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ a = a + 0 • p [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ toIocMod hp a a = a + p [PROOFSTEP] rw [toIocMod_eq_iff hp, Set.right_mem_Ioc] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ a < a + p ∧ ∃ z, a = a + p + z • p [PROOFSTEP] exact ⟨lt_add_of_pos_right _ hp, -1, by simp⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ a = a + p + -1 • p [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ a + p - 1 • p ∈ Set.Ico a (a + p) [PROOFSTEP] simp [hp] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ a + p - 0 • p ∈ Set.Ioc a (a + p) [PROOFSTEP] simp [hp] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ toIcoMod hp a (a + p) = a [PROOFSTEP] rw [toIcoMod_eq_iff hp, Set.left_mem_Ico] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ a < a + p ∧ ∃ z, a + p = a + z • p [PROOFSTEP] exact ⟨lt_add_of_pos_right _ hp, 1, by simp⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ a + p = a + 1 • p [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ toIocMod hp a (a + p) = a + p [PROOFSTEP] rw [toIocMod_eq_iff hp, Set.right_mem_Ioc] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ a < a + p ∧ ∃ z, a + p = a + p + z • p [PROOFSTEP] exact ⟨lt_add_of_pos_right _ hp, 0, by simp⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a : α ⊢ a + p = a + p + 0 • p [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ b + m • p - (toIcoDiv hp a b + m) • p ∈ Set.Ico a (a + p) [PROOFSTEP] simpa only [add_smul, add_sub_add_right_eq_sub] using sub_toIcoDiv_zsmul_mem_Ico hp a b [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIcoDiv hp (a + m • p) b = toIcoDiv hp a b - m [PROOFSTEP] refine' toIcoDiv_eq_of_sub_zsmul_mem_Ico _ _ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ b - (toIcoDiv hp a b - m) • p ∈ Set.Ico (a + m • p) (a + m • p + p) [PROOFSTEP] rw [sub_smul, ← sub_add, add_right_comm] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ b - toIcoDiv hp a b • p + m • p ∈ Set.Ico (a + m • p) (a + p + m • p) [PROOFSTEP] simpa using sub_toIcoDiv_zsmul_mem_Ico hp a b [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ b + m • p - (toIocDiv hp a b + m) • p ∈ Set.Ioc a (a + p) [PROOFSTEP] simpa only [add_smul, add_sub_add_right_eq_sub] using sub_toIocDiv_zsmul_mem_Ioc hp a b [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIocDiv hp (a + m • p) b = toIocDiv hp a b - m [PROOFSTEP] refine' toIocDiv_eq_of_sub_zsmul_mem_Ioc _ _ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ b - (toIocDiv hp a b - m) • p ∈ Set.Ioc (a + m • p) (a + m • p + p) [PROOFSTEP] rw [sub_smul, ← sub_add, add_right_comm] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ b - toIocDiv hp a b • p + m • p ∈ Set.Ioc (a + m • p) (a + p + m • p) [PROOFSTEP] simpa using sub_toIocDiv_zsmul_mem_Ioc hp a b [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIcoDiv hp a (m • p + b) = m + toIcoDiv hp a b [PROOFSTEP] rw [add_comm, toIcoDiv_add_zsmul, add_comm] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIocDiv hp a (m • p + b) = m + toIocDiv hp a b [PROOFSTEP] rw [add_comm, toIocDiv_add_zsmul, add_comm] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIcoDiv hp a (b - m • p) = toIcoDiv hp a b - m [PROOFSTEP] rw [sub_eq_add_neg, ← neg_smul, toIcoDiv_add_zsmul, sub_eq_add_neg] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIcoDiv hp (a - m • p) b = toIcoDiv hp a b + m [PROOFSTEP] rw [sub_eq_add_neg, ← neg_smul, toIcoDiv_add_zsmul', sub_neg_eq_add] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIocDiv hp a (b - m • p) = toIocDiv hp a b - m [PROOFSTEP] rw [sub_eq_add_neg, ← neg_smul, toIocDiv_add_zsmul, sub_eq_add_neg] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIocDiv hp (a - m • p) b = toIocDiv hp a b + m [PROOFSTEP] rw [sub_eq_add_neg, ← neg_smul, toIocDiv_add_zsmul', sub_neg_eq_add] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoDiv hp a (b + p) = toIcoDiv hp a b + 1 [PROOFSTEP] simpa only [one_zsmul] using toIcoDiv_add_zsmul hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoDiv hp (a + p) b = toIcoDiv hp a b - 1 [PROOFSTEP] simpa only [one_zsmul] using toIcoDiv_add_zsmul' hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp a (b + p) = toIocDiv hp a b + 1 [PROOFSTEP] simpa only [one_zsmul] using toIocDiv_add_zsmul hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp (a + p) b = toIocDiv hp a b - 1 [PROOFSTEP] simpa only [one_zsmul] using toIocDiv_add_zsmul' hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoDiv hp a (p + b) = toIcoDiv hp a b + 1 [PROOFSTEP] rw [add_comm, toIcoDiv_add_right] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoDiv hp (p + a) b = toIcoDiv hp a b - 1 [PROOFSTEP] rw [add_comm, toIcoDiv_add_right'] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp a (p + b) = toIocDiv hp a b + 1 [PROOFSTEP] rw [add_comm, toIocDiv_add_right] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp (p + a) b = toIocDiv hp a b - 1 [PROOFSTEP] rw [add_comm, toIocDiv_add_right'] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoDiv hp a (b - p) = toIcoDiv hp a b - 1 [PROOFSTEP] simpa only [one_zsmul] using toIcoDiv_sub_zsmul hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoDiv hp (a - p) b = toIcoDiv hp a b + 1 [PROOFSTEP] simpa only [one_zsmul] using toIcoDiv_sub_zsmul' hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp a (b - p) = toIocDiv hp a b - 1 [PROOFSTEP] simpa only [one_zsmul] using toIocDiv_sub_zsmul hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp (a - p) b = toIocDiv hp a b + 1 [PROOFSTEP] simpa only [one_zsmul] using toIocDiv_sub_zsmul' hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α ⊢ toIcoDiv hp a (b - c) = toIcoDiv hp (a + c) b [PROOFSTEP] apply toIcoDiv_eq_of_sub_zsmul_mem_Ico [GOAL] case h α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α ⊢ b - c - toIcoDiv hp (a + c) b • p ∈ Set.Ico a (a + p) [PROOFSTEP] rw [← sub_right_comm, Set.sub_mem_Ico_iff_left, add_right_comm] [GOAL] case h α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α ⊢ b - toIcoDiv hp (a + c) b • p ∈ Set.Ico (a + c) (a + c + p) [PROOFSTEP] exact sub_toIcoDiv_zsmul_mem_Ico hp (a + c) b [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α ⊢ toIocDiv hp a (b - c) = toIocDiv hp (a + c) b [PROOFSTEP] apply toIocDiv_eq_of_sub_zsmul_mem_Ioc [GOAL] case h α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α ⊢ b - c - toIocDiv hp (a + c) b • p ∈ Set.Ioc a (a + p) [PROOFSTEP] rw [← sub_right_comm, Set.sub_mem_Ioc_iff_left, add_right_comm] [GOAL] case h α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α ⊢ b - toIocDiv hp (a + c) b • p ∈ Set.Ioc (a + c) (a + c + p) [PROOFSTEP] exact sub_toIocDiv_zsmul_mem_Ioc hp (a + c) b [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α ⊢ toIcoDiv hp (a - c) b = toIcoDiv hp a (b + c) [PROOFSTEP] rw [← sub_neg_eq_add, toIcoDiv_sub_eq_toIcoDiv_add, sub_eq_add_neg] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α ⊢ toIocDiv hp (a - c) b = toIocDiv hp a (b + c) [PROOFSTEP] rw [← sub_neg_eq_add, toIocDiv_sub_eq_toIocDiv_add, sub_eq_add_neg] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoDiv hp a (-b) = -(toIocDiv hp (-a) b + 1) [PROOFSTEP] suffices toIcoDiv hp a (-b) = -toIocDiv hp (-(a + p)) b by rwa [neg_add, ← sub_eq_add_neg, toIocDiv_sub_eq_toIocDiv_add', toIocDiv_add_right] at this [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α this : toIcoDiv hp a (-b) = -toIocDiv hp (-(a + p)) b ⊢ toIcoDiv hp a (-b) = -(toIocDiv hp (-a) b + 1) [PROOFSTEP] rwa [neg_add, ← sub_eq_add_neg, toIocDiv_sub_eq_toIocDiv_add', toIocDiv_add_right] at this [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoDiv hp a (-b) = -toIocDiv hp (-(a + p)) b [PROOFSTEP] rw [← neg_eq_iff_eq_neg, eq_comm] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp (-(a + p)) b = -toIcoDiv hp a (-b) [PROOFSTEP] apply toIocDiv_eq_of_sub_zsmul_mem_Ioc [GOAL] case h α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p) [PROOFSTEP] obtain ⟨hc, ho⟩ := sub_toIcoDiv_zsmul_mem_Ico hp a (-b) [GOAL] case h.intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α hc : a ≤ -b - toIcoDiv hp a (-b) • p ho : -b - toIcoDiv hp a (-b) • p < a + p ⊢ b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p) [PROOFSTEP] rw [← neg_lt_neg_iff, neg_sub' (-b), neg_neg, ← neg_smul] at ho [GOAL] case h.intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α hc : a ≤ -b - toIcoDiv hp a (-b) • p ho✝ : -b - toIcoDiv hp a (-b) • p < a + p ho : -(a + p) < b - -toIcoDiv hp a (-b) • p ⊢ b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p) [PROOFSTEP] rw [← neg_le_neg_iff, neg_sub' (-b), neg_neg, ← neg_smul] at hc [GOAL] case h.intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α hc✝ : a ≤ -b - toIcoDiv hp a (-b) • p hc : b - -toIcoDiv hp a (-b) • p ≤ -a ho✝ : -b - toIcoDiv hp a (-b) • p < a + p ho : -(a + p) < b - -toIcoDiv hp a (-b) • p ⊢ b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p) [PROOFSTEP] refine' ⟨ho, hc.trans_eq _⟩ [GOAL] case h.intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α hc✝ : a ≤ -b - toIcoDiv hp a (-b) • p hc : b - -toIcoDiv hp a (-b) • p ≤ -a ho✝ : -b - toIcoDiv hp a (-b) • p < a + p ho : -(a + p) < b - -toIcoDiv hp a (-b) • p ⊢ -a = -(a + p) + p [PROOFSTEP] rw [neg_add, neg_add_cancel_right] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoDiv hp (-a) b = -(toIocDiv hp a (-b) + 1) [PROOFSTEP] simpa only [neg_neg] using toIcoDiv_neg hp (-a) (-b) [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp a (-b) = -(toIcoDiv hp (-a) b + 1) [PROOFSTEP] rw [← neg_neg b, toIcoDiv_neg, neg_neg, neg_neg, neg_add', neg_neg, add_sub_cancel] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp (-a) b = -(toIcoDiv hp a (-b) + 1) [PROOFSTEP] simpa only [neg_neg] using toIocDiv_neg hp (-a) (-b) [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIcoMod hp a (b + m • p) = toIcoMod hp a b [PROOFSTEP] rw [toIcoMod, toIcoDiv_add_zsmul, toIcoMod, add_smul] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ b + m • p - (toIcoDiv hp a b • p + m • p) = b - toIcoDiv hp a b • p [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ b + m • p - (toIcoDiv hp a b • p + m • p) = b - toIcoDiv hp a b • p [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIcoMod hp (a + m • p) b = toIcoMod hp a b + m • p [PROOFSTEP] simp only [toIcoMod, toIcoDiv_add_zsmul', sub_smul, sub_add] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIocMod hp a (b + m • p) = toIocMod hp a b [PROOFSTEP] rw [toIocMod, toIocDiv_add_zsmul, toIocMod, add_smul] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ b + m • p - (toIocDiv hp a b • p + m • p) = b - toIocDiv hp a b • p [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ b + m • p - (toIocDiv hp a b • p + m • p) = b - toIocDiv hp a b • p [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIocMod hp (a + m • p) b = toIocMod hp a b + m • p [PROOFSTEP] simp only [toIocMod, toIocDiv_add_zsmul', sub_smul, sub_add] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIcoMod hp a (m • p + b) = toIcoMod hp a b [PROOFSTEP] rw [add_comm, toIcoMod_add_zsmul] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIcoMod hp (m • p + a) b = m • p + toIcoMod hp a b [PROOFSTEP] rw [add_comm, toIcoMod_add_zsmul', add_comm] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIocMod hp a (m • p + b) = toIocMod hp a b [PROOFSTEP] rw [add_comm, toIocMod_add_zsmul] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIocMod hp (m • p + a) b = m • p + toIocMod hp a b [PROOFSTEP] rw [add_comm, toIocMod_add_zsmul', add_comm] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIcoMod hp a (b - m • p) = toIcoMod hp a b [PROOFSTEP] rw [sub_eq_add_neg, ← neg_smul, toIcoMod_add_zsmul] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIcoMod hp (a - m • p) b = toIcoMod hp a b - m • p [PROOFSTEP] simp_rw [sub_eq_add_neg, ← neg_smul, toIcoMod_add_zsmul'] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIocMod hp a (b - m • p) = toIocMod hp a b [PROOFSTEP] rw [sub_eq_add_neg, ← neg_smul, toIocMod_add_zsmul] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α m : ℤ ⊢ toIocMod hp (a - m • p) b = toIocMod hp a b - m • p [PROOFSTEP] simp_rw [sub_eq_add_neg, ← neg_smul, toIocMod_add_zsmul'] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp a (b + p) = toIcoMod hp a b [PROOFSTEP] simpa only [one_zsmul] using toIcoMod_add_zsmul hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp (a + p) b = toIcoMod hp a b + p [PROOFSTEP] simpa only [one_zsmul] using toIcoMod_add_zsmul' hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp a (b + p) = toIocMod hp a b [PROOFSTEP] simpa only [one_zsmul] using toIocMod_add_zsmul hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp (a + p) b = toIocMod hp a b + p [PROOFSTEP] simpa only [one_zsmul] using toIocMod_add_zsmul' hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp a (p + b) = toIcoMod hp a b [PROOFSTEP] rw [add_comm, toIcoMod_add_right] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp (p + a) b = p + toIcoMod hp a b [PROOFSTEP] rw [add_comm, toIcoMod_add_right', add_comm] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp a (p + b) = toIocMod hp a b [PROOFSTEP] rw [add_comm, toIocMod_add_right] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp (p + a) b = p + toIocMod hp a b [PROOFSTEP] rw [add_comm, toIocMod_add_right', add_comm] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp a (b - p) = toIcoMod hp a b [PROOFSTEP] simpa only [one_zsmul] using toIcoMod_sub_zsmul hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp (a - p) b = toIcoMod hp a b - p [PROOFSTEP] simpa only [one_zsmul] using toIcoMod_sub_zsmul' hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp a (b - p) = toIocMod hp a b [PROOFSTEP] simpa only [one_zsmul] using toIocMod_sub_zsmul hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp (a - p) b = toIocMod hp a b - p [PROOFSTEP] simpa only [one_zsmul] using toIocMod_sub_zsmul' hp a b 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α ⊢ toIcoMod hp a (b - c) = toIcoMod hp (a + c) b - c [PROOFSTEP] simp_rw [toIcoMod, toIcoDiv_sub_eq_toIcoDiv_add, sub_right_comm] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α ⊢ toIocMod hp a (b - c) = toIocMod hp (a + c) b - c [PROOFSTEP] simp_rw [toIocMod, toIocDiv_sub_eq_toIocDiv_add, sub_right_comm] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α ⊢ toIcoMod hp a (b + c) = toIcoMod hp (a - c) b + c [PROOFSTEP] simp_rw [toIcoMod, toIcoDiv_sub_eq_toIcoDiv_add', sub_add_eq_add_sub] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α ⊢ toIocMod hp a (b + c) = toIocMod hp (a - c) b + c [PROOFSTEP] simp_rw [toIocMod, toIocDiv_sub_eq_toIocDiv_add', sub_add_eq_add_sub] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp a (-b) = p - toIocMod hp (-a) b [PROOFSTEP] simp_rw [toIcoMod, toIocMod, toIcoDiv_neg, neg_smul, add_smul] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ -b - -(toIocDiv hp (-a) b • p + 1 • p) = p - (b - toIocDiv hp (-a) b • p) [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ -b - -(toIocDiv hp (-a) b • p + 1 • p) = p - (b - toIocDiv hp (-a) b • p) [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp (-a) b = p - toIocMod hp a (-b) [PROOFSTEP] simpa only [neg_neg] using toIcoMod_neg hp (-a) (-b) [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp a (-b) = p - toIcoMod hp (-a) b [PROOFSTEP] simp_rw [toIocMod, toIcoMod, toIocDiv_neg, neg_smul, add_smul] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ -b - -(toIcoDiv hp (-a) b • p + 1 • p) = p - (b - toIcoDiv hp (-a) b • p) [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ -b - -(toIcoDiv hp (-a) b • p + 1 • p) = p - (b - toIcoDiv hp (-a) b • p) [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp (-a) b = p - toIcoMod hp a (-b) [PROOFSTEP] simpa only [neg_neg] using toIocMod_neg hp (-a) (-b) [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ toIcoMod hp a b = toIcoMod hp a c ↔ ∃ n, c - b = n • p [PROOFSTEP] refine' ⟨fun h => ⟨toIcoDiv hp a c - toIcoDiv hp a b, _⟩, fun h => _⟩ [GOAL] case refine'_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIcoMod hp a b = toIcoMod hp a c ⊢ c - b = (toIcoDiv hp a c - toIcoDiv hp a b) • p [PROOFSTEP] conv_lhs => rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, ← toIcoMod_add_toIcoDiv_zsmul hp a c] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIcoMod hp a b = toIcoMod hp a c | c - b [PROOFSTEP] rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, ← toIcoMod_add_toIcoDiv_zsmul hp a c] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIcoMod hp a b = toIcoMod hp a c | c - b [PROOFSTEP] rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, ← toIcoMod_add_toIcoDiv_zsmul hp a c] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIcoMod hp a b = toIcoMod hp a c | c - b [PROOFSTEP] rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, ← toIcoMod_add_toIcoDiv_zsmul hp a c] [GOAL] case refine'_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIcoMod hp a b = toIcoMod hp a c ⊢ toIcoMod hp a c + toIcoDiv hp a c • p - (toIcoMod hp a b + toIcoDiv hp a b • p) = (toIcoDiv hp a c - toIcoDiv hp a b) • p [PROOFSTEP] rw [h, sub_smul] [GOAL] case refine'_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIcoMod hp a b = toIcoMod hp a c ⊢ toIcoMod hp a c + toIcoDiv hp a c • p - (toIcoMod hp a c + toIcoDiv hp a b • p) = toIcoDiv hp a c • p - toIcoDiv hp a b • p [PROOFSTEP] abel [GOAL] case refine'_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIcoMod hp a b = toIcoMod hp a c ⊢ toIcoMod hp a c + toIcoDiv hp a c • p - (toIcoMod hp a c + toIcoDiv hp a b • p) = toIcoDiv hp a c • p - toIcoDiv hp a b • p [PROOFSTEP] abel [GOAL] case refine'_2 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : ∃ n, c - b = n • p ⊢ toIcoMod hp a b = toIcoMod hp a c [PROOFSTEP] rcases h with ⟨z, hz⟩ [GOAL] case refine'_2.intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n z : ℤ hz : c - b = z • p ⊢ toIcoMod hp a b = toIcoMod hp a c [PROOFSTEP] rw [sub_eq_iff_eq_add] at hz [GOAL] case refine'_2.intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n z : ℤ hz : c = z • p + b ⊢ toIcoMod hp a b = toIcoMod hp a c [PROOFSTEP] rw [hz, toIcoMod_zsmul_add] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ toIocMod hp a b = toIocMod hp a c ↔ ∃ n, c - b = n • p [PROOFSTEP] refine' ⟨fun h => ⟨toIocDiv hp a c - toIocDiv hp a b, _⟩, fun h => _⟩ [GOAL] case refine'_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIocMod hp a b = toIocMod hp a c ⊢ c - b = (toIocDiv hp a c - toIocDiv hp a b) • p [PROOFSTEP] conv_lhs => rw [← toIocMod_add_toIocDiv_zsmul hp a b, ← toIocMod_add_toIocDiv_zsmul hp a c] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIocMod hp a b = toIocMod hp a c | c - b [PROOFSTEP] rw [← toIocMod_add_toIocDiv_zsmul hp a b, ← toIocMod_add_toIocDiv_zsmul hp a c] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIocMod hp a b = toIocMod hp a c | c - b [PROOFSTEP] rw [← toIocMod_add_toIocDiv_zsmul hp a b, ← toIocMod_add_toIocDiv_zsmul hp a c] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIocMod hp a b = toIocMod hp a c | c - b [PROOFSTEP] rw [← toIocMod_add_toIocDiv_zsmul hp a b, ← toIocMod_add_toIocDiv_zsmul hp a c] [GOAL] case refine'_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIocMod hp a b = toIocMod hp a c ⊢ toIocMod hp a c + toIocDiv hp a c • p - (toIocMod hp a b + toIocDiv hp a b • p) = (toIocDiv hp a c - toIocDiv hp a b) • p [PROOFSTEP] rw [h, sub_smul] [GOAL] case refine'_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIocMod hp a b = toIocMod hp a c ⊢ toIocMod hp a c + toIocDiv hp a c • p - (toIocMod hp a c + toIocDiv hp a b • p) = toIocDiv hp a c • p - toIocDiv hp a b • p [PROOFSTEP] abel [GOAL] case refine'_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIocMod hp a b = toIocMod hp a c ⊢ toIocMod hp a c + toIocDiv hp a c • p - (toIocMod hp a c + toIocDiv hp a b • p) = toIocDiv hp a c • p - toIocDiv hp a b • p [PROOFSTEP] abel [GOAL] case refine'_2 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : ∃ n, c - b = n • p ⊢ toIocMod hp a b = toIocMod hp a c [PROOFSTEP] rcases h with ⟨z, hz⟩ [GOAL] case refine'_2.intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n z : ℤ hz : c - b = z • p ⊢ toIocMod hp a b = toIocMod hp a c [PROOFSTEP] rw [sub_eq_iff_eq_add] at hz [GOAL] case refine'_2.intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n z : ℤ hz : c = z • p + b ⊢ toIocMod hp a b = toIocMod hp a c [PROOFSTEP] rw [hz, toIocMod_zsmul_add] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ (∃ z, b = a + z • p) → toIcoMod hp a b = a [PROOFSTEP] rintro ⟨n, rfl⟩ [GOAL] case intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a c : α n✝ n : ℤ ⊢ toIcoMod hp a (a + n • p) = a [PROOFSTEP] rw [toIcoMod_add_zsmul, toIcoMod_apply_left] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ a ≡ b [PMOD p] ↔ toIocMod hp a b = a + p [PROOFSTEP] refine' modEq_iff_eq_add_zsmul.trans ⟨_, fun h => ⟨toIocDiv hp a b + 1, _⟩⟩ [GOAL] case refine'_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ (∃ z, b = a + z • p) → toIocMod hp a b = a + p [PROOFSTEP] rintro ⟨z, rfl⟩ [GOAL] case refine'_1.intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a c : α n z : ℤ ⊢ toIocMod hp a (a + z • p) = a + p [PROOFSTEP] rw [toIocMod_add_zsmul, toIocMod_apply_left] [GOAL] case refine'_2 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h : toIocMod hp a b = a + p ⊢ b = a + (toIocDiv hp a b + 1) • p [PROOFSTEP] rwa [add_one_zsmul, add_left_comm, ← sub_eq_iff_eq_add'] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ TFAE [a ≡ b [PMOD p], ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p), toIcoMod hp a b ≠ toIocMod hp a b, toIcoMod hp a b + p = toIocMod hp a b] [PROOFSTEP] rw [modEq_iff_toIcoMod_eq_left hp] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ TFAE [toIcoMod hp a b = a, ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p), toIcoMod hp a b ≠ toIocMod hp a b, toIcoMod hp a b + p = toIocMod hp a b] [PROOFSTEP] tfae_have 3 → 2 [GOAL] case tfae_3_to_2 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) [PROOFSTEP] rw [← not_exists, not_imp_not] [GOAL] case tfae_3_to_2 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ (∃ x, b - x • p ∈ Set.Ioo a (a + p)) → toIcoMod hp a b = toIocMod hp a b [PROOFSTEP] exact fun ⟨i, hi⟩ => ((toIcoMod_eq_iff hp).2 ⟨Set.Ioo_subset_Ico_self hi, i, (sub_add_cancel b _).symm⟩).trans ((toIocMod_eq_iff hp).2 ⟨Set.Ioo_subset_Ioc_self hi, i, (sub_add_cancel b _).symm⟩).symm [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) ⊢ TFAE [toIcoMod hp a b = a, ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p), toIcoMod hp a b ≠ toIocMod hp a b, toIcoMod hp a b + p = toIocMod hp a b] [PROOFSTEP] tfae_have 4 → 3 [GOAL] case tfae_4_to_3 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) ⊢ toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b [PROOFSTEP] intro h [GOAL] case tfae_4_to_3 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) h : toIcoMod hp a b + p = toIocMod hp a b ⊢ toIcoMod hp a b ≠ toIocMod hp a b [PROOFSTEP] rw [← h, Ne, eq_comm, add_right_eq_self] [GOAL] case tfae_4_to_3 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) h : toIcoMod hp a b + p = toIocMod hp a b ⊢ ¬p = 0 [PROOFSTEP] exact hp.ne' [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b ⊢ TFAE [toIcoMod hp a b = a, ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p), toIcoMod hp a b ≠ toIocMod hp a b, toIcoMod hp a b + p = toIocMod hp a b] [PROOFSTEP] tfae_have 1 → 4 [GOAL] case tfae_1_to_4 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b ⊢ toIcoMod hp a b = a → toIcoMod hp a b + p = toIocMod hp a b [PROOFSTEP] intro h [GOAL] case tfae_1_to_4 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b h : toIcoMod hp a b = a ⊢ toIcoMod hp a b + p = toIocMod hp a b [PROOFSTEP] rw [h, eq_comm, toIocMod_eq_iff, Set.right_mem_Ioc] [GOAL] case tfae_1_to_4 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b h : toIcoMod hp a b = a ⊢ a < a + p ∧ ∃ z, b = a + p + z • p [PROOFSTEP] refine' ⟨lt_add_of_pos_right a hp, toIcoDiv hp a b - 1, _⟩ [GOAL] case tfae_1_to_4 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b h : toIcoMod hp a b = a ⊢ b = a + p + (toIcoDiv hp a b - 1) • p [PROOFSTEP] rw [sub_one_zsmul, add_add_add_comm, add_right_neg, add_zero] [GOAL] case tfae_1_to_4 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b h : toIcoMod hp a b = a ⊢ b = a + toIcoDiv hp a b • p [PROOFSTEP] conv_lhs => rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, h] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b h : toIcoMod hp a b = a | b [PROOFSTEP] rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, h] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b h : toIcoMod hp a b = a | b [PROOFSTEP] rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, h] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b h : toIcoMod hp a b = a | b [PROOFSTEP] rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, h] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b tfae_1_to_4 : toIcoMod hp a b = a → toIcoMod hp a b + p = toIocMod hp a b ⊢ TFAE [toIcoMod hp a b = a, ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p), toIcoMod hp a b ≠ toIocMod hp a b, toIcoMod hp a b + p = toIocMod hp a b] [PROOFSTEP] tfae_have 2 → 1 [GOAL] case tfae_2_to_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b tfae_1_to_4 : toIcoMod hp a b = a → toIcoMod hp a b + p = toIocMod hp a b ⊢ (∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)) → toIcoMod hp a b = a [PROOFSTEP] rw [← not_exists, not_imp_comm] [GOAL] case tfae_2_to_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b tfae_1_to_4 : toIcoMod hp a b = a → toIcoMod hp a b + p = toIocMod hp a b ⊢ ¬toIcoMod hp a b = a → ∃ x, b - x • p ∈ Set.Ioo a (a + p) [PROOFSTEP] have h' := toIcoMod_mem_Ico hp a b [GOAL] case tfae_2_to_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b tfae_1_to_4 : toIcoMod hp a b = a → toIcoMod hp a b + p = toIocMod hp a b h' : toIcoMod hp a b ∈ Set.Ico a (a + p) ⊢ ¬toIcoMod hp a b = a → ∃ x, b - x • p ∈ Set.Ioo a (a + p) [PROOFSTEP] exact fun h => ⟨_, h'.1.lt_of_ne' h, h'.2⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p) tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b tfae_1_to_4 : toIcoMod hp a b = a → toIcoMod hp a b + p = toIocMod hp a b tfae_2_to_1 : (∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)) → toIcoMod hp a b = a ⊢ TFAE [toIcoMod hp a b = a, ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p), toIcoMod hp a b ≠ toIocMod hp a b, toIcoMod hp a b + p = toIocMod hp a b] [PROOFSTEP] tfae_finish [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ ¬a ≡ b [PMOD p] ↔ toIcoDiv hp a b = toIocDiv hp a b [PROOFSTEP] rw [not_modEq_iff_toIcoMod_eq_toIocMod hp, toIcoMod, toIocMod, sub_right_inj, (zsmul_strictMono_left hp).injective.eq_iff] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ a ≡ b [PMOD p] ↔ toIcoDiv hp a b = toIocDiv hp a b + 1 [PROOFSTEP] rw [modEq_iff_toIcoMod_add_period_eq_toIocMod hp, toIcoMod, toIocMod, ← eq_sub_iff_add_eq, sub_sub, sub_right_inj, ← add_one_zsmul, (zsmul_strictMono_left hp).injective.eq_iff] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c✝ : α n : ℤ c : α ⊢ toIcoMod hp c a = toIcoMod hp c b ↔ a ≡ b [PMOD p] [PROOFSTEP] simp_rw [toIcoMod_eq_toIcoMod, modEq_iff_eq_add_zsmul, sub_eq_iff_eq_add'] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ {b | toIcoMod hp a b = toIocMod hp a b} = ⋃ (z : ℤ), Set.Ioo (a + z • p) (a + p + z • p) [PROOFSTEP] ext1 [GOAL] case h α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x✝ : α ⊢ x✝ ∈ {b | toIcoMod hp a b = toIocMod hp a b} ↔ x✝ ∈ ⋃ (z : ℤ), Set.Ioo (a + z • p) (a + p + z • p) [PROOFSTEP] simp_rw [Set.mem_setOf, Set.mem_iUnion, ← Set.sub_mem_Ioo_iff_left, ← not_modEq_iff_toIcoMod_eq_toIocMod, modEq_iff_not_forall_mem_Ioo_mod hp, not_forall, Classical.not_not] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp a b ⩿ toIcoDiv hp a b [PROOFSTEP] suffices toIocDiv hp a b = toIcoDiv hp a b ∨ toIocDiv hp a b + 1 = toIcoDiv hp a b by rwa [wcovby_iff_eq_or_covby, ← Order.succ_eq_iff_covby] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α this : toIocDiv hp a b = toIcoDiv hp a b ∨ toIocDiv hp a b + 1 = toIcoDiv hp a b ⊢ toIocDiv hp a b ⩿ toIcoDiv hp a b [PROOFSTEP] rwa [wcovby_iff_eq_or_covby, ← Order.succ_eq_iff_covby] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp a b = toIcoDiv hp a b ∨ toIocDiv hp a b + 1 = toIcoDiv hp a b [PROOFSTEP] rw [eq_comm, ← not_modEq_iff_toIcoDiv_eq_toIocDiv, eq_comm, ← modEq_iff_toIcoDiv_eq_toIocDiv_add_one] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ ¬a ≡ b [PMOD p] ∨ a ≡ b [PMOD p] [PROOFSTEP] exact em' _ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp a b ≤ toIocMod hp a b [PROOFSTEP] rw [toIcoMod, toIocMod, sub_le_sub_iff_left] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp a b • p ≤ toIcoDiv hp a b • p [PROOFSTEP] exact zsmul_mono_left hp.le (toIocDiv_wcovby_toIcoDiv _ _ _).le [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp a b ≤ toIcoMod hp a b + p [PROOFSTEP] rw [toIcoMod, toIocMod, sub_add, sub_le_sub_iff_left, sub_le_iff_le_add, ← add_one_zsmul, (zsmul_strictMono_left hp).le_iff_le] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoDiv hp a b ≤ toIocDiv hp a b + 1 [PROOFSTEP] apply (toIocDiv_wcovby_toIcoDiv _ _ _).le_succ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ toIcoMod hp a b = b ↔ b ∈ Set.Ico a (a + p) [PROOFSTEP] rw [toIcoMod_eq_iff, and_iff_left] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ ∃ z, b = b + z • p [PROOFSTEP] exact ⟨0, by simp⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ b = b + 0 • p [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ toIocMod hp a b = b ↔ b ∈ Set.Ioc a (a + p) [PROOFSTEP] rw [toIocMod_eq_iff, and_iff_left] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ ∃ z, b = b + z • p [PROOFSTEP] exact ⟨0, by simp⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ ⊢ b = b + 0 • p [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp 0 (a - b) = p - toIocMod hp 0 (b - a) [PROOFSTEP] rw [← neg_sub, toIcoMod_neg, neg_zero] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp 0 (a - b) = p - toIcoMod hp 0 (b - a) [PROOFSTEP] rw [← neg_sub, toIocMod_neg, neg_zero] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoDiv hp a b = toIcoDiv hp 0 (b - a) [PROOFSTEP] rw [toIcoDiv_sub_eq_toIcoDiv_add, zero_add] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp a b = toIocDiv hp 0 (b - a) [PROOFSTEP] rw [toIocDiv_sub_eq_toIocDiv_add, zero_add] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp a b = toIcoMod hp 0 (b - a) + a [PROOFSTEP] rw [toIcoMod_sub_eq_sub, zero_add, sub_add_cancel] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp a b = toIocMod hp 0 (b - a) + a [PROOFSTEP] rw [toIocMod_sub_eq_sub, zero_add, sub_add_cancel] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - a) = p [PROOFSTEP] rw [toIcoMod_zero_sub_comm, sub_add_cancel] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocMod hp 0 (a - b) + toIcoMod hp 0 (b - a) = p [PROOFSTEP] rw [_root_.add_comm, toIcoMod_add_toIocMod_zero] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a : α b : α ⧸ AddSubgroup.zmultiples p ⊢ (fun x => ↑↑x) ((fun b => { val := Function.Periodic.lift (_ : Function.Periodic (toIcoMod hp a) p) b, property := (_ : Function.Periodic.lift (_ : Function.Periodic (toIcoMod hp a) p) b ∈ Set.Ico a (a + p)) }) b) = b [PROOFSTEP] induction b using QuotientAddGroup.induction_on' [GOAL] case H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a z✝ : α ⊢ (fun x => ↑↑x) ((fun b => { val := Function.Periodic.lift (_ : Function.Periodic (toIcoMod hp a) p) b, property := (_ : Function.Periodic.lift (_ : Function.Periodic (toIcoMod hp a) p) b ∈ Set.Ico a (a + p)) }) ↑z✝) = ↑z✝ [PROOFSTEP] dsimp [GOAL] case H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a z✝ : α ⊢ ↑(toIcoMod hp a z✝) = ↑z✝ [PROOFSTEP] rw [QuotientAddGroup.eq_iff_sub_mem, toIcoMod_sub_self] [GOAL] case H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a z✝ : α ⊢ -toIcoDiv hp a z✝ • p ∈ AddSubgroup.zmultiples p [PROOFSTEP] apply AddSubgroup.zsmul_mem_zmultiples [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a : α b : α ⧸ AddSubgroup.zmultiples p ⊢ (fun x => ↑↑x) ((fun b => { val := Function.Periodic.lift (_ : Function.Periodic (toIocMod hp a) p) b, property := (_ : Function.Periodic.lift (_ : Function.Periodic (toIocMod hp a) p) b ∈ Set.Ioc a (a + p)) }) b) = b [PROOFSTEP] induction b using QuotientAddGroup.induction_on' [GOAL] case H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a z✝ : α ⊢ (fun x => ↑↑x) ((fun b => { val := Function.Periodic.lift (_ : Function.Periodic (toIocMod hp a) p) b, property := (_ : Function.Periodic.lift (_ : Function.Periodic (toIocMod hp a) p) b ∈ Set.Ioc a (a + p)) }) ↑z✝) = ↑z✝ [PROOFSTEP] dsimp [GOAL] case H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a z✝ : α ⊢ ↑(toIocMod hp a z✝) = ↑z✝ [PROOFSTEP] rw [QuotientAddGroup.eq_iff_sub_mem, toIocMod_sub_self] [GOAL] case H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b c : α n : ℤ a z✝ : α ⊢ -toIocDiv hp a z✝ • p ∈ AddSubgroup.zmultiples p [PROOFSTEP] apply AddSubgroup.zsmul_mem_zmultiples [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α ⊢ toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ↔ toIcoMod hp 0 (x₂ - x₁) + toIcoMod hp 0 (x₁ - x₃) ≤ p [PROOFSTEP] rw [toIcoMod_eq_sub, toIocMod_eq_sub _ x₁, add_le_add_iff_right, ← neg_sub x₁ x₃, toIocMod_neg, neg_zero, le_sub_iff_add_le] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁ [PROOFSTEP] let x₂' := toIcoMod hp x₁ x₂ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ ⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁ [PROOFSTEP] let x₃' := toIcoMod hp x₂' x₃ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ ⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁ [PROOFSTEP] have h : x₂' ≤ toIocMod hp x₁ x₃' := by simpa [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ ⊢ x₂' ≤ toIocMod hp x₁ x₃' [PROOFSTEP] simpa [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' ⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁ [PROOFSTEP] have h₂₁ : x₂' < x₁ + p := toIcoMod_lt_right _ _ _ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p ⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁ [PROOFSTEP] have h₃₂ : x₃' - p < x₂' := sub_lt_iff_lt_add.2 (toIcoMod_lt_right _ _ _) [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' ⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁ [PROOFSTEP] suffices hequiv : x₃' ≤ toIocMod hp x₂' x₁ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' hequiv : x₃' ≤ toIocMod hp x₂' x₁ ⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁ [PROOFSTEP] obtain ⟨z, hd⟩ : ∃ z : ℤ, x₂ = x₂' + z • p := ((toIcoMod_eq_iff hp).1 rfl).2 [GOAL] case intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' hequiv : x₃' ≤ toIocMod hp x₂' x₁ z : ℤ hd : x₂ = x₂' + z • p ⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁ [PROOFSTEP] rw [hd, toIocMod_add_zsmul', toIcoMod_add_zsmul', add_le_add_iff_right] [GOAL] case intro α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' hequiv : x₃' ≤ toIocMod hp x₂' x₁ z : ℤ hd : x₂ = x₂' + z • p ⊢ toIcoMod hp x₂' x₃ ≤ toIocMod hp x₂' x₁ [PROOFSTEP] assumption -- Porting note: was `simpa` [GOAL] case hequiv α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' ⊢ x₃' ≤ toIocMod hp x₂' x₁ [PROOFSTEP] cases' le_or_lt x₃' (x₁ + p) with h₃₁ h₁₃ [GOAL] case hequiv.inl α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' h₃₁ : x₃' ≤ x₁ + p ⊢ x₃' ≤ toIocMod hp x₂' x₁ [PROOFSTEP] suffices hIoc₂₁ : toIocMod hp x₂' x₁ = x₁ + p [GOAL] case hequiv.inl α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' h₃₁ : x₃' ≤ x₁ + p hIoc₂₁ : toIocMod hp x₂' x₁ = x₁ + p ⊢ x₃' ≤ toIocMod hp x₂' x₁ [PROOFSTEP] exact hIoc₂₁.symm.trans_ge h₃₁ [GOAL] case hIoc₂₁ α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' h₃₁ : x₃' ≤ x₁ + p ⊢ toIocMod hp x₂' x₁ = x₁ + p [PROOFSTEP] apply (toIocMod_eq_iff hp).2 [GOAL] case hIoc₂₁ α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' h₃₁ : x₃' ≤ x₁ + p ⊢ x₁ + p ∈ Set.Ioc x₂' (x₂' + p) ∧ ∃ z, x₁ = x₁ + p + z • p [PROOFSTEP] exact ⟨⟨h₂₁, by simp [left_le_toIcoMod]⟩, -1, by simp⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' h₃₁ : x₃' ≤ x₁ + p ⊢ x₁ + p ≤ x₂' + p [PROOFSTEP] simp [left_le_toIcoMod] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' h₃₁ : x₃' ≤ x₁ + p ⊢ x₁ = x₁ + p + -1 • p [PROOFSTEP] simp [GOAL] case hequiv.inr α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' h₁₃ : x₁ + p < x₃' ⊢ x₃' ≤ toIocMod hp x₂' x₁ [PROOFSTEP] have hIoc₁₃ : toIocMod hp x₁ x₃' = x₃' - p := by apply (toIocMod_eq_iff hp).2 exact ⟨⟨lt_sub_iff_add_lt.2 h₁₃, le_of_lt (h₃₂.trans h₂₁)⟩, 1, by simp⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' h₁₃ : x₁ + p < x₃' ⊢ toIocMod hp x₁ x₃' = x₃' - p [PROOFSTEP] apply (toIocMod_eq_iff hp).2 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' h₁₃ : x₁ + p < x₃' ⊢ x₃' - p ∈ Set.Ioc x₁ (x₁ + p) ∧ ∃ z, x₃' = x₃' - p + z • p [PROOFSTEP] exact ⟨⟨lt_sub_iff_add_lt.2 h₁₃, le_of_lt (h₃₂.trans h₂₁)⟩, 1, by simp⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' h₁₃ : x₁ + p < x₃' ⊢ x₃' = x₃' - p + 1 • p [PROOFSTEP] simp [GOAL] case hequiv.inr α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' h₁₃ : x₁ + p < x₃' hIoc₁₃ : toIocMod hp x₁ x₃' = x₃' - p ⊢ x₃' ≤ toIocMod hp x₂' x₁ [PROOFSTEP] have not_h₃₂ := (h.trans hIoc₁₃.le).not_lt [GOAL] case hequiv.inr α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ : α h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ x₂' : α := toIcoMod hp x₁ x₂ x₃' : α := toIcoMod hp x₂' x₃ h : x₂' ≤ toIocMod hp x₁ x₃' h₂₁ : x₂' < x₁ + p h₃₂ : x₃' - p < x₂' h₁₃ : x₁ + p < x₃' hIoc₁₃ : toIocMod hp x₁ x₃' = x₃' - p not_h₃₂ : ¬x₃' - p < x₂' ⊢ x₃' ≤ toIocMod hp x₂' x₁ [PROOFSTEP] contradiction [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h₁₂₃ : toIcoMod hp a b ≤ toIocMod hp a c h₁₃₂ : toIcoMod hp a c ≤ toIocMod hp a b ⊢ b ≡ a [PMOD p] ∨ c ≡ b [PMOD p] ∨ a ≡ c [PMOD p] [PROOFSTEP] by_contra' h [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h₁₂₃ : toIcoMod hp a b ≤ toIocMod hp a c h₁₃₂ : toIcoMod hp a c ≤ toIocMod hp a b h : ¬b ≡ a [PMOD p] ∧ ¬c ≡ b [PMOD p] ∧ ¬a ≡ c [PMOD p] ⊢ False [PROOFSTEP] rw [modEq_comm] at h [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h₁₂₃ : toIcoMod hp a b ≤ toIocMod hp a c h₁₃₂ : toIcoMod hp a c ≤ toIocMod hp a b h : ¬a ≡ b [PMOD p] ∧ ¬c ≡ b [PMOD p] ∧ ¬a ≡ c [PMOD p] ⊢ False [PROOFSTEP] rw [← (not_modEq_iff_toIcoMod_eq_toIocMod hp).mp h.2.2] at h₁₂₃ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h₁₂₃ : toIcoMod hp a b ≤ toIcoMod hp a c h₁₃₂ : toIcoMod hp a c ≤ toIocMod hp a b h : ¬a ≡ b [PMOD p] ∧ ¬c ≡ b [PMOD p] ∧ ¬a ≡ c [PMOD p] ⊢ False [PROOFSTEP] rw [← (not_modEq_iff_toIcoMod_eq_toIocMod hp).mp h.1] at h₁₃₂ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ h₁₂₃ : toIcoMod hp a b ≤ toIcoMod hp a c h₁₃₂ : toIcoMod hp a c ≤ toIcoMod hp a b h : ¬a ≡ b [PMOD p] ∧ ¬c ≡ b [PMOD p] ∧ ¬a ≡ c [PMOD p] ⊢ False [PROOFSTEP] exact h.2.1 ((toIcoMod_inj _).1 <| h₁₃₂.antisymm h₁₂₃) [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α ⊢ toIcoMod hp b a ≤ toIocMod hp b c ∨ toIcoMod hp b c ≤ toIocMod hp b a [PROOFSTEP] have := congr_arg₂ (· + ·) (toIcoMod_add_toIocMod_zero hp a b) (toIcoMod_add_toIocMod_zero hp c b) [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α this : (fun x x_1 => x + x_1) (toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - a)) (toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - c)) = (fun x x_1 => x + x_1) p p ⊢ toIcoMod hp b a ≤ toIocMod hp b c ∨ toIcoMod hp b c ≤ toIocMod hp b a [PROOFSTEP] simp only [add_add_add_comm] at this [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α this : toIcoMod hp 0 (a - b) + toIcoMod hp 0 (c - b) + (toIocMod hp 0 (b - a) + toIocMod hp 0 (b - c)) = p + p ⊢ toIcoMod hp b a ≤ toIocMod hp b c ∨ toIcoMod hp b c ≤ toIocMod hp b a [PROOFSTEP] rw [_root_.add_comm (toIocMod _ _ _), add_add_add_comm, ← two_nsmul] at this [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α this : toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - c) + (toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - a)) = 2 • p ⊢ toIcoMod hp b a ≤ toIocMod hp b c ∨ toIcoMod hp b c ≤ toIocMod hp b a [PROOFSTEP] replace := min_le_of_add_le_two_nsmul this.le [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α this : min (toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - c)) (toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - a)) ≤ p ⊢ toIcoMod hp b a ≤ toIocMod hp b c ∨ toIcoMod hp b c ≤ toIocMod hp b a [PROOFSTEP] rw [min_le_iff] at this [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α this : toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - c) ≤ p ∨ toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - a) ≤ p ⊢ toIcoMod hp b a ≤ toIocMod hp b c ∨ toIcoMod hp b c ≤ toIocMod hp b a [PROOFSTEP] rw [toIxxMod_iff, toIxxMod_iff] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α this : toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - c) ≤ p ∨ toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - a) ≤ p ⊢ toIcoMod hp 0 (a - b) + toIcoMod hp 0 (b - c) ≤ p ∨ toIcoMod hp 0 (c - b) + toIcoMod hp 0 (b - a) ≤ p [PROOFSTEP] refine' this.imp (le_trans <| add_le_add_left _ _) (le_trans <| add_le_add_left _ _) [GOAL] case refine'_1 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α this : toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - c) ≤ p ∨ toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - a) ≤ p ⊢ toIcoMod hp 0 (b - c) ≤ toIocMod hp 0 (b - c) [PROOFSTEP] apply toIcoMod_le_toIocMod [GOAL] case refine'_2 α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c✝ : α n : ℤ a b c : α this : toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - c) ≤ p ∨ toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - a) ≤ p ⊢ toIcoMod hp 0 (b - a) ≤ toIocMod hp 0 (b - a) [PROOFSTEP] apply toIcoMod_le_toIocMod [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ x₄ : α h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁ h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂ ⊢ toIcoMod hp x₁ x₄ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₁ [PROOFSTEP] constructor [GOAL] case left α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ x₄ : α h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁ h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂ ⊢ toIcoMod hp x₁ x₄ ≤ toIocMod hp x₁ x₃ [PROOFSTEP] suffices h : ¬x₃ ≡ x₂ [PMOD p] [GOAL] case left α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ x₄ : α h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁ h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂ h : ¬x₃ ≡ x₂ [PMOD p] ⊢ toIcoMod hp x₁ x₄ ≤ toIocMod hp x₁ x₃ [PROOFSTEP] have h₁₂₃' := toIxxMod_cyclic_left _ (toIxxMod_cyclic_left _ h₁₂₃.1) [GOAL] case left α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ x₄ : α h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁ h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂ h : ¬x₃ ≡ x₂ [PMOD p] h₁₂₃' : toIcoMod hp x₃ x₁ ≤ toIocMod hp x₃ x₂ ⊢ toIcoMod hp x₁ x₄ ≤ toIocMod hp x₁ x₃ [PROOFSTEP] have h₂₃₄' := toIxxMod_cyclic_left _ (toIxxMod_cyclic_left _ h₂₃₄.1) [GOAL] case left α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ x₄ : α h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁ h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂ h : ¬x₃ ≡ x₂ [PMOD p] h₁₂₃' : toIcoMod hp x₃ x₁ ≤ toIocMod hp x₃ x₂ h₂₃₄' : toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₄ ⊢ toIcoMod hp x₁ x₄ ≤ toIocMod hp x₁ x₃ [PROOFSTEP] rw [(not_modEq_iff_toIcoMod_eq_toIocMod hp).1 h] at h₂₃₄' [GOAL] case left α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ x₄ : α h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁ h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂ h : ¬x₃ ≡ x₂ [PMOD p] h₁₂₃' : toIcoMod hp x₃ x₁ ≤ toIocMod hp x₃ x₂ h₂₃₄' : toIocMod hp x₃ x₂ ≤ toIocMod hp x₃ x₄ ⊢ toIcoMod hp x₁ x₄ ≤ toIocMod hp x₁ x₃ [PROOFSTEP] exact toIxxMod_cyclic_left _ (h₁₂₃'.trans h₂₃₄') [GOAL] case h α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ x₄ : α h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁ h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂ ⊢ ¬x₃ ≡ x₂ [PMOD p] [PROOFSTEP] by_contra h [GOAL] case h α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ x₄ : α h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁ h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂ h : x₃ ≡ x₂ [PMOD p] ⊢ False [PROOFSTEP] rw [(modEq_iff_toIcoMod_eq_left hp).1 h] at h₁₂₃ [GOAL] case h α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ x₄ : α h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬x₃ ≤ toIocMod hp x₃ x₁ h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂ h : x₃ ≡ x₂ [PMOD p] ⊢ False [PROOFSTEP] exact h₁₂₃.2 (left_lt_toIocMod _ _ _).le [GOAL] case right α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ x₄ : α h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁ h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂ ⊢ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₁ [PROOFSTEP] rw [not_le] at h₁₂₃ h₂₃₄ ⊢ [GOAL] case right α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ x₁ x₂ x₃ x₄ : α h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ toIocMod hp x₃ x₁ < toIcoMod hp x₃ x₂ h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ toIocMod hp x₃ x₂ < toIcoMod hp x₃ x₄ ⊢ toIocMod hp x₃ x₁ < toIcoMod hp x₃ x₄ [PROOFSTEP] exact (h₁₂₃.2.trans_le (toIcoMod_le_toIocMod _ x₃ x₂)).trans h₂₃₄.2 [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) x₁ x₂ x₃ : α ⊢ btw ↑x₁ ↑x₂ ↑x₃ ↔ toIcoMod (_ : 0 < p) x₁ x₂ ≤ toIocMod (_ : 0 < p) x₁ x₃ [PROOFSTEP] rw [btw_coe_iff', toIocMod_sub_eq_sub, toIcoMod_sub_eq_sub, zero_add, sub_le_sub_iff_right] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) x : α ⧸ AddSubgroup.zmultiples p ⊢ ↑(↑(equivIcoMod (_ : 0 < p) 0) (x - x)) ≤ ↑(↑(equivIocMod (_ : 0 < p) 0) (x - x)) [PROOFSTEP] simp [sub_self, hp'.out.le] [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) x₁ x₂ x₃ : α ⧸ AddSubgroup.zmultiples p h : btw x₁ x₂ x₃ ⊢ btw x₂ x₃ x₁ [PROOFSTEP] induction x₁ using QuotientAddGroup.induction_on' [GOAL] case H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) x₂ x₃ : α ⧸ AddSubgroup.zmultiples p z✝ : α h : btw (↑z✝) x₂ x₃ ⊢ btw x₂ x₃ ↑z✝ [PROOFSTEP] induction x₂ using QuotientAddGroup.induction_on' [GOAL] case H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) x₃ : α ⧸ AddSubgroup.zmultiples p z✝¹ z✝ : α h : btw (↑z✝¹) (↑z✝) x₃ ⊢ btw (↑z✝) x₃ ↑z✝¹ [PROOFSTEP] induction x₃ using QuotientAddGroup.induction_on' [GOAL] case H.H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) z✝² z✝¹ z✝ : α h : btw ↑z✝² ↑z✝¹ ↑z✝ ⊢ btw ↑z✝¹ ↑z✝ ↑z✝² [PROOFSTEP] simp_rw [btw_coe_iff] at h ⊢ [GOAL] case H.H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) z✝² z✝¹ z✝ : α h : toIcoMod (_ : 0 < p) z✝² z✝¹ ≤ toIocMod (_ : 0 < p) z✝² z✝ ⊢ toIcoMod (_ : 0 < p) z✝¹ z✝ ≤ toIocMod (_ : 0 < p) z✝¹ z✝² [PROOFSTEP] apply toIxxMod_cyclic_left _ h [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) x₁ x₂ x₃ x₄ : α ⧸ AddSubgroup.zmultiples p h₁₂₃ : btw x₁ x₂ x₃ ∧ ¬btw x₃ x₂ x₁ h₂₃₄ : btw x₂ x₄ x₃ ∧ ¬btw x₃ x₄ x₂ ⊢ btw x₁ x₄ x₃ ∧ ¬btw x₃ x₄ x₁ [PROOFSTEP] induction x₁ using QuotientAddGroup.induction_on' [GOAL] case H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) x₂ x₃ x₄ : α ⧸ AddSubgroup.zmultiples p h₂₃₄ : btw x₂ x₄ x₃ ∧ ¬btw x₃ x₄ x₂ z✝ : α h₁₂₃ : btw (↑z✝) x₂ x₃ ∧ ¬btw x₃ x₂ ↑z✝ ⊢ btw (↑z✝) x₄ x₃ ∧ ¬btw x₃ x₄ ↑z✝ [PROOFSTEP] induction x₂ using QuotientAddGroup.induction_on' [GOAL] case H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) x₃ x₄ : α ⧸ AddSubgroup.zmultiples p z✝¹ z✝ : α h₂₃₄ : btw (↑z✝) x₄ x₃ ∧ ¬btw x₃ x₄ ↑z✝ h₁₂₃ : btw (↑z✝¹) (↑z✝) x₃ ∧ ¬btw x₃ ↑z✝ ↑z✝¹ ⊢ btw (↑z✝¹) x₄ x₃ ∧ ¬btw x₃ x₄ ↑z✝¹ [PROOFSTEP] induction x₃ using QuotientAddGroup.induction_on' [GOAL] case H.H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) x₄ : α ⧸ AddSubgroup.zmultiples p z✝² z✝¹ z✝ : α h₂₃₄ : btw (↑z✝¹) x₄ ↑z✝ ∧ ¬btw (↑z✝) x₄ ↑z✝¹ h₁₂₃ : btw ↑z✝² ↑z✝¹ ↑z✝ ∧ ¬btw ↑z✝ ↑z✝¹ ↑z✝² ⊢ btw (↑z✝²) x₄ ↑z✝ ∧ ¬btw (↑z✝) x₄ ↑z✝² [PROOFSTEP] induction x₄ using QuotientAddGroup.induction_on' [GOAL] case H.H.H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) z✝³ z✝² z✝¹ : α h₁₂₃ : btw ↑z✝³ ↑z✝² ↑z✝¹ ∧ ¬btw ↑z✝¹ ↑z✝² ↑z✝³ z✝ : α h₂₃₄ : btw ↑z✝² ↑z✝ ↑z✝¹ ∧ ¬btw ↑z✝¹ ↑z✝ ↑z✝² ⊢ btw ↑z✝³ ↑z✝ ↑z✝¹ ∧ ¬btw ↑z✝¹ ↑z✝ ↑z✝³ [PROOFSTEP] simp_rw [btw_coe_iff] at h₁₂₃ h₂₃₄ ⊢ [GOAL] case H.H.H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) z✝³ z✝² z✝¹ z✝ : α h₁₂₃ : toIcoMod (_ : 0 < p) z✝³ z✝² ≤ toIocMod (_ : 0 < p) z✝³ z✝¹ ∧ ¬toIcoMod (_ : 0 < p) z✝¹ z✝² ≤ toIocMod (_ : 0 < p) z✝¹ z✝³ h₂₃₄ : toIcoMod (_ : 0 < p) z✝² z✝ ≤ toIocMod (_ : 0 < p) z✝² z✝¹ ∧ ¬toIcoMod (_ : 0 < p) z✝¹ z✝ ≤ toIocMod (_ : 0 < p) z✝¹ z✝² ⊢ toIcoMod (_ : 0 < p) z✝³ z✝ ≤ toIocMod (_ : 0 < p) z✝³ z✝¹ ∧ ¬toIcoMod (_ : 0 < p) z✝¹ z✝ ≤ toIocMod (_ : 0 < p) z✝¹ z✝³ [PROOFSTEP] apply toIxxMod_trans _ h₁₂₃ h₂₃₄ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder x₁ x₂ x₃ : α ⧸ AddSubgroup.zmultiples p h₁₂₃ : btw x₁ x₂ x₃ h₃₂₁ : btw x₃ x₂ x₁ ⊢ x₁ = x₂ ∨ x₂ = x₃ ∨ x₃ = x₁ [PROOFSTEP] induction x₁ using QuotientAddGroup.induction_on' [GOAL] case H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder x₂ x₃ : α ⧸ AddSubgroup.zmultiples p z✝ : α h₁₂₃ : btw (↑z✝) x₂ x₃ h₃₂₁ : btw x₃ x₂ ↑z✝ ⊢ ↑z✝ = x₂ ∨ x₂ = x₃ ∨ x₃ = ↑z✝ [PROOFSTEP] induction x₂ using QuotientAddGroup.induction_on' [GOAL] case H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder x₃ : α ⧸ AddSubgroup.zmultiples p z✝¹ z✝ : α h₁₂₃ : btw (↑z✝¹) (↑z✝) x₃ h₃₂₁ : btw x₃ ↑z✝ ↑z✝¹ ⊢ ↑z✝¹ = ↑z✝ ∨ ↑z✝ = x₃ ∨ x₃ = ↑z✝¹ [PROOFSTEP] induction x₃ using QuotientAddGroup.induction_on' [GOAL] case H.H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder z✝² z✝¹ z✝ : α h₁₂₃ : btw ↑z✝² ↑z✝¹ ↑z✝ h₃₂₁ : btw ↑z✝ ↑z✝¹ ↑z✝² ⊢ ↑z✝² = ↑z✝¹ ∨ ↑z✝¹ = ↑z✝ ∨ ↑z✝ = ↑z✝² [PROOFSTEP] rw [btw_cyclic] at h₃₂₁ [GOAL] case H.H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder z✝² z✝¹ z✝ : α h₁₂₃ : btw ↑z✝² ↑z✝¹ ↑z✝ h₃₂₁ : btw ↑z✝² ↑z✝ ↑z✝¹ ⊢ ↑z✝² = ↑z✝¹ ∨ ↑z✝¹ = ↑z✝ ∨ ↑z✝ = ↑z✝² [PROOFSTEP] simp_rw [btw_coe_iff] at h₁₂₃ h₃₂₁ [GOAL] case H.H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder z✝² z✝¹ z✝ : α h₁₂₃ : toIcoMod (_ : 0 < p) z✝² z✝¹ ≤ toIocMod (_ : 0 < p) z✝² z✝ h₃₂₁ : toIcoMod (_ : 0 < p) z✝² z✝ ≤ toIocMod (_ : 0 < p) z✝² z✝¹ ⊢ ↑z✝² = ↑z✝¹ ∨ ↑z✝¹ = ↑z✝ ∨ ↑z✝ = ↑z✝² [PROOFSTEP] simp_rw [← modEq_iff_eq_mod_zmultiples] [GOAL] case H.H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder z✝² z✝¹ z✝ : α h₁₂₃ : toIcoMod (_ : 0 < p) z✝² z✝¹ ≤ toIocMod (_ : 0 < p) z✝² z✝ h₃₂₁ : toIcoMod (_ : 0 < p) z✝² z✝ ≤ toIocMod (_ : 0 < p) z✝² z✝¹ ⊢ z✝¹ ≡ z✝² [PMOD p] ∨ z✝ ≡ z✝¹ [PMOD p] ∨ z✝² ≡ z✝ [PMOD p] [PROOFSTEP] exact toIxxMod_antisymm _ h₁₂₃ h₃₂₁ [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder x₁ x₂ x₃ : α ⧸ AddSubgroup.zmultiples p ⊢ btw x₁ x₂ x₃ ∨ btw x₃ x₂ x₁ [PROOFSTEP] induction x₁ using QuotientAddGroup.induction_on' [GOAL] case H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder x₂ x₃ : α ⧸ AddSubgroup.zmultiples p z✝ : α ⊢ btw (↑z✝) x₂ x₃ ∨ btw x₃ x₂ ↑z✝ [PROOFSTEP] induction x₂ using QuotientAddGroup.induction_on' [GOAL] case H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder x₃ : α ⧸ AddSubgroup.zmultiples p z✝¹ z✝ : α ⊢ btw (↑z✝¹) (↑z✝) x₃ ∨ btw x₃ ↑z✝ ↑z✝¹ [PROOFSTEP] induction x₃ using QuotientAddGroup.induction_on' [GOAL] case H.H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder z✝² z✝¹ z✝ : α ⊢ btw ↑z✝² ↑z✝¹ ↑z✝ ∨ btw ↑z✝ ↑z✝¹ ↑z✝² [PROOFSTEP] simp_rw [btw_coe_iff] [GOAL] case H.H.H α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b c : α n : ℤ hp' : Fact (0 < p) src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder z✝² z✝¹ z✝ : α ⊢ toIcoMod (_ : 0 < p) z✝² z✝¹ ≤ toIocMod (_ : 0 < p) z✝² z✝ ∨ toIcoMod (_ : 0 < p) z✝ z✝¹ ≤ toIocMod (_ : 0 < p) z✝ z✝² [PROOFSTEP] apply toIxxMod_total [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ toIcoDiv hp a b = ⌊(b - a) / p⌋ [PROOFSTEP] refine' toIcoDiv_eq_of_sub_zsmul_mem_Ico hp _ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ b - ⌊(b - a) / p⌋ • p ∈ Set.Ico a (a + p) [PROOFSTEP] rw [Set.mem_Ico, zsmul_eq_mul, ← sub_nonneg, add_comm, sub_right_comm, ← sub_lt_iff_lt_add, sub_right_comm _ _ a] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ 0 ≤ b - a - ↑⌊(b - a) / p⌋ * p ∧ b - a - ↑⌊(b - a) / p⌋ * p < p [PROOFSTEP] exact ⟨Int.sub_floor_div_mul_nonneg _ hp, Int.sub_floor_div_mul_lt _ hp⟩ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ toIocDiv hp a b = -⌊(a + p - b) / p⌋ [PROOFSTEP] refine' toIocDiv_eq_of_sub_zsmul_mem_Ioc hp _ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ b - -⌊(a + p - b) / p⌋ • p ∈ Set.Ioc a (a + p) [PROOFSTEP] rw [Set.mem_Ioc, zsmul_eq_mul, Int.cast_neg, neg_mul, sub_neg_eq_add, ← sub_nonneg, sub_add_eq_sub_sub] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ a < b + ↑⌊(a + p - b) / p⌋ * p ∧ 0 ≤ a + p - b - ↑⌊(a + p - b) / p⌋ * p [PROOFSTEP] refine' ⟨_, Int.sub_floor_div_mul_nonneg _ hp⟩ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ a < b + ↑⌊(a + p - b) / p⌋ * p [PROOFSTEP] rw [← add_lt_add_iff_right p, add_assoc, add_comm b, ← sub_lt_iff_lt_add, add_comm (_ * _), ← sub_lt_iff_lt_add] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ a + p - b - ↑⌊(a + p - b) / p⌋ * p < p [PROOFSTEP] exact Int.sub_floor_div_mul_lt _ hp [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p b : α ⊢ toIcoDiv (_ : 0 < 1) 0 b = ⌊b⌋ [PROOFSTEP] simp [toIcoDiv_eq_floor] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ toIcoMod hp a b = a + Int.fract ((b - a) / p) * p [PROOFSTEP] rw [toIcoMod, toIcoDiv_eq_floor, Int.fract] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ b - ⌊(b - a) / p⌋ • p = a + ((b - a) / p - ↑⌊(b - a) / p⌋) * p [PROOFSTEP] field_simp [hp.ne.symm] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ b - ↑⌊(b - a) / p⌋ * p = a + (b - a - p * ↑⌊(b - a) / p⌋) [PROOFSTEP] ring [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p b : α ⊢ toIcoMod hp 0 b = Int.fract (b / p) * p [PROOFSTEP] simp [toIcoMod_eq_add_fract_mul] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ toIocMod hp a b = a + p - Int.fract ((a + p - b) / p) * p [PROOFSTEP] rw [toIocMod, toIocDiv_eq_neg_floor, Int.fract] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ b - -⌊(a + p - b) / p⌋ • p = a + p - ((a + p - b) / p - ↑⌊(a + p - b) / p⌋) * p [PROOFSTEP] field_simp [hp.ne.symm] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p a b : α ⊢ b + ↑⌊(a + p - b) / p⌋ * p = a + p - (a + p - b - p * ↑⌊(a + p - b) / p⌋) [PROOFSTEP] ring [GOAL] α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α p : α hp : 0 < p b : α ⊢ toIcoMod (_ : 0 < 1) 0 b = Int.fract b [PROOFSTEP] simp [toIcoMod_eq_add_fract_mul] [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a : α ⊢ ⋃ (n : ℤ), Ioc (a + n • p) (a + (n + 1) • p) = univ [PROOFSTEP] refine' eq_univ_iff_forall.mpr fun b => mem_iUnion.mpr _ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a b : α ⊢ ∃ i, b ∈ Ioc (a + i • p) (a + (i + 1) • p) [PROOFSTEP] rcases sub_toIocDiv_zsmul_mem_Ioc hp a b with ⟨hl, hr⟩ [GOAL] case intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a b : α hl : a < b - toIocDiv hp a b • p hr : b - toIocDiv hp a b • p ≤ a + p ⊢ ∃ i, b ∈ Ioc (a + i • p) (a + (i + 1) • p) [PROOFSTEP] refine' ⟨toIocDiv hp a b, ⟨lt_sub_iff_add_lt.mp hl, _⟩⟩ [GOAL] case intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a b : α hl : a < b - toIocDiv hp a b • p hr : b - toIocDiv hp a b • p ≤ a + p ⊢ b ≤ a + (toIocDiv hp a b + 1) • p [PROOFSTEP] rw [add_smul, one_smul, ← add_assoc] [GOAL] case intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a b : α hl : a < b - toIocDiv hp a b • p hr : b - toIocDiv hp a b • p ≤ a + p ⊢ b ≤ a + toIocDiv hp a b • p + p [PROOFSTEP] convert sub_le_iff_le_add.mp hr using 1 [GOAL] case h.e'_4 α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a b : α hl : a < b - toIocDiv hp a b • p hr : b - toIocDiv hp a b • p ≤ a + p ⊢ a + toIocDiv hp a b • p + p = a + p + toIocDiv hp a b • p [PROOFSTEP] abel [GOAL] case h.e'_4 α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a b : α hl : a < b - toIocDiv hp a b • p hr : b - toIocDiv hp a b • p ≤ a + p ⊢ a + toIocDiv hp a b • p + p = a + p + toIocDiv hp a b • p [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a : α ⊢ ⋃ (n : ℤ), Ico (a + n • p) (a + (n + 1) • p) = univ [PROOFSTEP] refine' eq_univ_iff_forall.mpr fun b => mem_iUnion.mpr _ [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a b : α ⊢ ∃ i, b ∈ Ico (a + i • p) (a + (i + 1) • p) [PROOFSTEP] rcases sub_toIcoDiv_zsmul_mem_Ico hp a b with ⟨hl, hr⟩ [GOAL] case intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a b : α hl : a ≤ b - toIcoDiv hp a b • p hr : b - toIcoDiv hp a b • p < a + p ⊢ ∃ i, b ∈ Ico (a + i • p) (a + (i + 1) • p) [PROOFSTEP] refine' ⟨toIcoDiv hp a b, ⟨le_sub_iff_add_le.mp hl, _⟩⟩ [GOAL] case intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a b : α hl : a ≤ b - toIcoDiv hp a b • p hr : b - toIcoDiv hp a b • p < a + p ⊢ b < a + (toIcoDiv hp a b + 1) • p [PROOFSTEP] rw [add_smul, one_smul, ← add_assoc] [GOAL] case intro α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a b : α hl : a ≤ b - toIcoDiv hp a b • p hr : b - toIcoDiv hp a b • p < a + p ⊢ b < a + toIcoDiv hp a b • p + p [PROOFSTEP] convert sub_lt_iff_lt_add.mp hr using 1 [GOAL] case h.e'_4 α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a b : α hl : a ≤ b - toIcoDiv hp a b • p hr : b - toIcoDiv hp a b • p < a + p ⊢ a + toIcoDiv hp a b • p + p = a + p + toIcoDiv hp a b • p [PROOFSTEP] abel [GOAL] case h.e'_4 α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a b : α hl : a ≤ b - toIcoDiv hp a b • p hr : b - toIcoDiv hp a b • p < a + p ⊢ a + toIcoDiv hp a b • p + p = a + p + toIcoDiv hp a b • p [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a : α ⊢ ⋃ (n : ℤ), Icc (a + n • p) (a + (n + 1) • p) = univ [PROOFSTEP] simpa only [iUnion_Ioc_add_zsmul hp a, univ_subset_iff] using iUnion_mono fun n : ℤ => (Ioc_subset_Icc_self : Ioc (a + n • p) (a + (n + 1) • p) ⊆ Icc _ _) [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a : α ⊢ ⋃ (n : ℤ), Ioc (n • p) ((n + 1) • p) = univ [PROOFSTEP] simpa only [zero_add] using iUnion_Ioc_add_zsmul hp 0 [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a : α ⊢ ⋃ (n : ℤ), Ico (n • p) ((n + 1) • p) = univ [PROOFSTEP] simpa only [zero_add] using iUnion_Ico_add_zsmul hp 0 [GOAL] α : Type u_1 inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α p : α hp : 0 < p a : α ⊢ ⋃ (n : ℤ), Icc (n • p) ((n + 1) • p) = univ [PROOFSTEP] simpa only [zero_add] using iUnion_Icc_add_zsmul hp 0 [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Archimedean α a : α ⊢ ⋃ (n : ℤ), Ioc (a + ↑n) (a + ↑n + 1) = univ [PROOFSTEP] simpa only [zsmul_one, Int.cast_add, Int.cast_one, ← add_assoc] using iUnion_Ioc_add_zsmul zero_lt_one a [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Archimedean α a : α ⊢ ⋃ (n : ℤ), Ico (a + ↑n) (a + ↑n + 1) = univ [PROOFSTEP] simpa only [zsmul_one, Int.cast_add, Int.cast_one, ← add_assoc] using iUnion_Ico_add_zsmul zero_lt_one a [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Archimedean α a : α ⊢ ⋃ (n : ℤ), Icc (a + ↑n) (a + ↑n + 1) = univ [PROOFSTEP] simpa only [zsmul_one, Int.cast_add, Int.cast_one, ← add_assoc] using iUnion_Icc_add_zsmul zero_lt_one a [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Archimedean α a : α ⊢ ⋃ (n : ℤ), Ioc (↑n) (↑n + 1) = univ [PROOFSTEP] simpa only [zero_add] using iUnion_Ioc_add_int_cast (0 : α) [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Archimedean α a : α ⊢ ⋃ (n : ℤ), Ico (↑n) (↑n + 1) = univ [PROOFSTEP] simpa only [zero_add] using iUnion_Ico_add_int_cast (0 : α) [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Archimedean α a : α ⊢ ⋃ (n : ℤ), Icc (↑n) (↑n + 1) = univ [PROOFSTEP] simpa only [zero_add] using iUnion_Icc_add_int_cast (0 : α)
{"mathlib_filename": "Mathlib.Algebra.Order.ToIntervalMod", "llama_tokens": 50855}
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.TypeTags", "llama_tokens": 0}
[GOAL] α✝ α : Type u inst✝ : OrderedCommGroup α a b c : α bc : a * b ≤ a * c ⊢ b ≤ c [PROOFSTEP] simpa using mul_le_mul_left' bc a⁻¹ [GOAL] α✝ α : Type u inst✝ : OrderedCommGroup α a b c : α bc : swap (fun x x_1 => x * x_1) a b ≤ swap (fun x x_1 => x * x_1) a c ⊢ b ≤ c [PROOFSTEP] simpa using mul_le_mul_right' bc a⁻¹ [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a⁻¹ ≤ 1 ↔ 1 ≤ a [PROOFSTEP] rw [← mul_le_mul_iff_left a] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a * a⁻¹ ≤ a * 1 ↔ 1 ≤ a [PROOFSTEP] simp [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ 1 ≤ a⁻¹ ↔ a ≤ 1 [PROOFSTEP] rw [← mul_le_mul_iff_left a] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a * 1 ≤ a * a⁻¹ ↔ a ≤ 1 [PROOFSTEP] simp [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ b ≤ a⁻¹ * c ↔ a * b ≤ c [PROOFSTEP] rw [← mul_le_mul_iff_left a] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a * b ≤ a * (a⁻¹ * c) ↔ a * b ≤ c [PROOFSTEP] simp [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ b⁻¹ * a ≤ c ↔ a ≤ b * c [PROOFSTEP] rw [← mul_le_mul_iff_left b, mul_inv_cancel_left] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a * a⁻¹ ≤ a * b ↔ 1 ≤ a * b [PROOFSTEP] rw [mul_inv_self] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ b * a ≤ b * b⁻¹ ↔ b * a ≤ 1 [PROOFSTEP] rw [mul_inv_self] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ 1 ≤ b⁻¹ * a ↔ b ≤ a [PROOFSTEP] rw [← mul_le_mul_iff_left b, mul_one, mul_inv_cancel_left] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ b ≤ a * 1 ↔ b ≤ a [PROOFSTEP] rw [mul_one] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ 1 < a⁻¹ ↔ a < 1 [PROOFSTEP] rw [← mul_lt_mul_iff_left a, mul_inv_self, mul_one] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ a⁻¹ < 1 ↔ 1 < a [PROOFSTEP] rw [← mul_lt_mul_iff_left a, mul_inv_self, mul_one] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ b < a⁻¹ * c ↔ a * b < c [PROOFSTEP] rw [← mul_lt_mul_iff_left a] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ a * b < a * (a⁻¹ * c) ↔ a * b < c [PROOFSTEP] simp [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ b⁻¹ * a < c ↔ a < b * c [PROOFSTEP] rw [← mul_lt_mul_iff_left b, mul_inv_cancel_left] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ a * a⁻¹ < a * b ↔ 1 < a * b [PROOFSTEP] rw [mul_inv_self] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ b * a < b * b⁻¹ ↔ b * a < 1 [PROOFSTEP] rw [mul_inv_self] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ 1 < b⁻¹ * a ↔ b < a [PROOFSTEP] rw [← mul_lt_mul_iff_left b, mul_one, mul_inv_cancel_left] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ b < a * 1 ↔ b < a [PROOFSTEP] rw [mul_one] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ a⁻¹ ≤ 1 ↔ 1 ≤ a [PROOFSTEP] rw [← mul_le_mul_iff_right a] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ a⁻¹ * a ≤ 1 * a ↔ 1 ≤ a [PROOFSTEP] simp [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ 1 ≤ a⁻¹ ↔ a ≤ 1 [PROOFSTEP] rw [← mul_le_mul_iff_right a] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ 1 * a ≤ a⁻¹ * a ↔ a ≤ 1 [PROOFSTEP] simp [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ a⁻¹ * a ≤ b * a ↔ 1 ≤ b * a [PROOFSTEP] rw [inv_mul_self] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ a * b ≤ b⁻¹ * b ↔ a * b ≤ 1 [PROOFSTEP] rw [inv_mul_self] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ a * b⁻¹ * b ≤ c * b ↔ a ≤ c * b [PROOFSTEP] rw [inv_mul_cancel_right] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ c * b ≤ a * b⁻¹ * b ↔ c * b ≤ a [PROOFSTEP] rw [inv_mul_cancel_right] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ a ≤ 1 * b ↔ a ≤ b [PROOFSTEP] rw [one_mul] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ 1 ≤ a * b⁻¹ ↔ b ≤ a [PROOFSTEP] rw [← mul_le_mul_iff_right b, one_mul, inv_mul_cancel_right] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ⊢ b ≤ 1 * a ↔ b ≤ a [PROOFSTEP] rw [one_mul] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ a⁻¹ < 1 ↔ 1 < a [PROOFSTEP] rw [← mul_lt_mul_iff_right a, inv_mul_self, one_mul] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ 1 < a⁻¹ ↔ a < 1 [PROOFSTEP] rw [← mul_lt_mul_iff_right a, inv_mul_self, one_mul] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ a⁻¹ * a < b * a ↔ 1 < b * a [PROOFSTEP] rw [inv_mul_self] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ a * b < b⁻¹ * b ↔ a * b < 1 [PROOFSTEP] rw [inv_mul_self] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ a * b⁻¹ < c ↔ a < c * b [PROOFSTEP] rw [← mul_lt_mul_iff_right b, inv_mul_cancel_right] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ c * b < a * b⁻¹ * b ↔ c * b < a [PROOFSTEP] rw [inv_mul_cancel_right] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ a * b⁻¹ < 1 ↔ a < b [PROOFSTEP] rw [← mul_lt_mul_iff_right b, inv_mul_cancel_right, one_mul] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ 1 < a * b⁻¹ ↔ b < a [PROOFSTEP] rw [← mul_lt_mul_iff_right b, one_mul, inv_mul_cancel_right] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ b < 1 * a ↔ b < a [PROOFSTEP] rw [one_mul] [GOAL] α : Type u inst✝³ : Group α inst✝² : LE α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a⁻¹ ≤ b⁻¹ ↔ b ≤ a [PROOFSTEP] rw [← mul_le_mul_iff_left a, ← mul_le_mul_iff_right b] [GOAL] α : Type u inst✝³ : Group α inst✝² : LE α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a * a⁻¹ * b ≤ a * b⁻¹ * b ↔ b ≤ a [PROOFSTEP] simp [GOAL] α : Type u inst✝³ : Group α inst✝² : LE α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a * b⁻¹ ≤ d⁻¹ * c ↔ d * a ≤ c * b [PROOFSTEP] rw [← mul_le_mul_iff_left d, ← mul_le_mul_iff_right b, mul_inv_cancel_left, mul_assoc, inv_mul_cancel_right] [GOAL] α : Type u inst✝³ : Group α inst✝² : LE α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a✝ b✝ c d a b : α ⊢ a / b ≤ a ↔ 1 ≤ b [PROOFSTEP] simp [div_eq_mul_inv] [GOAL] α : Type u inst✝³ : Group α inst✝² : LE α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a✝ b✝ c d a b : α ⊢ a ≤ a / b ↔ b ≤ 1 [PROOFSTEP] simp [div_eq_mul_inv] [GOAL] α : Type u inst✝³ : Group α inst✝² : LT α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ a⁻¹ < b⁻¹ ↔ b < a [PROOFSTEP] rw [← mul_lt_mul_iff_left a, ← mul_lt_mul_iff_right b] [GOAL] α : Type u inst✝³ : Group α inst✝² : LT α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ a * a⁻¹ * b < a * b⁻¹ * b ↔ b < a [PROOFSTEP] simp [GOAL] α : Type u inst✝³ : Group α inst✝² : LT α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ a⁻¹ < b ↔ b⁻¹ < a [PROOFSTEP] rw [← inv_lt_inv_iff, inv_inv] [GOAL] α : Type u inst✝³ : Group α inst✝² : LT α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ a < b⁻¹ ↔ b < a⁻¹ [PROOFSTEP] rw [← inv_lt_inv_iff, inv_inv] [GOAL] α : Type u inst✝³ : Group α inst✝² : LT α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ a * b⁻¹ < d⁻¹ * c ↔ d * a < c * b [PROOFSTEP] rw [← mul_lt_mul_iff_left d, ← mul_lt_mul_iff_right b, mul_inv_cancel_left, mul_assoc, inv_mul_cancel_right] [GOAL] α : Type u inst✝³ : Group α inst✝² : LT α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a✝ b✝ c d a b : α ⊢ a / b < a ↔ 1 < b [PROOFSTEP] simp [div_eq_mul_inv] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ c⁻¹ * a ≤ b ↔ a ≤ b * c [PROOFSTEP] rw [inv_mul_le_iff_le_mul, mul_comm] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a * b⁻¹ ≤ c ↔ a ≤ b * c [PROOFSTEP] rw [← inv_mul_le_iff_le_mul, mul_comm] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a * b⁻¹ ≤ c * d⁻¹ ↔ a * d ≤ c * b [PROOFSTEP] rw [mul_comm c, mul_inv_le_inv_mul_iff, mul_comm] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ c⁻¹ * a < b ↔ a < b * c [PROOFSTEP] rw [inv_mul_lt_iff_lt_mul, mul_comm] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ a * b⁻¹ < c ↔ a < b * c [PROOFSTEP] rw [← inv_mul_lt_iff_lt_mul, mul_comm] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ a * b⁻¹ < c * d⁻¹ ↔ a * d < c * b [PROOFSTEP] rw [mul_comm c, mul_inv_lt_inv_mul_iff, mul_comm] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c✝ d c : α ⊢ a / c ≤ b / c ↔ a ≤ b [PROOFSTEP] simpa only [div_eq_mul_inv] using mul_le_mul_iff_right _ [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ 1 ≤ a / b ↔ b ≤ a [PROOFSTEP] rw [← mul_le_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a / b ≤ 1 ↔ a ≤ b [PROOFSTEP] rw [← mul_le_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a ≤ c / b ↔ a * b ≤ c [PROOFSTEP] rw [← mul_le_mul_iff_right b, div_eq_mul_inv, inv_mul_cancel_right] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a / c ≤ b ↔ a ≤ b * c [PROOFSTEP] rw [← mul_le_mul_iff_right c, div_eq_mul_inv, inv_mul_cancel_right] [GOAL] α : Type u inst✝³ : Group α inst✝² : LE α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a✝ b c a : α ⊢ a / b ≤ a / c ↔ c ≤ b [PROOFSTEP] rw [div_eq_mul_inv, div_eq_mul_inv, ← mul_le_mul_iff_left a⁻¹, inv_mul_cancel_left, inv_mul_cancel_left, inv_le_inv_iff] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a / b ≤ c / d ↔ a * d ≤ c * b [PROOFSTEP] simpa only [div_eq_mul_inv] using mul_inv_le_mul_inv_iff' [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ b ≤ c / a ↔ a * b ≤ c [PROOFSTEP] rw [le_div_iff_mul_le, mul_comm] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a / b ≤ c ↔ a ≤ b * c [PROOFSTEP] rw [div_le_iff_le_mul, mul_comm] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α ⊢ a⁻¹ ≤ b / c ↔ c ≤ a * b [PROOFSTEP] rw [inv_le_div_iff_le_mul, mul_comm] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α hab : a ≤ b hcd : c ≤ d ⊢ a / d ≤ b / c [PROOFSTEP] rw [div_eq_mul_inv, div_eq_mul_inv, mul_comm b, mul_inv_le_inv_mul_iff, mul_comm] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α hab : a ≤ b hcd : c ≤ d ⊢ a * c ≤ b * d [PROOFSTEP] exact mul_le_mul' hab hcd [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c✝ d c : α ⊢ a / c < b / c ↔ a < b [PROOFSTEP] simpa only [div_eq_mul_inv] using mul_lt_mul_iff_right _ [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ 1 < a / b ↔ b < a [PROOFSTEP] rw [← mul_lt_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ a / b < 1 ↔ a < b [PROOFSTEP] rw [← mul_lt_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ a < c / b ↔ a * b < c [PROOFSTEP] rw [← mul_lt_mul_iff_right b, div_eq_mul_inv, inv_mul_cancel_right] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ a / c < b ↔ a < b * c [PROOFSTEP] rw [← mul_lt_mul_iff_right c, div_eq_mul_inv, inv_mul_cancel_right] [GOAL] α : Type u inst✝³ : Group α inst✝² : LT α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a✝ b c a : α ⊢ a / b < a / c ↔ c < b [PROOFSTEP] rw [div_eq_mul_inv, div_eq_mul_inv, ← mul_lt_mul_iff_left a⁻¹, inv_mul_cancel_left, inv_mul_cancel_left, inv_lt_inv_iff] [GOAL] α : Type u inst✝³ : Group α inst✝² : LT α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : α ⊢ a⁻¹ < b / c ↔ c < a * b [PROOFSTEP] rw [div_eq_mul_inv, lt_mul_inv_iff_mul_lt, inv_mul_lt_iff_lt_mul] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ a / b < c / d ↔ a * d < c * b [PROOFSTEP] simpa only [div_eq_mul_inv] using mul_inv_lt_mul_inv_iff' [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ b < c / a ↔ a * b < c [PROOFSTEP] rw [lt_div_iff_mul_lt, mul_comm] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α ⊢ a / b < c ↔ a < b * c [PROOFSTEP] rw [div_lt_iff_lt_mul, mul_comm] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α hab : a < b hcd : c < d ⊢ a / d < b / c [PROOFSTEP] rw [div_eq_mul_inv, div_eq_mul_inv, mul_comm b, mul_inv_lt_inv_mul_iff, mul_comm] [GOAL] α : Type u inst✝² : CommGroup α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c d : α hab : a < b hcd : c < d ⊢ a * c < b * d [PROOFSTEP] exact mul_lt_mul_of_lt_of_lt hab hcd [GOAL] α : Type u inst✝² : Group α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ cmp (a / b) 1 = cmp a b [PROOFSTEP] rw [← cmp_mul_right' _ _ b, one_mul, div_mul_cancel'] [GOAL] α : Type u inst✝² : Group α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α h : ∀ (ε : α), 1 < ε → a < b * ε h₁ : b < a ⊢ a < a [PROOFSTEP] simpa using h _ (lt_inv_mul_iff_lt.mpr h₁) [GOAL] α : Type u inst✝³ : Group α inst✝² : LinearOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 ⊢ a / b ≤ a⁻¹ * b ↔ a ≤ b [PROOFSTEP] rw [div_eq_mul_inv, mul_inv_le_inv_mul_iff] [GOAL] α : Type u inst✝³ : Group α inst✝² : LinearOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 ⊢ a * a ≤ b * b ↔ a ≤ b [PROOFSTEP] exact ⟨fun h => not_lt.mp fun k => not_lt.mpr h (mul_lt_mul_of_lt_of_lt k k), fun h => mul_le_mul' h h⟩ [GOAL] α✝ : Type u inst✝⁵ : Group α✝ inst✝⁴ : LinearOrder α✝ inst✝³ : CovariantClass α✝ α✝ (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a✝ b✝ c : α✝ α : Type u_1 inst✝² : CommGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a / b ≤ b / a ↔ a ≤ b [PROOFSTEP] rw [div_eq_mul_inv b, mul_comm] [GOAL] α✝ : Type u inst✝⁵ : Group α✝ inst✝⁴ : LinearOrder α✝ inst✝³ : CovariantClass α✝ α✝ (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a✝ b✝ c : α✝ α : Type u_1 inst✝² : CommGroup α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a / b ≤ a⁻¹ * b ↔ a ≤ b [PROOFSTEP] exact div_le_inv_mul_iff [GOAL] α : Type u inst✝¹ : LinearOrderedCommGroup α a b c : α inst✝ : Nontrivial α ⊢ ∃ a, 1 < a [PROOFSTEP] obtain ⟨y, hy⟩ := Decidable.exists_ne (1 : α) [GOAL] case intro α : Type u inst✝¹ : LinearOrderedCommGroup α a b c : α inst✝ : Nontrivial α y : α hy : y ≠ 1 ⊢ ∃ a, 1 < a [PROOFSTEP] obtain h | h := hy.lt_or_lt [GOAL] case intro.inl α : Type u inst✝¹ : LinearOrderedCommGroup α a b c : α inst✝ : Nontrivial α y : α hy : y ≠ 1 h : y < 1 ⊢ ∃ a, 1 < a [PROOFSTEP] exact ⟨y⁻¹, one_lt_inv'.mpr h⟩ [GOAL] case intro.inr α : Type u inst✝¹ : LinearOrderedCommGroup α a b c : α inst✝ : Nontrivial α y : α hy : y ≠ 1 h : 1 < y ⊢ ∃ a, 1 < a [PROOFSTEP] exact ⟨y, h⟩ [GOAL] α : Type u inst✝¹ : LinearOrderedCommGroup α a b c : α inst✝ : Nontrivial α ⊢ ∀ (a : α), ∃ b, a < b [PROOFSTEP] obtain ⟨y, hy⟩ : ∃ a : α, 1 < a := exists_one_lt' [GOAL] case intro α : Type u inst✝¹ : LinearOrderedCommGroup α a b c : α inst✝ : Nontrivial α y : α hy : 1 < y ⊢ ∀ (a : α), ∃ b, a < b [PROOFSTEP] exact fun a => ⟨a * y, lt_mul_of_one_lt_right' a hy⟩ [GOAL] α : Type u inst✝¹ : LinearOrderedCommGroup α a b c : α inst✝ : Nontrivial α ⊢ ∀ (a : α), ∃ b, b < a [PROOFSTEP] obtain ⟨y, hy⟩ : ∃ a : α, 1 < a := exists_one_lt' [GOAL] case intro α : Type u inst✝¹ : LinearOrderedCommGroup α a b c : α inst✝ : Nontrivial α y : α hy : 1 < y ⊢ ∀ (a : α), ∃ b, b < a [PROOFSTEP] exact fun a => ⟨a / y, (div_lt_self_iff a).mpr hy⟩ [GOAL] α✝ : Type u α : Type u_1 inst✝ : AddCommGroup α C : PositiveCone α src✝ : AddCommGroup α := inst✝ a : α ⊢ a ≤ a [PROOFSTEP] simp [C.zero_nonneg] [GOAL] α✝ : Type u α : Type u_1 inst✝ : AddCommGroup α C : PositiveCone α src✝ : AddCommGroup α := inst✝ a b c : α nab : a ≤ b nbc : b ≤ c ⊢ a ≤ c [PROOFSTEP] simpa [← sub_add_sub_cancel] using C.add_nonneg nbc nab [GOAL] α✝ : Type u α : Type u_1 inst✝ : AddCommGroup α C : PositiveCone α src✝ : AddCommGroup α := inst✝ a b : α ⊢ a < b ↔ a ≤ b ∧ ¬b ≤ a [PROOFSTEP] simp [C.pos_iff] [GOAL] α✝ : Type u α : Type u_1 inst✝ : AddCommGroup α C : PositiveCone α src✝ : AddCommGroup α := inst✝ a b : α nab : a ≤ b nba : b ≤ a ⊢ PositiveCone.nonneg C (-(a - b)) [PROOFSTEP] rwa [neg_sub] [GOAL] α✝ : Type u α : Type u_1 inst✝ : AddCommGroup α C : PositiveCone α src✝ : AddCommGroup α := inst✝ a b : α nab : a ≤ b c : α ⊢ c + a ≤ c + b [PROOFSTEP] simpa using nab [GOAL] α✝ : Type u α : Type u_1 inst✝ : AddCommGroup α C : TotalPositiveCone α src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone a b : α ⊢ a ≤ b ∨ b ≤ a [PROOFSTEP] simpa [neg_sub] using C.nonneg_total (b - a)
{"mathlib_filename": "Mathlib.Algebra.Order.Group.Defs", "llama_tokens": 12526}
[GOAL] α : Type u_1 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 1 ≤ a h : m ≤ n ⊢ a ^ m ≤ a ^ n [PROOFSTEP] have ha₀ : 0 < a := one_pos.trans_le ha [GOAL] α : Type u_1 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 1 ≤ a h : m ≤ n ha₀ : 0 < a ⊢ a ^ m ≤ a ^ n [PROOFSTEP] lift n - m to ℕ using sub_nonneg.2 h with k hk [GOAL] case intro α : Type u_1 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 1 ≤ a h : m ≤ n ha₀ : 0 < a k : ℕ hk : ↑k = n - m ⊢ a ^ m ≤ a ^ n [PROOFSTEP] calc a ^ m = a ^ m * 1 := (mul_one _).symm _ ≤ a ^ m * a ^ k := (mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (zpow_nonneg ha₀.le _)) _ = a ^ n := by rw [← zpow_ofNat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right] [GOAL] α : Type u_1 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 1 ≤ a h : m ≤ n ha₀ : 0 < a k : ℕ hk : ↑k = n - m ⊢ a ^ m * a ^ k = a ^ n [PROOFSTEP] rw [← zpow_ofNat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right] [GOAL] α : Type u_1 inst✝ : LinearOrderedSemifield α a✝ b c d e : α m n✝ : ℤ a : ℕ h : 0 < a n : ℤ ⊢ 0 < ↑a ^ n [PROOFSTEP] apply zpow_pos_of_pos [GOAL] case ha α : Type u_1 inst✝ : LinearOrderedSemifield α a✝ b c d e : α m n✝ : ℤ a : ℕ h : 0 < a n : ℤ ⊢ 0 < ↑a [PROOFSTEP] exact_mod_cast h [GOAL] α : Type u_1 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h₀ : 0 < a h₁ : a ≠ 1 ⊢ Injective ((fun x x_1 => x ^ x_1) a) [PROOFSTEP] rcases h₁.lt_or_lt with (H | H) [GOAL] case inl α : Type u_1 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h₀ : 0 < a h₁ : a ≠ 1 H : a < 1 ⊢ Injective ((fun x x_1 => x ^ x_1) a) [PROOFSTEP] exact (zpow_strictAnti h₀ H).injective [GOAL] case inr α : Type u_1 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h₀ : 0 < a h₁ : a ≠ 1 H : 1 < a ⊢ Injective ((fun x x_1 => x ^ x_1) a) [PROOFSTEP] exact (zpow_strictMono H).injective [GOAL] α : Type u_1 inst✝ : LinearOrderedSemifield α a✝ b✝ c✝ d e : α m n : ℤ x : α hx : 1 < x a b c : ℤ ⊢ x ^ (-c) ≤ max (x ^ (-a)) (x ^ (-b)) ↔ min a b ≤ c [PROOFSTEP] simp_rw [le_max_iff, min_le_iff, zpow_le_iff_le hx, neg_le_neg_iff] [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a✝ b c d : α n : ℤ a : α ⊢ 0 ≤ a ^ 2 [PROOFSTEP] convert zpow_bit0_nonneg a 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n : ℤ h : a ≠ 0 ⊢ 0 < a ^ 2 [PROOFSTEP] convert zpow_bit0_pos h 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n : ℤ hn : n ≠ 0 ⊢ 0 < a ^ bit0 n → a ≠ 0 [PROOFSTEP] rintro h rfl [GOAL] α : Type u_1 inst✝ : LinearOrderedField α b c d : α n : ℤ hn : n ≠ 0 h : 0 < 0 ^ bit0 n ⊢ False [PROOFSTEP] refine' (zero_zpow _ _).not_gt h [GOAL] α : Type u_1 inst✝ : LinearOrderedField α b c d : α n : ℤ hn : n ≠ 0 h : 0 < 0 ^ bit0 n ⊢ bit0 n ≠ 0 [PROOFSTEP] rwa [bit0_ne_zero] [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n : ℤ h : a < 0 ⊢ a ^ bit1 n < 0 [PROOFSTEP] rw [bit1, zpow_add_one₀ h.ne] [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n : ℤ h : a < 0 ⊢ a ^ bit0 n * a < 0 [PROOFSTEP] exact mul_neg_of_pos_of_neg (zpow_bit0_pos h.ne _) h [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n : ℤ ⊢ a ^ bit1 n ≤ 0 ↔ a ≤ 0 [PROOFSTEP] rw [le_iff_lt_or_eq, le_iff_lt_or_eq, zpow_bit1_neg_iff, zpow_eq_zero_iff (Int.bit1_ne_zero n)] [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a✝ b c d : α n : ℤ hn : Even n a : α ⊢ 0 ≤ a ^ n [PROOFSTEP] obtain ⟨k, rfl⟩ := hn [GOAL] case intro α : Type u_1 inst✝ : LinearOrderedField α a✝ b c d a : α k : ℤ ⊢ 0 ≤ a ^ (k + k) [PROOFSTEP] exact zpow_bit0_nonneg _ _ [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n : ℤ hn : Even n h : n ≠ 0 ⊢ 0 < a ^ n ↔ a ≠ 0 [PROOFSTEP] obtain ⟨k, rfl⟩ := hn [GOAL] case intro α : Type u_1 inst✝ : LinearOrderedField α a b c d : α k : ℤ h : k + k ≠ 0 ⊢ 0 < a ^ (k + k) ↔ a ≠ 0 [PROOFSTEP] exact zpow_bit0_pos_iff (by rintro rfl; simp at h ) [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a b c d : α k : ℤ h : k + k ≠ 0 ⊢ k ≠ 0 [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a b c d : α h : 0 + 0 ≠ 0 ⊢ False [PROOFSTEP] simp at h [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n : ℤ hn : Odd n ⊢ a ^ n < 0 ↔ a < 0 [PROOFSTEP] cases' hn with k hk [GOAL] case intro α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n k : ℤ hk : n = 2 * k + 1 ⊢ a ^ n < 0 ↔ a < 0 [PROOFSTEP] simpa only [hk, two_mul] using zpow_bit1_neg_iff [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n : ℤ hn : Odd n ⊢ 0 ≤ a ^ n ↔ 0 ≤ a [PROOFSTEP] cases' hn with k hk [GOAL] case intro α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n k : ℤ hk : n = 2 * k + 1 ⊢ 0 ≤ a ^ n ↔ 0 ≤ a [PROOFSTEP] simpa only [hk, two_mul] using zpow_bit1_nonneg_iff [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n : ℤ hn : Odd n ⊢ a ^ n ≤ 0 ↔ a ≤ 0 [PROOFSTEP] cases' hn with k hk [GOAL] case intro α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n k : ℤ hk : n = 2 * k + 1 ⊢ a ^ n ≤ 0 ↔ a ≤ 0 [PROOFSTEP] simpa only [hk, two_mul] using zpow_bit1_nonpos_iff [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n : ℤ hn : Odd n ⊢ 0 < a ^ n ↔ 0 < a [PROOFSTEP] cases' hn with k hk [GOAL] case intro α : Type u_1 inst✝ : LinearOrderedField α a b c d : α n k : ℤ hk : n = 2 * k + 1 ⊢ 0 < a ^ n ↔ 0 < a [PROOFSTEP] simpa only [hk, two_mul] using zpow_bit1_pos_iff [GOAL] α : Type u_1 inst✝ : LinearOrderedField α a✝ b c d : α n p : ℤ hp : Even p a : α ⊢ |a| ^ p = a ^ p [PROOFSTEP] cases' abs_choice a with h h [GOAL] case inl α : Type u_1 inst✝ : LinearOrderedField α a✝ b c d : α n p : ℤ hp : Even p a : α h : |a| = a ⊢ |a| ^ p = a ^ p [PROOFSTEP] simp only [h, hp.neg_zpow _] [GOAL] case inr α : Type u_1 inst✝ : LinearOrderedField α a✝ b c d : α n p : ℤ hp : Even p a : α h : |a| = -a ⊢ |a| ^ p = a ^ p [PROOFSTEP] simp only [h, hp.neg_zpow _]
{"mathlib_filename": "Mathlib.Algebra.Order.Field.Power", "llama_tokens": 3218}
[GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : CommSemigroup β f : α → β n m : α ⊢ f (min n m) * f (max n m) = f n * f m [PROOFSTEP] cases' le_total n m with h h [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : CommSemigroup β f : α → β n m : α h : n ≤ m ⊢ f (min n m) * f (max n m) = f n * f m [PROOFSTEP] simp [h, mul_comm] [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : CommSemigroup β f : α → β n m : α h : m ≤ n ⊢ f (min n m) * f (max n m) = f n * f m [PROOFSTEP] simp [h, mul_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : Mul α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a₁ a₂ b₁ b₂ : α ⊢ a₁ * b₁ < a₂ * b₂ → a₁ < a₂ ∨ b₁ < b₂ [PROOFSTEP] contrapose! [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : Mul α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a₁ a₂ b₁ b₂ : α ⊢ a₂ ≤ a₁ ∧ b₂ ≤ b₁ → a₂ * b₂ ≤ a₁ * b₁ [PROOFSTEP] exact fun h => mul_le_mul' h.1 h.2 [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : Mul α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ⊢ a₁ * b₁ ≤ a₂ * b₂ → a₁ ≤ a₂ ∨ b₁ < b₂ [PROOFSTEP] contrapose! [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : Mul α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ⊢ a₂ < a₁ ∧ b₂ ≤ b₁ → a₂ * b₂ < a₁ * b₁ [PROOFSTEP] exact fun h => mul_lt_mul_of_lt_of_le h.1 h.2 [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : Mul α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a₁ a₂ b₁ b₂ : α ⊢ a₁ * b₁ ≤ a₂ * b₂ → a₁ < a₂ ∨ b₁ ≤ b₂ [PROOFSTEP] contrapose! [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : Mul α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a₁ a₂ b₁ b₂ : α ⊢ a₂ ≤ a₁ ∧ b₂ < b₁ → a₂ * b₂ < a₁ * b₁ [PROOFSTEP] exact fun h => mul_lt_mul_of_le_of_lt h.1 h.2 [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : Mul α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ⊢ a₁ * b₁ ≤ a₂ * b₂ → a₁ ≤ a₂ ∨ b₁ ≤ b₂ [PROOFSTEP] contrapose! [GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : Mul α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ⊢ a₂ < a₁ ∧ b₂ < b₁ → a₂ * b₂ < a₁ * b₁ [PROOFSTEP] exact fun h => mul_lt_mul_of_lt_of_lt h.1 h.2 [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : Mul α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ha : a₁ ≤ a₂ hb : b₁ ≤ b₂ ⊢ a₁ * b₁ < a₂ * b₂ ↔ a₁ < a₂ ∨ b₁ < b₂ [PROOFSTEP] refine' ⟨lt_or_lt_of_mul_lt_mul, fun h => _⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : Mul α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ha : a₁ ≤ a₂ hb : b₁ ≤ b₂ h : a₁ < a₂ ∨ b₁ < b₂ ⊢ a₁ * b₁ < a₂ * b₂ [PROOFSTEP] cases' h with ha' hb' [GOAL] case inl α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : Mul α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ha : a₁ ≤ a₂ hb : b₁ ≤ b₂ ha' : a₁ < a₂ ⊢ a₁ * b₁ < a₂ * b₂ [PROOFSTEP] exact mul_lt_mul_of_lt_of_le ha' hb [GOAL] case inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : Mul α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ha : a₁ ≤ a₂ hb : b₁ ≤ b₂ hb' : b₁ < b₂ ⊢ a₁ * b₁ < a₂ * b₂ [PROOFSTEP] exact mul_lt_mul_of_le_of_lt ha hb'
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.MinMax", "llama_tokens": 2762}
[GOAL] α : Type u β✝ : Type u_1 inst✝³ : OrderedCommMonoid α β : Type u_2 inst✝² : One β inst✝¹ : Mul β inst✝ : Pow β ℕ f : β → α hf : Injective f one : f 1 = 1 mul : ∀ (x y : β), f (x * y) = f x * f y npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n src✝¹ : PartialOrder β := PartialOrder.lift f hf src✝ : CommMonoid β := Injective.commMonoid f hf one mul npow a b : β ab : a ≤ b c : β ⊢ f (c * a) ≤ f (c * b) [PROOFSTEP] rw [mul, mul] [GOAL] α : Type u β✝ : Type u_1 inst✝³ : OrderedCommMonoid α β : Type u_2 inst✝² : One β inst✝¹ : Mul β inst✝ : Pow β ℕ f : β → α hf : Injective f one : f 1 = 1 mul : ∀ (x y : β), f (x * y) = f x * f y npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n src✝¹ : PartialOrder β := PartialOrder.lift f hf src✝ : CommMonoid β := Injective.commMonoid f hf one mul npow a b : β ab : a ≤ b c : β ⊢ f c * f a ≤ f c * f b [PROOFSTEP] apply mul_le_mul_left' [GOAL] case bc α : Type u β✝ : Type u_1 inst✝³ : OrderedCommMonoid α β : Type u_2 inst✝² : One β inst✝¹ : Mul β inst✝ : Pow β ℕ f : β → α hf : Injective f one : f 1 = 1 mul : ∀ (x y : β), f (x * y) = f x * f y npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n src✝¹ : PartialOrder β := PartialOrder.lift f hf src✝ : CommMonoid β := Injective.commMonoid f hf one mul npow a b : β ab : a ≤ b c : β ⊢ f a ≤ f b [PROOFSTEP] exact ab [GOAL] α : Type u β : Type u_1 inst✝⁴ : Mul α inst✝³ : LinearOrder α inst✝² : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b a0 b0 : α ha : a0 ≤ a hb : b0 ≤ b ab : a * b ≤ a0 * b0 ⊢ a = a0 ∧ b = b0 [PROOFSTEP] haveI := Mul.to_covariantClass_right α [GOAL] α : Type u β : Type u_1 inst✝⁴ : Mul α inst✝³ : LinearOrder α inst✝² : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b a0 b0 : α ha : a0 ≤ a hb : b0 ≤ b ab : a * b ≤ a0 * b0 this : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 ⊢ a = a0 ∧ b = b0 [PROOFSTEP] have ha' : ¬a0 * b0 < a * b → ¬a0 < a := mt (mul_lt_mul_of_lt_of_le · hb) [GOAL] α : Type u β : Type u_1 inst✝⁴ : Mul α inst✝³ : LinearOrder α inst✝² : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b a0 b0 : α ha : a0 ≤ a hb : b0 ≤ b ab : a * b ≤ a0 * b0 this : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 ha' : ¬a0 * b0 < a * b → ¬a0 < a ⊢ a = a0 ∧ b = b0 [PROOFSTEP] have hb' : ¬a0 * b0 < a * b → ¬b0 < b := mt (mul_lt_mul_of_le_of_lt ha ·) [GOAL] α : Type u β : Type u_1 inst✝⁴ : Mul α inst✝³ : LinearOrder α inst✝² : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b a0 b0 : α ha : a0 ≤ a hb : b0 ≤ b ab : a * b ≤ a0 * b0 this : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 ha' : ¬a0 * b0 < a * b → ¬a0 < a hb' : ¬a0 * b0 < a * b → ¬b0 < b ⊢ a = a0 ∧ b = b0 [PROOFSTEP] push_neg at ha' hb' [GOAL] α : Type u β : Type u_1 inst✝⁴ : Mul α inst✝³ : LinearOrder α inst✝² : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b a0 b0 : α ha : a0 ≤ a hb : b0 ≤ b ab : a * b ≤ a0 * b0 this : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 ha' : a * b ≤ a0 * b0 → a ≤ a0 hb' : a * b ≤ a0 * b0 → b ≤ b0 ⊢ a = a0 ∧ b = b0 [PROOFSTEP] exact ⟨ha.antisymm' (ha' ab), hb.antisymm' (hb' ab)⟩
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Basic", "llama_tokens": 2163}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 a✝ n✝ : ℕ x✝ : 0 ≤ a✝ ⊢ n✝ ≤ id a✝ ↔ ↑n✝ ≤ a✝ [PROOFSTEP] rw [Nat.cast_id] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 a✝ n✝ : ℕ x✝ : 0 ≤ a✝ ⊢ n✝ ≤ id a✝ ↔ n✝ ≤ a✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 n a : ℕ ⊢ id n ≤ a ↔ n ≤ ↑a [PROOFSTEP] rw [Nat.cast_id] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 n a : ℕ ⊢ id n ≤ a ↔ n ≤ a [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a ⊢ a < ↑1 ↔ a < 1 [PROOFSTEP] rw [Nat.cast_one] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ h : ⌊a⌋₊ < 1 ⊢ a < 1 [PROOFSTEP] exact_mod_cast lt_of_floor_lt h [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α ⊢ a < ↑⌊a⌋₊ + 1 [PROOFSTEP] simpa using lt_succ_floor a [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n✝ n a : ℕ ⊢ a ≤ ⌊↑n⌋₊ ↔ a ≤ n [PROOFSTEP] rw [le_floor_iff, Nat.cast_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n✝ n a : ℕ ⊢ 0 ≤ ↑n [PROOFSTEP] exact n.cast_nonneg [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ⊢ ⌊0⌋₊ = 0 [PROOFSTEP] rw [← Nat.cast_zero, floor_coe] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ⊢ ⌊1⌋₊ = 1 [PROOFSTEP] rw [← Nat.cast_one, floor_coe] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ha : a ≤ 0 ⊢ a = 0 → ⌊a⌋₊ = 0 [PROOFSTEP] rintro rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α n : ℕ ha : 0 ≤ 0 ⊢ ⌊0⌋₊ = 0 [PROOFSTEP] exact floor_zero [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α h : a ≤ b ⊢ ⌊a⌋₊ ≤ ⌊b⌋₊ [PROOFSTEP] obtain ha | ha := le_total a 0 [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α h : a ≤ b ha : a ≤ 0 ⊢ ⌊a⌋₊ ≤ ⌊b⌋₊ [PROOFSTEP] rw [floor_of_nonpos ha] [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α h : a ≤ b ha : a ≤ 0 ⊢ 0 ≤ ⌊b⌋₊ [PROOFSTEP] exact Nat.zero_le _ [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α h : a ≤ b ha : 0 ≤ a ⊢ ⌊a⌋₊ ≤ ⌊b⌋₊ [PROOFSTEP] exact le_floor ((floor_le ha).trans h) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ hn : n ≠ 0 ⊢ n ≤ ⌊a⌋₊ ↔ ↑n ≤ a [PROOFSTEP] obtain ha | ha := le_total a 0 [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ hn : n ≠ 0 ha : a ≤ 0 ⊢ n ≤ ⌊a⌋₊ ↔ ↑n ≤ a [PROOFSTEP] rw [floor_of_nonpos ha] [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ hn : n ≠ 0 ha : a ≤ 0 ⊢ n ≤ 0 ↔ ↑n ≤ a [PROOFSTEP] exact iff_of_false (Nat.pos_of_ne_zero hn).not_le (not_le_of_lt <| ha.trans_lt <| cast_pos.2 <| Nat.pos_of_ne_zero hn) [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ hn : n ≠ 0 ha : 0 ≤ a ⊢ n ≤ ⌊a⌋₊ ↔ ↑n ≤ a [PROOFSTEP] exact le_floor_iff ha [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ x : α ⊢ 1 ≤ ⌊x⌋₊ ↔ 1 ≤ x [PROOFSTEP] exact_mod_cast @le_floor_iff' α _ _ x 1 one_ne_zero [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ⊢ 0 < ⌊a⌋₊ ↔ 1 ≤ a [PROOFSTEP] rw [Nat.lt_iff_add_one_le, zero_add, le_floor_iff' Nat.one_ne_zero, cast_one] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ h : 0 < ⌊a⌋₊ ha : a ≤ 0 ⊢ 0 < 0 [PROOFSTEP] rwa [floor_of_nonpos ha] at h [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ⊢ ⌊a⌋₊ = 0 ↔ a < 1 [PROOFSTEP] rw [← lt_one_iff, ← @cast_one α] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ⊢ ⌊a⌋₊ < 1 ↔ a < ↑1 [PROOFSTEP] exact floor_lt' Nat.one_ne_zero [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a ⊢ ⌊a⌋₊ = n ↔ ↑n ≤ a ∧ a < ↑n + 1 [PROOFSTEP] rw [← le_floor_iff ha, ← Nat.cast_one, ← Nat.cast_add, ← floor_lt ha, Nat.lt_add_one_iff, le_antisymm_iff, and_comm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ hn : n ≠ 0 ⊢ ⌊a⌋₊ = n ↔ ↑n ≤ a ∧ a < ↑n + 1 [PROOFSTEP] rw [← le_floor_iff' hn, ← Nat.cast_one, ← Nat.cast_add, ← floor_lt' (Nat.add_one_ne_zero n), Nat.lt_add_one_iff, le_antisymm_iff, and_comm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n✝ n : ℕ x : α hx : x ∈ Ico (↑n) (↑n + 1) ⊢ ↑⌊x⌋₊ = ↑n [PROOFSTEP] exact_mod_cast floor_eq_on_Ico n x hx [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ⊢ n + 1 ≤ ⌈a⌉₊ ↔ ↑n < a [PROOFSTEP] rw [← Nat.lt_ceil, Nat.add_one_le_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ⊢ 1 ≤ ⌈a⌉₊ ↔ 0 < a [PROOFSTEP] rw [← zero_add 1, Nat.add_one_le_ceil_iff, Nat.cast_zero] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α ⊢ ⌈a⌉₊ ≤ ⌊a⌋₊ + 1 [PROOFSTEP] rw [ceil_le, Nat.cast_add, Nat.cast_one] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α ⊢ a ≤ ↑⌊a⌋₊ + 1 [PROOFSTEP] exact (lt_floor_add_one a).le [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 inst✝³ : LinearOrderedSemiring α✝ inst✝² : FloorSemiring α✝ a✝ : α✝ n : ℕ α : Type u_4 inst✝¹ : LinearOrderedRing α inst✝ : FloorSemiring α z : ℤ a : ℕ ⊢ ⌈↑z⌉₊ ≤ a ↔ Int.toNat z ≤ a [PROOFSTEP] simp [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 inst✝³ : LinearOrderedSemiring α✝ inst✝² : FloorSemiring α✝ a✝ : α✝ n : ℕ α : Type u_4 inst✝¹ : LinearOrderedRing α inst✝ : FloorSemiring α z : ℤ a : ℕ ⊢ ↑z ≤ ↑a ↔ z ≤ ↑a [PROOFSTEP] norm_cast [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n✝ n a : ℕ ⊢ ⌈↑n⌉₊ ≤ a ↔ n ≤ a [PROOFSTEP] rw [ceil_le, cast_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ⊢ ⌈0⌉₊ = 0 [PROOFSTEP] rw [← Nat.cast_zero, ceil_natCast] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ⊢ ⌈1⌉₊ = 1 [PROOFSTEP] rw [← Nat.cast_one, ceil_natCast] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ⊢ ⌈a⌉₊ = 0 ↔ a ≤ 0 [PROOFSTEP] rw [← le_zero_iff, ceil_le, Nat.cast_zero] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ⊢ 0 < ⌈a⌉₊ ↔ 0 < a [PROOFSTEP] rw [lt_ceil, cast_zero] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α ⊢ ⌊a⌋₊ ≤ ⌈a⌉₊ [PROOFSTEP] obtain ha | ha := le_total a 0 [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α ha : a ≤ 0 ⊢ ⌊a⌋₊ ≤ ⌈a⌉₊ [PROOFSTEP] rw [floor_of_nonpos ha] [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α ha : a ≤ 0 ⊢ 0 ≤ ⌈a⌉₊ [PROOFSTEP] exact Nat.zero_le _ [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α ha : 0 ≤ a ⊢ ⌊a⌋₊ ≤ ⌈a⌉₊ [PROOFSTEP] exact cast_le.1 ((floor_le ha).trans <| le_ceil _) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α h : a < b h' : 0 < b ⊢ ⌊a⌋₊ < ⌈b⌉₊ [PROOFSTEP] rcases le_or_lt 0 a with (ha | ha) [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α h : a < b h' : 0 < b ha : 0 ≤ a ⊢ ⌊a⌋₊ < ⌈b⌉₊ [PROOFSTEP] rw [floor_lt ha] [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α h : a < b h' : 0 < b ha : 0 ≤ a ⊢ a < ↑⌈b⌉₊ [PROOFSTEP] exact h.trans_le (le_ceil _) [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α h : a < b h' : 0 < b ha : a < 0 ⊢ ⌊a⌋₊ < ⌈b⌉₊ [PROOFSTEP] rwa [floor_of_nonpos ha.le, lt_ceil, Nat.cast_zero] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ hn : n ≠ 0 ⊢ ⌈a⌉₊ = n ↔ ↑(n - 1) < a ∧ a ≤ ↑n [PROOFSTEP] rw [← ceil_le, ← not_le, ← ceil_le, not_le, tsub_lt_iff_right (Nat.add_one_le_iff.2 (pos_iff_ne_zero.2 hn)), Nat.lt_add_one_iff, le_antisymm_iff, and_comm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α ha : 0 ≤ a ⊢ Nat.cast ⁻¹' Ioo a b = Ioo ⌊a⌋₊ ⌈b⌉₊ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α ha : 0 ≤ a x✝ : ℕ ⊢ x✝ ∈ Nat.cast ⁻¹' Ioo a b ↔ x✝ ∈ Ioo ⌊a⌋₊ ⌈b⌉₊ [PROOFSTEP] simp [floor_lt, lt_ceil, ha] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α ⊢ Nat.cast ⁻¹' Ico a b = Ico ⌈a⌉₊ ⌈b⌉₊ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α x✝ : ℕ ⊢ x✝ ∈ Nat.cast ⁻¹' Ico a b ↔ x✝ ∈ Ico ⌈a⌉₊ ⌈b⌉₊ [PROOFSTEP] simp [ceil_le, lt_ceil] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α ha : 0 ≤ a hb : 0 ≤ b ⊢ Nat.cast ⁻¹' Ioc a b = Ioc ⌊a⌋₊ ⌊b⌋₊ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α ha : 0 ≤ a hb : 0 ≤ b x✝ : ℕ ⊢ x✝ ∈ Nat.cast ⁻¹' Ioc a b ↔ x✝ ∈ Ioc ⌊a⌋₊ ⌊b⌋₊ [PROOFSTEP] simp [floor_lt, le_floor_iff, hb, ha] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α hb : 0 ≤ b ⊢ Nat.cast ⁻¹' Icc a b = Icc ⌈a⌉₊ ⌊b⌋₊ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α hb : 0 ≤ b x✝ : ℕ ⊢ x✝ ∈ Nat.cast ⁻¹' Icc a b ↔ x✝ ∈ Icc ⌈a⌉₊ ⌊b⌋₊ [PROOFSTEP] simp [ceil_le, hb, le_floor_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α ha : 0 ≤ a ⊢ Nat.cast ⁻¹' Ioi a = Ioi ⌊a⌋₊ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α ha : 0 ≤ a x✝ : ℕ ⊢ x✝ ∈ Nat.cast ⁻¹' Ioi a ↔ x✝ ∈ Ioi ⌊a⌋₊ [PROOFSTEP] simp [floor_lt, ha] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α ⊢ Nat.cast ⁻¹' Ici a = Ici ⌈a⌉₊ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α x✝ : ℕ ⊢ x✝ ∈ Nat.cast ⁻¹' Ici a ↔ x✝ ∈ Ici ⌈a⌉₊ [PROOFSTEP] simp [ceil_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α ⊢ Nat.cast ⁻¹' Iio a = Iio ⌈a⌉₊ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α x✝ : ℕ ⊢ x✝ ∈ Nat.cast ⁻¹' Iio a ↔ x✝ ∈ Iio ⌈a⌉₊ [PROOFSTEP] simp [lt_ceil] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α ha : 0 ≤ a ⊢ Nat.cast ⁻¹' Iic a = Iic ⌊a⌋₊ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a : α ha : 0 ≤ a x✝ : ℕ ⊢ x✝ ∈ Nat.cast ⁻¹' Iic a ↔ x✝ ∈ Iic ⌊a⌋₊ [PROOFSTEP] simp [le_floor_iff, ha] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n✝ : ℕ ha : 0 ≤ a n b : ℕ ⊢ b ≤ ⌊a + ↑n⌋₊ ↔ b ≤ ⌊a⌋₊ + n [PROOFSTEP] rw [le_floor_iff (add_nonneg ha n.cast_nonneg)] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n✝ : ℕ ha : 0 ≤ a n b : ℕ ⊢ ↑b ≤ a + ↑n ↔ b ≤ ⌊a⌋₊ + n [PROOFSTEP] obtain hb | hb := le_total n b [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n✝ : ℕ ha : 0 ≤ a n b : ℕ hb : n ≤ b ⊢ ↑b ≤ a + ↑n ↔ b ≤ ⌊a⌋₊ + n [PROOFSTEP] obtain ⟨d, rfl⟩ := exists_add_of_le hb [GOAL] case inl.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n✝ : ℕ ha : 0 ≤ a n d : ℕ hb : n ≤ n + d ⊢ ↑(n + d) ≤ a + ↑n ↔ n + d ≤ ⌊a⌋₊ + n [PROOFSTEP] rw [Nat.cast_add, add_comm n, add_comm (n : α), add_le_add_iff_right, add_le_add_iff_right, le_floor_iff ha] [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n✝ : ℕ ha : 0 ≤ a n b : ℕ hb : b ≤ n ⊢ ↑b ≤ a + ↑n ↔ b ≤ ⌊a⌋₊ + n [PROOFSTEP] obtain ⟨d, rfl⟩ := exists_add_of_le hb [GOAL] case inr.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a b d : ℕ hb : b ≤ b + d ⊢ ↑b ≤ a + ↑(b + d) ↔ b ≤ ⌊a⌋₊ + (b + d) [PROOFSTEP] rw [Nat.cast_add, add_left_comm _ b, add_left_comm _ (b : α)] [GOAL] case inr.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a b d : ℕ hb : b ≤ b + d ⊢ ↑b ≤ ↑b + (a + ↑d) ↔ b ≤ b + (⌊a⌋₊ + d) [PROOFSTEP] refine' iff_of_true _ le_self_add [GOAL] case inr.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a b d : ℕ hb : b ≤ b + d ⊢ ↑b ≤ ↑b + (a + ↑d) [PROOFSTEP] exact le_add_of_nonneg_right <| ha.trans <| le_add_of_nonneg_right d.cast_nonneg [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a ⊢ ⌊a + 1⌋₊ = ⌊a⌋₊ + 1 [PROOFSTEP] rw [← cast_one, floor_add_nat ha 1] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : FloorSemiring α a✝ : α n✝ : ℕ inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ExistsAddOfLE α a : α n : ℕ ⊢ ⌊a - ↑n⌋₊ = ⌊a⌋₊ - n [PROOFSTEP] obtain ha | ha := le_total a 0 [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : FloorSemiring α a✝ : α n✝ : ℕ inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ExistsAddOfLE α a : α n : ℕ ha : a ≤ 0 ⊢ ⌊a - ↑n⌋₊ = ⌊a⌋₊ - n [PROOFSTEP] rw [floor_of_nonpos ha, floor_of_nonpos (tsub_nonpos_of_le (ha.trans n.cast_nonneg)), zero_tsub] [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : FloorSemiring α a✝ : α n✝ : ℕ inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ExistsAddOfLE α a : α n : ℕ ha : 0 ≤ a ⊢ ⌊a - ↑n⌋₊ = ⌊a⌋₊ - n [PROOFSTEP] cases' le_total a n with h h [GOAL] case inr.inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : FloorSemiring α a✝ : α n✝ : ℕ inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ExistsAddOfLE α a : α n : ℕ ha : 0 ≤ a h : a ≤ ↑n ⊢ ⌊a - ↑n⌋₊ = ⌊a⌋₊ - n [PROOFSTEP] rw [floor_of_nonpos (tsub_nonpos_of_le h), eq_comm, tsub_eq_zero_iff_le] [GOAL] case inr.inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : FloorSemiring α a✝ : α n✝ : ℕ inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ExistsAddOfLE α a : α n : ℕ ha : 0 ≤ a h : a ≤ ↑n ⊢ ⌊a⌋₊ ≤ n [PROOFSTEP] exact Nat.cast_le.1 ((Nat.floor_le ha).trans h) [GOAL] case inr.inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : FloorSemiring α a✝ : α n✝ : ℕ inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ExistsAddOfLE α a : α n : ℕ ha : 0 ≤ a h : ↑n ≤ a ⊢ ⌊a - ↑n⌋₊ = ⌊a⌋₊ - n [PROOFSTEP] rw [eq_tsub_iff_add_eq_of_le (le_floor h), ← floor_add_nat _, tsub_add_cancel_of_le h] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : FloorSemiring α a✝ : α n✝ : ℕ inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ExistsAddOfLE α a : α n : ℕ ha : 0 ≤ a h : ↑n ≤ a ⊢ 0 ≤ a - ↑n [PROOFSTEP] exact le_tsub_of_add_le_left ((add_zero _).trans_le h) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : FloorSemiring α a✝ : α n : ℕ inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ExistsAddOfLE α a : α ⊢ ⌊a - 1⌋₊ = ⌊a⌋₊ - 1 [PROOFSTEP] exact_mod_cast floor_sub_nat a 1 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n✝ : ℕ ha : 0 ≤ a n b : ℕ ⊢ ⌈a + ↑n⌉₊ ≤ b ↔ ⌈a⌉₊ + n ≤ b [PROOFSTEP] rw [← not_lt, ← not_lt, not_iff_not, lt_ceil] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n✝ : ℕ ha : 0 ≤ a n b : ℕ ⊢ ↑b < a + ↑n ↔ b < ⌈a⌉₊ + n [PROOFSTEP] obtain hb | hb := le_or_lt n b [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n✝ : ℕ ha : 0 ≤ a n b : ℕ hb : n ≤ b ⊢ ↑b < a + ↑n ↔ b < ⌈a⌉₊ + n [PROOFSTEP] obtain ⟨d, rfl⟩ := exists_add_of_le hb [GOAL] case inl.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n✝ : ℕ ha : 0 ≤ a n d : ℕ hb : n ≤ n + d ⊢ ↑(n + d) < a + ↑n ↔ n + d < ⌈a⌉₊ + n [PROOFSTEP] rw [Nat.cast_add, add_comm n, add_comm (n : α), add_lt_add_iff_right, add_lt_add_iff_right, lt_ceil] [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n✝ : ℕ ha : 0 ≤ a n b : ℕ hb : b < n ⊢ ↑b < a + ↑n ↔ b < ⌈a⌉₊ + n [PROOFSTEP] exact iff_of_true (lt_add_of_nonneg_of_lt ha <| cast_lt.2 hb) (lt_add_left _ _ _ hb) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a ⊢ ⌈a + 1⌉₊ = ⌈a⌉₊ + 1 [PROOFSTEP] rw [cast_one.symm, ceil_add_nat ha 1] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α ⊢ ⌈a + b⌉₊ ≤ ⌈a⌉₊ + ⌈b⌉₊ [PROOFSTEP] rw [ceil_le, Nat.cast_add] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemiring α inst✝ : FloorSemiring α a✝ : α n : ℕ a b : α ⊢ a + b ≤ ↑⌈a⌉₊ + ↑⌈b⌉₊ [PROOFSTEP] exact _root_.add_le_add (le_ceil _) (le_ceil _) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α a : α n : ℕ ⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n [PROOFSTEP] cases' le_total a 0 with ha ha [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α a : α n : ℕ ha : a ≤ 0 ⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n [PROOFSTEP] rw [floor_of_nonpos, floor_of_nonpos ha] [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α a : α n : ℕ ha : a ≤ 0 ⊢ 0 = 0 / n [PROOFSTEP] simp [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α a : α n : ℕ ha : a ≤ 0 ⊢ a / ↑n ≤ 0 [PROOFSTEP] apply div_nonpos_of_nonpos_of_nonneg ha n.cast_nonneg [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a ⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n [PROOFSTEP] obtain rfl | hn := n.eq_zero_or_pos [GOAL] case inr.inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α a : α ha : 0 ≤ a ⊢ ⌊a / ↑0⌋₊ = ⌊a⌋₊ / 0 [PROOFSTEP] rw [cast_zero, div_zero, Nat.div_zero, floor_zero] [GOAL] case inr.inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a hn : n > 0 ⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n [PROOFSTEP] refine' (floor_eq_iff _).2 _ [GOAL] case inr.inr.refine'_1 F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a hn : n > 0 ⊢ 0 ≤ a / ↑n [PROOFSTEP] exact div_nonneg ha n.cast_nonneg [GOAL] case inr.inr.refine'_2 F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a hn : n > 0 ⊢ ↑(⌊a⌋₊ / n) ≤ a / ↑n ∧ a / ↑n < ↑(⌊a⌋₊ / n) + 1 [PROOFSTEP] constructor [GOAL] case inr.inr.refine'_2.left F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a hn : n > 0 ⊢ ↑(⌊a⌋₊ / n) ≤ a / ↑n [PROOFSTEP] exact cast_div_le.trans (div_le_div_of_le_of_nonneg (floor_le ha) n.cast_nonneg) [GOAL] case inr.inr.refine'_2.right F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a hn : n > 0 ⊢ a / ↑n < ↑(⌊a⌋₊ / n) + 1 [PROOFSTEP] rw [div_lt_iff, add_mul, one_mul, ← cast_mul, ← cast_add, ← floor_lt ha] [GOAL] case inr.inr.refine'_2.right F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a hn : n > 0 ⊢ ⌊a⌋₊ < ⌊a⌋₊ / n * n + n [PROOFSTEP] exact lt_div_mul_add hn [GOAL] case inr.inr.refine'_2.right F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α a : α n : ℕ ha : 0 ≤ a hn : n > 0 ⊢ 0 < ↑n [PROOFSTEP] exact cast_pos.2 hn [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α m n : ℕ ⊢ ⌊↑m / ↑n⌋₊ = m / n [PROOFSTEP] convert floor_div_nat (m : α) n [GOAL] case h.e'_3.h.e'_5 F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedSemifield α inst✝ : FloorSemiring α m n : ℕ ⊢ m = ⌊↑m⌋₊ [PROOFSTEP] rw [m.floor_coe] [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α ⊢ Subsingleton (FloorSemiring α) [PROOFSTEP] refine' ⟨fun H₁ H₂ => _⟩ [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α H₁ H₂ : FloorSemiring α ⊢ H₁ = H₂ [PROOFSTEP] have : H₁.ceil = H₂.ceil := funext fun a => (H₁.gc_ceil.l_unique H₂.gc_ceil) fun n => rfl [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α H₁ H₂ : FloorSemiring α this : FloorSemiring.ceil = FloorSemiring.ceil ⊢ H₁ = H₂ [PROOFSTEP] have : H₁.floor = H₂.floor := by ext a cases' lt_or_le a 0 with h h · rw [H₁.floor_of_neg, H₂.floor_of_neg] <;> exact h · refine' eq_of_forall_le_iff fun n => _ rw [H₁.gc_floor, H₂.gc_floor] <;> exact h [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α H₁ H₂ : FloorSemiring α this : FloorSemiring.ceil = FloorSemiring.ceil ⊢ FloorSemiring.floor = FloorSemiring.floor [PROOFSTEP] ext a [GOAL] case h F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α H₁ H₂ : FloorSemiring α this : FloorSemiring.ceil = FloorSemiring.ceil a : α ⊢ FloorSemiring.floor a = FloorSemiring.floor a [PROOFSTEP] cases' lt_or_le a 0 with h h [GOAL] case h.inl F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α H₁ H₂ : FloorSemiring α this : FloorSemiring.ceil = FloorSemiring.ceil a : α h : a < 0 ⊢ FloorSemiring.floor a = FloorSemiring.floor a [PROOFSTEP] rw [H₁.floor_of_neg, H₂.floor_of_neg] [GOAL] case h.inl F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α H₁ H₂ : FloorSemiring α this : FloorSemiring.ceil = FloorSemiring.ceil a : α h : a < 0 ⊢ a < 0 [PROOFSTEP] exact h [GOAL] case h.inl F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α H₁ H₂ : FloorSemiring α this : FloorSemiring.ceil = FloorSemiring.ceil a : α h : a < 0 ⊢ a < 0 [PROOFSTEP] exact h [GOAL] case h.inr F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α H₁ H₂ : FloorSemiring α this : FloorSemiring.ceil = FloorSemiring.ceil a : α h : 0 ≤ a ⊢ FloorSemiring.floor a = FloorSemiring.floor a [PROOFSTEP] refine' eq_of_forall_le_iff fun n => _ [GOAL] case h.inr F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α H₁ H₂ : FloorSemiring α this : FloorSemiring.ceil = FloorSemiring.ceil a : α h : 0 ≤ a n : ℕ ⊢ n ≤ FloorSemiring.floor a ↔ n ≤ FloorSemiring.floor a [PROOFSTEP] rw [H₁.gc_floor, H₂.gc_floor] [GOAL] case h.inr F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α H₁ H₂ : FloorSemiring α this : FloorSemiring.ceil = FloorSemiring.ceil a : α h : 0 ≤ a n : ℕ ⊢ 0 ≤ a [PROOFSTEP] exact h [GOAL] case h.inr F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α H₁ H₂ : FloorSemiring α this : FloorSemiring.ceil = FloorSemiring.ceil a : α h : 0 ≤ a n : ℕ ⊢ 0 ≤ a [PROOFSTEP] exact h [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α H₁ H₂ : FloorSemiring α this✝ : FloorSemiring.ceil = FloorSemiring.ceil this : FloorSemiring.floor = FloorSemiring.floor ⊢ H₁ = H₂ [PROOFSTEP] cases H₁ [GOAL] case mk F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α H₂ : FloorSemiring α floor✝ ceil✝ : α → ℕ floor_of_neg✝ : ∀ {a : α}, a < 0 → floor✝ a = 0 gc_floor✝ : ∀ {a : α} {n : ℕ}, 0 ≤ a → (n ≤ floor✝ a ↔ ↑n ≤ a) gc_ceil✝ : GaloisConnection ceil✝ Nat.cast this✝ : FloorSemiring.ceil = FloorSemiring.ceil this : FloorSemiring.floor = FloorSemiring.floor ⊢ { floor := floor✝, ceil := ceil✝, floor_of_neg := floor_of_neg✝, gc_floor := gc_floor✝, gc_ceil := gc_ceil✝ } = H₂ [PROOFSTEP] cases H₂ [GOAL] case mk.mk F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedSemiring α floor✝¹ ceil✝¹ : α → ℕ floor_of_neg✝¹ : ∀ {a : α}, a < 0 → floor✝¹ a = 0 gc_floor✝¹ : ∀ {a : α} {n : ℕ}, 0 ≤ a → (n ≤ floor✝¹ a ↔ ↑n ≤ a) gc_ceil✝¹ : GaloisConnection ceil✝¹ Nat.cast floor✝ ceil✝ : α → ℕ floor_of_neg✝ : ∀ {a : α}, a < 0 → floor✝ a = 0 gc_floor✝ : ∀ {a : α} {n : ℕ}, 0 ≤ a → (n ≤ floor✝ a ↔ ↑n ≤ a) gc_ceil✝ : GaloisConnection ceil✝ Nat.cast this✝ : FloorSemiring.ceil = FloorSemiring.ceil this : FloorSemiring.floor = FloorSemiring.floor ⊢ { floor := floor✝¹, ceil := ceil✝¹, floor_of_neg := floor_of_neg✝¹, gc_floor := gc_floor✝¹, gc_ceil := gc_ceil✝¹ } = { floor := floor✝, ceil := ceil✝, floor_of_neg := floor_of_neg✝, gc_floor := gc_floor✝, gc_ceil := gc_ceil✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 a b : ℤ ⊢ ↑a ≤ b ↔ a ≤ id b [PROOFSTEP] rw [Int.cast_id] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 a b : ℤ ⊢ a ≤ b ↔ a ≤ id b [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 a b : ℤ ⊢ id a ≤ b ↔ a ≤ ↑b [PROOFSTEP] rw [Int.cast_id] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 a b : ℤ ⊢ id a ≤ b ↔ a ≤ b [PROOFSTEP] rfl [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type ?u.109134 inst✝ : LinearOrderedRing α floor : α → ℤ gc_coe_floor : GaloisConnection Int.cast floor a : α z : ℤ ⊢ (fun a => -floor (-a)) a ≤ z ↔ a ≤ ↑z [PROOFSTEP] rw [neg_le, ← gc_coe_floor, Int.cast_neg, neg_le_neg_iff] [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type ?u.110495 inst✝ : LinearOrderedRing α ceil : α → ℤ gc_ceil_coe : GaloisConnection ceil Int.cast a : ℤ z : α ⊢ ↑a ≤ z ↔ a ≤ (fun a => -ceil (-a)) z [PROOFSTEP] rw [le_neg, gc_ceil_coe, Int.cast_neg, neg_le_neg_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α x : ℤ ⊢ fract x = OfNat.ofNat 0 x [PROOFSTEP] simp [fract] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ 0 ≤ ⌊a⌋ ↔ 0 ≤ a [PROOFSTEP] rw [le_floor, Int.cast_zero] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ ⌊a⌋ ≤ z - 1 ↔ a < ↑z [PROOFSTEP] rw [← floor_lt, le_sub_one_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ ⌊a⌋ ≤ -1 ↔ a < 0 [PROOFSTEP] rw [← zero_sub (1 : ℤ), floor_le_sub_one_iff, cast_zero] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ha : a ≤ 0 ⊢ ⌊a⌋ ≤ 0 [PROOFSTEP] rw [← @cast_le α, Int.cast_zero] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ha : a ≤ 0 ⊢ ↑⌊a⌋ ≤ 0 [PROOFSTEP] exact (floor_le a).trans ha [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ a < ↑⌊a⌋ + 1 [PROOFSTEP] simpa only [Int.succ, Int.cast_add, Int.cast_one] using lt_succ_floor a [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ : α z a : ℤ ⊢ a ≤ ⌊↑z⌋ ↔ a ≤ z [PROOFSTEP] rw [le_floor, Int.cast_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ : α n : ℕ a : ℤ ⊢ a ≤ ⌊↑n⌋ ↔ a ≤ ↑n [PROOFSTEP] rw [le_floor, ← cast_ofNat, cast_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ ⌊0⌋ = 0 [PROOFSTEP] rw [← cast_zero, floor_intCast] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ ⌊1⌋ = 1 [PROOFSTEP] rw [← cast_one, floor_intCast] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ 0 < ⌊a⌋ ↔ 1 ≤ a [PROOFSTEP] rw [Int.lt_iff_add_one_le, zero_add, le_floor, cast_one] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝¹ a✝ : α z a : ℤ ⊢ a ≤ ⌊a✝ + ↑z⌋ ↔ a ≤ ⌊a✝⌋ + z [PROOFSTEP] rw [le_floor, ← sub_le_iff_le_add, ← sub_le_iff_le_add, le_floor, Int.cast_sub] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ ⌊a + 1⌋ = ⌊a⌋ + 1 [PROOFSTEP] rw [← cast_one, floor_add_int] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ ⌊a⌋ + ⌊b⌋ ≤ ⌊a + b⌋ [PROOFSTEP] rw [le_floor, Int.cast_add] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ ↑⌊a⌋ + ↑⌊b⌋ ≤ a + b [PROOFSTEP] exact add_le_add (floor_le _) (floor_le _) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ ⌊a + b⌋ - 1 ≤ ⌊a⌋ + ⌊b⌋ [PROOFSTEP] rw [← sub_le_iff_le_add, le_floor, Int.cast_sub, sub_le_comm, Int.cast_sub, Int.cast_one] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ ↑⌊a + b⌋ - 1 - a ≤ ↑⌊b⌋ [PROOFSTEP] refine' le_trans _ (sub_one_lt_floor _).le [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ ↑⌊a + b⌋ - 1 - a ≤ b - 1 [PROOFSTEP] rw [sub_le_iff_le_add', ← add_sub_assoc, sub_le_sub_iff_right] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ ↑⌊a + b⌋ ≤ a + b [PROOFSTEP] exact floor_le _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ : α z : ℤ a : α ⊢ ⌊↑z + a⌋ = z + ⌊a⌋ [PROOFSTEP] simpa only [add_comm] using floor_add_int a z [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α n : ℕ ⊢ ⌊a + ↑n⌋ = ⌊a⌋ + ↑n [PROOFSTEP] rw [← Int.cast_ofNat, floor_add_int] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ : α n : ℕ a : α ⊢ ⌊↑n + a⌋ = ↑n + ⌊a⌋ [PROOFSTEP] rw [← Int.cast_ofNat, floor_int_add] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a : α z : ℤ ⊢ ⌊a - ↑z⌋ = ⌊a + ↑(-z)⌋ [PROOFSTEP] rw [Int.cast_neg, sub_eq_add_neg] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α n : ℕ ⊢ ⌊a - ↑n⌋ = ⌊a⌋ - ↑n [PROOFSTEP] rw [← Int.cast_ofNat, floor_sub_int] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ ⌊a - 1⌋ = ⌊a⌋ - 1 [PROOFSTEP] exact_mod_cast floor_sub_nat a 1 [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α✝ inst✝² : FloorRing α✝ z : ℤ a✝ : α✝ α : Type u_4 inst✝¹ : LinearOrderedCommRing α inst✝ : FloorRing α a b : α h : ⌊a⌋ = ⌊b⌋ ⊢ |a - b| < 1 [PROOFSTEP] have : a < ⌊a⌋ + 1 := lt_floor_add_one a [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α✝ inst✝² : FloorRing α✝ z : ℤ a✝ : α✝ α : Type u_4 inst✝¹ : LinearOrderedCommRing α inst✝ : FloorRing α a b : α h : ⌊a⌋ = ⌊b⌋ this : a < ↑⌊a⌋ + 1 ⊢ |a - b| < 1 [PROOFSTEP] have : b < ⌊b⌋ + 1 := lt_floor_add_one b [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α✝ inst✝² : FloorRing α✝ z : ℤ a✝ : α✝ α : Type u_4 inst✝¹ : LinearOrderedCommRing α inst✝ : FloorRing α a b : α h : ⌊a⌋ = ⌊b⌋ this✝ : a < ↑⌊a⌋ + 1 this : b < ↑⌊b⌋ + 1 ⊢ |a - b| < 1 [PROOFSTEP] have : (⌊a⌋ : α) = ⌊b⌋ := Int.cast_inj.2 h [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α✝ inst✝² : FloorRing α✝ z : ℤ a✝ : α✝ α : Type u_4 inst✝¹ : LinearOrderedCommRing α inst✝ : FloorRing α a b : α h : ⌊a⌋ = ⌊b⌋ this✝¹ : a < ↑⌊a⌋ + 1 this✝ : b < ↑⌊b⌋ + 1 this : ↑⌊a⌋ = ↑⌊b⌋ ⊢ |a - b| < 1 [PROOFSTEP] have : (⌊a⌋ : α) ≤ a := floor_le a [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α✝ inst✝² : FloorRing α✝ z : ℤ a✝ : α✝ α : Type u_4 inst✝¹ : LinearOrderedCommRing α inst✝ : FloorRing α a b : α h : ⌊a⌋ = ⌊b⌋ this✝² : a < ↑⌊a⌋ + 1 this✝¹ : b < ↑⌊b⌋ + 1 this✝ : ↑⌊a⌋ = ↑⌊b⌋ this : ↑⌊a⌋ ≤ a ⊢ |a - b| < 1 [PROOFSTEP] have : (⌊b⌋ : α) ≤ b := floor_le b [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α✝ inst✝² : FloorRing α✝ z : ℤ a✝ : α✝ α : Type u_4 inst✝¹ : LinearOrderedCommRing α inst✝ : FloorRing α a b : α h : ⌊a⌋ = ⌊b⌋ this✝³ : a < ↑⌊a⌋ + 1 this✝² : b < ↑⌊b⌋ + 1 this✝¹ : ↑⌊a⌋ = ↑⌊b⌋ this✝ : ↑⌊a⌋ ≤ a this : ↑⌊b⌋ ≤ b ⊢ |a - b| < 1 [PROOFSTEP] exact abs_sub_lt_iff.2 ⟨by linarith, by linarith⟩ [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α✝ inst✝² : FloorRing α✝ z : ℤ a✝ : α✝ α : Type u_4 inst✝¹ : LinearOrderedCommRing α inst✝ : FloorRing α a b : α h : ⌊a⌋ = ⌊b⌋ this✝³ : a < ↑⌊a⌋ + 1 this✝² : b < ↑⌊b⌋ + 1 this✝¹ : ↑⌊a⌋ = ↑⌊b⌋ this✝ : ↑⌊a⌋ ≤ a this : ↑⌊b⌋ ≤ b ⊢ a - b < 1 [PROOFSTEP] linarith [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α✝ inst✝² : FloorRing α✝ z : ℤ a✝ : α✝ α : Type u_4 inst✝¹ : LinearOrderedCommRing α inst✝ : FloorRing α a b : α h : ⌊a⌋ = ⌊b⌋ this✝³ : a < ↑⌊a⌋ + 1 this✝² : b < ↑⌊b⌋ + 1 this✝¹ : ↑⌊a⌋ = ↑⌊b⌋ this✝ : ↑⌊a⌋ ≤ a this : ↑⌊b⌋ ≤ b ⊢ b - a < 1 [PROOFSTEP] linarith [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ ⌊a⌋ = z ↔ ↑z ≤ a ∧ a < ↑z + 1 [PROOFSTEP] rw [le_antisymm_iff, le_floor, ← Int.lt_add_one_iff, floor_lt, Int.cast_add, Int.cast_one, and_comm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ ⌊a⌋ = 0 ↔ a ∈ Ico 0 1 [PROOFSTEP] simp [floor_eq_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α m : ℤ ⊢ fract (a + ↑m) = fract a [PROOFSTEP] rw [fract] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α m : ℤ ⊢ a + ↑m - ↑⌊a + ↑m⌋ = fract a [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α m : ℕ ⊢ fract (a + ↑m) = fract a [PROOFSTEP] rw [fract] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α m : ℕ ⊢ a + ↑m - ↑⌊a + ↑m⌋ = fract a [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ fract (a + 1) = fract a [PROOFSTEP] exact_mod_cast fract_add_nat a 1 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ : α m : ℤ a : α ⊢ fract (↑m + a) = fract a [PROOFSTEP] rw [add_comm, fract_add_int] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ : α n : ℕ a : α ⊢ fract (↑n + a) = fract a [PROOFSTEP] rw [add_comm, fract_add_nat] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ fract (1 + a) = fract a [PROOFSTEP] exact_mod_cast fract_nat_add 1 a [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α m : ℤ ⊢ fract (a - ↑m) = fract a [PROOFSTEP] rw [fract] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α m : ℤ ⊢ a - ↑m - ↑⌊a - ↑m⌋ = fract a [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α n : ℕ ⊢ fract (a - ↑n) = fract a [PROOFSTEP] rw [fract] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α n : ℕ ⊢ a - ↑n - ↑⌊a - ↑n⌋ = fract a [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ fract (a - 1) = fract a [PROOFSTEP] exact_mod_cast fract_sub_nat a 1 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ fract (a + b) ≤ fract a + fract b [PROOFSTEP] rw [fract, fract, fract, sub_add_sub_comm, sub_le_sub_iff_left, ← Int.cast_add, Int.cast_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ ⌊a⌋ + ⌊b⌋ ≤ ⌊a + b⌋ [PROOFSTEP] exact le_floor_add _ _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ fract a + fract b ≤ fract (a + b) + 1 [PROOFSTEP] rw [fract, fract, fract, sub_add_sub_comm, sub_add, sub_le_sub_iff_left] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ ↑⌊a + b⌋ - 1 ≤ ↑⌊a⌋ + ↑⌊b⌋ [PROOFSTEP] exact_mod_cast le_floor_add_floor a b [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ fract 0 = 0 [PROOFSTEP] rw [fract, floor_zero, cast_zero, sub_self] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ fract 1 = 0 [PROOFSTEP] simp [fract] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a : α z : ℤ ⊢ fract ↑z = 0 [PROOFSTEP] unfold fract [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a : α z : ℤ ⊢ ↑z - ↑⌊↑z⌋ = 0 [PROOFSTEP] rw [floor_intCast] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a : α z : ℤ ⊢ ↑z - ↑z = 0 [PROOFSTEP] exact sub_self _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α n : ℕ ⊢ fract ↑n = 0 [PROOFSTEP] simp [fract] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ ⌊fract a⌋ = 0 [PROOFSTEP] rw [floor_eq_iff, Int.cast_zero, zero_add] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ 0 ≤ fract a ∧ fract a < 1 [PROOFSTEP] exact ⟨fract_nonneg _, fract_lt_one _⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α h : fract a = b ⊢ 0 ≤ b ∧ b < 1 ∧ ∃ z, a - b = ↑z [PROOFSTEP] rw [← h] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α h : fract a = b ⊢ 0 ≤ fract a ∧ fract a < 1 ∧ ∃ z, a - fract a = ↑z [PROOFSTEP] exact ⟨fract_nonneg _, fract_lt_one _, ⟨⌊a⌋, sub_sub_cancel _ _⟩⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ (0 ≤ b ∧ b < 1 ∧ ∃ z, a - b = ↑z) → fract a = b [PROOFSTEP] rintro ⟨h₀, h₁, z, hz⟩ [GOAL] case intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a b : α h₀ : 0 ≤ b h₁ : b < 1 z : ℤ hz : a - b = ↑z ⊢ fract a = b [PROOFSTEP] rw [← self_sub_floor, eq_comm, eq_sub_iff_add_eq, add_comm, ← eq_sub_iff_add_eq, hz, Int.cast_inj, floor_eq_iff, ← hz] [GOAL] case intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a b : α h₀ : 0 ≤ b h₁ : b < 1 z : ℤ hz : a - b = ↑z ⊢ a - b ≤ a ∧ a < a - b + 1 [PROOFSTEP] constructor [GOAL] case intro.intro.intro.left F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a b : α h₀ : 0 ≤ b h₁ : b < 1 z : ℤ hz : a - b = ↑z ⊢ a - b ≤ a [PROOFSTEP] simpa [sub_eq_add_neg, add_assoc] [GOAL] case intro.intro.intro.right F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a b : α h₀ : 0 ≤ b h₁ : b < 1 z : ℤ hz : a - b = ↑z ⊢ a < a - b + 1 [PROOFSTEP] simpa [sub_eq_add_neg, add_assoc] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α h : fract a = fract b ⊢ a - b = ↑(⌊a⌋ - ⌊b⌋) [PROOFSTEP] unfold fract at h [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α h : a - ↑⌊a⌋ = b - ↑⌊b⌋ ⊢ a - b = ↑(⌊a⌋ - ⌊b⌋) [PROOFSTEP] rw [Int.cast_sub, sub_eq_sub_iff_sub_eq_sub.1 h] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ (∃ z, a - b = ↑z) → fract a = fract b [PROOFSTEP] rintro ⟨z, hz⟩ [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a b : α z : ℤ hz : a - b = ↑z ⊢ fract a = fract b [PROOFSTEP] refine' fract_eq_iff.2 ⟨fract_nonneg _, fract_lt_one _, z + ⌊b⌋, _⟩ [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a b : α z : ℤ hz : a - b = ↑z ⊢ a - fract b = ↑(z + ⌊b⌋) [PROOFSTEP] rw [eq_add_of_sub_eq hz, add_comm, Int.cast_add] [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a b : α z : ℤ hz : a - b = ↑z ⊢ b + ↑z - fract b = ↑z + ↑⌊b⌋ [PROOFSTEP] exact add_sub_sub_cancel _ _ _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ a - a = ↑0 [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ fract (a + b) - fract a - fract b = ↑(⌊a⌋ + ⌊b⌋ - ⌊a + b⌋) [PROOFSTEP] unfold fract [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ a + b - ↑⌊a + b⌋ - (a - ↑⌊a⌋) - (b - ↑⌊b⌋) = ↑(⌊a⌋ + ⌊b⌋ - ⌊a + b⌋) [PROOFSTEP] simp [sub_eq_add_neg] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ a + b + -↑⌊a + b⌋ + (↑⌊a⌋ + -a) + (↑⌊b⌋ + -b) = ↑⌊a⌋ + ↑⌊b⌋ + -↑⌊a + b⌋ [PROOFSTEP] abel [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ a + b + -↑⌊a + b⌋ + (↑⌊a⌋ + -a) + (↑⌊b⌋ + -b) = ↑⌊a⌋ + ↑⌊b⌋ + -↑⌊a + b⌋ [PROOFSTEP] abel [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α hx : fract x ≠ 0 ⊢ fract (-x) = 1 - fract x [PROOFSTEP] rw [fract_eq_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α hx : fract x ≠ 0 ⊢ 0 ≤ 1 - fract x ∧ 1 - fract x < 1 ∧ ∃ z, -x - (1 - fract x) = ↑z [PROOFSTEP] constructor [GOAL] case left F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α hx : fract x ≠ 0 ⊢ 0 ≤ 1 - fract x [PROOFSTEP] rw [le_sub_iff_add_le, zero_add] [GOAL] case left F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α hx : fract x ≠ 0 ⊢ fract x ≤ 1 [PROOFSTEP] exact (fract_lt_one x).le [GOAL] case right F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α hx : fract x ≠ 0 ⊢ 1 - fract x < 1 ∧ ∃ z, -x - (1 - fract x) = ↑z [PROOFSTEP] refine' ⟨sub_lt_self _ (lt_of_le_of_ne' (fract_nonneg x) hx), -⌊x⌋ - 1, _⟩ [GOAL] case right F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α hx : fract x ≠ 0 ⊢ -x - (1 - fract x) = ↑(-⌊x⌋ - 1) [PROOFSTEP] simp only [sub_sub_eq_add_sub, cast_sub, cast_neg, cast_one, sub_left_inj] [GOAL] case right F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α hx : fract x ≠ 0 ⊢ -x + fract x = -↑⌊x⌋ [PROOFSTEP] conv in -x => rw [← floor_add_fract x] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α hx : fract x ≠ 0 | -x [PROOFSTEP] rw [← floor_add_fract x] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α hx : fract x ≠ 0 | -x [PROOFSTEP] rw [← floor_add_fract x] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α hx : fract x ≠ 0 | -x [PROOFSTEP] rw [← floor_add_fract x] [GOAL] case right F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α hx : fract x ≠ 0 ⊢ -(↑⌊x⌋ + fract x) + fract x = -↑⌊x⌋ [PROOFSTEP] simp [-floor_add_fract] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α ⊢ fract (-x) = 0 ↔ fract x = 0 [PROOFSTEP] simp only [fract_eq_iff, le_refl, zero_lt_one, tsub_zero, true_and_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α ⊢ (∃ z, -x = ↑z) ↔ ∃ z, x = ↑z [PROOFSTEP] constructor [GOAL] case mp F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α ⊢ (∃ z, -x = ↑z) → ∃ z, x = ↑z [PROOFSTEP] rintro ⟨z, hz⟩ [GOAL] case mpr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a x : α ⊢ (∃ z, x = ↑z) → ∃ z, -x = ↑z [PROOFSTEP] rintro ⟨z, hz⟩ [GOAL] case mp.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a x : α z : ℤ hz : -x = ↑z ⊢ ∃ z, x = ↑z [PROOFSTEP] use-z [GOAL] case mpr.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a x : α z : ℤ hz : x = ↑z ⊢ ∃ z, -x = ↑z [PROOFSTEP] use-z [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a x : α z : ℤ hz : -x = ↑z ⊢ x = ↑(-z) [PROOFSTEP] simp [← hz] [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a x : α z : ℤ hz : x = ↑z ⊢ -x = ↑(-z) [PROOFSTEP] simp [← hz] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α b : ℕ ⊢ ∃ z, fract a * ↑b - fract (a * ↑b) = ↑z [PROOFSTEP] induction' b with c hc [GOAL] case zero F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ ∃ z, fract a * ↑Nat.zero - fract (a * ↑Nat.zero) = ↑z [PROOFSTEP] use 0 [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ fract a * ↑Nat.zero - fract (a * ↑Nat.zero) = ↑0 [PROOFSTEP] simp [GOAL] case succ F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α c : ℕ hc : ∃ z, fract a * ↑c - fract (a * ↑c) = ↑z ⊢ ∃ z, fract a * ↑(Nat.succ c) - fract (a * ↑(Nat.succ c)) = ↑z [PROOFSTEP] rcases hc with ⟨z, hz⟩ [GOAL] case succ.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a : α c : ℕ z : ℤ hz : fract a * ↑c - fract (a * ↑c) = ↑z ⊢ ∃ z, fract a * ↑(Nat.succ c) - fract (a * ↑(Nat.succ c)) = ↑z [PROOFSTEP] rw [Nat.succ_eq_add_one, Nat.cast_add, mul_add, mul_add, Nat.cast_one, mul_one, mul_one] [GOAL] case succ.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a : α c : ℕ z : ℤ hz : fract a * ↑c - fract (a * ↑c) = ↑z ⊢ ∃ z, fract a * ↑c + fract a - fract (a * ↑c + a) = ↑z [PROOFSTEP] rcases fract_add (a * c) a with ⟨y, hy⟩ [GOAL] case succ.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a : α c : ℕ z : ℤ hz : fract a * ↑c - fract (a * ↑c) = ↑z y : ℤ hy : fract (a * ↑c + a) - fract (a * ↑c) - fract a = ↑y ⊢ ∃ z, fract a * ↑c + fract a - fract (a * ↑c + a) = ↑z [PROOFSTEP] use z - y [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a : α c : ℕ z : ℤ hz : fract a * ↑c - fract (a * ↑c) = ↑z y : ℤ hy : fract (a * ↑c + a) - fract (a * ↑c) - fract a = ↑y ⊢ fract a * ↑c + fract a - fract (a * ↑c + a) = ↑(z - y) [PROOFSTEP] rw [Int.cast_sub, ← hz, ← hy] [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a : α c : ℕ z : ℤ hz : fract a * ↑c - fract (a * ↑c) = ↑z y : ℤ hy : fract (a * ↑c + a) - fract (a * ↑c) - fract a = ↑y ⊢ fract a * ↑c + fract a - fract (a * ↑c + a) = fract a * ↑c - fract (a * ↑c) - (fract (a * ↑c + a) - fract (a * ↑c) - fract a) [PROOFSTEP] abel [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a : α c : ℕ z : ℤ hz : fract a * ↑c - fract (a * ↑c) = ↑z y : ℤ hy : fract (a * ↑c + a) - fract (a * ↑c) - fract a = ↑y ⊢ fract a * ↑c + fract a - fract (a * ↑c + a) = fract a * ↑c - fract (a * ↑c) - (fract (a * ↑c + a) - fract (a * ↑c) - fract a) [PROOFSTEP] abel [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α ⊢ fract ⁻¹' s = ⋃ (m : ℤ), (fun x => x - ↑m) ⁻¹' (s ∩ Ico 0 1) [PROOFSTEP] ext x [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α x : α ⊢ x ∈ fract ⁻¹' s ↔ x ∈ ⋃ (m : ℤ), (fun x => x - ↑m) ⁻¹' (s ∩ Ico 0 1) [PROOFSTEP] simp only [mem_preimage, mem_iUnion, mem_inter_iff] [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α x : α ⊢ fract x ∈ s ↔ ∃ i, x - ↑i ∈ s ∧ x - ↑i ∈ Ico 0 1 [PROOFSTEP] refine' ⟨fun h => ⟨⌊x⌋, h, fract_nonneg x, fract_lt_one x⟩, _⟩ [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α x : α ⊢ (∃ i, x - ↑i ∈ s ∧ x - ↑i ∈ Ico 0 1) → fract x ∈ s [PROOFSTEP] rintro ⟨m, hms, hm0, hm1⟩ [GOAL] case h.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α x : α m : ℤ hms : x - ↑m ∈ s hm0 : 0 ≤ x - ↑m hm1 : x - ↑m < 1 ⊢ fract x ∈ s [PROOFSTEP] obtain rfl : ⌊x⌋ = m := floor_eq_iff.2 ⟨sub_nonneg.1 hm0, sub_lt_iff_lt_add'.1 hm1⟩ [GOAL] case h.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α x : α hms : x - ↑⌊x⌋ ∈ s hm0 : 0 ≤ x - ↑⌊x⌋ hm1 : x - ↑⌊x⌋ < 1 ⊢ fract x ∈ s [PROOFSTEP] exact hms [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α ⊢ fract '' s = ⋃ (m : ℤ), (fun x => x - ↑m) '' s ∩ Ico 0 1 [PROOFSTEP] ext x [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α x : α ⊢ x ∈ fract '' s ↔ x ∈ ⋃ (m : ℤ), (fun x => x - ↑m) '' s ∩ Ico 0 1 [PROOFSTEP] simp only [mem_image, mem_inter_iff, mem_iUnion] [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α x : α ⊢ (∃ x_1, x_1 ∈ s ∧ fract x_1 = x) ↔ ∃ i, (∃ x_1, x_1 ∈ s ∧ x_1 - ↑i = x) ∧ x ∈ Ico 0 1 [PROOFSTEP] constructor [GOAL] case h.mp F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α x : α ⊢ (∃ x_1, x_1 ∈ s ∧ fract x_1 = x) → ∃ i, (∃ x_1, x_1 ∈ s ∧ x_1 - ↑i = x) ∧ x ∈ Ico 0 1 [PROOFSTEP] rintro ⟨y, hy, rfl⟩ [GOAL] case h.mp.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α y : α hy : y ∈ s ⊢ ∃ i, (∃ x, x ∈ s ∧ x - ↑i = fract y) ∧ fract y ∈ Ico 0 1 [PROOFSTEP] exact ⟨⌊y⌋, ⟨y, hy, rfl⟩, fract_nonneg y, fract_lt_one y⟩ [GOAL] case h.mpr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α x : α ⊢ (∃ i, (∃ x_1, x_1 ∈ s ∧ x_1 - ↑i = x) ∧ x ∈ Ico 0 1) → ∃ x_1, x_1 ∈ s ∧ fract x_1 = x [PROOFSTEP] rintro ⟨m, ⟨y, hys, rfl⟩, h0, h1⟩ [GOAL] case h.mpr.intro.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α m : ℤ y : α hys : y ∈ s h0 : 0 ≤ y - ↑m h1 : y - ↑m < 1 ⊢ ∃ x, x ∈ s ∧ fract x = y - ↑m [PROOFSTEP] obtain rfl : ⌊y⌋ = m := floor_eq_iff.2 ⟨sub_nonneg.1 h0, sub_lt_iff_lt_add'.1 h1⟩ [GOAL] case h.mpr.intro.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α s : Set α y : α hys : y ∈ s h0 : 0 ≤ y - ↑⌊y⌋ h1 : y - ↑⌊y⌋ < 1 ⊢ ∃ x, x ∈ s ∧ fract x = y - ↑⌊y⌋ [PROOFSTEP] exact ⟨y, hys, rfl⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a✝ : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b✝ a b : k ha : a ≠ 0 ⊢ fract (b / a) * a + ⌊b / a⌋ • a = b [PROOFSTEP] rw [zsmul_eq_mul, ← add_mul, fract_add_floor, div_mul_cancel b ha] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a✝ : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b a : k hb : 0 < b ⊢ a < b + ↑⌊a / b⌋ * b [PROOFSTEP] rw [← one_add_mul _ b, ← div_lt_iff hb, add_comm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a✝ : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b a : k hb : 0 < b ⊢ a / b < ↑⌊a / b⌋ + 1 [PROOFSTEP] exact lt_floor_add_one _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m n : ℕ ⊢ fract (↑m / ↑n) = ↑(m % n) / ↑n [PROOFSTEP] rcases n.eq_zero_or_pos with (rfl | hn) [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m : ℕ ⊢ fract (↑m / ↑0) = ↑(m % 0) / ↑0 [PROOFSTEP] simp [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m n : ℕ hn : n > 0 ⊢ fract (↑m / ↑n) = ↑(m % n) / ↑n [PROOFSTEP] have hn' : 0 < (n : k) := by norm_cast [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m n : ℕ hn : n > 0 ⊢ 0 < ↑n [PROOFSTEP] norm_cast [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m n : ℕ hn : n > 0 hn' : 0 < ↑n ⊢ fract (↑m / ↑n) = ↑(m % n) / ↑n [PROOFSTEP] refine fract_eq_iff.mpr ⟨?_, ?_, m / n, ?_⟩ [GOAL] case inr.refine_1 F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m n : ℕ hn : n > 0 hn' : 0 < ↑n ⊢ 0 ≤ ↑(m % n) / ↑n [PROOFSTEP] positivity [GOAL] case inr.refine_2 F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m n : ℕ hn : n > 0 hn' : 0 < ↑n ⊢ ↑(m % n) / ↑n < 1 [PROOFSTEP] simpa only [div_lt_one hn', Nat.cast_lt] using m.mod_lt hn [GOAL] case inr.refine_3 F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m n : ℕ hn : n > 0 hn' : 0 < ↑n ⊢ ↑m / ↑n - ↑(m % n) / ↑n = ↑(↑m / ↑n) [PROOFSTEP] rw [sub_eq_iff_eq_add', ← mul_right_inj' hn'.ne', mul_div_cancel' _ hn'.ne', mul_add, mul_div_cancel' _ hn'.ne'] [GOAL] case inr.refine_3 F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m n : ℕ hn : n > 0 hn' : 0 < ↑n ⊢ ↑m = ↑(m % n) + ↑n * ↑(↑m / ↑n) [PROOFSTEP] norm_cast [GOAL] case inr.refine_3 F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m n : ℕ hn : n > 0 hn' : 0 < ↑n ⊢ ↑m = ↑(m % n) + ↑(n * (m / n)) [PROOFSTEP] rw [← Nat.cast_add, Nat.mod_add_div m n] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m : ℤ n : ℕ ⊢ fract (↑m / ↑n) = ↑(m % ↑n) / ↑n [PROOFSTEP] rcases n.eq_zero_or_pos with (rfl | hn) [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m : ℤ ⊢ fract (↑m / ↑0) = ↑(m % ↑0) / ↑0 [PROOFSTEP] simp [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m : ℤ n : ℕ hn : n > 0 ⊢ fract (↑m / ↑n) = ↑(m % ↑n) / ↑n [PROOFSTEP] replace hn : 0 < (n : k) [GOAL] case hn F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m : ℤ n : ℕ hn : n > 0 ⊢ 0 < ↑n [PROOFSTEP] norm_cast [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m : ℤ n : ℕ hn : 0 < ↑n ⊢ fract (↑m / ↑n) = ↑(m % ↑n) / ↑n [PROOFSTEP] have : ∀ {l : ℤ}, 0 ≤ l → fract ((l : k) / n) = ↑(l % n) / n := by intros l hl obtain ⟨l₀, rfl | rfl⟩ := l.eq_nat_or_neg · rw [cast_ofNat, ← coe_nat_mod, cast_ofNat, fract_div_natCast_eq_div_natCast_mod] · rw [Right.nonneg_neg_iff, coe_nat_nonpos_iff] at hl simp [hl, zero_mod] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m : ℤ n : ℕ hn : 0 < ↑n ⊢ ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n [PROOFSTEP] intros l hl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m : ℤ n : ℕ hn : 0 < ↑n l : ℤ hl : 0 ≤ l ⊢ fract (↑l / ↑n) = ↑(l % ↑n) / ↑n [PROOFSTEP] obtain ⟨l₀, rfl | rfl⟩ := l.eq_nat_or_neg [GOAL] case intro.inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m : ℤ n : ℕ hn : 0 < ↑n l₀ : ℕ hl : 0 ≤ ↑l₀ ⊢ fract (↑↑l₀ / ↑n) = ↑(↑l₀ % ↑n) / ↑n [PROOFSTEP] rw [cast_ofNat, ← coe_nat_mod, cast_ofNat, fract_div_natCast_eq_div_natCast_mod] [GOAL] case intro.inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m : ℤ n : ℕ hn : 0 < ↑n l₀ : ℕ hl : 0 ≤ -↑l₀ ⊢ fract (↑(-↑l₀) / ↑n) = ↑(-↑l₀ % ↑n) / ↑n [PROOFSTEP] rw [Right.nonneg_neg_iff, coe_nat_nonpos_iff] at hl [GOAL] case intro.inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m : ℤ n : ℕ hn : 0 < ↑n l₀ : ℕ hl : l₀ = 0 ⊢ fract (↑(-↑l₀) / ↑n) = ↑(-↑l₀ % ↑n) / ↑n [PROOFSTEP] simp [hl, zero_mod] [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k m : ℤ n : ℕ hn : 0 < ↑n this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n ⊢ fract (↑m / ↑n) = ↑(m % ↑n) / ↑n [PROOFSTEP] obtain ⟨m₀, rfl | rfl⟩ := m.eq_nat_or_neg [GOAL] case inr.intro.inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k n : ℕ hn : 0 < ↑n this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n m₀ : ℕ ⊢ fract (↑↑m₀ / ↑n) = ↑(↑m₀ % ↑n) / ↑n [PROOFSTEP] exact this (ofNat_nonneg m₀) [GOAL] case inr.intro.inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k n : ℕ hn : 0 < ↑n this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n m₀ : ℕ ⊢ fract (↑(-↑m₀) / ↑n) = ↑(-↑m₀ % ↑n) / ↑n [PROOFSTEP] let q := ⌈↑m₀ / (n : k)⌉ [GOAL] case inr.intro.inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k n : ℕ hn : 0 < ↑n this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n m₀ : ℕ q : ℤ := ⌈↑m₀ / ↑n⌉ ⊢ fract (↑(-↑m₀) / ↑n) = ↑(-↑m₀ % ↑n) / ↑n [PROOFSTEP] let m₁ := q * ↑n - (↑m₀ : ℤ) [GOAL] case inr.intro.inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k n : ℕ hn : 0 < ↑n this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n m₀ : ℕ q : ℤ := ⌈↑m₀ / ↑n⌉ m₁ : ℤ := q * ↑n - ↑m₀ ⊢ fract (↑(-↑m₀) / ↑n) = ↑(-↑m₀ % ↑n) / ↑n [PROOFSTEP] have hm₁ : 0 ≤ m₁ := by simpa [← @cast_le k, ← div_le_iff hn] using FloorRing.gc_ceil_coe.le_u_l _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k n : ℕ hn : 0 < ↑n this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n m₀ : ℕ q : ℤ := ⌈↑m₀ / ↑n⌉ m₁ : ℤ := q * ↑n - ↑m₀ ⊢ 0 ≤ m₁ [PROOFSTEP] simpa [← @cast_le k, ← div_le_iff hn] using FloorRing.gc_ceil_coe.le_u_l _ [GOAL] case inr.intro.inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k n : ℕ hn : 0 < ↑n this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n m₀ : ℕ q : ℤ := ⌈↑m₀ / ↑n⌉ m₁ : ℤ := q * ↑n - ↑m₀ hm₁ : 0 ≤ m₁ ⊢ fract (↑(-↑m₀) / ↑n) = ↑(-↑m₀ % ↑n) / ↑n [PROOFSTEP] calc fract ((Int.cast (-(m₀ : ℤ)) : k) / (n : k)) -- Porting note: the `rw [cast_neg, cast_ofNat]` was `push_cast` = fract (-(m₀ : k) / n) := by rw [cast_neg, cast_ofNat] _ = fract ((m₁ : k) / n) := ?_ _ = Int.cast (m₁ % (n : ℤ)) / Nat.cast n := (this hm₁) _ = Int.cast (-(↑m₀ : ℤ) % ↑n) / Nat.cast n := ?_ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k n : ℕ hn : 0 < ↑n this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n m₀ : ℕ q : ℤ := ⌈↑m₀ / ↑n⌉ m₁ : ℤ := q * ↑n - ↑m₀ hm₁ : 0 ≤ m₁ ⊢ fract (↑(-↑m₀) / ↑n) = fract (-↑m₀ / ↑n) [PROOFSTEP] rw [cast_neg, cast_ofNat] [GOAL] case inr.intro.inr.calc_1 F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k n : ℕ hn : 0 < ↑n this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n m₀ : ℕ q : ℤ := ⌈↑m₀ / ↑n⌉ m₁ : ℤ := q * ↑n - ↑m₀ hm₁ : 0 ≤ m₁ ⊢ fract (-↑m₀ / ↑n) = fract (↑m₁ / ↑n) [PROOFSTEP] rw [← fract_int_add q, ← mul_div_cancel (q : k) (ne_of_gt hn), ← add_div, ← sub_eq_add_neg] -- Porting note: the `simp` was `push_cast` [GOAL] case inr.intro.inr.calc_1 F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k n : ℕ hn : 0 < ↑n this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n m₀ : ℕ q : ℤ := ⌈↑m₀ / ↑n⌉ m₁ : ℤ := q * ↑n - ↑m₀ hm₁ : 0 ≤ m₁ ⊢ fract ((↑q * ↑n - ↑m₀) / ↑n) = fract (↑m₁ / ↑n) [PROOFSTEP] simp [GOAL] case inr.intro.inr.calc_2 F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k n : ℕ hn : 0 < ↑n this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n m₀ : ℕ q : ℤ := ⌈↑m₀ / ↑n⌉ m₁ : ℤ := q * ↑n - ↑m₀ hm₁ : 0 ≤ m₁ ⊢ ↑(m₁ % ↑n) / ↑n = ↑(-↑m₀ % ↑n) / ↑n [PROOFSTEP] congr 2 [GOAL] case inr.intro.inr.calc_2.e_a.e_a F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k n : ℕ hn : 0 < ↑n this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n m₀ : ℕ q : ℤ := ⌈↑m₀ / ↑n⌉ m₁ : ℤ := q * ↑n - ↑m₀ hm₁ : 0 ≤ m₁ ⊢ m₁ % ↑n = -↑m₀ % ↑n [PROOFSTEP] change (q * ↑n - (↑m₀ : ℤ)) % ↑n = _ [GOAL] case inr.intro.inr.calc_2.e_a.e_a F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : LinearOrderedRing α inst✝² : FloorRing α z : ℤ a : α k : Type u_4 inst✝¹ : LinearOrderedField k inst✝ : FloorRing k b : k n : ℕ hn : 0 < ↑n this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n m₀ : ℕ q : ℤ := ⌈↑m₀ / ↑n⌉ m₁ : ℤ := q * ↑n - ↑m₀ hm₁ : 0 ≤ m₁ ⊢ (q * ↑n - ↑m₀) % ↑n = -↑m₀ % ↑n [PROOFSTEP] rw [sub_eq_add_neg, add_comm (q * ↑n), add_mul_emod_self] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a : α z : ℤ ⊢ z ≤ ⌊-a⌋ ↔ z ≤ -⌈a⌉ [PROOFSTEP] rw [le_neg, ceil_le, le_floor, Int.cast_neg, le_neg] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a : α z : ℤ ⊢ ⌈-a⌉ ≤ z ↔ -⌊a⌋ ≤ z [PROOFSTEP] rw [neg_le, ceil_le, le_floor, Int.cast_neg, neg_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ z + 1 ≤ ⌈a⌉ ↔ ↑z < a [PROOFSTEP] rw [← lt_ceil, add_one_le_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ 1 ≤ ⌈a⌉ ↔ 0 < a [PROOFSTEP] rw [← zero_add (1 : ℤ), add_one_le_ceil_iff, cast_zero] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ ⌈a⌉ ≤ ⌊a⌋ + 1 [PROOFSTEP] rw [ceil_le, Int.cast_add, Int.cast_one] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ a ≤ ↑⌊a⌋ + 1 [PROOFSTEP] exact (lt_floor_add_one a).le [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ : α z a : ℤ ⊢ ⌈↑z⌉ ≤ a ↔ z ≤ a [PROOFSTEP] rw [ceil_le, Int.cast_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ : α n : ℕ a : ℤ ⊢ ⌈↑n⌉ ≤ a ↔ ↑n ≤ a [PROOFSTEP] rw [ceil_le, ← cast_ofNat, cast_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a : α z : ℤ ⊢ ⌈a + ↑z⌉ = ⌈a⌉ + z [PROOFSTEP] rw [← neg_inj, neg_add', ← floor_neg, ← floor_neg, neg_add', floor_sub_int] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α n : ℕ ⊢ ⌈a + ↑n⌉ = ⌈a⌉ + ↑n [PROOFSTEP] rw [← Int.cast_ofNat, ceil_add_int] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ ⌈a + 1⌉ = ⌈a⌉ + 1 [PROOFSTEP] rw [← ceil_add_int a (1 : ℤ), cast_one] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ a : α z : ℤ ⊢ ⌈a - ↑z⌉ = ⌈a + ↑(-z)⌉ [PROOFSTEP] rw [Int.cast_neg, sub_eq_add_neg] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α n : ℕ ⊢ ⌈a - ↑n⌉ = ⌈a⌉ - ↑n [PROOFSTEP] convert ceil_sub_int a n using 1 [GOAL] case h.e'_2 F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α n : ℕ ⊢ ⌈a - ↑n⌉ = ⌈a - ↑↑n⌉ [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ ⌈a - 1⌉ = ⌈a⌉ - 1 [PROOFSTEP] rw [eq_sub_iff_add_eq, ← ceil_add_one, sub_add_cancel] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ ↑⌈a⌉ < a + 1 [PROOFSTEP] rw [← lt_ceil, ← Int.cast_one, ceil_add_int] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ ⌈a⌉ < ⌈a⌉ + 1 [PROOFSTEP] apply lt_add_one [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ ⌈a + b⌉ ≤ ⌈a⌉ + ⌈b⌉ [PROOFSTEP] rw [ceil_le, Int.cast_add] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ a + b ≤ ↑⌈a⌉ + ↑⌈b⌉ [PROOFSTEP] exact add_le_add (le_ceil _) (le_ceil _) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ ⌈a⌉ + ⌈b⌉ ≤ ⌈a + b⌉ + 1 [PROOFSTEP] rw [← le_sub_iff_add_le, ceil_le, Int.cast_sub, Int.cast_add, Int.cast_one, le_sub_comm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ ↑⌈b⌉ ≤ ↑⌈a + b⌉ + 1 - a [PROOFSTEP] refine' (ceil_lt_add_one _).le.trans _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ b + 1 ≤ ↑⌈a + b⌉ + 1 - a [PROOFSTEP] rw [le_sub_iff_add_le', ← add_assoc, add_le_add_iff_right] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ a + b ≤ ↑⌈a + b⌉ [PROOFSTEP] exact le_ceil _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ 0 < ⌈a⌉ ↔ 0 < a [PROOFSTEP] rw [lt_ceil, cast_zero] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ ⌈0⌉ = 0 [PROOFSTEP] rw [← cast_zero, ceil_intCast] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ ⌈1⌉ = 1 [PROOFSTEP] rw [← cast_one, ceil_intCast] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ha : 0 ≤ a ⊢ 0 ≤ ⌈a⌉ [PROOFSTEP] exact_mod_cast ha.trans (le_ceil a) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ ⌈a⌉ = z ↔ ↑z - 1 < a ∧ a ≤ ↑z [PROOFSTEP] rw [← ceil_le, ← Int.cast_one, ← Int.cast_sub, ← lt_ceil, Int.sub_one_lt_iff, le_antisymm_iff, and_comm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ ⌈a⌉ = 0 ↔ a ∈ Ioc (-1) 0 [PROOFSTEP] simp [ceil_eq_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z✝ : ℤ a✝ : α z : ℤ a : α ha : a ∈ Ioc (↑z - 1) ↑z ⊢ ↑⌈a⌉ = ↑z [PROOFSTEP] exact_mod_cast ceil_eq_on_Ioc z a ha [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ⊢ fract a = 0 ∨ fract a = a + 1 - ↑⌈a⌉ [PROOFSTEP] cases' eq_or_ne (fract a) 0 with ha ha [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ha : fract a = 0 ⊢ fract a = 0 ∨ fract a = a + 1 - ↑⌈a⌉ [PROOFSTEP] exact Or.inl ha [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ha : fract a ≠ 0 ⊢ fract a = 0 ∨ fract a = a + 1 - ↑⌈a⌉ [PROOFSTEP] right [GOAL] case inr.h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ha : fract a ≠ 0 ⊢ fract a = a + 1 - ↑⌈a⌉ [PROOFSTEP] suffices (⌈a⌉ : α) = ⌊a⌋ + 1 by rw [this, ← self_sub_fract] abel [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ha : fract a ≠ 0 this : ↑⌈a⌉ = ↑⌊a⌋ + 1 ⊢ fract a = a + 1 - ↑⌈a⌉ [PROOFSTEP] rw [this, ← self_sub_fract] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ha : fract a ≠ 0 this : ↑⌈a⌉ = ↑⌊a⌋ + 1 ⊢ fract a = a + 1 - (a - fract a + 1) [PROOFSTEP] abel [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ha : fract a ≠ 0 this : ↑⌈a⌉ = ↑⌊a⌋ + 1 ⊢ fract a = a + 1 - (a - fract a + 1) [PROOFSTEP] abel [GOAL] case inr.h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ha : fract a ≠ 0 ⊢ ↑⌈a⌉ = ↑⌊a⌋ + 1 [PROOFSTEP] norm_cast [GOAL] case inr.h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ha : fract a ≠ 0 ⊢ ⌈a⌉ = ⌊a⌋ + 1 [PROOFSTEP] rw [ceil_eq_iff] [GOAL] case inr.h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ha : fract a ≠ 0 ⊢ ↑(⌊a⌋ + 1) - 1 < a ∧ a ≤ ↑(⌊a⌋ + 1) [PROOFSTEP] refine' ⟨_, _root_.le_of_lt <| by simp⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ha : fract a ≠ 0 ⊢ a < ↑(⌊a⌋ + 1) [PROOFSTEP] simp [GOAL] case inr.h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ha : fract a ≠ 0 ⊢ ↑(⌊a⌋ + 1) - 1 < a [PROOFSTEP] rw [cast_add, cast_one, add_tsub_cancel_right, ← self_sub_fract a, sub_lt_self_iff] [GOAL] case inr.h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a : α ha : fract a ≠ 0 ⊢ 0 < fract a [PROOFSTEP] exact ha.symm.lt_of_le (fract_nonneg a) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ha : fract a ≠ 0 ⊢ ↑⌈a⌉ = a + 1 - fract a [PROOFSTEP] rw [(or_iff_right ha).mp (fract_eq_zero_or_add_one_sub_ceil a)] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ha : fract a ≠ 0 ⊢ ↑⌈a⌉ = a + 1 - (a + 1 - ↑⌈a⌉) [PROOFSTEP] abel [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ha : fract a ≠ 0 ⊢ ↑⌈a⌉ = a + 1 - (a + 1 - ↑⌈a⌉) [PROOFSTEP] abel [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ha : fract a ≠ 0 ⊢ ↑⌈a⌉ - a = 1 - fract a [PROOFSTEP] rw [(or_iff_right ha).mp (fract_eq_zero_or_add_one_sub_ceil a)] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ha : fract a ≠ 0 ⊢ ↑⌈a⌉ - a = 1 - (a + 1 - ↑⌈a⌉) [PROOFSTEP] abel [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ha : fract a ≠ 0 ⊢ ↑⌈a⌉ - a = 1 - (a + 1 - ↑⌈a⌉) [PROOFSTEP] abel [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ Int.cast ⁻¹' Ioo a b = Ioo ⌊a⌋ ⌈b⌉ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α x✝ : ℤ ⊢ x✝ ∈ Int.cast ⁻¹' Ioo a b ↔ x✝ ∈ Ioo ⌊a⌋ ⌈b⌉ [PROOFSTEP] simp [floor_lt, lt_ceil] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ Int.cast ⁻¹' Ico a b = Ico ⌈a⌉ ⌈b⌉ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α x✝ : ℤ ⊢ x✝ ∈ Int.cast ⁻¹' Ico a b ↔ x✝ ∈ Ico ⌈a⌉ ⌈b⌉ [PROOFSTEP] simp [ceil_le, lt_ceil] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ Int.cast ⁻¹' Ioc a b = Ioc ⌊a⌋ ⌊b⌋ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α x✝ : ℤ ⊢ x✝ ∈ Int.cast ⁻¹' Ioc a b ↔ x✝ ∈ Ioc ⌊a⌋ ⌊b⌋ [PROOFSTEP] simp [floor_lt, le_floor] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α ⊢ Int.cast ⁻¹' Icc a b = Icc ⌈a⌉ ⌊b⌋ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a✝ a b : α x✝ : ℤ ⊢ x✝ ∈ Int.cast ⁻¹' Icc a b ↔ x✝ ∈ Icc ⌈a⌉ ⌊b⌋ [PROOFSTEP] simp [ceil_le, le_floor] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ Int.cast ⁻¹' Ioi a = Ioi ⌊a⌋ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α x✝ : ℤ ⊢ x✝ ∈ Int.cast ⁻¹' Ioi a ↔ x✝ ∈ Ioi ⌊a⌋ [PROOFSTEP] simp [floor_lt] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ Int.cast ⁻¹' Ici a = Ici ⌈a⌉ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α x✝ : ℤ ⊢ x✝ ∈ Int.cast ⁻¹' Ici a ↔ x✝ ∈ Ici ⌈a⌉ [PROOFSTEP] simp [ceil_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ Int.cast ⁻¹' Iio a = Iio ⌈a⌉ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α x✝ : ℤ ⊢ x✝ ∈ Int.cast ⁻¹' Iio a ↔ x✝ ∈ Iio ⌈a⌉ [PROOFSTEP] simp [lt_ceil] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ Int.cast ⁻¹' Iic a = Iic ⌊a⌋ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α x✝ : ℤ ⊢ x✝ ∈ Int.cast ⁻¹' Iic a ↔ x✝ ∈ Iic ⌊a⌋ [PROOFSTEP] simp [le_floor] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α ⊢ round 0 = 0 [PROOFSTEP] simp [round] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α ⊢ round 1 = 1 [PROOFSTEP] simp [round] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α n : ℕ ⊢ round ↑n = ↑n [PROOFSTEP] simp [round] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α n : ℤ ⊢ round ↑n = n [PROOFSTEP] simp [round] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α y : ℤ ⊢ round (x + ↑y) = round x + y [PROOFSTEP] rw [round, round, Int.fract_add_int, Int.floor_add_int, Int.ceil_add_int, ← apply_ite₂, ite_self] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α a : α ⊢ round (a + 1) = round a + 1 [PROOFSTEP] rw [← round_add_int a 1, cast_one] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α y : ℤ ⊢ round (x - ↑y) = round x - y [PROOFSTEP] rw [sub_eq_add_neg] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α y : ℤ ⊢ round (x + -↑y) = round x - y [PROOFSTEP] norm_cast [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α y : ℤ ⊢ round (x + ↑(-y)) = round x - y [PROOFSTEP] rw [round_add_int, sub_eq_add_neg] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α a : α ⊢ round (a - 1) = round a - 1 [PROOFSTEP] rw [← round_sub_int a 1, cast_one] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α y : ℕ ⊢ round (x + ↑y) = round x + ↑y [PROOFSTEP] exact_mod_cast round_add_int x y [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α y : ℕ ⊢ round (x - ↑y) = round x - ↑y [PROOFSTEP] exact_mod_cast round_sub_int x y [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α y : ℤ ⊢ round (↑y + x) = y + round x [PROOFSTEP] rw [add_comm, round_add_int, add_comm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α y : ℕ ⊢ round (↑y + x) = ↑y + round x [PROOFSTEP] rw [add_comm, round_add_nat, add_comm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α ⊢ |x - ↑(round x)| = min (fract x) (1 - fract x) [PROOFSTEP] simp_rw [round, min_def_lt, two_mul, ← lt_tsub_iff_left] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α ⊢ |x - ↑(if fract x < 1 - fract x then ⌊x⌋ else ⌈x⌉)| = if fract x < 1 - fract x then fract x else 1 - fract x [PROOFSTEP] cases' lt_or_ge (fract x) (1 - fract x) with hx hx [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α hx : fract x < 1 - fract x ⊢ |x - ↑(if fract x < 1 - fract x then ⌊x⌋ else ⌈x⌉)| = if fract x < 1 - fract x then fract x else 1 - fract x [PROOFSTEP] rw [if_pos hx, if_pos hx, self_sub_floor, abs_fract] [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α hx : fract x ≥ 1 - fract x ⊢ |x - ↑(if fract x < 1 - fract x then ⌊x⌋ else ⌈x⌉)| = if fract x < 1 - fract x then fract x else 1 - fract x [PROOFSTEP] have : 0 < fract x := by replace hx : 0 < fract x + fract x := lt_of_lt_of_le zero_lt_one (tsub_le_iff_left.mp hx) simpa only [← two_mul, zero_lt_mul_left, zero_lt_two] using hx [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α hx : fract x ≥ 1 - fract x ⊢ 0 < fract x [PROOFSTEP] replace hx : 0 < fract x + fract x := lt_of_lt_of_le zero_lt_one (tsub_le_iff_left.mp hx) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α hx : 0 < fract x + fract x ⊢ 0 < fract x [PROOFSTEP] simpa only [← two_mul, zero_lt_mul_left, zero_lt_two] using hx [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α hx : fract x ≥ 1 - fract x this : 0 < fract x ⊢ |x - ↑(if fract x < 1 - fract x then ⌊x⌋ else ⌈x⌉)| = if fract x < 1 - fract x then fract x else 1 - fract x [PROOFSTEP] rw [if_neg (not_lt.mpr hx), if_neg (not_lt.mpr hx), abs_sub_comm, ceil_sub_self_eq this.ne.symm, abs_one_sub_fract] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ ⊢ |x - ↑(round x)| ≤ |x - ↑z| [PROOFSTEP] rw [abs_sub_round_eq_min, min_le_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ ⊢ fract x ≤ |x - ↑z| ∨ 1 - fract x ≤ |x - ↑z| [PROOFSTEP] rcases le_or_lt (z : α) x with (hx | hx) <;> [left; right] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ ⊢ fract x ≤ |x - ↑z| ∨ 1 - fract x ≤ |x - ↑z| [PROOFSTEP] rcases le_or_lt (z : α) x with (hx | hx) [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : ↑z ≤ x ⊢ fract x ≤ |x - ↑z| ∨ 1 - fract x ≤ |x - ↑z| [PROOFSTEP] left [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : x < ↑z ⊢ fract x ≤ |x - ↑z| ∨ 1 - fract x ≤ |x - ↑z| [PROOFSTEP] right [GOAL] case inl.h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : ↑z ≤ x ⊢ fract x ≤ |x - ↑z| [PROOFSTEP] conv_rhs => rw [abs_eq_self.mpr (sub_nonneg.mpr hx), ← fract_add_floor x, add_sub_assoc] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : ↑z ≤ x | |x - ↑z| [PROOFSTEP] rw [abs_eq_self.mpr (sub_nonneg.mpr hx), ← fract_add_floor x, add_sub_assoc] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : ↑z ≤ x | |x - ↑z| [PROOFSTEP] rw [abs_eq_self.mpr (sub_nonneg.mpr hx), ← fract_add_floor x, add_sub_assoc] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : ↑z ≤ x | |x - ↑z| [PROOFSTEP] rw [abs_eq_self.mpr (sub_nonneg.mpr hx), ← fract_add_floor x, add_sub_assoc] [GOAL] case inl.h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : ↑z ≤ x ⊢ fract x ≤ fract x + (↑⌊x⌋ - ↑z) [PROOFSTEP] simpa only [le_add_iff_nonneg_right, sub_nonneg, cast_le] using le_floor.mpr hx [GOAL] case inr.h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : x < ↑z ⊢ 1 - fract x ≤ |x - ↑z| [PROOFSTEP] rw [abs_eq_neg_self.mpr (sub_neg.mpr hx).le] [GOAL] case inr.h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : x < ↑z ⊢ 1 - fract x ≤ -(x - ↑z) [PROOFSTEP] conv_rhs => rw [← fract_add_floor x] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : x < ↑z | -(x - ↑z) [PROOFSTEP] rw [← fract_add_floor x] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : x < ↑z | -(x - ↑z) [PROOFSTEP] rw [← fract_add_floor x] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : x < ↑z | -(x - ↑z) [PROOFSTEP] rw [← fract_add_floor x] [GOAL] case inr.h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : x < ↑z ⊢ 1 - fract x ≤ -(fract x + ↑⌊x⌋ - ↑z) [PROOFSTEP] rw [add_sub_assoc, add_comm, neg_add, neg_sub, le_add_neg_iff_add_le, sub_add_cancel, le_sub_comm] [GOAL] case inr.h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : x < ↑z ⊢ ↑⌊x⌋ ≤ ↑z - 1 [PROOFSTEP] norm_cast [GOAL] case inr.h F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α z : ℤ hx : x < ↑z ⊢ ⌊x⌋ ≤ z - 1 [PROOFSTEP] exact floor_le_sub_one_iff.mpr hx [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α ⊢ round x = ⌊x + 1 / 2⌋ [PROOFSTEP] simp_rw [round, (by simp only [lt_div_iff', two_pos] : 2 * fract x < 1 ↔ fract x < 1 / 2)] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α ⊢ 2 * fract x < 1 ↔ fract x < 1 / 2 [PROOFSTEP] simp only [lt_div_iff', two_pos] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α ⊢ (if fract x < 1 / 2 then ⌊x⌋ else ⌈x⌉) = ⌊x + 1 / 2⌋ [PROOFSTEP] cases' lt_or_le (fract x) (1 / 2) with hx hx [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : fract x < 1 / 2 ⊢ (if fract x < 1 / 2 then ⌊x⌋ else ⌈x⌉) = ⌊x + 1 / 2⌋ [PROOFSTEP] conv_rhs => rw [← fract_add_floor x, add_assoc, add_left_comm, floor_int_add] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : fract x < 1 / 2 | ⌊x + 1 / 2⌋ [PROOFSTEP] rw [← fract_add_floor x, add_assoc, add_left_comm, floor_int_add] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : fract x < 1 / 2 | ⌊x + 1 / 2⌋ [PROOFSTEP] rw [← fract_add_floor x, add_assoc, add_left_comm, floor_int_add] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : fract x < 1 / 2 | ⌊x + 1 / 2⌋ [PROOFSTEP] rw [← fract_add_floor x, add_assoc, add_left_comm, floor_int_add] [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : fract x < 1 / 2 ⊢ (if fract x < 1 / 2 then ⌊x⌋ else ⌈x⌉) = ⌊x⌋ + ⌊fract x + 1 / 2⌋ [PROOFSTEP] rw [if_pos hx, self_eq_add_right, floor_eq_iff, cast_zero, zero_add] [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : fract x < 1 / 2 ⊢ 0 ≤ fract x + 1 / 2 ∧ fract x + 1 / 2 < 1 [PROOFSTEP] constructor [GOAL] case inl.left F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : fract x < 1 / 2 ⊢ 0 ≤ fract x + 1 / 2 [PROOFSTEP] linarith [fract_nonneg x] [GOAL] case inl.right F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : fract x < 1 / 2 ⊢ fract x + 1 / 2 < 1 [PROOFSTEP] linarith [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : 1 / 2 ≤ fract x ⊢ (if fract x < 1 / 2 then ⌊x⌋ else ⌈x⌉) = ⌊x + 1 / 2⌋ [PROOFSTEP] have : ⌊fract x + 1 / 2⌋ = 1 := by rw [floor_eq_iff] constructor · norm_num linarith · norm_num linarith [fract_lt_one x] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : 1 / 2 ≤ fract x ⊢ ⌊fract x + 1 / 2⌋ = 1 [PROOFSTEP] rw [floor_eq_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : 1 / 2 ≤ fract x ⊢ ↑1 ≤ fract x + 1 / 2 ∧ fract x + 1 / 2 < ↑1 + 1 [PROOFSTEP] constructor [GOAL] case left F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : 1 / 2 ≤ fract x ⊢ ↑1 ≤ fract x + 1 / 2 [PROOFSTEP] norm_num [GOAL] case left F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : 1 / 2 ≤ fract x ⊢ 1 ≤ fract x + 1 / 2 [PROOFSTEP] linarith [GOAL] case right F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : 1 / 2 ≤ fract x ⊢ fract x + 1 / 2 < ↑1 + 1 [PROOFSTEP] norm_num [GOAL] case right F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : 1 / 2 ≤ fract x ⊢ fract x + 1 / 2 < 2 [PROOFSTEP] linarith [fract_lt_one x] [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : 1 / 2 ≤ fract x this : ⌊fract x + 1 / 2⌋ = 1 ⊢ (if fract x < 1 / 2 then ⌊x⌋ else ⌈x⌉) = ⌊x + 1 / 2⌋ [PROOFSTEP] rw [if_neg (not_lt.mpr hx), ← fract_add_floor x, add_assoc, add_left_comm, floor_int_add, ceil_add_int, add_comm _ ⌊x⌋, add_right_inj, ceil_eq_iff, this, cast_one, sub_self] [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : 1 / 2 ≤ fract x this : ⌊fract x + 1 / 2⌋ = 1 ⊢ 0 < fract x ∧ fract x ≤ 1 [PROOFSTEP] constructor [GOAL] case inr.left F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : 1 / 2 ≤ fract x this : ⌊fract x + 1 / 2⌋ = 1 ⊢ 0 < fract x [PROOFSTEP] linarith [GOAL] case inr.right F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α hx : 1 / 2 ≤ fract x this : ⌊fract x + 1 / 2⌋ = 1 ⊢ fract x ≤ 1 [PROOFSTEP] linarith [fract_lt_one x] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α ⊢ round 2⁻¹ = 1 [PROOFSTEP] simp only [round_eq, ← one_div, add_halves', floor_one] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α ⊢ round (-2⁻¹) = 0 [PROOFSTEP] simp only [round_eq, ← one_div, add_left_neg, floor_zero] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α ⊢ round x = 0 ↔ x ∈ Ico (-(1 / 2)) (1 / 2) [PROOFSTEP] rw [round_eq, floor_eq_zero_iff, add_mem_Ico_iff_left] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α ⊢ x ∈ Ico (0 - 1 / 2) (1 - 1 / 2) ↔ x ∈ Ico (-(1 / 2)) (1 / 2) [PROOFSTEP] norm_num [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α ⊢ |x - ↑(round x)| ≤ 1 / 2 [PROOFSTEP] rw [round_eq, abs_sub_le_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α ⊢ x - ↑⌊x + 1 / 2⌋ ≤ 1 / 2 ∧ ↑⌊x + 1 / 2⌋ - x ≤ 1 / 2 [PROOFSTEP] have := floor_le (x + 1 / 2) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α this : ↑⌊x + 1 / 2⌋ ≤ x + 1 / 2 ⊢ x - ↑⌊x + 1 / 2⌋ ≤ 1 / 2 ∧ ↑⌊x + 1 / 2⌋ - x ≤ 1 / 2 [PROOFSTEP] have := lt_floor_add_one (x + 1 / 2) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α this✝ : ↑⌊x + 1 / 2⌋ ≤ x + 1 / 2 this : x + 1 / 2 < ↑⌊x + 1 / 2⌋ + 1 ⊢ x - ↑⌊x + 1 / 2⌋ ≤ 1 / 2 ∧ ↑⌊x + 1 / 2⌋ - x ≤ 1 / 2 [PROOFSTEP] constructor [GOAL] case left F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α this✝ : ↑⌊x + 1 / 2⌋ ≤ x + 1 / 2 this : x + 1 / 2 < ↑⌊x + 1 / 2⌋ + 1 ⊢ x - ↑⌊x + 1 / 2⌋ ≤ 1 / 2 [PROOFSTEP] linarith [GOAL] case right F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α x : α this✝ : ↑⌊x + 1 / 2⌋ ≤ x + 1 / 2 this : x + 1 / 2 < ↑⌊x + 1 / 2⌋ + 1 ⊢ ↑⌊x + 1 / 2⌋ - x ≤ 1 / 2 [PROOFSTEP] linarith [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α m n : ℕ ⊢ |↑m / ↑n - ↑(round (↑m / ↑n))| = ↑(min (m % n) (n - m % n)) / ↑n [PROOFSTEP] rcases n.eq_zero_or_pos with (rfl | hn) [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α m : ℕ ⊢ |↑m / ↑0 - ↑(round (↑m / ↑0))| = ↑(min (m % 0) (0 - m % 0)) / ↑0 [PROOFSTEP] simp [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α m n : ℕ hn : n > 0 ⊢ |↑m / ↑n - ↑(round (↑m / ↑n))| = ↑(min (m % n) (n - m % n)) / ↑n [PROOFSTEP] have hn' : 0 < (n : α) := by norm_cast [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α m n : ℕ hn : n > 0 ⊢ 0 < ↑n [PROOFSTEP] norm_cast [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α m n : ℕ hn : n > 0 hn' : 0 < ↑n ⊢ |↑m / ↑n - ↑(round (↑m / ↑n))| = ↑(min (m % n) (n - m % n)) / ↑n [PROOFSTEP] rw [abs_sub_round_eq_min, Nat.cast_min, ← min_div_div_right hn'.le, fract_div_natCast_eq_div_natCast_mod, Nat.cast_sub (m.mod_lt hn).le, sub_div, div_self hn'.ne'] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : LinearOrderedSemiring β inst✝² : FloorSemiring α inst✝¹ : FloorSemiring β inst✝ : RingHomClass F α β a : α b : β h : ∀ (n : ℕ), ↑n ≤ a ↔ ↑n ≤ b ⊢ ⌊a⌋₊ = ⌊b⌋₊ [PROOFSTEP] have h₀ : 0 ≤ a ↔ 0 ≤ b := by simpa only [cast_zero] using h 0 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : LinearOrderedSemiring β inst✝² : FloorSemiring α inst✝¹ : FloorSemiring β inst✝ : RingHomClass F α β a : α b : β h : ∀ (n : ℕ), ↑n ≤ a ↔ ↑n ≤ b ⊢ 0 ≤ a ↔ 0 ≤ b [PROOFSTEP] simpa only [cast_zero] using h 0 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : LinearOrderedSemiring β inst✝² : FloorSemiring α inst✝¹ : FloorSemiring β inst✝ : RingHomClass F α β a : α b : β h : ∀ (n : ℕ), ↑n ≤ a ↔ ↑n ≤ b h₀ : 0 ≤ a ↔ 0 ≤ b ⊢ ⌊a⌋₊ = ⌊b⌋₊ [PROOFSTEP] obtain ha | ha := lt_or_le a 0 [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : LinearOrderedSemiring β inst✝² : FloorSemiring α inst✝¹ : FloorSemiring β inst✝ : RingHomClass F α β a : α b : β h : ∀ (n : ℕ), ↑n ≤ a ↔ ↑n ≤ b h₀ : 0 ≤ a ↔ 0 ≤ b ha : a < 0 ⊢ ⌊a⌋₊ = ⌊b⌋₊ [PROOFSTEP] rw [floor_of_nonpos ha.le, floor_of_nonpos (le_of_not_le <| h₀.not.mp ha.not_le)] [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : LinearOrderedSemiring β inst✝² : FloorSemiring α inst✝¹ : FloorSemiring β inst✝ : RingHomClass F α β a : α b : β h : ∀ (n : ℕ), ↑n ≤ a ↔ ↑n ≤ b h₀ : 0 ≤ a ↔ 0 ≤ b ha : 0 ≤ a ⊢ ⌊a⌋₊ = ⌊b⌋₊ [PROOFSTEP] exact (le_floor <| (h _).1 <| floor_le ha).antisymm (le_floor <| (h _).2 <| floor_le <| h₀.1 ha) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : LinearOrderedSemiring β inst✝² : FloorSemiring α inst✝¹ : FloorSemiring β inst✝ : RingHomClass F α β a✝ : α b : β f : F hf : StrictMono ↑f a : α n : ℕ ⊢ ↑n ≤ ↑f a ↔ ↑n ≤ a [PROOFSTEP] rw [← map_natCast f, hf.le_iff_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : LinearOrderedSemiring β inst✝² : FloorSemiring α inst✝¹ : FloorSemiring β inst✝ : RingHomClass F α β a✝ : α b : β f : F hf : StrictMono ↑f a : α n : ℕ ⊢ ↑f a ≤ ↑n ↔ a ≤ ↑n [PROOFSTEP] rw [← map_natCast f, hf.le_iff_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : LinearOrderedRing β inst✝² : FloorRing α inst✝¹ : FloorRing β inst✝ : RingHomClass F α β a✝ : α b : β f : F hf : StrictMono ↑f a : α n : ℤ ⊢ ↑n ≤ ↑f a ↔ ↑n ≤ a [PROOFSTEP] rw [← map_intCast f, hf.le_iff_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : LinearOrderedRing β inst✝² : FloorRing α inst✝¹ : FloorRing β inst✝ : RingHomClass F α β a✝ : α b : β f : F hf : StrictMono ↑f a : α n : ℤ ⊢ ↑f a ≤ ↑n ↔ a ≤ ↑n [PROOFSTEP] rw [← map_intCast f, hf.le_iff_le] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedRing α inst✝³ : LinearOrderedRing β inst✝² : FloorRing α inst✝¹ : FloorRing β inst✝ : RingHomClass F α β a✝ : α b : β f : F hf : StrictMono ↑f a : α ⊢ fract (↑f a) = ↑f (fract a) [PROOFSTEP] simp_rw [fract, map_sub, map_intCast, map_floor _ hf] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedField α inst✝³ : LinearOrderedField β inst✝² : FloorRing α inst✝¹ : FloorRing β inst✝ : RingHomClass F α β a✝ : α b : β f : F hf : StrictMono ↑f a : α ⊢ round (↑f a) = round a [PROOFSTEP] have H : f 2 = 2 := map_natCast f 2 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedField α inst✝³ : LinearOrderedField β inst✝² : FloorRing α inst✝¹ : FloorRing β inst✝ : RingHomClass F α β a✝ : α b : β f : F hf : StrictMono ↑f a : α H : ↑f 2 = 2 ⊢ round (↑f a) = round a [PROOFSTEP] simp_rw [round_eq, ← map_floor _ hf, map_add, one_div, map_inv₀, H] -- Porting note: was -- simp_rw [round_eq, ← map_floor _ hf, map_add, one_div, map_inv₀, map_bit0, map_one] -- Would have thought that `map_natCast` would replace `map_bit0, map_one` but seems not [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α a : α n : ℕ ha : 0 ≤ a ⊢ n ≤ (fun a => toNat ⌊a⌋) a ↔ ↑n ≤ a [PROOFSTEP] rw [Int.le_toNat (Int.floor_nonneg.2 ha), Int.le_floor, Int.cast_ofNat] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α a : α n : ℕ ⊢ (fun a => toNat ⌈a⌉) a ≤ n ↔ a ≤ ↑n [PROOFSTEP] rw [Int.toNat_le, Int.ceil_le, Int.cast_ofNat] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α a : α ha : 0 ≤ a ⊢ ↑⌊a⌋₊ = ⌊a⌋ [PROOFSTEP] rw [← Int.floor_toNat, Int.toNat_of_nonneg (Int.floor_nonneg.2 ha)] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α a : α ha : 0 ≤ a ⊢ ↑⌊a⌋₊ = ↑⌊a⌋ [PROOFSTEP] rw [← Nat.cast_floor_eq_int_floor ha, Int.cast_ofNat] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α a : α ha : 0 ≤ a ⊢ ↑⌈a⌉₊ = ⌈a⌉ [PROOFSTEP] rw [← Int.ceil_toNat, Int.toNat_of_nonneg (Int.ceil_nonneg ha)] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α a : α ha : 0 ≤ a ⊢ ↑⌈a⌉₊ = ↑⌈a⌉ [PROOFSTEP] rw [← Nat.cast_ceil_eq_int_ceil ha, Int.cast_ofNat] [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedRing α ⊢ Subsingleton (FloorRing α) [PROOFSTEP] refine' ⟨fun H₁ H₂ => _⟩ [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedRing α H₁ H₂ : FloorRing α ⊢ H₁ = H₂ [PROOFSTEP] have : H₁.floor = H₂.floor := funext fun a => (H₁.gc_coe_floor.u_unique H₂.gc_coe_floor) fun _ => rfl [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedRing α H₁ H₂ : FloorRing α this : FloorRing.floor = FloorRing.floor ⊢ H₁ = H₂ [PROOFSTEP] have : H₁.ceil = H₂.ceil := funext fun a => (H₁.gc_ceil_coe.l_unique H₂.gc_ceil_coe) fun _ => rfl [GOAL] F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedRing α H₁ H₂ : FloorRing α this✝ : FloorRing.floor = FloorRing.floor this : FloorRing.ceil = FloorRing.ceil ⊢ H₁ = H₂ [PROOFSTEP] cases H₁ [GOAL] case mk F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedRing α H₂ : FloorRing α floor✝ ceil✝ : α → ℤ gc_coe_floor✝ : GaloisConnection Int.cast floor✝ gc_ceil_coe✝ : GaloisConnection ceil✝ Int.cast this✝ : FloorRing.floor = FloorRing.floor this : FloorRing.ceil = FloorRing.ceil ⊢ { floor := floor✝, ceil := ceil✝, gc_coe_floor := gc_coe_floor✝, gc_ceil_coe := gc_ceil_coe✝ } = H₂ [PROOFSTEP] cases H₂ [GOAL] case mk.mk F : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 inst✝ : LinearOrderedRing α floor✝¹ ceil✝¹ : α → ℤ gc_coe_floor✝¹ : GaloisConnection Int.cast floor✝¹ gc_ceil_coe✝¹ : GaloisConnection ceil✝¹ Int.cast floor✝ ceil✝ : α → ℤ gc_coe_floor✝ : GaloisConnection Int.cast floor✝ gc_ceil_coe✝ : GaloisConnection ceil✝ Int.cast this✝ : FloorRing.floor = FloorRing.floor this : FloorRing.ceil = FloorRing.ceil ⊢ { floor := floor✝¹, ceil := ceil✝¹, gc_coe_floor := gc_coe_floor✝¹, gc_ceil_coe := gc_ceil_coe✝¹ } = { floor := floor✝, ceil := ceil✝, gc_coe_floor := gc_coe_floor✝, gc_ceil_coe := gc_ceil_coe✝ } [PROOFSTEP] congr
{"mathlib_filename": "Mathlib.Algebra.Order.Floor", "llama_tokens": 60693}
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Units", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Algebra.Order.Group.TypeTags", "llama_tokens": 0}
[GOAL] R : Type u_1 c₁ c₂ : R f : Fin 4 → R ⊢ (fun a => ![a.re, a.imI, a.imJ, a.imK]) ((fun a => { re := a 0, imI := a 1, imJ := a 2, imK := a 3 }) f) = f [PROOFSTEP] ext ⟨_, _ | _ | _ | _ | _ | ⟨⟩⟩ [GOAL] case h.mk.refl R : Type u_1 c₁ c₂ : R f : Fin 4 → R ⊢ (fun a => ![a.re, a.imI, a.imJ, a.imK]) ((fun a => { re := a 0, imI := a 1, imJ := a 2, imK := a 3 }) f) { val := 3, isLt := (_ : Nat.le (Nat.succ 3) (Nat.succ 3)) } = f { val := 3, isLt := (_ : Nat.le (Nat.succ 3) (Nat.succ 3)) } [PROOFSTEP] rfl [GOAL] case h.mk.step.refl R : Type u_1 c₁ c₂ : R f : Fin 4 → R ⊢ (fun a => ![a.re, a.imI, a.imJ, a.imK]) ((fun a => { re := a 0, imI := a 1, imJ := a 2, imK := a 3 }) f) { val := 2, isLt := (_ : Nat.le (Nat.succ 2) (Nat.succ 3)) } = f { val := 2, isLt := (_ : Nat.le (Nat.succ 2) (Nat.succ 3)) } [PROOFSTEP] rfl [GOAL] case h.mk.step.step.refl R : Type u_1 c₁ c₂ : R f : Fin 4 → R ⊢ (fun a => ![a.re, a.imI, a.imJ, a.imK]) ((fun a => { re := a 0, imI := a 1, imJ := a 2, imK := a 3 }) f) { val := 1, isLt := (_ : Nat.le (Nat.succ 1) (Nat.succ 3)) } = f { val := 1, isLt := (_ : Nat.le (Nat.succ 1) (Nat.succ 3)) } [PROOFSTEP] rfl [GOAL] case h.mk.step.step.step.refl R : Type u_1 c₁ c₂ : R f : Fin 4 → R ⊢ (fun a => ![a.re, a.imI, a.imJ, a.imK]) ((fun a => { re := a 0, imI := a 1, imJ := a 2, imK := a 3 }) f) { val := 0, isLt := (_ : Nat.le (Nat.succ 0) (Nat.succ 3)) } = f { val := 0, isLt := (_ : Nat.le (Nat.succ 0) (Nat.succ 3)) } [PROOFSTEP] rfl [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ ↑(x + y) = ↑x + ↑y [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (↑(x + y)).re = (↑x + ↑y).re [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (↑(x + y)).imI = (↑x + ↑y).imI [PROOFSTEP] simp [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (↑(x + y)).imJ = (↑x + ↑y).imJ [PROOFSTEP] simp [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (↑(x + y)).imK = (↑x + ↑y).imK [PROOFSTEP] simp [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ ↑(-x) = -↑x [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (↑(-x)).re = (-↑x).re [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (↑(-x)).imI = (-↑x).imI [PROOFSTEP] simp [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (↑(-x)).imJ = (-↑x).imJ [PROOFSTEP] simp [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (↑(-x)).imK = (-↑x).imK [PROOFSTEP] simp [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝⁴ : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝³ : SMul S R inst✝² : SMul T R s✝ : S inst✝¹ : SMul S T inst✝ : IsScalarTower S T R s : S t : T x : ℍ[R,c₁,c₂] ⊢ (s • t) • x = s • t • x [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝⁴ : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝³ : SMul S R inst✝² : SMul T R s✝ : S inst✝¹ : SMul S T inst✝ : IsScalarTower S T R s : S t : T x : ℍ[R,c₁,c₂] ⊢ ((s • t) • x).re = (s • t • x).re [PROOFSTEP] exact smul_assoc _ _ _ [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝⁴ : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝³ : SMul S R inst✝² : SMul T R s✝ : S inst✝¹ : SMul S T inst✝ : IsScalarTower S T R s : S t : T x : ℍ[R,c₁,c₂] ⊢ ((s • t) • x).imI = (s • t • x).imI [PROOFSTEP] exact smul_assoc _ _ _ [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝⁴ : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝³ : SMul S R inst✝² : SMul T R s✝ : S inst✝¹ : SMul S T inst✝ : IsScalarTower S T R s : S t : T x : ℍ[R,c₁,c₂] ⊢ ((s • t) • x).imJ = (s • t • x).imJ [PROOFSTEP] exact smul_assoc _ _ _ [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝⁴ : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝³ : SMul S R inst✝² : SMul T R s✝ : S inst✝¹ : SMul S T inst✝ : IsScalarTower S T R s : S t : T x : ℍ[R,c₁,c₂] ⊢ ((s • t) • x).imK = (s • t • x).imK [PROOFSTEP] exact smul_assoc _ _ _ [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝³ : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝² : SMul S R inst✝¹ : SMul T R s✝ : S inst✝ : SMulCommClass S T R s : S t : T x : ℍ[R,c₁,c₂] ⊢ s • t • x = t • s • x [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝³ : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝² : SMul S R inst✝¹ : SMul T R s✝ : S inst✝ : SMulCommClass S T R s : S t : T x : ℍ[R,c₁,c₂] ⊢ (s • t • x).re = (t • s • x).re [PROOFSTEP] exact smul_comm _ _ _ [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝³ : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝² : SMul S R inst✝¹ : SMul T R s✝ : S inst✝ : SMulCommClass S T R s : S t : T x : ℍ[R,c₁,c₂] ⊢ (s • t • x).imI = (t • s • x).imI [PROOFSTEP] exact smul_comm _ _ _ [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝³ : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝² : SMul S R inst✝¹ : SMul T R s✝ : S inst✝ : SMulCommClass S T R s : S t : T x : ℍ[R,c₁,c₂] ⊢ (s • t • x).imJ = (t • s • x).imJ [PROOFSTEP] exact smul_comm _ _ _ [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝³ : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝² : SMul S R inst✝¹ : SMul T R s✝ : S inst✝ : SMulCommClass S T R s : S t : T x : ℍ[R,c₁,c₂] ⊢ (s • t • x).imK = (t • s • x).imK [PROOFSTEP] exact smul_comm _ _ _ [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ NatCast.natCast 0 = 0 [PROOFSTEP] simp [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1 [PROOFSTEP] simp [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] n : ℕ ⊢ IntCast.intCast (Int.negSucc n) = -↑(n + 1) [PROOFSTEP] change coe _ = -coe _ [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] n : ℕ ⊢ ↑↑(Int.negSucc n) = -↑↑(n + 1) [PROOFSTEP] rw [Int.cast_negSucc, coe_neg] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ x✝² * (x✝¹ + x✝) = x✝² * x✝¹ + x✝² * x✝ [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝² * (x✝¹ + x✝)).re = (x✝² * x✝¹ + x✝² * x✝).re [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝² * (x✝¹ + x✝)).imI = (x✝² * x✝¹ + x✝² * x✝).imI [PROOFSTEP] simp [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝² * (x✝¹ + x✝)).imJ = (x✝² * x✝¹ + x✝² * x✝).imJ [PROOFSTEP] simp [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝² * (x✝¹ + x✝)).imK = (x✝² * x✝¹ + x✝² * x✝).imK [PROOFSTEP] simp [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ x✝².re * (x✝¹.re + x✝.re) + c₁ * x✝².imI * (x✝¹.imI + x✝.imI) + c₂ * x✝².imJ * (x✝¹.imJ + x✝.imJ) - c₁ * c₂ * x✝².imK * (x✝¹.imK + x✝.imK) = x✝².re * x✝¹.re + c₁ * x✝².imI * x✝¹.imI + c₂ * x✝².imJ * x✝¹.imJ - c₁ * c₂ * x✝².imK * x✝¹.imK + (x✝².re * x✝.re + c₁ * x✝².imI * x✝.imI + c₂ * x✝².imJ * x✝.imJ - c₁ * c₂ * x✝².imK * x✝.imK) [PROOFSTEP] ring [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ x✝².re * (x✝¹.imI + x✝.imI) + x✝².imI * (x✝¹.re + x✝.re) - c₂ * x✝².imJ * (x✝¹.imK + x✝.imK) + c₂ * x✝².imK * (x✝¹.imJ + x✝.imJ) = x✝².re * x✝¹.imI + x✝².imI * x✝¹.re - c₂ * x✝².imJ * x✝¹.imK + c₂ * x✝².imK * x✝¹.imJ + (x✝².re * x✝.imI + x✝².imI * x✝.re - c₂ * x✝².imJ * x✝.imK + c₂ * x✝².imK * x✝.imJ) [PROOFSTEP] ring [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ x✝².re * (x✝¹.imJ + x✝.imJ) + c₁ * x✝².imI * (x✝¹.imK + x✝.imK) + x✝².imJ * (x✝¹.re + x✝.re) - c₁ * x✝².imK * (x✝¹.imI + x✝.imI) = x✝².re * x✝¹.imJ + c₁ * x✝².imI * x✝¹.imK + x✝².imJ * x✝¹.re - c₁ * x✝².imK * x✝¹.imI + (x✝².re * x✝.imJ + c₁ * x✝².imI * x✝.imK + x✝².imJ * x✝.re - c₁ * x✝².imK * x✝.imI) [PROOFSTEP] ring [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ x✝².re * (x✝¹.imK + x✝.imK) + x✝².imI * (x✝¹.imJ + x✝.imJ) - x✝².imJ * (x✝¹.imI + x✝.imI) + x✝².imK * (x✝¹.re + x✝.re) = x✝².re * x✝¹.imK + x✝².imI * x✝¹.imJ - x✝².imJ * x✝¹.imI + x✝².imK * x✝¹.re + (x✝².re * x✝.imK + x✝².imI * x✝.imJ - x✝².imJ * x✝.imI + x✝².imK * x✝.re) [PROOFSTEP] ring [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝² + x✝¹) * x✝ = x✝² * x✝ + x✝¹ * x✝ [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ ((x✝² + x✝¹) * x✝).re = (x✝² * x✝ + x✝¹ * x✝).re [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ ((x✝² + x✝¹) * x✝).imI = (x✝² * x✝ + x✝¹ * x✝).imI [PROOFSTEP] simp [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ ((x✝² + x✝¹) * x✝).imJ = (x✝² * x✝ + x✝¹ * x✝).imJ [PROOFSTEP] simp [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ ((x✝² + x✝¹) * x✝).imK = (x✝² * x✝ + x✝¹ * x✝).imK [PROOFSTEP] simp [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝².re + x✝¹.re) * x✝.re + c₁ * (x✝².imI + x✝¹.imI) * x✝.imI + c₂ * (x✝².imJ + x✝¹.imJ) * x✝.imJ - c₁ * c₂ * (x✝².imK + x✝¹.imK) * x✝.imK = x✝².re * x✝.re + c₁ * x✝².imI * x✝.imI + c₂ * x✝².imJ * x✝.imJ - c₁ * c₂ * x✝².imK * x✝.imK + (x✝¹.re * x✝.re + c₁ * x✝¹.imI * x✝.imI + c₂ * x✝¹.imJ * x✝.imJ - c₁ * c₂ * x✝¹.imK * x✝.imK) [PROOFSTEP] ring [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝².re + x✝¹.re) * x✝.imI + (x✝².imI + x✝¹.imI) * x✝.re - c₂ * (x✝².imJ + x✝¹.imJ) * x✝.imK + c₂ * (x✝².imK + x✝¹.imK) * x✝.imJ = x✝².re * x✝.imI + x✝².imI * x✝.re - c₂ * x✝².imJ * x✝.imK + c₂ * x✝².imK * x✝.imJ + (x✝¹.re * x✝.imI + x✝¹.imI * x✝.re - c₂ * x✝¹.imJ * x✝.imK + c₂ * x✝¹.imK * x✝.imJ) [PROOFSTEP] ring [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝².re + x✝¹.re) * x✝.imJ + c₁ * (x✝².imI + x✝¹.imI) * x✝.imK + (x✝².imJ + x✝¹.imJ) * x✝.re - c₁ * (x✝².imK + x✝¹.imK) * x✝.imI = x✝².re * x✝.imJ + c₁ * x✝².imI * x✝.imK + x✝².imJ * x✝.re - c₁ * x✝².imK * x✝.imI + (x✝¹.re * x✝.imJ + c₁ * x✝¹.imI * x✝.imK + x✝¹.imJ * x✝.re - c₁ * x✝¹.imK * x✝.imI) [PROOFSTEP] ring [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝².re + x✝¹.re) * x✝.imK + (x✝².imI + x✝¹.imI) * x✝.imJ - (x✝².imJ + x✝¹.imJ) * x✝.imI + (x✝².imK + x✝¹.imK) * x✝.re = x✝².re * x✝.imK + x✝².imI * x✝.imJ - x✝².imJ * x✝.imI + x✝².imK * x✝.re + (x✝¹.re * x✝.imK + x✝¹.imI * x✝.imJ - x✝¹.imJ * x✝.imI + x✝¹.imK * x✝.re) [PROOFSTEP] ring [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ 0 * x✝ = 0 [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (0 * x✝).re = 0.re [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (0 * x✝).imI = 0.imI [PROOFSTEP] simp [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (0 * x✝).imJ = 0.imJ [PROOFSTEP] simp [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (0 * x✝).imK = 0.imK [PROOFSTEP] simp [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ x✝ * 0 = 0 [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (x✝ * 0).re = 0.re [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (x✝ * 0).imI = 0.imI [PROOFSTEP] simp [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (x✝ * 0).imJ = 0.imJ [PROOFSTEP] simp [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (x✝ * 0).imK = 0.imK [PROOFSTEP] simp [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ x✝² * x✝¹ * x✝ = x✝² * (x✝¹ * x✝) [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝² * x✝¹ * x✝).re = (x✝² * (x✝¹ * x✝)).re [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝² * x✝¹ * x✝).imI = (x✝² * (x✝¹ * x✝)).imI [PROOFSTEP] simp [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝² * x✝¹ * x✝).imJ = (x✝² * (x✝¹ * x✝)).imJ [PROOFSTEP] simp [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝² * x✝¹ * x✝).imK = (x✝² * (x✝¹ * x✝)).imK [PROOFSTEP] simp [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝².re * x✝¹.re + c₁ * x✝².imI * x✝¹.imI + c₂ * x✝².imJ * x✝¹.imJ - c₁ * c₂ * x✝².imK * x✝¹.imK) * x✝.re + c₁ * (x✝².re * x✝¹.imI + x✝².imI * x✝¹.re - c₂ * x✝².imJ * x✝¹.imK + c₂ * x✝².imK * x✝¹.imJ) * x✝.imI + c₂ * (x✝².re * x✝¹.imJ + c₁ * x✝².imI * x✝¹.imK + x✝².imJ * x✝¹.re - c₁ * x✝².imK * x✝¹.imI) * x✝.imJ - c₁ * c₂ * (x✝².re * x✝¹.imK + x✝².imI * x✝¹.imJ - x✝².imJ * x✝¹.imI + x✝².imK * x✝¹.re) * x✝.imK = x✝².re * (x✝¹.re * x✝.re + c₁ * x✝¹.imI * x✝.imI + c₂ * x✝¹.imJ * x✝.imJ - c₁ * c₂ * x✝¹.imK * x✝.imK) + c₁ * x✝².imI * (x✝¹.re * x✝.imI + x✝¹.imI * x✝.re - c₂ * x✝¹.imJ * x✝.imK + c₂ * x✝¹.imK * x✝.imJ) + c₂ * x✝².imJ * (x✝¹.re * x✝.imJ + c₁ * x✝¹.imI * x✝.imK + x✝¹.imJ * x✝.re - c₁ * x✝¹.imK * x✝.imI) - c₁ * c₂ * x✝².imK * (x✝¹.re * x✝.imK + x✝¹.imI * x✝.imJ - x✝¹.imJ * x✝.imI + x✝¹.imK * x✝.re) [PROOFSTEP] ring [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝².re * x✝¹.re + c₁ * x✝².imI * x✝¹.imI + c₂ * x✝².imJ * x✝¹.imJ - c₁ * c₂ * x✝².imK * x✝¹.imK) * x✝.imI + (x✝².re * x✝¹.imI + x✝².imI * x✝¹.re - c₂ * x✝².imJ * x✝¹.imK + c₂ * x✝².imK * x✝¹.imJ) * x✝.re - c₂ * (x✝².re * x✝¹.imJ + c₁ * x✝².imI * x✝¹.imK + x✝².imJ * x✝¹.re - c₁ * x✝².imK * x✝¹.imI) * x✝.imK + c₂ * (x✝².re * x✝¹.imK + x✝².imI * x✝¹.imJ - x✝².imJ * x✝¹.imI + x✝².imK * x✝¹.re) * x✝.imJ = x✝².re * (x✝¹.re * x✝.imI + x✝¹.imI * x✝.re - c₂ * x✝¹.imJ * x✝.imK + c₂ * x✝¹.imK * x✝.imJ) + x✝².imI * (x✝¹.re * x✝.re + c₁ * x✝¹.imI * x✝.imI + c₂ * x✝¹.imJ * x✝.imJ - c₁ * c₂ * x✝¹.imK * x✝.imK) - c₂ * x✝².imJ * (x✝¹.re * x✝.imK + x✝¹.imI * x✝.imJ - x✝¹.imJ * x✝.imI + x✝¹.imK * x✝.re) + c₂ * x✝².imK * (x✝¹.re * x✝.imJ + c₁ * x✝¹.imI * x✝.imK + x✝¹.imJ * x✝.re - c₁ * x✝¹.imK * x✝.imI) [PROOFSTEP] ring [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝².re * x✝¹.re + c₁ * x✝².imI * x✝¹.imI + c₂ * x✝².imJ * x✝¹.imJ - c₁ * c₂ * x✝².imK * x✝¹.imK) * x✝.imJ + c₁ * (x✝².re * x✝¹.imI + x✝².imI * x✝¹.re - c₂ * x✝².imJ * x✝¹.imK + c₂ * x✝².imK * x✝¹.imJ) * x✝.imK + (x✝².re * x✝¹.imJ + c₁ * x✝².imI * x✝¹.imK + x✝².imJ * x✝¹.re - c₁ * x✝².imK * x✝¹.imI) * x✝.re - c₁ * (x✝².re * x✝¹.imK + x✝².imI * x✝¹.imJ - x✝².imJ * x✝¹.imI + x✝².imK * x✝¹.re) * x✝.imI = x✝².re * (x✝¹.re * x✝.imJ + c₁ * x✝¹.imI * x✝.imK + x✝¹.imJ * x✝.re - c₁ * x✝¹.imK * x✝.imI) + c₁ * x✝².imI * (x✝¹.re * x✝.imK + x✝¹.imI * x✝.imJ - x✝¹.imJ * x✝.imI + x✝¹.imK * x✝.re) + x✝².imJ * (x✝¹.re * x✝.re + c₁ * x✝¹.imI * x✝.imI + c₂ * x✝¹.imJ * x✝.imJ - c₁ * c₂ * x✝¹.imK * x✝.imK) - c₁ * x✝².imK * (x✝¹.re * x✝.imI + x✝¹.imI * x✝.re - c₂ * x✝¹.imJ * x✝.imK + c₂ * x✝¹.imK * x✝.imJ) [PROOFSTEP] ring [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝² x✝¹ x✝ : ℍ[R,c₁,c₂] ⊢ (x✝².re * x✝¹.re + c₁ * x✝².imI * x✝¹.imI + c₂ * x✝².imJ * x✝¹.imJ - c₁ * c₂ * x✝².imK * x✝¹.imK) * x✝.imK + (x✝².re * x✝¹.imI + x✝².imI * x✝¹.re - c₂ * x✝².imJ * x✝¹.imK + c₂ * x✝².imK * x✝¹.imJ) * x✝.imJ - (x✝².re * x✝¹.imJ + c₁ * x✝².imI * x✝¹.imK + x✝².imJ * x✝¹.re - c₁ * x✝².imK * x✝¹.imI) * x✝.imI + (x✝².re * x✝¹.imK + x✝².imI * x✝¹.imJ - x✝².imJ * x✝¹.imI + x✝².imK * x✝¹.re) * x✝.re = x✝².re * (x✝¹.re * x✝.imK + x✝¹.imI * x✝.imJ - x✝¹.imJ * x✝.imI + x✝¹.imK * x✝.re) + x✝².imI * (x✝¹.re * x✝.imJ + c₁ * x✝¹.imI * x✝.imK + x✝¹.imJ * x✝.re - c₁ * x✝¹.imK * x✝.imI) - x✝².imJ * (x✝¹.re * x✝.imI + x✝¹.imI * x✝.re - c₂ * x✝¹.imJ * x✝.imK + c₂ * x✝¹.imK * x✝.imJ) + x✝².imK * (x✝¹.re * x✝.re + c₁ * x✝¹.imI * x✝.imI + c₂ * x✝¹.imJ * x✝.imJ - c₁ * c₂ * x✝¹.imK * x✝.imK) [PROOFSTEP] ring [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ 1 * x✝ = x✝ [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (1 * x✝).re = x✝.re [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (1 * x✝).imI = x✝.imI [PROOFSTEP] simp [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (1 * x✝).imJ = x✝.imJ [PROOFSTEP] simp [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (1 * x✝).imK = x✝.imK [PROOFSTEP] simp [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ x✝ * 1 = x✝ [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (x✝ * 1).re = x✝.re [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (x✝ * 1).imI = x✝.imI [PROOFSTEP] simp [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (x✝ * 1).imJ = x✝.imJ [PROOFSTEP] simp [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂]) x✝ : ℍ[R,c₁,c₂] ⊢ (x✝ * 1).imK = x✝.imK [PROOFSTEP] simp [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ ↑(x * y) = ↑x * ↑y [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (↑(x * y)).re = (↑x * ↑y).re [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (↑(x * y)).imI = (↑x * ↑y).imI [PROOFSTEP] simp [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (↑(x * y)).imJ = (↑x * ↑y).imJ [PROOFSTEP] simp [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (↑(x * y)).imK = (↑x * ↑y).imK [PROOFSTEP] simp [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R ⊢ (fun s => ↑(↑(algebraMap S R) s)) 1 = 1 [PROOFSTEP] simp only [map_one, coe_one] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x✝ y✝ z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R x y : S ⊢ OneHom.toFun { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) } (x * y) = OneHom.toFun { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) } x * OneHom.toFun { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) } y [PROOFSTEP] simp only [map_mul, coe_mul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }) 0 = 0 [PROOFSTEP] simp only [map_zero, coe_zero] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x✝ y✝ z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R x y : S ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }) y [PROOFSTEP] simp only [map_add, coe_add] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S x : (fun x => ℍ[R,c₁,c₂]) s ⊢ ↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s * x = x * ↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S x : (fun x => ℍ[R,c₁,c₂]) s ⊢ (↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s * x).re = (x * ↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s).re [PROOFSTEP] simp [Algebra.commutes] [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S x : (fun x => ℍ[R,c₁,c₂]) s ⊢ (↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s * x).imI = (x * ↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s).imI [PROOFSTEP] simp [Algebra.commutes] [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S x : (fun x => ℍ[R,c₁,c₂]) s ⊢ (↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s * x).imJ = (x * ↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s).imJ [PROOFSTEP] simp [Algebra.commutes] [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S x : (fun x => ℍ[R,c₁,c₂]) s ⊢ (↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s * x).imK = (x * ↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s).imK [PROOFSTEP] simp [Algebra.commutes] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S x : (fun x => ℍ[R,c₁,c₂]) s ⊢ s • x = ↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s * x [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S x : (fun x => ℍ[R,c₁,c₂]) s ⊢ (s • x).re = (↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s * x).re [PROOFSTEP] simp [Algebra.smul_def] [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S x : (fun x => ℍ[R,c₁,c₂]) s ⊢ (s • x).imI = (↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s * x).imI [PROOFSTEP] simp [Algebra.smul_def] [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S x : (fun x => ℍ[R,c₁,c₂]) s ⊢ (s • x).imJ = (↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s * x).imJ [PROOFSTEP] simp [Algebra.smul_def] [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁ c₂ r x✝ y z : R a b c : ℍ[R,c₁,c₂] inst✝¹ : CommSemiring S inst✝ : Algebra S R s : S x : (fun x => ℍ[R,c₁,c₂]) s ⊢ (s • x).imK = (↑{ toMonoidHom := { toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) }, map_mul' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) }, map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0), map_add' := (_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) } s * x).imK [PROOFSTEP] simp [Algebra.smul_def] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝¹ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] inst✝ : StrongRankCondition R ⊢ Module.rank R ℍ[R,c₁,c₂] = 4 [PROOFSTEP] rw [rank_eq_card_basis (basisOneIJK c₁ c₂), Fintype.card_fin] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝¹ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] inst✝ : StrongRankCondition R ⊢ ↑4 = 4 [PROOFSTEP] norm_num [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝¹ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] inst✝ : StrongRankCondition R ⊢ FiniteDimensional.finrank R ℍ[R,c₁,c₂] = 4 [PROOFSTEP] rw [FiniteDimensional.finrank, rank_eq_four, Cardinal.toNat_ofNat] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ a * ↑r = r • a [PROOFSTEP] rw [← coe_commutes, coe_mul_eq_smul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ x • ↑y = ↑(x * y) [PROOFSTEP] rw [coe_mul, coe_mul_eq_smul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x✝ y z : R a b c x : ℍ[R,c₁,c₂] ⊢ star (star x) = x [PROOFSTEP] simp [Star.star] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ star (a * b) = star b * star a [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ (star (a * b)).re = (star b * star a).re [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ (star (a * b)).imI = (star b * star a).imI [PROOFSTEP] simp [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ (star (a * b)).imJ = (star b * star a).imJ [PROOFSTEP] simp [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ (star (a * b)).imK = (star b * star a).imK [PROOFSTEP] simp [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ a.re * b.re + c₁ * a.imI * b.imI + c₂ * a.imJ * b.imJ - c₁ * c₂ * a.imK * b.imK = b.re * a.re + c₁ * b.imI * a.imI + c₂ * b.imJ * a.imJ - c₁ * c₂ * b.imK * a.imK [PROOFSTEP] ring [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ -(c₂ * a.imK * b.imJ) + (c₂ * a.imJ * b.imK - (a.re * b.imI + a.imI * b.re)) = -(b.re * a.imI) + -(b.imI * a.re) - c₂ * b.imJ * a.imK + c₂ * b.imK * a.imJ [PROOFSTEP] ring [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ c₁ * a.imK * b.imI - (a.re * b.imJ + c₁ * a.imI * b.imK + a.imJ * b.re) = -(b.re * a.imJ) + c₁ * b.imI * a.imK + -(b.imJ * a.re) - c₁ * b.imK * a.imI [PROOFSTEP] ring [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ -(a.imK * b.re) + (a.imJ * b.imI - (a.re * b.imK + a.imI * b.imJ)) = -(b.re * a.imK) + b.imI * a.imJ - b.imJ * a.imI + -(b.imK * a.re) [PROOFSTEP] ring [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ star (a + b) = star a + star b [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ (star (a + b)).re = (star a + star b).re [PROOFSTEP] simp [add_comm] [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ (star (a + b)).imI = (star a + star b).imI [PROOFSTEP] simp [add_comm] [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ (star (a + b)).imJ = (star a + star b).imJ [PROOFSTEP] simp [add_comm] [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a✝ b✝ c a b : ℍ[R,c₁,c₂] ⊢ (star (a + b)).imK = (star a + star b).imK [PROOFSTEP] simp [add_comm] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ a + star a = ↑(2 * a.re) [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (a + star a).re = (↑(2 * a.re)).re [PROOFSTEP] simp [two_mul] [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (a + star a).imI = (↑(2 * a.re)).imI [PROOFSTEP] simp [two_mul] [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (a + star a).imJ = (↑(2 * a.re)).imJ [PROOFSTEP] simp [two_mul] [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (a + star a).imK = (↑(2 * a.re)).imK [PROOFSTEP] simp [two_mul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ a + star a = 2 * ↑a.re [PROOFSTEP] simp only [self_add_star', two_mul, coe_add] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ star a + a = ↑(2 * a.re) [PROOFSTEP] rw [add_comm, self_add_star'] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ star a + a = 2 * ↑a.re [PROOFSTEP] rw [add_comm, self_add_star] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ Commute (star a) a [PROOFSTEP] rw [a.star_eq_two_re_sub] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ Commute (↑(2 * a.re) - a) a [PROOFSTEP] exact (coe_commute (2 * a.re) a).sub_left (Commute.refl a) [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ star ↑x = ↑x [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (star ↑x).re = (↑x).re [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (star ↑x).imI = (↑x).imI [PROOFSTEP] simp [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (star ↑x).imJ = (↑x).imJ [PROOFSTEP] simp [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (star ↑x).imK = (↑x).imK [PROOFSTEP] simp [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x✝ y z : R a✝ b c a : ℍ[R,c₁,c₂] x : R h : a = ↑x ⊢ a = ↑a.re [PROOFSTEP] rw [h, coe_re] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁✝ c₂✝ r x y z : R a✝ b c : ℍ[R,c₁✝,c₂✝] inst✝¹ : NoZeroDivisors R inst✝ : CharZero R c₁ c₂ : R a : ℍ[R,c₁,c₂] ⊢ star a = a ↔ a = ↑a.re [PROOFSTEP] simp [QuaternionAlgebra.ext_iff, neg_eq_iff_add_eq_zero, add_self_eq_zero] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝² : CommRing R c₁✝ c₂✝ r x y z : R a✝ b c : ℍ[R,c₁✝,c₂✝] inst✝¹ : NoZeroDivisors R inst✝ : CharZero R c₁ c₂ : R a : ℍ[R,c₁,c₂] ⊢ star a = -a ↔ a.re = 0 [PROOFSTEP] simp [QuaternionAlgebra.ext_iff, eq_neg_iff_add_eq_zero] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ star a * a = ↑(star a * a).re [PROOFSTEP] ext [GOAL] case re S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (star a * a).re = (↑(star a * a).re).re [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (star a * a).imI = (↑(star a * a).re).imI [PROOFSTEP] simp [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (star a * a).imJ = (↑(star a * a).re).imJ [PROOFSTEP] simp [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ (star a * a).imK = (↑(star a * a).re).imK [PROOFSTEP] simp [GOAL] case imI S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ a.re * a.imI + -(a.imI * a.re) + c₂ * a.imJ * a.imK + -(c₂ * a.imK * a.imJ) = 0 [PROOFSTEP] ring [GOAL] case imJ S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ a.re * a.imJ + -(c₁ * a.imI * a.imK) + -(a.imJ * a.re) + c₁ * a.imK * a.imI = 0 [PROOFSTEP] ring [GOAL] case imK S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ a.re * a.imK + -(a.imI * a.imJ) + a.imJ * a.imI + -(a.imK * a.re) = 0 [PROOFSTEP] ring [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ a * star a = ↑(a * star a).re [PROOFSTEP] rw [← star_comm_self'] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x y z : R a b c : ℍ[R,c₁,c₂] ⊢ star a * a = ↑(star a * a).re [PROOFSTEP] exact a.star_mul_eq_coe [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r x✝ y✝ z : R a b c : ℍ[R,c₁,c₂] src✝ : ℍ[R,c₁,c₂] ≃+ ℍ[R,c₁,c₂]ᵐᵒᵖ := AddEquiv.trans starAddEquiv opAddEquiv x y : ℍ[R,c₁,c₂] ⊢ Equiv.toFun { toFun := op ∘ star, invFun := star ∘ unop, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (x * y) = Equiv.toFun { toFun := op ∘ star, invFun := star ∘ unop, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } x * Equiv.toFun { toFun := op ∘ star, invFun := star ∘ unop, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } y [PROOFSTEP] simp [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R c₁ c₂ r✝ x y z : R a b c : ℍ[R,c₁,c₂] src✝ : ℍ[R,c₁,c₂] ≃+ ℍ[R,c₁,c₂]ᵐᵒᵖ := AddEquiv.trans starAddEquiv opAddEquiv r : R ⊢ Equiv.toFun { toFun := op ∘ star, invFun := star ∘ unop, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (↑(algebraMap R ℍ[R,c₁,c₂]) r) = ↑(algebraMap R ℍ[R,c₁,c₂]ᵐᵒᵖ) r [PROOFSTEP] simp [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ a.re * b.re + -1 * a.imI * b.imI + -1 * a.imJ * b.imJ - -1 * -1 * a.imK * b.imK = a.re * b.re - a.imI * b.imI - a.imJ * b.imJ - a.imK * b.imK [PROOFSTEP] simp only [one_mul, neg_mul, sub_eq_add_neg, neg_neg] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ a.re * b.imI + a.imI * b.re - -1 * a.imJ * b.imK + -1 * a.imK * b.imJ = a.re * b.imI + a.imI * b.re + a.imJ * b.imK - a.imK * b.imJ [PROOFSTEP] simp only [one_mul, neg_mul, sub_eq_add_neg, neg_neg] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ a.re * b.imJ + -1 * a.imI * b.imK + a.imJ * b.re - -1 * a.imK * b.imI = a.re * b.imJ - a.imI * b.imK + a.imJ * b.re + a.imK * b.imI [PROOFSTEP] simp only [one_mul, neg_mul, sub_eq_add_neg, neg_neg] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ a.re * b.imK + a.imI * b.imJ - a.imJ * b.imI + a.imK * b.re = a.re * b.imK + a.imI * b.imJ - a.imJ * b.imI + a.imK * b.re [PROOFSTEP] simp only [one_mul, neg_mul, sub_eq_add_neg, neg_neg] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ (fun a => (a * star a).re) 0 = 0 [PROOFSTEP] simp only [star_zero, zero_mul, zero_re] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } 1 = 1 [PROOFSTEP] simp only [star_one, one_mul, one_re] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x✝ y✝ z : R a b c x y : ℍ[R] ⊢ ↑(ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } (x * y)) = ↑(ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } x * ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } y) [PROOFSTEP] conv_lhs => rw [← mul_star_eq_coe, star_mul, mul_assoc, ← mul_assoc y, y.mul_star_eq_coe, coe_commutes, ← mul_assoc, x.mul_star_eq_coe, ← coe_mul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x✝ y✝ z : R a b c x y : ℍ[R] | ↑(ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } (x * y)) [PROOFSTEP] rw [← mul_star_eq_coe, star_mul, mul_assoc, ← mul_assoc y, y.mul_star_eq_coe, coe_commutes, ← mul_assoc, x.mul_star_eq_coe, ← coe_mul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x✝ y✝ z : R a b c x y : ℍ[R] | ↑(ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } (x * y)) [PROOFSTEP] rw [← mul_star_eq_coe, star_mul, mul_assoc, ← mul_assoc y, y.mul_star_eq_coe, coe_commutes, ← mul_assoc, x.mul_star_eq_coe, ← coe_mul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x✝ y✝ z : R a b c x y : ℍ[R] | ↑(ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } (x * y)) [PROOFSTEP] rw [← mul_star_eq_coe, star_mul, mul_assoc, ← mul_assoc y, y.mul_star_eq_coe, coe_commutes, ← mul_assoc, x.mul_star_eq_coe, ← coe_mul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ ↑normSq a = a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 [PROOFSTEP] simp only [normSq_def, sq, mul_neg, sub_neg_eq_add, mul_re, star_re, star_imI, star_imJ, star_imK] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ ↑normSq ↑x = x ^ 2 [PROOFSTEP] rw [normSq_def, star_coe, ← coe_mul, coe_re, sq] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ ↑normSq (star a) = ↑normSq a [PROOFSTEP] simp [normSq_def'] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] n : ℕ ⊢ ↑normSq ↑n = ↑n ^ 2 [PROOFSTEP] rw [← coe_nat_cast, normSq_coe] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z✝ : R a b c : ℍ[R] z : ℤ ⊢ ↑normSq ↑z = ↑z ^ 2 [PROOFSTEP] rw [← coe_int_cast, normSq_coe] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ ↑normSq (-a) = ↑normSq a [PROOFSTEP] simp only [normSq_def, star_neg, neg_mul_neg] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ a * star a = ↑(↑normSq a) [PROOFSTEP] rw [mul_star_eq_coe, normSq_def] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ star a * a = ↑(↑normSq a) [PROOFSTEP] rw [star_comm_self, self_mul_star] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ im a ^ 2 = -↑(↑normSq (im a)) [PROOFSTEP] simp_rw [sq, ← star_mul_self, im_star, neg_mul, neg_neg] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a b c : ℍ[R] ⊢ ↑(↑normSq (a + b)) = ↑(↑normSq a) + a * star b + b * star a + ↑(↑normSq b) [PROOFSTEP] simp only [star_add, ← self_mul_star, mul_add, add_mul, add_assoc, add_left_comm] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r✝ x y z : R a b c : ℍ[R] r : R q : ℍ[R] ⊢ ↑normSq (r • q) = r ^ 2 * ↑normSq q [PROOFSTEP] simp only [normSq_def', smul_re, smul_imI, smul_imJ, smul_imK, mul_pow, mul_add, smul_eq_mul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a✝ b✝ c a b : ℍ[R] ⊢ ↑normSq (a + b) = ↑normSq a + (a * star b).re + ((b * star a).re + ↑normSq b) [PROOFSTEP] simp_rw [normSq_def, star_add, add_mul, mul_add, add_re] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a✝ b✝ c a b : ℍ[R] ⊢ ↑normSq a + (a * star b).re + ((b * star a).re + ↑normSq b) = ↑normSq a + ↑normSq b + ((a * star b).re + (b * star a).re) [PROOFSTEP] abel [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a✝ b✝ c a b : ℍ[R] ⊢ ↑normSq a + (a * star b).re + ((b * star a).re + ↑normSq b) = ↑normSq a + ↑normSq b + ((a * star b).re + (b * star a).re) [PROOFSTEP] abel [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 inst✝ : CommRing R r x y z : R a✝ b✝ c a b : ℍ[R] ⊢ ↑normSq a + ↑normSq b + ((a * star b).re + (b * star a).re) = ↑normSq a + ↑normSq b + 2 * (a * star b).re [PROOFSTEP] rw [← add_re, ← star_mul_star a b, self_add_star', coe_re] [GOAL] R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] ⊢ ↑normSq a = 0 ↔ a = 0 [PROOFSTEP] refine' ⟨fun h => _, fun h => h.symm ▸ normSq.map_zero⟩ [GOAL] R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : ↑normSq a = 0 ⊢ a = 0 [PROOFSTEP] rw [normSq_def', add_eq_zero_iff', add_eq_zero_iff', add_eq_zero_iff'] at h [GOAL] R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : ((a.re ^ 2 = 0 ∧ a.imI ^ 2 = 0) ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0 ⊢ a = 0 case ha R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : (a.re ^ 2 + a.imI ^ 2 = 0 ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0 ⊢ 0 ≤ a.re ^ 2 case hb R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : (a.re ^ 2 + a.imI ^ 2 = 0 ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0 ⊢ 0 ≤ a.imI ^ 2 case ha R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 = 0 ∧ a.imK ^ 2 = 0 ⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2 case hb R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 = 0 ∧ a.imK ^ 2 = 0 ⊢ 0 ≤ a.imJ ^ 2 case ha R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 = 0 ⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 case hb R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 = 0 ⊢ 0 ≤ a.imK ^ 2 [PROOFSTEP] exact ext a 0 (pow_eq_zero h.1.1.1) (pow_eq_zero h.1.1.2) (pow_eq_zero h.1.2) (pow_eq_zero h.2) [GOAL] case ha R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : (a.re ^ 2 + a.imI ^ 2 = 0 ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0 ⊢ 0 ≤ a.re ^ 2 case hb R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : (a.re ^ 2 + a.imI ^ 2 = 0 ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0 ⊢ 0 ≤ a.imI ^ 2 case ha R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 = 0 ∧ a.imK ^ 2 = 0 ⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2 case hb R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 = 0 ∧ a.imK ^ 2 = 0 ⊢ 0 ≤ a.imJ ^ 2 case ha R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 = 0 ⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 case hb R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 = 0 ⊢ 0 ≤ a.imK ^ 2 [PROOFSTEP] all_goals apply_rules [sq_nonneg, add_nonneg] [GOAL] case ha R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : (a.re ^ 2 + a.imI ^ 2 = 0 ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0 ⊢ 0 ≤ a.re ^ 2 [PROOFSTEP] apply_rules [sq_nonneg, add_nonneg] [GOAL] case hb R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : (a.re ^ 2 + a.imI ^ 2 = 0 ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0 ⊢ 0 ≤ a.imI ^ 2 [PROOFSTEP] apply_rules [sq_nonneg, add_nonneg] [GOAL] case ha R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 = 0 ∧ a.imK ^ 2 = 0 ⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2 [PROOFSTEP] apply_rules [sq_nonneg, add_nonneg] [GOAL] case hb R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 = 0 ∧ a.imK ^ 2 = 0 ⊢ 0 ≤ a.imJ ^ 2 [PROOFSTEP] apply_rules [sq_nonneg, add_nonneg] [GOAL] case ha R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 = 0 ⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 [PROOFSTEP] apply_rules [sq_nonneg, add_nonneg] [GOAL] case hb R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 = 0 ⊢ 0 ≤ a.imK ^ 2 [PROOFSTEP] apply_rules [sq_nonneg, add_nonneg] [GOAL] R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] ⊢ 0 ≤ ↑normSq a [PROOFSTEP] rw [normSq_def'] [GOAL] R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] ⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 [PROOFSTEP] apply_rules [sq_nonneg, add_nonneg] [GOAL] R : Type u_1 inst✝ : LinearOrderedCommRing R a✝ a b : ℍ[R] hab : a * b = 0 ⊢ ↑normSq a * ↑normSq b = 0 [PROOFSTEP] rwa [← map_mul, normSq_eq_zero] [GOAL] R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] ⊢ a ^ 2 = ↑(↑normSq a) ↔ a = ↑a.re [PROOFSTEP] rw [← star_eq_self, ← star_mul_self, sq, mul_eq_mul_right_iff, eq_comm] [GOAL] R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] ⊢ star a = a ∨ a = 0 ↔ star a = a [PROOFSTEP] exact or_iff_left_of_imp fun ha ↦ ha.symm ▸ star_zero _ [GOAL] R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] ⊢ a ^ 2 = -↑(↑normSq a) ↔ a.re = 0 [PROOFSTEP] simp_rw [← star_eq_neg] [GOAL] R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] ⊢ a ^ 2 = -↑(↑normSq a) ↔ star a = -a [PROOFSTEP] obtain rfl | hq0 := eq_or_ne a 0 [GOAL] case inl R : Type u_1 inst✝ : LinearOrderedCommRing R ⊢ 0 ^ 2 = -↑(↑normSq 0) ↔ star 0 = -0 [PROOFSTEP] simp [GOAL] case inr R : Type u_1 inst✝ : LinearOrderedCommRing R a : ℍ[R] hq0 : a ≠ 0 ⊢ a ^ 2 = -↑(↑normSq a) ↔ star a = -a [PROOFSTEP] rw [← star_mul_self, ← mul_neg, ← neg_sq, sq, mul_left_inj' (neg_ne_zero.mpr hq0), eq_comm] [GOAL] R : Type u_1 inst✝ : LinearOrderedField R a b : ℍ[R] src✝ : Nontrivial ℍ[R] := instNontrivial ⊢ MonoidWithZero ℍ[R] [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝ : LinearOrderedField R a b : ℍ[R] src✝¹ : Nontrivial ℍ[R] := instNontrivial src✝ : MonoidWithZero ℍ[R] := inferInstance ⊢ 0⁻¹ = 0 [PROOFSTEP] rw [instInv_inv, star_zero, smul_zero] [GOAL] R : Type u_1 inst✝ : LinearOrderedField R a✝ b : ℍ[R] src✝¹ : Nontrivial ℍ[R] := instNontrivial src✝ : MonoidWithZero ℍ[R] := inferInstance a : ℍ[R] ha : a ≠ 0 ⊢ a * a⁻¹ = 1 [PROOFSTEP] letI : Semiring ℍ[R] := inferInstanceAs (Semiring ℍ[R,-1,-1]) [GOAL] R : Type u_1 inst✝ : LinearOrderedField R a✝ b : ℍ[R] src✝¹ : Nontrivial ℍ[R] := instNontrivial src✝ : MonoidWithZero ℍ[R] := inferInstance a : ℍ[R] ha : a ≠ 0 this : Semiring ℍ[R] := inferInstanceAs (Semiring ℍ[R,-1,-1]) ⊢ a * a⁻¹ = 1 [PROOFSTEP] rw [instInv_inv, Algebra.mul_smul_comm (normSq a)⁻¹ a (star a), self_mul_star, smul_coe, inv_mul_cancel (normSq_ne_zero.2 ha), coe_one] [GOAL] R : Type u_1 inst✝ : LinearOrderedField R a b : ℍ[R] src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero src✝ : Ring ℍ[R] := instRing n : ℤ d : ℕ hd : d ≠ 0 h : Nat.coprime (Int.natAbs n) d ⊢ ↑(Rat.mk' n d) = ↑n * (↑d)⁻¹ [PROOFSTEP] rw [← coe_rat_cast, Rat.cast_mk', coe_mul, coe_int_cast, coe_inv, coe_nat_cast] [GOAL] R : Type u_1 inst✝ : LinearOrderedField R a b : ℍ[R] src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero src✝ : Ring ℍ[R] := instRing q : ℚ x : ℍ[R] ⊢ (fun x x_1 => x • x_1) q x = ↑q * x [PROOFSTEP] rw [← coe_rat_cast, coe_mul_eq_smul] [GOAL] R : Type u_1 inst✝ : LinearOrderedField R a b : ℍ[R] src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero src✝ : Ring ℍ[R] := instRing q : ℚ x : ℍ[R] ⊢ (fun x x_1 => x • x_1) q x = ↑q • x [PROOFSTEP] ext [GOAL] case a R : Type u_1 inst✝ : LinearOrderedField R a b : ℍ[R] src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero src✝ : Ring ℍ[R] := instRing q : ℚ x : ℍ[R] ⊢ ((fun x x_1 => x • x_1) q x).re = (↑q • x).re [PROOFSTEP] exact DivisionRing.qsmul_eq_mul' _ _ [GOAL] case a R : Type u_1 inst✝ : LinearOrderedField R a b : ℍ[R] src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero src✝ : Ring ℍ[R] := instRing q : ℚ x : ℍ[R] ⊢ ((fun x x_1 => x • x_1) q x).imI = (↑q • x).imI [PROOFSTEP] exact DivisionRing.qsmul_eq_mul' _ _ [GOAL] case a R : Type u_1 inst✝ : LinearOrderedField R a b : ℍ[R] src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero src✝ : Ring ℍ[R] := instRing q : ℚ x : ℍ[R] ⊢ ((fun x x_1 => x • x_1) q x).imJ = (↑q • x).imJ [PROOFSTEP] exact DivisionRing.qsmul_eq_mul' _ _ [GOAL] case a R : Type u_1 inst✝ : LinearOrderedField R a b : ℍ[R] src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero src✝ : Ring ℍ[R] := instRing q : ℚ x : ℍ[R] ⊢ ((fun x x_1 => x • x_1) q x).imK = (↑q • x).imK [PROOFSTEP] exact DivisionRing.qsmul_eq_mul' _ _ [GOAL] R : Type u_1 inst✝ : LinearOrderedField R a b : ℍ[R] q : ℚ ⊢ ↑(↑normSq ↑q) = ↑q ^ 2 [PROOFSTEP] rw [← coe_rat_cast, normSq_coe, coe_pow] [GOAL] R : Type u_1 c₁ c₂ : R inst✝ : Infinite R ⊢ 1 ≤ 4 [PROOFSTEP] simp [GOAL] R : Type u_1 c₁ c₂ : R ⊢ #ℍ[R,c₁,c₂] = #R ^ 4 [PROOFSTEP] rw [mk_congr (QuaternionAlgebra.equivProd c₁ c₂)] [GOAL] R : Type u_1 c₁ c₂ : R ⊢ #(R × R × R × R) = #R ^ 4 [PROOFSTEP] simp only [mk_prod, lift_id] [GOAL] R : Type u_1 c₁ c₂ : R ⊢ #R * (#R * (#R * #R)) = #R ^ 4 [PROOFSTEP] ring [GOAL] R : Type u_1 c₁ c₂ : R inst✝ : Infinite R ⊢ #ℍ[R,c₁,c₂] = #R [PROOFSTEP] rw [mk_quaternionAlgebra, pow_four] [GOAL] R : Type u_1 c₁ c₂ : R ⊢ #↑Set.univ = #R ^ 4 [PROOFSTEP] rw [mk_univ, mk_quaternionAlgebra] [GOAL] R : Type u_1 c₁ c₂ : R inst✝ : Infinite R ⊢ #↑Set.univ = #R [PROOFSTEP] rw [mk_univ_quaternionAlgebra, pow_four]
{"mathlib_filename": "Mathlib.Algebra.Quaternion", "llama_tokens": 38064}
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.ToMulBot", "llama_tokens": 0}
[GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 inst✝² : OrderedCommMonoid α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : OrderedCommMonoid β x y : Lex (α × β) hxy✝ : x ≤ y z : Lex (α × β) hxy : x.fst = y.fst ∧ x.snd ≤ y.snd ⊢ (z.fst * x.fst, z.snd * x.snd).fst = (z.fst * y.fst, z.snd * y.snd).fst [PROOFSTEP] rw [hxy.1]
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Prod", "llama_tokens": 219}
[GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : NoMaxOrder α a : α ⊢ NoMaxOrder ↑(Ici a) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 inst✝ : ConditionallyCompleteLinearOrder α a : α h : sSup ∅ ≤ a src✝¹ : OrderBot { x // a ≤ x } := orderBot src✝ : ConditionallyCompleteLinearOrder { x // a ≤ x } := Nonneg.conditionallyCompleteLinearOrder ⊢ ↑(if ht : sSup (Subtype.val '' ∅) ∈ Ici a then { val := sSup (Subtype.val '' ∅), property := ht } else default) = ↑⊥ [PROOFSTEP] rw [bot_eq] [GOAL] α : Type u_1 inst✝ : ConditionallyCompleteLinearOrder α a : α h : sSup ∅ ≤ a src✝¹ : OrderBot { x // a ≤ x } := orderBot src✝ : ConditionallyCompleteLinearOrder { x // a ≤ x } := Nonneg.conditionallyCompleteLinearOrder ⊢ ↑(if ht : sSup (Subtype.val '' ∅) ∈ Ici a then { val := sSup (Subtype.val '' ∅), property := ht } else default) = ↑{ val := a, property := (_ : a ≤ a) } [PROOFSTEP] cases' h.lt_or_eq with h2 h2 [GOAL] case inl α : Type u_1 inst✝ : ConditionallyCompleteLinearOrder α a : α h : sSup ∅ ≤ a src✝¹ : OrderBot { x // a ≤ x } := orderBot src✝ : ConditionallyCompleteLinearOrder { x // a ≤ x } := Nonneg.conditionallyCompleteLinearOrder h2 : sSup ∅ < a ⊢ ↑(if ht : sSup (Subtype.val '' ∅) ∈ Ici a then { val := sSup (Subtype.val '' ∅), property := ht } else default) = ↑{ val := a, property := (_ : a ≤ a) } [PROOFSTEP] simp [h2.not_le] [GOAL] case inr α : Type u_1 inst✝ : ConditionallyCompleteLinearOrder α a : α h : sSup ∅ ≤ a src✝¹ : OrderBot { x // a ≤ x } := orderBot src✝ : ConditionallyCompleteLinearOrder { x // a ≤ x } := Nonneg.conditionallyCompleteLinearOrder h2 : sSup ∅ = a ⊢ ↑(if ht : sSup (Subtype.val '' ∅) ∈ Ici a then { val := sSup (Subtype.val '' ∅), property := ht } else default) = ↑{ val := a, property := (_ : a ≤ a) } [PROOFSTEP] simp [h2] [GOAL] α : Type u_1 inst✝ : OrderedSemiring α src✝¹ : One { x // 0 ≤ x } := one src✝ : OrderedAddCommMonoid { x // 0 ≤ x } := orderedAddCommMonoid ⊢ NatCast.natCast 0 = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : OrderedSemiring α src✝¹ : One { x // 0 ≤ x } := one src✝ : OrderedAddCommMonoid { x // 0 ≤ x } := orderedAddCommMonoid x✝ : ℕ ⊢ NatCast.natCast (x✝ + 1) = NatCast.natCast x✝ + 1 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : OrderedSemiring α src✝¹ : One { x // 0 ≤ x } := one src✝ : OrderedAddCommMonoid { x // 0 ≤ x } := orderedAddCommMonoid x✝ : ℕ ⊢ { val := ↑x✝ + 1, property := (_ : (fun x => 0 ≤ x) (↑x✝ + 1)) } = { val := ↑x✝, property := (_ : 0 ≤ ↑x✝) } + 1 [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝ : OrderedSemiring α ⊢ MonoidWithZero { x // 0 ≤ x } [PROOFSTEP] infer_instance [GOAL] α : Type u_1 inst✝ : OrderedCommSemiring α ⊢ CommMonoidWithZero { x // 0 ≤ x } [PROOFSTEP] infer_instance [GOAL] α : Type u_1 inst✝¹ : OrderedCommRing α inst✝ : NoZeroDivisors α src✝¹ : CanonicallyOrderedAddMonoid { x // 0 ≤ x } := canonicallyOrderedAddMonoid src✝ : OrderedCommSemiring { x // 0 ≤ x } := orderedCommSemiring ⊢ ∀ {a b : { x // 0 ≤ x }}, a * b = 0 → a = 0 ∨ b = 0 [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ [GOAL] case mk.mk α : Type u_1 inst✝¹ : OrderedCommRing α inst✝ : NoZeroDivisors α src✝¹ : CanonicallyOrderedAddMonoid { x // 0 ≤ x } := canonicallyOrderedAddMonoid src✝ : OrderedCommSemiring { x // 0 ≤ x } := orderedCommSemiring a : α ha : 0 ≤ a b : α hb : 0 ≤ b ⊢ { val := a, property := ha } * { val := b, property := hb } = 0 → { val := a, property := ha } = 0 ∨ { val := b, property := hb } = 0 [PROOFSTEP] simp only [mk_mul_mk, mk_eq_zero, mul_eq_zero, imp_self] [GOAL] α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α h : 0 ≤ a ⊢ toNonneg a = { val := a, property := h } [PROOFSTEP] simp [toNonneg, h] [GOAL] α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α b : { x // 0 ≤ x } ⊢ toNonneg a ≤ b ↔ a ≤ ↑b [PROOFSTEP] cases' b with b hb [GOAL] case mk α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a b : α hb : 0 ≤ b ⊢ toNonneg a ≤ { val := b, property := hb } ↔ a ≤ ↑{ val := b, property := hb } [PROOFSTEP] simp [toNonneg, hb] [GOAL] α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : { x // 0 ≤ x } b : α ⊢ a < toNonneg b ↔ ↑a < b [PROOFSTEP] cases' a with a ha [GOAL] case mk α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α b a : α ha : 0 ≤ a ⊢ { val := a, property := ha } < toNonneg b ↔ ↑{ val := a, property := ha } < b [PROOFSTEP] simp [toNonneg, ha.not_lt] [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α ⊢ ∀ (a b c : { x // 0 ≤ x }), a - b ≤ c ↔ a ≤ c + b [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ ⟨c, hc⟩ [GOAL] case mk.mk.mk α : Type u_1 inst✝ : LinearOrderedRing α a : α ha : 0 ≤ a b : α hb : 0 ≤ b c : α hc : 0 ≤ c ⊢ { val := a, property := ha } - { val := b, property := hb } ≤ { val := c, property := hc } ↔ { val := a, property := ha } ≤ { val := c, property := hc } + { val := b, property := hb } [PROOFSTEP] simp only [sub_le_iff_le_add, Subtype.mk_le_mk, mk_sub_mk, mk_add_mk, toNonneg_le, Subtype.coe_mk]
{"mathlib_filename": "Mathlib.Algebra.Order.Nonneg.Ring", "llama_tokens": 2331}
[GOAL] α : Type u inst✝³ : OrderedCancelCommMonoid α β : Type u_1 inst✝² : One β inst✝¹ : Mul β inst✝ : Pow β ℕ f : β → α hf : Injective f one : f 1 = 1 mul : ∀ (x y : β), f (x * y) = f x * f y npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n src✝ : OrderedCommMonoid β := orderedCommMonoid f hf one mul npow a b c : β bc : f (a * b) ≤ f (a * c) ⊢ f a * f b ≤ f a * f c [PROOFSTEP] rwa [← mul, ← mul]
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Cancel.Basic", "llama_tokens": 222}
[GOAL] α : Type u inst✝³ : MulOneClass α inst✝² : Preorder α inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ExistsMulOfLE α a b : α h : a < b ⊢ ∃ c, 1 < c ∧ a * c = b [PROOFSTEP] obtain ⟨c, rfl⟩ := exists_mul_of_le h.le [GOAL] case intro α : Type u inst✝³ : MulOneClass α inst✝² : Preorder α inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ExistsMulOfLE α a c : α h : a < a * c ⊢ ∃ c_1, 1 < c_1 ∧ a * c_1 = a * c [PROOFSTEP] exact ⟨c, one_lt_of_lt_mul_right h, rfl⟩ [GOAL] α : Type u inst✝⁵ : LinearOrder α inst✝⁴ : DenselyOrdered α inst✝³ : Monoid α inst✝² : ExistsMulOfLE α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b : α h : ∀ (ε : α), 1 < ε → a ≤ b * ε x : α hxb : b < x ⊢ a ≤ x [PROOFSTEP] obtain ⟨ε, rfl⟩ := exists_mul_of_le hxb.le [GOAL] case intro α : Type u inst✝⁵ : LinearOrder α inst✝⁴ : DenselyOrdered α inst✝³ : Monoid α inst✝² : ExistsMulOfLE α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b : α h : ∀ (ε : α), 1 < ε → a ≤ b * ε ε : α hxb : b < b * ε ⊢ a ≤ b * ε [PROOFSTEP] exact h _ ((lt_mul_iff_one_lt_right' b).1 hxb) [GOAL] α : Type u inst✝ : CanonicallyOrderedMonoid α a b c d : α ⊢ a ≤ b * a [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u inst✝ : CanonicallyOrderedMonoid α a b c d : α ⊢ a ≤ a * b [PROOFSTEP] exact le_self_mul [GOAL] α : Type u inst✝ : CanonicallyOrderedMonoid α a b c d : α ⊢ (∃ c, b = a * c) → a ≤ b [PROOFSTEP] rintro ⟨c, rfl⟩ [GOAL] case intro α : Type u inst✝ : CanonicallyOrderedMonoid α a c✝ d c : α ⊢ a ≤ a * c [PROOFSTEP] exact le_self_mul [GOAL] α : Type u inst✝ : CanonicallyOrderedMonoid α a b c d : α ⊢ a ≤ b ↔ ∃ c, b = c * a [PROOFSTEP] simp only [mul_comm _ a, le_iff_exists_mul] [GOAL] α : Type u inst✝ : CanonicallyOrderedMonoid α a b c d : α ⊢ 1 < a * b ↔ 1 < a ∨ 1 < b [PROOFSTEP] simp only [one_lt_iff_ne_one, Ne.def, mul_eq_one_iff, not_and_or] [GOAL] α : Type u inst✝ : CanonicallyOrderedMonoid α a b c d : α h : a < b ⊢ ∃ c x, a * c = b [PROOFSTEP] obtain ⟨c, hc⟩ := le_iff_exists_mul.1 h.le [GOAL] case intro α : Type u inst✝ : CanonicallyOrderedMonoid α a b c✝ d : α h : a < b c : α hc : b = a * c ⊢ ∃ c x, a * c = b [PROOFSTEP] refine' ⟨c, one_lt_iff_ne_one.2 _, hc.symm⟩ [GOAL] case intro α : Type u inst✝ : CanonicallyOrderedMonoid α a b c✝ d : α h : a < b c : α hc : b = a * c ⊢ c ≠ 1 [PROOFSTEP] rintro rfl [GOAL] case intro α : Type u inst✝ : CanonicallyOrderedMonoid α a b c d : α h : a < b hc : b = a * 1 ⊢ False [PROOFSTEP] simp [hc, lt_irrefl] at h [GOAL] α : Type u inst✝ : CanonicallyOrderedMonoid α a b c d : α h : a ≤ c ⊢ a = 1 * a [PROOFSTEP] simp [GOAL] α : Type u inst✝ : CanonicallyOrderedMonoid α a b c d : α h : a ≤ b ⊢ a = a * 1 [PROOFSTEP] simp [GOAL] α : Type u inst✝¹ : CanonicallyOrderedMonoid α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 ⊢ a < b ↔ ∃ c, c > 1 ∧ b = a * c [PROOFSTEP] rw [lt_iff_le_and_ne, le_iff_exists_mul, ← exists_and_right] [GOAL] α : Type u inst✝¹ : CanonicallyOrderedMonoid α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 ⊢ (∃ x, b = a * x ∧ a ≠ b) ↔ ∃ c, c > 1 ∧ b = a * c [PROOFSTEP] apply exists_congr [GOAL] case h α : Type u inst✝¹ : CanonicallyOrderedMonoid α a b c d : α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 ⊢ ∀ (a_1 : α), b = a * a_1 ∧ a ≠ b ↔ a_1 > 1 ∧ b = a * a_1 [PROOFSTEP] intro c [GOAL] case h α : Type u inst✝¹ : CanonicallyOrderedMonoid α a b c✝ d : α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 c : α ⊢ b = a * c ∧ a ≠ b ↔ c > 1 ∧ b = a * c [PROOFSTEP] rw [and_comm, and_congr_left_iff, gt_iff_lt] [GOAL] case h α : Type u inst✝¹ : CanonicallyOrderedMonoid α a b c✝ d : α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 c : α ⊢ b = a * c → (a ≠ b ↔ 1 < c) [PROOFSTEP] rintro rfl [GOAL] case h α : Type u inst✝¹ : CanonicallyOrderedMonoid α a c✝ d : α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 c : α ⊢ a ≠ a * c ↔ 1 < c [PROOFSTEP] constructor [GOAL] case h.mp α : Type u inst✝¹ : CanonicallyOrderedMonoid α a c✝ d : α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 c : α ⊢ a ≠ a * c → 1 < c [PROOFSTEP] rw [one_lt_iff_ne_one] [GOAL] case h.mp α : Type u inst✝¹ : CanonicallyOrderedMonoid α a c✝ d : α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 c : α ⊢ a ≠ a * c → c ≠ 1 [PROOFSTEP] apply mt [GOAL] case h.mp.h₁ α : Type u inst✝¹ : CanonicallyOrderedMonoid α a c✝ d : α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 c : α ⊢ c = 1 → a = a * c [PROOFSTEP] rintro rfl [GOAL] case h.mp.h₁ α : Type u inst✝¹ : CanonicallyOrderedMonoid α a c d : α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 ⊢ a = a * 1 [PROOFSTEP] rw [mul_one] [GOAL] case h.mpr α : Type u inst✝¹ : CanonicallyOrderedMonoid α a c✝ d : α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 c : α ⊢ 1 < c → a ≠ a * c [PROOFSTEP] rw [← (self_le_mul_right a c).lt_iff_ne] [GOAL] case h.mpr α : Type u inst✝¹ : CanonicallyOrderedMonoid α a c✝ d : α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 c : α ⊢ 1 < c → a < a * c [PROOFSTEP] apply lt_mul_of_one_lt_right' [GOAL] α : Type u inst✝ : CanonicallyLinearOrderedMonoid α a b c : α ⊢ min a (b * c) = min a (min a b * min a c) [PROOFSTEP] cases' le_total a b with hb hb [GOAL] case inl α : Type u inst✝ : CanonicallyLinearOrderedMonoid α a b c : α hb : a ≤ b ⊢ min a (b * c) = min a (min a b * min a c) [PROOFSTEP] simp [hb, le_mul_right] [GOAL] case inr α : Type u inst✝ : CanonicallyLinearOrderedMonoid α a b c : α hb : b ≤ a ⊢ min a (b * c) = min a (min a b * min a c) [PROOFSTEP] cases' le_total a c with hc hc [GOAL] case inr.inl α : Type u inst✝ : CanonicallyLinearOrderedMonoid α a b c : α hb : b ≤ a hc : a ≤ c ⊢ min a (b * c) = min a (min a b * min a c) [PROOFSTEP] simp [hc, le_mul_left] [GOAL] case inr.inr α : Type u inst✝ : CanonicallyLinearOrderedMonoid α a b c : α hb : b ≤ a hc : c ≤ a ⊢ min a (b * c) = min a (min a b * min a c) [PROOFSTEP] simp [hb, hc] [GOAL] α : Type u inst✝ : CanonicallyLinearOrderedMonoid α a b c : α ⊢ min (a * b) c = min (min a c * min b c) c [PROOFSTEP] simpa [min_comm _ c] using min_mul_distrib c a b
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Canonical.Defs", "llama_tokens": 3447}
[GOAL] α : Type u β : Type v inst✝ : Add α a✝ b c d : WithTop α x y : α a : WithTop α ⊢ a + ⊤ = ⊤ [PROOFSTEP] cases a [GOAL] case none α : Type u β : Type v inst✝ : Add α a b c d : WithTop α x y : α ⊢ none + ⊤ = ⊤ [PROOFSTEP] rfl [GOAL] case some α : Type u β : Type v inst✝ : Add α a b c d : WithTop α x y val✝ : α ⊢ Option.some val✝ + ⊤ = ⊤ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v inst✝ : Add α a b c d : WithTop α x y : α ⊢ a + b = ⊤ ↔ a = ⊤ ∨ b = ⊤ [PROOFSTEP] cases a [GOAL] case none α : Type u β : Type v inst✝ : Add α b c d : WithTop α x y : α ⊢ none + b = ⊤ ↔ none = ⊤ ∨ b = ⊤ [PROOFSTEP] cases b [GOAL] case some α : Type u β : Type v inst✝ : Add α b c d : WithTop α x y val✝ : α ⊢ Option.some val✝ + b = ⊤ ↔ Option.some val✝ = ⊤ ∨ b = ⊤ [PROOFSTEP] cases b [GOAL] case none.none α : Type u β : Type v inst✝ : Add α c d : WithTop α x y : α ⊢ none + none = ⊤ ↔ none = ⊤ ∨ none = ⊤ [PROOFSTEP] simp [none_eq_top, some_eq_coe, ← WithTop.coe_add] [GOAL] case none.some α : Type u β : Type v inst✝ : Add α c d : WithTop α x y val✝ : α ⊢ none + Option.some val✝ = ⊤ ↔ none = ⊤ ∨ Option.some val✝ = ⊤ [PROOFSTEP] simp [none_eq_top, some_eq_coe, ← WithTop.coe_add] [GOAL] case some.none α : Type u β : Type v inst✝ : Add α c d : WithTop α x y val✝ : α ⊢ Option.some val✝ + none = ⊤ ↔ Option.some val✝ = ⊤ ∨ none = ⊤ [PROOFSTEP] simp [none_eq_top, some_eq_coe, ← WithTop.coe_add] [GOAL] case some.some α : Type u β : Type v inst✝ : Add α c d : WithTop α x y val✝¹ val✝ : α ⊢ Option.some val✝¹ + Option.some val✝ = ⊤ ↔ Option.some val✝¹ = ⊤ ∨ Option.some val✝ = ⊤ [PROOFSTEP] simp [none_eq_top, some_eq_coe, ← WithTop.coe_add] [GOAL] α : Type u β : Type v inst✝¹ : Add α a✝ b✝ c d : WithTop α x y : α inst✝ : LT α a b : WithTop α ⊢ a + b < ⊤ ↔ a < ⊤ ∧ b < ⊤ [PROOFSTEP] simp_rw [WithTop.lt_top_iff_ne_top, add_ne_top] [GOAL] α : Type u β : Type v inst✝ : Add α a b✝ c✝ d : WithTop α x y : α b : WithTop α c : α ⊢ none + b = ↑c ↔ ∃ a' b', ↑a' = none ∧ ↑b' = b ∧ a' + b' = c [PROOFSTEP] simp [none_eq_top] [GOAL] α : Type u β : Type v inst✝ : Add α a✝ b c✝ d : WithTop α x y a c : α ⊢ Option.some a + none = ↑c ↔ ∃ a' b', ↑a' = Option.some a ∧ ↑b' = none ∧ a' + b' = c [PROOFSTEP] simp [none_eq_top] [GOAL] α : Type u β : Type v inst✝ : Add α a✝ b✝ c✝ d : WithTop α x y a b c : α ⊢ Option.some a + Option.some b = ↑c ↔ ∃ a' b', ↑a' = Option.some a ∧ ↑b' = Option.some b ∧ a' + b' = c [PROOFSTEP] simp only [some_eq_coe, ← coe_add, coe_eq_coe, exists_and_left, exists_eq_left] [GOAL] α : Type u β : Type v inst✝ : Add α a b c d : WithTop α x✝ y✝ : α x : WithTop α y : α ⊢ x + ↑y = ⊤ ↔ x = ⊤ [PROOFSTEP] induction x using WithTop.recTopCoe [GOAL] case top α : Type u β : Type v inst✝ : Add α a b c d : WithTop α x y✝ y : α ⊢ ⊤ + ↑y = ⊤ ↔ ⊤ = ⊤ [PROOFSTEP] simp [← coe_add] [GOAL] case coe α : Type u β : Type v inst✝ : Add α a b c d : WithTop α x y✝ y a✝ : α ⊢ ↑a✝ + ↑y = ⊤ ↔ ↑a✝ = ⊤ [PROOFSTEP] simp [← coe_add] [GOAL] α : Type u β : Type v inst✝ : Add α a b c d : WithTop α x y✝ : α y : WithTop α ⊢ ↑x + y = ⊤ ↔ y = ⊤ [PROOFSTEP] induction y using WithTop.recTopCoe [GOAL] case top α : Type u β : Type v inst✝ : Add α a b c d : WithTop α x y : α ⊢ ↑x + ⊤ = ⊤ ↔ ⊤ = ⊤ [PROOFSTEP] simp [← coe_add] [GOAL] case coe α : Type u β : Type v inst✝ : Add α a b c d : WithTop α x y a✝ : α ⊢ ↑x + ↑a✝ = ⊤ ↔ ↑a✝ = ⊤ [PROOFSTEP] simp [← coe_add] [GOAL] α : Type u β : Type v inst✝¹ : Add α a b c d : WithTop α x y : α inst✝ : IsRightCancelAdd α ha : a ≠ ⊤ ⊢ b + a = c + a ↔ b = c [PROOFSTEP] lift a to α using ha [GOAL] case intro α : Type u β : Type v inst✝¹ : Add α b c d : WithTop α x y : α inst✝ : IsRightCancelAdd α a : α ⊢ b + ↑a = c + ↑a ↔ b = c [PROOFSTEP] obtain rfl | hb := (eq_or_ne b ⊤) [GOAL] case intro.inl α : Type u β : Type v inst✝¹ : Add α c d : WithTop α x y : α inst✝ : IsRightCancelAdd α a : α ⊢ ⊤ + ↑a = c + ↑a ↔ ⊤ = c [PROOFSTEP] rw [top_add, eq_comm, WithTop.add_coe_eq_top_iff, eq_comm] [GOAL] case intro.inr α : Type u β : Type v inst✝¹ : Add α b c d : WithTop α x y : α inst✝ : IsRightCancelAdd α a : α hb : b ≠ ⊤ ⊢ b + ↑a = c + ↑a ↔ b = c [PROOFSTEP] lift b to α using hb [GOAL] case intro.inr.intro α : Type u β : Type v inst✝¹ : Add α c d : WithTop α x y : α inst✝ : IsRightCancelAdd α a b : α ⊢ ↑b + ↑a = c + ↑a ↔ ↑b = c [PROOFSTEP] simp_rw [← WithTop.coe_add, eq_comm, WithTop.add_eq_coe, coe_eq_coe, exists_and_left, exists_eq_left, add_left_inj, exists_eq_right, eq_comm] [GOAL] α : Type u β : Type v inst✝¹ : Add α a b c d : WithTop α x y : α inst✝ : IsLeftCancelAdd α ha : a ≠ ⊤ ⊢ a + b = a + c ↔ b = c [PROOFSTEP] lift a to α using ha [GOAL] case intro α : Type u β : Type v inst✝¹ : Add α b c d : WithTop α x y : α inst✝ : IsLeftCancelAdd α a : α ⊢ ↑a + b = ↑a + c ↔ b = c [PROOFSTEP] obtain rfl | hb := (eq_or_ne b ⊤) [GOAL] case intro.inl α : Type u β : Type v inst✝¹ : Add α c d : WithTop α x y : α inst✝ : IsLeftCancelAdd α a : α ⊢ ↑a + ⊤ = ↑a + c ↔ ⊤ = c [PROOFSTEP] rw [add_top, eq_comm, WithTop.coe_add_eq_top_iff, eq_comm] [GOAL] case intro.inr α : Type u β : Type v inst✝¹ : Add α b c d : WithTop α x y : α inst✝ : IsLeftCancelAdd α a : α hb : b ≠ ⊤ ⊢ ↑a + b = ↑a + c ↔ b = c [PROOFSTEP] lift b to α using hb [GOAL] case intro.inr.intro α : Type u β : Type v inst✝¹ : Add α c d : WithTop α x y : α inst✝ : IsLeftCancelAdd α a b : α ⊢ ↑a + ↑b = ↑a + c ↔ ↑b = c [PROOFSTEP] simp_rw [← WithTop.coe_add, eq_comm, WithTop.add_eq_coe, eq_comm, coe_eq_coe, exists_and_left, exists_eq_left', add_right_inj, exists_eq_right'] [GOAL] α : Type u β : Type v inst✝² : Add α a✝ b✝ c✝ d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b c : WithTop α h : b ≤ c ⊢ a + b ≤ a + c [PROOFSTEP] cases a [GOAL] case none α : Type u β : Type v inst✝² : Add α a b✝ c✝ d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b c : WithTop α h : b ≤ c ⊢ none + b ≤ none + c [PROOFSTEP] cases c [GOAL] case some α : Type u β : Type v inst✝² : Add α a b✝ c✝ d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b c : WithTop α h : b ≤ c val✝ : α ⊢ Option.some val✝ + b ≤ Option.some val✝ + c [PROOFSTEP] cases c [GOAL] case none.none α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α h : b ≤ none ⊢ none + b ≤ none + none [PROOFSTEP] try exact le_top [GOAL] case none.none α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α h : b ≤ none ⊢ none + b ≤ none + none [PROOFSTEP] exact le_top [GOAL] case none.some α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝ : α h : b ≤ Option.some val✝ ⊢ none + b ≤ none + Option.some val✝ [PROOFSTEP] try exact le_top [GOAL] case none.some α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝ : α h : b ≤ Option.some val✝ ⊢ none + b ≤ none + Option.some val✝ [PROOFSTEP] exact le_top [GOAL] case some.none α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝ : α h : b ≤ none ⊢ Option.some val✝ + b ≤ Option.some val✝ + none [PROOFSTEP] try exact le_top [GOAL] case some.none α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝ : α h : b ≤ none ⊢ Option.some val✝ + b ≤ Option.some val✝ + none [PROOFSTEP] exact le_top [GOAL] case some.some α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝¹ val✝ : α h : b ≤ Option.some val✝ ⊢ Option.some val✝¹ + b ≤ Option.some val✝¹ + Option.some val✝ [PROOFSTEP] try exact le_top [GOAL] case some.some α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝¹ val✝ : α h : b ≤ Option.some val✝ ⊢ Option.some val✝¹ + b ≤ Option.some val✝¹ + Option.some val✝ [PROOFSTEP] exact le_top [GOAL] case some.some α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝¹ val✝ : α h : b ≤ Option.some val✝ ⊢ Option.some val✝¹ + b ≤ Option.some val✝¹ + Option.some val✝ [PROOFSTEP] rcases le_coe_iff.1 h with ⟨b, rfl, _⟩ [GOAL] case some.some.intro.intro α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 val✝¹ val✝ b : α right✝ : b ≤ val✝ h : ↑b ≤ Option.some val✝ ⊢ Option.some val✝¹ + ↑b ≤ Option.some val✝¹ + Option.some val✝ [PROOFSTEP] exact coe_le_coe.2 (add_le_add_left (coe_le_coe.1 h) _) [GOAL] α : Type u β : Type v inst✝² : Add α a✝ b✝ c✝ d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a b c : WithTop α h : b ≤ c ⊢ swap (fun x x_1 => x + x_1) a b ≤ swap (fun x x_1 => x + x_1) a c [PROOFSTEP] cases a [GOAL] case none α : Type u β : Type v inst✝² : Add α a b✝ c✝ d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b c : WithTop α h : b ≤ c ⊢ swap (fun x x_1 => x + x_1) none b ≤ swap (fun x x_1 => x + x_1) none c [PROOFSTEP] cases c [GOAL] case some α : Type u β : Type v inst✝² : Add α a b✝ c✝ d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b c : WithTop α h : b ≤ c val✝ : α ⊢ swap (fun x x_1 => x + x_1) (Option.some val✝) b ≤ swap (fun x x_1 => x + x_1) (Option.some val✝) c [PROOFSTEP] cases c [GOAL] case none.none α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α h : b ≤ none ⊢ swap (fun x x_1 => x + x_1) none b ≤ swap (fun x x_1 => x + x_1) none none [PROOFSTEP] try exact le_top [GOAL] case none.none α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α h : b ≤ none ⊢ swap (fun x x_1 => x + x_1) none b ≤ swap (fun x x_1 => x + x_1) none none [PROOFSTEP] exact le_top [GOAL] case none.some α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝ : α h : b ≤ Option.some val✝ ⊢ swap (fun x x_1 => x + x_1) none b ≤ swap (fun x x_1 => x + x_1) none (Option.some val✝) [PROOFSTEP] try exact le_top [GOAL] case none.some α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝ : α h : b ≤ Option.some val✝ ⊢ swap (fun x x_1 => x + x_1) none b ≤ swap (fun x x_1 => x + x_1) none (Option.some val✝) [PROOFSTEP] exact le_top [GOAL] case some.none α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝ : α h : b ≤ none ⊢ swap (fun x x_1 => x + x_1) (Option.some val✝) b ≤ swap (fun x x_1 => x + x_1) (Option.some val✝) none [PROOFSTEP] try exact le_top [GOAL] case some.none α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝ : α h : b ≤ none ⊢ swap (fun x x_1 => x + x_1) (Option.some val✝) b ≤ swap (fun x x_1 => x + x_1) (Option.some val✝) none [PROOFSTEP] exact le_top [GOAL] case some.some α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝¹ val✝ : α h : b ≤ Option.some val✝ ⊢ swap (fun x x_1 => x + x_1) (Option.some val✝¹) b ≤ swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝) [PROOFSTEP] try exact le_top [GOAL] case some.some α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝¹ val✝ : α h : b ≤ Option.some val✝ ⊢ swap (fun x x_1 => x + x_1) (Option.some val✝¹) b ≤ swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝) [PROOFSTEP] exact le_top [GOAL] case some.some α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 b : WithTop α val✝¹ val✝ : α h : b ≤ Option.some val✝ ⊢ swap (fun x x_1 => x + x_1) (Option.some val✝¹) b ≤ swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝) [PROOFSTEP] rcases le_coe_iff.1 h with ⟨b, rfl, _⟩ [GOAL] case some.some.intro.intro α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α inst✝¹ : LE α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 val✝¹ val✝ b : α right✝ : b ≤ val✝ h : ↑b ≤ Option.some val✝ ⊢ swap (fun x x_1 => x + x_1) (Option.some val✝¹) ↑b ≤ swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝) [PROOFSTEP] exact coe_le_coe.2 (add_le_add_right (coe_le_coe.1 h) _) [GOAL] α : Type u β : Type v inst✝² : Add α a✝ b✝ c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a b c : WithTop α h : a + b < a + c ⊢ b < c [PROOFSTEP] induction a using WithTop.recTopCoe [GOAL] case top α : Type u β : Type v inst✝² : Add α a b✝ c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 b c : WithTop α h : ⊤ + b < ⊤ + c ⊢ b < c [PROOFSTEP] exact (not_none_lt _ h).elim [GOAL] case coe α : Type u β : Type v inst✝² : Add α a b✝ c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 b c : WithTop α a✝ : α h : ↑a✝ + b < ↑a✝ + c ⊢ b < c [PROOFSTEP] induction b using WithTop.recTopCoe [GOAL] case coe.top α : Type u β : Type v inst✝² : Add α a b c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 c : WithTop α a✝ : α h : ↑a✝ + ⊤ < ↑a✝ + c ⊢ ⊤ < c [PROOFSTEP] exact (not_none_lt _ h).elim [GOAL] case coe.coe α : Type u β : Type v inst✝² : Add α a b c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 c : WithTop α a✝¹ a✝ : α h : ↑a✝¹ + ↑a✝ < ↑a✝¹ + c ⊢ ↑a✝ < c [PROOFSTEP] induction c using WithTop.recTopCoe [GOAL] case coe.coe.top α : Type u β : Type v inst✝² : Add α a b c d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a✝¹ a✝ : α h : ↑a✝¹ + ↑a✝ < ↑a✝¹ + ⊤ ⊢ ↑a✝ < ⊤ [PROOFSTEP] exact coe_lt_top _ [GOAL] case coe.coe.coe α : Type u β : Type v inst✝² : Add α a b c d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a✝² a✝¹ a✝ : α h : ↑a✝² + ↑a✝¹ < ↑a✝² + ↑a✝ ⊢ ↑a✝¹ < ↑a✝ [PROOFSTEP] exact coe_lt_coe.2 (lt_of_add_lt_add_left <| coe_lt_coe.1 h) [GOAL] α : Type u β : Type v inst✝² : Add α a✝ b✝ c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 a b c : WithTop α h : swap (fun x x_1 => x + x_1) a b < swap (fun x x_1 => x + x_1) a c ⊢ b < c [PROOFSTEP] cases a [GOAL] case none α : Type u β : Type v inst✝² : Add α a b✝ c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 b c : WithTop α h : swap (fun x x_1 => x + x_1) none b < swap (fun x x_1 => x + x_1) none c ⊢ b < c [PROOFSTEP] cases b [GOAL] case some α : Type u β : Type v inst✝² : Add α a b✝ c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 b c : WithTop α val✝ : α h : swap (fun x x_1 => x + x_1) (Option.some val✝) b < swap (fun x x_1 => x + x_1) (Option.some val✝) c ⊢ b < c [PROOFSTEP] cases b [GOAL] case none.none α : Type u β : Type v inst✝² : Add α a b c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 c : WithTop α h : swap (fun x x_1 => x + x_1) none none < swap (fun x x_1 => x + x_1) none c ⊢ none < c [PROOFSTEP] try exact (not_none_lt _ h).elim [GOAL] case none.none α : Type u β : Type v inst✝² : Add α a b c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 c : WithTop α h : swap (fun x x_1 => x + x_1) none none < swap (fun x x_1 => x + x_1) none c ⊢ none < c [PROOFSTEP] exact (not_none_lt _ h).elim [GOAL] case none.some α : Type u β : Type v inst✝² : Add α a b c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 c : WithTop α val✝ : α h : swap (fun x x_1 => x + x_1) none (Option.some val✝) < swap (fun x x_1 => x + x_1) none c ⊢ Option.some val✝ < c [PROOFSTEP] try exact (not_none_lt _ h).elim [GOAL] case none.some α : Type u β : Type v inst✝² : Add α a b c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 c : WithTop α val✝ : α h : swap (fun x x_1 => x + x_1) none (Option.some val✝) < swap (fun x x_1 => x + x_1) none c ⊢ Option.some val✝ < c [PROOFSTEP] exact (not_none_lt _ h).elim [GOAL] case some.none α : Type u β : Type v inst✝² : Add α a b c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 c : WithTop α val✝ : α h : swap (fun x x_1 => x + x_1) (Option.some val✝) none < swap (fun x x_1 => x + x_1) (Option.some val✝) c ⊢ none < c [PROOFSTEP] try exact (not_none_lt _ h).elim [GOAL] case some.none α : Type u β : Type v inst✝² : Add α a b c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 c : WithTop α val✝ : α h : swap (fun x x_1 => x + x_1) (Option.some val✝) none < swap (fun x x_1 => x + x_1) (Option.some val✝) c ⊢ none < c [PROOFSTEP] exact (not_none_lt _ h).elim [GOAL] case some.some α : Type u β : Type v inst✝² : Add α a b c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 c : WithTop α val✝¹ val✝ : α h : swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝) < swap (fun x x_1 => x + x_1) (Option.some val✝¹) c ⊢ Option.some val✝ < c [PROOFSTEP] try exact (not_none_lt _ h).elim [GOAL] case some.some α : Type u β : Type v inst✝² : Add α a b c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 c : WithTop α val✝¹ val✝ : α h : swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝) < swap (fun x x_1 => x + x_1) (Option.some val✝¹) c ⊢ Option.some val✝ < c [PROOFSTEP] exact (not_none_lt _ h).elim [GOAL] case some.some α : Type u β : Type v inst✝² : Add α a b c✝ d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 c : WithTop α val✝¹ val✝ : α h : swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝) < swap (fun x x_1 => x + x_1) (Option.some val✝¹) c ⊢ Option.some val✝ < c [PROOFSTEP] cases c [GOAL] case some.some.none α : Type u β : Type v inst✝² : Add α a b c d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 val✝¹ val✝ : α h : swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝) < swap (fun x x_1 => x + x_1) (Option.some val✝¹) none ⊢ Option.some val✝ < none [PROOFSTEP] exact coe_lt_top _ [GOAL] case some.some.some α : Type u β : Type v inst✝² : Add α a b c d : WithTop α x y : α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 val✝² val✝¹ val✝ : α h : swap (fun x x_1 => x + x_1) (Option.some val✝²) (Option.some val✝¹) < swap (fun x x_1 => x + x_1) (Option.some val✝²) (Option.some val✝) ⊢ Option.some val✝¹ < Option.some val✝ [PROOFSTEP] exact coe_lt_coe.2 (lt_of_add_lt_add_right <| coe_lt_coe.1 h) [GOAL] α : Type u β : Type v inst✝² : Add α a b c d : WithTop α x y : α inst✝¹ : LE α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ha : a ≠ ⊤ h : a + b ≤ a + c ⊢ b ≤ c [PROOFSTEP] lift a to α using ha [GOAL] case intro α : Type u β : Type v inst✝² : Add α b c d : WithTop α x y : α inst✝¹ : LE α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a : α h : ↑a + b ≤ ↑a + c ⊢ b ≤ c [PROOFSTEP] induction c using WithTop.recTopCoe [GOAL] case intro.top α : Type u β : Type v inst✝² : Add α b d : WithTop α x y : α inst✝¹ : LE α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a : α h : ↑a + b ≤ ↑a + ⊤ ⊢ b ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] case intro.coe α : Type u β : Type v inst✝² : Add α b d : WithTop α x y : α inst✝¹ : LE α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a a✝ : α h : ↑a + b ≤ ↑a + ↑a✝ ⊢ b ≤ ↑a✝ [PROOFSTEP] induction b using WithTop.recTopCoe [GOAL] case intro.coe.top α : Type u β : Type v inst✝² : Add α d : WithTop α x y : α inst✝¹ : LE α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a a✝ : α h : ↑a + ⊤ ≤ ↑a + ↑a✝ ⊢ ⊤ ≤ ↑a✝ [PROOFSTEP] exact (not_top_le_coe _ h).elim [GOAL] case intro.coe.coe α : Type u β : Type v inst✝² : Add α d : WithTop α x y : α inst✝¹ : LE α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a a✝¹ a✝ : α h : ↑a + ↑a✝ ≤ ↑a + ↑a✝¹ ⊢ ↑a✝ ≤ ↑a✝¹ [PROOFSTEP] simp only [← coe_add, coe_le_coe] at h ⊢ [GOAL] case intro.coe.coe α : Type u β : Type v inst✝² : Add α d : WithTop α x y : α inst✝¹ : LE α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a a✝¹ a✝ : α h : a + a✝ ≤ a + a✝¹ ⊢ a✝ ≤ a✝¹ [PROOFSTEP] exact le_of_add_le_add_left h [GOAL] α : Type u β : Type v inst✝² : Add α a b c d : WithTop α x y : α inst✝¹ : LE α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ha : a ≠ ⊤ h : b + a ≤ c + a ⊢ b ≤ c [PROOFSTEP] lift a to α using ha [GOAL] case intro α : Type u β : Type v inst✝² : Add α b c d : WithTop α x y : α inst✝¹ : LE α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a : α h : b + ↑a ≤ c + ↑a ⊢ b ≤ c [PROOFSTEP] cases c [GOAL] case intro.none α : Type u β : Type v inst✝² : Add α b d : WithTop α x y : α inst✝¹ : LE α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a : α h : b + ↑a ≤ none + ↑a ⊢ b ≤ none [PROOFSTEP] exact le_top [GOAL] case intro.some α : Type u β : Type v inst✝² : Add α b d : WithTop α x y : α inst✝¹ : LE α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a val✝ : α h : b + ↑a ≤ Option.some val✝ + ↑a ⊢ b ≤ Option.some val✝ [PROOFSTEP] cases b [GOAL] case intro.some.none α : Type u β : Type v inst✝² : Add α d : WithTop α x y : α inst✝¹ : LE α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a val✝ : α h : none + ↑a ≤ Option.some val✝ + ↑a ⊢ none ≤ Option.some val✝ [PROOFSTEP] exact (not_top_le_coe _ h).elim [GOAL] case intro.some.some α : Type u β : Type v inst✝² : Add α d : WithTop α x y : α inst✝¹ : LE α inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 a val✝¹ val✝ : α h : Option.some val✝ + ↑a ≤ Option.some val✝¹ + ↑a ⊢ Option.some val✝ ≤ Option.some val✝¹ [PROOFSTEP] exact coe_le_coe.2 (le_of_add_le_add_right <| coe_le_coe.1 h) [GOAL] α : Type u β : Type v inst✝² : Add α a b c d : WithTop α x y : α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 ha : a ≠ ⊤ h : b < c ⊢ a + b < a + c [PROOFSTEP] lift a to α using ha [GOAL] case intro α : Type u β : Type v inst✝² : Add α b c d : WithTop α x y : α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 h : b < c a : α ⊢ ↑a + b < ↑a + c [PROOFSTEP] rcases lt_iff_exists_coe.1 h with ⟨b, rfl, h'⟩ [GOAL] case intro.intro.intro α : Type u β : Type v inst✝² : Add α c d : WithTop α x y : α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a b : α h' h : ↑b < c ⊢ ↑a + ↑b < ↑a + c [PROOFSTEP] cases c [GOAL] case intro.intro.intro.none α : Type u β : Type v inst✝² : Add α d : WithTop α x y : α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a b : α h' h : ↑b < none ⊢ ↑a + ↑b < ↑a + none [PROOFSTEP] exact coe_lt_top _ [GOAL] case intro.intro.intro.some α : Type u β : Type v inst✝² : Add α d : WithTop α x y : α inst✝¹ : LT α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a b val✝ : α h' h : ↑b < Option.some val✝ ⊢ ↑a + ↑b < ↑a + Option.some val✝ [PROOFSTEP] exact coe_lt_coe.2 (add_lt_add_left (coe_lt_coe.1 h) _) [GOAL] α : Type u β : Type v inst✝² : Add α a b c d : WithTop α x y : α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 ha : a ≠ ⊤ h : b < c ⊢ b + a < c + a [PROOFSTEP] lift a to α using ha [GOAL] case intro α : Type u β : Type v inst✝² : Add α b c d : WithTop α x y : α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 h : b < c a : α ⊢ b + ↑a < c + ↑a [PROOFSTEP] rcases lt_iff_exists_coe.1 h with ⟨b, rfl, h'⟩ [GOAL] case intro.intro.intro α : Type u β : Type v inst✝² : Add α c d : WithTop α x y : α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 a b : α h' h : ↑b < c ⊢ ↑b + ↑a < c + ↑a [PROOFSTEP] cases c [GOAL] case intro.intro.intro.none α : Type u β : Type v inst✝² : Add α d : WithTop α x y : α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 a b : α h' h : ↑b < none ⊢ ↑b + ↑a < none + ↑a [PROOFSTEP] exact coe_lt_top _ [GOAL] case intro.intro.intro.some α : Type u β : Type v inst✝² : Add α d : WithTop α x y : α inst✝¹ : LT α inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 a b val✝ : α h' h : ↑b < Option.some val✝ ⊢ ↑b + ↑a < Option.some val✝ + ↑a [PROOFSTEP] exact coe_lt_coe.2 (add_lt_add_right (coe_lt_coe.1 h) _) [GOAL] α : Type u β : Type v inst✝² : Add α a✝ b✝ c d : WithTop α x y : α F : Type u_1 inst✝¹ : Add β inst✝ : AddHomClass F α β f : F a b : WithTop α ⊢ map (↑f) (a + b) = map (↑f) a + map (↑f) b [PROOFSTEP] induction a using WithTop.recTopCoe [GOAL] case top α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α F : Type u_1 inst✝¹ : Add β inst✝ : AddHomClass F α β f : F b : WithTop α ⊢ map (↑f) (⊤ + b) = map ↑f ⊤ + map (↑f) b [PROOFSTEP] exact (top_add _).symm [GOAL] case coe α : Type u β : Type v inst✝² : Add α a b✝ c d : WithTop α x y : α F : Type u_1 inst✝¹ : Add β inst✝ : AddHomClass F α β f : F b : WithTop α a✝ : α ⊢ map (↑f) (↑a✝ + b) = map ↑f ↑a✝ + map (↑f) b [PROOFSTEP] induction b using WithTop.recTopCoe [GOAL] case coe.top α : Type u β : Type v inst✝² : Add α a b c d : WithTop α x y : α F : Type u_1 inst✝¹ : Add β inst✝ : AddHomClass F α β f : F a✝ : α ⊢ map (↑f) (↑a✝ + ⊤) = map ↑f ↑a✝ + map ↑f ⊤ [PROOFSTEP] exact (add_top _).symm [GOAL] case coe.coe α : Type u β : Type v inst✝² : Add α a b c d : WithTop α x y : α F : Type u_1 inst✝¹ : Add β inst✝ : AddHomClass F α β f : F a✝¹ a✝ : α ⊢ map (↑f) (↑a✝¹ + ↑a✝) = map ↑f ↑a✝¹ + map ↑f ↑a✝ [PROOFSTEP] rw [map_coe, map_coe, ← coe_add, ← coe_add, ← map_add] [GOAL] case coe.coe α : Type u β : Type v inst✝² : Add α a b c d : WithTop α x y : α F : Type u_1 inst✝¹ : Add β inst✝ : AddHomClass F α β f : F a✝¹ a✝ : α ⊢ map ↑f ↑(a✝¹ + a✝) = ↑(↑f (a✝¹ + a✝)) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v inst✝ : AddMonoidWithOne α src✝¹ : One (WithTop α) := one src✝ : AddMonoid (WithTop α) := addMonoid ⊢ NatCast.natCast 0 = 0 [PROOFSTEP] simp only -- Porting note: Had to add this...? [GOAL] α : Type u β : Type v inst✝ : AddMonoidWithOne α src✝¹ : One (WithTop α) := one src✝ : AddMonoid (WithTop α) := addMonoid ⊢ ↑↑0 = 0 [PROOFSTEP] rw [Nat.cast_zero, WithTop.coe_zero] [GOAL] α : Type u β : Type v inst✝ : AddMonoidWithOne α src✝¹ : One (WithTop α) := one src✝ : AddMonoid (WithTop α) := addMonoid n : ℕ ⊢ NatCast.natCast (n + 1) = NatCast.natCast n + 1 [PROOFSTEP] simp only -- Porting note: Had to add this...? [GOAL] α : Type u β : Type v inst✝ : AddMonoidWithOne α src✝¹ : One (WithTop α) := one src✝ : AddMonoid (WithTop α) := addMonoid n : ℕ ⊢ ↑↑(n + 1) = ↑↑n + 1 [PROOFSTEP] rw [Nat.cast_add_one, WithTop.coe_add, WithTop.coe_one] [GOAL] α : Type u β : Type v inst✝ : OrderedAddCommMonoid α src✝¹ : PartialOrder (WithTop α) := partialOrder src✝ : AddCommMonoid (WithTop α) := addCommMonoid ⊢ ∀ (a b : WithTop α), a ≤ b → ∀ (c : WithTop α), c + a ≤ c + b [PROOFSTEP] rintro a b h (_ | c) [GOAL] case none α : Type u β : Type v inst✝ : OrderedAddCommMonoid α src✝¹ : PartialOrder (WithTop α) := partialOrder src✝ : AddCommMonoid (WithTop α) := addCommMonoid a b : WithTop α h : a ≤ b ⊢ none + a ≤ none + b [PROOFSTEP] simp [none_eq_top] [GOAL] case some α : Type u β : Type v inst✝ : OrderedAddCommMonoid α src✝¹ : PartialOrder (WithTop α) := partialOrder src✝ : AddCommMonoid (WithTop α) := addCommMonoid a b : WithTop α h : a ≤ b c : α ⊢ Option.some c + a ≤ Option.some c + b [PROOFSTEP] rcases b with (_ | b) [GOAL] case some.none α : Type u β : Type v inst✝ : OrderedAddCommMonoid α src✝¹ : PartialOrder (WithTop α) := partialOrder src✝ : AddCommMonoid (WithTop α) := addCommMonoid a : WithTop α c : α h : a ≤ none ⊢ Option.some c + a ≤ Option.some c + none [PROOFSTEP] simp [none_eq_top] [GOAL] case some.some α : Type u β : Type v inst✝ : OrderedAddCommMonoid α src✝¹ : PartialOrder (WithTop α) := partialOrder src✝ : AddCommMonoid (WithTop α) := addCommMonoid a : WithTop α c b : α h : a ≤ Option.some b ⊢ Option.some c + a ≤ Option.some c + Option.some b [PROOFSTEP] rcases le_coe_iff.1 h with ⟨a, rfl, _⟩ [GOAL] case some.some.intro.intro α : Type u β : Type v inst✝ : OrderedAddCommMonoid α src✝¹ : PartialOrder (WithTop α) := partialOrder src✝ : AddCommMonoid (WithTop α) := addCommMonoid c b a : α right✝ : a ≤ b h : ↑a ≤ Option.some b ⊢ Option.some c + ↑a ≤ Option.some c + Option.some b [PROOFSTEP] simp only [some_eq_coe, ← coe_add, coe_le_coe] at h ⊢ [GOAL] case some.some.intro.intro α : Type u β : Type v inst✝ : OrderedAddCommMonoid α src✝¹ : PartialOrder (WithTop α) := partialOrder src✝ : AddCommMonoid (WithTop α) := addCommMonoid c b a : α right✝ h : a ≤ b ⊢ c + a ≤ c + b [PROOFSTEP] exact add_le_add_left h c [GOAL] α : Type u β : Type v inst✝² : LE α inst✝¹ : Add α inst✝ : ExistsAddOfLE α a b : WithTop α ⊢ ⊤ ≤ ⊤ → ∃ c, ⊤ = ⊤ + c [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝² : LE α inst✝¹ : Add α inst✝ : ExistsAddOfLE α a✝ b✝ : WithTop α a b : α h : ↑a ≤ ↑b ⊢ ∃ c, ↑b = ↑a + c [PROOFSTEP] obtain ⟨c, rfl⟩ := exists_add_of_le (WithTop.coe_le_coe.1 h) [GOAL] case intro α : Type u β : Type v inst✝² : LE α inst✝¹ : Add α inst✝ : ExistsAddOfLE α a✝ b : WithTop α a c : α h : ↑a ≤ ↑(a + c) ⊢ ∃ c_1, ↑(a + c) = ↑a + c_1 [PROOFSTEP] exact ⟨c, rfl⟩ [GOAL] α : Type u β : Type v M : Type u_1 N : Type u_2 inst✝¹ : One M inst✝ : One N f : OneHom M N ⊢ map (↑f) 1 = 1 [PROOFSTEP] rw [WithTop.map_one, map_one, coe_one] [GOAL] α : Type u β : Type v inst✝ : Add α a✝ b c d : WithBot α x y : α a : WithBot α ⊢ a + ⊥ = ⊥ [PROOFSTEP] cases a [GOAL] case none α : Type u β : Type v inst✝ : Add α a b c d : WithBot α x y : α ⊢ none + ⊥ = ⊥ [PROOFSTEP] rfl [GOAL] case some α : Type u β : Type v inst✝ : Add α a b c d : WithBot α x y val✝ : α ⊢ Option.some val✝ + ⊥ = ⊥ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v inst✝² : Add α a b c d : WithBot α x y : α M : Type u_1 N : Type u_2 inst✝¹ : One M inst✝ : One N f : OneHom M N ⊢ map (↑f) 1 = 1 [PROOFSTEP] rw [WithBot.map_one, map_one, coe_one]
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.WithTop", "llama_tokens": 17213}
[GOAL] α : Type u inst✝² : Mul α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 ⊢ CovariantClass (WithZero α) (WithZero α) (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 [PROOFSTEP] refine ⟨fun a b c hbc => ?_⟩ [GOAL] α : Type u inst✝² : Mul α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : WithZero α hbc : b ≤ c ⊢ a * b ≤ a * c [PROOFSTEP] induction a using WithZero.recZeroCoe [GOAL] case h₁ α : Type u inst✝² : Mul α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 b c : WithZero α hbc : b ≤ c ⊢ 0 * b ≤ 0 * c [PROOFSTEP] exact zero_le _ [GOAL] case h₂ α : Type u inst✝² : Mul α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 b c : WithZero α hbc : b ≤ c a✝ : α ⊢ ↑a✝ * b ≤ ↑a✝ * c [PROOFSTEP] induction b using WithZero.recZeroCoe [GOAL] case h₂.h₁ α : Type u inst✝² : Mul α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 c : WithZero α a✝ : α hbc : 0 ≤ c ⊢ ↑a✝ * 0 ≤ ↑a✝ * c [PROOFSTEP] exact zero_le _ [GOAL] case h₂.h₂ α : Type u inst✝² : Mul α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 c : WithZero α a✝¹ a✝ : α hbc : ↑a✝ ≤ c ⊢ ↑a✝¹ * ↑a✝ ≤ ↑a✝¹ * c [PROOFSTEP] rcases WithBot.coe_le_iff.1 hbc with ⟨c, rfl, hbc'⟩ [GOAL] case h₂.h₂.intro.intro α : Type u inst✝² : Mul α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a✝¹ a✝ c : α hbc' : a✝ ≤ c hbc : ↑a✝ ≤ ↑c ⊢ ↑a✝¹ * ↑a✝ ≤ ↑a✝¹ * ↑c [PROOFSTEP] refine le_trans ?_ (le_of_eq <| coe_mul) -- rw [← coe_mul, ← coe_mul, coe_le_coe] -- Porting note: rewriting `coe_mul` here doesn't work because of some difference between -- `coe` and `WithBot.some`, even though they're definitionally equal as shown by the `refine'` [GOAL] case h₂.h₂.intro.intro α : Type u inst✝² : Mul α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a✝¹ a✝ c : α hbc' : a✝ ≤ c hbc : ↑a✝ ≤ ↑c ⊢ ↑a✝¹ * ↑a✝ ≤ ↑(a✝¹ * c) [PROOFSTEP] rw [← coe_mul, coe_le_coe] [GOAL] case h₂.h₂.intro.intro α : Type u inst✝² : Mul α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a✝¹ a✝ c : α hbc' : a✝ ≤ c hbc : ↑a✝ ≤ ↑c ⊢ a✝¹ * a✝ ≤ a✝¹ * c [PROOFSTEP] exact mul_le_mul_left' hbc' _ [GOAL] α : Type u inst✝ : LinearOrder α a b c : α ⊢ ↑a ≤ max ↑b ↑c ↔ a ≤ max b c [PROOFSTEP] simp only [WithZero.coe_le_coe, le_max_iff] [GOAL] α : Type u inst✝ : LinearOrder α a b c : α ⊢ min ↑a ↑b ≤ ↑c ↔ min a b ≤ c [PROOFSTEP] simp only [WithZero.coe_le_coe, min_le_iff] [GOAL] α : Type u inst✝² : AddZeroClass α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 h : ∀ (a : α), 0 ≤ a ⊢ CovariantClass (WithZero α) (WithZero α) (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 [PROOFSTEP] refine ⟨fun a b c hbc => ?_⟩ [GOAL] α : Type u inst✝² : AddZeroClass α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 h : ∀ (a : α), 0 ≤ a a b c : WithZero α hbc : b ≤ c ⊢ a + b ≤ a + c [PROOFSTEP] induction a using WithZero.recZeroCoe [GOAL] case h₁ α : Type u inst✝² : AddZeroClass α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 h : ∀ (a : α), 0 ≤ a b c : WithZero α hbc : b ≤ c ⊢ 0 + b ≤ 0 + c [PROOFSTEP] rwa [zero_add, zero_add] [GOAL] case h₂ α : Type u inst✝² : AddZeroClass α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 h : ∀ (a : α), 0 ≤ a b c : WithZero α hbc : b ≤ c a✝ : α ⊢ ↑a✝ + b ≤ ↑a✝ + c [PROOFSTEP] induction b using WithZero.recZeroCoe [GOAL] case h₂.h₁ α : Type u inst✝² : AddZeroClass α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 h : ∀ (a : α), 0 ≤ a c : WithZero α a✝ : α hbc : 0 ≤ c ⊢ ↑a✝ + 0 ≤ ↑a✝ + c [PROOFSTEP] rw [add_zero] [GOAL] case h₂.h₁ α : Type u inst✝² : AddZeroClass α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 h : ∀ (a : α), 0 ≤ a c : WithZero α a✝ : α hbc : 0 ≤ c ⊢ ↑a✝ ≤ ↑a✝ + c [PROOFSTEP] induction c using WithZero.recZeroCoe [GOAL] case h₂.h₁.h₁ α : Type u inst✝² : AddZeroClass α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 h : ∀ (a : α), 0 ≤ a a✝ : α hbc : 0 ≤ 0 ⊢ ↑a✝ ≤ ↑a✝ + 0 [PROOFSTEP] rw [add_zero] [GOAL] case h₂.h₁.h₂ α : Type u inst✝² : AddZeroClass α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 h : ∀ (a : α), 0 ≤ a a✝¹ a✝ : α hbc : 0 ≤ ↑a✝ ⊢ ↑a✝¹ ≤ ↑a✝¹ + ↑a✝ [PROOFSTEP] rw [← coe_add, coe_le_coe] [GOAL] case h₂.h₁.h₂ α : Type u inst✝² : AddZeroClass α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 h : ∀ (a : α), 0 ≤ a a✝¹ a✝ : α hbc : 0 ≤ ↑a✝ ⊢ a✝¹ ≤ a✝¹ + a✝ [PROOFSTEP] exact le_add_of_nonneg_right (h _) [GOAL] case h₂.h₂ α : Type u inst✝² : AddZeroClass α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 h : ∀ (a : α), 0 ≤ a c : WithZero α a✝¹ a✝ : α hbc : ↑a✝ ≤ c ⊢ ↑a✝¹ + ↑a✝ ≤ ↑a✝¹ + c [PROOFSTEP] rcases WithBot.coe_le_iff.1 hbc with ⟨c, rfl, hbc'⟩ [GOAL] case h₂.h₂.intro.intro α : Type u inst✝² : AddZeroClass α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 h : ∀ (a : α), 0 ≤ a a✝¹ a✝ c : α hbc' : a✝ ≤ c hbc : ↑a✝ ≤ ↑c ⊢ ↑a✝¹ + ↑a✝ ≤ ↑a✝¹ + ↑c [PROOFSTEP] refine le_trans ?_ (le_of_eq <| coe_add _ _) [GOAL] case h₂.h₂.intro.intro α : Type u inst✝² : AddZeroClass α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 h : ∀ (a : α), 0 ≤ a a✝¹ a✝ c : α hbc' : a✝ ≤ c hbc : ↑a✝ ≤ ↑c ⊢ ↑a✝¹ + ↑a✝ ≤ ↑(a✝¹ + c) [PROOFSTEP] rw [← coe_add, coe_le_coe] [GOAL] case h₂.h₂.intro.intro α : Type u inst✝² : AddZeroClass α inst✝¹ : Preorder α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 h : ∀ (a : α), 0 ≤ a a✝¹ a✝ c : α hbc' : a✝ ≤ c hbc : ↑a✝ ≤ ↑c ⊢ a✝¹ + a✝ ≤ a✝¹ + c [PROOFSTEP] exact add_le_add_left hbc' _ [GOAL] α : Type u inst✝² : Add α inst✝¹ : Preorder α inst✝ : ExistsAddOfLE α a b : WithZero α ⊢ a ≤ b → ∃ c, b = a + c [PROOFSTEP] induction a using WithZero.cases_on [GOAL] case a α : Type u inst✝² : Add α inst✝¹ : Preorder α inst✝ : ExistsAddOfLE α b : WithZero α ⊢ 0 ≤ b → ∃ c, b = 0 + c [PROOFSTEP] exact fun _ => ⟨b, (zero_add b).symm⟩ [GOAL] case a α : Type u inst✝² : Add α inst✝¹ : Preorder α inst✝ : ExistsAddOfLE α b : WithZero α a✝ : α ⊢ ↑a✝ ≤ b → ∃ c, b = ↑a✝ + c [PROOFSTEP] induction b using WithZero.cases_on [GOAL] case a.a α : Type u inst✝² : Add α inst✝¹ : Preorder α inst✝ : ExistsAddOfLE α a✝ : α ⊢ ↑a✝ ≤ 0 → ∃ c, 0 = ↑a✝ + c [PROOFSTEP] exact fun h => (WithBot.not_coe_le_bot _ h).elim [GOAL] case a.a α : Type u inst✝² : Add α inst✝¹ : Preorder α inst✝ : ExistsAddOfLE α a✝¹ a✝ : α ⊢ ↑a✝¹ ≤ ↑a✝ → ∃ c, ↑a✝ = ↑a✝¹ + c [PROOFSTEP] intro h [GOAL] case a.a α : Type u inst✝² : Add α inst✝¹ : Preorder α inst✝ : ExistsAddOfLE α a✝¹ a✝ : α h : ↑a✝¹ ≤ ↑a✝ ⊢ ∃ c, ↑a✝ = ↑a✝¹ + c [PROOFSTEP] obtain ⟨c, rfl⟩ := exists_add_of_le (WithZero.coe_le_coe.1 h) [GOAL] case a.a.intro α : Type u inst✝² : Add α inst✝¹ : Preorder α inst✝ : ExistsAddOfLE α a✝ c : α h : ↑a✝ ≤ ↑(a✝ + c) ⊢ ∃ c_1, ↑(a✝ + c) = ↑a✝ + c_1 [PROOFSTEP] exact ⟨c, rfl⟩ [GOAL] α : Type u inst✝ : CanonicallyOrderedAddMonoid α src✝² : OrderBot (WithZero α) := orderBot src✝¹ : OrderedAddCommMonoid (WithZero α) := WithZero.orderedAddCommMonoid (_ : ∀ (a : α), 0 ≤ a) src✝ : ExistsAddOfLE (WithZero α) := existsAddOfLE a b : WithZero α ⊢ a ≤ a + b [PROOFSTEP] induction a using WithZero.cases_on [GOAL] case a α : Type u inst✝ : CanonicallyOrderedAddMonoid α src✝² : OrderBot (WithZero α) := orderBot src✝¹ : OrderedAddCommMonoid (WithZero α) := WithZero.orderedAddCommMonoid (_ : ∀ (a : α), 0 ≤ a) src✝ : ExistsAddOfLE (WithZero α) := existsAddOfLE b : WithZero α ⊢ 0 ≤ 0 + b [PROOFSTEP] exact bot_le [GOAL] case a α : Type u inst✝ : CanonicallyOrderedAddMonoid α src✝² : OrderBot (WithZero α) := orderBot src✝¹ : OrderedAddCommMonoid (WithZero α) := WithZero.orderedAddCommMonoid (_ : ∀ (a : α), 0 ≤ a) src✝ : ExistsAddOfLE (WithZero α) := existsAddOfLE b : WithZero α a✝ : α ⊢ ↑a✝ ≤ ↑a✝ + b [PROOFSTEP] induction b using WithZero.cases_on [GOAL] case a.a α : Type u inst✝ : CanonicallyOrderedAddMonoid α src✝² : OrderBot (WithZero α) := orderBot src✝¹ : OrderedAddCommMonoid (WithZero α) := WithZero.orderedAddCommMonoid (_ : ∀ (a : α), 0 ≤ a) src✝ : ExistsAddOfLE (WithZero α) := existsAddOfLE a✝ : α ⊢ ↑a✝ ≤ ↑a✝ + 0 [PROOFSTEP] exact le_rfl [GOAL] case a.a α : Type u inst✝ : CanonicallyOrderedAddMonoid α src✝² : OrderBot (WithZero α) := orderBot src✝¹ : OrderedAddCommMonoid (WithZero α) := WithZero.orderedAddCommMonoid (_ : ∀ (a : α), 0 ≤ a) src✝ : ExistsAddOfLE (WithZero α) := existsAddOfLE a✝¹ a✝ : α ⊢ ↑a✝¹ ≤ ↑a✝¹ + ↑a✝ [PROOFSTEP] exact WithZero.coe_le_coe.2 le_self_add
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.WithZero.Defs", "llama_tokens": 5120}
[GOAL] α : Type u inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 ⊢ ContravariantClass (WithZero α) (WithZero α) (fun x x_1 => x * x_1) fun x x_1 => x < x_1 [PROOFSTEP] refine ⟨fun a b c h => ?_⟩ [GOAL] α : Type u inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : WithZero α h : a * b < a * c ⊢ b < c [PROOFSTEP] have := ((zero_le _).trans_lt h).ne' [GOAL] α : Type u inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : WithZero α h : a * b < a * c this : a * c ≠ 0 ⊢ b < c [PROOFSTEP] induction a using WithZero.recZeroCoe [GOAL] case h₁ α : Type u inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 b c : WithZero α h : 0 * b < 0 * c this : 0 * c ≠ 0 ⊢ b < c [PROOFSTEP] exfalso [GOAL] case h₁.h α : Type u inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 b c : WithZero α h : 0 * b < 0 * c this : 0 * c ≠ 0 ⊢ False [PROOFSTEP] exact left_ne_zero_of_mul this rfl [GOAL] case h₂ α : Type u inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 b c : WithZero α a✝ : α h : ↑a✝ * b < ↑a✝ * c this : ↑a✝ * c ≠ 0 ⊢ b < c [PROOFSTEP] induction c using WithZero.recZeroCoe [GOAL] case h₂.h₁ α : Type u inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 b : WithZero α a✝ : α h : ↑a✝ * b < ↑a✝ * 0 this : ↑a✝ * 0 ≠ 0 ⊢ b < 0 [PROOFSTEP] exfalso [GOAL] case h₂.h₁.h α : Type u inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 b : WithZero α a✝ : α h : ↑a✝ * b < ↑a✝ * 0 this : ↑a✝ * 0 ≠ 0 ⊢ False [PROOFSTEP] exact right_ne_zero_of_mul this rfl [GOAL] case h₂.h₂ α : Type u inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 b : WithZero α a✝¹ a✝ : α h : ↑a✝¹ * b < ↑a✝¹ * ↑a✝ this : ↑a✝¹ * ↑a✝ ≠ 0 ⊢ b < ↑a✝ [PROOFSTEP] induction b using WithZero.recZeroCoe [GOAL] case h₂.h₂.h₁ α : Type u inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a✝¹ a✝ : α this : ↑a✝¹ * ↑a✝ ≠ 0 h : ↑a✝¹ * 0 < ↑a✝¹ * ↑a✝ ⊢ 0 < ↑a✝ case h₂.h₂.h₂ α : Type u inst✝² : Mul α inst✝¹ : PartialOrder α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a✝² a✝¹ : α this : ↑a✝² * ↑a✝¹ ≠ 0 a✝ : α h : ↑a✝² * ↑a✝ < ↑a✝² * ↑a✝¹ ⊢ ↑a✝ < ↑a✝¹ [PROOFSTEP] exacts [zero_lt_coe _, coe_lt_coe.mpr (lt_of_mul_lt_mul_left' <| coe_lt_coe.mp h)]
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.WithZero.Basic", "llama_tokens": 1578}
[GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 inst✝¹² : Monoid R inst✝¹¹ : NonUnitalNonAssocSemiring A inst✝¹⁰ : DistribMulAction R A inst✝⁹ : Star A inst✝⁸ : NonUnitalNonAssocSemiring B inst✝⁷ : DistribMulAction R B inst✝⁶ : Star B inst✝⁵ : NonUnitalNonAssocSemiring C inst✝⁴ : DistribMulAction R C inst✝³ : Star C inst✝² : NonUnitalNonAssocSemiring D inst✝¹ : DistribMulAction R D inst✝ : Star D ⊢ Function.Injective fun f => f.toFun [PROOFSTEP] rintro ⟨⟨⟨⟨f, _⟩, _⟩, _⟩, _⟩ ⟨⟨⟨⟨g, _⟩, _⟩, _⟩, _⟩ h [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 inst✝¹² : Monoid R inst✝¹¹ : NonUnitalNonAssocSemiring A inst✝¹⁰ : DistribMulAction R A inst✝⁹ : Star A inst✝⁸ : NonUnitalNonAssocSemiring B inst✝⁷ : DistribMulAction R B inst✝⁶ : Star B inst✝⁵ : NonUnitalNonAssocSemiring C inst✝⁴ : DistribMulAction R C inst✝³ : Star C inst✝² : NonUnitalNonAssocSemiring D inst✝¹ : DistribMulAction R D inst✝ : Star D f : A → B map_smul'✝¹ : ∀ (m : R) (x : A), f (m • x) = m • f x map_zero'✝¹ : MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } 0 = 0 map_add'✝¹ : ∀ (x y : A), MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } (x + y) = MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } x + MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } y map_mul'✝¹ : ∀ (x y : A), MulActionHom.toFun { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom y map_star'✝¹ : ∀ (a : A), MulActionHom.toFun { toDistribMulActionHom := { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_mul' := map_mul'✝¹ }.toDistribMulActionHom.toMulActionHom (star a) = star (MulActionHom.toFun { toDistribMulActionHom := { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_mul' := map_mul'✝¹ }.toDistribMulActionHom.toMulActionHom a) g : A → B map_smul'✝ : ∀ (m : R) (x : A), g (m • x) = m • g x map_zero'✝ : MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } 0 = 0 map_add'✝ : ∀ (x y : A), MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } (x + y) = MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } x + MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } y map_mul'✝ : ∀ (x y : A), MulActionHom.toFun { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom y map_star'✝ : ∀ (a : A), MulActionHom.toFun { toDistribMulActionHom := { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_mul' := map_mul'✝ }.toDistribMulActionHom.toMulActionHom (star a) = star (MulActionHom.toFun { toDistribMulActionHom := { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_mul' := map_mul'✝ }.toDistribMulActionHom.toMulActionHom a) h : (fun f => f.toFun) { toNonUnitalAlgHom := { toDistribMulActionHom := { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_mul' := map_mul'✝¹ }, map_star' := map_star'✝¹ } = (fun f => f.toFun) { toNonUnitalAlgHom := { toDistribMulActionHom := { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_mul' := map_mul'✝ }, map_star' := map_star'✝ } ⊢ { toNonUnitalAlgHom := { toDistribMulActionHom := { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_mul' := map_mul'✝¹ }, map_star' := map_star'✝¹ } = { toNonUnitalAlgHom := { toDistribMulActionHom := { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_mul' := map_mul'✝ }, map_star' := map_star'✝ } [PROOFSTEP] congr [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 inst✝¹² : Monoid R inst✝¹¹ : NonUnitalNonAssocSemiring A inst✝¹⁰ : DistribMulAction R A inst✝⁹ : Star A inst✝⁸ : NonUnitalNonAssocSemiring B inst✝⁷ : DistribMulAction R B inst✝⁶ : Star B inst✝⁵ : NonUnitalNonAssocSemiring C inst✝⁴ : DistribMulAction R C inst✝³ : Star C inst✝² : NonUnitalNonAssocSemiring D inst✝¹ : DistribMulAction R D inst✝ : Star D f : A →⋆ₙₐ[R] B h₁ : ∀ (m : R) (x : A), ↑f (m • x) = m • ↑f x h₂ : MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } 0 = 0 h₃ : ∀ (x y : A), MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } (x + y) = MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } x + MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } y h₄ : ∀ (x y : A), MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom y h₅ : ∀ (a : A), MulActionHom.toFun { toDistribMulActionHom := { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }, map_mul' := h₄ }.toDistribMulActionHom.toMulActionHom (star a) = star (MulActionHom.toFun { toDistribMulActionHom := { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }, map_mul' := h₄ }.toDistribMulActionHom.toMulActionHom a) ⊢ { toNonUnitalAlgHom := { toDistribMulActionHom := { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }, map_mul' := h₄ }, map_star' := h₅ } = f [PROOFSTEP] ext [GOAL] case h R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 inst✝¹² : Monoid R inst✝¹¹ : NonUnitalNonAssocSemiring A inst✝¹⁰ : DistribMulAction R A inst✝⁹ : Star A inst✝⁸ : NonUnitalNonAssocSemiring B inst✝⁷ : DistribMulAction R B inst✝⁶ : Star B inst✝⁵ : NonUnitalNonAssocSemiring C inst✝⁴ : DistribMulAction R C inst✝³ : Star C inst✝² : NonUnitalNonAssocSemiring D inst✝¹ : DistribMulAction R D inst✝ : Star D f : A →⋆ₙₐ[R] B h₁ : ∀ (m : R) (x : A), ↑f (m • x) = m • ↑f x h₂ : MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } 0 = 0 h₃ : ∀ (x y : A), MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } (x + y) = MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } x + MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } y h₄ : ∀ (x y : A), MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom y h₅ : ∀ (a : A), MulActionHom.toFun { toDistribMulActionHom := { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }, map_mul' := h₄ }.toDistribMulActionHom.toMulActionHom (star a) = star (MulActionHom.toFun { toDistribMulActionHom := { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }, map_mul' := h₄ }.toDistribMulActionHom.toMulActionHom a) x✝ : A ⊢ ↑{ toNonUnitalAlgHom := { toDistribMulActionHom := { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }, map_mul' := h₄ }, map_star' := h₅ } x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 inst✝¹² : Monoid R inst✝¹¹ : NonUnitalNonAssocSemiring A inst✝¹⁰ : DistribMulAction R A inst✝⁹ : Star A inst✝⁸ : NonUnitalNonAssocSemiring B inst✝⁷ : DistribMulAction R B inst✝⁶ : Star B inst✝⁵ : NonUnitalNonAssocSemiring C inst✝⁴ : DistribMulAction R C inst✝³ : Star C inst✝² : NonUnitalNonAssocSemiring D inst✝¹ : DistribMulAction R D inst✝ : Star D f : B →⋆ₙₐ[R] C g : A →⋆ₙₐ[R] B src✝ : A →ₙₐ[R] C := NonUnitalAlgHom.comp f.toNonUnitalAlgHom g.toNonUnitalAlgHom ⊢ ∀ (a : A), MulActionHom.toFun { toDistribMulActionHom := src✝.toDistribMulActionHom, map_mul' := (_ : ∀ (x y : A), MulActionHom.toFun src✝.toMulActionHom (x * y) = MulActionHom.toFun src✝.toMulActionHom x * MulActionHom.toFun src✝.toMulActionHom y) }.toDistribMulActionHom.toMulActionHom (star a) = star (MulActionHom.toFun { toDistribMulActionHom := src✝.toDistribMulActionHom, map_mul' := (_ : ∀ (x y : A), MulActionHom.toFun src✝.toMulActionHom (x * y) = MulActionHom.toFun src✝.toMulActionHom x * MulActionHom.toFun src✝.toMulActionHom y) }.toDistribMulActionHom.toMulActionHom a) [PROOFSTEP] simp only [map_star, NonUnitalAlgHom.toFun_eq_coe, eq_self_iff_true, NonUnitalAlgHom.coe_comp, coe_toNonUnitalAlgHom, Function.comp_apply, forall_const] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 D : Type u_5 inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : StarAddMonoid A inst✝² : NonUnitalNonAssocSemiring B inst✝¹ : DistribMulAction R B inst✝ : StarAddMonoid B src✝ : A →ₙₐ[R] B := 0 ⊢ ∀ (a : A), MulActionHom.toFun { toDistribMulActionHom := src✝.toDistribMulActionHom, map_mul' := (_ : ∀ (x y : A), MulActionHom.toFun src✝.toMulActionHom (x * y) = MulActionHom.toFun src✝.toMulActionHom x * MulActionHom.toFun src✝.toMulActionHom y) }.toDistribMulActionHom.toMulActionHom (star a) = star (MulActionHom.toFun { toDistribMulActionHom := src✝.toDistribMulActionHom, map_mul' := (_ : ∀ (x y : A), MulActionHom.toFun src✝.toMulActionHom (x * y) = MulActionHom.toFun src✝.toMulActionHom x * MulActionHom.toFun src✝.toMulActionHom y) }.toDistribMulActionHom.toMulActionHom a) [PROOFSTEP] simp [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 D : Type u_6 inst✝¹² : CommSemiring R inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Star A inst✝⁸ : Semiring B inst✝⁷ : Algebra R B inst✝⁶ : Star B inst✝⁵ : Semiring C inst✝⁴ : Algebra R C inst✝³ : Star C inst✝² : Semiring D inst✝¹ : Algebra R D inst✝ : Star D ⊢ Function.Injective fun f => f.toFun [PROOFSTEP] rintro ⟨⟨⟨⟨⟨f, _⟩, _⟩, _⟩, _⟩, _⟩ ⟨⟨⟨⟨⟨g, _⟩, _⟩, _⟩, _⟩, _⟩ h [GOAL] case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 D : Type u_6 inst✝¹² : CommSemiring R inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Star A inst✝⁸ : Semiring B inst✝⁷ : Algebra R B inst✝⁶ : Star B inst✝⁵ : Semiring C inst✝⁴ : Algebra R C inst✝³ : Star C inst✝² : Semiring D inst✝¹ : Algebra R D inst✝ : Star D f : A → B map_one'✝¹ : f 1 = 1 map_mul'✝¹ : ∀ (x y : A), OneHom.toFun { toFun := f, map_one' := map_one'✝¹ } (x * y) = OneHom.toFun { toFun := f, map_one' := map_one'✝¹ } x * OneHom.toFun { toFun := f, map_one' := map_one'✝¹ } y map_zero'✝¹ : OneHom.toFun (↑{ toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }) 0 = 0 map_add'✝¹ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }) x + OneHom.toFun (↑{ toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }) y commutes'✝¹ : ∀ (r : R), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }) (↑(algebraMap R A) r) = ↑(algebraMap R B) r map_star'✝¹ : ∀ (x : A), OneHom.toFun (↑↑↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, commutes' := commutes'✝¹ }) (star x) = star (OneHom.toFun (↑↑↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, commutes' := commutes'✝¹ }) x) g : A → B map_one'✝ : g 1 = 1 map_mul'✝ : ∀ (x y : A), OneHom.toFun { toFun := g, map_one' := map_one'✝ } (x * y) = OneHom.toFun { toFun := g, map_one' := map_one'✝ } x * OneHom.toFun { toFun := g, map_one' := map_one'✝ } y map_zero'✝ : OneHom.toFun (↑{ toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }) 0 = 0 map_add'✝ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }) x + OneHom.toFun (↑{ toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }) y commutes'✝ : ∀ (r : R), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }) (↑(algebraMap R A) r) = ↑(algebraMap R B) r map_star'✝ : ∀ (x : A), OneHom.toFun (↑↑↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, commutes' := commutes'✝ }) (star x) = star (OneHom.toFun (↑↑↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, commutes' := commutes'✝ }) x) h : (fun f => f.toFun) { toAlgHom := { toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, commutes' := commutes'✝¹ }, map_star' := map_star'✝¹ } = (fun f => f.toFun) { toAlgHom := { toRingHom := { toMonoidHom := { toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, commutes' := commutes'✝ }, map_star' := map_star'✝ } ⊢ { toAlgHom := { toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, commutes' := commutes'✝¹ }, map_star' := map_star'✝¹ } = { toAlgHom := { toRingHom := { toMonoidHom := { toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, commutes' := commutes'✝ }, map_star' := map_star'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 D : Type u_6 inst✝¹² : CommSemiring R inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Star A inst✝⁸ : Semiring B inst✝⁷ : Algebra R B inst✝⁶ : Star B inst✝⁵ : Semiring C inst✝⁴ : Algebra R C inst✝³ : Star C inst✝² : Semiring D inst✝¹ : Algebra R D inst✝ : Star D f : A →⋆ₐ[R] B h₁ : ↑f 1 = 1 h₂ : ∀ (x y : A), OneHom.toFun { toFun := ↑f, map_one' := h₁ } (x * y) = OneHom.toFun { toFun := ↑f, map_one' := h₁ } x * OneHom.toFun { toFun := ↑f, map_one' := h₁ } y h₃ : OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) 0 = 0 h₄ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) x + OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) y h₅ : ∀ (r : R), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }) (↑(algebraMap R A) r) = ↑(algebraMap R B) r h₆ : ∀ (x : A), OneHom.toFun (↑↑↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }, commutes' := h₅ }) (star x) = star (OneHom.toFun (↑↑↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }, commutes' := h₅ }) x) ⊢ { toAlgHom := { toRingHom := { toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }, commutes' := h₅ }, map_star' := h₆ } = f [PROOFSTEP] ext [GOAL] case h F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 D : Type u_6 inst✝¹² : CommSemiring R inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Star A inst✝⁸ : Semiring B inst✝⁷ : Algebra R B inst✝⁶ : Star B inst✝⁵ : Semiring C inst✝⁴ : Algebra R C inst✝³ : Star C inst✝² : Semiring D inst✝¹ : Algebra R D inst✝ : Star D f : A →⋆ₐ[R] B h₁ : ↑f 1 = 1 h₂ : ∀ (x y : A), OneHom.toFun { toFun := ↑f, map_one' := h₁ } (x * y) = OneHom.toFun { toFun := ↑f, map_one' := h₁ } x * OneHom.toFun { toFun := ↑f, map_one' := h₁ } y h₃ : OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) 0 = 0 h₄ : ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) x + OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) y h₅ : ∀ (r : R), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }) (↑(algebraMap R A) r) = ↑(algebraMap R B) r h₆ : ∀ (x : A), OneHom.toFun (↑↑↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }, commutes' := h₅ }) (star x) = star (OneHom.toFun (↑↑↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }, commutes' := h₅ }) x) x✝ : A ⊢ ↑{ toAlgHom := { toRingHom := { toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }, commutes' := h₅ }, map_star' := h₆ } x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 D : Type u_6 inst✝¹² : CommSemiring R inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Star A inst✝⁸ : Semiring B inst✝⁷ : Algebra R B inst✝⁶ : Star B inst✝⁵ : Semiring C inst✝⁴ : Algebra R C inst✝³ : Star C inst✝² : Semiring D inst✝¹ : Algebra R D inst✝ : Star D f : B →⋆ₐ[R] C g : A →⋆ₐ[R] B src✝ : A →ₐ[R] C := AlgHom.comp f.toAlgHom g.toAlgHom ⊢ ∀ (x : A), OneHom.toFun (↑↑↑{ toRingHom := ↑src✝, commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑↑src✝) (↑(algebraMap R A) r) = ↑(algebraMap R C) r) }) (star x) = star (OneHom.toFun (↑↑↑{ toRingHom := ↑src✝, commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑↑src✝) (↑(algebraMap R A) r) = ↑(algebraMap R C) r) }) x) [PROOFSTEP] simp only [map_star, AlgHom.toFun_eq_coe, AlgHom.coe_comp, coe_toAlgHom, Function.comp_apply, eq_self_iff_true, forall_const] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : Monoid R inst✝⁸ : NonUnitalNonAssocSemiring A inst✝⁷ : DistribMulAction R A inst✝⁶ : Star A inst✝⁵ : NonUnitalNonAssocSemiring B inst✝⁴ : DistribMulAction R B inst✝³ : Star B inst✝² : NonUnitalNonAssocSemiring C inst✝¹ : DistribMulAction R C inst✝ : Star C f : A →⋆ₙₐ[R] B g : A →⋆ₙₐ[R] C src✝ : A →ₙₐ[R] B × C := NonUnitalAlgHom.prod f.toNonUnitalAlgHom g.toNonUnitalAlgHom x : A ⊢ MulActionHom.toFun { toDistribMulActionHom := src✝.toDistribMulActionHom, map_mul' := (_ : ∀ (x y : A), MulActionHom.toFun src✝.toMulActionHom (x * y) = MulActionHom.toFun src✝.toMulActionHom x * MulActionHom.toFun src✝.toMulActionHom y) }.toDistribMulActionHom.toMulActionHom (star x) = star (MulActionHom.toFun { toDistribMulActionHom := src✝.toDistribMulActionHom, map_mul' := (_ : ∀ (x y : A), MulActionHom.toFun src✝.toMulActionHom (x * y) = MulActionHom.toFun src✝.toMulActionHom x * MulActionHom.toFun src✝.toMulActionHom y) }.toDistribMulActionHom.toMulActionHom x) [PROOFSTEP] simp [map_star, Prod.star_def] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : Monoid R inst✝⁸ : NonUnitalNonAssocSemiring A inst✝⁷ : DistribMulAction R A inst✝⁶ : Star A inst✝⁵ : NonUnitalNonAssocSemiring B inst✝⁴ : DistribMulAction R B inst✝³ : Star B inst✝² : NonUnitalNonAssocSemiring C inst✝¹ : DistribMulAction R C inst✝ : Star C f : A →⋆ₙₐ[R] B g : A →⋆ₙₐ[R] C ⊢ comp (fst R B C) (prod f g) = f [PROOFSTEP] ext [GOAL] case h R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : Monoid R inst✝⁸ : NonUnitalNonAssocSemiring A inst✝⁷ : DistribMulAction R A inst✝⁶ : Star A inst✝⁵ : NonUnitalNonAssocSemiring B inst✝⁴ : DistribMulAction R B inst✝³ : Star B inst✝² : NonUnitalNonAssocSemiring C inst✝¹ : DistribMulAction R C inst✝ : Star C f : A →⋆ₙₐ[R] B g : A →⋆ₙₐ[R] C x✝ : A ⊢ ↑(comp (fst R B C) (prod f g)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : Monoid R inst✝⁸ : NonUnitalNonAssocSemiring A inst✝⁷ : DistribMulAction R A inst✝⁶ : Star A inst✝⁵ : NonUnitalNonAssocSemiring B inst✝⁴ : DistribMulAction R B inst✝³ : Star B inst✝² : NonUnitalNonAssocSemiring C inst✝¹ : DistribMulAction R C inst✝ : Star C f : A →⋆ₙₐ[R] B g : A →⋆ₙₐ[R] C ⊢ comp (snd R B C) (prod f g) = g [PROOFSTEP] ext [GOAL] case h R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : Monoid R inst✝⁸ : NonUnitalNonAssocSemiring A inst✝⁷ : DistribMulAction R A inst✝⁶ : Star A inst✝⁵ : NonUnitalNonAssocSemiring B inst✝⁴ : DistribMulAction R B inst✝³ : Star B inst✝² : NonUnitalNonAssocSemiring C inst✝¹ : DistribMulAction R C inst✝ : Star C f : A →⋆ₙₐ[R] B g : A →⋆ₙₐ[R] C x✝ : A ⊢ ↑(comp (snd R B C) (prod f g)) x✝ = ↑g x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : Monoid R inst✝⁸ : NonUnitalNonAssocSemiring A inst✝⁷ : DistribMulAction R A inst✝⁶ : Star A inst✝⁵ : NonUnitalNonAssocSemiring B inst✝⁴ : DistribMulAction R B inst✝³ : Star B inst✝² : NonUnitalNonAssocSemiring C inst✝¹ : DistribMulAction R C inst✝ : Star C f : (A →⋆ₙₐ[R] B) × (A →⋆ₙₐ[R] C) ⊢ (fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f) = f [PROOFSTEP] ext [GOAL] case h₁.h R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : Monoid R inst✝⁸ : NonUnitalNonAssocSemiring A inst✝⁷ : DistribMulAction R A inst✝⁶ : Star A inst✝⁵ : NonUnitalNonAssocSemiring B inst✝⁴ : DistribMulAction R B inst✝³ : Star B inst✝² : NonUnitalNonAssocSemiring C inst✝¹ : DistribMulAction R C inst✝ : Star C f : (A →⋆ₙₐ[R] B) × (A →⋆ₙₐ[R] C) x✝ : A ⊢ ↑((fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f)).fst x✝ = ↑f.fst x✝ [PROOFSTEP] rfl [GOAL] case h₂.h R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : Monoid R inst✝⁸ : NonUnitalNonAssocSemiring A inst✝⁷ : DistribMulAction R A inst✝⁶ : Star A inst✝⁵ : NonUnitalNonAssocSemiring B inst✝⁴ : DistribMulAction R B inst✝³ : Star B inst✝² : NonUnitalNonAssocSemiring C inst✝¹ : DistribMulAction R C inst✝ : Star C f : (A →⋆ₙₐ[R] B) × (A →⋆ₙₐ[R] C) x✝ : A ⊢ ↑((fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f)).snd x✝ = ↑f.snd x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : Monoid R inst✝⁸ : NonUnitalNonAssocSemiring A inst✝⁷ : DistribMulAction R A inst✝⁶ : Star A inst✝⁵ : NonUnitalNonAssocSemiring B inst✝⁴ : DistribMulAction R B inst✝³ : Star B inst✝² : NonUnitalNonAssocSemiring C inst✝¹ : DistribMulAction R C inst✝ : Star C f : A →⋆ₙₐ[R] B × C ⊢ (fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f) = f [PROOFSTEP] ext [GOAL] case h.h₁ R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : Monoid R inst✝⁸ : NonUnitalNonAssocSemiring A inst✝⁷ : DistribMulAction R A inst✝⁶ : Star A inst✝⁵ : NonUnitalNonAssocSemiring B inst✝⁴ : DistribMulAction R B inst✝³ : Star B inst✝² : NonUnitalNonAssocSemiring C inst✝¹ : DistribMulAction R C inst✝ : Star C f : A →⋆ₙₐ[R] B × C x✝ : A ⊢ (↑((fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f)) x✝).fst = (↑f x✝).fst [PROOFSTEP] rfl [GOAL] case h.h₂ R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : Monoid R inst✝⁸ : NonUnitalNonAssocSemiring A inst✝⁷ : DistribMulAction R A inst✝⁶ : Star A inst✝⁵ : NonUnitalNonAssocSemiring B inst✝⁴ : DistribMulAction R B inst✝³ : Star B inst✝² : NonUnitalNonAssocSemiring C inst✝¹ : DistribMulAction R C inst✝ : Star C f : A →⋆ₙₐ[R] B × C x✝ : A ⊢ (↑((fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f)) x✝).snd = (↑f x✝).snd [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : Star A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : Star B inst✝² : Semiring C inst✝¹ : Algebra R C inst✝ : Star C f : A →⋆ₐ[R] B g : A →⋆ₐ[R] C src✝ : A →ₐ[R] B × C := AlgHom.prod f.toAlgHom g.toAlgHom x : A ⊢ OneHom.toFun (↑↑↑{ toRingHom := ↑src✝, commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑↑src✝) (↑(algebraMap R A) r) = ↑(algebraMap R (B × C)) r) }) (star x) = star (OneHom.toFun (↑↑↑{ toRingHom := ↑src✝, commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑↑src✝) (↑(algebraMap R A) r) = ↑(algebraMap R (B × C)) r) }) x) [PROOFSTEP] simp [Prod.star_def, map_star] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : Star A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : Star B inst✝² : Semiring C inst✝¹ : Algebra R C inst✝ : Star C f : A →⋆ₐ[R] B g : A →⋆ₐ[R] C ⊢ comp (fst R B C) (prod f g) = f [PROOFSTEP] ext [GOAL] case h R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : Star A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : Star B inst✝² : Semiring C inst✝¹ : Algebra R C inst✝ : Star C f : A →⋆ₐ[R] B g : A →⋆ₐ[R] C x✝ : A ⊢ ↑(comp (fst R B C) (prod f g)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : Star A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : Star B inst✝² : Semiring C inst✝¹ : Algebra R C inst✝ : Star C f : A →⋆ₐ[R] B g : A →⋆ₐ[R] C ⊢ comp (snd R B C) (prod f g) = g [PROOFSTEP] ext [GOAL] case h R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : Star A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : Star B inst✝² : Semiring C inst✝¹ : Algebra R C inst✝ : Star C f : A →⋆ₐ[R] B g : A →⋆ₐ[R] C x✝ : A ⊢ ↑(comp (snd R B C) (prod f g)) x✝ = ↑g x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : Star A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : Star B inst✝² : Semiring C inst✝¹ : Algebra R C inst✝ : Star C f : (A →⋆ₐ[R] B) × (A →⋆ₐ[R] C) ⊢ (fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f) = f [PROOFSTEP] ext [GOAL] case h₁.h R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : Star A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : Star B inst✝² : Semiring C inst✝¹ : Algebra R C inst✝ : Star C f : (A →⋆ₐ[R] B) × (A →⋆ₐ[R] C) x✝ : A ⊢ ↑((fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f)).fst x✝ = ↑f.fst x✝ [PROOFSTEP] rfl [GOAL] case h₂.h R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : Star A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : Star B inst✝² : Semiring C inst✝¹ : Algebra R C inst✝ : Star C f : (A →⋆ₐ[R] B) × (A →⋆ₐ[R] C) x✝ : A ⊢ ↑((fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f)).snd x✝ = ↑f.snd x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : Star A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : Star B inst✝² : Semiring C inst✝¹ : Algebra R C inst✝ : Star C f : A →⋆ₐ[R] B × C ⊢ (fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f) = f [PROOFSTEP] ext [GOAL] case h.h₁ R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : Star A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : Star B inst✝² : Semiring C inst✝¹ : Algebra R C inst✝ : Star C f : A →⋆ₐ[R] B × C x✝ : A ⊢ (↑((fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f)) x✝).fst = (↑f x✝).fst [PROOFSTEP] rfl [GOAL] case h.h₂ R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : Star A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : Star B inst✝² : Semiring C inst✝¹ : Algebra R C inst✝ : Star C f : A →⋆ₐ[R] B × C x✝ : A ⊢ (↑((fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f)) x✝).snd = (↑f x✝).snd [PROOFSTEP] rfl [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Star A inst✝² : Semiring B inst✝¹ : Algebra R B inst✝ : Star B hF : StarAlgEquivClass F R A B f : F r : R ⊢ ↑f (↑(algebraMap R A) r) = ↑(algebraMap R B) r [PROOFSTEP] simp only [Algebra.algebraMap_eq_smul_one, map_smul, map_one] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹¹ : Add A inst✝¹⁰ : Add B inst✝⁹ : Mul A inst✝⁸ : Mul B inst✝⁷ : SMul R A inst✝⁶ : SMul R B inst✝⁵ : Star A inst✝⁴ : Star B inst✝³ : Add C inst✝² : Mul C inst✝¹ : SMul R C inst✝ : Star C f g : A ≃⋆ₐ[R] B h₁ : (fun f => f.toFun) f = (fun f => f.toFun) g h₂ : (fun f => f.invFun) f = (fun f => f.invFun) g ⊢ f = g [PROOFSTEP] rcases f with ⟨⟨⟨_, _, _⟩, _⟩, _⟩ [GOAL] case mk.mk.mk F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹¹ : Add A inst✝¹⁰ : Add B inst✝⁹ : Mul A inst✝⁸ : Mul B inst✝⁷ : SMul R A inst✝⁶ : SMul R B inst✝⁵ : Star A inst✝⁴ : Star B inst✝³ : Add C inst✝² : Mul C inst✝¹ : SMul R C inst✝ : Star C g : A ≃⋆ₐ[R] B toFun✝ : A → B invFun✝ : B → A left_inv✝ : Function.LeftInverse invFun✝ toFun✝ right_inv✝ : Function.RightInverse invFun✝ toFun✝ map_mul'✝ : ∀ (x y : A), Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x * y) = Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x * Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y map_add'✝ : ∀ (x y : A), Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x + y) = Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x + Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y map_star'✝ : ∀ (a : A), Equiv.toFun { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv (star a) = star (Equiv.toFun { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv a) map_smul'✝ : ∀ (r : R) (a : A), Equiv.toFun { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv (r • a) = r • Equiv.toFun { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv a h₁ : (fun f => f.toFun) { toRingEquiv := { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }, map_star' := map_star'✝, map_smul' := map_smul'✝ } = (fun f => f.toFun) g h₂ : (fun f => f.invFun) { toRingEquiv := { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }, map_star' := map_star'✝, map_smul' := map_smul'✝ } = (fun f => f.invFun) g ⊢ { toRingEquiv := { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }, map_star' := map_star'✝, map_smul' := map_smul'✝ } = g [PROOFSTEP] rcases g with ⟨⟨⟨_, _, _⟩, _⟩, _⟩ [GOAL] case mk.mk.mk.mk.mk.mk F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹¹ : Add A inst✝¹⁰ : Add B inst✝⁹ : Mul A inst✝⁸ : Mul B inst✝⁷ : SMul R A inst✝⁶ : SMul R B inst✝⁵ : Star A inst✝⁴ : Star B inst✝³ : Add C inst✝² : Mul C inst✝¹ : SMul R C inst✝ : Star C toFun✝¹ : A → B invFun✝¹ : B → A left_inv✝¹ : Function.LeftInverse invFun✝¹ toFun✝¹ right_inv✝¹ : Function.RightInverse invFun✝¹ toFun✝¹ map_mul'✝¹ : ∀ (x y : A), Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } (x * y) = Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } x * Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } y map_add'✝¹ : ∀ (x y : A), Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } (x + y) = Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } x + Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } y map_star'✝¹ : ∀ (a : A), Equiv.toFun { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }.toEquiv (star a) = star (Equiv.toFun { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }.toEquiv a) map_smul'✝¹ : ∀ (r : R) (a : A), Equiv.toFun { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }.toEquiv (r • a) = r • Equiv.toFun { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }.toEquiv a toFun✝ : A → B invFun✝ : B → A left_inv✝ : Function.LeftInverse invFun✝ toFun✝ right_inv✝ : Function.RightInverse invFun✝ toFun✝ map_mul'✝ : ∀ (x y : A), Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x * y) = Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x * Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y map_add'✝ : ∀ (x y : A), Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x + y) = Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x + Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y map_star'✝ : ∀ (a : A), Equiv.toFun { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv (star a) = star (Equiv.toFun { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv a) map_smul'✝ : ∀ (r : R) (a : A), Equiv.toFun { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv (r • a) = r • Equiv.toFun { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv a h₁ : (fun f => f.toFun) { toRingEquiv := { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }, map_star' := map_star'✝¹, map_smul' := map_smul'✝¹ } = (fun f => f.toFun) { toRingEquiv := { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }, map_star' := map_star'✝, map_smul' := map_smul'✝ } h₂ : (fun f => f.invFun) { toRingEquiv := { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }, map_star' := map_star'✝¹, map_smul' := map_smul'✝¹ } = (fun f => f.invFun) { toRingEquiv := { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }, map_star' := map_star'✝, map_smul' := map_smul'✝ } ⊢ { toRingEquiv := { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }, map_star' := map_star'✝¹, map_smul' := map_smul'✝¹ } = { toRingEquiv := { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }, map_star' := map_star'✝, map_smul' := map_smul'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹¹ : Add A inst✝¹⁰ : Add B inst✝⁹ : Mul A inst✝⁸ : Mul B inst✝⁷ : SMul R A inst✝⁶ : SMul R B inst✝⁵ : Star A inst✝⁴ : Star B inst✝³ : Add C inst✝² : Mul C inst✝¹ : SMul R C inst✝ : Star C e : A ≃⋆ₐ[R] B src✝ : B ≃+* A := RingEquiv.symm e.toRingEquiv b : B ⊢ Equiv.toFun { toEquiv := src✝.toEquiv, map_mul' := (_ : ∀ (x y : B), Equiv.toFun src✝.toEquiv (x * y) = Equiv.toFun src✝.toEquiv x * Equiv.toFun src✝.toEquiv y), map_add' := (_ : ∀ (x y : B), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }.toEquiv (star b) = star (Equiv.toFun { toEquiv := src✝.toEquiv, map_mul' := (_ : ∀ (x y : B), Equiv.toFun src✝.toEquiv (x * y) = Equiv.toFun src✝.toEquiv x * Equiv.toFun src✝.toEquiv y), map_add' := (_ : ∀ (x y : B), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }.toEquiv b) [PROOFSTEP] simpa only [apply_inv_apply, inv_apply_apply] using congr_arg (inv e) (map_star e (inv e b)).symm [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹¹ : Add A inst✝¹⁰ : Add B inst✝⁹ : Mul A inst✝⁸ : Mul B inst✝⁷ : SMul R A inst✝⁶ : SMul R B inst✝⁵ : Star A inst✝⁴ : Star B inst✝³ : Add C inst✝² : Mul C inst✝¹ : SMul R C inst✝ : Star C e : A ≃⋆ₐ[R] B src✝ : B ≃+* A := RingEquiv.symm e.toRingEquiv r : R b : B ⊢ Equiv.toFun { toEquiv := src✝.toEquiv, map_mul' := (_ : ∀ (x y : B), Equiv.toFun src✝.toEquiv (x * y) = Equiv.toFun src✝.toEquiv x * Equiv.toFun src✝.toEquiv y), map_add' := (_ : ∀ (x y : B), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }.toEquiv (r • b) = r • Equiv.toFun { toEquiv := src✝.toEquiv, map_mul' := (_ : ∀ (x y : B), Equiv.toFun src✝.toEquiv (x * y) = Equiv.toFun src✝.toEquiv x * Equiv.toFun src✝.toEquiv y), map_add' := (_ : ∀ (x y : B), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }.toEquiv b [PROOFSTEP] simpa only [apply_inv_apply, inv_apply_apply] using congr_arg (inv e) (map_smul e r (inv e b)).symm [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹¹ : Add A inst✝¹⁰ : Add B inst✝⁹ : Mul A inst✝⁸ : Mul B inst✝⁷ : SMul R A inst✝⁶ : SMul R B inst✝⁵ : Star A inst✝⁴ : Star B inst✝³ : Add C inst✝² : Mul C inst✝¹ : SMul R C inst✝ : Star C e : A ≃⋆ₐ[R] B ⊢ symm (symm e) = e [PROOFSTEP] ext [GOAL] case h F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹¹ : Add A inst✝¹⁰ : Add B inst✝⁹ : Mul A inst✝⁸ : Mul B inst✝⁷ : SMul R A inst✝⁶ : SMul R B inst✝⁵ : Star A inst✝⁴ : Star B inst✝³ : Add C inst✝² : Mul C inst✝¹ : SMul R C inst✝ : Star C e : A ≃⋆ₐ[R] B a✝ : A ⊢ ↑(symm (symm e)) a✝ = ↑e a✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹¹ : Add A inst✝¹⁰ : Add B inst✝⁹ : Mul A inst✝⁸ : Mul B inst✝⁷ : SMul R A inst✝⁶ : SMul R B inst✝⁵ : Star A inst✝⁴ : Star B inst✝³ : Add C inst✝² : Mul C inst✝¹ : SMul R C inst✝ : Star C e₁ : A ≃⋆ₐ[R] B e₂ : B ≃⋆ₐ[R] C src✝ : A ≃+* C := RingEquiv.trans e₁.toRingEquiv e₂.toRingEquiv a : A ⊢ Equiv.toFun e₂.toEquiv (Equiv.toFun e₁.toEquiv (star a)) = star (Equiv.toFun e₂.toEquiv (Equiv.toFun e₁.toEquiv a)) [PROOFSTEP] rw [e₁.map_star', e₂.map_star'] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹¹ : Add A inst✝¹⁰ : Add B inst✝⁹ : Mul A inst✝⁸ : Mul B inst✝⁷ : SMul R A inst✝⁶ : SMul R B inst✝⁵ : Star A inst✝⁴ : Star B inst✝³ : Add C inst✝² : Mul C inst✝¹ : SMul R C inst✝ : Star C e₁ : A ≃⋆ₐ[R] B e₂ : B ≃⋆ₐ[R] C src✝ : A ≃+* C := RingEquiv.trans e₁.toRingEquiv e₂.toRingEquiv r : R a : A ⊢ Equiv.toFun e₂.toEquiv (Equiv.toFun e₁.toEquiv (r • a)) = r • Equiv.toFun e₂.toEquiv (Equiv.toFun e₁.toEquiv a) [PROOFSTEP] rw [e₁.map_smul', e₂.map_smul']
{"mathlib_filename": "Mathlib.Algebra.Star.StarAlgHom", "llama_tokens": 22485}
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.OrderDual", "llama_tokens": 0}
[GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Group α inst✝² : CommSemigroup β inst✝¹ : LE β inst✝ : SubmultiplicativeHomClass F α β f : F a b : α ⊢ ↑f a ≤ ↑f b * ↑f (a / b) [PROOFSTEP] simpa only [mul_comm, div_mul_cancel'] using map_mul_le_mul f (a / b) b [GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Group α inst✝² : AddCommSemigroup β inst✝¹ : LE β inst✝ : MulLEAddHomClass F α β f : F a b : α ⊢ ↑f a ≤ ↑f b + ↑f (a / b) [PROOFSTEP] simpa only [add_comm, div_mul_cancel'] using map_mul_le_add f (a / b) b [GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Group α inst✝² : CommSemigroup β inst✝¹ : LE β inst✝ : SubmultiplicativeHomClass F α β f : F a b c : α ⊢ ↑f (a / c) ≤ ↑f (a / b) * ↑f (b / c) [PROOFSTEP] simpa only [div_mul_div_cancel'] using map_mul_le_mul f (a / b) (b / c) [GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Group α inst✝² : AddCommSemigroup β inst✝¹ : LE β inst✝ : MulLEAddHomClass F α β f : F a b c : α ⊢ ↑f (a / c) ≤ ↑f (a / b) + ↑f (b / c) [PROOFSTEP] simpa only [div_mul_div_cancel'] using map_mul_le_add f (a / b) (b / c) [GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Group α inst✝¹ : OrderedAddCommMonoid β inst✝ : GroupSeminormClass F α β f : F x y : α ⊢ ↑f (x / y) ≤ ↑f x + ↑f y [PROOFSTEP] rw [div_eq_mul_inv, ← map_inv_eq_map f y] [GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Group α inst✝¹ : OrderedAddCommMonoid β inst✝ : GroupSeminormClass F α β f : F x y : α ⊢ ↑f (x * y⁻¹) ≤ ↑f x + ↑f y⁻¹ [PROOFSTEP] exact map_mul_le_add _ _ _ [GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Group α inst✝¹ : OrderedAddCommMonoid β inst✝ : GroupSeminormClass F α β f : F x y : α ⊢ ↑f (x / y) = ↑f (y / x) [PROOFSTEP] rw [← inv_div, map_inv_eq_map] [GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Group α inst✝¹ : OrderedAddCommMonoid β inst✝ : GroupSeminormClass F α β f : F x y : α ⊢ ↑f x ≤ ↑f y + ↑f (y / x) [PROOFSTEP] simpa only [add_comm, map_div_rev, div_mul_cancel'] using map_mul_le_add f (x / y) y [GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Group α inst✝¹ : LinearOrderedAddCommGroup β inst✝ : GroupSeminormClass F α β f : F x y : α ⊢ |↑f x - ↑f y| ≤ ↑f (x / y) [PROOFSTEP] rw [abs_sub_le_iff, sub_le_iff_le_add', sub_le_iff_le_add'] [GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Group α inst✝¹ : LinearOrderedAddCommGroup β inst✝ : GroupSeminormClass F α β f : F x y : α ⊢ ↑f x ≤ ↑f y + ↑f (x / y) ∧ ↑f y ≤ ↑f x + ↑f (x / y) [PROOFSTEP] exact ⟨le_map_add_map_div _ _ _, le_map_add_map_div' _ _ _⟩ [GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Group α inst✝¹ : LinearOrderedAddCommMonoid β inst✝ : GroupSeminormClass F α β src✝ : GroupSeminormClass F α β := inst✝ f : F a : α ⊢ 0 ≤ 2 • ↑f a [PROOFSTEP] rw [two_nsmul, ← map_one_eq_zero f, ← div_self' a] [GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Group α inst✝¹ : LinearOrderedAddCommMonoid β inst✝ : GroupSeminormClass F α β src✝ : GroupSeminormClass F α β := inst✝ f : F a : α ⊢ ↑f (a / a) ≤ ↑f a + ↑f a [PROOFSTEP] exact map_div_le_add _ _ _ [GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Group α inst✝¹ : OrderedAddCommMonoid β inst✝ : GroupNormClass F α β f : F x : α ⊢ x = 1 → ↑f x = 0 [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 F : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Group α inst✝¹ : OrderedAddCommMonoid β inst✝ : GroupNormClass F α β f : F ⊢ ↑f 1 = 0 [PROOFSTEP] exact map_one_eq_zero _
{"mathlib_filename": "Mathlib.Algebra.Order.Hom.Basic", "llama_tokens": 2144}
[GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Nontrivial α C : PositiveCone α src✝¹ : Ring α := inst✝¹ src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone h : 0 = 1 ⊢ False [PROOFSTEP] simpa [← h, C.pos_iff] using C.one_pos [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Nontrivial α C : PositiveCone α src✝¹ : Ring α := inst✝¹ src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone ⊢ 0 ≤ 1 [PROOFSTEP] change C.nonneg (1 - 0) [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Nontrivial α C : PositiveCone α src✝¹ : Ring α := inst✝¹ src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone ⊢ AddCommGroup.PositiveCone.nonneg C.toPositiveCone (1 - 0) [PROOFSTEP] convert C.one_nonneg [GOAL] case h.e'_4 α : Type u_1 inst✝¹ : Ring α inst✝ : Nontrivial α C : PositiveCone α src✝¹ : Ring α := inst✝¹ src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone ⊢ 1 - 0 = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Nontrivial α C : PositiveCone α src✝¹ : Ring α := inst✝¹ src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone x y : α xp : 0 < x yp : 0 < y ⊢ 0 < x * y [PROOFSTEP] change C.pos (x * y - 0) -- porting note: used to be convert, but it relied on unfolding definitions [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Nontrivial α C : PositiveCone α src✝¹ : Ring α := inst✝¹ src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone x y : α xp : 0 < x yp : 0 < y ⊢ AddCommGroup.PositiveCone.pos C.toPositiveCone (x * y - 0) [PROOFSTEP] rw [sub_zero] [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Nontrivial α C : PositiveCone α src✝¹ : Ring α := inst✝¹ src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone x y : α xp : 0 < x yp : 0 < y ⊢ AddCommGroup.PositiveCone.pos C.toPositiveCone (x * y) [PROOFSTEP] exact C.mul_pos x y (by rwa [← sub_zero x]) (by rwa [← sub_zero y]) [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Nontrivial α C : PositiveCone α src✝¹ : Ring α := inst✝¹ src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone x y : α xp : 0 < x yp : 0 < y ⊢ AddCommGroup.PositiveCone.pos C.toPositiveCone x [PROOFSTEP] rwa [← sub_zero x] [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Nontrivial α C : PositiveCone α src✝¹ : Ring α := inst✝¹ src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone x y : α xp : 0 < x yp : 0 < y ⊢ AddCommGroup.PositiveCone.pos C.toPositiveCone y [PROOFSTEP] rwa [← sub_zero y]
{"mathlib_filename": "Mathlib.Algebra.Order.Ring.Cone", "llama_tokens": 1233}
[GOAL] α : Type u_1 β : Type u_2 inst✝³ : Mul α inst✝² : LinearOrder α a b c d : α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 h : a * b ≤ c * d ⊢ min a b ≤ max c d [PROOFSTEP] simp_rw [min_le_iff, le_max_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Mul α inst✝² : LinearOrder α a b c d : α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 h : a * b ≤ c * d ⊢ (a ≤ c ∨ a ≤ d) ∨ b ≤ c ∨ b ≤ d [PROOFSTEP] contrapose! h [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Mul α inst✝² : LinearOrder α a b c d : α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 h : (c < a ∧ d < a) ∧ c < b ∧ d < b ⊢ c * d < a * b [PROOFSTEP] exact mul_lt_mul_of_lt_of_lt h.1.1 h.2.2 [GOAL] α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LE α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α h : a ≤ a * b ⊢ ?m.15077 h * 1 ≤ ?m.15077 h * b [PROOFSTEP] simpa only [mul_one] [GOAL] α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LE α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α h : a * b ≤ a ⊢ ?m.15584 h * b ≤ ?m.15584 h * 1 [PROOFSTEP] simpa only [mul_one] [GOAL] α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LE α inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α h : b ≤ a * b ⊢ 1 * ?m.16128 h ≤ a * ?m.16128 h [PROOFSTEP] simpa only [one_mul] [GOAL] α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LE α inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α h : a * b ≤ b ⊢ a * ?m.16669 h ≤ 1 * ?m.16669 h [PROOFSTEP] simpa only [one_mul] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : MulOneClass α inst✝² : LE α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a ≤ a * b ↔ a * 1 ≤ a * b [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : MulOneClass α inst✝² : LE α inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a ≤ b * a ↔ 1 * a ≤ b * a [PROOFSTEP] rw [one_mul] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : MulOneClass α inst✝² : LE α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a * b ≤ a ↔ a * b ≤ a * 1 [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : MulOneClass α inst✝² : LE α inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ⊢ a * b ≤ b ↔ a * b ≤ 1 * b [PROOFSTEP] rw [one_mul] [GOAL] α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LT α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b : α h : a < a * b ⊢ ?m.21985 h * 1 < ?m.21985 h * b [PROOFSTEP] simpa only [mul_one] [GOAL] α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LT α inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b : α h : a * b < a ⊢ ?m.22488 h * b < ?m.22488 h * 1 [PROOFSTEP] simpa only [mul_one] [GOAL] α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b : α h : b < a * b ⊢ 1 * ?m.23024 h < a * ?m.23024 h [PROOFSTEP] simpa only [one_mul] [GOAL] α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LT α inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b : α h : a * b < b ⊢ a * ?m.23557 h < 1 * ?m.23557 h [PROOFSTEP] simpa only [one_mul] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : MulOneClass α inst✝² : LT α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b : α ⊢ a < a * b ↔ a * 1 < a * b [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : MulOneClass α inst✝² : LT α inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b : α ⊢ a < b * a ↔ 1 * a < b * a [PROOFSTEP] rw [one_mul] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : MulOneClass α inst✝² : LT α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b : α ⊢ a * b < a ↔ a * b < a * 1 [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : MulOneClass α inst✝² : LT α inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b : α ⊢ a * b < b ↔ a * b < 1 * b [PROOFSTEP] rw [one_mul] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : MulOneClass α inst✝² : PartialOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ha : 1 ≤ a hb : 1 ≤ b ⊢ a = 1 ∧ b = 1 → a * b = 1 [PROOFSTEP] rintro ⟨rfl, rfl⟩ [GOAL] case intro α : Type u_1 β : Type u_2 inst✝³ : MulOneClass α inst✝² : PartialOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 ha hb : 1 ≤ 1 ⊢ 1 * 1 = 1 [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : MulOneClass α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ha : a₁ ≤ a₂ hb : b₁ ≤ b₂ ⊢ a₂ * b₂ ≤ a₁ * b₁ ↔ a₁ = a₂ ∧ b₁ = b₂ [PROOFSTEP] refine' ⟨fun h ↦ _, by rintro ⟨rfl, rfl⟩; rfl⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : MulOneClass α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ha : a₁ ≤ a₂ hb : b₁ ≤ b₂ ⊢ a₁ = a₂ ∧ b₁ = b₂ → a₂ * b₂ ≤ a₁ * b₁ [PROOFSTEP] rintro ⟨rfl, rfl⟩ [GOAL] case intro α : Type u_1 β : Type u_2 inst✝⁵ : MulOneClass α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ b₁ : α ha : a₁ ≤ a₁ hb : b₁ ≤ b₁ ⊢ a₁ * b₁ ≤ a₁ * b₁ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : MulOneClass α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ha : a₁ ≤ a₂ hb : b₁ ≤ b₂ h : a₂ * b₂ ≤ a₁ * b₁ ⊢ a₁ = a₂ ∧ b₁ = b₂ [PROOFSTEP] simp only [eq_iff_le_not_lt, ha, hb, true_and] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : MulOneClass α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ha : a₁ ≤ a₂ hb : b₁ ≤ b₂ h : a₂ * b₂ ≤ a₁ * b₁ ⊢ ¬a₁ < a₂ ∧ ¬b₁ < b₂ [PROOFSTEP] refine' ⟨fun ha ↦ h.not_lt _, fun hb ↦ h.not_lt _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁵ : MulOneClass α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ha✝ : a₁ ≤ a₂ hb : b₁ ≤ b₂ h : a₂ * b₂ ≤ a₁ * b₁ ha : a₁ < a₂ ⊢ a₁ * b₁ < a₂ * b₂ case refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : MulOneClass α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ha : a₁ ≤ a₂ hb✝ : b₁ ≤ b₂ h : a₂ * b₂ ≤ a₁ * b₁ hb : b₁ < b₂ ⊢ a₁ * b₁ < a₂ * b₂ [PROOFSTEP] {exact mul_lt_mul_of_lt_of_le ha hb } [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝⁵ : MulOneClass α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ha✝ : a₁ ≤ a₂ hb : b₁ ≤ b₂ h : a₂ * b₂ ≤ a₁ * b₁ ha : a₁ < a₂ ⊢ a₁ * b₁ < a₂ * b₂ [PROOFSTEP] exact mul_lt_mul_of_lt_of_le ha hb [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : MulOneClass α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ha : a₁ ≤ a₂ hb✝ : b₁ ≤ b₂ h : a₂ * b₂ ≤ a₁ * b₁ hb : b₁ < b₂ ⊢ a₁ * b₁ < a₂ * b₂ [PROOFSTEP] {exact mul_lt_mul_of_le_of_lt ha hb } [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : MulOneClass α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a₁ a₂ b₁ b₂ : α ha : a₁ ≤ a₂ hb✝ : b₁ ≤ b₂ h : a₂ * b₂ ≤ a₁ * b₁ hb : b₁ < b₂ ⊢ a₁ * b₁ < a₂ * b₂ [PROOFSTEP] exact mul_lt_mul_of_le_of_lt ha hb [GOAL] α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a : α ⊢ ∃ b, b * b ≤ a [PROOFSTEP] by_cases h : a < 1 [GOAL] case pos α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a : α h : a < 1 ⊢ ∃ b, b * b ≤ a [PROOFSTEP] use a [GOAL] case h α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a : α h : a < 1 ⊢ a * a ≤ a [PROOFSTEP] have : a * a < a * 1 := mul_lt_mul_left' h a [GOAL] case h α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a : α h : a < 1 this : a * a < a * 1 ⊢ a * a ≤ a [PROOFSTEP] rw [mul_one] at this [GOAL] case h α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a : α h : a < 1 this : a * a < a ⊢ a * a ≤ a [PROOFSTEP] exact le_of_lt this [GOAL] case neg α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a : α h : ¬a < 1 ⊢ ∃ b, b * b ≤ a [PROOFSTEP] use 1 [GOAL] case h α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a : α h : ¬a < 1 ⊢ 1 * 1 ≤ a [PROOFSTEP] push_neg at h [GOAL] case h α : Type u_1 β : Type u_2 inst✝² : MulOneClass α inst✝¹ : LinearOrder α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a : α h : 1 ≤ a ⊢ 1 * 1 ≤ a [PROOFSTEP] rwa [mul_one] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Semigroup α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α hac : a ≤ c hbd : b ≤ d ⊢ a * b = c * d ↔ a = c ∧ b = d [PROOFSTEP] refine' ⟨fun h => _, fun h => congr_arg₂ (· * ·) h.1 h.2⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Semigroup α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α hac : a ≤ c hbd : b ≤ d h : a * b = c * d ⊢ a = c ∧ b = d [PROOFSTEP] rcases hac.eq_or_lt with (rfl | hac) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝⁵ : Semigroup α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b d : α hbd : b ≤ d hac : a ≤ a h : a * b = a * d ⊢ a = a ∧ b = d [PROOFSTEP] exact ⟨rfl, mul_left_cancel'' h⟩ [GOAL] case inr α : Type u_1 β : Type u_2 inst✝⁵ : Semigroup α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α hac✝ : a ≤ c hbd : b ≤ d h : a * b = c * d hac : a < c ⊢ a = c ∧ b = d [PROOFSTEP] rcases eq_or_lt_of_le hbd with (rfl | hbd) [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝⁵ : Semigroup α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α hac✝ : a ≤ c hac : a < c hbd : b ≤ b h : a * b = c * b ⊢ a = c ∧ b = b [PROOFSTEP] exact ⟨mul_right_cancel'' h, rfl⟩ [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝⁵ : Semigroup α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α hac✝ : a ≤ c hbd✝ : b ≤ d h : a * b = c * d hac : a < c hbd : b < d ⊢ a = c ∧ b = d [PROOFSTEP] exact ((Left.mul_lt_mul hac hbd).ne h).elim [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Semigroup α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α hac : a ≤ c hbd : b ≤ d ⊢ a * b = c * d ↔ a = c ∧ b = d [PROOFSTEP] refine' ⟨fun h => _, fun h => congr_arg₂ (· * ·) h.1 h.2⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Semigroup α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α hac : a ≤ c hbd : b ≤ d h : a * b = c * d ⊢ a = c ∧ b = d [PROOFSTEP] rcases hac.eq_or_lt with (rfl | hac) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝⁵ : Semigroup α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b d : α hbd : b ≤ d hac : a ≤ a h : a * b = a * d ⊢ a = a ∧ b = d [PROOFSTEP] exact ⟨rfl, mul_left_cancel'' h⟩ [GOAL] case inr α : Type u_1 β : Type u_2 inst✝⁵ : Semigroup α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α hac✝ : a ≤ c hbd : b ≤ d h : a * b = c * d hac : a < c ⊢ a = c ∧ b = d [PROOFSTEP] rcases eq_or_lt_of_le hbd with (rfl | hbd) [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝⁵ : Semigroup α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α hac✝ : a ≤ c hac : a < c hbd : b ≤ b h : a * b = c * b ⊢ a = c ∧ b = b [PROOFSTEP] exact ⟨mul_right_cancel'' h, rfl⟩ [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝⁵ : Semigroup α inst✝⁴ : PartialOrder α inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝² : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c d : α hac✝ : a ≤ c hbd✝ : b ≤ d h : a * b = c * d hac : a < c hbd : b < d ⊢ a = c ∧ b = d [PROOFSTEP] exact ((Right.mul_lt_mul hac hbd).ne h).elim [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Monoid α inst✝ : LE α a b : α ⊢ 1 * a ≤ 1 * b → a ≤ b [PROOFSTEP] simpa only [one_mul] using id [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : CommSemigroup α inst✝ : PartialOrder α a : α ha : MulLECancellable a b c : α h : (fun x => x * a) b = (fun x => x * a) c ⊢ (fun x x_1 => x * x_1) a b = (fun x x_1 => x * x_1) a c [PROOFSTEP] dsimp [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : CommSemigroup α inst✝ : PartialOrder α a : α ha : MulLECancellable a b c : α h : (fun x => x * a) b = (fun x => x * a) c ⊢ a * b = a * c [PROOFSTEP] rwa [mul_comm a, mul_comm a] [GOAL] α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : CommSemigroup α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : α ha : MulLECancellable a ⊢ b * a ≤ c * a ↔ b ≤ c [PROOFSTEP] rw [mul_comm b, mul_comm c, ha.mul_le_mul_iff_left] [GOAL] α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : MulOneClass α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ha : MulLECancellable a ⊢ a ≤ a * b ↔ a * 1 ≤ a * b [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : MulOneClass α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ha : MulLECancellable a ⊢ a * b ≤ a ↔ a * b ≤ a * 1 [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : CommMonoid α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ha : MulLECancellable a ⊢ a ≤ b * a ↔ 1 ≤ b [PROOFSTEP] rw [mul_comm, ha.le_mul_iff_one_le_right] [GOAL] α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : CommMonoid α inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b : α ha : MulLECancellable a ⊢ b * a ≤ a ↔ b ≤ 1 [PROOFSTEP] rw [mul_comm, ha.mul_le_iff_le_one_right]
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Lemmas", "llama_tokens": 11166}
[GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a✝ b c d e : α m n : ℤ a : α ha : 0 < a ⊢ a * 0 < a * a⁻¹ [PROOFSTEP] simp [ne_of_gt ha, zero_lt_one] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ⊢ 0 ≤ a⁻¹ ↔ 0 ≤ a [PROOFSTEP] simp only [le_iff_eq_or_lt, inv_pos, zero_eq_inv] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ⊢ a⁻¹ < 0 ↔ a < 0 [PROOFSTEP] simp only [← not_le, inv_nonneg] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ⊢ a⁻¹ ≤ 0 ↔ a ≤ 0 [PROOFSTEP] simp only [← not_lt, inv_pos] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a hb : 0 < b ⊢ 0 < a / b [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a hb : 0 < b ⊢ 0 < a * b⁻¹ [PROOFSTEP] exact mul_pos ha (inv_pos.2 hb) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 ≤ a hb : 0 ≤ b ⊢ 0 ≤ a / b [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 ≤ a hb : 0 ≤ b ⊢ 0 ≤ a * b⁻¹ [PROOFSTEP] exact mul_nonneg ha (inv_nonneg.2 hb) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : a ≤ 0 hb : 0 ≤ b ⊢ a / b ≤ 0 [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : a ≤ 0 hb : 0 ≤ b ⊢ a * b⁻¹ ≤ 0 [PROOFSTEP] exact mul_nonpos_of_nonpos_of_nonneg ha (inv_nonneg.2 hb) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 ≤ a hb : b ≤ 0 ⊢ a / b ≤ 0 [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 ≤ a hb : b ≤ 0 ⊢ a * b⁻¹ ≤ 0 [PROOFSTEP] exact mul_nonpos_of_nonneg_of_nonpos ha (inv_nonpos.2 hb) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n✝ : ℤ ha : 0 ≤ a n : ℕ ⊢ 0 ≤ a ^ ↑n [PROOFSTEP] rw [zpow_ofNat] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n✝ : ℤ ha : 0 ≤ a n : ℕ ⊢ 0 ≤ a ^ n [PROOFSTEP] exact pow_nonneg ha _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n✝ : ℤ ha : 0 ≤ a n : ℕ ⊢ 0 ≤ a ^ (-↑(n + 1)) [PROOFSTEP] rw [zpow_neg, inv_nonneg, zpow_ofNat] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n✝ : ℤ ha : 0 ≤ a n : ℕ ⊢ 0 ≤ a ^ (n + 1) [PROOFSTEP] exact pow_nonneg ha _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n✝ : ℤ ha : 0 < a n : ℕ ⊢ 0 < a ^ ↑n [PROOFSTEP] rw [zpow_ofNat] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n✝ : ℤ ha : 0 < a n : ℕ ⊢ 0 < a ^ n [PROOFSTEP] exact pow_pos ha _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n✝ : ℤ ha : 0 < a n : ℕ ⊢ 0 < a ^ (-↑(n + 1)) [PROOFSTEP] rw [zpow_neg, inv_pos, zpow_ofNat] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n✝ : ℤ ha : 0 < a n : ℕ ⊢ 0 < a ^ (n + 1) [PROOFSTEP] exact pow_pos ha _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hc : 0 < c ⊢ a ≤ b / c ↔ c * a ≤ b [PROOFSTEP] rw [mul_comm, le_div_iff hc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hb : 0 < b h : a / b ≤ c ⊢ a = a / b * b [PROOFSTEP] rw [div_mul_cancel _ (ne_of_lt hb).symm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hb : 0 < b h : a ≤ c * b ⊢ c * b / b = c [PROOFSTEP] refine' (div_eq_iff (ne_of_gt hb)).mpr rfl [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hb : 0 < b ⊢ a / b ≤ c ↔ a ≤ b * c [PROOFSTEP] rw [mul_comm, div_le_iff hb] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hc : 0 < c ⊢ a < b / c ↔ c * a < b [PROOFSTEP] rw [mul_comm, lt_div_iff hc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hc : 0 < c ⊢ b / c < a ↔ b < c * a [PROOFSTEP] rw [mul_comm, div_lt_iff hc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : 0 < b ⊢ b⁻¹ * a ≤ c ↔ a ≤ b * c [PROOFSTEP] rw [inv_eq_one_div, mul_comm, ← div_eq_mul_one_div] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : 0 < b ⊢ a / b ≤ c ↔ a ≤ b * c [PROOFSTEP] exact div_le_iff' h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : 0 < b ⊢ b⁻¹ * a ≤ c ↔ a ≤ c * b [PROOFSTEP] rw [inv_mul_le_iff h, mul_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : 0 < b ⊢ a * b⁻¹ ≤ c ↔ a ≤ b * c [PROOFSTEP] rw [mul_comm, inv_mul_le_iff h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : 0 < b ⊢ a * b⁻¹ ≤ c ↔ a ≤ c * b [PROOFSTEP] rw [mul_comm, inv_mul_le_iff' h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a✝ b c d e : α m n : ℤ a : α h : a = 0 ⊢ a / a ≤ 1 [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a✝ b c d e : α m n : ℤ a : α h : ¬a = 0 ⊢ a / a ≤ 1 [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : 0 < b ⊢ b⁻¹ * a < c ↔ a < b * c [PROOFSTEP] rw [inv_eq_one_div, mul_comm, ← div_eq_mul_one_div] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : 0 < b ⊢ a / b < c ↔ a < b * c [PROOFSTEP] exact div_lt_iff' h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : 0 < b ⊢ b⁻¹ * a < c ↔ a < c * b [PROOFSTEP] rw [inv_mul_lt_iff h, mul_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : 0 < b ⊢ a * b⁻¹ < c ↔ a < b * c [PROOFSTEP] rw [mul_comm, inv_mul_lt_iff h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : 0 < b ⊢ a * b⁻¹ < c ↔ a < c * b [PROOFSTEP] rw [mul_comm, inv_mul_lt_iff' h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a ⊢ a⁻¹ ≤ b ↔ 1 ≤ b * a [PROOFSTEP] rw [inv_eq_one_div] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a ⊢ 1 / a ≤ b ↔ 1 ≤ b * a [PROOFSTEP] exact div_le_iff ha [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a ⊢ a⁻¹ ≤ b ↔ 1 ≤ a * b [PROOFSTEP] rw [inv_eq_one_div] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a ⊢ 1 / a ≤ b ↔ 1 ≤ a * b [PROOFSTEP] exact div_le_iff' ha [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a ⊢ a⁻¹ < b ↔ 1 < b * a [PROOFSTEP] rw [inv_eq_one_div] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a ⊢ 1 / a < b ↔ 1 < b * a [PROOFSTEP] exact div_lt_iff ha [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a ⊢ a⁻¹ < b ↔ 1 < a * b [PROOFSTEP] rw [inv_eq_one_div] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a ⊢ 1 / a < b ↔ 1 < a * b [PROOFSTEP] exact div_lt_iff' ha [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hb : 0 ≤ b hc : 0 ≤ c h : a ≤ c * b ⊢ a / b ≤ c [PROOFSTEP] rcases eq_or_lt_of_le hb with (rfl | hb') [GOAL] case inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a c d e : α m n : ℤ hc : 0 ≤ c hb : 0 ≤ 0 h : a ≤ c * 0 ⊢ a / 0 ≤ c case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hb : 0 ≤ b hc : 0 ≤ c h : a ≤ c * b hb' : 0 < b ⊢ a / b ≤ c [PROOFSTEP] simp [hc] [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hb : 0 ≤ b hc : 0 ≤ c h : a ≤ c * b hb' : 0 < b ⊢ a / b ≤ c [PROOFSTEP] rwa [div_le_iff hb'] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hb : 0 ≤ b hc : 0 ≤ c h : a ≤ b / c ⊢ a * c ≤ b [PROOFSTEP] obtain rfl | hc := hc.eq_or_lt [GOAL] case inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b d e : α m n : ℤ hb : 0 ≤ b hc : 0 ≤ 0 h : a ≤ b / 0 ⊢ a * 0 ≤ b [PROOFSTEP] simpa using hb [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hb : 0 ≤ b hc✝ : 0 ≤ c h : a ≤ b / c hc : 0 < c ⊢ a * c ≤ b [PROOFSTEP] rwa [le_div_iff hc] at h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : a ≤ b hb : 0 ≤ b ⊢ a ≤ 1 * b [PROOFSTEP] rwa [one_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a h : a ≤ b ⊢ b⁻¹ ≤ a⁻¹ [PROOFSTEP] rwa [← one_div a, le_div_iff' ha, ← div_eq_mul_inv, div_le_iff (ha.trans_le h), one_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a hb : 0 < b ⊢ a⁻¹ ≤ b⁻¹ ↔ b ≤ a [PROOFSTEP] rw [← one_div, div_le_iff ha, ← div_eq_inv_mul, le_div_iff hb, one_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a hb : 0 < b ⊢ a⁻¹ ≤ b ↔ b⁻¹ ≤ a [PROOFSTEP] rw [← inv_le_inv hb (inv_pos.2 ha), inv_inv] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a hb : 0 < b ⊢ a ≤ b⁻¹ ↔ b ≤ a⁻¹ [PROOFSTEP] rw [← inv_le_inv (inv_pos.2 hb) ha, inv_inv] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 1 < a ⊢ a⁻¹ < 1 [PROOFSTEP] rwa [inv_lt (zero_lt_one.trans ha) zero_lt_one, inv_one] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h₁ : 0 < a h₂ : a < 1 ⊢ 1 < a⁻¹ [PROOFSTEP] rwa [lt_inv (@zero_lt_one α _ _ _ _ _) h₁, inv_one] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 1 ≤ a ⊢ a⁻¹ ≤ 1 [PROOFSTEP] rwa [inv_le (zero_lt_one.trans_le ha) zero_lt_one, inv_one] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h₁ : 0 < a h₂ : a ≤ 1 ⊢ 1 ≤ a⁻¹ [PROOFSTEP] rwa [le_inv (@zero_lt_one α _ _ _ _ _) h₁, inv_one] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ⊢ a⁻¹ < 1 ↔ a ≤ 0 ∨ 1 < a [PROOFSTEP] cases' le_or_lt a 0 with ha ha [GOAL] case inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : a ≤ 0 ⊢ a⁻¹ < 1 ↔ a ≤ 0 ∨ 1 < a [PROOFSTEP] simp [ha, (inv_nonpos.2 ha).trans_lt zero_lt_one] [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a ⊢ a⁻¹ < 1 ↔ a ≤ 0 ∨ 1 < a [PROOFSTEP] simp only [ha.not_le, false_or_iff, inv_lt_one_iff_of_pos ha] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ⊢ a⁻¹ ≤ 1 ↔ a ≤ 0 ∨ 1 ≤ a [PROOFSTEP] rcases em (a = 1) with (rfl | ha) [GOAL] case inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α b c d e : α m n : ℤ ⊢ 1⁻¹ ≤ 1 ↔ 1 ≤ 0 ∨ 1 ≤ 1 [PROOFSTEP] simp [le_rfl] [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : ¬a = 1 ⊢ a⁻¹ ≤ 1 ↔ a ≤ 0 ∨ 1 ≤ a [PROOFSTEP] simp only [Ne.le_iff_lt (Ne.symm ha), Ne.le_iff_lt (mt inv_eq_one.1 ha), inv_lt_one_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hc : 0 ≤ c h : a ≤ b ⊢ a / c ≤ b / c [PROOFSTEP] rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hc : 0 ≤ c h : a ≤ b ⊢ a * (1 / c) ≤ b * (1 / c) [PROOFSTEP] exact mul_le_mul_of_nonneg_right h (one_div_nonneg.2 hc) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 ≤ a hc : 0 < c h : c ≤ b ⊢ a / b ≤ a / c [PROOFSTEP] rw [div_eq_mul_inv, div_eq_mul_inv] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 ≤ a hc : 0 < c h : c ≤ b ⊢ a * b⁻¹ ≤ a * c⁻¹ [PROOFSTEP] exact mul_le_mul_of_nonneg_left ((inv_le_inv (hc.trans_le h) hc).mpr h) ha [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hc : 0 < c h : a < b ⊢ a / c < b / c [PROOFSTEP] rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hc : 0 < c h : a < b ⊢ a * (1 / c) < b * (1 / c) [PROOFSTEP] exact mul_lt_mul_of_pos_right h (one_div_pos.2 hc) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a hb : 0 < b hc : 0 < c ⊢ a / b < a / c ↔ c < b [PROOFSTEP] simp only [div_eq_mul_inv, mul_lt_mul_left ha, inv_lt_inv hb hc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ b0 : 0 < b d0 : 0 < d ⊢ a / b < c / d ↔ a * d < c * b [PROOFSTEP] rw [lt_div_iff d0, div_mul_eq_mul_div, div_lt_iff b0] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ b0 : 0 < b d0 : 0 < d ⊢ a / b ≤ c / d ↔ a * d ≤ c * b [PROOFSTEP] rw [le_div_iff d0, div_mul_eq_mul_div, div_le_iff b0] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hc : 0 ≤ c hac : a ≤ c hd : 0 < d hbd : d ≤ b ⊢ a / b ≤ c / d [PROOFSTEP] rw [div_le_div_iff (hd.trans_le hbd) hd] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hc : 0 ≤ c hac : a ≤ c hd : 0 < d hbd : d ≤ b ⊢ a * d ≤ c * b [PROOFSTEP] exact mul_le_mul hac hbd hd.le hc [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 ≤ a hb : 1 ≤ b ⊢ a / b ≤ a [PROOFSTEP] simpa only [div_one] using div_le_div_of_le_left ha zero_lt_one hb [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a hb : 1 < b ⊢ a / b < a [PROOFSTEP] simpa only [div_one] using div_lt_div_of_lt_left ha zero_lt_one hb [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 ≤ a hb₀ : 0 < b hb₁ : b ≤ 1 ⊢ a ≤ a / b [PROOFSTEP] simpa only [div_one] using div_le_div_of_le_left ha hb₀ hb₁ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hb : 0 < b ⊢ 1 ≤ a / b ↔ b ≤ a [PROOFSTEP] rw [le_div_iff hb, one_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hb : 0 < b ⊢ a / b ≤ 1 ↔ a ≤ b [PROOFSTEP] rw [div_le_iff hb, one_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hb : 0 < b ⊢ 1 < a / b ↔ b < a [PROOFSTEP] rw [lt_div_iff hb, one_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ hb : 0 < b ⊢ a / b < 1 ↔ a < b [PROOFSTEP] rw [div_lt_iff hb, one_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a hb : 0 < b ⊢ 1 / a ≤ b ↔ 1 / b ≤ a [PROOFSTEP] simpa using inv_le ha hb [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a hb : 0 < b ⊢ 1 / a < b ↔ 1 / b < a [PROOFSTEP] simpa using inv_lt ha hb [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a hb : 0 < b ⊢ a ≤ 1 / b ↔ b ≤ 1 / a [PROOFSTEP] simpa using le_inv ha hb [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a hb : 0 < b ⊢ a < 1 / b ↔ b < 1 / a [PROOFSTEP] simpa using lt_inv ha hb [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a h : a ≤ b ⊢ 1 / b ≤ 1 / a [PROOFSTEP] simpa using inv_le_inv_of_le ha h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ha : 0 < a h : a < b ⊢ 1 / b < 1 / a [PROOFSTEP] rwa [lt_div_iff' ha, ← div_eq_mul_one_div, div_lt_one (ha.trans h)] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h1 : 0 < a h2 : a < 1 ⊢ 1 < 1 / a [PROOFSTEP] rwa [lt_one_div (@zero_lt_one α _ _ _ _ _) h1, one_div_one] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h1 : 0 < a h2 : a ≤ 1 ⊢ 1 ≤ 1 / a [PROOFSTEP] rwa [le_one_div (@zero_lt_one α _ _ _ _ _) h1, one_div_one] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a✝ b c d e : α m n : ℤ a : α ⊢ a / 2 + a / 2 = a [PROOFSTEP] rw [div_add_div_same, ← two_mul, mul_div_cancel_left a two_ne_zero] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a✝ b c d e : α m n : ℤ a : α ⊢ (a + a) / 2 = a [PROOFSTEP] rw [← mul_two, mul_div_cancel a two_ne_zero] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ⊢ a / 2 ≤ a ↔ 0 ≤ a [PROOFSTEP] rw [div_le_iff (zero_lt_two' α), mul_two, le_add_iff_nonneg_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ⊢ a / 2 < a ↔ 0 < a [PROOFSTEP] rw [div_lt_iff (zero_lt_two' α), mul_two, lt_add_iff_pos_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ⊢ a < (a + b) / 2 ↔ a < b [PROOFSTEP] simp [lt_div_iff, mul_two] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ ⊢ (a + b) / 2 < b ↔ a < b [PROOFSTEP] simp [div_lt_iff, mul_two] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a✝ b c d e : α m n : ℤ a : α ⊢ a / 3 + a / 3 + a / 3 = a [PROOFSTEP] rw [div_add_div_same, div_add_div_same, ← two_mul, ← add_one_mul 2 a, two_add_one_eq_three, mul_div_cancel_left a three_ne_zero] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : a * (b / c) ≤ d hc : 0 < c ⊢ b * a ≤ d * c [PROOFSTEP] rw [← mul_div_assoc] at h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : a * b / c ≤ d hc : 0 < c ⊢ b * a ≤ d * c [PROOFSTEP] rwa [mul_comm b, ← div_le_iff hc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : a / b ≤ c / d he : 0 ≤ e ⊢ a / (b * e) ≤ c / (d * e) [PROOFSTEP] rw [div_mul_eq_div_mul_one_div, div_mul_eq_div_mul_one_div] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ h : a / b ≤ c / d he : 0 ≤ e ⊢ a / b * (1 / e) ≤ c / d * (1 / e) [PROOFSTEP] exact mul_le_mul_of_nonneg_right h (one_div_nonneg.2 he) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a✝ b✝ c d e : α m n : ℤ a : α h : 0 < a b : α ⊢ ∃ c, 0 < c ∧ b * c < a [PROOFSTEP] have : 0 < a / max (b + 1) 1 := div_pos h (lt_max_iff.2 (Or.inr zero_lt_one)) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a✝ b✝ c d e : α m n : ℤ a : α h : 0 < a b : α this : 0 < a / max (b + 1) 1 ⊢ ∃ c, 0 < c ∧ b * c < a [PROOFSTEP] refine' ⟨a / max (b + 1) 1, this, _⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a✝ b✝ c d e : α m n : ℤ a : α h : 0 < a b : α this : 0 < a / max (b + 1) 1 ⊢ b * (a / max (b + 1) 1) < a [PROOFSTEP] rw [← lt_div_iff this, div_div_cancel' h.ne'] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a✝ b✝ c d e : α m n : ℤ a : α h : 0 < a b : α this : 0 < a / max (b + 1) 1 ⊢ b < max (b + 1) 1 [PROOFSTEP] exact lt_max_iff.2 (Or.inl <| lt_add_one _) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a✝ b✝ c✝ d e : α m n : ℤ a : α h : 0 < a b c : α hc₀ : 0 < c hc : b * c < a ⊢ b < c⁻¹ * a [PROOFSTEP] rwa [← div_eq_inv_mul, lt_div_iff hc₀] [GOAL] ι : Type u_1 α : Type u_2 β✝ : Type u_3 inst✝¹ : LinearOrderedSemifield α a b c✝ d e : α m n : ℤ β : Type u_4 inst✝ : Preorder β f : β → α hf : Monotone f c : α hc : 0 ≤ c ⊢ Monotone fun x => f x / c [PROOFSTEP] haveI := @LinearOrder.decidableLE α _ [GOAL] ι : Type u_1 α : Type u_2 β✝ : Type u_3 inst✝¹ : LinearOrderedSemifield α a b c✝ d e : α m n : ℤ β : Type u_4 inst✝ : Preorder β f : β → α hf : Monotone f c : α hc : 0 ≤ c this : DecidableRel fun x x_1 => x ≤ x_1 ⊢ Monotone fun x => f x / c [PROOFSTEP] simpa only [div_eq_mul_inv] using (monotone_mul_right_of_nonneg (inv_nonneg.2 hc)).comp hf [GOAL] ι : Type u_1 α : Type u_2 β✝ : Type u_3 inst✝¹ : LinearOrderedSemifield α a b c✝ d e : α m n : ℤ β : Type u_4 inst✝ : Preorder β f : β → α hf : StrictMono f c : α hc : 0 < c ⊢ StrictMono fun x => f x / c [PROOFSTEP] simpa only [div_eq_mul_inv] using hf.mul_const (inv_pos.2 hc) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m✝ n✝ : ℤ a1 : 1 ≤ a m n : ℕ mn : m ≤ n ⊢ 1 / a ^ n ≤ 1 / a ^ m [PROOFSTEP] refine' (one_div_le_one_div _ _).mpr (pow_le_pow a1 mn) [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m✝ n✝ : ℤ a1 : 1 ≤ a m n : ℕ mn : m ≤ n ⊢ 0 < a ^ n [PROOFSTEP] exact pow_pos (zero_lt_one.trans_le a1) _ [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m✝ n✝ : ℤ a1 : 1 ≤ a m n : ℕ mn : m ≤ n ⊢ 0 < a ^ m [PROOFSTEP] exact pow_pos (zero_lt_one.trans_le a1) _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m✝ n✝ : ℤ a1 : 1 < a m n : ℕ mn : m < n ⊢ 1 / a ^ n < 1 / a ^ m [PROOFSTEP] refine' (one_div_lt_one_div _ _).mpr (pow_lt_pow a1 mn) [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m✝ n✝ : ℤ a1 : 1 < a m n : ℕ mn : m < n ⊢ 0 < a ^ n [PROOFSTEP] exact pow_pos (zero_lt_one.trans a1) _ [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m✝ n✝ : ℤ a1 : 1 < a m n : ℕ mn : m < n ⊢ 0 < a ^ m [PROOFSTEP] exact pow_pos (zero_lt_one.trans a1) _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m✝ n✝ : ℤ a1 : 1 ≤ a m n : ℕ mn : m ≤ n ⊢ (a ^ n)⁻¹ ≤ (a ^ m)⁻¹ [PROOFSTEP] convert one_div_pow_le_one_div_pow_of_le a1 mn using 1 [GOAL] case h.e'_3 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m✝ n✝ : ℤ a1 : 1 ≤ a m n : ℕ mn : m ≤ n ⊢ (a ^ n)⁻¹ = 1 / a ^ n [PROOFSTEP] simp [GOAL] case h.e'_4 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m✝ n✝ : ℤ a1 : 1 ≤ a m n : ℕ mn : m ≤ n ⊢ (a ^ m)⁻¹ = 1 / a ^ m [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m✝ n✝ : ℤ a1 : 1 < a m n : ℕ mn : m < n ⊢ (a ^ n)⁻¹ < (a ^ m)⁻¹ [PROOFSTEP] convert one_div_pow_lt_one_div_pow_of_lt a1 mn using 1 [GOAL] case h.e'_3 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m✝ n✝ : ℤ a1 : 1 < a m n : ℕ mn : m < n ⊢ (a ^ n)⁻¹ = 1 / a ^ n [PROOFSTEP] simp [GOAL] case h.e'_4 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m✝ n✝ : ℤ a1 : 1 < a m n : ℕ mn : m < n ⊢ (a ^ m)⁻¹ = 1 / a ^ m [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ s : Set α ha : 0 ≤ a hs : IsGLB s b ⊢ IsGLB ((fun b => a * b) '' s) (a * b) [PROOFSTEP] rcases lt_or_eq_of_le ha with (ha | rfl) [GOAL] case inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ s : Set α ha✝ : 0 ≤ a hs : IsGLB s b ha : 0 < a ⊢ IsGLB ((fun b => a * b) '' s) (a * b) [PROOFSTEP] exact (OrderIso.mulLeft₀ _ ha).isGLB_image'.2 hs [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α b c d e : α m n : ℤ s : Set α hs : IsGLB s b ha : 0 ≤ 0 ⊢ IsGLB ((fun b => 0 * b) '' s) (0 * b) [PROOFSTEP] simp_rw [zero_mul] [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α b c d e : α m n : ℤ s : Set α hs : IsGLB s b ha : 0 ≤ 0 ⊢ IsGLB ((fun a => 0) '' s) 0 [PROOFSTEP] rw [hs.nonempty.image_const] [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α b c d e : α m n : ℤ s : Set α hs : IsGLB s b ha : 0 ≤ 0 ⊢ IsGLB {0} 0 [PROOFSTEP] exact isGLB_singleton [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedSemifield α a b c d e : α m n : ℤ s : Set α ha : 0 ≤ a hs : IsGLB s b ⊢ IsGLB ((fun b => b * a) '' s) (b * a) [PROOFSTEP] simpa [mul_comm] using hs.mul_left ha [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ⊢ 0 < a / b ↔ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0 [PROOFSTEP] simp only [division_def, mul_pos_iff, inv_pos, inv_lt_zero] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ⊢ a / b < 0 ↔ 0 < a ∧ b < 0 ∨ a < 0 ∧ 0 < b [PROOFSTEP] simp [division_def, mul_neg_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ⊢ 0 ≤ a / b ↔ 0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0 [PROOFSTEP] simp [division_def, mul_nonneg_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ⊢ a / b ≤ 0 ↔ 0 ≤ a ∧ b ≤ 0 ∨ a ≤ 0 ∧ 0 ≤ b [PROOFSTEP] simp [division_def, mul_nonpos_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hc : c < 0 ⊢ b / c ≤ a ↔ c * a ≤ b [PROOFSTEP] rw [mul_comm, div_le_iff_of_neg hc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hc : c < 0 ⊢ a ≤ b / c ↔ b ≤ a * c [PROOFSTEP] rw [← neg_neg c, mul_neg, div_neg, le_neg, div_le_iff (neg_pos.2 hc), neg_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hc : c < 0 ⊢ a ≤ b / c ↔ b ≤ c * a [PROOFSTEP] rw [mul_comm, le_div_iff_of_neg hc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hc : c < 0 ⊢ b / c < a ↔ c * a < b [PROOFSTEP] rw [mul_comm, div_lt_iff_of_neg hc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hc : c < 0 ⊢ a < b / c ↔ b < c * a [PROOFSTEP] rw [mul_comm, lt_div_iff_of_neg hc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ h : b ≤ a hb : b ≤ 0 ⊢ a / b ≤ 1 [PROOFSTEP] simpa only [neg_div_neg_eq] using div_le_one_of_le (neg_le_neg h) (neg_nonneg_of_nonpos hb) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ha : a < 0 hb : b < 0 ⊢ a⁻¹ ≤ b⁻¹ ↔ b ≤ a [PROOFSTEP] rw [← one_div, div_le_iff_of_neg ha, ← div_eq_inv_mul, div_le_iff_of_neg hb, one_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ha : a < 0 hb : b < 0 ⊢ a⁻¹ ≤ b ↔ b⁻¹ ≤ a [PROOFSTEP] rw [← inv_le_inv_of_neg hb (inv_lt_zero.2 ha), inv_inv] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ha : a < 0 hb : b < 0 ⊢ a ≤ b⁻¹ ↔ b ≤ a⁻¹ [PROOFSTEP] rw [← inv_le_inv_of_neg (inv_lt_zero.2 hb) ha, inv_inv] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hc : c ≤ 0 h : b ≤ a ⊢ a / c ≤ b / c [PROOFSTEP] rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hc : c ≤ 0 h : b ≤ a ⊢ a * (1 / c) ≤ b * (1 / c) [PROOFSTEP] exact mul_le_mul_of_nonpos_right h (one_div_nonpos.2 hc) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hc : c < 0 h : b < a ⊢ a / c < b / c [PROOFSTEP] rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hc : c < 0 h : b < a ⊢ a * (1 / c) < b * (1 / c) [PROOFSTEP] exact mul_lt_mul_of_neg_right h (one_div_neg.2 hc) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : b < 0 ⊢ 1 ≤ a / b ↔ a ≤ b [PROOFSTEP] rw [le_div_iff_of_neg hb, one_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : b < 0 ⊢ a / b ≤ 1 ↔ b ≤ a [PROOFSTEP] rw [div_le_iff_of_neg hb, one_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : b < 0 ⊢ 1 < a / b ↔ a < b [PROOFSTEP] rw [lt_div_iff_of_neg hb, one_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : b < 0 ⊢ a / b < 1 ↔ b < a [PROOFSTEP] rw [div_lt_iff_of_neg hb, one_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ha : a < 0 hb : b < 0 ⊢ 1 / a ≤ b ↔ 1 / b ≤ a [PROOFSTEP] simpa using inv_le_of_neg ha hb [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ha : a < 0 hb : b < 0 ⊢ 1 / a < b ↔ 1 / b < a [PROOFSTEP] simpa using inv_lt_of_neg ha hb [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ha : a < 0 hb : b < 0 ⊢ a ≤ 1 / b ↔ b ≤ 1 / a [PROOFSTEP] simpa using le_inv_of_neg ha hb [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ha : a < 0 hb : b < 0 ⊢ a < 1 / b ↔ b < 1 / a [PROOFSTEP] simpa using lt_inv_of_neg ha hb [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ⊢ 1 < a / b ↔ 0 < b ∧ b < a ∨ b < 0 ∧ a < b [PROOFSTEP] rcases lt_trichotomy b 0 with (hb | rfl | hb) [GOAL] case inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : b < 0 ⊢ 1 < a / b ↔ 0 < b ∧ b < a ∨ b < 0 ∧ a < b [PROOFSTEP] simp [hb, hb.not_lt, one_lt_div_of_neg] [GOAL] case inr.inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a c d : α n : ℤ ⊢ 1 < a / 0 ↔ 0 < 0 ∧ 0 < a ∨ 0 < 0 ∧ a < 0 [PROOFSTEP] simp [lt_irrefl, zero_le_one] [GOAL] case inr.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : 0 < b ⊢ 1 < a / b ↔ 0 < b ∧ b < a ∨ b < 0 ∧ a < b [PROOFSTEP] simp [hb, hb.not_lt, one_lt_div] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ⊢ 1 ≤ a / b ↔ 0 < b ∧ b ≤ a ∨ b < 0 ∧ a ≤ b [PROOFSTEP] rcases lt_trichotomy b 0 with (hb | rfl | hb) [GOAL] case inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : b < 0 ⊢ 1 ≤ a / b ↔ 0 < b ∧ b ≤ a ∨ b < 0 ∧ a ≤ b [PROOFSTEP] simp [hb, hb.not_lt, one_le_div_of_neg] [GOAL] case inr.inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a c d : α n : ℤ ⊢ 1 ≤ a / 0 ↔ 0 < 0 ∧ 0 ≤ a ∨ 0 < 0 ∧ a ≤ 0 [PROOFSTEP] simp [lt_irrefl, zero_lt_one.not_le, zero_lt_one] [GOAL] case inr.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : 0 < b ⊢ 1 ≤ a / b ↔ 0 < b ∧ b ≤ a ∨ b < 0 ∧ a ≤ b [PROOFSTEP] simp [hb, hb.not_lt, one_le_div] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ⊢ a / b < 1 ↔ 0 < b ∧ a < b ∨ b = 0 ∨ b < 0 ∧ b < a [PROOFSTEP] rcases lt_trichotomy b 0 with (hb | rfl | hb) [GOAL] case inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : b < 0 ⊢ a / b < 1 ↔ 0 < b ∧ a < b ∨ b = 0 ∨ b < 0 ∧ b < a [PROOFSTEP] simp [hb, hb.not_lt, hb.ne, div_lt_one_of_neg] [GOAL] case inr.inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a c d : α n : ℤ ⊢ a / 0 < 1 ↔ 0 < 0 ∧ a < 0 ∨ 0 = 0 ∨ 0 < 0 ∧ 0 < a [PROOFSTEP] simp [zero_lt_one] [GOAL] case inr.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : 0 < b ⊢ a / b < 1 ↔ 0 < b ∧ a < b ∨ b = 0 ∨ b < 0 ∧ b < a [PROOFSTEP] simp [hb, hb.not_lt, div_lt_one, hb.ne.symm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ⊢ a / b ≤ 1 ↔ 0 < b ∧ a ≤ b ∨ b = 0 ∨ b < 0 ∧ b ≤ a [PROOFSTEP] rcases lt_trichotomy b 0 with (hb | rfl | hb) [GOAL] case inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : b < 0 ⊢ a / b ≤ 1 ↔ 0 < b ∧ a ≤ b ∨ b = 0 ∨ b < 0 ∧ b ≤ a [PROOFSTEP] simp [hb, hb.not_lt, hb.ne, div_le_one_of_neg] [GOAL] case inr.inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a c d : α n : ℤ ⊢ a / 0 ≤ 1 ↔ 0 < 0 ∧ a ≤ 0 ∨ 0 = 0 ∨ 0 < 0 ∧ 0 ≤ a [PROOFSTEP] simp [zero_le_one] [GOAL] case inr.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : 0 < b ⊢ a / b ≤ 1 ↔ 0 < b ∧ a ≤ b ∨ b = 0 ∨ b < 0 ∧ b ≤ a [PROOFSTEP] simp [hb, hb.not_lt, div_le_one, hb.ne.symm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : b < 0 h : a ≤ b ⊢ 1 / b ≤ 1 / a [PROOFSTEP] rwa [div_le_iff_of_neg' hb, ← div_eq_mul_one_div, div_le_one_of_neg (h.trans_lt hb)] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hb : b < 0 h : a < b ⊢ 1 / b < 1 / a [PROOFSTEP] rwa [div_lt_iff_of_neg' hb, ← div_eq_mul_one_div, div_lt_one_of_neg (h.trans hb)] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ ha : a < 0 hb : b < 0 ⊢ 1 / a ≤ 1 / b ↔ b ≤ a [PROOFSTEP] simpa [one_div] using inv_le_inv_of_neg ha hb [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ h1 : a < 0 h2 : -1 < a this : 1 / a < 1 / -1 ⊢ 1 / a < -1 [PROOFSTEP] rwa [one_div_neg_one_eq_neg_one] at this [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ h1 : a < 0 h2 : -1 ≤ a this : 1 / a ≤ 1 / -1 ⊢ 1 / a ≤ -1 [PROOFSTEP] rwa [one_div_neg_one_eq_neg_one] at this [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a✝ b c d : α n : ℤ a : α ⊢ a - a / 2 = a / 2 [PROOFSTEP] suffices a / 2 + a / 2 - a / 2 = a / 2 by rwa [add_halves] at this [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a✝ b c d : α n : ℤ a : α this : a / 2 + a / 2 - a / 2 = a / 2 ⊢ a - a / 2 = a / 2 [PROOFSTEP] rwa [add_halves] at this [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a✝ b c d : α n : ℤ a : α ⊢ a / 2 + a / 2 - a / 2 = a / 2 [PROOFSTEP] rw [add_sub_cancel] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a✝ b c d : α n : ℤ a : α ⊢ a / 2 - a = -(a / 2) [PROOFSTEP] suffices a / 2 - (a / 2 + a / 2) = -(a / 2) by rwa [add_halves] at this [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a✝ b c d : α n : ℤ a : α this : a / 2 - (a / 2 + a / 2) = -(a / 2) ⊢ a / 2 - a = -(a / 2) [PROOFSTEP] rwa [add_halves] at this [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a✝ b c d : α n : ℤ a : α ⊢ a / 2 - (a / 2 + a / 2) = -(a / 2) [PROOFSTEP] rw [sub_add_eq_sub_sub, sub_self, zero_sub] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ h : a < b ⊢ a + (b - a) / 2 < b [PROOFSTEP] rwa [← div_sub_div_same, sub_eq_add_neg, add_comm (b / 2), ← add_assoc, ← sub_eq_add_neg, ← lt_sub_iff_add_lt, sub_self_div_two, sub_self_div_two, div_lt_div_right (zero_lt_two' α)] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ a2 : 2 ≤ a ⊢ (1 - 1 / a)⁻¹ ≤ 2 [PROOFSTEP] refine' (inv_le_inv_of_le (inv_pos.2 <| zero_lt_two' α) _).trans_eq (inv_inv (2 : α)) -- move `1 / a` to the left and `2⁻¹` to the right. [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ a2 : 2 ≤ a ⊢ 2⁻¹ ≤ 1 - 1 / a [PROOFSTEP] rw [le_sub_iff_add_le, add_comm, ← le_sub_iff_add_le] -- take inverses on both sides and use the assumption `2 ≤ a`. [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ a2 : 2 ≤ a ⊢ 1 / a ≤ 1 - 2⁻¹ [PROOFSTEP] convert (one_div a).le.trans (inv_le_inv_of_le zero_lt_two a2) using 1 -- show `1 - 1 / 2 = 1 / 2`. [GOAL] case h.e'_4 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ a2 : 2 ≤ a ⊢ 1 - 2⁻¹ = 2⁻¹ [PROOFSTEP] rw [sub_eq_iff_eq_add, ← two_mul, mul_inv_cancel two_ne_zero] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ s : Set α ha : 0 ≤ a hs : IsLUB s b ⊢ IsLUB ((fun b => a * b) '' s) (a * b) [PROOFSTEP] rcases lt_or_eq_of_le ha with (ha | rfl) [GOAL] case inl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ s : Set α ha✝ : 0 ≤ a hs : IsLUB s b ha : 0 < a ⊢ IsLUB ((fun b => a * b) '' s) (a * b) [PROOFSTEP] exact (OrderIso.mulLeft₀ _ ha).isLUB_image'.2 hs [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α b c d : α n : ℤ s : Set α hs : IsLUB s b ha : 0 ≤ 0 ⊢ IsLUB ((fun b => 0 * b) '' s) (0 * b) [PROOFSTEP] simp_rw [zero_mul] [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α b c d : α n : ℤ s : Set α hs : IsLUB s b ha : 0 ≤ 0 ⊢ IsLUB ((fun a => 0) '' s) 0 [PROOFSTEP] rw [hs.nonempty.image_const] [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α b c d : α n : ℤ s : Set α hs : IsLUB s b ha : 0 ≤ 0 ⊢ IsLUB {0} 0 [PROOFSTEP] exact isLUB_singleton [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ s : Set α ha : 0 ≤ a hs : IsLUB s b ⊢ IsLUB ((fun b => b * a) '' s) (b * a) [PROOFSTEP] simpa [mul_comm] using hs.mul_left ha [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hc : c ≠ 0 hd : d ≠ 0 ⊢ (a * d - b * c) / (c * d) < 0 ↔ a / c < b / d [PROOFSTEP] rw [mul_comm b c, ← div_sub_div _ _ hc hd, sub_lt_zero] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ hc : c ≠ 0 hd : d ≠ 0 ⊢ (a * d - b * c) / (c * d) ≤ 0 ↔ a / c ≤ b / d [PROOFSTEP] rw [mul_comm b c, ← div_sub_div _ _ hc hd, sub_nonpos] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ h : ∀ (ε : α), ε > 0 → b - ε ≤ a ⊢ b ≤ a [PROOFSTEP] contrapose! h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ h : a < b ⊢ ∃ ε, ε > 0 ∧ a < b - ε [PROOFSTEP] simpa only [@and_comm ((0 : α) < _), lt_sub_iff_add_lt, gt_iff_lt] using exists_add_lt_and_pos_of_lt h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ a0 : 0 ≤ a b0 : 0 ≤ b h : a = -b ⊢ a = b [PROOFSTEP] subst a [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α b c d : α n : ℤ b0 : 0 ≤ b a0 : 0 ≤ -b ⊢ -b = b [PROOFSTEP] have : b = 0 := le_antisymm (neg_nonneg.1 a0) b0 [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α b c d : α n : ℤ b0 : 0 ≤ b a0 : 0 ≤ -b this : b = 0 ⊢ -b = b [PROOFSTEP] rw [this, neg_zero] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a✝ b c d : α n : ℤ a : α ⊢ |1 / a| = 1 / |a| [PROOFSTEP] rw [abs_div, abs_one]
{"mathlib_filename": "Mathlib.Algebra.Order.Field.Basic", "llama_tokens": 22625}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : NonAssocSemiring α inst✝⁶ : Preorder α inst✝⁵ : NonAssocSemiring β inst✝⁴ : Preorder β inst✝³ : NonAssocSemiring γ inst✝² : Preorder γ inst✝¹ : NonAssocSemiring δ inst✝ : Preorder δ f g : α →+*o β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : NonAssocSemiring α inst✝⁶ : Preorder α inst✝⁵ : NonAssocSemiring β inst✝⁴ : Preorder β inst✝³ : NonAssocSemiring γ inst✝² : Preorder γ inst✝¹ : NonAssocSemiring δ inst✝ : Preorder δ g : α →+*o β toMonoidHom✝ : α →* β map_zero'✝ : OneHom.toFun (↑toMonoidHom✝) 0 = 0 map_add'✝ : ∀ (x y : α), OneHom.toFun (↑toMonoidHom✝) (x + y) = OneHom.toFun (↑toMonoidHom✝) x + OneHom.toFun (↑toMonoidHom✝) y monotone'✝ : Monotone (↑↑{ toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ }).toFun h : (fun f => f.toFun) { toRingHom := { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ }, monotone' := monotone'✝ } = (fun f => f.toFun) g ⊢ { toRingHom := { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ }, monotone' := monotone'✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : NonAssocSemiring α inst✝⁶ : Preorder α inst✝⁵ : NonAssocSemiring β inst✝⁴ : Preorder β inst✝³ : NonAssocSemiring γ inst✝² : Preorder γ inst✝¹ : NonAssocSemiring δ inst✝ : Preorder δ toMonoidHom✝¹ : α →* β map_zero'✝¹ : OneHom.toFun (↑toMonoidHom✝¹) 0 = 0 map_add'✝¹ : ∀ (x y : α), OneHom.toFun (↑toMonoidHom✝¹) (x + y) = OneHom.toFun (↑toMonoidHom✝¹) x + OneHom.toFun (↑toMonoidHom✝¹) y monotone'✝¹ : Monotone (↑↑{ toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }).toFun toMonoidHom✝ : α →* β map_zero'✝ : OneHom.toFun (↑toMonoidHom✝) 0 = 0 map_add'✝ : ∀ (x y : α), OneHom.toFun (↑toMonoidHom✝) (x + y) = OneHom.toFun (↑toMonoidHom✝) x + OneHom.toFun (↑toMonoidHom✝) y monotone'✝ : Monotone (↑↑{ toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ }).toFun h : (fun f => f.toFun) { toRingHom := { toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, monotone' := monotone'✝¹ } = (fun f => f.toFun) { toRingHom := { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ }, monotone' := monotone'✝ } ⊢ { toRingHom := { toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, monotone' := monotone'✝¹ } = { toRingHom := { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ }, monotone' := monotone'✝ } [PROOFSTEP] congr -- porting note: needed to add the following line [GOAL] case mk.mk.mk.mk.e_toRingHom.e_toMonoidHom F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : NonAssocSemiring α inst✝⁶ : Preorder α inst✝⁵ : NonAssocSemiring β inst✝⁴ : Preorder β inst✝³ : NonAssocSemiring γ inst✝² : Preorder γ inst✝¹ : NonAssocSemiring δ inst✝ : Preorder δ toMonoidHom✝¹ : α →* β map_zero'✝¹ : OneHom.toFun (↑toMonoidHom✝¹) 0 = 0 map_add'✝¹ : ∀ (x y : α), OneHom.toFun (↑toMonoidHom✝¹) (x + y) = OneHom.toFun (↑toMonoidHom✝¹) x + OneHom.toFun (↑toMonoidHom✝¹) y monotone'✝¹ : Monotone (↑↑{ toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }).toFun toMonoidHom✝ : α →* β map_zero'✝ : OneHom.toFun (↑toMonoidHom✝) 0 = 0 map_add'✝ : ∀ (x y : α), OneHom.toFun (↑toMonoidHom✝) (x + y) = OneHom.toFun (↑toMonoidHom✝) x + OneHom.toFun (↑toMonoidHom✝) y monotone'✝ : Monotone (↑↑{ toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ }).toFun h : (fun f => f.toFun) { toRingHom := { toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, monotone' := monotone'✝¹ } = (fun f => f.toFun) { toRingHom := { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ }, monotone' := monotone'✝ } ⊢ toMonoidHom✝¹ = toMonoidHom✝ [PROOFSTEP] exact MonoidHom.monoidHomClass.coe_injective' h [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : NonAssocSemiring α inst✝⁶ : Preorder α inst✝⁵ : NonAssocSemiring β inst✝⁴ : Preorder β inst✝³ : NonAssocSemiring γ inst✝² : Preorder γ inst✝¹ : NonAssocSemiring δ inst✝ : Preorder δ f₁ f₂ : β →+*o γ g : α →+*o β hg : Surjective ↑g h : f₁ = f₂ ⊢ OrderRingHom.comp f₁ g = OrderRingHom.comp f₂ g [PROOFSTEP] rw [h] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : NonAssocSemiring α inst✝⁶ : Preorder α inst✝⁵ : NonAssocSemiring β inst✝⁴ : Preorder β inst✝³ : NonAssocSemiring γ inst✝² : Preorder γ inst✝¹ : NonAssocSemiring δ inst✝ : Preorder δ f : β →+*o γ g₁ g₂ : α →+*o β hf : Injective ↑f h : OrderRingHom.comp f g₁ = OrderRingHom.comp f g₂ a : α ⊢ ↑f (↑g₁ a) = ↑f (↑g₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹¹ : Mul α inst✝¹⁰ : Add α inst✝⁹ : LE α inst✝⁸ : Mul β inst✝⁷ : Add β inst✝⁶ : LE β inst✝⁵ : Mul γ inst✝⁴ : Add γ inst✝³ : LE γ inst✝² : Mul δ inst✝¹ : Add δ inst✝ : LE δ f g : α ≃+*o β h₁ : (fun f => f.toFun) f = (fun f => f.toFun) g h₂ : (fun f => f.invFun) f = (fun f => f.invFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f [GOAL] case mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹¹ : Mul α inst✝¹⁰ : Add α inst✝⁹ : LE α inst✝⁸ : Mul β inst✝⁷ : Add β inst✝⁶ : LE β inst✝⁵ : Mul γ inst✝⁴ : Add γ inst✝³ : LE γ inst✝² : Mul δ inst✝¹ : Add δ inst✝ : LE δ g : α ≃+*o β toFun✝ : α → β invFun✝ : β → α left_inv✝ : LeftInverse invFun✝ toFun✝ right_inv✝ : Function.RightInverse invFun✝ toFun✝ map_mul'✝ : ∀ (x y : α), Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x * y) = Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x * Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y map_add'✝ : ∀ (x y : α), Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x + y) = Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x + Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y map_le_map_iff'✝ : ∀ {a b : α}, Equiv.toFun { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv a ≤ Equiv.toFun { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv b ↔ a ≤ b h₁ : (fun f => f.toFun) { toRingEquiv := { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }, map_le_map_iff' := map_le_map_iff'✝ } = (fun f => f.toFun) g h₂ : (fun f => f.invFun) { toRingEquiv := { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }, map_le_map_iff' := map_le_map_iff'✝ } = (fun f => f.invFun) g ⊢ { toRingEquiv := { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }, map_le_map_iff' := map_le_map_iff'✝ } = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹¹ : Mul α inst✝¹⁰ : Add α inst✝⁹ : LE α inst✝⁸ : Mul β inst✝⁷ : Add β inst✝⁶ : LE β inst✝⁵ : Mul γ inst✝⁴ : Add γ inst✝³ : LE γ inst✝² : Mul δ inst✝¹ : Add δ inst✝ : LE δ toFun✝¹ : α → β invFun✝¹ : β → α left_inv✝¹ : LeftInverse invFun✝¹ toFun✝¹ right_inv✝¹ : Function.RightInverse invFun✝¹ toFun✝¹ map_mul'✝¹ : ∀ (x y : α), Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } (x * y) = Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } x * Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } y map_add'✝¹ : ∀ (x y : α), Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } (x + y) = Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } x + Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } y map_le_map_iff'✝¹ : ∀ {a b : α}, Equiv.toFun { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }.toEquiv a ≤ Equiv.toFun { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }.toEquiv b ↔ a ≤ b toFun✝ : α → β invFun✝ : β → α left_inv✝ : LeftInverse invFun✝ toFun✝ right_inv✝ : Function.RightInverse invFun✝ toFun✝ map_mul'✝ : ∀ (x y : α), Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x * y) = Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x * Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y map_add'✝ : ∀ (x y : α), Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x + y) = Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x + Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y map_le_map_iff'✝ : ∀ {a b : α}, Equiv.toFun { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv a ≤ Equiv.toFun { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv b ↔ a ≤ b h₁ : (fun f => f.toFun) { toRingEquiv := { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }, map_le_map_iff' := map_le_map_iff'✝¹ } = (fun f => f.toFun) { toRingEquiv := { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }, map_le_map_iff' := map_le_map_iff'✝ } h₂ : (fun f => f.invFun) { toRingEquiv := { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }, map_le_map_iff' := map_le_map_iff'✝¹ } = (fun f => f.invFun) { toRingEquiv := { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }, map_le_map_iff' := map_le_map_iff'✝ } ⊢ { toRingEquiv := { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }, map_le_map_iff' := map_le_map_iff'✝¹ } = { toRingEquiv := { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_mul' := map_mul'✝, map_add' := map_add'✝ }, map_le_map_iff' := map_le_map_iff'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹¹ : Mul α inst✝¹⁰ : Add α inst✝⁹ : LE α inst✝⁸ : Mul β inst✝⁷ : Add β inst✝⁶ : LE β inst✝⁵ : Mul γ inst✝⁴ : Add γ inst✝³ : LE γ inst✝² : Mul δ inst✝¹ : Add δ inst✝ : LE δ x : α ⊢ ↑(OrderRingIso.refl α) x = x [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹¹ : Mul α inst✝¹⁰ : Add α inst✝⁹ : LE α inst✝⁸ : Mul β inst✝⁷ : Add β inst✝⁶ : LE β inst✝⁵ : Mul γ inst✝⁴ : Add γ inst✝³ : LE γ inst✝² : Mul δ inst✝¹ : Add δ inst✝ : LE δ e : α ≃+*o β ⊢ ∀ {a b : β}, Equiv.toFun (RingEquiv.symm e.toRingEquiv).toEquiv a ≤ Equiv.toFun (RingEquiv.symm e.toRingEquiv).toEquiv b ↔ a ≤ b [PROOFSTEP] intro a b [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹¹ : Mul α inst✝¹⁰ : Add α inst✝⁹ : LE α inst✝⁸ : Mul β inst✝⁷ : Add β inst✝⁶ : LE β inst✝⁵ : Mul γ inst✝⁴ : Add γ inst✝³ : LE γ inst✝² : Mul δ inst✝¹ : Add δ inst✝ : LE δ e : α ≃+*o β a b : β ⊢ Equiv.toFun (RingEquiv.symm e.toRingEquiv).toEquiv a ≤ Equiv.toFun (RingEquiv.symm e.toRingEquiv).toEquiv b ↔ a ≤ b [PROOFSTEP] erw [← map_le_map_iff e, e.1.apply_symm_apply, e.1.apply_symm_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁵ : NonAssocSemiring α inst✝⁴ : Preorder α inst✝³ : NonAssocSemiring β inst✝² : Preorder β inst✝¹ : NonAssocSemiring γ inst✝ : Preorder γ f g : α ≃+*o β h : toOrderRingHom f = toOrderRingHom g ⊢ (fun f => ↑f) f = (fun f => ↑f) g [PROOFSTEP] convert FunLike.ext'_iff.1 h using 0 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β inst✝ : Archimedean β f g : α →+*o β ⊢ f = g [PROOFSTEP] ext x [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β inst✝ : Archimedean β f g : α →+*o β x : α ⊢ ↑f x = ↑g x [PROOFSTEP] by_contra' h' : f x ≠ g x [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β inst✝ : Archimedean β f g : α →+*o β x : α h' : ↑f x ≠ ↑g x ⊢ False [PROOFSTEP] wlog h : f x < g x generalizing α β with h₂ [GOAL] case h.inr F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β inst✝ : Archimedean β f g : α →+*o β x : α h' : ↑f x ≠ ↑g x h₂ : ∀ {α : Type u_2} {β : Type u_3} [inst : LinearOrderedField α] [inst_1 : LinearOrderedField β] [inst_2 : Archimedean β] (f g : α →+*o β) (x : α), ↑f x ≠ ↑g x → ↑f x < ↑g x → False h : ¬↑f x < ↑g x ⊢ False [PROOFSTEP] exact h₂ g f x (Ne.symm h') (h'.lt_or_lt.resolve_left h) [GOAL] F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 α : Type u_2 β : Type u_3 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β inst✝ : Archimedean β f g : α →+*o β x : α h' : ↑f x ≠ ↑g x h : ↑f x < ↑g x ⊢ False [PROOFSTEP] obtain ⟨q, hf, hg⟩ := exists_rat_btwn h [GOAL] case intro.intro F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 α : Type u_2 β : Type u_3 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β inst✝ : Archimedean β f g : α →+*o β x : α h' : ↑f x ≠ ↑g x h : ↑f x < ↑g x q : ℚ hf : ↑f x < ↑q hg : ↑q < ↑g x ⊢ False [PROOFSTEP] rw [← map_ratCast f] at hf [GOAL] case intro.intro F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 α : Type u_2 β : Type u_3 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β inst✝ : Archimedean β f g : α →+*o β x : α h' : ↑f x ≠ ↑g x h : ↑f x < ↑g x q : ℚ hf : ↑f x < ↑f ↑q hg : ↑q < ↑g x ⊢ False [PROOFSTEP] rw [← map_ratCast g] at hg [GOAL] case intro.intro F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 α : Type u_2 β : Type u_3 inst✝² : LinearOrderedField α inst✝¹ : LinearOrderedField β inst✝ : Archimedean β f g : α →+*o β x : α h' : ↑f x ≠ ↑g x h : ↑f x < ↑g x q : ℚ hf : ↑f x < ↑f ↑q hg : ↑g ↑q < ↑g x ⊢ False [PROOFSTEP] exact (lt_asymm ((OrderHomClass.mono g).reflect_lt hg) <| (OrderHomClass.mono f).reflect_lt hf).elim
{"mathlib_filename": "Mathlib.Algebra.Order.Hom.Ring", "llama_tokens": 8703}
[GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c a b : α ⊢ |a * b| = |a| * |b| [PROOFSTEP] rw [abs_eq (mul_nonneg (abs_nonneg a) (abs_nonneg b))] [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c a b : α ⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|) [PROOFSTEP] cases' le_total a 0 with ha ha [GOAL] case inl α : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c a b : α ha : a ≤ 0 ⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|) [PROOFSTEP] cases' le_total b 0 with hb hb [GOAL] case inr α : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c a b : α ha : 0 ≤ a ⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|) [PROOFSTEP] cases' le_total b 0 with hb hb [GOAL] case inl.inl α : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c a b : α ha : a ≤ 0 hb : b ≤ 0 ⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|) [PROOFSTEP] simp only [abs_of_nonpos, abs_of_nonneg, true_or_iff, or_true_iff, eq_self_iff_true, neg_mul, mul_neg, neg_neg, *] [GOAL] case inl.inr α : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c a b : α ha : a ≤ 0 hb : 0 ≤ b ⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|) [PROOFSTEP] simp only [abs_of_nonpos, abs_of_nonneg, true_or_iff, or_true_iff, eq_self_iff_true, neg_mul, mul_neg, neg_neg, *] [GOAL] case inr.inl α : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c a b : α ha : 0 ≤ a hb : b ≤ 0 ⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|) [PROOFSTEP] simp only [abs_of_nonpos, abs_of_nonneg, true_or_iff, or_true_iff, eq_self_iff_true, neg_mul, mul_neg, neg_neg, *] [GOAL] case inr.inr α : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c a b : α ha : 0 ≤ a hb : 0 ≤ b ⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|) [PROOFSTEP] simp only [abs_of_nonpos, abs_of_nonneg, true_or_iff, or_true_iff, eq_self_iff_true, neg_mul, mul_neg, neg_neg, *] [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α ⊢ |a * a| = a * a [PROOFSTEP] rw [abs_mul, abs_mul_abs_self] [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ |a| = a ↔ 0 ≤ a [PROOFSTEP] simp [abs_eq_max_neg] [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ |a| = -a ↔ a ≤ 0 [PROOFSTEP] simp [abs_eq_max_neg] [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α ⊢ |a| = a ∧ 0 ≤ a ∨ |a| = -a ∧ a < 0 [PROOFSTEP] by_cases h : 0 ≤ a [GOAL] case pos α : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α h : 0 ≤ a ⊢ |a| = a ∧ 0 ≤ a ∨ |a| = -a ∧ a < 0 [PROOFSTEP] left [GOAL] case pos.h α : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α h : 0 ≤ a ⊢ |a| = a ∧ 0 ≤ a [PROOFSTEP] exact ⟨abs_eq_self.mpr h, h⟩ [GOAL] case neg α : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α h : ¬0 ≤ a ⊢ |a| = a ∧ 0 ≤ a ∨ |a| = -a ∧ a < 0 [PROOFSTEP] right [GOAL] case neg.h α : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α h : ¬0 ≤ a ⊢ |a| = -a ∧ a < 0 [PROOFSTEP] push_neg at h [GOAL] case neg.h α : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α h : a < 0 ⊢ |a| = -a ∧ a < 0 [PROOFSTEP] exact ⟨abs_eq_neg_self.mpr (le_of_lt h), h⟩ [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α ⊢ max a 0 + max (-a) 0 = |a| [PROOFSTEP] symm [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α ⊢ |a| = max a 0 + max (-a) 0 [PROOFSTEP] rcases le_total 0 a with (ha | ha) [GOAL] case inl α : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α ha : 0 ≤ a ⊢ |a| = max a 0 + max (-a) 0 [PROOFSTEP] simp [ha] [GOAL] case inr α : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α ha : a ≤ 0 ⊢ |a| = max a 0 + max (-a) 0 [PROOFSTEP] simp [ha] [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ |a| = |b| ↔ a * a = b * b [PROOFSTEP] rw [← abs_mul_abs_self, ← abs_mul_abs_self b] [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ |a| = |b| ↔ |a| * |a| = |b| * |b| [PROOFSTEP] exact (mul_self_inj (abs_nonneg a) (abs_nonneg b)).symm [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ |a| < |b| ↔ a * a < b * b [PROOFSTEP] rw [← abs_mul_abs_self, ← abs_mul_abs_self b] [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ |a| < |b| ↔ |a| * |a| < |b| * |b| [PROOFSTEP] exact mul_self_lt_mul_self_iff (abs_nonneg a) (abs_nonneg b) [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ |a| ≤ |b| ↔ a * a ≤ b * b [PROOFSTEP] rw [← abs_mul_abs_self, ← abs_mul_abs_self b] [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ |a| ≤ |b| ↔ |a| * |a| ≤ |b| * |b| [PROOFSTEP] exact mul_self_le_mul_self_iff (abs_nonneg a) (abs_nonneg b) [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ |a| ≤ 1 ↔ a * a ≤ 1 [PROOFSTEP] simpa only [abs_one, one_mul] using @abs_le_iff_mul_self_le α _ a 1 [GOAL] α : Type u_1 inst✝ : LinearOrderedCommRing α a✝ b✝ c d a b : α ⊢ |a - b| * |a - b| = a * a + b * b - (1 + 1) * a * b [PROOFSTEP] rw [abs_mul_abs_self] [GOAL] α : Type u_1 inst✝ : LinearOrderedCommRing α a✝ b✝ c d a b : α ⊢ (a - b) * (a - b) = a * a + b * b - (1 + 1) * a * b [PROOFSTEP] simp only [mul_add, add_comm, add_left_comm, mul_comm, sub_eq_add_neg, mul_one, mul_neg, neg_add_rev, neg_neg, add_assoc] [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : LinearOrder α a✝ b✝ a b : α ⊢ |a| ∣ b ↔ a ∣ b [PROOFSTEP] cases' abs_choice a with h h [GOAL] case inl α : Type u_1 inst✝¹ : Ring α inst✝ : LinearOrder α a✝ b✝ a b : α h : |a| = a ⊢ |a| ∣ b ↔ a ∣ b [PROOFSTEP] simp only [h, neg_dvd] [GOAL] case inr α : Type u_1 inst✝¹ : Ring α inst✝ : LinearOrder α a✝ b✝ a b : α h : |a| = -a ⊢ |a| ∣ b ↔ a ∣ b [PROOFSTEP] simp only [h, neg_dvd] [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : LinearOrder α a✝ b✝ a b : α ⊢ a ∣ |b| ↔ a ∣ b [PROOFSTEP] cases' abs_choice b with h h [GOAL] case inl α : Type u_1 inst✝¹ : Ring α inst✝ : LinearOrder α a✝ b✝ a b : α h : |b| = b ⊢ a ∣ |b| ↔ a ∣ b [PROOFSTEP] simp only [h, dvd_neg] [GOAL] case inr α : Type u_1 inst✝¹ : Ring α inst✝ : LinearOrder α a✝ b✝ a b : α h : |b| = -b ⊢ a ∣ |b| ↔ a ∣ b [PROOFSTEP] simp only [h, dvd_neg]
{"mathlib_filename": "Mathlib.Algebra.Order.Ring.Abs", "llama_tokens": 3267}
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Cancel.Defs", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝³ : AddMonoidWithOne α inst✝² : Preorder α inst✝¹ : ZeroLEOneClass α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ 0 ≤ 2 [PROOFSTEP] rw [← one_add_one_eq_two] [GOAL] α : Type u_1 inst✝³ : AddMonoidWithOne α inst✝² : Preorder α inst✝¹ : ZeroLEOneClass α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ 0 ≤ 1 + 1 [PROOFSTEP] exact add_nonneg zero_le_one zero_le_one [GOAL] α : Type u_1 inst✝³ : AddMonoidWithOne α inst✝² : Preorder α inst✝¹ : ZeroLEOneClass α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ 0 ≤ 3 [PROOFSTEP] rw [← two_add_one_eq_three] [GOAL] α : Type u_1 inst✝³ : AddMonoidWithOne α inst✝² : Preorder α inst✝¹ : ZeroLEOneClass α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ 0 ≤ 2 + 1 [PROOFSTEP] exact add_nonneg zero_le_two zero_le_one [GOAL] α : Type u_1 inst✝³ : AddMonoidWithOne α inst✝² : Preorder α inst✝¹ : ZeroLEOneClass α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ 0 ≤ 4 [PROOFSTEP] rw [← three_add_one_eq_four] [GOAL] α : Type u_1 inst✝³ : AddMonoidWithOne α inst✝² : Preorder α inst✝¹ : ZeroLEOneClass α inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ 0 ≤ 3 + 1 [PROOFSTEP] exact add_nonneg zero_le_three zero_le_one [GOAL] α : Type u_1 inst✝⁴ : AddMonoidWithOne α inst✝³ : PartialOrder α inst✝² : ZeroLEOneClass α inst✝¹ : NeZero 1 inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ 0 < 3 [PROOFSTEP] rw [← two_add_one_eq_three] [GOAL] α : Type u_1 inst✝⁴ : AddMonoidWithOne α inst✝³ : PartialOrder α inst✝² : ZeroLEOneClass α inst✝¹ : NeZero 1 inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ 0 < 2 + 1 [PROOFSTEP] exact lt_add_of_lt_of_nonneg zero_lt_two zero_le_one [GOAL] α : Type u_1 inst✝⁴ : AddMonoidWithOne α inst✝³ : PartialOrder α inst✝² : ZeroLEOneClass α inst✝¹ : NeZero 1 inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ 0 < 4 [PROOFSTEP] rw [← three_add_one_eq_four] [GOAL] α : Type u_1 inst✝⁴ : AddMonoidWithOne α inst✝³ : PartialOrder α inst✝² : ZeroLEOneClass α inst✝¹ : NeZero 1 inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 ⊢ 0 < 3 + 1 [PROOFSTEP] exact lt_add_of_lt_of_nonneg zero_lt_three zero_le_one [GOAL] α : Type u_1 inst✝⁴ : AddMonoidWithOne α inst✝³ : PartialOrder α inst✝² : ZeroLEOneClass α inst✝¹ : NeZero 1 inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 ⊢ 1 < 2 [PROOFSTEP] rw [← one_add_one_eq_two] [GOAL] α : Type u_1 inst✝⁴ : AddMonoidWithOne α inst✝³ : PartialOrder α inst✝² : ZeroLEOneClass α inst✝¹ : NeZero 1 inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 ⊢ 1 < 1 + 1 [PROOFSTEP] exact lt_add_one _
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.NatCast", "llama_tokens": 1484}
[GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α inst✝ : ExistsAddOfLE α hab : a ≤ b hcd : c ≤ d ⊢ a * d + b * c ≤ a * c + b * d [PROOFSTEP] obtain ⟨b, rfl⟩ := exists_add_of_le hab [GOAL] case intro α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a c d : α inst✝ : ExistsAddOfLE α hcd : c ≤ d b : α hab : a ≤ a + b ⊢ a * d + (a + b) * c ≤ a * c + (a + b) * d [PROOFSTEP] obtain ⟨d, rfl⟩ := exists_add_of_le hcd [GOAL] case intro.intro α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a c : α inst✝ : ExistsAddOfLE α b : α hab : a ≤ a + b d : α hcd : c ≤ c + d ⊢ a * (c + d) + (a + b) * c ≤ a * c + (a + b) * (c + d) [PROOFSTEP] rw [mul_add, add_right_comm, mul_add, ← add_assoc] [GOAL] case intro.intro α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a c : α inst✝ : ExistsAddOfLE α b : α hab : a ≤ a + b d : α hcd : c ≤ c + d ⊢ a * c + (a + b) * c + a * d ≤ a * c + (a + b) * c + (a + b) * d [PROOFSTEP] exact add_le_add_left (mul_le_mul_of_nonneg_right hab <| (le_add_iff_nonneg_right _).1 hcd) _ [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α inst✝ : ExistsAddOfLE α hba : b ≤ a hdc : d ≤ c ⊢ a • d + b • c ≤ a • c + b • d [PROOFSTEP] rw [add_comm (a • d), add_comm (a • c)] [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α inst✝ : ExistsAddOfLE α hba : b ≤ a hdc : d ≤ c ⊢ b • c + a • d ≤ b • d + a • c [PROOFSTEP] exact mul_add_mul_le_mul_add_mul hba hdc [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α inst✝ : ExistsAddOfLE α hab : a < b hcd : c < d ⊢ a * d + b * c < a * c + b * d [PROOFSTEP] obtain ⟨b, rfl⟩ := exists_add_of_le hab.le [GOAL] case intro α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a c d : α inst✝ : ExistsAddOfLE α hcd : c < d b : α hab : a < a + b ⊢ a * d + (a + b) * c < a * c + (a + b) * d [PROOFSTEP] obtain ⟨d, rfl⟩ := exists_add_of_le hcd.le [GOAL] case intro.intro α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a c : α inst✝ : ExistsAddOfLE α b : α hab : a < a + b d : α hcd : c < c + d ⊢ a * (c + d) + (a + b) * c < a * c + (a + b) * (c + d) [PROOFSTEP] rw [mul_add, add_right_comm, mul_add, ← add_assoc] [GOAL] case intro.intro α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a c : α inst✝ : ExistsAddOfLE α b : α hab : a < a + b d : α hcd : c < c + d ⊢ a * c + (a + b) * c + a * d < a * c + (a + b) * c + (a + b) * d [PROOFSTEP] exact add_lt_add_left (mul_lt_mul_of_pos_right hab <| (lt_add_iff_pos_right _).1 hcd) _ [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α inst✝ : ExistsAddOfLE α hba : b < a hdc : d < c ⊢ a • d + b • c < a • c + b • d [PROOFSTEP] rw [add_comm (a • d), add_comm (a • c)] [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α inst✝ : ExistsAddOfLE α hba : b < a hdc : d < c ⊢ b • c + a • d < b • d + a • c [PROOFSTEP] exact mul_add_mul_lt_mul_add_mul hba hdc [GOAL] α : Type u β : Type u_1 inst✝ : CanonicallyOrderedCommSemiring α a b : α ⊢ CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 [PROOFSTEP] refine' ⟨fun a b c h => _⟩ [GOAL] α : Type u β : Type u_1 inst✝ : CanonicallyOrderedCommSemiring α a✝ b✝ a b c : α h : b ≤ c ⊢ a * b ≤ a * c [PROOFSTEP] rcases exists_add_of_le h with ⟨c, rfl⟩ [GOAL] case intro α : Type u β : Type u_1 inst✝ : CanonicallyOrderedCommSemiring α a✝ b✝ a b c : α h : b ≤ b + c ⊢ a * b ≤ a * (b + c) [PROOFSTEP] rw [mul_add] [GOAL] case intro α : Type u β : Type u_1 inst✝ : CanonicallyOrderedCommSemiring α a✝ b✝ a b c : α h : b ≤ b + c ⊢ a * b ≤ a * b + a * c [PROOFSTEP] apply self_le_add_right [GOAL] α : Type u β : Type u_1 inst✝ : CanonicallyOrderedCommSemiring α a b : α ⊢ 0 < a * b ↔ 0 < a ∧ 0 < b [PROOFSTEP] simp only [pos_iff_ne_zero, ne_eq, mul_eq_zero, not_or] [GOAL] α : Type u β : Type u_1 inst✝³ : CanonicallyOrderedCommSemiring α a b c : α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : IsTotal α fun x x_1 => x ≤ x_1 h : AddLECancellable (a * c) ⊢ a * (b - c) = a * b - a * c [PROOFSTEP] cases' total_of (· ≤ ·) b c with hbc hcb [GOAL] case inl α : Type u β : Type u_1 inst✝³ : CanonicallyOrderedCommSemiring α a b c : α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : IsTotal α fun x x_1 => x ≤ x_1 h : AddLECancellable (a * c) hbc : b ≤ c ⊢ a * (b - c) = a * b - a * c [PROOFSTEP] rw [tsub_eq_zero_iff_le.2 hbc, mul_zero, tsub_eq_zero_iff_le.2 (mul_le_mul_left' hbc a)] [GOAL] case inr α : Type u β : Type u_1 inst✝³ : CanonicallyOrderedCommSemiring α a b c : α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : IsTotal α fun x x_1 => x ≤ x_1 h : AddLECancellable (a * c) hcb : c ≤ b ⊢ a * (b - c) = a * b - a * c [PROOFSTEP] apply h.eq_tsub_of_add_eq [GOAL] case inr α : Type u β : Type u_1 inst✝³ : CanonicallyOrderedCommSemiring α a b c : α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : IsTotal α fun x x_1 => x ≤ x_1 h : AddLECancellable (a * c) hcb : c ≤ b ⊢ a * (b - c) + a * c = a * b [PROOFSTEP] rw [← mul_add, tsub_add_cancel_of_le hcb] [GOAL] α : Type u β : Type u_1 inst✝³ : CanonicallyOrderedCommSemiring α a b c : α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : IsTotal α fun x x_1 => x ≤ x_1 h : AddLECancellable (b * c) ⊢ (a - b) * c = a * c - b * c [PROOFSTEP] simp only [mul_comm _ c] at * [GOAL] α : Type u β : Type u_1 inst✝³ : CanonicallyOrderedCommSemiring α a b c : α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : IsTotal α fun x x_1 => x ≤ x_1 h : AddLECancellable (c * b) ⊢ c * (a - b) = c * a - c * b [PROOFSTEP] exact h.mul_tsub
{"mathlib_filename": "Mathlib.Algebra.Order.Ring.Canonical", "llama_tokens": 2828}
[GOAL] α : Type u_1 a b c d : α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α ha : 0 < a hb : 0 < b ⊢ 0 < a * b [PROOFSTEP] simpa only [mul_zero] using mul_lt_mul_of_pos_left hb ha [GOAL] α : Type u_1 a b c d : α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α ha : 0 < a hb : b < 0 ⊢ a * b < 0 [PROOFSTEP] simpa only [mul_zero] using mul_lt_mul_of_pos_left hb ha [GOAL] α : Type u_1 a b c d : α inst✝³ : MulZeroClass α inst✝² : Preorder α inst✝¹ : PosMulStrictMono α inst✝ : PosMulReflectLT α h : 0 < c ⊢ 0 < c * b ↔ 0 < b [PROOFSTEP] rw [← mul_zero c, mul_lt_mul_left h] [GOAL] α : Type u_1 a b c d : α inst✝³ : MulZeroClass α inst✝² : Preorder α inst✝¹ : PosMulStrictMono α inst✝ : PosMulReflectLT α h : 0 < c ⊢ 0 < b ↔ c * 0 < b [PROOFSTEP] simp [GOAL] α : Type u_1 a b c d : α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α ha : 0 < a hb : 0 < b ⊢ 0 < a * b [PROOFSTEP] simpa only [zero_mul] using mul_lt_mul_of_pos_right ha hb [GOAL] α : Type u_1 a b c d : α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α ha : a < 0 hb : 0 < b ⊢ a * b < 0 [PROOFSTEP] simpa only [zero_mul] using mul_lt_mul_of_pos_right ha hb [GOAL] α : Type u_1 a b c d : α inst✝³ : MulZeroClass α inst✝² : Preorder α inst✝¹ : MulPosStrictMono α inst✝ : MulPosReflectLT α h : 0 < c ⊢ 0 < b * c ↔ 0 < b [PROOFSTEP] rw [← zero_mul c, mul_lt_mul_right h] [GOAL] α : Type u_1 a b c d : α inst✝³ : MulZeroClass α inst✝² : Preorder α inst✝¹ : MulPosStrictMono α inst✝ : MulPosReflectLT α h : 0 < c ⊢ 0 < b ↔ 0 * c < b [PROOFSTEP] simp [GOAL] α : Type u_1 a b c d : α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α ha : 0 ≤ a hb : 0 ≤ b ⊢ 0 ≤ a * b [PROOFSTEP] simpa only [mul_zero] using mul_le_mul_of_nonneg_left hb ha [GOAL] α : Type u_1 a b c d : α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α ha : 0 ≤ a hb : b ≤ 0 ⊢ a * b ≤ 0 [PROOFSTEP] simpa only [mul_zero] using mul_le_mul_of_nonneg_left hb ha [GOAL] α : Type u_1 a b c d : α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α ha : 0 ≤ a hb : 0 ≤ b ⊢ 0 ≤ a * b [PROOFSTEP] simpa only [zero_mul] using mul_le_mul_of_nonneg_right ha hb [GOAL] α : Type u_1 a b c d : α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α ha : a ≤ 0 hb : 0 ≤ b ⊢ a * b ≤ 0 [PROOFSTEP] simpa only [zero_mul] using mul_le_mul_of_nonneg_right ha hb [GOAL] α : Type u_1 a✝ b✝ c✝ d : α inst✝¹ : MulZeroClass α inst✝ : PartialOrder α h✝ : CovariantClass { x // 0 < x } α (fun x y => ↑x * y) fun x x_1 => x ≤ x_1 a : { x // 0 ≤ x } b c : α h : b ≤ c ⊢ ↑a * b ≤ ↑a * c [PROOFSTEP] obtain ha | ha := a.prop.eq_or_lt [GOAL] case inl α : Type u_1 a✝ b✝ c✝ d : α inst✝¹ : MulZeroClass α inst✝ : PartialOrder α h✝ : CovariantClass { x // 0 < x } α (fun x y => ↑x * y) fun x x_1 => x ≤ x_1 a : { x // 0 ≤ x } b c : α h : b ≤ c ha : 0 = ↑a ⊢ ↑a * b ≤ ↑a * c [PROOFSTEP] simp [← ha] [GOAL] case inr α : Type u_1 a✝ b✝ c✝ d : α inst✝¹ : MulZeroClass α inst✝ : PartialOrder α h✝ : CovariantClass { x // 0 < x } α (fun x y => ↑x * y) fun x x_1 => x ≤ x_1 a : { x // 0 ≤ x } b c : α h : b ≤ c ha : 0 < ↑a ⊢ ↑a * b ≤ ↑a * c [PROOFSTEP] exact @CovariantClass.elim α>0 α (fun x y => x * y) (· ≤ ·) _ ⟨_, ha⟩ _ _ h [GOAL] α : Type u_1 a✝ b✝ c✝ d : α inst✝¹ : MulZeroClass α inst✝ : PartialOrder α h✝ : CovariantClass { x // 0 < x } α (fun x y => y * ↑x) fun x x_1 => x ≤ x_1 a : { x // 0 ≤ x } b c : α h : b ≤ c ⊢ b * ↑a ≤ c * ↑a [PROOFSTEP] obtain ha | ha := a.prop.eq_or_lt [GOAL] case inl α : Type u_1 a✝ b✝ c✝ d : α inst✝¹ : MulZeroClass α inst✝ : PartialOrder α h✝ : CovariantClass { x // 0 < x } α (fun x y => y * ↑x) fun x x_1 => x ≤ x_1 a : { x // 0 ≤ x } b c : α h : b ≤ c ha : 0 = ↑a ⊢ b * ↑a ≤ c * ↑a [PROOFSTEP] simp [← ha] [GOAL] case inr α : Type u_1 a✝ b✝ c✝ d : α inst✝¹ : MulZeroClass α inst✝ : PartialOrder α h✝ : CovariantClass { x // 0 < x } α (fun x y => y * ↑x) fun x x_1 => x ≤ x_1 a : { x // 0 ≤ x } b c : α h : b ≤ c ha : 0 < ↑a ⊢ b * ↑a ≤ c * ↑a [PROOFSTEP] exact @CovariantClass.elim α>0 α (fun x y => y * x) (· ≤ ·) _ ⟨_, ha⟩ _ _ h [GOAL] α : Type u_1 a✝ b✝ c✝ d : α inst✝¹ : MulZeroClass α inst✝ : PartialOrder α h✝ : ContravariantClass { x // 0 < x } α (fun x y => ↑x * y) fun x x_1 => x < x_1 a : { x // 0 ≤ x } b c : α h : ↑a * b < ↑a * c ⊢ b < c [PROOFSTEP] obtain ha | ha := a.prop.eq_or_lt [GOAL] case inl α : Type u_1 a✝ b✝ c✝ d : α inst✝¹ : MulZeroClass α inst✝ : PartialOrder α h✝ : ContravariantClass { x // 0 < x } α (fun x y => ↑x * y) fun x x_1 => x < x_1 a : { x // 0 ≤ x } b c : α h : ↑a * b < ↑a * c ha : 0 = ↑a ⊢ b < c [PROOFSTEP] simp [← ha] at h [GOAL] case inr α : Type u_1 a✝ b✝ c✝ d : α inst✝¹ : MulZeroClass α inst✝ : PartialOrder α h✝ : ContravariantClass { x // 0 < x } α (fun x y => ↑x * y) fun x x_1 => x < x_1 a : { x // 0 ≤ x } b c : α h : ↑a * b < ↑a * c ha : 0 < ↑a ⊢ b < c [PROOFSTEP] exact @ContravariantClass.elim α>0 α (fun x y => x * y) (· < ·) _ ⟨_, ha⟩ _ _ h [GOAL] α : Type u_1 a✝ b✝ c✝ d : α inst✝¹ : MulZeroClass α inst✝ : PartialOrder α h✝ : ContravariantClass { x // 0 < x } α (fun x y => y * ↑x) fun x x_1 => x < x_1 a : { x // 0 ≤ x } b c : α h : b * ↑a < c * ↑a ⊢ b < c [PROOFSTEP] obtain ha | ha := a.prop.eq_or_lt [GOAL] case inl α : Type u_1 a✝ b✝ c✝ d : α inst✝¹ : MulZeroClass α inst✝ : PartialOrder α h✝ : ContravariantClass { x // 0 < x } α (fun x y => y * ↑x) fun x x_1 => x < x_1 a : { x // 0 ≤ x } b c : α h : b * ↑a < c * ↑a ha : 0 = ↑a ⊢ b < c [PROOFSTEP] simp [← ha] at h [GOAL] case inr α : Type u_1 a✝ b✝ c✝ d : α inst✝¹ : MulZeroClass α inst✝ : PartialOrder α h✝ : ContravariantClass { x // 0 < x } α (fun x y => y * ↑x) fun x x_1 => x < x_1 a : { x // 0 ≤ x } b c : α h : b * ↑a < c * ↑a ha : 0 < ↑a ⊢ b < c [PROOFSTEP] exact @ContravariantClass.elim α>0 α (fun x y => y * x) (· < ·) _ ⟨_, ha⟩ _ _ h [GOAL] α : Type u_1 a✝ b✝ c✝ d : α inst✝² : MulZeroClass α inst✝¹ : PartialOrder α inst✝ : PosMulMonoRev α a : { x // 0 < x } b c : α h : ↑a * b < ↑a * c ⊢ b ≠ c [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 a✝ b✝ c d : α inst✝² : MulZeroClass α inst✝¹ : PartialOrder α inst✝ : PosMulMonoRev α a : { x // 0 < x } b : α h : ↑a * b < ↑a * b ⊢ False [PROOFSTEP] simp at h [GOAL] α : Type u_1 a✝ b✝ c✝ d : α inst✝² : MulZeroClass α inst✝¹ : PartialOrder α inst✝ : MulPosMonoRev α a : { x // 0 < x } b c : α h : b * ↑a < c * ↑a ⊢ b ≠ c [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 a✝ b✝ c d : α inst✝² : MulZeroClass α inst✝¹ : PartialOrder α inst✝ : MulPosMonoRev α a : { x // 0 < x } b : α h : b * ↑a < b * ↑a ⊢ False [PROOFSTEP] simp at h [GOAL] α : Type u_1 a b c d : α inst✝⁵ : MulZeroClass α inst✝⁴ : PartialOrder α inst✝³ : PosMulStrictMono α inst✝² : MulPosStrictMono α inst✝¹ : PosMulMonoRev α inst✝ : MulPosMonoRev α hac : a ≤ b hbd : c ≤ d a0 : 0 < a d0 : 0 < d ⊢ a * c = b * d ↔ a = b ∧ c = d [PROOFSTEP] refine' ⟨fun h => _, fun h => congr_arg₂ (· * ·) h.1 h.2⟩ [GOAL] α : Type u_1 a b c d : α inst✝⁵ : MulZeroClass α inst✝⁴ : PartialOrder α inst✝³ : PosMulStrictMono α inst✝² : MulPosStrictMono α inst✝¹ : PosMulMonoRev α inst✝ : MulPosMonoRev α hac : a ≤ b hbd : c ≤ d a0 : 0 < a d0 : 0 < d h : a * c = b * d ⊢ a = b ∧ c = d [PROOFSTEP] rcases hac.eq_or_lt with (rfl | hac) [GOAL] case inl α : Type u_1 a c d : α inst✝⁵ : MulZeroClass α inst✝⁴ : PartialOrder α inst✝³ : PosMulStrictMono α inst✝² : MulPosStrictMono α inst✝¹ : PosMulMonoRev α inst✝ : MulPosMonoRev α hbd : c ≤ d a0 : 0 < a d0 : 0 < d hac : a ≤ a h : a * c = a * d ⊢ a = a ∧ c = d [PROOFSTEP] exact ⟨rfl, (mul_left_cancel_iff_of_pos a0).mp h⟩ [GOAL] case inr α : Type u_1 a b c d : α inst✝⁵ : MulZeroClass α inst✝⁴ : PartialOrder α inst✝³ : PosMulStrictMono α inst✝² : MulPosStrictMono α inst✝¹ : PosMulMonoRev α inst✝ : MulPosMonoRev α hac✝ : a ≤ b hbd : c ≤ d a0 : 0 < a d0 : 0 < d h : a * c = b * d hac : a < b ⊢ a = b ∧ c = d [PROOFSTEP] rcases eq_or_lt_of_le hbd with (rfl | hbd) [GOAL] case inr.inl α : Type u_1 a b c : α inst✝⁵ : MulZeroClass α inst✝⁴ : PartialOrder α inst✝³ : PosMulStrictMono α inst✝² : MulPosStrictMono α inst✝¹ : PosMulMonoRev α inst✝ : MulPosMonoRev α hac✝ : a ≤ b a0 : 0 < a hac : a < b hbd : c ≤ c d0 : 0 < c h : a * c = b * c ⊢ a = b ∧ c = c [PROOFSTEP] exact ⟨(mul_right_cancel_iff_of_pos d0).mp h, rfl⟩ [GOAL] case inr.inr α : Type u_1 a b c d : α inst✝⁵ : MulZeroClass α inst✝⁴ : PartialOrder α inst✝³ : PosMulStrictMono α inst✝² : MulPosStrictMono α inst✝¹ : PosMulMonoRev α inst✝ : MulPosMonoRev α hac✝ : a ≤ b hbd✝ : c ≤ d a0 : 0 < a d0 : 0 < d h : a * c = b * d hac : a < b hbd : c < d ⊢ a = b ∧ c = d [PROOFSTEP] exact ((mul_lt_mul_of_pos_of_pos hac hbd a0 d0).ne h).elim [GOAL] α : Type u_1 a b c d : α inst✝⁵ : MulZeroClass α inst✝⁴ : PartialOrder α inst✝³ : PosMulStrictMono α inst✝² : MulPosStrictMono α inst✝¹ : PosMulMonoRev α inst✝ : MulPosMonoRev α hac : a ≤ b hbd : c ≤ d b0 : 0 < b c0 : 0 < c ⊢ a * c = b * d ↔ a = b ∧ c = d [PROOFSTEP] refine' ⟨fun h => _, fun h => congr_arg₂ (· * ·) h.1 h.2⟩ [GOAL] α : Type u_1 a b c d : α inst✝⁵ : MulZeroClass α inst✝⁴ : PartialOrder α inst✝³ : PosMulStrictMono α inst✝² : MulPosStrictMono α inst✝¹ : PosMulMonoRev α inst✝ : MulPosMonoRev α hac : a ≤ b hbd : c ≤ d b0 : 0 < b c0 : 0 < c h : a * c = b * d ⊢ a = b ∧ c = d [PROOFSTEP] rcases hac.eq_or_lt with (rfl | hac) [GOAL] case inl α : Type u_1 a c d : α inst✝⁵ : MulZeroClass α inst✝⁴ : PartialOrder α inst✝³ : PosMulStrictMono α inst✝² : MulPosStrictMono α inst✝¹ : PosMulMonoRev α inst✝ : MulPosMonoRev α hbd : c ≤ d c0 : 0 < c hac : a ≤ a b0 : 0 < a h : a * c = a * d ⊢ a = a ∧ c = d [PROOFSTEP] exact ⟨rfl, (mul_left_cancel_iff_of_pos b0).mp h⟩ [GOAL] case inr α : Type u_1 a b c d : α inst✝⁵ : MulZeroClass α inst✝⁴ : PartialOrder α inst✝³ : PosMulStrictMono α inst✝² : MulPosStrictMono α inst✝¹ : PosMulMonoRev α inst✝ : MulPosMonoRev α hac✝ : a ≤ b hbd : c ≤ d b0 : 0 < b c0 : 0 < c h : a * c = b * d hac : a < b ⊢ a = b ∧ c = d [PROOFSTEP] rcases eq_or_lt_of_le hbd with (rfl | hbd) [GOAL] case inr.inl α : Type u_1 a b c : α inst✝⁵ : MulZeroClass α inst✝⁴ : PartialOrder α inst✝³ : PosMulStrictMono α inst✝² : MulPosStrictMono α inst✝¹ : PosMulMonoRev α inst✝ : MulPosMonoRev α hac✝ : a ≤ b b0 : 0 < b c0 : 0 < c hac : a < b hbd : c ≤ c h : a * c = b * c ⊢ a = b ∧ c = c [PROOFSTEP] exact ⟨(mul_right_cancel_iff_of_pos c0).mp h, rfl⟩ [GOAL] case inr.inr α : Type u_1 a b c d : α inst✝⁵ : MulZeroClass α inst✝⁴ : PartialOrder α inst✝³ : PosMulStrictMono α inst✝² : MulPosStrictMono α inst✝¹ : PosMulMonoRev α inst✝ : MulPosMonoRev α hac✝ : a ≤ b hbd✝ : c ≤ d b0 : 0 < b c0 : 0 < c h : a * c = b * d hac : a < b hbd : c < d ⊢ a = b ∧ c = d [PROOFSTEP] exact ((mul_lt_mul_of_lt_of_lt' hac hbd b0 c0).ne h).elim [GOAL] α : Type u_1 a b c d : α inst✝³ : MulZeroClass α inst✝² : LinearOrder α inst✝¹ : PosMulMono α inst✝ : MulPosMono α hab : 0 < a * b ⊢ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0 [PROOFSTEP] rcases lt_trichotomy a 0 with (ha | rfl | ha) [GOAL] case inl α : Type u_1 a b c d : α inst✝³ : MulZeroClass α inst✝² : LinearOrder α inst✝¹ : PosMulMono α inst✝ : MulPosMono α hab : 0 < a * b ha : a < 0 ⊢ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0 [PROOFSTEP] refine' Or.inr ⟨ha, lt_imp_lt_of_le_imp_le (fun hb => _) hab⟩ [GOAL] case inl α : Type u_1 a b c d : α inst✝³ : MulZeroClass α inst✝² : LinearOrder α inst✝¹ : PosMulMono α inst✝ : MulPosMono α hab : 0 < a * b ha : a < 0 hb : 0 ≤ b ⊢ a * b ≤ 0 [PROOFSTEP] exact mul_nonpos_of_nonpos_of_nonneg ha.le hb [GOAL] case inr.inl α : Type u_1 b c d : α inst✝³ : MulZeroClass α inst✝² : LinearOrder α inst✝¹ : PosMulMono α inst✝ : MulPosMono α hab : 0 < 0 * b ⊢ 0 < 0 ∧ 0 < b ∨ 0 < 0 ∧ b < 0 [PROOFSTEP] rw [zero_mul] at hab [GOAL] case inr.inl α : Type u_1 b c d : α inst✝³ : MulZeroClass α inst✝² : LinearOrder α inst✝¹ : PosMulMono α inst✝ : MulPosMono α hab : 0 < 0 ⊢ 0 < 0 ∧ 0 < b ∨ 0 < 0 ∧ b < 0 [PROOFSTEP] exact hab.false.elim [GOAL] case inr.inr α : Type u_1 a b c d : α inst✝³ : MulZeroClass α inst✝² : LinearOrder α inst✝¹ : PosMulMono α inst✝ : MulPosMono α hab : 0 < a * b ha : 0 < a ⊢ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0 [PROOFSTEP] refine' Or.inl ⟨ha, lt_imp_lt_of_le_imp_le (fun hb => _) hab⟩ [GOAL] case inr.inr α : Type u_1 a b c d : α inst✝³ : MulZeroClass α inst✝² : LinearOrder α inst✝¹ : PosMulMono α inst✝ : MulPosMono α hab : 0 < a * b ha : 0 < a hb : b ≤ 0 ⊢ a * b ≤ 0 [PROOFSTEP] exact mul_nonpos_of_nonneg_of_nonpos ha.le hb [GOAL] α : Type u_1 a b c d : α inst✝⁴ : MulOneClass α inst✝³ : Zero α inst✝² : Preorder α inst✝¹ : PosMulMono α inst✝ : PosMulMonoRev α a0 : 0 < a ⊢ a ≤ a * b ↔ a * 1 ≤ a * b [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 a b c d : α inst✝⁴ : MulOneClass α inst✝³ : Zero α inst✝² : Preorder α inst✝¹ : PosMulStrictMono α inst✝ : PosMulReflectLT α a0 : 0 < a ⊢ a < a * b ↔ a * 1 < a * b [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 a b c d : α inst✝⁴ : MulOneClass α inst✝³ : Zero α inst✝² : Preorder α inst✝¹ : PosMulMono α inst✝ : PosMulMonoRev α a0 : 0 < a ⊢ a * b ≤ a ↔ a * b ≤ a * 1 [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 a b c d : α inst✝⁴ : MulOneClass α inst✝³ : Zero α inst✝² : Preorder α inst✝¹ : PosMulStrictMono α inst✝ : PosMulReflectLT α a0 : 0 < a ⊢ a * b < a ↔ a * b < a * 1 [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 a b c d : α inst✝⁴ : MulOneClass α inst✝³ : Zero α inst✝² : Preorder α inst✝¹ : MulPosMono α inst✝ : MulPosMonoRev α a0 : 0 < a ⊢ a ≤ b * a ↔ 1 * a ≤ b * a [PROOFSTEP] rw [one_mul] [GOAL] α : Type u_1 a b c d : α inst✝⁴ : MulOneClass α inst✝³ : Zero α inst✝² : Preorder α inst✝¹ : MulPosStrictMono α inst✝ : MulPosReflectLT α a0 : 0 < a ⊢ a < b * a ↔ 1 * a < b * a [PROOFSTEP] rw [one_mul] [GOAL] α : Type u_1 a b c d : α inst✝⁴ : MulOneClass α inst✝³ : Zero α inst✝² : Preorder α inst✝¹ : MulPosMono α inst✝ : MulPosMonoRev α b0 : 0 < b ⊢ a * b ≤ b ↔ a * b ≤ 1 * b [PROOFSTEP] rw [one_mul] [GOAL] α : Type u_1 a b c d : α inst✝⁴ : MulOneClass α inst✝³ : Zero α inst✝² : Preorder α inst✝¹ : MulPosStrictMono α inst✝ : MulPosReflectLT α b0 : 0 < b ⊢ a * b < b ↔ a * b < 1 * b [PROOFSTEP] rw [one_mul] [GOAL] α : Type u_1 a b c d : α inst✝³ : MulOneClass α inst✝² : Zero α inst✝¹ : Preorder α inst✝ : MulPosMono α hb : 0 ≤ b h : a ≤ 1 ⊢ a * b ≤ b [PROOFSTEP] simpa only [one_mul] using mul_le_mul_of_nonneg_right h hb [GOAL] α : Type u_1 a b c d : α inst✝³ : MulOneClass α inst✝² : Zero α inst✝¹ : Preorder α inst✝ : MulPosMono α hb : 0 ≤ b h : 1 ≤ a ⊢ b ≤ a * b [PROOFSTEP] simpa only [one_mul] using mul_le_mul_of_nonneg_right h hb [GOAL] α : Type u_1 a b c d : α inst✝³ : MulOneClass α inst✝² : Zero α inst✝¹ : Preorder α inst✝ : PosMulMono α ha : 0 ≤ a h : b ≤ 1 ⊢ a * b ≤ a [PROOFSTEP] simpa only [mul_one] using mul_le_mul_of_nonneg_left h ha [GOAL] α : Type u_1 a b c d : α inst✝³ : MulOneClass α inst✝² : Zero α inst✝¹ : Preorder α inst✝ : PosMulMono α ha : 0 ≤ a h : 1 ≤ b ⊢ a ≤ a * b [PROOFSTEP] simpa only [mul_one] using mul_le_mul_of_nonneg_left h ha [GOAL] α : Type u_1 a b c d : α inst✝³ : MulOneClass α inst✝² : Zero α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α hb : 0 < b h : a < 1 ⊢ a * b < b [PROOFSTEP] simpa only [one_mul] using mul_lt_mul_of_pos_right h hb [GOAL] α : Type u_1 a b c d : α inst✝³ : MulOneClass α inst✝² : Zero α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α hb : 0 < b h : 1 < a ⊢ b < a * b [PROOFSTEP] simpa only [one_mul] using mul_lt_mul_of_pos_right h hb [GOAL] α : Type u_1 a b c d : α inst✝³ : MulOneClass α inst✝² : Zero α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α ha : 0 < a h : b < 1 ⊢ a * b < a [PROOFSTEP] simpa only [mul_one] using mul_lt_mul_of_pos_left h ha [GOAL] α : Type u_1 a b c d : α inst✝³ : MulOneClass α inst✝² : Zero α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α ha : 0 < a h : 1 < b ⊢ a < a * b [PROOFSTEP] simpa only [mul_one] using mul_lt_mul_of_pos_left h ha [GOAL] α : Type u_1 a b c d : α inst✝³ : MulOneClass α inst✝² : Zero α inst✝¹ : LinearOrder α inst✝ : PosMulStrictMono α a0 : 0 < a ⊢ ∃ b, b * b ≤ a [PROOFSTEP] obtain ha | ha := lt_or_le a 1 [GOAL] case inl α : Type u_1 a b c d : α inst✝³ : MulOneClass α inst✝² : Zero α inst✝¹ : LinearOrder α inst✝ : PosMulStrictMono α a0 : 0 < a ha : a < 1 ⊢ ∃ b, b * b ≤ a [PROOFSTEP] exact ⟨a, (mul_lt_of_lt_one_right a0 ha).le⟩ [GOAL] case inr α : Type u_1 a b c d : α inst✝³ : MulOneClass α inst✝² : Zero α inst✝¹ : LinearOrder α inst✝ : PosMulStrictMono α a0 : 0 < a ha : 1 ≤ a ⊢ ∃ b, b * b ≤ a [PROOFSTEP] exact ⟨1, by rwa [mul_one]⟩ [GOAL] α : Type u_1 a b c d : α inst✝³ : MulOneClass α inst✝² : Zero α inst✝¹ : LinearOrder α inst✝ : PosMulStrictMono α a0 : 0 < a ha : 1 ≤ a ⊢ 1 * 1 ≤ a [PROOFSTEP] rwa [mul_one] [GOAL] α : Type u_1 a b c d : α inst✝² : CommSemigroup α inst✝¹ : Zero α inst✝ : Preorder α ⊢ PosMulStrictMono α ↔ MulPosStrictMono α [PROOFSTEP] simp only [PosMulStrictMono, MulPosStrictMono, mul_comm] [GOAL] α : Type u_1 a b c d : α inst✝² : CommSemigroup α inst✝¹ : Zero α inst✝ : Preorder α ⊢ PosMulReflectLT α ↔ MulPosReflectLT α [PROOFSTEP] simp only [PosMulReflectLT, MulPosReflectLT, mul_comm] [GOAL] α : Type u_1 a b c d : α inst✝² : CommSemigroup α inst✝¹ : Zero α inst✝ : Preorder α ⊢ PosMulMono α ↔ MulPosMono α [PROOFSTEP] simp only [PosMulMono, MulPosMono, mul_comm] [GOAL] α : Type u_1 a b c d : α inst✝² : CommSemigroup α inst✝¹ : Zero α inst✝ : Preorder α ⊢ PosMulMonoRev α ↔ MulPosMonoRev α [PROOFSTEP] simp only [PosMulMonoRev, MulPosMonoRev, mul_comm]
{"mathlib_filename": "Mathlib.Algebra.Order.Ring.Lemmas", "llama_tokens": 9634}
[GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C p q : StarSubalgebra R A h : (fun S => S.carrier) p = (fun S => S.carrier) q ⊢ p = q [PROOFSTEP] obtain ⟨⟨⟨⟨⟨_, _⟩, _⟩, _⟩, _⟩, _⟩ := p [GOAL] case mk.mk.mk.mk.mk F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C q : StarSubalgebra R A carrier✝ : Set A mul_mem'✝ : ∀ {a b : A}, a ∈ carrier✝ → b ∈ carrier✝ → a * b ∈ carrier✝ one_mem'✝ : 1 ∈ { carrier := carrier✝, mul_mem' := mul_mem'✝ }.carrier add_mem'✝ : ∀ {a b : A}, a ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier zero_mem'✝ : 0 ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier algebraMap_mem'✝ : ∀ (r : R), ↑(algebraMap R A) r ∈ { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }.toSubmonoid.toSubsemigroup.carrier star_mem'✝ : ∀ {a : A}, a ∈ { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier → star a ∈ { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier h : (fun S => S.carrier) { toSubalgebra := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }, star_mem' := star_mem'✝ } = (fun S => S.carrier) q ⊢ { toSubalgebra := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }, star_mem' := star_mem'✝ } = q [PROOFSTEP] cases q [GOAL] case mk.mk.mk.mk.mk.mk F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C carrier✝ : Set A mul_mem'✝ : ∀ {a b : A}, a ∈ carrier✝ → b ∈ carrier✝ → a * b ∈ carrier✝ one_mem'✝ : 1 ∈ { carrier := carrier✝, mul_mem' := mul_mem'✝ }.carrier add_mem'✝ : ∀ {a b : A}, a ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier zero_mem'✝ : 0 ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier algebraMap_mem'✝ : ∀ (r : R), ↑(algebraMap R A) r ∈ { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }.toSubmonoid.toSubsemigroup.carrier star_mem'✝¹ : ∀ {a : A}, a ∈ { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier → star a ∈ { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier toSubalgebra✝ : Subalgebra R A star_mem'✝ : ∀ {a : A}, a ∈ toSubalgebra✝.carrier → star a ∈ toSubalgebra✝.carrier h : (fun S => S.carrier) { toSubalgebra := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }, star_mem' := star_mem'✝¹ } = (fun S => S.carrier) { toSubalgebra := toSubalgebra✝, star_mem' := star_mem'✝ } ⊢ { toSubalgebra := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }, add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }, algebraMap_mem' := algebraMap_mem'✝ }, star_mem' := star_mem'✝¹ } = { toSubalgebra := toSubalgebra✝, star_mem' := star_mem'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S T : StarSubalgebra R A h : S.toSubalgebra = T.toSubalgebra x : A ⊢ x ∈ S ↔ x ∈ T [PROOFSTEP] rw [← mem_toSubalgebra, ← mem_toSubalgebra, h] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A s : Set A hs : s = ↑S a : A ha : a ∈ (Subalgebra.copy S.toSubalgebra s hs).toSubsemiring.toSubmonoid.toSubsemigroup.carrier ⊢ a ∈ S.carrier [PROOFSTEP] simpa [hs] using ha [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A a : A hs : ↑S = ↑S ha : a ∈ (Subalgebra.copy S.toSubalgebra (↑S) hs).toSubsemiring.toSubmonoid.toSubsemigroup.carrier ⊢ a ∈ S.carrier [PROOFSTEP] simpa [hs] using ha [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A ⊢ { x // x ∈ S } →⋆ₐ[R] A [PROOFSTEP] refine' { toFun := ((↑) : S → A), .. } [GOAL] case refine'_1 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A ⊢ ↑1 = 1 [PROOFSTEP] intros [GOAL] case refine'_2 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A ⊢ ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y [PROOFSTEP] intros [GOAL] case refine'_3 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A ⊢ OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) 0 = 0 [PROOFSTEP] intros [GOAL] case refine'_4 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A ⊢ ∀ (x y : { x // x ∈ S }), OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) y [PROOFSTEP] intros [GOAL] case refine'_5 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A ⊢ ∀ (r : R), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }, map_zero' := ?refine'_3, map_add' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) y) }) (↑(algebraMap R { x // x ∈ S }) r) = ↑(algebraMap R A) r [PROOFSTEP] intros [GOAL] case refine'_6 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A ⊢ ∀ (x : { x // x ∈ S }), OneHom.toFun (↑↑↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }, map_zero' := ?refine'_3, map_add' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) y) }, commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }, map_zero' := ?refine'_3, map_add' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) y) }) (↑(algebraMap R { x // x ∈ S }) r) = ↑(algebraMap R A) r) }) (star x) = star (OneHom.toFun (↑↑↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }, map_zero' := ?refine'_3, map_add' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) y) }, commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }, map_zero' := ?refine'_3, map_add' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x * OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) }) y) }) (↑(algebraMap R { x // x ∈ S }) r) = ↑(algebraMap R A) r) }) x) [PROOFSTEP] intros [GOAL] case refine'_1 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A ⊢ ↑1 = 1 [PROOFSTEP] rfl [GOAL] case refine'_2 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A x✝ y✝ : { x // x ∈ S } ⊢ OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x✝ * y✝) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } x✝ * OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } y✝ [PROOFSTEP] rfl [GOAL] case refine'_3 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A ⊢ OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0 = 0 [PROOFSTEP] rfl [GOAL] case refine'_4 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A x✝ y✝ : { x // x ∈ S } ⊢ OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x✝ + y✝) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) x✝ + OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) y✝ [PROOFSTEP] rfl [GOAL] case refine'_5 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A r✝ : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0 = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0), map_add' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y)) }) (↑(algebraMap R { x // x ∈ S }) r✝) = ↑(algebraMap R A) r✝ [PROOFSTEP] rfl [GOAL] case refine'_6 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A x✝ : { x // x ∈ S } ⊢ OneHom.toFun (↑↑↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0 = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0), map_add' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y)) }, commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0 = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0), map_add' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y)) }) (↑(algebraMap R { x // x ∈ S }) r) = OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0 = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0), map_add' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y)) }) (↑(algebraMap R { x // x ∈ S }) r)) }) (star x✝) = star (OneHom.toFun (↑↑↑{ toRingHom := { toMonoidHom := { toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0 = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0), map_add' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y)) }, commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0 = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0), map_add' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y)) }) (↑(algebraMap R { x // x ∈ S }) r) = OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0 = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) 0), map_add' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }, map_mul' := (_ : ∀ (x y : { x // x ∈ S }), OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) = OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) }) (x + y)) }) (↑(algebraMap R { x // x ∈ S }) r)) }) x✝) [PROOFSTEP] rfl [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S✝ : StarSubalgebra R A f : A →⋆ₐ[R] B S : StarSubalgebra R A src✝ : Subalgebra R B := Subalgebra.map f.toAlgHom S.toSubalgebra ⊢ ∀ {a : B}, a ∈ { toSubsemiring := src✝.toSubsemiring, algebraMap_mem' := (_ : ∀ (r : R), ↑(algebraMap R B) r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier → star a ∈ { toSubsemiring := src✝.toSubsemiring, algebraMap_mem' := (_ : ∀ (r : R), ↑(algebraMap R B) r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] rintro _ ⟨a, ha, rfl⟩ [GOAL] case intro.intro F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S✝ : StarSubalgebra R A f : A →⋆ₐ[R] B S : StarSubalgebra R A src✝ : Subalgebra R B := Subalgebra.map f.toAlgHom S.toSubalgebra a : A ha : a ∈ ↑S.toSubsemiring ⊢ star (↑↑f.toAlgHom a) ∈ { toSubsemiring := src✝.toSubsemiring, algebraMap_mem' := (_ : ∀ (r : R), ↑(algebraMap R B) r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] exact map_star f a ▸ Set.mem_image_of_mem _ (S.star_mem' ha) [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S✝ : StarSubalgebra R A S : StarSubalgebra R C g : B →⋆ₐ[R] C f : A →⋆ₐ[R] B ⊢ ↑(comap f (comap g S)) = ↑(comap (StarAlgHom.comp g f) S) [PROOFSTEP] exact Set.preimage_preimage [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A s : Set A z : A ⊢ z ∈ centralizer R s ↔ ∀ (g : A), g ∈ s → g * z = z * g ∧ star g * z = z * star g [PROOFSTEP] show (∀ g ∈ s ∪ star s, g * z = z * g) ↔ ∀ g ∈ s, g * z = z * g ∧ star g * z = z * star g [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A s : Set A z : A ⊢ (∀ (g : A), g ∈ s ∪ star s → g * z = z * g) ↔ ∀ (g : A), g ∈ s → g * z = z * g ∧ star g * z = z * star g [PROOFSTEP] simp only [Set.mem_union, or_imp, forall_and, and_congr_right_iff] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 C : Type u_5 inst✝¹³ : CommSemiring R inst✝¹² : StarRing R inst✝¹¹ : Semiring A inst✝¹⁰ : StarRing A inst✝⁹ : Algebra R A inst✝⁸ : StarModule R A inst✝⁷ : Semiring B inst✝⁶ : StarRing B inst✝⁵ : Algebra R B inst✝⁴ : StarModule R B inst✝³ : Semiring C inst✝² : StarRing C inst✝¹ : Algebra R C inst✝ : StarModule R C S : StarSubalgebra R A s : Set A z : A ⊢ (∀ (x : A), x ∈ s → x * z = z * x) → ((∀ (x : A), x ∈ star s → x * z = z * x) ↔ ∀ (x : A), x ∈ s → star x * z = z * star x) [PROOFSTEP] exact fun _ => ⟨fun hz a ha => hz _ (Set.star_mem_star.mpr ha), fun hz a ha => star_star a ▸ hz _ ha⟩ [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : Subalgebra R A x y : A hx : x ∈ star S.carrier hy : y ∈ star S.carrier ⊢ x * y ∈ star S.carrier [PROOFSTEP] simp only [Set.mem_star, Subalgebra.mem_carrier] at * [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : Subalgebra R A x y : A hx : star x ∈ S hy : star y ∈ S ⊢ star (x * y) ∈ S [PROOFSTEP] exact (star_mul x y).symm ▸ mul_mem hy hx [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : Subalgebra R A x y : A hx : x ∈ { toSubsemigroup := { carrier := star S.carrier, mul_mem' := (_ : ∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) }, one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) }.toSubsemigroup.carrier hy : y ∈ { toSubsemigroup := { carrier := star S.carrier, mul_mem' := (_ : ∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) }, one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) }.toSubsemigroup.carrier ⊢ x + y ∈ { toSubsemigroup := { carrier := star S.carrier, mul_mem' := (_ : ∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) }, one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) }.toSubsemigroup.carrier [PROOFSTEP] simp only [Set.mem_star, Subalgebra.mem_carrier] at * [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : Subalgebra R A x y : A hx : star x ∈ S hy : star y ∈ S ⊢ star (x + y) ∈ S [PROOFSTEP] exact (star_add x y).symm ▸ add_mem hx hy [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : Subalgebra R A r : R ⊢ ↑(algebraMap R A) r ∈ { toSubmonoid := { toSubsemigroup := { carrier := star S.carrier, mul_mem' := (_ : ∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) }, one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) }, add_mem' := (_ : ∀ {x y : A}, x ∈ { toSubsemigroup := { carrier := star S.carrier, mul_mem' := (_ : ∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) }, one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) }.toSubsemigroup.carrier → y ∈ { toSubsemigroup := { carrier := star S.carrier, mul_mem' := (_ : ∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) }, one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) }.toSubsemigroup.carrier → x + y ∈ { toSubsemigroup := { carrier := star S.carrier, mul_mem' := (_ : ∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) }, one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) }.toSubsemigroup.carrier), zero_mem' := (_ : star 0 ∈ S.toSubsemigroup.1) }.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] simpa only [Set.mem_star, Subalgebra.mem_carrier, ← algebraMap_star_comm] using S.algebraMap_mem (star r) [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : Subalgebra R A x : A ⊢ star x ∈ star S ↔ x ∈ S [PROOFSTEP] simp only [mem_star_iff, star_star] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A this : ∀ (t : Set A), Algebra.adjoin R (star t) ≤ star (Algebra.adjoin R t) ⊢ star (Algebra.adjoin R s) ≤ Algebra.adjoin R (star s) [PROOFSTEP] simpa only [star_star] using Subalgebra.star_mono (this (star s)) [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : Subalgebra R A a : A ha : a ∈ (S ⊔ star S).carrier ⊢ star a ∈ (S ⊔ star S).carrier [PROOFSTEP] simp only [Subalgebra.mem_carrier, ← (@Algebra.gi R A _ _ _).l_sup_u _ _] at * [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : Subalgebra R A a : A ha : a ∈ Algebra.adjoin R (↑S ⊔ ↑(star S)) ⊢ star a ∈ Algebra.adjoin R (↑S ⊔ ↑(star S)) [PROOFSTEP] rw [← mem_star_iff _ a, star_adjoin_comm, sup_comm] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : Subalgebra R A a : A ha : a ∈ Algebra.adjoin R (↑S ⊔ ↑(star S)) ⊢ a ∈ Algebra.adjoin R (star (↑(star S) ⊔ ↑S)) [PROOFSTEP] simpa using ha [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A src✝ : Subalgebra R A := Algebra.adjoin R (s ∪ star s) a✝ : A hx : a✝ ∈ { toSubsemiring := src✝.toSubsemiring, algebraMap_mem' := (_ : ∀ (r : R), ↑(algebraMap R A) r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ⊢ star a✝ ∈ { toSubsemiring := src✝.toSubsemiring, algebraMap_mem' := (_ : ∀ (r : R), ↑(algebraMap R A) r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] rwa [Subalgebra.mem_carrier, ← Subalgebra.mem_star_iff, Subalgebra.star_adjoin_comm, Set.union_star, star_star, Set.union_comm] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B ⊢ GaloisConnection (adjoin R) SetLike.coe [PROOFSTEP] intro s S [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A S : StarSubalgebra R A ⊢ adjoin R s ≤ S ↔ s ≤ ↑S [PROOFSTEP] rw [← toSubalgebra_le_iff, adjoin_toSubalgebra, Algebra.adjoin_le_iff, coe_toSubalgebra] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A S : StarSubalgebra R A ⊢ s ∪ star s ⊆ ↑S ↔ s ≤ ↑S [PROOFSTEP] exact ⟨fun h => (Set.subset_union_left s _).trans h, fun h => Set.union_subset h fun x hx => star_star x ▸ star_mem (show star x ∈ S from h hx)⟩ [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) ⊢ p a b [PROOFSTEP] refine' Algebra.adjoin_induction₂ ha hb (fun x hx y hy => _) Halg (fun r x hx => _) (fun r x hx => _) Hadd_left Hadd_right Hmul_left Hmul_right [GOAL] case refine'_1 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) x : A hx : x ∈ s ∪ star s y : A hy : y ∈ s ∪ star s ⊢ p x y [PROOFSTEP] cases' hx with hx hx [GOAL] case refine'_1.inl F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) x y : A hy : y ∈ s ∪ star s hx : x ∈ s ⊢ p x y [PROOFSTEP] cases' hy with hy hy [GOAL] case refine'_1.inr F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) x y : A hy : y ∈ s ∪ star s hx : x ∈ star s ⊢ p x y [PROOFSTEP] cases' hy with hy hy [GOAL] case refine'_1.inl.inl F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) x y : A hx : x ∈ s hy : y ∈ s ⊢ p x y [PROOFSTEP] exact Hs x hx y hy [GOAL] case refine'_1.inl.inr F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) x y : A hx : x ∈ s hy : y ∈ star s ⊢ p x y [PROOFSTEP] exact star_star y ▸ Hstar_right _ _ (Hs _ hx _ hy) [GOAL] case refine'_1.inr.inl F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) x y : A hx : x ∈ star s hy : y ∈ s ⊢ p x y [PROOFSTEP] exact star_star x ▸ Hstar_left _ _ (Hs _ hx _ hy) [GOAL] case refine'_1.inr.inr F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) x y : A hx : x ∈ star s hy : y ∈ star s ⊢ p x y [PROOFSTEP] exact star_star x ▸ star_star y ▸ Hstar _ _ (Hs _ hx _ hy) [GOAL] case refine'_2 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) r : R x : A hx : x ∈ s ∪ star s ⊢ p (↑(algebraMap R A) r) x [PROOFSTEP] cases' hx with hx hx [GOAL] case refine'_2.inl F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) r : R x : A hx : x ∈ s ⊢ p (↑(algebraMap R A) r) x [PROOFSTEP] exact Halg_left _ _ hx [GOAL] case refine'_2.inr F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) r : R x : A hx : x ∈ star s ⊢ p (↑(algebraMap R A) r) x [PROOFSTEP] exact star_star x ▸ Hstar_right _ _ (Halg_left r _ hx) [GOAL] case refine'_3 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) r : R x : A hx : x ∈ s ∪ star s ⊢ p x (↑(algebraMap R A) r) [PROOFSTEP] cases' hx with hx hx [GOAL] case refine'_3.inl F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) r : R x : A hx : x ∈ s ⊢ p x (↑(algebraMap R A) r) [PROOFSTEP] exact Halg_right _ _ hx [GOAL] case refine'_3.inr F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : A → A → Prop a b : A ha : a ∈ adjoin R s hb : b ∈ adjoin R s Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂) Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r) Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂) Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂) Hstar : ∀ (x y : A), p x y → p (star x) (star y) Hstar_left : ∀ (x y : A), p x y → p (star x) y Hstar_right : ∀ (x y : A), p x y → p x (star y) r : R x : A hx : x ∈ star s ⊢ p x (↑(algebraMap R A) r) [PROOFSTEP] exact star_star x ▸ Hstar_left _ _ (Halg_right r _ hx) [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : { x // x ∈ adjoin R s } → Prop a : { x // x ∈ adjoin R s } Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) } Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r) Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y) Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y) Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x) b : A hb : b ∈ adjoin R s ⊢ p { val := b, property := hb } [PROOFSTEP] refine' Exists.elim _ fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : { x // x ∈ adjoin R s } → Prop a : { x // x ∈ adjoin R s } Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) } Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r) Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y) Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y) Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x) b : A hb : b ∈ adjoin R s ⊢ ∃ x, p { val := b, property := x } [PROOFSTEP] apply adjoin_induction hb [GOAL] case Hs F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : { x // x ∈ adjoin R s } → Prop a : { x // x ∈ adjoin R s } Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) } Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r) Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y) Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y) Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x) b : A hb : b ∈ adjoin R s ⊢ ∀ (x : A), x ∈ s → ∃ x_1, p { val := x, property := x_1 } case Halg F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : { x // x ∈ adjoin R s } → Prop a : { x // x ∈ adjoin R s } Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) } Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r) Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y) Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y) Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x) b : A hb : b ∈ adjoin R s ⊢ ∀ (r : R), ∃ x, p { val := ↑(algebraMap R A) r, property := x } case Hadd F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : { x // x ∈ adjoin R s } → Prop a : { x // x ∈ adjoin R s } Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) } Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r) Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y) Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y) Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x) b : A hb : b ∈ adjoin R s ⊢ ∀ (x y : A), (∃ x_1, p { val := x, property := x_1 }) → (∃ x, p { val := y, property := x }) → ∃ x_1, p { val := x + y, property := x_1 } case Hmul F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : { x // x ∈ adjoin R s } → Prop a : { x // x ∈ adjoin R s } Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) } Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r) Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y) Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y) Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x) b : A hb : b ∈ adjoin R s ⊢ ∀ (x y : A), (∃ x_1, p { val := x, property := x_1 }) → (∃ x, p { val := y, property := x }) → ∃ x_1, p { val := x * y, property := x_1 } case Hstar F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A p : { x // x ∈ adjoin R s } → Prop a : { x // x ∈ adjoin R s } Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) } Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r) Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y) Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y) Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x) b : A hb : b ∈ adjoin R s ⊢ ∀ (x : A), (∃ x_1, p { val := x, property := x_1 }) → ∃ x_1, p { val := star x, property := x_1 } [PROOFSTEP] exacts [fun x hx => ⟨subset_adjoin R s hx, Hs x hx⟩, fun r => ⟨StarSubalgebra.algebraMap_mem _ r, Halg r⟩, fun x y hx hy => Exists.elim hx fun hx' hx => Exists.elim hy fun hy' hy => ⟨add_mem hx' hy', Hadd _ _ hx hy⟩, fun x y hx hy => Exists.elim hx fun hx' hx => Exists.elim hy fun hy' hy => ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩, fun x hx => Exists.elim hx fun hx' hx => ⟨star_mem hx', Hstar _ hx⟩] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra ⊢ ∀ (a b : { x // x ∈ adjoin R s }), a * b = b * a [PROOFSTEP] rintro ⟨x, hx⟩ ⟨y, hy⟩ [GOAL] case mk.mk F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra x : A hx : x ∈ adjoin R s y : A hy : y ∈ adjoin R s ⊢ { val := x, property := hx } * { val := y, property := hy } = { val := y, property := hy } * { val := x, property := hx } [PROOFSTEP] ext [GOAL] case mk.mk.a F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra x : A hx : x ∈ adjoin R s y : A hy : y ∈ adjoin R s ⊢ ↑({ val := x, property := hx } * { val := y, property := hy }) = ↑({ val := y, property := hy } * { val := x, property := hx }) [PROOFSTEP] simp only [MulMemClass.mk_mul_mk] [GOAL] case mk.mk.a F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra x : A hx : x ∈ adjoin R s y : A hy : y ∈ adjoin R s ⊢ x * y = y * x [PROOFSTEP] rw [← mem_toSubalgebra, adjoin_toSubalgebra] at hx hy [GOAL] case mk.mk.a F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra x : A hx : x ∈ Algebra.adjoin R (s ∪ star s) y : A hy : y ∈ Algebra.adjoin R (s ∪ star s) ⊢ x * y = y * x [PROOFSTEP] letI : CommSemiring (Algebra.adjoin R (s ∪ star s)) := Algebra.adjoinCommSemiringOfComm R (by intro a ha b hb cases' ha with ha ha <;> cases' hb with hb hb · exact hcomm _ ha _ hb · exact star_star b ▸ hcomm_star _ ha _ hb · exact star_star a ▸ (hcomm_star _ hb _ ha).symm · simpa only [star_mul, star_star] using congr_arg star (hcomm _ hb _ ha)) [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra x : A hx : x ∈ Algebra.adjoin R (s ∪ star s) y : A hy : y ∈ Algebra.adjoin R (s ∪ star s) ⊢ ∀ (a : A), a ∈ s ∪ star s → ∀ (b : A), b ∈ s ∪ star s → a * b = b * a [PROOFSTEP] intro a ha b hb [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra x : A hx : x ∈ Algebra.adjoin R (s ∪ star s) y : A hy : y ∈ Algebra.adjoin R (s ∪ star s) a : A ha : a ∈ s ∪ star s b : A hb : b ∈ s ∪ star s ⊢ a * b = b * a [PROOFSTEP] cases' ha with ha ha [GOAL] case inl F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra x : A hx : x ∈ Algebra.adjoin R (s ∪ star s) y : A hy : y ∈ Algebra.adjoin R (s ∪ star s) a b : A hb : b ∈ s ∪ star s ha : a ∈ s ⊢ a * b = b * a [PROOFSTEP] cases' hb with hb hb [GOAL] case inr F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra x : A hx : x ∈ Algebra.adjoin R (s ∪ star s) y : A hy : y ∈ Algebra.adjoin R (s ∪ star s) a b : A hb : b ∈ s ∪ star s ha : a ∈ star s ⊢ a * b = b * a [PROOFSTEP] cases' hb with hb hb [GOAL] case inl.inl F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra x : A hx : x ∈ Algebra.adjoin R (s ∪ star s) y : A hy : y ∈ Algebra.adjoin R (s ∪ star s) a b : A ha : a ∈ s hb : b ∈ s ⊢ a * b = b * a [PROOFSTEP] exact hcomm _ ha _ hb [GOAL] case inl.inr F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra x : A hx : x ∈ Algebra.adjoin R (s ∪ star s) y : A hy : y ∈ Algebra.adjoin R (s ∪ star s) a b : A ha : a ∈ s hb : b ∈ star s ⊢ a * b = b * a [PROOFSTEP] exact star_star b ▸ hcomm_star _ ha _ hb [GOAL] case inr.inl F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra x : A hx : x ∈ Algebra.adjoin R (s ∪ star s) y : A hy : y ∈ Algebra.adjoin R (s ∪ star s) a b : A ha : a ∈ star s hb : b ∈ s ⊢ a * b = b * a [PROOFSTEP] exact star_star a ▸ (hcomm_star _ hb _ ha).symm [GOAL] case inr.inr F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra x : A hx : x ∈ Algebra.adjoin R (s ∪ star s) y : A hy : y ∈ Algebra.adjoin R (s ∪ star s) a b : A ha : a ∈ star s hb : b ∈ star s ⊢ a * b = b * a [PROOFSTEP] simpa only [star_mul, star_star] using congr_arg star (hcomm _ hb _ ha) [GOAL] case mk.mk.a F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B s : Set A hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra x : A hx : x ∈ Algebra.adjoin R (s ∪ star s) y : A hy : y ∈ Algebra.adjoin R (s ∪ star s) this : CommSemiring { x // x ∈ Algebra.adjoin R (s ∪ star s) } := Algebra.adjoinCommSemiringOfComm R (_ : ∀ (a : A), a ∈ s ∪ star s → ∀ (b : A), b ∈ s ∪ star s → a * b = b * a) ⊢ x * y = y * x [PROOFSTEP] exact congr_arg Subtype.val (mul_comm (⟨x, hx⟩ : Algebra.adjoin R (s ∪ star s)) ⟨y, hy⟩) [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : StarRing R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : StarRing A inst✝⁵ : StarModule R A inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : StarModule R B x : A inst✝ : IsStarNormal x a : A ha : a ∈ {x} b : A hb : b ∈ {x} ⊢ a * b = b * a [PROOFSTEP] rw [Set.mem_singleton_iff] at ha hb [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : StarRing R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : StarRing A inst✝⁵ : StarModule R A inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : StarModule R B x : A inst✝ : IsStarNormal x a : A ha : a = x b : A hb : b = x ⊢ a * b = b * a [PROOFSTEP] rw [ha, hb] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : StarRing R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : StarRing A inst✝⁵ : StarModule R A inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : StarModule R B x : A inst✝ : IsStarNormal x a : A ha : a ∈ {x} b : A hb : b ∈ {x} ⊢ a * star b = star b * a [PROOFSTEP] rw [Set.mem_singleton_iff] at ha hb [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : StarRing R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : StarRing A inst✝⁵ : StarModule R A inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : StarModule R B x : A inst✝ : IsStarNormal x a : A ha : a = x b : A hb : b = x ⊢ a * star b = star b * a [PROOFSTEP] simpa only [ha, hb] using (star_comm_self' x).symm [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B ⊢ ⊤.toSubalgebra = ⊤ [PROOFSTEP] ext [GOAL] case h F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B x✝ : A ⊢ x✝ ∈ ⊤.toSubalgebra ↔ x✝ ∈ ⊤ [PROOFSTEP] simp -- porting note: Lean can no longer prove this by `rfl`, it times out [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S T : StarSubalgebra R A ⊢ (S ⊓ T).toSubalgebra = S.toSubalgebra ⊓ T.toSubalgebra [PROOFSTEP] ext [GOAL] case h F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S T : StarSubalgebra R A x✝ : A ⊢ x✝ ∈ (S ⊓ T).toSubalgebra ↔ x✝ ∈ S.toSubalgebra ⊓ T.toSubalgebra [PROOFSTEP] simp -- porting note: Lean can no longer prove this by `rfl`, it times out [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : Set (StarSubalgebra R A) x : A ⊢ x ∈ sInf S ↔ ∀ (p : StarSubalgebra R A), p ∈ S → x ∈ p [PROOFSTEP] simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : Set (StarSubalgebra R A) ⊢ ↑(sInf S).toSubalgebra = ↑(sInf (toSubalgebra '' S)) [PROOFSTEP] simp [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B ι : Sort u_5 S : ι → StarSubalgebra R A ⊢ ↑(⨅ (i : ι), S i) = ⋂ (i : ι), ↑(S i) [PROOFSTEP] simp [iInf] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B ι : Sort u_5 S : ι → StarSubalgebra R A x : A ⊢ x ∈ ⨅ (i : ι), S i ↔ ∀ (i : ι), x ∈ S i [PROOFSTEP] simp only [iInf, mem_sInf, Set.forall_range_iff] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B ι : Sort u_5 S : ι → StarSubalgebra R A ⊢ ↑(⨅ (i : ι), S i).toSubalgebra = ↑(⨅ (i : ι), (S i).toSubalgebra) [PROOFSTEP] simp [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B ⊢ ⊥.toSubalgebra = ⊥ [PROOFSTEP] change Algebra.adjoin R (∅ ∪ star ∅) = Algebra.adjoin R ∅ [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B ⊢ Algebra.adjoin R (∅ ∪ star ∅) = Algebra.adjoin R ∅ [PROOFSTEP] simp [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B x : A ⊢ x ∈ ⊥ ↔ x ∈ Set.range ↑(algebraMap R A) [PROOFSTEP] rw [← mem_toSubalgebra, bot_toSubalgebra, Algebra.mem_bot] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B ⊢ ↑⊥ = Set.range ↑(algebraMap R A) [PROOFSTEP] simp [Set.ext_iff, mem_bot] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : StarSubalgebra R A h : S = ⊤ x : A ⊢ x ∈ S [PROOFSTEP] rw [h] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : StarSubalgebra R A h : S = ⊤ x : A ⊢ x ∈ ⊤ [PROOFSTEP] exact mem_top [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : StarSubalgebra R A h : ∀ (x : A), x ∈ S ⊢ S = ⊤ [PROOFSTEP] ext x [GOAL] case h F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B S : StarSubalgebra R A h : ∀ (x : A), x ∈ S x : A ⊢ x ∈ S ↔ x ∈ ⊤ [PROOFSTEP] exact ⟨fun _ => mem_top, fun _ => h x⟩ [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B hF : StarAlgHomClass F R A B f g : F a : A ha : ↑f a = ↑g a ⊢ star a ∈ (AlgHom.equalizer ↑f ↑g).toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] simpa only [← map_star] using congrArg star ha [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : StarRing R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : StarRing A inst✝⁵ : StarModule R A inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : StarModule R B hF : StarAlgHomClass F R A B f✝ g✝ : F s : Set A inst✝ : StarAlgHomClass F R { x // x ∈ adjoin R s } B f g : F h : ∀ (x : { x // x ∈ adjoin R s }), ↑x ∈ s → ↑f x = ↑g x ⊢ f = g [PROOFSTEP] refine' FunLike.ext f g fun a => adjoin_induction' (p := fun y => f y = g y) a (fun x hx => _) (fun r => _) (fun x y hx hy => _) (fun x y hx hy => _) fun x hx => _ [GOAL] case refine'_1 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : StarRing R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : StarRing A inst✝⁵ : StarModule R A inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : StarModule R B hF : StarAlgHomClass F R A B f✝ g✝ : F s : Set A inst✝ : StarAlgHomClass F R { x // x ∈ adjoin R s } B f g : F h : ∀ (x : { x // x ∈ adjoin R s }), ↑x ∈ s → ↑f x = ↑g x a : { x // x ∈ adjoin R s } x : A hx : x ∈ s ⊢ (fun y => ↑f y = ↑g y) { val := x, property := (_ : x ∈ ↑(adjoin R s)) } [PROOFSTEP] exact h ⟨x, subset_adjoin R s hx⟩ hx [GOAL] case refine'_2 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : StarRing R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : StarRing A inst✝⁵ : StarModule R A inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : StarModule R B hF : StarAlgHomClass F R A B f✝ g✝ : F s : Set A inst✝ : StarAlgHomClass F R { x // x ∈ adjoin R s } B f g : F h : ∀ (x : { x // x ∈ adjoin R s }), ↑x ∈ s → ↑f x = ↑g x a : { x // x ∈ adjoin R s } r : R ⊢ (fun y => ↑f y = ↑g y) (↑(algebraMap R { x // x ∈ adjoin R s }) r) [PROOFSTEP] simp only [AlgHomClass.commutes] [GOAL] case refine'_3 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : StarRing R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : StarRing A inst✝⁵ : StarModule R A inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : StarModule R B hF : StarAlgHomClass F R A B f✝ g✝ : F s : Set A inst✝ : StarAlgHomClass F R { x // x ∈ adjoin R s } B f g : F h : ∀ (x : { x // x ∈ adjoin R s }), ↑x ∈ s → ↑f x = ↑g x a x y : { x // x ∈ adjoin R s } hx : (fun y => ↑f y = ↑g y) x hy : (fun y => ↑f y = ↑g y) y ⊢ (fun y => ↑f y = ↑g y) (x + y) [PROOFSTEP] simp only [map_add, map_add, hx, hy] [GOAL] case refine'_4 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : StarRing R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : StarRing A inst✝⁵ : StarModule R A inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : StarModule R B hF : StarAlgHomClass F R A B f✝ g✝ : F s : Set A inst✝ : StarAlgHomClass F R { x // x ∈ adjoin R s } B f g : F h : ∀ (x : { x // x ∈ adjoin R s }), ↑x ∈ s → ↑f x = ↑g x a x y : { x // x ∈ adjoin R s } hx : (fun y => ↑f y = ↑g y) x hy : (fun y => ↑f y = ↑g y) y ⊢ (fun y => ↑f y = ↑g y) (x * y) [PROOFSTEP] simp only [map_mul, map_mul, hx, hy] [GOAL] case refine'_5 F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : StarRing R inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : StarRing A inst✝⁵ : StarModule R A inst✝⁴ : Semiring B inst✝³ : Algebra R B inst✝² : StarRing B inst✝¹ : StarModule R B hF : StarAlgHomClass F R A B f✝ g✝ : F s : Set A inst✝ : StarAlgHomClass F R { x // x ∈ adjoin R s } B f g : F h : ∀ (x : { x // x ∈ adjoin R s }), ↑x ∈ s → ↑f x = ↑g x a x : { x // x ∈ adjoin R s } hx : (fun y => ↑f y = ↑g y) x ⊢ (fun y => ↑f y = ↑g y) (star x) [PROOFSTEP] simp only [map_star, hx] [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B hF : StarAlgHomClass F R A B f g : F φ : A →⋆ₐ[R] B ⊢ ∀ {a : B}, a ∈ (AlgHom.range φ.toAlgHom).toSubsemiring.toSubmonoid.toSubsemigroup.carrier → star a ∈ (AlgHom.range φ.toAlgHom).toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] rintro _ ⟨b, rfl⟩ [GOAL] case intro F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B hF : StarAlgHomClass F R A B f g : F φ : A →⋆ₐ[R] B b : A ⊢ star (↑↑φ.toAlgHom b) ∈ (AlgHom.range φ.toAlgHom).toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] exact ⟨star b, map_star φ b⟩ [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B hF : StarAlgHomClass F R A B f g : F φ : A →⋆ₐ[R] B x : B ⊢ x ∈ StarAlgHom.range φ → x ∈ map φ ⊤ [PROOFSTEP] rintro ⟨a, ha⟩ [GOAL] case intro F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B hF : StarAlgHomClass F R A B f g : F φ : A →⋆ₐ[R] B x : B a : A ha : ↑↑φ.toAlgHom a = x ⊢ x ∈ map φ ⊤ [PROOFSTEP] exact ⟨a, by simp, ha⟩ [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B hF : StarAlgHomClass F R A B f g : F φ : A →⋆ₐ[R] B x : B a : A ha : ↑↑φ.toAlgHom a = x ⊢ a ∈ ↑⊤.toSubsemiring [PROOFSTEP] simp [GOAL] F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B hF : StarAlgHomClass F R A B f g : F φ : A →⋆ₐ[R] B x : B ⊢ x ∈ map φ ⊤ → x ∈ StarAlgHom.range φ [PROOFSTEP] rintro ⟨a, -, ha⟩ [GOAL] case intro.intro F : Type u_1 R : Type u_2 A : Type u_3 B : Type u_4 inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : StarRing A inst✝⁴ : StarModule R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : StarRing B inst✝ : StarModule R B hF : StarAlgHomClass F R A B f g : F φ : A →⋆ₐ[R] B x : B a : A ha : ↑↑φ.toAlgHom a = x ⊢ x ∈ StarAlgHom.range φ [PROOFSTEP] exact ⟨a, ha⟩
{"mathlib_filename": "Mathlib.Algebra.Star.Subalgebra", "llama_tokens": 49469}
[GOAL] α : Type u_1 inst✝ : StrictOrderedSemiring α n : ℕ ⊢ ↑n < ↑(n + 1) [PROOFSTEP] rw [Nat.cast_succ] [GOAL] α : Type u_1 inst✝ : StrictOrderedSemiring α n : ℕ ⊢ ↑n < ↑n + 1 [PROOFSTEP] apply lt_add_one
{"mathlib_filename": "Mathlib.Algebra.Order.Ring.CharZero", "llama_tokens": 119}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : OrderedAddCommMonoid α inst✝¹ : OrderedAddCommMonoid β inst✝ : OrderAddMonoidHomClass F α β f : F a : α ha : 0 ≤ a ⊢ 0 ≤ ↑f a [PROOFSTEP] rw [← map_zero f] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : OrderedAddCommMonoid α inst✝¹ : OrderedAddCommMonoid β inst✝ : OrderAddMonoidHomClass F α β f : F a : α ha : 0 ≤ a ⊢ ↑f 0 ≤ ↑f a [PROOFSTEP] exact OrderHomClass.mono _ ha [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : OrderedAddCommMonoid α inst✝¹ : OrderedAddCommMonoid β inst✝ : OrderAddMonoidHomClass F α β f : F a : α ha : a ≤ 0 ⊢ ↑f a ≤ 0 [PROOFSTEP] rw [← map_zero f] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : OrderedAddCommMonoid α inst✝¹ : OrderedAddCommMonoid β inst✝ : OrderAddMonoidHomClass F α β f : F a : α ha : a ≤ 0 ⊢ ↑f a ≤ ↑f 0 [PROOFSTEP] exact OrderHomClass.mono _ ha [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : OrderedAddCommGroup α inst✝¹ : OrderedAddCommMonoid β inst✝ : AddMonoidHomClass F α β f : F h : Monotone ↑f a : α ⊢ 0 ≤ a → 0 ≤ ↑f a [PROOFSTEP] rw [← map_zero f] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : OrderedAddCommGroup α inst✝¹ : OrderedAddCommMonoid β inst✝ : AddMonoidHomClass F α β f : F h : Monotone ↑f a : α ⊢ 0 ≤ a → ↑f 0 ≤ ↑f a [PROOFSTEP] apply h [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : OrderedAddCommGroup α inst✝¹ : OrderedAddCommMonoid β inst✝ : AddMonoidHomClass F α β f : F h : ∀ (a : α), 0 ≤ a → 0 ≤ ↑f a a b : α hl : a ≤ b ⊢ ↑f a ≤ ↑f b [PROOFSTEP] rw [← sub_add_cancel b a, map_add f] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : OrderedAddCommGroup α inst✝¹ : OrderedAddCommMonoid β inst✝ : AddMonoidHomClass F α β f : F h : ∀ (a : α), 0 ≤ a → 0 ≤ ↑f a a b : α hl : a ≤ b ⊢ ↑f a ≤ ↑f (b - a) + ↑f a [PROOFSTEP] exact le_add_of_nonneg_left (h _ <| sub_nonneg.2 hl) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : OrderedAddCommGroup α inst✝² : OrderedAddCommMonoid β inst✝¹ : AddMonoidHomClass F α β f : F inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x < x_1 ⊢ StrictMono ↑f ↔ ∀ (a : α), 0 < a → 0 < ↑f a [PROOFSTEP] refine ⟨fun h a => ?_, fun h a b hl => ?_⟩ [GOAL] case refine_1 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : OrderedAddCommGroup α inst✝² : OrderedAddCommMonoid β inst✝¹ : AddMonoidHomClass F α β f : F inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x < x_1 h : StrictMono ↑f a : α ⊢ 0 < a → 0 < ↑f a [PROOFSTEP] rw [← map_zero f] [GOAL] case refine_1 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : OrderedAddCommGroup α inst✝² : OrderedAddCommMonoid β inst✝¹ : AddMonoidHomClass F α β f : F inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x < x_1 h : StrictMono ↑f a : α ⊢ 0 < a → ↑f 0 < ↑f a [PROOFSTEP] apply h [GOAL] case refine_2 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : OrderedAddCommGroup α inst✝² : OrderedAddCommMonoid β inst✝¹ : AddMonoidHomClass F α β f : F inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x < x_1 h : ∀ (a : α), 0 < a → 0 < ↑f a a b : α hl : a < b ⊢ ↑f a < ↑f b [PROOFSTEP] rw [← sub_add_cancel b a, map_add f] [GOAL] case refine_2 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : OrderedAddCommGroup α inst✝² : OrderedAddCommMonoid β inst✝¹ : AddMonoidHomClass F α β f : F inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x < x_1 h : ∀ (a : α), 0 < a → 0 < ↑f a a b : α hl : a < b ⊢ ↑f a < ↑f (b - a) + ↑f a [PROOFSTEP] exact lt_add_of_pos_left _ (h _ <| sub_pos.2 hl) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulOneClass α inst✝² : MulOneClass β inst✝¹ : MulOneClass γ inst✝ : MulOneClass δ f✝ g✝ f g : α →*o β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩⟩, _⟩ := f [GOAL] case mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulOneClass α inst✝² : MulOneClass β inst✝¹ : MulOneClass γ inst✝ : MulOneClass δ f g✝ g : α →*o β toFun✝ : α → β map_one'✝ : toFun✝ 1 = 1 map_mul'✝ : ∀ (x y : α), OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } (x * y) = OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } x * OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } y monotone'✝ : Monotone (↑{ toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }).toFun h : (fun f => f.toFun) { toMonoidHom := { toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }, monotone' := monotone'✝ } = (fun f => f.toFun) g ⊢ { toMonoidHom := { toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }, monotone' := monotone'✝ } = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩⟩, _⟩ := g [GOAL] case mk.mk.mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulOneClass α inst✝² : MulOneClass β inst✝¹ : MulOneClass γ inst✝ : MulOneClass δ f g : α →*o β toFun✝¹ : α → β map_one'✝¹ : toFun✝¹ 1 = 1 map_mul'✝¹ : ∀ (x y : α), OneHom.toFun { toFun := toFun✝¹, map_one' := map_one'✝¹ } (x * y) = OneHom.toFun { toFun := toFun✝¹, map_one' := map_one'✝¹ } x * OneHom.toFun { toFun := toFun✝¹, map_one' := map_one'✝¹ } y monotone'✝¹ : Monotone (↑{ toOneHom := { toFun := toFun✝¹, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }).toFun toFun✝ : α → β map_one'✝ : toFun✝ 1 = 1 map_mul'✝ : ∀ (x y : α), OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } (x * y) = OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } x * OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } y monotone'✝ : Monotone (↑{ toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }).toFun h : (fun f => f.toFun) { toMonoidHom := { toOneHom := { toFun := toFun✝¹, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }, monotone' := monotone'✝¹ } = (fun f => f.toFun) { toMonoidHom := { toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }, monotone' := monotone'✝ } ⊢ { toMonoidHom := { toOneHom := { toFun := toFun✝¹, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }, monotone' := monotone'✝¹ } = { toMonoidHom := { toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }, monotone' := monotone'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulOneClass α inst✝² : MulOneClass β inst✝¹ : MulOneClass γ inst✝ : MulOneClass δ f✝ g f : α →*o β h : Monotone (↑↑f).toFun ⊢ { toMonoidHom := ↑f, monotone' := h } = f [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulOneClass α inst✝² : MulOneClass β inst✝¹ : MulOneClass γ inst✝ : MulOneClass δ f✝ g f : α →*o β h : Monotone (↑↑f).toFun a✝ : α ⊢ ↑{ toMonoidHom := ↑f, monotone' := h } a✝ = ↑f a✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulOneClass α inst✝² : MulOneClass β inst✝¹ : MulOneClass γ inst✝ : MulOneClass δ f✝ g✝ f g : α →*o β h : f.toMonoidHom = g.toMonoidHom ⊢ ∀ (a : α), ↑f a = ↑g a [PROOFSTEP] convert FunLike.ext_iff.1 h using 0 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulOneClass α inst✝² : MulOneClass β inst✝¹ : MulOneClass γ inst✝ : MulOneClass δ f✝ g✝ f g : α →*o β h : toOrderHom f = toOrderHom g ⊢ ∀ (a : α), ↑f a = ↑g a [PROOFSTEP] convert FunLike.ext_iff.1 h using 0 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulOneClass α inst✝² : MulOneClass β inst✝¹ : MulOneClass γ inst✝ : MulOneClass δ f✝ g : α →*o β g₁ g₂ : β →*o γ f : α →*o β hf : Surjective ↑f x✝ : g₁ = g₂ ⊢ comp g₁ f = comp g₂ f [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulOneClass α inst✝² : MulOneClass β inst✝¹ : MulOneClass γ inst✝ : MulOneClass δ f g✝ : α →*o β g : β →*o γ f₁ f₂ : α →*o β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulZeroOneClass α inst✝² : MulZeroOneClass β inst✝¹ : MulZeroOneClass γ inst✝ : MulZeroOneClass δ f✝ g✝ f g : α →*₀o β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩⟩, _⟩ := f [GOAL] case mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulZeroOneClass α inst✝² : MulZeroOneClass β inst✝¹ : MulZeroOneClass γ inst✝ : MulZeroOneClass δ f g✝ g : α →*₀o β toFun✝ : α → β map_zero'✝ : toFun✝ 0 = 0 map_one'✝ : ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } 1 = 1 map_mul'✝ : ∀ (x y : α), ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } (x * y) = ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } x * ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } y monotone'✝ : Monotone (↑{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ }).toFun h : (fun f => f.toFun) { toMonoidWithZeroHom := { toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ }, monotone' := monotone'✝ } = (fun f => f.toFun) g ⊢ { toMonoidWithZeroHom := { toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ }, monotone' := monotone'✝ } = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩⟩, _⟩ := g [GOAL] case mk.mk.mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulZeroOneClass α inst✝² : MulZeroOneClass β inst✝¹ : MulZeroOneClass γ inst✝ : MulZeroOneClass δ f g : α →*₀o β toFun✝¹ : α → β map_zero'✝¹ : toFun✝¹ 0 = 0 map_one'✝¹ : ZeroHom.toFun { toFun := toFun✝¹, map_zero' := map_zero'✝¹ } 1 = 1 map_mul'✝¹ : ∀ (x y : α), ZeroHom.toFun { toFun := toFun✝¹, map_zero' := map_zero'✝¹ } (x * y) = ZeroHom.toFun { toFun := toFun✝¹, map_zero' := map_zero'✝¹ } x * ZeroHom.toFun { toFun := toFun✝¹, map_zero' := map_zero'✝¹ } y monotone'✝¹ : Monotone (↑{ toZeroHom := { toFun := toFun✝¹, map_zero' := map_zero'✝¹ }, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ }).toFun toFun✝ : α → β map_zero'✝ : toFun✝ 0 = 0 map_one'✝ : ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } 1 = 1 map_mul'✝ : ∀ (x y : α), ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } (x * y) = ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } x * ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } y monotone'✝ : Monotone (↑{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ }).toFun h : (fun f => f.toFun) { toMonoidWithZeroHom := { toZeroHom := { toFun := toFun✝¹, map_zero' := map_zero'✝¹ }, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ }, monotone' := monotone'✝¹ } = (fun f => f.toFun) { toMonoidWithZeroHom := { toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ }, monotone' := monotone'✝ } ⊢ { toMonoidWithZeroHom := { toZeroHom := { toFun := toFun✝¹, map_zero' := map_zero'✝¹ }, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ }, monotone' := monotone'✝¹ } = { toMonoidWithZeroHom := { toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ }, monotone' := monotone'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulZeroOneClass α inst✝² : MulZeroOneClass β inst✝¹ : MulZeroOneClass γ inst✝ : MulZeroOneClass δ f✝ g✝ f g : α →*₀o β h : toOrderMonoidHom f = toOrderMonoidHom g ⊢ ∀ (a : α), ↑f a = ↑g a [PROOFSTEP] convert FunLike.ext_iff.1 h using 0 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulZeroOneClass α inst✝² : MulZeroOneClass β inst✝¹ : MulZeroOneClass γ inst✝ : MulZeroOneClass δ f✝ g✝ f g : α →*₀o β h : f.toMonoidWithZeroHom = g.toMonoidWithZeroHom ⊢ ∀ (a : α), ↑f a = ↑g a [PROOFSTEP] convert FunLike.ext_iff.1 h using 0 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulZeroOneClass α inst✝² : MulZeroOneClass β inst✝¹ : MulZeroOneClass γ inst✝ : MulZeroOneClass δ f✝ g : α →*₀o β g₁ g₂ : β →*₀o γ f : α →*₀o β hf : Surjective ↑f x✝ : g₁ = g₂ ⊢ comp g₁ f = comp g₂ f [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : MulZeroOneClass α inst✝² : MulZeroOneClass β inst✝¹ : MulZeroOneClass γ inst✝ : MulZeroOneClass δ f g✝ : α →*₀o β g : β →*₀o γ f₁ f₂ : α →*₀o β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 hα : Preorder α hα' : MulZeroOneClass α hβ : Preorder β hβ' : MulZeroOneClass β f : α →*₀o β ⊢ f.toMonoidWithZeroHom = ↑f [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Order.Hom.Monoid", "llama_tokens": 7840}
[GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι ι✝ : Type ?u.1725 v : ComplexShape ι✝ ⊢ Category.{?u.1722, max (max u v) ?u.1725} (HomotopyCategory V v) [PROOFSTEP] dsimp only [HomotopyCategory] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι ι✝ : Type ?u.1725 v : ComplexShape ι✝ ⊢ Category.{?u.1722, max (max u v) ?u.1725} (CategoryTheory.Quotient (homotopic V v)) [PROOFSTEP] infer_instance -- TODO the homotopy_category is preadditive [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c f : C ⟶ D ⊢ Homotopy (Quot.out ((quotient V c).map f)) f [PROOFSTEP] apply homotopyOfEq [GOAL] case w ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c f : C ⟶ D ⊢ (quotient V c).map (Quot.out ((quotient V c).map f)) = (quotient V c).map f [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomotopyCategory V c f : C ⟶ D g : D ⟶ E ⊢ (quotient V c).map (Quot.out f ≫ Quot.out g) = f ≫ g [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c f : HomotopyEquiv C D ⊢ (quotient V c).map f.hom ≫ (quotient V c).map f.inv = 𝟙 ((quotient V c).obj C) [PROOFSTEP] rw [← (quotient V c).map_comp, ← (quotient V c).map_id] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c f : HomotopyEquiv C D ⊢ (quotient V c).map (f.hom ≫ f.inv) = (quotient V c).map (𝟙 C) [PROOFSTEP] exact eq_of_homotopy _ _ f.homotopyHomInvId [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c f : HomotopyEquiv C D ⊢ (quotient V c).map f.inv ≫ (quotient V c).map f.hom = 𝟙 ((quotient V c).obj D) [PROOFSTEP] rw [← (quotient V c).map_comp, ← (quotient V c).map_id] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c f : HomotopyEquiv C D ⊢ (quotient V c).map (f.inv ≫ f.hom) = (quotient V c).map (𝟙 D) [PROOFSTEP] exact eq_of_homotopy _ _ f.homotopyInvHomId [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c i : (quotient V c).obj C ≅ (quotient V c).obj D ⊢ (quotient V c).map (Quot.out i.hom ≫ Quot.out i.inv) = (quotient V c).map (𝟙 C) [PROOFSTEP] rw [quotient_map_out_comp_out, i.hom_inv_id, (quotient V c).map_id] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c i : (quotient V c).obj C ≅ (quotient V c).obj D ⊢ (quotient V c).map (Quot.out i.inv ≫ Quot.out i.hom) = (quotient V c).map (𝟙 D) [PROOFSTEP] rw [quotient_map_out_comp_out, i.inv_hom_id, (quotient V c).map_id] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c✝ : ComplexShape ι W : Type u_2 inst✝³ : Category.{?u.46796, u_2} W inst✝² : Preadditive W F G : V ⥤ W inst✝¹ : Functor.Additive F inst✝ : Functor.Additive G α : F ⟶ G c : ComplexShape ι ⊢ ∀ ⦃X Y : HomotopyCategory V c⦄ (f : X ⟶ Y), (Functor.mapHomotopyCategory F c).map f ≫ (fun C => (HomotopyCategory.quotient W c).map (app (mapHomologicalComplex α c) C.as)) Y = (fun C => (HomotopyCategory.quotient W c).map (app (mapHomologicalComplex α c) C.as)) X ≫ (Functor.mapHomotopyCategory G c).map f [PROOFSTEP] rintro ⟨C⟩ ⟨D⟩ ⟨f : C ⟶ D⟩ [GOAL] case mk.mk.mk ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c✝ : ComplexShape ι W : Type u_2 inst✝³ : Category.{?u.46796, u_2} W inst✝² : Preadditive W F G : V ⥤ W inst✝¹ : Functor.Additive F inst✝ : Functor.Additive G α : F ⟶ G c : ComplexShape ι C D : HomologicalComplex V c f✝ : { as := C } ⟶ { as := D } f : C ⟶ D ⊢ (Functor.mapHomotopyCategory F c).map (Quot.mk (Quotient.CompClosure (homotopic V c)) f) ≫ (fun C => (HomotopyCategory.quotient W c).map (app (mapHomologicalComplex α c) C.as)) { as := D } = (fun C => (HomotopyCategory.quotient W c).map (app (mapHomologicalComplex α c) C.as)) { as := C } ≫ (Functor.mapHomotopyCategory G c).map (Quot.mk (Quotient.CompClosure (homotopic V c)) f) [PROOFSTEP] simp only [HomotopyCategory.quot_mk_eq_quotient_map, Functor.mapHomotopyCategory_map, ← Functor.map_comp, NatTrans.naturality] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c✝ : ComplexShape ι W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W c : ComplexShape ι F : V ⥤ W inst✝ : Functor.Additive F ⊢ mapHomotopyCategory (𝟙 F) c = 𝟙 (Functor.mapHomotopyCategory F c) [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι W : Type u_2 inst✝⁴ : Category.{u_3, u_2} W inst✝³ : Preadditive W c : ComplexShape ι F G H : V ⥤ W inst✝² : Functor.Additive F inst✝¹ : Functor.Additive G inst✝ : Functor.Additive H α : F ⟶ G β : G ⟶ H ⊢ mapHomotopyCategory (α ≫ β) c = mapHomotopyCategory α c ≫ mapHomotopyCategory β c [PROOFSTEP] aesop_cat
{"mathlib_filename": "Mathlib.Algebra.Homology.HomotopyCategory", "llama_tokens": 2540}
[GOAL] α : Type u β : Type u_1 inst✝⁷ : OrderedSemiring α inst✝⁶ : Zero β inst✝⁵ : One β inst✝⁴ : Add β inst✝³ : Mul β inst✝² : Pow β ℕ inst✝¹ : SMul ℕ β inst✝ : NatCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast ⊢ f 0 ≤ f 1 [PROOFSTEP] simp only [zero, one, zero_le_one] [GOAL] α : Type u β : Type u_1 inst✝⁷ : OrderedSemiring α inst✝⁶ : Zero β inst✝⁵ : One β inst✝⁴ : Add β inst✝³ : Mul β inst✝² : Pow β ℕ inst✝¹ : SMul ℕ β inst✝ : NatCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast a b c : β h : a ≤ b hc : 0 ≤ c ⊢ f (c * a) ≤ f (c * b) [PROOFSTEP] rw [mul, mul] [GOAL] α : Type u β : Type u_1 inst✝⁷ : OrderedSemiring α inst✝⁶ : Zero β inst✝⁵ : One β inst✝⁴ : Add β inst✝³ : Mul β inst✝² : Pow β ℕ inst✝¹ : SMul ℕ β inst✝ : NatCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast a b c : β h : a ≤ b hc : 0 ≤ c ⊢ f c * f a ≤ f c * f b [PROOFSTEP] refine' mul_le_mul_of_nonneg_left h _ [GOAL] α : Type u β : Type u_1 inst✝⁷ : OrderedSemiring α inst✝⁶ : Zero β inst✝⁵ : One β inst✝⁴ : Add β inst✝³ : Mul β inst✝² : Pow β ℕ inst✝¹ : SMul ℕ β inst✝ : NatCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast a b c : β h : a ≤ b hc : 0 ≤ c ⊢ 0 ≤ f c [PROOFSTEP] rwa [← zero] [GOAL] α : Type u β : Type u_1 inst✝⁷ : OrderedSemiring α inst✝⁶ : Zero β inst✝⁵ : One β inst✝⁴ : Add β inst✝³ : Mul β inst✝² : Pow β ℕ inst✝¹ : SMul ℕ β inst✝ : NatCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast a b c : β h : a ≤ b hc : 0 ≤ c ⊢ f (a * c) ≤ f (b * c) [PROOFSTEP] rw [mul, mul] [GOAL] α : Type u β : Type u_1 inst✝⁷ : OrderedSemiring α inst✝⁶ : Zero β inst✝⁵ : One β inst✝⁴ : Add β inst✝³ : Mul β inst✝² : Pow β ℕ inst✝¹ : SMul ℕ β inst✝ : NatCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast a b c : β h : a ≤ b hc : 0 ≤ c ⊢ f a * f c ≤ f b * f c [PROOFSTEP] refine' mul_le_mul_of_nonneg_right h _ [GOAL] α : Type u β : Type u_1 inst✝⁷ : OrderedSemiring α inst✝⁶ : Zero β inst✝⁵ : One β inst✝⁴ : Add β inst✝³ : Mul β inst✝² : Pow β ℕ inst✝¹ : SMul ℕ β inst✝ : NatCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast a b c : β h : a ≤ b hc : 0 ≤ c ⊢ 0 ≤ f c [PROOFSTEP] rwa [← zero] [GOAL] α : Type u β : Type u_1 inst✝¹¹ : OrderedRing α inst✝¹⁰ : Zero β inst✝⁹ : One β inst✝⁸ : Add β inst✝⁷ : Mul β inst✝⁶ : Neg β inst✝⁵ : Sub β inst✝⁴ : SMul ℕ β inst✝³ : SMul ℤ β inst✝² : Pow β ℕ inst✝¹ : NatCast β inst✝ : IntCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y neg : ∀ (x : β), f (-x) = -f x sub : ∀ (x y : β), f (x - y) = f x - f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n int_cast : ∀ (n : ℤ), f ↑n = ↑n src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast a b : β ha : 0 ≤ a hb : 0 ≤ b ⊢ f 0 ≤ f (a * b) [PROOFSTEP] rw [zero, mul] [GOAL] α : Type u β : Type u_1 inst✝¹¹ : OrderedRing α inst✝¹⁰ : Zero β inst✝⁹ : One β inst✝⁸ : Add β inst✝⁷ : Mul β inst✝⁶ : Neg β inst✝⁵ : Sub β inst✝⁴ : SMul ℕ β inst✝³ : SMul ℤ β inst✝² : Pow β ℕ inst✝¹ : NatCast β inst✝ : IntCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y neg : ∀ (x : β), f (-x) = -f x sub : ∀ (x y : β), f (x - y) = f x - f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n int_cast : ∀ (n : ℤ), f ↑n = ↑n src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast a b : β ha : 0 ≤ a hb : 0 ≤ b ⊢ 0 ≤ f a * f b [PROOFSTEP] apply mul_nonneg [GOAL] case ha α : Type u β : Type u_1 inst✝¹¹ : OrderedRing α inst✝¹⁰ : Zero β inst✝⁹ : One β inst✝⁸ : Add β inst✝⁷ : Mul β inst✝⁶ : Neg β inst✝⁵ : Sub β inst✝⁴ : SMul ℕ β inst✝³ : SMul ℤ β inst✝² : Pow β ℕ inst✝¹ : NatCast β inst✝ : IntCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y neg : ∀ (x : β), f (-x) = -f x sub : ∀ (x y : β), f (x - y) = f x - f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n int_cast : ∀ (n : ℤ), f ↑n = ↑n src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast a b : β ha : 0 ≤ a hb : 0 ≤ b ⊢ 0 ≤ f a [PROOFSTEP] rwa [← zero] [GOAL] case hb α : Type u β : Type u_1 inst✝¹¹ : OrderedRing α inst✝¹⁰ : Zero β inst✝⁹ : One β inst✝⁸ : Add β inst✝⁷ : Mul β inst✝⁶ : Neg β inst✝⁵ : Sub β inst✝⁴ : SMul ℕ β inst✝³ : SMul ℤ β inst✝² : Pow β ℕ inst✝¹ : NatCast β inst✝ : IntCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y neg : ∀ (x : β), f (-x) = -f x sub : ∀ (x y : β), f (x - y) = f x - f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n int_cast : ∀ (n : ℤ), f ↑n = ↑n src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast a b : β ha : 0 ≤ a hb : 0 ≤ b ⊢ 0 ≤ f b [PROOFSTEP] rwa [← zero] [GOAL] α : Type u β : Type u_1 inst✝⁷ : StrictOrderedSemiring α inst✝⁶ : Zero β inst✝⁵ : One β inst✝⁴ : Add β inst✝³ : Mul β inst✝² : Pow β ℕ inst✝¹ : SMul ℕ β inst✝ : NatCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n src✝² : OrderedCancelAddCommMonoid β := orderedCancelAddCommMonoid f hf zero add nsmul src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast src✝ : Nontrivial β := pullback_nonzero f zero one a b c : β h : a < b hc : 0 < c ⊢ f (c * a) < f (c * b) [PROOFSTEP] simpa only [mul, zero] using mul_lt_mul_of_pos_left ‹f a < f b› (by rwa [← zero]) [GOAL] α : Type u β : Type u_1 inst✝⁷ : StrictOrderedSemiring α inst✝⁶ : Zero β inst✝⁵ : One β inst✝⁴ : Add β inst✝³ : Mul β inst✝² : Pow β ℕ inst✝¹ : SMul ℕ β inst✝ : NatCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n src✝² : OrderedCancelAddCommMonoid β := orderedCancelAddCommMonoid f hf zero add nsmul src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast src✝ : Nontrivial β := pullback_nonzero f zero one a b c : β h : a < b hc : 0 < c ⊢ 0 < f c [PROOFSTEP] rwa [← zero] [GOAL] α : Type u β : Type u_1 inst✝⁷ : StrictOrderedSemiring α inst✝⁶ : Zero β inst✝⁵ : One β inst✝⁴ : Add β inst✝³ : Mul β inst✝² : Pow β ℕ inst✝¹ : SMul ℕ β inst✝ : NatCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n src✝² : OrderedCancelAddCommMonoid β := orderedCancelAddCommMonoid f hf zero add nsmul src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast src✝ : Nontrivial β := pullback_nonzero f zero one a b c : β h : a < b hc : 0 < c ⊢ f (a * c) < f (b * c) [PROOFSTEP] simpa only [mul, zero] using mul_lt_mul_of_pos_right ‹f a < f b› (by rwa [← zero]) [GOAL] α : Type u β : Type u_1 inst✝⁷ : StrictOrderedSemiring α inst✝⁶ : Zero β inst✝⁵ : One β inst✝⁴ : Add β inst✝³ : Mul β inst✝² : Pow β ℕ inst✝¹ : SMul ℕ β inst✝ : NatCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n src✝² : OrderedCancelAddCommMonoid β := orderedCancelAddCommMonoid f hf zero add nsmul src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast src✝ : Nontrivial β := pullback_nonzero f zero one a b c : β h : a < b hc : 0 < c ⊢ 0 < f c [PROOFSTEP] rwa [← zero] [GOAL] α : Type u β : Type u_1 inst✝¹¹ : StrictOrderedRing α inst✝¹⁰ : Zero β inst✝⁹ : One β inst✝⁸ : Add β inst✝⁷ : Mul β inst✝⁶ : Neg β inst✝⁵ : Sub β inst✝⁴ : SMul ℕ β inst✝³ : SMul ℤ β inst✝² : Pow β ℕ inst✝¹ : NatCast β inst✝ : IntCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y neg : ∀ (x : β), f (-x) = -f x sub : ∀ (x y : β), f (x - y) = f x - f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n int_cast : ∀ (n : ℤ), f ↑n = ↑n src✝¹ : StrictOrderedSemiring β := Injective.strictOrderedSemiring f hf zero one add mul nsmul npow nat_cast src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast a b : β a0 : 0 < a b0 : 0 < b ⊢ f 0 < f (a * b) [PROOFSTEP] rw [zero, mul] [GOAL] α : Type u β : Type u_1 inst✝¹¹ : StrictOrderedRing α inst✝¹⁰ : Zero β inst✝⁹ : One β inst✝⁸ : Add β inst✝⁷ : Mul β inst✝⁶ : Neg β inst✝⁵ : Sub β inst✝⁴ : SMul ℕ β inst✝³ : SMul ℤ β inst✝² : Pow β ℕ inst✝¹ : NatCast β inst✝ : IntCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y neg : ∀ (x : β), f (-x) = -f x sub : ∀ (x y : β), f (x - y) = f x - f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n int_cast : ∀ (n : ℤ), f ↑n = ↑n src✝¹ : StrictOrderedSemiring β := Injective.strictOrderedSemiring f hf zero one add mul nsmul npow nat_cast src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast a b : β a0 : 0 < a b0 : 0 < b ⊢ 0 < f a * f b [PROOFSTEP] apply mul_pos [GOAL] case ha α : Type u β : Type u_1 inst✝¹¹ : StrictOrderedRing α inst✝¹⁰ : Zero β inst✝⁹ : One β inst✝⁸ : Add β inst✝⁷ : Mul β inst✝⁶ : Neg β inst✝⁵ : Sub β inst✝⁴ : SMul ℕ β inst✝³ : SMul ℤ β inst✝² : Pow β ℕ inst✝¹ : NatCast β inst✝ : IntCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y neg : ∀ (x : β), f (-x) = -f x sub : ∀ (x y : β), f (x - y) = f x - f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n int_cast : ∀ (n : ℤ), f ↑n = ↑n src✝¹ : StrictOrderedSemiring β := Injective.strictOrderedSemiring f hf zero one add mul nsmul npow nat_cast src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast a b : β a0 : 0 < a b0 : 0 < b ⊢ 0 < f a [PROOFSTEP] rwa [← zero] [GOAL] case hb α : Type u β : Type u_1 inst✝¹¹ : StrictOrderedRing α inst✝¹⁰ : Zero β inst✝⁹ : One β inst✝⁸ : Add β inst✝⁷ : Mul β inst✝⁶ : Neg β inst✝⁵ : Sub β inst✝⁴ : SMul ℕ β inst✝³ : SMul ℤ β inst✝² : Pow β ℕ inst✝¹ : NatCast β inst✝ : IntCast β f : β → α hf : Injective f zero : f 0 = 0 one : f 1 = 1 add : ∀ (x y : β), f (x + y) = f x + f y mul : ∀ (x y : β), f (x * y) = f x * f y neg : ∀ (x : β), f (-x) = -f x sub : ∀ (x y : β), f (x - y) = f x - f y nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n nat_cast : ∀ (n : ℕ), f ↑n = ↑n int_cast : ∀ (n : ℤ), f ↑n = ↑n src✝¹ : StrictOrderedSemiring β := Injective.strictOrderedSemiring f hf zero one add mul nsmul npow nat_cast src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast a b : β a0 : 0 < a b0 : 0 < b ⊢ 0 < f b [PROOFSTEP] rwa [← zero]
{"mathlib_filename": "Mathlib.Algebra.Order.Ring.InjSurj", "llama_tokens": 8492}
[GOAL] ι : Type u_1 c : ComplexShape ι ⊢ symm (symm c) = c [PROOFSTEP] ext [GOAL] case Rel.h.h.a ι : Type u_1 c : ComplexShape ι x✝¹ x✝ : ι ⊢ Rel (symm (symm c)) x✝¹ x✝ ↔ Rel c x✝¹ x✝ [PROOFSTEP] simp [GOAL] ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ j✝ j'✝ : ι w : Relation.Comp c₁.Rel c₂.Rel i✝ j✝ w' : Relation.Comp c₁.Rel c₂.Rel i✝ j'✝ ⊢ j✝ = j'✝ [PROOFSTEP] obtain ⟨k, w₁, w₂⟩ := w [GOAL] case intro.intro ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ j✝ j'✝ : ι w' : Relation.Comp c₁.Rel c₂.Rel i✝ j'✝ k : ι w₁ : Rel c₁ i✝ k w₂ : Rel c₂ k j✝ ⊢ j✝ = j'✝ [PROOFSTEP] obtain ⟨k', w₁', w₂'⟩ := w' [GOAL] case intro.intro.intro.intro ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ j✝ j'✝ k : ι w₁ : Rel c₁ i✝ k w₂ : Rel c₂ k j✝ k' : ι w₁' : Rel c₁ i✝ k' w₂' : Rel c₂ k' j'✝ ⊢ j✝ = j'✝ [PROOFSTEP] rw [c₁.next_eq w₁ w₁'] at w₂ [GOAL] case intro.intro.intro.intro ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ j✝ j'✝ k : ι w₁ : Rel c₁ i✝ k k' : ι w₂ : Rel c₂ k' j✝ w₁' : Rel c₁ i✝ k' w₂' : Rel c₂ k' j'✝ ⊢ j✝ = j'✝ [PROOFSTEP] exact c₂.next_eq w₂ w₂' [GOAL] ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ i'✝ j✝ : ι w : Relation.Comp c₁.Rel c₂.Rel i✝ j✝ w' : Relation.Comp c₁.Rel c₂.Rel i'✝ j✝ ⊢ i✝ = i'✝ [PROOFSTEP] obtain ⟨k, w₁, w₂⟩ := w [GOAL] case intro.intro ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ i'✝ j✝ : ι w' : Relation.Comp c₁.Rel c₂.Rel i'✝ j✝ k : ι w₁ : Rel c₁ i✝ k w₂ : Rel c₂ k j✝ ⊢ i✝ = i'✝ [PROOFSTEP] obtain ⟨k', w₁', w₂'⟩ := w' [GOAL] case intro.intro.intro.intro ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ i'✝ j✝ k : ι w₁ : Rel c₁ i✝ k w₂ : Rel c₂ k j✝ k' : ι w₁' : Rel c₁ i'✝ k' w₂' : Rel c₂ k' j✝ ⊢ i✝ = i'✝ [PROOFSTEP] rw [c₂.prev_eq w₂ w₂'] at w₁ [GOAL] case intro.intro.intro.intro ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ i'✝ j✝ k : ι w₂ : Rel c₂ k j✝ k' : ι w₁ : Rel c₁ i✝ k' w₁' : Rel c₁ i'✝ k' w₂' : Rel c₂ k' j✝ ⊢ i✝ = i'✝ [PROOFSTEP] exact c₁.prev_eq w₁ w₁' [GOAL] ι : Type u_1 c : ComplexShape ι i : ι ⊢ Subsingleton { j // Rel c i j } [PROOFSTEP] constructor [GOAL] case allEq ι : Type u_1 c : ComplexShape ι i : ι ⊢ ∀ (a b : { j // Rel c i j }), a = b [PROOFSTEP] rintro ⟨j, rij⟩ ⟨k, rik⟩ [GOAL] case allEq.mk.mk ι : Type u_1 c : ComplexShape ι i j : ι rij : Rel c i j k : ι rik : Rel c i k ⊢ { val := j, property := rij } = { val := k, property := rik } [PROOFSTEP] congr [GOAL] case allEq.mk.mk.e_val ι : Type u_1 c : ComplexShape ι i j : ι rij : Rel c i j k : ι rik : Rel c i k ⊢ j = k [PROOFSTEP] exact c.next_eq rij rik [GOAL] ι : Type u_1 c : ComplexShape ι j : ι ⊢ Subsingleton { i // Rel c i j } [PROOFSTEP] constructor [GOAL] case allEq ι : Type u_1 c : ComplexShape ι j : ι ⊢ ∀ (a b : { i // Rel c i j }), a = b [PROOFSTEP] rintro ⟨i, rik⟩ ⟨j, rjk⟩ [GOAL] case allEq.mk.mk ι : Type u_1 c : ComplexShape ι j✝ i : ι rik : Rel c i j✝ j : ι rjk : Rel c j j✝ ⊢ { val := i, property := rik } = { val := j, property := rjk } [PROOFSTEP] congr [GOAL] case allEq.mk.mk.e_val ι : Type u_1 c : ComplexShape ι j✝ i : ι rik : Rel c i j✝ j : ι rjk : Rel c j j✝ ⊢ i = j [PROOFSTEP] exact c.prev_eq rik rjk [GOAL] ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ next c i = j [PROOFSTEP] apply c.next_eq _ h [GOAL] ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ Rel c i (next c i) [PROOFSTEP] rw [next] [GOAL] ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ Rel c i (if h : ∃ j, Rel c i j then Exists.choose h else i) [PROOFSTEP] rw [dif_pos] [GOAL] ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ Rel c i (Exists.choose ?hc) case hc ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ ∃ j, Rel c i j [PROOFSTEP] exact Exists.choose_spec ⟨j, h⟩ [GOAL] ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ prev c j = i [PROOFSTEP] apply c.prev_eq _ h [GOAL] ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ Rel c (prev c j) j [PROOFSTEP] rw [prev, dif_pos] [GOAL] ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ Rel c (Exists.choose ?hc) j case hc ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ ∃ i, Rel c i j [PROOFSTEP] exact Exists.choose_spec (⟨i, h⟩ : ∃ k, c.Rel k j)
{"mathlib_filename": "Mathlib.Algebra.Homology.ComplexShape", "llama_tokens": 2308}
[GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T ⥤ V) c t : T i j : ι h : ¬ComplexShape.Rel c i j ⊢ (fun i j => NatTrans.app (d C i j) t) i j = 0 [PROOFSTEP] have := C.shape _ _ h [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T ⥤ V) c t : T i j : ι h : ¬ComplexShape.Rel c i j this : d C i j = 0 ⊢ (fun i j => NatTrans.app (d C i j) t) i j = 0 [PROOFSTEP] rw [NatTrans.ext_iff, Function.funext_iff] at this [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T ⥤ V) c t : T i j : ι h : ¬ComplexShape.Rel c i j this : ∀ (a : T), NatTrans.app (d C i j) a = NatTrans.app 0 a ⊢ (fun i j => NatTrans.app (d C i j) t) i j = 0 [PROOFSTEP] exact this t [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T ⥤ V) c t : T i j k : ι x✝¹ : ComplexShape.Rel c i j x✝ : ComplexShape.Rel c j k ⊢ (fun i j => NatTrans.app (d C i j) t) i j ≫ (fun i j => NatTrans.app (d C i j) t) j k = 0 [PROOFSTEP] have := C.d_comp_d i j k [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T ⥤ V) c t : T i j k : ι x✝¹ : ComplexShape.Rel c i j x✝ : ComplexShape.Rel c j k this : d C i j ≫ d C j k = 0 ⊢ (fun i j => NatTrans.app (d C i j) t) i j ≫ (fun i j => NatTrans.app (d C i j) t) j k = 0 [PROOFSTEP] rw [NatTrans.ext_iff, Function.funext_iff] at this [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T ⥤ V) c t : T i j k : ι x✝¹ : ComplexShape.Rel c i j x✝ : ComplexShape.Rel c j k this : ∀ (a : T), NatTrans.app (d C i j ≫ d C j k) a = NatTrans.app 0 a ⊢ (fun i j => NatTrans.app (d C i j) t) i j ≫ (fun i j => NatTrans.app (d C i j) t) j k = 0 [PROOFSTEP] exact this t [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T ⥤ V) c t : T ⊢ { obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map (𝟙 t) = 𝟙 ({ obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.obj t) [PROOFSTEP] ext i [GOAL] case h V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T ⥤ V) c t : T i : ι ⊢ Hom.f ({ obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map (𝟙 t)) i = Hom.f (𝟙 ({ obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.obj t)) i [PROOFSTEP] dsimp [GOAL] case h V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T ⥤ V) c t : T i : ι ⊢ (X C i).map (𝟙 t) = 𝟙 ((X C i).obj t) [PROOFSTEP] rw [(C.X i).map_id] [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T ⥤ V) c X✝ Y✝ Z✝ : T h₁ : X✝ ⟶ Y✝ h₂ : Y✝ ⟶ Z✝ ⊢ { obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map (h₁ ≫ h₂) = { obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map h₁ ≫ { obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map h₂ [PROOFSTEP] ext i [GOAL] case h V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T ⥤ V) c X✝ Y✝ Z✝ : T h₁ : X✝ ⟶ Y✝ h₂ : Y✝ ⟶ Z✝ i : ι ⊢ Hom.f ({ obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map (h₁ ≫ h₂)) i = Hom.f ({ obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map h₁ ≫ { obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map h₂) i [PROOFSTEP] dsimp [GOAL] case h V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T ⥤ V) c X✝ Y✝ Z✝ : T h₁ : X✝ ⟶ Y✝ h₂ : Y✝ ⟶ Z✝ i : ι ⊢ (X C i).map (h₁ ≫ h₂) = (X C i).map h₁ ≫ (X C i).map h₂ [PROOFSTEP] rw [Functor.map_comp] [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.4445, u_2} T X✝ Y✝ : HomologicalComplex (T ⥤ V) c f : X✝ ⟶ Y✝ t t' : T g : t ⟶ t' ⊢ ((fun C => asFunctor C) X✝).map g ≫ (fun t => Hom.mk fun i => NatTrans.app (Hom.f f i) t) t' = (fun t => Hom.mk fun i => NatTrans.app (Hom.f f i) t) t ≫ ((fun C => asFunctor C) Y✝).map g [PROOFSTEP] ext i [GOAL] case h V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι T : Type u_2 inst✝ : Category.{?u.4445, u_2} T X✝ Y✝ : HomologicalComplex (T ⥤ V) c f : X✝ ⟶ Y✝ t t' : T g : t ⟶ t' i : ι ⊢ Hom.f (((fun C => asFunctor C) X✝).map g ≫ (fun t => Hom.mk fun i => NatTrans.app (Hom.f f i) t) t') i = Hom.f ((fun t => Hom.mk fun i => NatTrans.app (Hom.f f i) t) t ≫ ((fun C => asFunctor C) Y✝).map g) i [PROOFSTEP] exact (f.f i).naturality g
{"mathlib_filename": "Mathlib.Algebra.Homology.Functor", "llama_tokens": 3317}
[GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasKernels V i : ι h : ¬ComplexShape.Rel c i (ComplexShape.next c i) ⊢ cycles C i = ⊤ [PROOFSTEP] rw [eq_top_iff] [GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasKernels V i : ι h : ¬ComplexShape.Rel c i (ComplexShape.next c i) ⊢ ⊤ ≤ cycles C i [PROOFSTEP] apply le_kernelSubobject [GOAL] case h ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasKernels V i : ι h : ¬ComplexShape.Rel c i (ComplexShape.next c i) ⊢ Subobject.arrow ⊤ ≫ dFrom C i = 0 [PROOFSTEP] rw [C.dFrom_eq_zero h, comp_zero] [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝¹ : HasImages V inst✝ : HasZeroObject V j : ι h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j ⊢ boundaries C j = ⊥ [PROOFSTEP] rw [eq_bot_iff] [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝¹ : HasImages V inst✝ : HasZeroObject V j : ι h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j ⊢ boundaries C j ≤ ⊥ [PROOFSTEP] refine' imageSubobject_le _ 0 _ [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝¹ : HasImages V inst✝ : HasZeroObject V j : ι h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j ⊢ 0 ≫ Subobject.arrow ⊥ = dTo C j [PROOFSTEP] rw [C.dTo_eq_zero h, zero_comp] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V c : ComplexShape ι C✝ : HomologicalComplex V c inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V C : HomologicalComplex V c i j k : ι hij : ComplexShape.Rel c i j hjk : ComplexShape.Rel c j k ⊢ (xPrevIso C hij).hom ≫ (Arrow.mk (d C i j)).hom = (Arrow.mk (dTo C j)).hom ≫ (Iso.refl (Arrow.mk (dTo C j)).right).hom [PROOFSTEP] dsimp [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V c : ComplexShape ι C✝ : HomologicalComplex V c inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V C : HomologicalComplex V c i j k : ι hij : ComplexShape.Rel c i j hjk : ComplexShape.Rel c j k ⊢ (xPrevIso C hij).hom ≫ d C i j = dTo C j ≫ 𝟙 (X C j) [PROOFSTEP] rw [C.dTo_eq hij, Category.comp_id] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V c : ComplexShape ι C✝ : HomologicalComplex V c inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V C : HomologicalComplex V c i j k : ι hij : ComplexShape.Rel c i j hjk : ComplexShape.Rel c j k ⊢ (Iso.refl (Arrow.mk (dFrom C j)).left).hom ≫ (Arrow.mk (d C j k)).hom = (Arrow.mk (dFrom C j)).hom ≫ (xNextIso C hjk).hom [PROOFSTEP] dsimp [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V c : ComplexShape ι C✝ : HomologicalComplex V c inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V C : HomologicalComplex V c i j k : ι hij : ComplexShape.Rel c i j hjk : ComplexShape.Rel c j k ⊢ 𝟙 (X C j) ≫ d C j k = dFrom C j ≫ (xNextIso C hjk).hom [PROOFSTEP] rw [C.dFrom_comp_xNextIso hjk, Category.id_comp] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C✝ : HomologicalComplex V c inst✝³ : HasKernels V inst✝² : HasImages V inst✝¹ : HasCokernels V C : ChainComplex V ℕ inst✝ : Epi (factorThruImage (HomologicalComplex.d C 1 0)) ⊢ (HomologicalComplex.xPrevIso C (_ : 0 + 1 = 0 + 1)).hom ≫ (Arrow.mk (HomologicalComplex.d C 1 0)).hom = (Arrow.mk (HomologicalComplex.dTo C 0)).hom ≫ (Iso.refl (Arrow.mk (HomologicalComplex.dTo C 0)).right).hom [PROOFSTEP] rw [C.dTo_eq rfl] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C✝ : HomologicalComplex V c inst✝³ : HasKernels V inst✝² : HasImages V inst✝¹ : HasCokernels V C : ChainComplex V ℕ inst✝ : Epi (factorThruImage (HomologicalComplex.d C 1 0)) ⊢ (HomologicalComplex.xPrevIso C (_ : 0 + 1 = 0 + 1)).hom ≫ (Arrow.mk (HomologicalComplex.d C 1 0)).hom = (Arrow.mk ((HomologicalComplex.xPrevIso C (_ : 0 + 1 = 0 + 1)).hom ≫ HomologicalComplex.d C (0 + 1) 0)).hom ≫ (Iso.refl (Arrow.mk ((HomologicalComplex.xPrevIso C (_ : 0 + 1 = 0 + 1)).hom ≫ HomologicalComplex.d C (0 + 1) 0)).right).hom [PROOFSTEP] exact (Category.comp_id _).symm [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C✝ : HomologicalComplex V c inst✝³ : HasKernels V inst✝² : HasImages V inst✝¹ : HasCokernels V C : ChainComplex V ℕ inst✝ : Epi (factorThruImage (HomologicalComplex.d C 1 0)) ⊢ (Iso.refl (Arrow.mk (HomologicalComplex.dFrom C 0)).left).hom ≫ (Arrow.mk 0).hom = (Arrow.mk (HomologicalComplex.dFrom C 0)).hom ≫ (Iso.refl (Arrow.mk (HomologicalComplex.dFrom C 0)).right).hom [PROOFSTEP] simp [C.dFrom_eq_zero fun h : _ = _ => one_ne_zero <| by rwa [ChainComplex.next_nat_zero, Nat.zero_add] at h ] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C✝ : HomologicalComplex V c inst✝³ : HasKernels V inst✝² : HasImages V inst✝¹ : HasCokernels V C : ChainComplex V ℕ inst✝ : Epi (factorThruImage (HomologicalComplex.d C 1 0)) h : ComplexShape.next (ComplexShape.down ℕ) ?m.17177 + 1 = ?m.17177 ⊢ 1 = 0 [PROOFSTEP] rwa [ChainComplex.next_nat_zero, Nat.zero_add] at h [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C✝ : HomologicalComplex V c inst✝³ : HasZeroObject V inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V C : CochainComplex V ℕ ⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 [PROOFSTEP] rw [CochainComplex.prev_nat_zero] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C✝ : HomologicalComplex V c inst✝³ : HasZeroObject V inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V C : CochainComplex V ℕ ⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) 0 0 [PROOFSTEP] exact one_ne_zero [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C✝ : HomologicalComplex V c inst✝³ : HasZeroObject V inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V C : CochainComplex V ℕ ⊢ (HomologicalComplex.xPrevIsoSelf C (_ : ¬ComplexShape.Rel (ComplexShape.up ℕ) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0)).hom ≫ (Arrow.mk 0).hom = (Arrow.mk (HomologicalComplex.dTo C 0)).hom ≫ (Iso.refl (Arrow.mk (HomologicalComplex.dTo C 0)).right).hom [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C✝ : HomologicalComplex V c inst✝³ : HasZeroObject V inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V C : CochainComplex V ℕ ⊢ (Iso.refl (Arrow.mk (HomologicalComplex.dFrom C 0)).left).hom ≫ (Arrow.mk (HomologicalComplex.d C 0 1)).hom = (Arrow.mk (HomologicalComplex.dFrom C 0)).hom ≫ (HomologicalComplex.xNextIso C (_ : 0 + 1 = 0 + 1)).hom [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C✝ : HomologicalComplex V c inst✝³ : HasZeroObject V inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V C : CochainComplex V ℕ ⊢ (Arrow.isoMk (HomologicalComplex.xPrevIsoSelf C (_ : ¬ComplexShape.Rel (ComplexShape.up ℕ) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0)) (Iso.refl (Arrow.mk (HomologicalComplex.dTo C 0)).right)).hom.right = (Arrow.isoMk (Iso.refl (Arrow.mk (HomologicalComplex.dFrom C 0)).left) (HomologicalComplex.xNextIso C (_ : 0 + 1 = 0 + 1))).hom.left [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasKernels V C₁ C₂ C₃ : HomologicalComplex V c f✝ f : C₁ ⟶ C₂ i : ι ⊢ (Subobject.arrow (cycles C₁ i) ≫ Hom.f f i) ≫ dFrom C₂ i = 0 [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasKernels V C₁ C₂ C₃ : HomologicalComplex V c f✝ f : C₁ ⟶ C₂ i : ι ⊢ cyclesMap f i ≫ Subobject.arrow (cycles C₂ i) = Subobject.arrow (cycles C₁ i) ≫ Hom.f f i [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasKernels V C₁ C₂ C₃ : HomologicalComplex V c f : C₁ ⟶ C₂ i : ι ⊢ cyclesMap (𝟙 C₁) i = 𝟙 (Subobject.underlying.obj (cycles C₁ i)) [PROOFSTEP] dsimp only [cyclesMap] [GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasKernels V C₁ C₂ C₃ : HomologicalComplex V c f : C₁ ⟶ C₂ i : ι ⊢ Subobject.factorThru (cycles C₁ i) (Subobject.arrow (cycles C₁ i) ≫ Hom.f (𝟙 C₁) i) (_ : Subobject.Factors (kernelSubobject (dFrom C₁ i)) (Subobject.arrow (cycles C₁ i) ≫ Hom.f (𝟙 C₁) i)) = 𝟙 (Subobject.underlying.obj (cycles C₁ i)) [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasKernels V C₁ C₂ C₃ : HomologicalComplex V c f✝ f : C₁ ⟶ C₂ g : C₂ ⟶ C₃ i : ι ⊢ cyclesMap (f ≫ g) i = cyclesMap f i ≫ cyclesMap g i [PROOFSTEP] dsimp only [cyclesMap] [GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasKernels V C₁ C₂ C₃ : HomologicalComplex V c f✝ f : C₁ ⟶ C₂ g : C₂ ⟶ C₃ i : ι ⊢ Subobject.factorThru (cycles C₃ i) (Subobject.arrow (cycles C₁ i) ≫ Hom.f (f ≫ g) i) (_ : Subobject.Factors (kernelSubobject (dFrom C₃ i)) (Subobject.arrow (cycles C₁ i) ≫ Hom.f (f ≫ g) i)) = Subobject.factorThru (cycles C₂ i) (Subobject.arrow (cycles C₁ i) ≫ Hom.f f i) (_ : Subobject.Factors (kernelSubobject (dFrom C₂ i)) (Subobject.arrow (cycles C₁ i) ≫ Hom.f f i)) ≫ Subobject.factorThru (cycles C₃ i) (Subobject.arrow (cycles C₂ i) ≫ Hom.f g i) (_ : Subobject.Factors (kernelSubobject (dFrom C₃ i)) (Subobject.arrow (cycles C₂ i) ≫ Hom.f g i)) [PROOFSTEP] simp [Subobject.factorThru_right] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝² : HasEqualizers V inst✝¹ : HasImages V inst✝ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ i : ι ⊢ boundariesMap f i ≫ boundariesToCycles C₂ i = boundariesToCycles C₁ i ≫ cyclesMap f i [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝² : HasEqualizers V inst✝¹ : HasImages V inst✝ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ i : ι ⊢ (boundariesMap f i ≫ boundariesToCycles C₂ i) ≫ Subobject.arrow (cycles C₂ i) = (boundariesToCycles C₁ i ≫ cyclesMap f i) ≫ Subobject.arrow (cycles C₂ i) [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V i : ι x✝ : HomologicalComplex V c ⊢ { obj := fun C => HomologicalComplex.homology C i, map := fun {C₁ C₂} f => homology.map (_ : dTo C₁ i ≫ dFrom C₁ i = 0) (_ : dTo C₂ i ≫ dFrom C₂ i = 0) (Hom.sqTo f i) (Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) }.map (𝟙 x✝) = 𝟙 ({ obj := fun C => HomologicalComplex.homology C i, map := fun {C₁ C₂} f => homology.map (_ : dTo C₁ i ≫ dFrom C₁ i = 0) (_ : dTo C₂ i ≫ dFrom C₂ i = 0) (Hom.sqTo f i) (Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) }.obj x✝) [PROOFSTEP] simp only [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V i : ι x✝ : HomologicalComplex V c ⊢ homology.map (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo (𝟙 x✝) i) (Hom.sqFrom (𝟙 x✝) i) (_ : (Hom.sqTo (𝟙 x✝) i).right = (Hom.sqTo (𝟙 x✝) i).right) = 𝟙 (HomologicalComplex.homology x✝ i) [PROOFSTEP] ext1 [GOAL] case p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V i : ι x✝ : HomologicalComplex V c ⊢ homology.π (dTo x✝ i) (dFrom x✝ i) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) ≫ homology.map (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo (𝟙 x✝) i) (Hom.sqFrom (𝟙 x✝) i) (_ : (Hom.sqTo (𝟙 x✝) i).right = (Hom.sqTo (𝟙 x✝) i).right) = homology.π (dTo x✝ i) (dFrom x✝ i) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) ≫ 𝟙 (HomologicalComplex.homology x✝ i) [PROOFSTEP] simp only [homology.π_map, kernelSubobjectMap_id, Hom.sqFrom_id, Category.id_comp, Category.comp_id] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V i : ι X✝ Y✝ Z✝ : HomologicalComplex V c x✝¹ : X✝ ⟶ Y✝ x✝ : Y✝ ⟶ Z✝ ⊢ { obj := fun C => HomologicalComplex.homology C i, map := fun {C₁ C₂} f => homology.map (_ : dTo C₁ i ≫ dFrom C₁ i = 0) (_ : dTo C₂ i ≫ dFrom C₂ i = 0) (Hom.sqTo f i) (Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) }.map (x✝¹ ≫ x✝) = { obj := fun C => HomologicalComplex.homology C i, map := fun {C₁ C₂} f => homology.map (_ : dTo C₁ i ≫ dFrom C₁ i = 0) (_ : dTo C₂ i ≫ dFrom C₂ i = 0) (Hom.sqTo f i) (Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) }.map x✝¹ ≫ { obj := fun C => HomologicalComplex.homology C i, map := fun {C₁ C₂} f => homology.map (_ : dTo C₁ i ≫ dFrom C₁ i = 0) (_ : dTo C₂ i ≫ dFrom C₂ i = 0) (Hom.sqTo f i) (Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) }.map x✝ [PROOFSTEP] simp only [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V i : ι X✝ Y✝ Z✝ : HomologicalComplex V c x✝¹ : X✝ ⟶ Y✝ x✝ : Y✝ ⟶ Z✝ ⊢ homology.map (_ : dTo X✝ i ≫ dFrom X✝ i = 0) (_ : dTo Z✝ i ≫ dFrom Z✝ i = 0) (Hom.sqTo (x✝¹ ≫ x✝) i) (Hom.sqFrom (x✝¹ ≫ x✝) i) (_ : (Hom.sqTo (x✝¹ ≫ x✝) i).right = (Hom.sqTo (x✝¹ ≫ x✝) i).right) = homology.map (_ : dTo X✝ i ≫ dFrom X✝ i = 0) (_ : dTo Y✝ i ≫ dFrom Y✝ i = 0) (Hom.sqTo x✝¹ i) (Hom.sqFrom x✝¹ i) (_ : (Hom.sqTo x✝¹ i).right = (Hom.sqTo x✝¹ i).right) ≫ homology.map (_ : dTo Y✝ i ≫ dFrom Y✝ i = 0) (_ : dTo Z✝ i ≫ dFrom Z✝ i = 0) (Hom.sqTo x✝ i) (Hom.sqFrom x✝ i) (_ : (Hom.sqTo x✝ i).right = (Hom.sqTo x✝ i).right) [PROOFSTEP] ext1 [GOAL] case p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V i : ι X✝ Y✝ Z✝ : HomologicalComplex V c x✝¹ : X✝ ⟶ Y✝ x✝ : Y✝ ⟶ Z✝ ⊢ homology.π (dTo X✝ i) (dFrom X✝ i) (_ : dTo X✝ i ≫ dFrom X✝ i = 0) ≫ homology.map (_ : dTo X✝ i ≫ dFrom X✝ i = 0) (_ : dTo Z✝ i ≫ dFrom Z✝ i = 0) (Hom.sqTo (x✝¹ ≫ x✝) i) (Hom.sqFrom (x✝¹ ≫ x✝) i) (_ : (Hom.sqTo (x✝¹ ≫ x✝) i).right = (Hom.sqTo (x✝¹ ≫ x✝) i).right) = homology.π (dTo X✝ i) (dFrom X✝ i) (_ : dTo X✝ i ≫ dFrom X✝ i = 0) ≫ homology.map (_ : dTo X✝ i ≫ dFrom X✝ i = 0) (_ : dTo Y✝ i ≫ dFrom Y✝ i = 0) (Hom.sqTo x✝¹ i) (Hom.sqFrom x✝¹ i) (_ : (Hom.sqTo x✝¹ i).right = (Hom.sqTo x✝¹ i).right) ≫ homology.map (_ : dTo Y✝ i ≫ dFrom Y✝ i = 0) (_ : dTo Z✝ i ≫ dFrom Z✝ i = 0) (Hom.sqTo x✝ i) (Hom.sqFrom x✝ i) (_ : (Hom.sqTo x✝ i).right = (Hom.sqTo x✝ i).right) [PROOFSTEP] simp only [Hom.sqFrom_comp, kernelSubobjectMap_comp, homology.π_map_assoc, homology.π_map, Category.assoc] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V x✝ : HomologicalComplex V c ⊢ { obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map (𝟙 x✝) = 𝟙 ({ obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.obj x✝) [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V x✝¹ : HomologicalComplex V c x✝ : ι ⊢ { obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map (𝟙 x✝¹) x✝ = 𝟙 ({ obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.obj x✝¹) x✝ [PROOFSTEP] simp only [GradedObject.categoryOfGradedObjects_id] [GOAL] case h ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V x✝¹ : HomologicalComplex V c x✝ : ι ⊢ (homologyFunctor V c x✝).map (𝟙 x✝¹) = 𝟙 (HomologicalComplex.homology x✝¹ x✝) [PROOFSTEP] ext [GOAL] case h.p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V x✝¹ : HomologicalComplex V c x✝ : ι ⊢ homology.π (dTo x✝¹ x✝) (dFrom x✝¹ x✝) (_ : dTo x✝¹ x✝ ≫ dFrom x✝¹ x✝ = 0) ≫ (homologyFunctor V c x✝).map (𝟙 x✝¹) = homology.π (dTo x✝¹ x✝) (dFrom x✝¹ x✝) (_ : dTo x✝¹ x✝ ≫ dFrom x✝¹ x✝ = 0) ≫ 𝟙 (HomologicalComplex.homology x✝¹ x✝) [PROOFSTEP] simp only [homology.π_map, homologyFunctor_map, kernelSubobjectMap_id, Hom.sqFrom_id, Category.id_comp, Category.comp_id] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V X✝ Y✝ Z✝ : HomologicalComplex V c x✝¹ : X✝ ⟶ Y✝ x✝ : Y✝ ⟶ Z✝ ⊢ { obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map (x✝¹ ≫ x✝) = { obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map x✝¹ ≫ { obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map x✝ [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V X✝ Y✝ Z✝ : HomologicalComplex V c x✝² : X✝ ⟶ Y✝ x✝¹ : Y✝ ⟶ Z✝ x✝ : ι ⊢ { obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map (x✝² ≫ x✝¹) x✝ = ({ obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map x✝² ≫ { obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map x✝¹) x✝ [PROOFSTEP] simp only [GradedObject.categoryOfGradedObjects_comp] [GOAL] case h ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V X✝ Y✝ Z✝ : HomologicalComplex V c x✝² : X✝ ⟶ Y✝ x✝¹ : Y✝ ⟶ Z✝ x✝ : ι ⊢ (homologyFunctor V c x✝).map (x✝² ≫ x✝¹) = (homologyFunctor V c x✝).map x✝² ≫ (homologyFunctor V c x✝).map x✝¹ [PROOFSTEP] ext [GOAL] case h.p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝³ : HasEqualizers V inst✝² : HasImages V inst✝¹ : HasImageMaps V C₁ C₂ : HomologicalComplex V c f : C₁ ⟶ C₂ inst✝ : HasCokernels V X✝ Y✝ Z✝ : HomologicalComplex V c x✝² : X✝ ⟶ Y✝ x✝¹ : Y✝ ⟶ Z✝ x✝ : ι ⊢ homology.π (dTo X✝ x✝) (dFrom X✝ x✝) (_ : dTo X✝ x✝ ≫ dFrom X✝ x✝ = 0) ≫ (homologyFunctor V c x✝).map (x✝² ≫ x✝¹) = homology.π (dTo X✝ x✝) (dFrom X✝ x✝) (_ : dTo X✝ x✝ ≫ dFrom X✝ x✝ = 0) ≫ (homologyFunctor V c x✝).map x✝² ≫ (homologyFunctor V c x✝).map x✝¹ [PROOFSTEP] simp only [Hom.sqFrom_comp, kernelSubobjectMap_comp, homology.π_map_assoc, homology.π_map, homologyFunctor_map, Category.assoc]
{"mathlib_filename": "Mathlib.Algebra.Homology.Homology", "llama_tokens": 10853}
[GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α ⊢ ⊤ * ⊤ = ⊤ [PROOFSTEP] simp [mul_def] [GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α ⊢ Option.map₂ (fun x x_1 => x * x_1) ⊤ ⊤ = ⊤ [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α a : WithTop α ⊢ a * ⊤ = if a = 0 then 0 else ⊤ [PROOFSTEP] induction a using recTopCoe [GOAL] case top α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α ⊢ ⊤ * ⊤ = if ⊤ = 0 then 0 else ⊤ [PROOFSTEP] simp [mul_def] [GOAL] case coe α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α a✝ : α ⊢ ↑a✝ * ⊤ = if ↑a✝ = 0 then 0 else ⊤ [PROOFSTEP] simp [mul_def] [GOAL] case top α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α ⊢ Option.map₂ (fun x x_1 => x * x_1) ⊤ ⊤ = ⊤ [PROOFSTEP] rfl [GOAL] case coe α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α a✝ : α ⊢ (if a✝ = 0 then 0 else Option.map₂ (fun x x_1 => x * x_1) ↑a✝ ⊤) = if a✝ = 0 then 0 else ⊤ [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α a : WithTop α h : a ≠ 0 ⊢ a * ⊤ = ⊤ [PROOFSTEP] rw [mul_top', if_neg h] [GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α a : WithTop α ⊢ ⊤ * a = if a = 0 then 0 else ⊤ [PROOFSTEP] induction a using recTopCoe [GOAL] case top α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α ⊢ ⊤ * ⊤ = if ⊤ = 0 then 0 else ⊤ [PROOFSTEP] simp [mul_def] [GOAL] case coe α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α a✝ : α ⊢ ⊤ * ↑a✝ = if ↑a✝ = 0 then 0 else ⊤ [PROOFSTEP] simp [mul_def] [GOAL] case top α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α ⊢ Option.map₂ (fun x x_1 => x * x_1) ⊤ ⊤ = ⊤ [PROOFSTEP] rfl [GOAL] case coe α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α a✝ : α ⊢ (if a✝ = 0 then 0 else Option.map₂ (fun x x_1 => x * x_1) ⊤ ↑a✝) = if a✝ = 0 then 0 else ⊤ [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α a : WithTop α h : a ≠ 0 ⊢ ⊤ * a = ⊤ [PROOFSTEP] rw [top_mul', if_neg h] [GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α a b : WithTop α ⊢ a * b = ⊤ ↔ a ≠ 0 ∧ b = ⊤ ∨ a = ⊤ ∧ b ≠ 0 [PROOFSTEP] rw [mul_def, ite_eq_iff, ← none_eq_top, Option.map₂_eq_none_iff] [GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α a b : WithTop α ⊢ (a = 0 ∨ b = 0) ∧ 0 = none ∨ ¬(a = 0 ∨ b = 0) ∧ (a = none ∨ b = none) ↔ a ≠ 0 ∧ b = none ∨ a = none ∧ b ≠ 0 [PROOFSTEP] have ha : a = 0 → a ≠ none := fun h => h.symm ▸ zero_ne_top [GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α a b : WithTop α ha : a = 0 → a ≠ none ⊢ (a = 0 ∨ b = 0) ∧ 0 = none ∨ ¬(a = 0 ∨ b = 0) ∧ (a = none ∨ b = none) ↔ a ≠ 0 ∧ b = none ∨ a = none ∧ b ≠ 0 [PROOFSTEP] have hb : b = 0 → b ≠ none := fun h => h.symm ▸ zero_ne_top [GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Zero α inst✝ : Mul α a b : WithTop α ha : a = 0 → a ≠ none hb : b = 0 → b ≠ none ⊢ (a = 0 ∨ b = 0) ∧ 0 = none ∨ ¬(a = 0 ∨ b = 0) ∧ (a = none ∨ b = none) ↔ a ≠ 0 ∧ b = none ∨ a = none ∧ b ≠ 0 [PROOFSTEP] tauto [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : Zero α inst✝¹ : Mul α inst✝ : LT α a b : WithTop α ha : a < ⊤ hb : b < ⊤ ⊢ a * b < ⊤ [PROOFSTEP] rw [WithTop.lt_top_iff_ne_top] at * [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : Zero α inst✝¹ : Mul α inst✝ : LT α a b : WithTop α ha : a ≠ ⊤ hb : b ≠ ⊤ ⊢ a * b ≠ ⊤ [PROOFSTEP] simp only [Ne.def, mul_eq_top_iff, *, and_false, false_and, false_or] [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : Zero α inst✝¹ : Mul α inst✝ : NoZeroDivisors α ⊢ NoZeroDivisors (WithTop α) [PROOFSTEP] refine ⟨fun h₁ => Decidable.by_contradiction <| fun h₂ => ?_⟩ [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : Zero α inst✝¹ : Mul α inst✝ : NoZeroDivisors α a✝ b✝ : WithTop α h₁ : a✝ * b✝ = 0 h₂ : ¬(a✝ = 0 ∨ b✝ = 0) ⊢ False [PROOFSTEP] rw [mul_def, if_neg h₂] at h₁ [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : Zero α inst✝¹ : Mul α inst✝ : NoZeroDivisors α a✝ b✝ : WithTop α h₁ : Option.map₂ (fun x x_1 => x * x_1) a✝ b✝ = 0 h₂ : ¬(a✝ = 0 ∨ b✝ = 0) ⊢ False [PROOFSTEP] rcases Option.mem_map₂_iff.1 h₁ with ⟨a, b, (rfl : _ = _), (rfl : _ = _), hab⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝³ : DecidableEq α inst✝² : Zero α inst✝¹ : Mul α inst✝ : NoZeroDivisors α a b : α hab : a * b = 0 h₁ : Option.map₂ (fun x x_1 => x * x_1) (Option.some a) (Option.some b) = 0 h₂ : ¬(Option.some a = 0 ∨ Option.some b = 0) ⊢ False [PROOFSTEP] exact h₂ ((eq_zero_or_eq_zero_of_mul_eq_zero hab).imp (congr_arg some) (congr_arg some)) [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α a b : α ⊢ ↑(a * b) = ↑a * ↑b [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α a b : α ha : a = 0 ⊢ ↑(a * b) = ↑a * ↑b [PROOFSTEP] simp [ha] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α a b : α ha : ¬a = 0 ⊢ ↑(a * b) = ↑a * ↑b [PROOFSTEP] by_cases hb : b = 0 [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α a b : α ha : ¬a = 0 hb : b = 0 ⊢ ↑(a * b) = ↑a * ↑b [PROOFSTEP] simp [hb] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α a b : α ha : ¬a = 0 hb : ¬b = 0 ⊢ ↑(a * b) = ↑a * ↑b [PROOFSTEP] simp [*, mul_def] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α a b : α ha : ¬a = 0 hb : ¬b = 0 ⊢ ↑(a * b) = Option.map₂ (fun x x_1 => x * x_1) ↑a ↑b [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α b : α hb : b ≠ 0 ⊢ (if ⊤ = 0 ∨ ↑b = 0 then 0 else ⊤) = ⊤ [PROOFSTEP] simp [hb] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α b : α hb : b ≠ 0 a : α ⊢ Option.some a * ↑b = Option.bind (Option.some a) fun a => Option.some (a * b) [PROOFSTEP] rw [some_eq_coe, ← coe_mul] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α b : α hb : b ≠ 0 a : α ⊢ ↑(a * b) = Option.bind ↑a fun a => Option.some (a * b) [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α a b : WithTop α ⊢ untop' 0 (a * b) = untop' 0 a * untop' 0 b [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α a b : WithTop α ha : a = 0 ⊢ untop' 0 (a * b) = untop' 0 a * untop' 0 b [PROOFSTEP] rw [ha, zero_mul, ← coe_zero, untop'_coe, zero_mul] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α a b : WithTop α ha : ¬a = 0 ⊢ untop' 0 (a * b) = untop' 0 a * untop' 0 b [PROOFSTEP] by_cases hb : b = 0 [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α a b : WithTop α ha : ¬a = 0 hb : b = 0 ⊢ untop' 0 (a * b) = untop' 0 a * untop' 0 b [PROOFSTEP] rw [hb, mul_zero, ← coe_zero, untop'_coe, mul_zero] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α a b : WithTop α ha : ¬a = 0 hb : ¬b = 0 ⊢ untop' 0 (a * b) = untop' 0 a * untop' 0 b [PROOFSTEP] induction a using WithTop.recTopCoe [GOAL] case neg.top α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α b : WithTop α hb : ¬b = 0 ha : ¬⊤ = 0 ⊢ untop' 0 (⊤ * b) = untop' 0 ⊤ * untop' 0 b [PROOFSTEP] rw [top_mul hb, untop'_top, zero_mul] [GOAL] case neg.coe α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α b : WithTop α hb : ¬b = 0 a✝ : α ha : ¬↑a✝ = 0 ⊢ untop' 0 (↑a✝ * b) = untop' 0 ↑a✝ * untop' 0 b [PROOFSTEP] induction b using WithTop.recTopCoe [GOAL] case neg.coe.top α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α a✝ : α ha : ¬↑a✝ = 0 hb : ¬⊤ = 0 ⊢ untop' 0 (↑a✝ * ⊤) = untop' 0 ↑a✝ * untop' 0 ⊤ [PROOFSTEP] rw [mul_top ha, untop'_top, mul_zero] [GOAL] case neg.coe.coe α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α a✝¹ : α ha : ¬↑a✝¹ = 0 a✝ : α hb : ¬↑a✝ = 0 ⊢ untop' 0 (↑a✝¹ * ↑a✝) = untop' 0 ↑a✝¹ * untop' 0 ↑a✝ [PROOFSTEP] rw [← coe_mul, untop'_coe, untop'_coe, untop'_coe] [GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : MulZeroOneClass α inst✝ : Nontrivial α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a✝ : WithTop α a : α ⊢ 1 * ↑a = ↑a [PROOFSTEP] rw [← coe_one, ← coe_mul, one_mul] [GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : MulZeroOneClass α inst✝ : Nontrivial α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a✝ : WithTop α a : α ⊢ ↑a * 1 = ↑a [PROOFSTEP] rw [← coe_one, ← coe_mul, mul_one] [GOAL] α : Type u_1 inst✝⁶ : DecidableEq α R : Type u_2 S : Type u_3 inst✝⁵ : MulZeroOneClass R inst✝⁴ : DecidableEq R inst✝³ : Nontrivial R inst✝² : MulZeroOneClass S inst✝¹ : DecidableEq S inst✝ : Nontrivial S f : R →*₀ S hf : Function.Injective ↑f src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f x y : WithTop R ⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (x * y) = ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } x * ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y [PROOFSTEP] have : ∀ z, map f z = 0 ↔ z = 0 := fun z => (Option.map_injective hf).eq_iff' f.toZeroHom.withTopMap.map_zero [GOAL] α : Type u_1 inst✝⁶ : DecidableEq α R : Type u_2 S : Type u_3 inst✝⁵ : MulZeroOneClass R inst✝⁴ : DecidableEq R inst✝³ : Nontrivial R inst✝² : MulZeroOneClass S inst✝¹ : DecidableEq S inst✝ : Nontrivial S f : R →*₀ S hf : Function.Injective ↑f src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f x y : WithTop R this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0 ⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (x * y) = ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } x * ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y [PROOFSTEP] rcases Decidable.eq_or_ne x 0 with (rfl | hx) [GOAL] case inl α : Type u_1 inst✝⁶ : DecidableEq α R : Type u_2 S : Type u_3 inst✝⁵ : MulZeroOneClass R inst✝⁴ : DecidableEq R inst✝³ : Nontrivial R inst✝² : MulZeroOneClass S inst✝¹ : DecidableEq S inst✝ : Nontrivial S f : R →*₀ S hf : Function.Injective ↑f src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f y : WithTop R this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0 ⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (0 * y) = ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } 0 * ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y [PROOFSTEP] simp [GOAL] case inr α : Type u_1 inst✝⁶ : DecidableEq α R : Type u_2 S : Type u_3 inst✝⁵ : MulZeroOneClass R inst✝⁴ : DecidableEq R inst✝³ : Nontrivial R inst✝² : MulZeroOneClass S inst✝¹ : DecidableEq S inst✝ : Nontrivial S f : R →*₀ S hf : Function.Injective ↑f src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f x y : WithTop R this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0 hx : x ≠ 0 ⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (x * y) = ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } x * ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y [PROOFSTEP] rcases Decidable.eq_or_ne y 0 with (rfl | hy) [GOAL] case inr.inl α : Type u_1 inst✝⁶ : DecidableEq α R : Type u_2 S : Type u_3 inst✝⁵ : MulZeroOneClass R inst✝⁴ : DecidableEq R inst✝³ : Nontrivial R inst✝² : MulZeroOneClass S inst✝¹ : DecidableEq S inst✝ : Nontrivial S f : R →*₀ S hf : Function.Injective ↑f src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f x : WithTop R this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0 hx : x ≠ 0 ⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (x * 0) = ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } x * ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } 0 [PROOFSTEP] simp [GOAL] case inr.inr α : Type u_1 inst✝⁶ : DecidableEq α R : Type u_2 S : Type u_3 inst✝⁵ : MulZeroOneClass R inst✝⁴ : DecidableEq R inst✝³ : Nontrivial R inst✝² : MulZeroOneClass S inst✝¹ : DecidableEq S inst✝ : Nontrivial S f : R →*₀ S hf : Function.Injective ↑f src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f x y : WithTop R this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0 hx : x ≠ 0 hy : y ≠ 0 ⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (x * y) = ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } x * ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y [PROOFSTEP] induction' x using WithTop.recTopCoe with x [GOAL] case inr.inr.top α : Type u_1 inst✝⁶ : DecidableEq α R : Type u_2 S : Type u_3 inst✝⁵ : MulZeroOneClass R inst✝⁴ : DecidableEq R inst✝³ : Nontrivial R inst✝² : MulZeroOneClass S inst✝¹ : DecidableEq S inst✝ : Nontrivial S f : R →*₀ S hf : Function.Injective ↑f src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f x y : WithTop R this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0 hx✝ : x ≠ 0 hy : y ≠ 0 hx : ⊤ ≠ 0 ⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (⊤ * y) = ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ⊤ * ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y [PROOFSTEP] simp [hy, this] [GOAL] case inr.inr.coe α : Type u_1 inst✝⁶ : DecidableEq α R : Type u_2 S : Type u_3 inst✝⁵ : MulZeroOneClass R inst✝⁴ : DecidableEq R inst✝³ : Nontrivial R inst✝² : MulZeroOneClass S inst✝¹ : DecidableEq S inst✝ : Nontrivial S f : R →*₀ S hf : Function.Injective ↑f src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f x✝ y : WithTop R this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0 hx✝ : x✝ ≠ 0 hy : y ≠ 0 x : R hx : ↑x ≠ 0 ⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (↑x * y) = ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ↑x * ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y [PROOFSTEP] induction' y using WithTop.recTopCoe with y [GOAL] case inr.inr.coe.top α : Type u_1 inst✝⁶ : DecidableEq α R : Type u_2 S : Type u_3 inst✝⁵ : MulZeroOneClass R inst✝⁴ : DecidableEq R inst✝³ : Nontrivial R inst✝² : MulZeroOneClass S inst✝¹ : DecidableEq S inst✝ : Nontrivial S f : R →*₀ S hf : Function.Injective ↑f src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f x✝ y : WithTop R this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0 hx✝ : x✝ ≠ 0 hy✝ : y ≠ 0 x : R hx : ↑x ≠ 0 hy : ⊤ ≠ 0 ⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (↑x * ⊤) = ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ↑x * ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ⊤ [PROOFSTEP] have : (f x : WithTop S) ≠ 0 := by simpa [hf.eq_iff' (map_zero f)] using hx [GOAL] α : Type u_1 inst✝⁶ : DecidableEq α R : Type u_2 S : Type u_3 inst✝⁵ : MulZeroOneClass R inst✝⁴ : DecidableEq R inst✝³ : Nontrivial R inst✝² : MulZeroOneClass S inst✝¹ : DecidableEq S inst✝ : Nontrivial S f : R →*₀ S hf : Function.Injective ↑f src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f x✝ y : WithTop R this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0 hx✝ : x✝ ≠ 0 hy✝ : y ≠ 0 x : R hx : ↑x ≠ 0 hy : ⊤ ≠ 0 ⊢ ↑(↑f x) ≠ 0 [PROOFSTEP] simpa [hf.eq_iff' (map_zero f)] using hx [GOAL] case inr.inr.coe.top α : Type u_1 inst✝⁶ : DecidableEq α R : Type u_2 S : Type u_3 inst✝⁵ : MulZeroOneClass R inst✝⁴ : DecidableEq R inst✝³ : Nontrivial R inst✝² : MulZeroOneClass S inst✝¹ : DecidableEq S inst✝ : Nontrivial S f : R →*₀ S hf : Function.Injective ↑f src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f x✝ y : WithTop R this✝ : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0 hx✝ : x✝ ≠ 0 hy✝ : y ≠ 0 x : R hx : ↑x ≠ 0 hy : ⊤ ≠ 0 this : ↑(↑f x) ≠ 0 ⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (↑x * ⊤) = ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ↑x * ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ⊤ [PROOFSTEP] simp [mul_top hx, mul_top this] [GOAL] case inr.inr.coe.coe α : Type u_1 inst✝⁶ : DecidableEq α R : Type u_2 S : Type u_3 inst✝⁵ : MulZeroOneClass R inst✝⁴ : DecidableEq R inst✝³ : Nontrivial R inst✝² : MulZeroOneClass S inst✝¹ : DecidableEq S inst✝ : Nontrivial S f : R →*₀ S hf : Function.Injective ↑f src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f x✝ y✝ : WithTop R this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0 hx✝ : x✝ ≠ 0 hy✝ : y✝ ≠ 0 x : R hx : ↑x ≠ 0 y : R hy : ↑y ≠ 0 ⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (↑x * ↑y) = ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ↑x * ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ↑y [PROOFSTEP] simp only [map_coe, ← coe_mul, map_mul] [GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a b c : WithTop α ⊢ a * b * c = a * (b * c) [PROOFSTEP] rcases eq_or_ne a 0 with (rfl | ha) [GOAL] case inl α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop b c : WithTop α ⊢ 0 * b * c = 0 * (b * c) [PROOFSTEP] simp only [zero_mul] [GOAL] case inr α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a b c : WithTop α ha : a ≠ 0 ⊢ a * b * c = a * (b * c) [PROOFSTEP] rcases eq_or_ne b 0 with (rfl | hb) [GOAL] case inr.inl α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a c : WithTop α ha : a ≠ 0 ⊢ a * 0 * c = a * (0 * c) [PROOFSTEP] simp only [zero_mul, mul_zero] [GOAL] case inr.inr α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a b c : WithTop α ha : a ≠ 0 hb : b ≠ 0 ⊢ a * b * c = a * (b * c) [PROOFSTEP] rcases eq_or_ne c 0 with (rfl | hc) [GOAL] case inr.inr.inl α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a b : WithTop α ha : a ≠ 0 hb : b ≠ 0 ⊢ a * b * 0 = a * (b * 0) [PROOFSTEP] simp only [mul_zero] -- Porting note: below needed to be rewritten due to changed `simp` behaviour for `coe` [GOAL] case inr.inr.inr α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a b c : WithTop α ha : a ≠ 0 hb : b ≠ 0 hc : c ≠ 0 ⊢ a * b * c = a * (b * c) [PROOFSTEP] induction' a using WithTop.recTopCoe with a [GOAL] case inr.inr.inr.top α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a b c : WithTop α ha✝ : a ≠ 0 hb : b ≠ 0 hc : c ≠ 0 ha : ⊤ ≠ 0 ⊢ ⊤ * b * c = ⊤ * (b * c) [PROOFSTEP] simp [hb, hc] [GOAL] case inr.inr.inr.coe α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a✝ b c : WithTop α ha✝ : a✝ ≠ 0 hb : b ≠ 0 hc : c ≠ 0 a : α ha : ↑a ≠ 0 ⊢ ↑a * b * c = ↑a * (b * c) [PROOFSTEP] induction' b using WithTop.recTopCoe with b [GOAL] case inr.inr.inr.coe.top α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a✝ b c : WithTop α ha✝ : a✝ ≠ 0 hb✝ : b ≠ 0 hc : c ≠ 0 a : α ha : ↑a ≠ 0 hb : ⊤ ≠ 0 ⊢ ↑a * ⊤ * c = ↑a * (⊤ * c) [PROOFSTEP] simp [mul_top ha, top_mul hc] [GOAL] case inr.inr.inr.coe.coe α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a✝ b✝ c : WithTop α ha✝ : a✝ ≠ 0 hb✝ : b✝ ≠ 0 hc : c ≠ 0 a : α ha : ↑a ≠ 0 b : α hb : ↑b ≠ 0 ⊢ ↑a * ↑b * c = ↑a * (↑b * c) [PROOFSTEP] induction' c using WithTop.recTopCoe with c [GOAL] case inr.inr.inr.coe.coe.top α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a✝ b✝ c : WithTop α ha✝ : a✝ ≠ 0 hb✝ : b✝ ≠ 0 hc✝ : c ≠ 0 a : α ha : ↑a ≠ 0 b : α hb : ↑b ≠ 0 hc : ⊤ ≠ 0 ⊢ ↑a * ↑b * ⊤ = ↑a * (↑b * ⊤) [PROOFSTEP] rw [mul_top hb, mul_top ha] [GOAL] case inr.inr.inr.coe.coe.top α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a✝ b✝ c : WithTop α ha✝ : a✝ ≠ 0 hb✝ : b✝ ≠ 0 hc✝ : c ≠ 0 a : α ha : ↑a ≠ 0 b : α hb : ↑b ≠ 0 hc : ⊤ ≠ 0 ⊢ ↑a * ↑b * ⊤ = ⊤ [PROOFSTEP] rw [← coe_zero, ne_eq, coe_eq_coe] at ha hb [GOAL] case inr.inr.inr.coe.coe.top α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a✝ b✝ c : WithTop α ha✝ : a✝ ≠ 0 hb✝ : b✝ ≠ 0 hc✝ : c ≠ 0 a : α ha : ¬a = 0 b : α hb : ¬b = 0 hc : ⊤ ≠ 0 ⊢ ↑a * ↑b * ⊤ = ⊤ [PROOFSTEP] simp [ha, hb] [GOAL] case inr.inr.inr.coe.coe.coe α : Type u_1 inst✝² : DecidableEq α inst✝¹ : SemigroupWithZero α inst✝ : NoZeroDivisors α src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop a✝ b✝ c✝ : WithTop α ha✝ : a✝ ≠ 0 hb✝ : b✝ ≠ 0 hc✝ : c✝ ≠ 0 a : α ha : ↑a ≠ 0 b : α hb : ↑b ≠ 0 c : α hc : ↑c ≠ 0 ⊢ ↑a * ↑b * ↑c = ↑a * (↑b * ↑c) [PROOFSTEP] simp only [← coe_mul, mul_assoc] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α a b c : WithTop α ⊢ (a + b) * c = a * c + b * c [PROOFSTEP] induction' c using WithTop.recTopCoe with c [GOAL] case top α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α a b : WithTop α ⊢ (a + b) * ⊤ = a * ⊤ + b * ⊤ [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α a b : WithTop α ha : a = 0 ⊢ (a + b) * ⊤ = a * ⊤ + b * ⊤ [PROOFSTEP] simp [ha] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α a b : WithTop α ha : ¬a = 0 ⊢ (a + b) * ⊤ = a * ⊤ + b * ⊤ [PROOFSTEP] simp [ha] [GOAL] case coe α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α a b : WithTop α c : α ⊢ (a + b) * ↑c = a * ↑c + b * ↑c [PROOFSTEP] by_cases hc : c = 0 [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α a b : WithTop α c : α hc : c = 0 ⊢ (a + b) * ↑c = a * ↑c + b * ↑c [PROOFSTEP] simp [hc] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α a b : WithTop α c : α hc : ¬c = 0 ⊢ (a + b) * ↑c = a * ↑c + b * ↑c [PROOFSTEP] simp [mul_coe hc] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α a b : WithTop α c : α hc : ¬c = 0 ⊢ (Option.bind (a + b) fun a => Option.some (a * c)) = (Option.bind a fun a => Option.some (a * c)) + Option.bind b fun a => Option.some (a * c) [PROOFSTEP] cases a [GOAL] case neg.none α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α b : WithTop α c : α hc : ¬c = 0 ⊢ (Option.bind (none + b) fun a => Option.some (a * c)) = (Option.bind none fun a => Option.some (a * c)) + Option.bind b fun a => Option.some (a * c) [PROOFSTEP] cases b [GOAL] case neg.some α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α b : WithTop α c : α hc : ¬c = 0 val✝ : α ⊢ (Option.bind (Option.some val✝ + b) fun a => Option.some (a * c)) = (Option.bind (Option.some val✝) fun a => Option.some (a * c)) + Option.bind b fun a => Option.some (a * c) [PROOFSTEP] cases b [GOAL] case neg.none.none α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α c : α hc : ¬c = 0 ⊢ (Option.bind (none + none) fun a => Option.some (a * c)) = (Option.bind none fun a => Option.some (a * c)) + Option.bind none fun a => Option.some (a * c) case neg.none.some α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α c : α hc : ¬c = 0 val✝ : α ⊢ (Option.bind (none + Option.some val✝) fun a => Option.some (a * c)) = (Option.bind none fun a => Option.some (a * c)) + Option.bind (Option.some val✝) fun a => Option.some (a * c) case neg.some.none α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α c : α hc : ¬c = 0 val✝ : α ⊢ (Option.bind (Option.some val✝ + none) fun a => Option.some (a * c)) = (Option.bind (Option.some val✝) fun a => Option.some (a * c)) + Option.bind none fun a => Option.some (a * c) case neg.some.some α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α c : α hc : ¬c = 0 val✝¹ val✝ : α ⊢ (Option.bind (Option.some val✝¹ + Option.some val✝) fun a => Option.some (a * c)) = (Option.bind (Option.some val✝¹) fun a => Option.some (a * c)) + Option.bind (Option.some val✝) fun a => Option.some (a * c) [PROOFSTEP] repeat' first | rfl | exact congr_arg some (add_mul _ _ _) [GOAL] case neg.none.none α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α c : α hc : ¬c = 0 ⊢ (Option.bind (none + none) fun a => Option.some (a * c)) = (Option.bind none fun a => Option.some (a * c)) + Option.bind none fun a => Option.some (a * c) [PROOFSTEP] first | rfl | exact congr_arg some (add_mul _ _ _) [GOAL] case neg.none.none α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α c : α hc : ¬c = 0 ⊢ (Option.bind (none + none) fun a => Option.some (a * c)) = (Option.bind none fun a => Option.some (a * c)) + Option.bind none fun a => Option.some (a * c) [PROOFSTEP] rfl [GOAL] case neg.none.some α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α c : α hc : ¬c = 0 val✝ : α ⊢ (Option.bind (none + Option.some val✝) fun a => Option.some (a * c)) = (Option.bind none fun a => Option.some (a * c)) + Option.bind (Option.some val✝) fun a => Option.some (a * c) [PROOFSTEP] first | rfl | exact congr_arg some (add_mul _ _ _) [GOAL] case neg.none.some α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α c : α hc : ¬c = 0 val✝ : α ⊢ (Option.bind (none + Option.some val✝) fun a => Option.some (a * c)) = (Option.bind none fun a => Option.some (a * c)) + Option.bind (Option.some val✝) fun a => Option.some (a * c) [PROOFSTEP] rfl [GOAL] case neg.some.none α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α c : α hc : ¬c = 0 val✝ : α ⊢ (Option.bind (Option.some val✝ + none) fun a => Option.some (a * c)) = (Option.bind (Option.some val✝) fun a => Option.some (a * c)) + Option.bind none fun a => Option.some (a * c) [PROOFSTEP] first | rfl | exact congr_arg some (add_mul _ _ _) [GOAL] case neg.some.none α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α c : α hc : ¬c = 0 val✝ : α ⊢ (Option.bind (Option.some val✝ + none) fun a => Option.some (a * c)) = (Option.bind (Option.some val✝) fun a => Option.some (a * c)) + Option.bind none fun a => Option.some (a * c) [PROOFSTEP] rfl [GOAL] case neg.some.some α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α c : α hc : ¬c = 0 val✝¹ val✝ : α ⊢ (Option.bind (Option.some val✝¹ + Option.some val✝) fun a => Option.some (a * c)) = (Option.bind (Option.some val✝¹) fun a => Option.some (a * c)) + Option.bind (Option.some val✝) fun a => Option.some (a * c) [PROOFSTEP] first | rfl | exact congr_arg some (add_mul _ _ _) [GOAL] case neg.some.some α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α c : α hc : ¬c = 0 val✝¹ val✝ : α ⊢ (Option.bind (Option.some val✝¹ + Option.some val✝) fun a => Option.some (a * c)) = (Option.bind (Option.some val✝¹) fun a => Option.some (a * c)) + Option.bind (Option.some val✝) fun a => Option.some (a * c) [PROOFSTEP] rfl [GOAL] case neg.some.some α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CanonicallyOrderedCommSemiring α c : α hc : ¬c = 0 val✝¹ val✝ : α ⊢ (Option.bind (Option.some val✝¹ + Option.some val✝) fun a => Option.some (a * c)) = (Option.bind (Option.some val✝¹) fun a => Option.some (a * c)) + Option.bind (Option.some val✝) fun a => Option.some (a * c) [PROOFSTEP] exact congr_arg some (add_mul _ _ _) [GOAL] α : Type u_1 inst✝² : DecidableEq α inst✝¹ : CanonicallyOrderedCommSemiring α inst✝ : Nontrivial α src✝¹ : AddCommMonoidWithOne (WithTop α) := addCommMonoidWithOne src✝ : CommMonoidWithZero (WithTop α) := commMonoidWithZero a b c : WithTop α ⊢ a * (b + c) = a * b + a * c [PROOFSTEP] rw [mul_comm, distrib', mul_comm b, mul_comm c] [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α ⊢ Covariant { x // 0 ≤ x } (WithBot α) (fun x y => ↑x * y) fun x x_1 => x ≤ x_1 [PROOFSTEP] intro ⟨x, x0⟩ a b h [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : a ≤ b ⊢ (fun x y => ↑x * y) { val := x, property := x0 } a ≤ (fun x y => ↑x * y) { val := x, property := x0 } b [PROOFSTEP] simp only [Subtype.coe_mk] [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : a ≤ b ⊢ x * a ≤ x * b [PROOFSTEP] rcases eq_or_ne x 0 with rfl | x0' [GOAL] case inl α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α a b : WithBot α h : a ≤ b x0 : 0 ≤ 0 ⊢ 0 * a ≤ 0 * b [PROOFSTEP] simp [GOAL] case inr α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : a ≤ b x0' : x ≠ 0 ⊢ x * a ≤ x * b [PROOFSTEP] lift x to α [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : a ≤ b x0' : x ≠ 0 ⊢ x ≠ ⊥ [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α a b : WithBot α h : a ≤ b x0 : 0 ≤ ⊥ x0' : ⊥ ≠ 0 ⊢ False [PROOFSTEP] exact (WithBot.bot_lt_coe (0 : α)).not_le x0 [GOAL] case inr.intro α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α a b : WithBot α h : a ≤ b x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 ⊢ ↑x * a ≤ ↑x * b [PROOFSTEP] induction a using WithBot.recBotCoe [GOAL] case inr.intro.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α b : WithBot α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 h : ⊥ ≤ b ⊢ ↑x * ⊥ ≤ ↑x * b [PROOFSTEP] simp_rw [mul_bot x0', bot_le] [GOAL] case inr.intro.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α b : WithBot α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝ : α h : ↑a✝ ≤ b ⊢ ↑x * ↑a✝ ≤ ↑x * b [PROOFSTEP] induction b using WithBot.recBotCoe [GOAL] case inr.intro.coe.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝ : α h : ↑a✝ ≤ ⊥ ⊢ ↑x * ↑a✝ ≤ ↑x * ⊥ [PROOFSTEP] exact absurd h (bot_lt_coe _).not_le [GOAL] case inr.intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝¹ a✝ : α h : ↑a✝¹ ≤ ↑a✝ ⊢ ↑x * ↑a✝¹ ≤ ↑x * ↑a✝ [PROOFSTEP] simp only [← coe_mul, coe_le_coe] at * [GOAL] case inr.intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝¹ a✝ : α h : a✝¹ ≤ a✝ ⊢ x * a✝¹ ≤ x * a✝ [PROOFSTEP] norm_cast at x0 [GOAL] case inr.intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMono α x : α x0' : ↑x ≠ 0 a✝¹ a✝ : α h : a✝¹ ≤ a✝ x0 : 0 ≤ x ⊢ x * a✝¹ ≤ x * a✝ [PROOFSTEP] exact mul_le_mul_of_nonneg_left h x0 [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α ⊢ Covariant { x // 0 ≤ x } (WithBot α) (fun x y => y * ↑x) fun x x_1 => x ≤ x_1 [PROOFSTEP] intro ⟨x, x0⟩ a b h [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : a ≤ b ⊢ (fun x y => y * ↑x) { val := x, property := x0 } a ≤ (fun x y => y * ↑x) { val := x, property := x0 } b [PROOFSTEP] simp only [Subtype.coe_mk] [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : a ≤ b ⊢ a * x ≤ b * x [PROOFSTEP] rcases eq_or_ne x 0 with rfl | x0' [GOAL] case inl α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α a b : WithBot α h : a ≤ b x0 : 0 ≤ 0 ⊢ a * 0 ≤ b * 0 [PROOFSTEP] simp [GOAL] case inr α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : a ≤ b x0' : x ≠ 0 ⊢ a * x ≤ b * x [PROOFSTEP] lift x to α [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : a ≤ b x0' : x ≠ 0 ⊢ x ≠ ⊥ [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α a b : WithBot α h : a ≤ b x0 : 0 ≤ ⊥ x0' : ⊥ ≠ 0 ⊢ False [PROOFSTEP] exact (WithBot.bot_lt_coe (0 : α)).not_le x0 [GOAL] case inr.intro α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α a b : WithBot α h : a ≤ b x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 ⊢ a * ↑x ≤ b * ↑x [PROOFSTEP] induction a using WithBot.recBotCoe [GOAL] case inr.intro.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α b : WithBot α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 h : ⊥ ≤ b ⊢ ⊥ * ↑x ≤ b * ↑x [PROOFSTEP] simp_rw [bot_mul x0', bot_le] [GOAL] case inr.intro.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α b : WithBot α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝ : α h : ↑a✝ ≤ b ⊢ ↑a✝ * ↑x ≤ b * ↑x [PROOFSTEP] induction b using WithBot.recBotCoe [GOAL] case inr.intro.coe.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝ : α h : ↑a✝ ≤ ⊥ ⊢ ↑a✝ * ↑x ≤ ⊥ * ↑x [PROOFSTEP] exact absurd h (bot_lt_coe _).not_le [GOAL] case inr.intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝¹ a✝ : α h : ↑a✝¹ ≤ ↑a✝ ⊢ ↑a✝¹ * ↑x ≤ ↑a✝ * ↑x [PROOFSTEP] simp only [← coe_mul, coe_le_coe] at * [GOAL] case inr.intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝¹ a✝ : α h : a✝¹ ≤ a✝ ⊢ a✝¹ * x ≤ a✝ * x [PROOFSTEP] norm_cast at x0 [GOAL] case inr.intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMono α x : α x0' : ↑x ≠ 0 a✝¹ a✝ : α h : a✝¹ ≤ a✝ x0 : 0 ≤ x ⊢ a✝¹ * x ≤ a✝ * x [PROOFSTEP] exact mul_le_mul_of_nonneg_right h x0 [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α ⊢ Covariant { x // 0 < x } (WithBot α) (fun x y => ↑x * y) fun x x_1 => x < x_1 [PROOFSTEP] intro ⟨x, x0⟩ a b h [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α x : WithBot α x0 : 0 < x a b : WithBot α h : a < b ⊢ (fun x y => ↑x * y) { val := x, property := x0 } a < (fun x y => ↑x * y) { val := x, property := x0 } b [PROOFSTEP] simp only [Subtype.coe_mk] [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α x : WithBot α x0 : 0 < x a b : WithBot α h : a < b ⊢ x * a < x * b [PROOFSTEP] lift x to α using x0.ne_bot [GOAL] case intro α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α a b : WithBot α h : a < b x : α x0 : 0 < ↑x ⊢ ↑x * a < ↑x * b [PROOFSTEP] induction b using WithBot.recBotCoe [GOAL] case intro.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α a : WithBot α x : α x0 : 0 < ↑x h : a < ⊥ ⊢ ↑x * a < ↑x * ⊥ [PROOFSTEP] exact absurd h not_lt_bot [GOAL] case intro.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α a : WithBot α x : α x0 : 0 < ↑x a✝ : α h : a < ↑a✝ ⊢ ↑x * a < ↑x * ↑a✝ [PROOFSTEP] induction a using WithBot.recBotCoe [GOAL] case intro.coe.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α x : α x0 : 0 < ↑x a✝ : α h : ⊥ < ↑a✝ ⊢ ↑x * ⊥ < ↑x * ↑a✝ [PROOFSTEP] simp_rw [mul_bot x0.ne.symm, ← coe_mul, bot_lt_coe] [GOAL] case intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α x : α x0 : 0 < ↑x a✝¹ a✝ : α h : ↑a✝ < ↑a✝¹ ⊢ ↑x * ↑a✝ < ↑x * ↑a✝¹ [PROOFSTEP] simp only [← coe_mul, coe_lt_coe] at * [GOAL] case intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α x : α x0 : 0 < ↑x a✝¹ a✝ : α h : a✝ < a✝¹ ⊢ x * a✝ < x * a✝¹ [PROOFSTEP] norm_cast at x0 [GOAL] case intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulStrictMono α x a✝¹ a✝ : α h : a✝ < a✝¹ x0 : 0 < x ⊢ x * a✝ < x * a✝¹ [PROOFSTEP] exact mul_lt_mul_of_pos_left h x0 [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α ⊢ Covariant { x // 0 < x } (WithBot α) (fun x y => y * ↑x) fun x x_1 => x < x_1 [PROOFSTEP] intro ⟨x, x0⟩ a b h [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α x : WithBot α x0 : 0 < x a b : WithBot α h : a < b ⊢ (fun x y => y * ↑x) { val := x, property := x0 } a < (fun x y => y * ↑x) { val := x, property := x0 } b [PROOFSTEP] simp only [Subtype.coe_mk] [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α x : WithBot α x0 : 0 < x a b : WithBot α h : a < b ⊢ a * x < b * x [PROOFSTEP] lift x to α using x0.ne_bot [GOAL] case intro α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α a b : WithBot α h : a < b x : α x0 : 0 < ↑x ⊢ a * ↑x < b * ↑x [PROOFSTEP] induction b using WithBot.recBotCoe [GOAL] case intro.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α a : WithBot α x : α x0 : 0 < ↑x h : a < ⊥ ⊢ a * ↑x < ⊥ * ↑x [PROOFSTEP] exact absurd h not_lt_bot [GOAL] case intro.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α a : WithBot α x : α x0 : 0 < ↑x a✝ : α h : a < ↑a✝ ⊢ a * ↑x < ↑a✝ * ↑x [PROOFSTEP] induction a using WithBot.recBotCoe [GOAL] case intro.coe.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α x : α x0 : 0 < ↑x a✝ : α h : ⊥ < ↑a✝ ⊢ ⊥ * ↑x < ↑a✝ * ↑x [PROOFSTEP] simp_rw [bot_mul x0.ne.symm, ← coe_mul, bot_lt_coe] [GOAL] case intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α x : α x0 : 0 < ↑x a✝¹ a✝ : α h : ↑a✝ < ↑a✝¹ ⊢ ↑a✝ * ↑x < ↑a✝¹ * ↑x [PROOFSTEP] simp only [← coe_mul, coe_lt_coe] at * [GOAL] case intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α x : α x0 : 0 < ↑x a✝¹ a✝ : α h : a✝ < a✝¹ ⊢ a✝ * x < a✝¹ * x [PROOFSTEP] norm_cast at x0 [GOAL] case intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosStrictMono α x a✝¹ a✝ : α h : a✝ < a✝¹ x0 : 0 < x ⊢ a✝ * x < a✝¹ * x [PROOFSTEP] exact mul_lt_mul_of_pos_right h x0 [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α ⊢ Contravariant { x // 0 ≤ x } (WithBot α) (fun x y => ↑x * y) fun x x_1 => x < x_1 [PROOFSTEP] intro ⟨x, x0⟩ a b h [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : (fun x y => ↑x * y) { val := x, property := x0 } a < (fun x y => ↑x * y) { val := x, property := x0 } b ⊢ a < b [PROOFSTEP] simp only [Subtype.coe_mk] at h [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : x * a < x * b ⊢ a < b [PROOFSTEP] rcases eq_or_ne x 0 with rfl | x0' [GOAL] case inl α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α a b : WithBot α x0 : 0 ≤ 0 h : 0 * a < 0 * b ⊢ a < b [PROOFSTEP] simp at h [GOAL] case inr α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : x * a < x * b x0' : x ≠ 0 ⊢ a < b [PROOFSTEP] lift x to α [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : x * a < x * b x0' : x ≠ 0 ⊢ x ≠ ⊥ [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α a b : WithBot α x0 : 0 ≤ ⊥ h : ⊥ * a < ⊥ * b x0' : ⊥ ≠ 0 ⊢ False [PROOFSTEP] exact (WithBot.bot_lt_coe (0 : α)).not_le x0 [GOAL] case inr.intro α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α a b : WithBot α x : α x0 : 0 ≤ ↑x h : ↑x * a < ↑x * b x0' : ↑x ≠ 0 ⊢ a < b [PROOFSTEP] induction b using WithBot.recBotCoe [GOAL] case inr.intro.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α a : WithBot α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 h : ↑x * a < ↑x * ⊥ ⊢ a < ⊥ [PROOFSTEP] rw [mul_bot x0'] at h [GOAL] case inr.intro.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α a : WithBot α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 h : ↑x * a < ⊥ ⊢ a < ⊥ [PROOFSTEP] exact absurd h bot_le.not_lt [GOAL] case inr.intro.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α a : WithBot α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝ : α h : ↑x * a < ↑x * ↑a✝ ⊢ a < ↑a✝ [PROOFSTEP] induction a using WithBot.recBotCoe [GOAL] case inr.intro.coe.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝ : α h : ↑x * ⊥ < ↑x * ↑a✝ ⊢ ⊥ < ↑a✝ [PROOFSTEP] exact WithBot.bot_lt_coe _ [GOAL] case inr.intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝¹ a✝ : α h : ↑x * ↑a✝ < ↑x * ↑a✝¹ ⊢ ↑a✝ < ↑a✝¹ [PROOFSTEP] simp only [← coe_mul, coe_lt_coe] at * [GOAL] case inr.intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝¹ a✝ : α h : x * a✝ < x * a✝¹ ⊢ a✝ < a✝¹ [PROOFSTEP] norm_cast at x0 [GOAL] case inr.intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulReflectLT α x : α x0' : ↑x ≠ 0 a✝¹ a✝ : α h : x * a✝ < x * a✝¹ x0 : 0 ≤ x ⊢ a✝ < a✝¹ [PROOFSTEP] exact lt_of_mul_lt_mul_left h x0 [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α ⊢ Contravariant { x // 0 ≤ x } (WithBot α) (fun x y => y * ↑x) fun x x_1 => x < x_1 [PROOFSTEP] intro ⟨x, x0⟩ a b h [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : (fun x y => y * ↑x) { val := x, property := x0 } a < (fun x y => y * ↑x) { val := x, property := x0 } b ⊢ a < b [PROOFSTEP] simp only [Subtype.coe_mk] at h [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : a * x < b * x ⊢ a < b [PROOFSTEP] rcases eq_or_ne x 0 with rfl | x0' [GOAL] case inl α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α a b : WithBot α x0 : 0 ≤ 0 h : a * 0 < b * 0 ⊢ a < b [PROOFSTEP] simp at h [GOAL] case inr α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : a * x < b * x x0' : x ≠ 0 ⊢ a < b [PROOFSTEP] lift x to α [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α x : WithBot α x0 : 0 ≤ x a b : WithBot α h : a * x < b * x x0' : x ≠ 0 ⊢ x ≠ ⊥ [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α a b : WithBot α x0 : 0 ≤ ⊥ h : a * ⊥ < b * ⊥ x0' : ⊥ ≠ 0 ⊢ False [PROOFSTEP] exact (WithBot.bot_lt_coe (0 : α)).not_le x0 [GOAL] case inr.intro α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α a b : WithBot α x : α x0 : 0 ≤ ↑x h : a * ↑x < b * ↑x x0' : ↑x ≠ 0 ⊢ a < b [PROOFSTEP] induction b using WithBot.recBotCoe [GOAL] case inr.intro.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α a : WithBot α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 h : a * ↑x < ⊥ * ↑x ⊢ a < ⊥ [PROOFSTEP] rw [bot_mul x0'] at h [GOAL] case inr.intro.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α a : WithBot α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 h : a * ↑x < ⊥ ⊢ a < ⊥ [PROOFSTEP] exact absurd h bot_le.not_lt [GOAL] case inr.intro.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α a : WithBot α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝ : α h : a * ↑x < ↑a✝ * ↑x ⊢ a < ↑a✝ [PROOFSTEP] induction a using WithBot.recBotCoe [GOAL] case inr.intro.coe.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝ : α h : ⊥ * ↑x < ↑a✝ * ↑x ⊢ ⊥ < ↑a✝ [PROOFSTEP] exact WithBot.bot_lt_coe _ [GOAL] case inr.intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝¹ a✝ : α h : ↑a✝ * ↑x < ↑a✝¹ * ↑x ⊢ ↑a✝ < ↑a✝¹ [PROOFSTEP] simp only [← coe_mul, coe_lt_coe] at * [GOAL] case inr.intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α x : α x0 : 0 ≤ ↑x x0' : ↑x ≠ 0 a✝¹ a✝ : α h : a✝ * x < a✝¹ * x ⊢ a✝ < a✝¹ [PROOFSTEP] norm_cast at x0 [GOAL] case inr.intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosReflectLT α x : α x0' : ↑x ≠ 0 a✝¹ a✝ : α h : a✝ * x < a✝¹ * x x0 : 0 ≤ x ⊢ a✝ < a✝¹ [PROOFSTEP] exact lt_of_mul_lt_mul_right h x0 [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMonoRev α ⊢ Contravariant { x // 0 < x } (WithBot α) (fun x y => ↑x * y) fun x x_1 => x ≤ x_1 [PROOFSTEP] intro ⟨x, x0⟩ a b h [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMonoRev α x : WithBot α x0 : 0 < x a b : WithBot α h : (fun x y => ↑x * y) { val := x, property := x0 } a ≤ (fun x y => ↑x * y) { val := x, property := x0 } b ⊢ a ≤ b [PROOFSTEP] simp only [Subtype.coe_mk] at h [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMonoRev α x : WithBot α x0 : 0 < x a b : WithBot α h : x * a ≤ x * b ⊢ a ≤ b [PROOFSTEP] lift x to α using x0.ne_bot [GOAL] case intro α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMonoRev α a b : WithBot α x : α x0 : 0 < ↑x h : ↑x * a ≤ ↑x * b ⊢ a ≤ b [PROOFSTEP] induction a using WithBot.recBotCoe [GOAL] case intro.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMonoRev α b : WithBot α x : α x0 : 0 < ↑x h : ↑x * ⊥ ≤ ↑x * b ⊢ ⊥ ≤ b [PROOFSTEP] exact bot_le [GOAL] case intro.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMonoRev α b : WithBot α x : α x0 : 0 < ↑x a✝ : α h : ↑x * ↑a✝ ≤ ↑x * b ⊢ ↑a✝ ≤ b [PROOFSTEP] induction b using WithBot.recBotCoe [GOAL] case intro.coe.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMonoRev α x : α x0 : 0 < ↑x a✝ : α h : ↑x * ↑a✝ ≤ ↑x * ⊥ ⊢ ↑a✝ ≤ ⊥ [PROOFSTEP] rw [mul_bot x0.ne.symm, ← coe_mul] at h [GOAL] case intro.coe.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMonoRev α x : α x0 : 0 < ↑x a✝ : α h : ↑(x * a✝) ≤ ⊥ ⊢ ↑a✝ ≤ ⊥ [PROOFSTEP] exact absurd h (bot_lt_coe _).not_le [GOAL] case intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMonoRev α x : α x0 : 0 < ↑x a✝¹ a✝ : α h : ↑x * ↑a✝¹ ≤ ↑x * ↑a✝ ⊢ ↑a✝¹ ≤ ↑a✝ [PROOFSTEP] simp only [← coe_mul, coe_le_coe] at * [GOAL] case intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMonoRev α x : α x0 : 0 < ↑x a✝¹ a✝ : α h : x * a✝¹ ≤ x * a✝ ⊢ a✝¹ ≤ a✝ [PROOFSTEP] norm_cast at x0 [GOAL] case intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : PosMulMonoRev α x a✝¹ a✝ : α h : x * a✝¹ ≤ x * a✝ x0 : 0 < x ⊢ a✝¹ ≤ a✝ [PROOFSTEP] exact le_of_mul_le_mul_left h x0 [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMonoRev α ⊢ Contravariant { x // 0 < x } (WithBot α) (fun x y => y * ↑x) fun x x_1 => x ≤ x_1 [PROOFSTEP] intro ⟨x, x0⟩ a b h [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMonoRev α x : WithBot α x0 : 0 < x a b : WithBot α h : (fun x y => y * ↑x) { val := x, property := x0 } a ≤ (fun x y => y * ↑x) { val := x, property := x0 } b ⊢ a ≤ b [PROOFSTEP] simp only [Subtype.coe_mk] at h [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMonoRev α x : WithBot α x0 : 0 < x a b : WithBot α h : a * x ≤ b * x ⊢ a ≤ b [PROOFSTEP] lift x to α using x0.ne_bot [GOAL] case intro α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMonoRev α a b : WithBot α x : α x0 : 0 < ↑x h : a * ↑x ≤ b * ↑x ⊢ a ≤ b [PROOFSTEP] induction a using WithBot.recBotCoe [GOAL] case intro.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMonoRev α b : WithBot α x : α x0 : 0 < ↑x h : ⊥ * ↑x ≤ b * ↑x ⊢ ⊥ ≤ b [PROOFSTEP] exact bot_le [GOAL] case intro.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMonoRev α b : WithBot α x : α x0 : 0 < ↑x a✝ : α h : ↑a✝ * ↑x ≤ b * ↑x ⊢ ↑a✝ ≤ b [PROOFSTEP] induction b using WithBot.recBotCoe [GOAL] case intro.coe.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMonoRev α x : α x0 : 0 < ↑x a✝ : α h : ↑a✝ * ↑x ≤ ⊥ * ↑x ⊢ ↑a✝ ≤ ⊥ [PROOFSTEP] rw [bot_mul x0.ne.symm, ← coe_mul] at h [GOAL] case intro.coe.bot α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMonoRev α x : α x0 : 0 < ↑x a✝ : α h : ↑(a✝ * x) ≤ ⊥ ⊢ ↑a✝ ≤ ⊥ [PROOFSTEP] exact absurd h (bot_lt_coe _).not_le [GOAL] case intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMonoRev α x : α x0 : 0 < ↑x a✝¹ a✝ : α h : ↑a✝¹ * ↑x ≤ ↑a✝ * ↑x ⊢ ↑a✝¹ ≤ ↑a✝ [PROOFSTEP] simp only [← coe_mul, coe_le_coe] at * [GOAL] case intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMonoRev α x : α x0 : 0 < ↑x a✝¹ a✝ : α h : a✝¹ * x ≤ a✝ * x ⊢ a✝¹ ≤ a✝ [PROOFSTEP] norm_cast at x0 [GOAL] case intro.coe.coe α : Type u_1 inst✝³ : DecidableEq α inst✝² : MulZeroClass α inst✝¹ : Preorder α inst✝ : MulPosMonoRev α x a✝¹ a✝ : α h : a✝¹ * x ≤ a✝ * x x0 : 0 < x ⊢ a✝¹ ≤ a✝ [PROOFSTEP] exact le_of_mul_le_mul_right h x0
{"mathlib_filename": "Mathlib.Algebra.Order.Ring.WithTop", "llama_tokens": 29288}
[GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝¹ : DecidableEq M inst✝ : CommSemiring R f : M → ι i : ι m : M h : m ∈ 0.support ⊢ f m = i [PROOFSTEP] cases h [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝¹ : DecidableEq M inst✝ : CommSemiring R ⊢ gradeBy R id = grade R [PROOFSTEP] rfl [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝¹ : DecidableEq M inst✝ : CommSemiring R f : M → ι i : ι a : AddMonoidAlgebra R M ⊢ a ∈ gradeBy R f i ↔ ↑a.support ⊆ f ⁻¹' {i} [PROOFSTEP] rfl [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝¹ : DecidableEq M inst✝ : CommSemiring R m : M a : AddMonoidAlgebra R M ⊢ a ∈ grade R m ↔ a.support ⊆ {m} [PROOFSTEP] rw [← Finset.coe_subset, Finset.coe_singleton] [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝¹ : DecidableEq M inst✝ : CommSemiring R m : M a : AddMonoidAlgebra R M ⊢ a ∈ grade R m ↔ ↑a.support ⊆ {m} [PROOFSTEP] rfl [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝¹ : DecidableEq M inst✝ : CommSemiring R m : M a : AddMonoidAlgebra R M ⊢ a ∈ grade R m ↔ a ∈ LinearMap.range (Finsupp.lsingle m) [PROOFSTEP] rw [mem_grade_iff, Finsupp.support_subset_singleton'] [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝¹ : DecidableEq M inst✝ : CommSemiring R m : M a : AddMonoidAlgebra R M ⊢ (∃ b, a = Finsupp.single m b) ↔ a ∈ LinearMap.range (Finsupp.lsingle m) [PROOFSTEP] apply exists_congr [GOAL] case h M : Type u_1 ι : Type u_2 R : Type u_3 inst✝¹ : DecidableEq M inst✝ : CommSemiring R m : M a : AddMonoidAlgebra R M ⊢ ∀ (a_1 : R), a = Finsupp.single m a_1 ↔ ↑(Finsupp.lsingle m) a_1 = a [PROOFSTEP] intro r [GOAL] case h M : Type u_1 ι : Type u_2 R : Type u_3 inst✝¹ : DecidableEq M inst✝ : CommSemiring R m : M a : AddMonoidAlgebra R M r : R ⊢ a = Finsupp.single m r ↔ ↑(Finsupp.lsingle m) r = a [PROOFSTEP] constructor [GOAL] case h.mp M : Type u_1 ι : Type u_2 R : Type u_3 inst✝¹ : DecidableEq M inst✝ : CommSemiring R m : M a : AddMonoidAlgebra R M r : R ⊢ a = Finsupp.single m r → ↑(Finsupp.lsingle m) r = a [PROOFSTEP] exact Eq.symm [GOAL] case h.mpr M : Type u_1 ι : Type u_2 R : Type u_3 inst✝¹ : DecidableEq M inst✝ : CommSemiring R m : M a : AddMonoidAlgebra R M r : R ⊢ ↑(Finsupp.lsingle m) r = a → a = Finsupp.single m r [PROOFSTEP] exact Eq.symm [GOAL] M : Type u_1 ι : Type u_2 R✝ : Type u_3 inst✝² : DecidableEq M inst✝¹ : CommSemiring R✝ R : Type u_4 inst✝ : CommSemiring R f : M → ι m : M r : R ⊢ Finsupp.single m r ∈ gradeBy R f (f m) [PROOFSTEP] intro x hx [GOAL] M : Type u_1 ι : Type u_2 R✝ : Type u_3 inst✝² : DecidableEq M inst✝¹ : CommSemiring R✝ R : Type u_4 inst✝ : CommSemiring R f : M → ι m : M r : R x : M hx : x ∈ (Finsupp.single m r).support ⊢ f x = f m [PROOFSTEP] rw [Finset.mem_singleton.mp (Finsupp.support_single_subset hx)] [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝³ : DecidableEq M inst✝² : AddMonoid M inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι m : M h : m ∈ 1.support ⊢ ↑f m = 0 [PROOFSTEP] rw [one_def] at h [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝³ : DecidableEq M inst✝² : AddMonoid M inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι m : M h : m ∈ (single 0 1).support ⊢ ↑f m = 0 [PROOFSTEP] by_cases H : (1 : R) = (0 : R) [GOAL] case pos M : Type u_1 ι : Type u_2 R : Type u_3 inst✝³ : DecidableEq M inst✝² : AddMonoid M inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι m : M h : m ∈ (single 0 1).support H : 1 = 0 ⊢ ↑f m = 0 [PROOFSTEP] rw [H, single, Finsupp.single_zero] at h [GOAL] case pos M : Type u_1 ι : Type u_2 R : Type u_3 inst✝³ : DecidableEq M inst✝² : AddMonoid M inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι m : M h : m ∈ 0.support H : 1 = 0 ⊢ ↑f m = 0 [PROOFSTEP] cases h [GOAL] case neg M : Type u_1 ι : Type u_2 R : Type u_3 inst✝³ : DecidableEq M inst✝² : AddMonoid M inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι m : M h : m ∈ (single 0 1).support H : ¬1 = 0 ⊢ ↑f m = 0 [PROOFSTEP] rw [Finsupp.support_single_ne_zero _ H, Finset.mem_singleton] at h [GOAL] case neg M : Type u_1 ι : Type u_2 R : Type u_3 inst✝³ : DecidableEq M inst✝² : AddMonoid M inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι m : M h : m = 0 H : ¬1 = 0 ⊢ ↑f m = 0 [PROOFSTEP] rw [h, AddMonoidHom.map_zero] [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝³ : DecidableEq M inst✝² : AddMonoid M inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : ι a b : AddMonoidAlgebra R M ha : a ∈ gradeBy R (↑f) i hb : b ∈ gradeBy R (↑f) j c : M hc : c ∈ (a * b).support ⊢ ↑f c = i + j [PROOFSTEP] set h := support_mul a b hc [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝³ : DecidableEq M inst✝² : AddMonoid M inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : ι a b : AddMonoidAlgebra R M ha : a ∈ gradeBy R (↑f) i hb : b ∈ gradeBy R (↑f) j c : M hc : c ∈ (a * b).support h : c ∈ Finset.biUnion a.support fun a₁ => Finset.biUnion b.support fun a₂ => {a₁ + a₂} := support_mul a b hc ⊢ ↑f c = i + j [PROOFSTEP] simp only [Finset.mem_biUnion] at h [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝³ : DecidableEq M inst✝² : AddMonoid M inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : ι a b : AddMonoidAlgebra R M ha : a ∈ gradeBy R (↑f) i hb : b ∈ gradeBy R (↑f) j c : M hc : c ∈ (a * b).support h : ∃ a_1, a_1 ∈ a.support ∧ ∃ a, a ∈ b.support ∧ c ∈ {a_1 + a} ⊢ ↑f c = i + j [PROOFSTEP] rcases h with ⟨ma, ⟨hma, ⟨mb, ⟨hmb, hmc⟩⟩⟩⟩ [GOAL] case intro.intro.intro.intro M : Type u_1 ι : Type u_2 R : Type u_3 inst✝³ : DecidableEq M inst✝² : AddMonoid M inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : ι a b : AddMonoidAlgebra R M ha : a ∈ gradeBy R (↑f) i hb : b ∈ gradeBy R (↑f) j c : M hc : c ∈ (a * b).support ma : M hma : ma ∈ a.support mb : M hmb : mb ∈ b.support hmc : c ∈ {ma + mb} ⊢ ↑f c = i + j [PROOFSTEP] rw [← ha ma hma, ← hb mb hmb, Finset.mem_singleton.mp hmc] [GOAL] case intro.intro.intro.intro M : Type u_1 ι : Type u_2 R : Type u_3 inst✝³ : DecidableEq M inst✝² : AddMonoid M inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : ι a b : AddMonoidAlgebra R M ha : a ∈ gradeBy R (↑f) i hb : b ∈ gradeBy R (↑f) j c : M hc : c ∈ (a * b).support ma : M hma : ma ∈ a.support mb : M hmb : mb ∈ b.support hmc : c ∈ {ma + mb} ⊢ ↑f (ma + mb) = ↑f ma + ↑f mb [PROOFSTEP] apply AddMonoidHom.map_add [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝² : DecidableEq M inst✝¹ : AddMonoid M inst✝ : CommSemiring R ⊢ SetLike.GradedMonoid (grade R) [PROOFSTEP] apply gradeBy.gradedMonoid (AddMonoidHom.id _) [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι ⊢ GradedMonoid.mk (↑f (↑Multiplicative.toAdd 1)) { val := Finsupp.single (↑Multiplicative.toAdd 1) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } = GradedMonoid.mk 0 GradedMonoid.GOne.one [PROOFSTEP] congr 2 [GOAL] case h.e_3.h M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι ⊢ ↑f (↑Multiplicative.toAdd 1) = 0 [PROOFSTEP] simp [GOAL] case h.e_4.e_2.h M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι ⊢ (fun x => x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) = fun x => x ∈ (fun i => gradeBy R (↑f) i) 0 [PROOFSTEP] simp [GOAL] case h.e_4.e_4 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι ⊢ HEq (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) (_ : 1 ∈ gradeBy R (↑f) 0) [PROOFSTEP] simp [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M ⊢ OneHom.toFun { toFun := fun m => ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m))) { val := Finsupp.single (↑Multiplicative.toAdd m) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) }, map_one' := (_ : ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1))) { val := Finsupp.single (↑Multiplicative.toAdd 1) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) } (i * j) = OneHom.toFun { toFun := fun m => ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m))) { val := Finsupp.single (↑Multiplicative.toAdd m) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) }, map_one' := (_ : ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1))) { val := Finsupp.single (↑Multiplicative.toAdd 1) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) } i * OneHom.toFun { toFun := fun m => ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m))) { val := Finsupp.single (↑Multiplicative.toAdd m) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) }, map_one' := (_ : ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1))) { val := Finsupp.single (↑Multiplicative.toAdd 1) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) } j [PROOFSTEP] symm [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M ⊢ OneHom.toFun { toFun := fun m => ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m))) { val := Finsupp.single (↑Multiplicative.toAdd m) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) }, map_one' := (_ : ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1))) { val := Finsupp.single (↑Multiplicative.toAdd 1) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) } i * OneHom.toFun { toFun := fun m => ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m))) { val := Finsupp.single (↑Multiplicative.toAdd m) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) }, map_one' := (_ : ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1))) { val := Finsupp.single (↑Multiplicative.toAdd 1) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) } j = OneHom.toFun { toFun := fun m => ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m))) { val := Finsupp.single (↑Multiplicative.toAdd m) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) }, map_one' := (_ : ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1))) { val := Finsupp.single (↑Multiplicative.toAdd 1) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) } (i * j) [PROOFSTEP] dsimp only [toAdd_one, Eq.ndrec, Set.mem_setOf_eq, ne_eq, OneHom.toFun_eq_coe, OneHom.coe_mk, toAdd_mul] [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M ⊢ ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd i))) { val := Finsupp.single (↑Multiplicative.toAdd i) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) } * ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd j))) { val := Finsupp.single (↑Multiplicative.toAdd j) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j))) { val := Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j))) } [PROOFSTEP] convert DirectSum.of_mul_of (A := (fun i : ι => gradeBy R f i)) _ _ [GOAL] case h.e'_3.h.e'_1.h.e'_1.h.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_1.h.e'_3.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_2.h.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_4.e'_4.e'_2.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝¹ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝¹ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i } e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝² : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝¹ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i } e_1✝¹ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_5.e'_5 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_3 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 = ↑(GradedMonoid.GMul.mul { val := Finsupp.single (↑Multiplicative.toAdd i) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) } { val := Finsupp.single (↑Multiplicative.toAdd j) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) }) [PROOFSTEP] repeat {rw [AddMonoidHom.map_add] } [GOAL] case h.e'_3.h.e'_1.h.e'_1.h.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_1.h.e'_3.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_2.h.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_4.e'_4.e'_2.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝¹ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝¹ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i } e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝² : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝¹ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i } e_1✝¹ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_5.e'_5 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_3 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 = ↑(GradedMonoid.GMul.mul { val := Finsupp.single (↑Multiplicative.toAdd i) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) } { val := Finsupp.single (↑Multiplicative.toAdd j) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) }) [PROOFSTEP] {rw [AddMonoidHom.map_add] } [GOAL] case h.e'_3.h.e'_1.h.e'_1.h.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) [PROOFSTEP] rw [AddMonoidHom.map_add] [GOAL] case h.e'_3.h.e'_1.h.e'_3.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_2.h.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_4.e'_4.e'_2.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝¹ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝¹ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i } e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝² : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝¹ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i } e_1✝¹ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_5.e'_5 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_3 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 = ↑(GradedMonoid.GMul.mul { val := Finsupp.single (↑Multiplicative.toAdd i) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) } { val := Finsupp.single (↑Multiplicative.toAdd j) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) }) [PROOFSTEP] {rw [AddMonoidHom.map_add] } [GOAL] case h.e'_3.h.e'_1.h.e'_3.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) [PROOFSTEP] rw [AddMonoidHom.map_add] [GOAL] case h.e'_3.h.e'_2.h.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_4.e'_4.e'_2.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝¹ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝¹ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i } e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝² : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝¹ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i } e_1✝¹ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_5.e'_5 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_3 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 = ↑(GradedMonoid.GMul.mul { val := Finsupp.single (↑Multiplicative.toAdd i) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) } { val := Finsupp.single (↑Multiplicative.toAdd j) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) }) [PROOFSTEP] {rw [AddMonoidHom.map_add] } [GOAL] case h.e'_3.h.e'_2.h.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) [PROOFSTEP] rw [AddMonoidHom.map_add] [GOAL] case h.e'_3.h.e'_4.e'_4.e'_2.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝¹ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝¹ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i } e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝² : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝¹ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i } e_1✝¹ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_5.e'_5 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_3 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 = ↑(GradedMonoid.GMul.mul { val := Finsupp.single (↑Multiplicative.toAdd i) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) } { val := Finsupp.single (↑Multiplicative.toAdd j) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) }) [PROOFSTEP] {rw [AddMonoidHom.map_add] } [GOAL] case h.e'_3.h.e'_4.e'_4.e'_2.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝¹ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝¹ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i } e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) [PROOFSTEP] rw [AddMonoidHom.map_add] [GOAL] case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝² : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝¹ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i } e_1✝¹ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_5.e'_5 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_3 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 = ↑(GradedMonoid.GMul.mul { val := Finsupp.single (↑Multiplicative.toAdd i) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) } { val := Finsupp.single (↑Multiplicative.toAdd j) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) }) [PROOFSTEP] {rw [AddMonoidHom.map_add] } [GOAL] case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝² : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝¹ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i } e_1✝¹ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd e_1✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) [PROOFSTEP] rw [AddMonoidHom.map_add] [GOAL] case h.e'_3.h.e'_5.e'_5 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_3 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 = ↑(GradedMonoid.GMul.mul { val := Finsupp.single (↑Multiplicative.toAdd i) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) } { val := Finsupp.single (↑Multiplicative.toAdd j) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) }) [PROOFSTEP] {rw [AddMonoidHom.map_add] } [GOAL] case h.e'_3.h.e'_5.e'_5 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_1✝ : ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) = ({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+ ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) [PROOFSTEP] rw [AddMonoidHom.map_add] [GOAL] case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) case h.e'_3.h.e'_6.e'_3 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 = ↑(GradedMonoid.GMul.mul { val := Finsupp.single (↑Multiplicative.toAdd i) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) } { val := Finsupp.single (↑Multiplicative.toAdd j) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) }) [PROOFSTEP] {rw [AddMonoidHom.map_add] } [GOAL] case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } x✝ : AddMonoidAlgebra R M ⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j) [PROOFSTEP] rw [AddMonoidHom.map_add] [GOAL] case h.e'_3.h.e'_6.e'_3 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 = ↑(GradedMonoid.GMul.mul { val := Finsupp.single (↑Multiplicative.toAdd i) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) } { val := Finsupp.single (↑Multiplicative.toAdd j) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) }) [PROOFSTEP] {rw [AddMonoidHom.map_add] } [GOAL] case h.e'_3.h.e'_6.e'_3 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 = ↑(GradedMonoid.GMul.mul { val := Finsupp.single (↑Multiplicative.toAdd i) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) } { val := Finsupp.single (↑Multiplicative.toAdd j) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) }) [PROOFSTEP] rw [AddMonoidHom.map_add] [GOAL] case h.e'_3.h.e'_6.e'_3 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 = ↑(GradedMonoid.GMul.mul { val := Finsupp.single (↑Multiplicative.toAdd i) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) } { val := Finsupp.single (↑Multiplicative.toAdd j) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) }) [PROOFSTEP] simp only [SetLike.coe_gMul] [GOAL] case h.e'_3.h.e'_6.e'_3 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 = Finsupp.single (↑Multiplicative.toAdd i) 1 * Finsupp.single (↑Multiplicative.toAdd j) 1 [PROOFSTEP] refine Eq.trans (by rw [one_mul]) single_mul_single.symm [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i j : Multiplicative M e_2✝ : { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } = { x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } ⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 = single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) (1 * 1) [PROOFSTEP] rw [one_mul] [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι m : M r : R ⊢ ↑(decomposeAux f) (Finsupp.single m r) = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) } [PROOFSTEP] refine' (lift_single _ _ _).trans _ [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι m : M r : R ⊢ r • ↑{ toOneHom := { toFun := fun m => ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m))) { val := Finsupp.single (↑Multiplicative.toAdd m) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) }, map_one' := (_ : ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1))) { val := Finsupp.single (↑Multiplicative.toAdd 1) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) }, map_mul' := (_ : ∀ (i j : Multiplicative M), OneHom.toFun { toFun := fun m => ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m))) { val := Finsupp.single (↑Multiplicative.toAdd m) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) }, map_one' := (_ : ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1))) { val := Finsupp.single (↑Multiplicative.toAdd 1) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) } (i * j) = OneHom.toFun { toFun := fun m => ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m))) { val := Finsupp.single (↑Multiplicative.toAdd m) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) }, map_one' := (_ : ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1))) { val := Finsupp.single (↑Multiplicative.toAdd 1) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) } i * OneHom.toFun { toFun := fun m => ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m))) { val := Finsupp.single (↑Multiplicative.toAdd m) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) }, map_one' := (_ : ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1))) { val := Finsupp.single (↑Multiplicative.toAdd 1) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) } j) } (↑Multiplicative.ofAdd m) = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) } [PROOFSTEP] refine' (DirectSum.of_smul R _ _ _).symm.trans _ [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι m : M r : R ⊢ ↑(DirectSum.of (fun i => (fun i => { x // x ∈ gradeBy R (↑f) i }) i) (↑f (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)))) (r • { val := Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)))) }) = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) } [PROOFSTEP] apply DirectSum.of_eq_of_gradedMonoid_eq [GOAL] case h M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι m : M r : R ⊢ GradedMonoid.mk (↑f (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m))) (r • { val := Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)))) }) = GradedMonoid.mk (↑f m) { val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) } [PROOFSTEP] refine' Sigma.subtype_ext rfl _ [GOAL] case h M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι m : M r : R ⊢ ↑(GradedMonoid.mk (↑f (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m))) (r • { val := Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) 1, property := (_ : Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)))) })).snd = ↑(GradedMonoid.mk (↑f m) { val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) }).snd [PROOFSTEP] refine' (Finsupp.smul_single' _ _ _).trans _ [GOAL] case h M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι m : M r : R ⊢ Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) (r * 1) = ↑(GradedMonoid.mk (↑f m) { val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) }).snd [PROOFSTEP] rw [mul_one] [GOAL] case h M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι m : M r : R ⊢ Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) r = ↑(GradedMonoid.mk (↑f m) { val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) }).snd [PROOFSTEP] rfl [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : { x // x ∈ gradeBy R (↑f) i } ⊢ ↑(decomposeAux f) ↑x = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) x [PROOFSTEP] obtain ⟨x, hx⟩ := x [GOAL] case mk M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : AddMonoidAlgebra R M hx : x ∈ gradeBy R (↑f) i ⊢ ↑(decomposeAux f) ↑{ val := x, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := x, property := hx } [PROOFSTEP] revert hx [GOAL] case mk M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : AddMonoidAlgebra R M ⊢ ∀ (hx : x ∈ gradeBy R (↑f) i), ↑(decomposeAux f) ↑{ val := x, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := x, property := hx } [PROOFSTEP] refine' Finsupp.induction x _ _ [GOAL] case mk.refine'_1 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : AddMonoidAlgebra R M ⊢ ∀ (hx : 0 ∈ gradeBy R (↑f) i), ↑(decomposeAux f) ↑{ val := 0, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := 0, property := hx } [PROOFSTEP] intro hx [GOAL] case mk.refine'_1 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : AddMonoidAlgebra R M hx : 0 ∈ gradeBy R (↑f) i ⊢ ↑(decomposeAux f) ↑{ val := 0, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := 0, property := hx } [PROOFSTEP] symm [GOAL] case mk.refine'_1 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : AddMonoidAlgebra R M hx : 0 ∈ gradeBy R (↑f) i ⊢ ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := 0, property := hx } = ↑(decomposeAux f) ↑{ val := 0, property := hx } [PROOFSTEP] exact AddMonoidHom.map_zero _ [GOAL] case mk.refine'_2 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : AddMonoidAlgebra R M ⊢ ∀ (a : M) (b : R) (f_1 : M →₀ R), ¬a ∈ f_1.support → b ≠ 0 → (∀ (hx : f_1 ∈ gradeBy R (↑f) i), ↑(decomposeAux f) ↑{ val := f_1, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := f_1, property := hx }) → ∀ (hx : Finsupp.single a b + f_1 ∈ gradeBy R (↑f) i), ↑(decomposeAux f) ↑{ val := Finsupp.single a b + f_1, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := Finsupp.single a b + f_1, property := hx } [PROOFSTEP] intro m b y hmy hb ih hmby [GOAL] case mk.refine'_2 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : AddMonoidAlgebra R M m : M b : R y : M →₀ R hmy : ¬m ∈ y.support hb : b ≠ 0 ih : ∀ (hx : y ∈ gradeBy R (↑f) i), ↑(decomposeAux f) ↑{ val := y, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx } hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) i ⊢ ↑(decomposeAux f) ↑{ val := Finsupp.single m b + y, property := hmby } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := Finsupp.single m b + y, property := hmby } [PROOFSTEP] have : Disjoint (Finsupp.single m b).support y.support := by simpa only [Finsupp.support_single_ne_zero _ hb, Finset.disjoint_singleton_left] [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : AddMonoidAlgebra R M m : M b : R y : M →₀ R hmy : ¬m ∈ y.support hb : b ≠ 0 ih : ∀ (hx : y ∈ gradeBy R (↑f) i), ↑(decomposeAux f) ↑{ val := y, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx } hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) i ⊢ Disjoint (Finsupp.single m b).support y.support [PROOFSTEP] simpa only [Finsupp.support_single_ne_zero _ hb, Finset.disjoint_singleton_left] [GOAL] case mk.refine'_2 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : AddMonoidAlgebra R M m : M b : R y : M →₀ R hmy : ¬m ∈ y.support hb : b ≠ 0 ih : ∀ (hx : y ∈ gradeBy R (↑f) i), ↑(decomposeAux f) ↑{ val := y, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx } hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) i this : Disjoint (Finsupp.single m b).support y.support ⊢ ↑(decomposeAux f) ↑{ val := Finsupp.single m b + y, property := hmby } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := Finsupp.single m b + y, property := hmby } [PROOFSTEP] rw [mem_gradeBy_iff, Finsupp.support_add_eq this, Finset.coe_union, Set.union_subset_iff] at hmby [GOAL] case mk.refine'_2 M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : AddMonoidAlgebra R M m : M b : R y : M →₀ R hmy : ¬m ∈ y.support hb : b ≠ 0 ih : ∀ (hx : y ∈ gradeBy R (↑f) i), ↑(decomposeAux f) ↑{ val := y, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx } hmby✝ : Finsupp.single m b + y ∈ gradeBy R (↑f) i hmby : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {i} ∧ ↑y.support ⊆ ↑f ⁻¹' {i} this : Disjoint (Finsupp.single m b).support y.support ⊢ ↑(decomposeAux f) ↑{ val := Finsupp.single m b + y, property := hmby✝ } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := Finsupp.single m b + y, property := hmby✝ } [PROOFSTEP] cases' hmby with h1 h2 [GOAL] case mk.refine'_2.intro M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : AddMonoidAlgebra R M m : M b : R y : M →₀ R hmy : ¬m ∈ y.support hb : b ≠ 0 ih : ∀ (hx : y ∈ gradeBy R (↑f) i), ↑(decomposeAux f) ↑{ val := y, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx } hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) i this : Disjoint (Finsupp.single m b).support y.support h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {i} h2 : ↑y.support ⊆ ↑f ⁻¹' {i} ⊢ ↑(decomposeAux f) ↑{ val := Finsupp.single m b + y, property := hmby } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := Finsupp.single m b + y, property := hmby } [PROOFSTEP] have : f m = i := by rwa [Finsupp.support_single_ne_zero _ hb, Finset.coe_singleton, Set.singleton_subset_iff] at h1 [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : AddMonoidAlgebra R M m : M b : R y : M →₀ R hmy : ¬m ∈ y.support hb : b ≠ 0 ih : ∀ (hx : y ∈ gradeBy R (↑f) i), ↑(decomposeAux f) ↑{ val := y, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx } hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) i this : Disjoint (Finsupp.single m b).support y.support h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {i} h2 : ↑y.support ⊆ ↑f ⁻¹' {i} ⊢ ↑f m = i [PROOFSTEP] rwa [Finsupp.support_single_ne_zero _ hb, Finset.coe_singleton, Set.singleton_subset_iff] at h1 [GOAL] case mk.refine'_2.intro M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : AddMonoidAlgebra R M m : M b : R y : M →₀ R hmy : ¬m ∈ y.support hb : b ≠ 0 ih : ∀ (hx : y ∈ gradeBy R (↑f) i), ↑(decomposeAux f) ↑{ val := y, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx } hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) i this✝ : Disjoint (Finsupp.single m b).support y.support h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {i} h2 : ↑y.support ⊆ ↑f ⁻¹' {i} this : ↑f m = i ⊢ ↑(decomposeAux f) ↑{ val := Finsupp.single m b + y, property := hmby } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := Finsupp.single m b + y, property := hmby } [PROOFSTEP] subst this [GOAL] case mk.refine'_2.intro M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι x : AddMonoidAlgebra R M m : M b : R y : M →₀ R hmy : ¬m ∈ y.support hb : b ≠ 0 this : Disjoint (Finsupp.single m b).support y.support ih : ∀ (hx : y ∈ gradeBy R (↑f) (↑f m)), ↑(decomposeAux f) ↑{ val := y, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := hx } hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) (↑f m) h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {↑f m} h2 : ↑y.support ⊆ ↑f ⁻¹' {↑f m} ⊢ ↑(decomposeAux f) ↑{ val := Finsupp.single m b + y, property := hmby } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m b + y, property := hmby } [PROOFSTEP] simp only [AlgHom.map_add, Submodule.coe_mk, decomposeAux_single f m] [GOAL] case mk.refine'_2.intro M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι x : AddMonoidAlgebra R M m : M b : R y : M →₀ R hmy : ¬m ∈ y.support hb : b ≠ 0 this : Disjoint (Finsupp.single m b).support y.support ih : ∀ (hx : y ∈ gradeBy R (↑f) (↑f m)), ↑(decomposeAux f) ↑{ val := y, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := hx } hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) (↑f m) h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {↑f m} h2 : ↑y.support ⊆ ↑f ⁻¹' {↑f m} ⊢ ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m b, property := (_ : Finsupp.single m b ∈ gradeBy R (↑f) (↑f m)) } + ↑(decomposeAux f) y = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m b + y, property := hmby } [PROOFSTEP] let ih' := ih h2 [GOAL] case mk.refine'_2.intro M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι x : AddMonoidAlgebra R M m : M b : R y : M →₀ R hmy : ¬m ∈ y.support hb : b ≠ 0 this : Disjoint (Finsupp.single m b).support y.support ih : ∀ (hx : y ∈ gradeBy R (↑f) (↑f m)), ↑(decomposeAux f) ↑{ val := y, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := hx } hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) (↑f m) h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {↑f m} h2 : ↑y.support ⊆ ↑f ⁻¹' {↑f m} ih' : ↑(decomposeAux f) ↑{ val := y, property := h2 } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := h2 } := ih h2 ⊢ ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m b, property := (_ : Finsupp.single m b ∈ gradeBy R (↑f) (↑f m)) } + ↑(decomposeAux f) y = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m b + y, property := hmby } [PROOFSTEP] dsimp at ih' [GOAL] case mk.refine'_2.intro M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι x : AddMonoidAlgebra R M m : M b : R y : M →₀ R hmy : ¬m ∈ y.support hb : b ≠ 0 this : Disjoint (Finsupp.single m b).support y.support ih : ∀ (hx : y ∈ gradeBy R (↑f) (↑f m)), ↑(decomposeAux f) ↑{ val := y, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := hx } hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) (↑f m) h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {↑f m} h2 : ↑y.support ⊆ ↑f ⁻¹' {↑f m} ih' : ↑(decomposeAux f) y = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := h2 } := ih h2 ⊢ ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m b, property := (_ : Finsupp.single m b ∈ gradeBy R (↑f) (↑f m)) } + ↑(decomposeAux f) y = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m b + y, property := hmby } [PROOFSTEP] rw [ih', ← AddMonoidHom.map_add] [GOAL] case mk.refine'_2.intro M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι x : AddMonoidAlgebra R M m : M b : R y : M →₀ R hmy : ¬m ∈ y.support hb : b ≠ 0 this : Disjoint (Finsupp.single m b).support y.support ih : ∀ (hx : y ∈ gradeBy R (↑f) (↑f m)), ↑(decomposeAux f) ↑{ val := y, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := hx } hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) (↑f m) h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {↑f m} h2 : ↑y.support ⊆ ↑f ⁻¹' {↑f m} ih' : ↑(decomposeAux f) y = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := h2 } := ih h2 ⊢ ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) ({ val := Finsupp.single m b, property := (_ : Finsupp.single m b ∈ gradeBy R (↑f) (↑f m)) } + { val := y, property := h2 }) = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m b + y, property := hmby } [PROOFSTEP] apply DirectSum.of_eq_of_gradedMonoid_eq [GOAL] case mk.refine'_2.intro.h M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι x : AddMonoidAlgebra R M m : M b : R y : M →₀ R hmy : ¬m ∈ y.support hb : b ≠ 0 this : Disjoint (Finsupp.single m b).support y.support ih : ∀ (hx : y ∈ gradeBy R (↑f) (↑f m)), ↑(decomposeAux f) ↑{ val := y, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := hx } hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) (↑f m) h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {↑f m} h2 : ↑y.support ⊆ ↑f ⁻¹' {↑f m} ih' : ↑(decomposeAux f) y = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := h2 } := ih h2 ⊢ GradedMonoid.mk (↑f m) ({ val := Finsupp.single m b, property := (_ : Finsupp.single m b ∈ gradeBy R (↑f) (↑f m)) } + { val := y, property := h2 }) = GradedMonoid.mk (↑f m) { val := Finsupp.single m b + y, property := hmby } [PROOFSTEP] congr 2 [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι ⊢ AlgHom.comp (coeAlgHom (gradeBy R ↑f)) (decomposeAux f) = AlgHom.id R (AddMonoidAlgebra R M) [PROOFSTEP] ext : 2 [GOAL] case h.h M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι x✝ : Multiplicative M ⊢ ↑(MonoidHom.comp (↑(AlgHom.comp (coeAlgHom (gradeBy R ↑f)) (decomposeAux f))) (of R M)) x✝ = ↑(MonoidHom.comp (↑(AlgHom.id R (AddMonoidAlgebra R M))) (of R M)) x✝ [PROOFSTEP] simp only [MonoidHom.coe_comp, MonoidHom.coe_coe, AlgHom.coe_comp, Function.comp_apply, of_apply, AlgHom.coe_id, id_eq] [GOAL] case h.h M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι x✝ : Multiplicative M ⊢ ↑(coeAlgHom (gradeBy R ↑f)) (↑(decomposeAux f) (single (↑Multiplicative.toAdd x✝) 1)) = single (↑Multiplicative.toAdd x✝) 1 [PROOFSTEP] rw [decomposeAux_single, DirectSum.coeAlgHom_of, Subtype.coe_mk] [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι i : ι x : { x // x ∈ gradeBy R (↑f) i } ⊢ ↑(decomposeAux f) ↑x = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) x [PROOFSTEP] rw [decomposeAux_coe f x] [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι ⊢ Decomposition (gradeBy R ↑f) [PROOFSTEP] infer_instance [GOAL] M : Type u_1 ι : Type u_2 R : Type u_3 inst✝⁴ : DecidableEq M inst✝³ : AddMonoid M inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : CommSemiring R f : M →+ ι ⊢ Decomposition (grade R) [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Algebra.MonoidAlgebra.Grading", "llama_tokens": 42454}
[GOAL] 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 h : ShortExact f g h' : ShortExact f' g' i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ ⊢ IsIso i₂ [PROOFSTEP] obtain ⟨_⟩ := h [GOAL] case mk 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 h' : ShortExact f' g' i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝ : Mono f epi✝ : Epi g exact✝ : Exact f g ⊢ IsIso i₂ [PROOFSTEP] obtain ⟨_⟩ := h' [GOAL] case mk.mk 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ IsIso i₂ [PROOFSTEP] refine @Abelian.isIso_of_epi_of_isIso_of_isIso_of_mono 𝒜 _ _ 0 _ _ _ 0 _ _ _ 0 f g 0 f' g' 0 i₁ i₂ i₃ ?_ comm₁ comm₂ 0 0 0 0 0 ?_ ?_ ?_ ?_ ?_ ?_ ?_ _ _ _ _ [GOAL] case mk.mk.refine_1 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ 0 ≫ 0 = 0 ≫ i₁ case mk.mk.refine_2 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ i₃ ≫ 0 = 0 ≫ 0 case mk.mk.refine_3 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f case mk.mk.refine_4 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact f g case mk.mk.refine_5 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g 0 case mk.mk.refine_6 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f' case mk.mk.refine_7 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact f' g' case mk.mk.refine_8 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g' 0 [PROOFSTEP] all_goals try simp [GOAL] case mk.mk.refine_1 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ 0 ≫ 0 = 0 ≫ i₁ [PROOFSTEP] try simp [GOAL] case mk.mk.refine_1 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ 0 ≫ 0 = 0 ≫ i₁ [PROOFSTEP] simp [GOAL] case mk.mk.refine_2 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ i₃ ≫ 0 = 0 ≫ 0 [PROOFSTEP] try simp [GOAL] case mk.mk.refine_2 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ i₃ ≫ 0 = 0 ≫ 0 [PROOFSTEP] simp [GOAL] case mk.mk.refine_3 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f [PROOFSTEP] try simp [GOAL] case mk.mk.refine_3 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f [PROOFSTEP] simp [GOAL] case mk.mk.refine_4 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact f g [PROOFSTEP] try simp [GOAL] case mk.mk.refine_4 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact f g [PROOFSTEP] simp [GOAL] case mk.mk.refine_5 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g 0 [PROOFSTEP] try simp [GOAL] case mk.mk.refine_5 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g 0 [PROOFSTEP] simp [GOAL] case mk.mk.refine_6 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f' [PROOFSTEP] try simp [GOAL] case mk.mk.refine_6 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f' [PROOFSTEP] simp [GOAL] case mk.mk.refine_7 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact f' g' [PROOFSTEP] try simp [GOAL] case mk.mk.refine_7 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact f' g' [PROOFSTEP] simp [GOAL] case mk.mk.refine_8 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g' 0 [PROOFSTEP] try simp [GOAL] case mk.mk.refine_8 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g' 0 [PROOFSTEP] simp [GOAL] case mk.mk.refine_3 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f case mk.mk.refine_4 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact f g case mk.mk.refine_5 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g 0 case mk.mk.refine_6 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f' case mk.mk.refine_7 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact f' g' case mk.mk.refine_8 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g' 0 [PROOFSTEP] all_goals try assumption [GOAL] case mk.mk.refine_3 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f [PROOFSTEP] try assumption [GOAL] case mk.mk.refine_3 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f [PROOFSTEP] assumption [GOAL] case mk.mk.refine_4 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact f g [PROOFSTEP] try assumption [GOAL] case mk.mk.refine_4 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact f g [PROOFSTEP] assumption [GOAL] case mk.mk.refine_5 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g 0 [PROOFSTEP] try assumption [GOAL] case mk.mk.refine_5 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g 0 [PROOFSTEP] assumption [GOAL] case mk.mk.refine_6 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f' [PROOFSTEP] try assumption [GOAL] case mk.mk.refine_6 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f' [PROOFSTEP] assumption [GOAL] case mk.mk.refine_7 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact f' g' [PROOFSTEP] try assumption [GOAL] case mk.mk.refine_7 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact f' g' [PROOFSTEP] assumption [GOAL] case mk.mk.refine_8 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g' 0 [PROOFSTEP] try assumption [GOAL] case mk.mk.refine_8 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g' 0 [PROOFSTEP] assumption [GOAL] case mk.mk.refine_3 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f case mk.mk.refine_5 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g 0 case mk.mk.refine_6 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f' case mk.mk.refine_8 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g' 0 [PROOFSTEP] all_goals try apply exact_zero_left_of_mono [GOAL] case mk.mk.refine_3 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f [PROOFSTEP] try apply exact_zero_left_of_mono [GOAL] case mk.mk.refine_3 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f [PROOFSTEP] apply exact_zero_left_of_mono [GOAL] case mk.mk.refine_5 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g 0 [PROOFSTEP] try apply exact_zero_left_of_mono [GOAL] case mk.mk.refine_5 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g 0 [PROOFSTEP] apply exact_zero_left_of_mono [GOAL] case mk.mk.refine_6 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f' [PROOFSTEP] try apply exact_zero_left_of_mono [GOAL] case mk.mk.refine_6 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact 0 f' [PROOFSTEP] apply exact_zero_left_of_mono [GOAL] case mk.mk.refine_8 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g' 0 [PROOFSTEP] try apply exact_zero_left_of_mono [GOAL] case mk.mk.refine_8 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g' 0 [PROOFSTEP] apply exact_zero_left_of_mono [GOAL] case mk.mk.refine_5 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g 0 case mk.mk.refine_8 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g' 0 [PROOFSTEP] all_goals rwa [← epi_iff_exact_zero_right] [GOAL] case mk.mk.refine_5 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g 0 [PROOFSTEP] rwa [← epi_iff_exact_zero_right] [GOAL] case mk.mk.refine_8 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Abelian 𝒜 i₁ : A ⟶ A' i₂ : B ⟶ B' i₃ : C ⟶ C' comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝ comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝ inst✝¹ : IsIso i₁ inst✝ : IsIso i₃ mono✝¹ : Mono f epi✝¹ : Epi g exact✝¹ : Exact f g mono✝ : Mono f' epi✝ : Epi g' exact✝ : Exact f' g' ⊢ Exact g' 0 [PROOFSTEP] rwa [← epi_iff_exact_zero_right] [GOAL] 𝒜 : Type u_1 inst✝¹ : Category.{?u.11269, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝ : Abelian 𝒜 h : ShortExact f g i : A ⊞ C ⟶ B h1 : biprod.inl ≫ i = f h2 : i ≫ g = biprod.snd this : IsIso i ⊢ f ≫ (asIso i).symm.hom = biprod.inl [PROOFSTEP] rw [Iso.symm_hom, asIso_inv, IsIso.comp_inv_eq, h1] [GOAL] 𝒜 : Type u_1 inst✝¹ : Category.{?u.11269, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝ : Abelian 𝒜 h : ShortExact f g i : A ⊞ C ⟶ B h1 : biprod.inl ≫ i = f h2 : i ≫ g = biprod.snd this : IsIso i ⊢ (asIso i).symm.hom ≫ biprod.snd = g [PROOFSTEP] rw [Iso.symm_hom, asIso_inv, IsIso.inv_comp_eq, h2] [GOAL] 𝒜 : Type u_1 inst✝¹ : Category.{?u.20215, u_1} 𝒜 A B C A' B' C' : 𝒜 f✝ : A ⟶ B g✝ : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝ : Abelian 𝒜 f : A ⟶ B g : B ⟶ C h : LeftSplit f g ⊢ f ≫ biprod.lift (Exists.choose (_ : ∃ φ, f ≫ φ = 𝟙 A)) g = biprod.inl [PROOFSTEP] ext [GOAL] case h₀ 𝒜 : Type u_1 inst✝¹ : Category.{?u.20215, u_1} 𝒜 A B C A' B' C' : 𝒜 f✝ : A ⟶ B g✝ : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝ : Abelian 𝒜 f : A ⟶ B g : B ⟶ C h : LeftSplit f g ⊢ (f ≫ biprod.lift (Exists.choose (_ : ∃ φ, f ≫ φ = 𝟙 A)) g) ≫ biprod.fst = biprod.inl ≫ biprod.fst [PROOFSTEP] simpa only [biprod.inl_fst, biprod.lift_fst, Category.assoc] using h.left_split.choose_spec [GOAL] case h₁ 𝒜 : Type u_1 inst✝¹ : Category.{?u.20215, u_1} 𝒜 A B C A' B' C' : 𝒜 f✝ : A ⟶ B g✝ : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝ : Abelian 𝒜 f : A ⟶ B g : B ⟶ C h : LeftSplit f g ⊢ (f ≫ biprod.lift (Exists.choose (_ : ∃ φ, f ≫ φ = 𝟙 A)) g) ≫ biprod.snd = biprod.inl ≫ biprod.snd [PROOFSTEP] simp only [biprod.inl_snd, biprod.lift_snd, Category.assoc, h.exact.w] [GOAL] 𝒜 : Type u_1 inst✝¹ : Category.{?u.20215, u_1} 𝒜 A B C A' B' C' : 𝒜 f✝ : A ⟶ B g✝ : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝ : Abelian 𝒜 f : A ⟶ B g : B ⟶ C h : LeftSplit f g ⊢ biprod.lift (Exists.choose (_ : ∃ φ, f ≫ φ = 𝟙 A)) g ≫ biprod.snd = g [PROOFSTEP] simp only [biprod.lift_snd] [GOAL] 𝒜 : Type u_1 inst✝¹ : Category.{?u.22782, u_1} 𝒜 A B C A' B' C' : 𝒜 f✝ : A ⟶ B g✝ : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝ : Abelian 𝒜 f : A ⟶ B g : B ⟶ C h : RightSplit f g ⊢ biprod.desc f (Exists.choose (_ : ∃ χ, χ ≫ g = 𝟙 C)) ≫ g = biprod.snd [PROOFSTEP] ext [GOAL] case h₀ 𝒜 : Type u_1 inst✝¹ : Category.{?u.22782, u_1} 𝒜 A B C A' B' C' : 𝒜 f✝ : A ⟶ B g✝ : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝ : Abelian 𝒜 f : A ⟶ B g : B ⟶ C h : RightSplit f g ⊢ biprod.inl ≫ biprod.desc f (Exists.choose (_ : ∃ χ, χ ≫ g = 𝟙 C)) ≫ g = biprod.inl ≫ biprod.snd [PROOFSTEP] rw [biprod.inl_snd, ← Category.assoc, biprod.inl_desc, h.exact.w] [GOAL] case h₁ 𝒜 : Type u_1 inst✝¹ : Category.{?u.22782, u_1} 𝒜 A B C A' B' C' : 𝒜 f✝ : A ⟶ B g✝ : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝ : Abelian 𝒜 f : A ⟶ B g : B ⟶ C h : RightSplit f g ⊢ biprod.inr ≫ biprod.desc f (Exists.choose (_ : ∃ χ, χ ≫ g = 𝟙 C)) ≫ g = biprod.inr ≫ biprod.snd [PROOFSTEP] rw [biprod.inr_snd, ← Category.assoc, biprod.inr_desc, h.right_split.choose_spec]
{"mathlib_filename": "Mathlib.Algebra.Homology.ShortExact.Abelian", "llama_tokens": 20128}
{"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.Homology", "llama_tokens": 0}
[GOAL] ι : Type u_1 V : Type u inst✝⁷ : Category.{v, u} V inst✝⁶ : HasZeroMorphisms V inst✝⁵ : HasZeroObject V inst✝⁴ : HasEqualizers V inst✝³ : HasImages V inst✝² : HasImageMaps V inst✝¹ : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D inst✝ : IsIso f i : ι ⊢ IsIso ((homologyFunctor V c i).map f) [PROOFSTEP] change IsIso ((homologyFunctor V c i).mapIso (asIso f)).hom [GOAL] ι : Type u_1 V : Type u inst✝⁷ : Category.{v, u} V inst✝⁶ : HasZeroMorphisms V inst✝⁵ : HasZeroObject V inst✝⁴ : HasEqualizers V inst✝³ : HasImages V inst✝² : HasImageMaps V inst✝¹ : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D inst✝ : IsIso f i : ι ⊢ IsIso ((homologyFunctor V c i).mapIso (asIso f)).hom [PROOFSTEP] infer_instance [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D inst✝¹ : QuasiIso f g : D ⟶ E inst✝ : QuasiIso g i : ι ⊢ IsIso ((homologyFunctor V c i).map (f ≫ g)) [PROOFSTEP] rw [Functor.map_comp] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D inst✝¹ : QuasiIso f g : D ⟶ E inst✝ : QuasiIso g i : ι ⊢ IsIso ((homologyFunctor V c i).map f ≫ (homologyFunctor V c i).map g) [PROOFSTEP] infer_instance [GOAL] ι : Type u_1 V : Type u inst✝¹³ : Category.{v, u} V inst✝¹² : HasZeroMorphisms V inst✝¹¹ : HasZeroObject V inst✝¹⁰ : HasEqualizers V inst✝⁹ : HasImages V inst✝⁸ : HasImageMaps V inst✝⁷ : HasCokernels V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c W : Type u_2 inst✝⁶ : Category.{u_3, u_2} W inst✝⁵ : Preadditive W inst✝⁴ : HasCokernels W inst✝³ : HasImages W inst✝² : HasEqualizers W inst✝¹ : HasZeroObject W inst✝ : HasImageMaps W C D : HomologicalComplex W c e : HomotopyEquiv C D i : ι ⊢ IsIso ((homologyFunctor W c i).map e.hom) [PROOFSTEP] refine' ⟨⟨(homologyFunctor W c i).map e.inv, _⟩⟩ [GOAL] ι : Type u_1 V : Type u inst✝¹³ : Category.{v, u} V inst✝¹² : HasZeroMorphisms V inst✝¹¹ : HasZeroObject V inst✝¹⁰ : HasEqualizers V inst✝⁹ : HasImages V inst✝⁸ : HasImageMaps V inst✝⁷ : HasCokernels V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c W : Type u_2 inst✝⁶ : Category.{u_3, u_2} W inst✝⁵ : Preadditive W inst✝⁴ : HasCokernels W inst✝³ : HasImages W inst✝² : HasEqualizers W inst✝¹ : HasZeroObject W inst✝ : HasImageMaps W C D : HomologicalComplex W c e : HomotopyEquiv C D i : ι ⊢ (homologyFunctor W c i).map e.hom ≫ (homologyFunctor W c i).map e.inv = 𝟙 ((homologyFunctor W c i).obj C) ∧ (homologyFunctor W c i).map e.inv ≫ (homologyFunctor W c i).map e.hom = 𝟙 ((homologyFunctor W c i).obj D) [PROOFSTEP] simp only [← Functor.map_comp, ← (homologyFunctor W c i).map_id] [GOAL] ι : Type u_1 V : Type u inst✝¹³ : Category.{v, u} V inst✝¹² : HasZeroMorphisms V inst✝¹¹ : HasZeroObject V inst✝¹⁰ : HasEqualizers V inst✝⁹ : HasImages V inst✝⁸ : HasImageMaps V inst✝⁷ : HasCokernels V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c W : Type u_2 inst✝⁶ : Category.{u_3, u_2} W inst✝⁵ : Preadditive W inst✝⁴ : HasCokernels W inst✝³ : HasImages W inst✝² : HasEqualizers W inst✝¹ : HasZeroObject W inst✝ : HasImageMaps W C D : HomologicalComplex W c e : HomotopyEquiv C D i : ι ⊢ (homologyFunctor W c i).map (e.hom ≫ e.inv) = (homologyFunctor W c i).map (𝟙 C) ∧ (homologyFunctor W c i).map (e.inv ≫ e.hom) = (homologyFunctor W c i).map (𝟙 D) [PROOFSTEP] constructor [GOAL] case left ι : Type u_1 V : Type u inst✝¹³ : Category.{v, u} V inst✝¹² : HasZeroMorphisms V inst✝¹¹ : HasZeroObject V inst✝¹⁰ : HasEqualizers V inst✝⁹ : HasImages V inst✝⁸ : HasImageMaps V inst✝⁷ : HasCokernels V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c W : Type u_2 inst✝⁶ : Category.{u_3, u_2} W inst✝⁵ : Preadditive W inst✝⁴ : HasCokernels W inst✝³ : HasImages W inst✝² : HasEqualizers W inst✝¹ : HasZeroObject W inst✝ : HasImageMaps W C D : HomologicalComplex W c e : HomotopyEquiv C D i : ι ⊢ (homologyFunctor W c i).map (e.hom ≫ e.inv) = (homologyFunctor W c i).map (𝟙 C) [PROOFSTEP] apply homology_map_eq_of_homotopy [GOAL] case right ι : Type u_1 V : Type u inst✝¹³ : Category.{v, u} V inst✝¹² : HasZeroMorphisms V inst✝¹¹ : HasZeroObject V inst✝¹⁰ : HasEqualizers V inst✝⁹ : HasImages V inst✝⁸ : HasImageMaps V inst✝⁷ : HasCokernels V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c W : Type u_2 inst✝⁶ : Category.{u_3, u_2} W inst✝⁵ : Preadditive W inst✝⁴ : HasCokernels W inst✝³ : HasImages W inst✝² : HasEqualizers W inst✝¹ : HasZeroObject W inst✝ : HasImageMaps W C D : HomologicalComplex W c e : HomotopyEquiv C D i : ι ⊢ (homologyFunctor W c i).map (e.inv ≫ e.hom) = (homologyFunctor W c i).map (𝟙 D) [PROOFSTEP] apply homology_map_eq_of_homotopy [GOAL] case left.h ι : Type u_1 V : Type u inst✝¹³ : Category.{v, u} V inst✝¹² : HasZeroMorphisms V inst✝¹¹ : HasZeroObject V inst✝¹⁰ : HasEqualizers V inst✝⁹ : HasImages V inst✝⁸ : HasImageMaps V inst✝⁷ : HasCokernels V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c W : Type u_2 inst✝⁶ : Category.{u_3, u_2} W inst✝⁵ : Preadditive W inst✝⁴ : HasCokernels W inst✝³ : HasImages W inst✝² : HasEqualizers W inst✝¹ : HasZeroObject W inst✝ : HasImageMaps W C D : HomologicalComplex W c e : HomotopyEquiv C D i : ι ⊢ Homotopy (e.hom ≫ e.inv) (𝟙 C) case right.h ι : Type u_1 V : Type u inst✝¹³ : Category.{v, u} V inst✝¹² : HasZeroMorphisms V inst✝¹¹ : HasZeroObject V inst✝¹⁰ : HasEqualizers V inst✝⁹ : HasImages V inst✝⁸ : HasImageMaps V inst✝⁷ : HasCokernels V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c W : Type u_2 inst✝⁶ : Category.{u_3, u_2} W inst✝⁵ : Preadditive W inst✝⁴ : HasCokernels W inst✝³ : HasImages W inst✝² : HasEqualizers W inst✝¹ : HasZeroObject W inst✝ : HasImageMaps W C D : HomologicalComplex W c e : HomotopyEquiv C D i : ι ⊢ Homotopy (e.inv ≫ e.hom) (𝟙 D) [PROOFSTEP] exacts [e.homotopyHomInvId, e.homotopyInvHomId] [GOAL] ι : Type u_1 V : Type u inst✝¹³ : Category.{v, u} V inst✝¹² : HasZeroMorphisms V inst✝¹¹ : HasZeroObject V inst✝¹⁰ : HasEqualizers V inst✝⁹ : HasImages V inst✝⁸ : HasImageMaps V inst✝⁷ : HasCokernels V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c W : Type u_2 inst✝⁶ : Category.{u_3, u_2} W inst✝⁵ : Preadditive W inst✝⁴ : HasCokernels W inst✝³ : HasImages W inst✝² : HasEqualizers W inst✝¹ : HasZeroObject W inst✝ : HasImageMaps W C D : HomologicalComplex W c e : HomotopyEquiv C D i : ι ⊢ (asIso ((homologyFunctor W c i).map e.hom)).inv = (homologyFunctor W c i).map e.inv [PROOFSTEP] symm [GOAL] ι : Type u_1 V : Type u inst✝¹³ : Category.{v, u} V inst✝¹² : HasZeroMorphisms V inst✝¹¹ : HasZeroObject V inst✝¹⁰ : HasEqualizers V inst✝⁹ : HasImages V inst✝⁸ : HasImageMaps V inst✝⁷ : HasCokernels V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c W : Type u_2 inst✝⁶ : Category.{u_3, u_2} W inst✝⁵ : Preadditive W inst✝⁴ : HasCokernels W inst✝³ : HasImages W inst✝² : HasEqualizers W inst✝¹ : HasZeroObject W inst✝ : HasImageMaps W C D : HomologicalComplex W c e : HomotopyEquiv C D i : ι ⊢ (homologyFunctor W c i).map e.inv = (asIso ((homologyFunctor W c i).map e.hom)).inv [PROOFSTEP] haveI := e.toQuasiIso.1 i [GOAL] ι : Type u_1 V : Type u inst✝¹³ : Category.{v, u} V inst✝¹² : HasZeroMorphisms V inst✝¹¹ : HasZeroObject V inst✝¹⁰ : HasEqualizers V inst✝⁹ : HasImages V inst✝⁸ : HasImageMaps V inst✝⁷ : HasCokernels V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c W : Type u_2 inst✝⁶ : Category.{u_3, u_2} W inst✝⁵ : Preadditive W inst✝⁴ : HasCokernels W inst✝³ : HasImages W inst✝² : HasEqualizers W inst✝¹ : HasZeroObject W inst✝ : HasImageMaps W C D : HomologicalComplex W c e : HomotopyEquiv C D i : ι this : IsIso ((homologyFunctor W c i).map e.hom) ⊢ (homologyFunctor W c i).map e.inv = (asIso ((homologyFunctor W c i).map e.hom)).inv [PROOFSTEP] simp only [← Iso.hom_comp_eq_id, asIso_hom, ← Functor.map_comp, ← (homologyFunctor W c i).map_id, homology_map_eq_of_homotopy e.homotopyHomInvId _] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{?u.22788, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f ⊢ d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0 [PROOFSTEP] rw [← f.2 1 0 rfl] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{?u.22788, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f ⊢ HomologicalComplex.Hom.f f 1 ≫ d ((ChainComplex.single₀ W).obj Y) 1 0 = 0 [PROOFSTEP] exact comp_zero [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f ⊢ (toSingle₀CokernelAtZeroIso f).hom = cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) (_ : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0) [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f ⊢ coequalizer.π (d X 1 0) 0 ≫ (toSingle₀CokernelAtZeroIso f).hom = coequalizer.π (d X 1 0) 0 ≫ cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) (_ : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0) [PROOFSTEP] dsimp only [toSingle₀CokernelAtZeroIso, ChainComplex.homologyZeroIso, homologyOfZeroRight, homology.mapIso, ChainComplex.homologyFunctor0Single₀, cokernel.map] [GOAL] case h ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f ⊢ coequalizer.π (d X 1 0) 0 ≫ ((Iso.mk (homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : d X 1 0 ≫ 0 = 0) (Arrow.isoMk (xPrevIso X ChainComplex.homologyZeroIso.proof_10) (Iso.refl (Arrow.mk (dTo X 0)).right)).hom (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left) (Iso.refl (Arrow.mk (dFrom X 0)).right)).hom (_ : (Arrow.isoMk (xPrevIso X (_ : 0 + 1 = 0 + 1)) (Iso.refl (Arrow.mk (dTo X 0)).right)).hom.right = (Arrow.isoMk (xPrevIso X (_ : 0 + 1 = 0 + 1)) (Iso.refl (Arrow.mk (dTo X 0)).right)).hom.right)) (homology.map (_ : d X 1 0 ≫ 0 = 0) (_ : dTo X 0 ≫ dFrom X 0 = 0) (Arrow.isoMk (xPrevIso X ChainComplex.homologyZeroIso.proof_10) (Iso.refl (Arrow.mk (dTo X 0)).right)).inv (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left) (Iso.refl (Arrow.mk (dFrom X 0)).right)).inv (_ : (Arrow.isoMk (xPrevIso X ChainComplex.homologyZeroIso.proof_10) (Iso.refl (Arrow.mk (dTo X 0)).right)).inv.right = (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left) (Iso.refl (Arrow.mk (dFrom X 0)).right)).inv.left)) ≪≫ cokernel.mapIso (imageToKernel (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0)) (image.ι (d X 1 0)) (imageSubobjectIso (d X 1 0)) (kernelSubobjectIso 0 ≪≫ kernelZeroIsoSource) (_ : imageToKernel (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0) ≫ (kernelSubobjectIso 0).hom ≫ kernel.ι 0 = (imageSubobjectIso (d X 1 0)).hom ≫ image.ι (d X 1 0)) ≪≫ cokernelImageι (d X 1 0)).symm ≪≫ asIso ((homologyFunctor W (ComplexShape.down ℕ) 0).map f) ≪≫ (NatIso.ofComponents fun X => homology.congr (_ : dTo ((ChainComplex.single₀ W).obj X) 0 ≫ dFrom ((ChainComplex.single₀ W).obj X) 0 = 0) (_ : 0 ≫ 0 = 0) (_ : 0 = 0) (_ : d ((ChainComplex.single₀ W).obj X) 0 (ComplexShape.next (ComplexShape.down ℕ) 0) = 0) ≪≫ homologyZeroZero).app Y).hom = coequalizer.π (d X 1 0) 0 ≫ cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) (_ : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0) [PROOFSTEP] dsimp [asIso] [GOAL] case h ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f ⊢ cokernel.π (d X 1 0) ≫ ((cokernel.desc (d X 1 0) (cokernel.π (image.ι (d X 1 0))) (_ : d X 1 0 ≫ cokernel.π (image.ι (d X 1 0)) = 0) ≫ cokernel.map (image.ι (d X 1 0)) (imageToKernel (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0)) (imageSubobjectIso (d X 1 0)).inv (kernelZeroIsoSource.inv ≫ (kernelSubobjectIso 0).inv) (_ : image.ι (d X 1 0) ≫ (kernelSubobjectIso 0 ≪≫ kernelZeroIsoSource).inv = (imageSubobjectIso (d X 1 0)).inv ≫ imageToKernel (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0))) ≫ homology.map (_ : d X 1 0 ≫ 0 = 0) (_ : dTo X 0 ≫ dFrom X 0 = 0) (Arrow.isoMk (xPrevIso X ChainComplex.homologyZeroIso.proof_10) (Iso.refl (HomologicalComplex.X X 0))).inv (Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0)) (Iso.refl (xNext X 0))).inv (_ : (Arrow.isoMk (xPrevIso X ChainComplex.homologyZeroIso.proof_10) (Iso.refl (HomologicalComplex.X X 0))).inv.right = (Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0)) (Iso.refl (xNext X 0))).inv.left)) ≫ homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : dTo ((ChainComplex.single₀ W).obj Y) 0 ≫ dFrom ((ChainComplex.single₀ W).obj Y) 0 = 0) (sqTo f 0) (sqFrom f 0) (_ : (sqTo f 0).right = (sqTo f 0).right) ≫ homology.map (_ : dTo ((ChainComplex.single₀ W).obj Y) 0 ≫ dFrom ((ChainComplex.single₀ W).obj Y) 0 = 0) (_ : 0 ≫ 0 = 0) (CommaMorphism.mk (𝟙 (xPrev ((ChainComplex.single₀ W).obj Y) 0)) (𝟙 Y)) (CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((ChainComplex.single₀ W).obj Y) 0))) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫ homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0)) (_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0) = cokernel.π (d X 1 0) ≫ cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) (_ : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0) [PROOFSTEP] simp only [cokernel.π_desc, Category.assoc, homology.map_desc, cokernel.π_desc_assoc] [GOAL] case h ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f ⊢ kernelZeroIsoSource.inv ≫ (kernelSubobjectIso 0).inv ≫ cokernel.π (imageToKernel (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0)) ≫ homology.desc (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0) (kernelSubobjectMap (Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0)) (Iso.refl (xNext X 0))).inv ≫ kernelSubobjectMap (sqFrom f 0) ≫ kernelSubobjectMap (CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((ChainComplex.single₀ W).obj Y) 0))) ≫ Subobject.arrow (kernelSubobject 0)) (_ : imageToKernel (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0) ≫ kernelSubobjectMap (Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0)) (Iso.refl (xNext X 0))).inv ≫ kernelSubobjectMap (sqFrom f 0) ≫ kernelSubobjectMap (CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((ChainComplex.single₀ W).obj Y) 0))) ≫ Subobject.arrow (kernelSubobject 0) = 0) = HomologicalComplex.Hom.f f 0 [PROOFSTEP] simp [homology.desc, Iso.refl_inv (X.X 0)] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f ⊢ Epi (HomologicalComplex.Hom.f f 0) [PROOFSTEP] constructor [GOAL] case left_cancellation ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f ⊢ ∀ {Z : W} (g h : HomologicalComplex.X ((ChainComplex.single₀ W).obj Y) 0 ⟶ Z), HomologicalComplex.Hom.f f 0 ≫ g = HomologicalComplex.Hom.f f 0 ≫ h → g = h [PROOFSTEP] intro Z g h Hgh [GOAL] case left_cancellation ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f Z : W g h : HomologicalComplex.X ((ChainComplex.single₀ W).obj Y) 0 ⟶ Z Hgh : HomologicalComplex.Hom.f f 0 ≫ g = HomologicalComplex.Hom.f f 0 ≫ h ⊢ g = h [PROOFSTEP] rw [← cokernel.π_desc (X.d 1 0) (f.f 0) (by rw [← f.2 1 0 rfl]; exact comp_zero), ← toSingle₀CokernelAtZeroIso_hom_eq] at Hgh [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f Z : W g h : HomologicalComplex.X ((ChainComplex.single₀ W).obj Y) 0 ⟶ Z Hgh : HomologicalComplex.Hom.f f 0 ≫ g = HomologicalComplex.Hom.f f 0 ≫ h ⊢ d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0 [PROOFSTEP] rw [← f.2 1 0 rfl] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f Z : W g h : HomologicalComplex.X ((ChainComplex.single₀ W).obj Y) 0 ⟶ Z Hgh : HomologicalComplex.Hom.f f 0 ≫ g = HomologicalComplex.Hom.f f 0 ≫ h ⊢ HomologicalComplex.Hom.f f 1 ≫ d ((ChainComplex.single₀ W).obj Y) 1 0 = 0 [PROOFSTEP] exact comp_zero [GOAL] case left_cancellation ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f Z : W g h : HomologicalComplex.X ((ChainComplex.single₀ W).obj Y) 0 ⟶ Z Hgh✝ : HomologicalComplex.Hom.f f 0 ≫ g = HomologicalComplex.Hom.f f 0 ≫ h Hgh : (cokernel.π (d X 1 0) ≫ (toSingle₀CokernelAtZeroIso f).hom) ≫ g = (cokernel.π (d X 1 0) ≫ (toSingle₀CokernelAtZeroIso f).hom) ≫ h ⊢ g = h [PROOFSTEP] rw [(@cancel_epi _ _ _ _ _ _ (epi_comp _ _) _ _).1 Hgh] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f ⊢ Exact (d X 1 0) (HomologicalComplex.Hom.f f 0) [PROOFSTEP] rw [Preadditive.exact_iff_homology_zero] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f ⊢ ∃ w, Nonempty (_root_.homology (d X 1 0) (HomologicalComplex.Hom.f f 0) w ≅ 0) [PROOFSTEP] have h : X.d 1 0 ≫ f.f 0 = 0 := by simp only [← f.2 1 0 rfl, ChainComplex.single₀_obj_X_d, comp_zero] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f ⊢ d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0 [PROOFSTEP] simp only [← f.2 1 0 rfl, ChainComplex.single₀_obj_X_d, comp_zero] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f h : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0 ⊢ ∃ w, Nonempty (_root_.homology (d X 1 0) (HomologicalComplex.Hom.f f 0) w ≅ 0) [PROOFSTEP] refine' ⟨h, Nonempty.intro (homologyIsoKernelDesc _ _ _ ≪≫ _)⟩ [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f h : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0 ⊢ kernel (cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) h) ≅ 0 [PROOFSTEP] suffices IsIso (cokernel.desc _ _ h) by apply kernel.ofMono [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f h : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0 this : IsIso (cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) h) ⊢ kernel (cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) h) ≅ 0 [PROOFSTEP] apply kernel.ofMono [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f h : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0 ⊢ IsIso (cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) h) [PROOFSTEP] rw [← toSingle₀CokernelAtZeroIso_hom_eq] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : ChainComplex W ℕ Y : W f : X ⟶ (ChainComplex.single₀ W).obj Y hf✝ hf : QuasiIso f h : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0 ⊢ IsIso (toSingle₀CokernelAtZeroIso f).hom [PROOFSTEP] infer_instance [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{?u.68820, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f ⊢ HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0 [PROOFSTEP] rw [f.2 0 1 rfl] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{?u.68820, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f ⊢ d ((CochainComplex.single₀ W).obj Y) 0 1 ≫ HomologicalComplex.Hom.f f 1 = 0 [PROOFSTEP] exact zero_comp [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f ⊢ (fromSingle₀KernelAtZeroIso f).inv = kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) (_ : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0) [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f ⊢ (fromSingle₀KernelAtZeroIso f).inv ≫ equalizer.ι (d X 0 1) 0 = kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) (_ : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0) ≫ equalizer.ι (d X 0 1) 0 [PROOFSTEP] dsimp only [fromSingle₀KernelAtZeroIso, CochainComplex.homologyZeroIso, homologyOfZeroLeft, homology.mapIso, CochainComplex.homologyFunctor0Single₀, kernel.map] [GOAL] case h ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f ⊢ ((Iso.mk (homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : 0 ≫ d X 0 1 = 0) (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9) (Iso.refl (Arrow.mk (dTo X 0)).right)).hom (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left) (xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom (_ : 𝟙 (HomologicalComplex.X X 0) = 𝟙 (HomologicalComplex.X X 0))) (homology.map (_ : 0 ≫ d X 0 1 = 0) (_ : dTo X 0 ≫ dFrom X 0 = 0) (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9) (Iso.refl (Arrow.mk (dTo X 0)).right)).inv (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left) (xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv (_ : (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9) (Iso.refl (Arrow.mk (dTo X 0)).right)).inv.right = (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left) (xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv.left)) ≪≫ (cokernelIsoOfEq (_ : imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) = 0) ≪≫ cokernelZeroIsoTarget) ≪≫ kernelSubobjectIso (d X 0 1)).symm ≪≫ (asIso ((homologyFunctor W (ComplexShape.up ℕ) 0).map f)).symm ≪≫ (NatIso.ofComponents fun X => homology.congr (_ : dTo ((CochainComplex.single₀ W).obj X) 0 ≫ dFrom ((CochainComplex.single₀ W).obj X) 0 = 0) (_ : 0 ≫ 0 = 0) (_ : d ((CochainComplex.single₀ W).obj X) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0) (_ : 0 = 0) ≪≫ homologyZeroZero).app Y).inv ≫ equalizer.ι (d X 0 1) 0 = kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) (_ : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0) ≫ equalizer.ι (d X 0 1) 0 [PROOFSTEP] simp only [Iso.trans_inv, Iso.app_inv, Iso.symm_inv, Category.assoc, equalizer_as_kernel, kernel.lift_ι] [GOAL] case h ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f ⊢ NatTrans.app (NatIso.ofComponents fun X => homology.congr (_ : dTo ((CochainComplex.single₀ W).obj X) 0 ≫ dFrom ((CochainComplex.single₀ W).obj X) 0 = 0) (_ : 0 ≫ 0 = 0) (_ : d ((CochainComplex.single₀ W).obj X) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0) (_ : 0 = 0) ≪≫ homologyZeroZero).inv Y ≫ (asIso ((homologyFunctor W (ComplexShape.up ℕ) 0).map f)).hom ≫ (Iso.mk (homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : 0 ≫ d X 0 1 = 0) (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9) (Iso.refl (Arrow.mk (dTo X 0)).right)).hom (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left) (xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom (_ : 𝟙 (HomologicalComplex.X X 0) = 𝟙 (HomologicalComplex.X X 0))) (homology.map (_ : 0 ≫ d X 0 1 = 0) (_ : dTo X 0 ≫ dFrom X 0 = 0) (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9) (Iso.refl (Arrow.mk (dTo X 0)).right)).inv (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left) (xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv (_ : (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9) (Iso.refl (Arrow.mk (dTo X 0)).right)).inv.right = (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left) (xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv.left)) ≪≫ (cokernelIsoOfEq (_ : imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) = 0) ≪≫ cokernelZeroIsoTarget) ≪≫ kernelSubobjectIso (d X 0 1)).hom ≫ kernel.ι (d X 0 1) = HomologicalComplex.Hom.f f 0 [PROOFSTEP] dsimp [asIso] [GOAL] case h ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f ⊢ ((inv (Subobject.arrow (kernelSubobject 0)) ≫ homology.π 0 0 (_ : 0 ≫ 0 = 0)) ≫ homology.map (_ : 0 ≫ 0 = 0) (_ : dTo ((CochainComplex.single₀ W).obj Y) 0 ≫ dFrom ((CochainComplex.single₀ W).obj Y) 0 = 0) (CommaMorphism.mk (𝟙 (xPrev ((CochainComplex.single₀ W).obj Y) 0)) (𝟙 Y)) (CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((CochainComplex.single₀ W).obj Y) 0))) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right)) ≫ homology.map (_ : dTo ((CochainComplex.single₀ W).obj Y) 0 ≫ dFrom ((CochainComplex.single₀ W).obj Y) 0 = 0) (_ : dTo X 0 ≫ dFrom X 0 = 0) (sqTo f 0) (sqFrom f 0) (_ : (sqTo f 0).right = (sqTo f 0).right) ≫ (homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : 0 ≫ d X 0 1 = 0) (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9) (Iso.refl (HomologicalComplex.X X 0))).hom (Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0)) (xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom (_ : 𝟙 (HomologicalComplex.X X 0) = 𝟙 (HomologicalComplex.X X 0)) ≫ ((cokernelIsoOfEq (_ : imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) = 0)).hom ≫ cokernelZeroIsoTarget.hom) ≫ (kernelSubobjectIso (d X 0 1)).hom) ≫ kernel.ι (d X 0 1) = HomologicalComplex.Hom.f f 0 [PROOFSTEP] simp only [Category.assoc, homology.π_map, cokernelZeroIsoTarget_hom, cokernelIsoOfEq_hom_comp_desc, kernelSubobject_arrow, homology.π_map_assoc, IsIso.inv_comp_eq] [GOAL] case h ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f ⊢ kernelSubobjectMap (CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((CochainComplex.single₀ W).obj Y) 0))) ≫ kernelSubobjectMap (sqFrom f 0) ≫ kernelSubobjectMap (Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0)) (xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom ≫ homology.π 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) ≫ cokernel.desc (imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0)) (𝟙 (Subobject.underlying.obj (kernelSubobject (d X 0 1)))) (_ : imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) ≫ 𝟙 (Subobject.underlying.obj (kernelSubobject (d X 0 1))) = 0) ≫ Subobject.arrow (kernelSubobject (d X 0 1)) = Subobject.arrow (kernelSubobject 0) ≫ HomologicalComplex.Hom.f f 0 [PROOFSTEP] simp [homology.π, kernelSubobjectMap_comp, Iso.refl_hom (X.X 0), Category.comp_id] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f ⊢ Mono (HomologicalComplex.Hom.f f 0) [PROOFSTEP] constructor [GOAL] case right_cancellation ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f ⊢ ∀ {Z : W} (g h : Z ⟶ HomologicalComplex.X ((CochainComplex.single₀ W).obj Y) 0), g ≫ HomologicalComplex.Hom.f f 0 = h ≫ HomologicalComplex.Hom.f f 0 → g = h [PROOFSTEP] intro Z g h Hgh [GOAL] case right_cancellation ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f Z : W g h : Z ⟶ HomologicalComplex.X ((CochainComplex.single₀ W).obj Y) 0 Hgh : g ≫ HomologicalComplex.Hom.f f 0 = h ≫ HomologicalComplex.Hom.f f 0 ⊢ g = h [PROOFSTEP] rw [← kernel.lift_ι (X.d 0 1) (f.f 0) (by rw [f.2 0 1 rfl]; exact zero_comp), ← fromSingle₀KernelAtZeroIso_inv_eq] at Hgh [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f Z : W g h : Z ⟶ HomologicalComplex.X ((CochainComplex.single₀ W).obj Y) 0 Hgh : g ≫ HomologicalComplex.Hom.f f 0 = h ≫ HomologicalComplex.Hom.f f 0 ⊢ HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0 [PROOFSTEP] rw [f.2 0 1 rfl] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f Z : W g h : Z ⟶ HomologicalComplex.X ((CochainComplex.single₀ W).obj Y) 0 Hgh : g ≫ HomologicalComplex.Hom.f f 0 = h ≫ HomologicalComplex.Hom.f f 0 ⊢ d ((CochainComplex.single₀ W).obj Y) 0 1 ≫ HomologicalComplex.Hom.f f 1 = 0 [PROOFSTEP] exact zero_comp [GOAL] case right_cancellation ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f Z : W g h : Z ⟶ HomologicalComplex.X ((CochainComplex.single₀ W).obj Y) 0 Hgh✝ : g ≫ HomologicalComplex.Hom.f f 0 = h ≫ HomologicalComplex.Hom.f f 0 Hgh : g ≫ (fromSingle₀KernelAtZeroIso f).inv ≫ kernel.ι (d X 0 1) = h ≫ (fromSingle₀KernelAtZeroIso f).inv ≫ kernel.ι (d X 0 1) ⊢ g = h [PROOFSTEP] rw [(@cancel_mono _ _ _ _ _ _ (mono_comp _ _) _ _).1 Hgh] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f ⊢ Exact (HomologicalComplex.Hom.f f 0) (d X 0 1) [PROOFSTEP] rw [Preadditive.exact_iff_homology_zero] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f ⊢ ∃ w, Nonempty (_root_.homology (HomologicalComplex.Hom.f f 0) (d X 0 1) w ≅ 0) [PROOFSTEP] have h : f.f 0 ≫ X.d 0 1 = 0 := by simp only [HomologicalComplex.Hom.comm, CochainComplex.single₀_obj_X_d, zero_comp] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f ⊢ HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0 [PROOFSTEP] simp only [HomologicalComplex.Hom.comm, CochainComplex.single₀_obj_X_d, zero_comp] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f h : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0 ⊢ ∃ w, Nonempty (_root_.homology (HomologicalComplex.Hom.f f 0) (d X 0 1) w ≅ 0) [PROOFSTEP] refine' ⟨h, Nonempty.intro (homologyIsoCokernelLift _ _ _ ≪≫ _)⟩ [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f h : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0 ⊢ cokernel (kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) h) ≅ 0 [PROOFSTEP] suffices IsIso (kernel.lift (X.d 0 1) (f.f 0) h) by apply cokernel.ofEpi [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f h : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0 this : IsIso (kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) h) ⊢ cokernel (kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) h) ≅ 0 [PROOFSTEP] apply cokernel.ofEpi [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f h : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0 ⊢ IsIso (kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) h) [PROOFSTEP] rw [← fromSingle₀KernelAtZeroIso_inv_eq f] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V inst✝⁶ : HasZeroObject V inst✝⁵ : HasEqualizers V inst✝⁴ : HasImages V inst✝³ : HasImageMaps V inst✝² : HasCokernels V c : ComplexShape ι C D E : HomologicalComplex V c W : Type u_2 inst✝¹ : Category.{u_3, u_2} W inst✝ : Abelian W X : CochainComplex W ℕ Y : W f : (CochainComplex.single₀ W).obj Y ⟶ X hf : QuasiIso f h : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0 ⊢ IsIso (fromSingle₀KernelAtZeroIso f).inv [PROOFSTEP] infer_instance [GOAL] ι : Type u_1 V : Type u inst✝¹⁴ : Category.{v, u} V inst✝¹³ : HasZeroMorphisms V inst✝¹² : HasZeroObject V inst✝¹¹ : HasEqualizers V inst✝¹⁰ : HasImages V inst✝⁹ : HasImageMaps V inst✝⁸ : HasCokernels V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c A : Type u_2 inst✝⁷ : Category.{u_4, u_2} A inst✝⁶ : Abelian A B : Type u_3 inst✝⁵ : Category.{u_5, u_3} B inst✝⁴ : Abelian B F : A ⥤ B inst✝³ : Additive F inst✝² : PreservesFiniteLimits F inst✝¹ : PreservesFiniteColimits F inst✝ : Faithful F C D : HomologicalComplex A c f : C ⟶ D hf : QuasiIso ((mapHomologicalComplex F c).map f) i : ι ⊢ IsIso (F.map ((homologyFunctor A c i).map f)) [PROOFSTEP] rw [← Functor.comp_map, ← NatIso.naturality_2 (F.homologyFunctorIso i) f, Functor.comp_map] [GOAL] ι : Type u_1 V : Type u inst✝¹⁴ : Category.{v, u} V inst✝¹³ : HasZeroMorphisms V inst✝¹² : HasZeroObject V inst✝¹¹ : HasEqualizers V inst✝¹⁰ : HasImages V inst✝⁹ : HasImageMaps V inst✝⁸ : HasCokernels V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c A : Type u_2 inst✝⁷ : Category.{u_4, u_2} A inst✝⁶ : Abelian A B : Type u_3 inst✝⁵ : Category.{u_5, u_3} B inst✝⁴ : Abelian B F : A ⥤ B inst✝³ : Additive F inst✝² : PreservesFiniteLimits F inst✝¹ : PreservesFiniteColimits F inst✝ : Faithful F C D : HomologicalComplex A c f : C ⟶ D hf : QuasiIso ((mapHomologicalComplex F c).map f) i : ι ⊢ IsIso (NatTrans.app (homologyFunctorIso F i).hom C ≫ (homologyFunctor B c i).map ((mapHomologicalComplex F c).map f) ≫ NatTrans.app (homologyFunctorIso F i).inv D) [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Algebra.Homology.QuasiIso", "llama_tokens": 22059}
[GOAL] C : Type u_1 inst✝¹ : Category.{?u.4444, u_1} C inst✝ : HasZeroMorphisms C ι : Type u_2 c : ComplexShape ι i j k : ι hi : ComplexShape.prev c j = i hk : ComplexShape.next c j = k K : HomologicalComplex C c ⊢ (XIsoOfEq K hi).hom ≫ ((shortComplexFunctor' C c i j k).obj K).f = ((shortComplexFunctor C c j).obj K).f ≫ (Iso.refl ((shortComplexFunctor C c j).obj K).X₂).hom [PROOFSTEP] aesop_cat [GOAL] C : Type u_1 inst✝¹ : Category.{?u.4444, u_1} C inst✝ : HasZeroMorphisms C ι : Type u_2 c : ComplexShape ι i j k : ι hi : ComplexShape.prev c j = i hk : ComplexShape.next c j = k K : HomologicalComplex C c ⊢ (Iso.refl ((shortComplexFunctor C c j).obj K).X₂).hom ≫ ((shortComplexFunctor' C c i j k).obj K).g = ((shortComplexFunctor C c j).obj K).g ≫ (XIsoOfEq K hk).hom [PROOFSTEP] aesop_cat [GOAL] C : Type u_1 inst✝¹ : Category.{?u.4444, u_1} C inst✝ : HasZeroMorphisms C ι : Type u_2 c : ComplexShape ι i j k : ι hi : ComplexShape.prev c j = i hk : ComplexShape.next c j = k ⊢ ∀ {X Y : HomologicalComplex C c} (f : X ⟶ Y), (shortComplexFunctor C c j).map f ≫ ((fun K => ShortComplex.isoMk (XIsoOfEq K hi) (Iso.refl ((shortComplexFunctor C c j).obj K).X₂) (XIsoOfEq K hk)) Y).hom = ((fun K => ShortComplex.isoMk (XIsoOfEq K hi) (Iso.refl ((shortComplexFunctor C c j).obj K).X₂) (XIsoOfEq K hk)) X).hom ≫ (shortComplexFunctor' C c i j k).map f [PROOFSTEP] aesop_cat
{"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex", "llama_tokens": 651}
[GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c) c' i : ι j j' : ι' w : ¬ComplexShape.Rel c' j j' ⊢ (fun j j' => Hom.f (d C j j') i) j j' = 0 [PROOFSTEP] simp_all only [shape, zero_f] [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c) c' i i' : ι w : ¬ComplexShape.Rel c i i' ⊢ (fun i i' => Hom.mk fun j => d (X C j) i i') i i' = 0 [PROOFSTEP] ext j [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c) c' i i' : ι w : ¬ComplexShape.Rel c i i' j : ι' ⊢ Hom.f ((fun i i' => Hom.mk fun j => d (X C j) i i') i i') j = Hom.f 0 j [PROOFSTEP] exact (C.X j).shape i i' w [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c) c' i j : ι' x✝ : ComplexShape.Rel c' i j ⊢ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((flip V c c' ⋙ flip V c' c).obj C) i j = d ((𝟭 (HomologicalComplex (HomologicalComplex V c) c')).obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j [PROOFSTEP] ext [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c) c' i j : ι' x✝ : ComplexShape.Rel c' i j i✝ : ι ⊢ Hom.f ((fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((flip V c c' ⋙ flip V c' c).obj C) i j) i✝ = Hom.f (d ((𝟭 (HomologicalComplex (HomologicalComplex V c) c')).obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j) i✝ [PROOFSTEP] dsimp [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c) c' i j : ι' x✝ : ComplexShape.Rel c' i j i✝ : ι ⊢ 𝟙 (X (X C i) i✝) ≫ Hom.f (d C i j) i✝ = Hom.f (d C i j) i✝ ≫ 𝟙 (X (X C j) i✝) [PROOFSTEP] simp only [Category.id_comp, Category.comp_id] [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c) c' i j : ι' x✝ : ComplexShape.Rel c' i j ⊢ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((𝟭 (HomologicalComplex (HomologicalComplex V c) c')).obj C) i j = d ((flip V c c' ⋙ flip V c' c).obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j [PROOFSTEP] ext [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c) c' i j : ι' x✝ : ComplexShape.Rel c' i j i✝ : ι ⊢ Hom.f ((fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((𝟭 (HomologicalComplex (HomologicalComplex V c) c')).obj C) i j) i✝ = Hom.f (d ((flip V c c' ⋙ flip V c' c).obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j) i✝ [PROOFSTEP] dsimp [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c) c' i j : ι' x✝ : ComplexShape.Rel c' i j i✝ : ι ⊢ 𝟙 (X (X C i) i✝) ≫ Hom.f (d C i j) i✝ = Hom.f (d C i j) i✝ ≫ 𝟙 (X (X C j) i✝) [PROOFSTEP] simp only [Category.id_comp, Category.comp_id] [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' X Y : HomologicalComplex (HomologicalComplex V c) c' f : X ⟶ Y ⊢ (𝟭 (HomologicalComplex (HomologicalComplex V c) c')).map f ≫ ((fun C => Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)) (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))) Y).hom = ((fun C => Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)) (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))) X).hom ≫ (flip V c c' ⋙ flip V c' c).map f [PROOFSTEP] ext [GOAL] case h.h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' X Y : HomologicalComplex (HomologicalComplex V c) c' f : X ⟶ Y i✝¹ : ι' i✝ : ι ⊢ Hom.f (Hom.f ((𝟭 (HomologicalComplex (HomologicalComplex V c) c')).map f ≫ ((fun C => Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)) (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))) Y).hom) i✝¹) i✝ = Hom.f (Hom.f (((fun C => Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)) (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))) X).hom ≫ (flip V c c' ⋙ flip V c' c).map f) i✝¹) i✝ [PROOFSTEP] dsimp [GOAL] case h.h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' X Y : HomologicalComplex (HomologicalComplex V c) c' f : X ⟶ Y i✝¹ : ι' i✝ : ι ⊢ Hom.f (Hom.f f i✝¹) i✝ ≫ 𝟙 (HomologicalComplex.X (HomologicalComplex.X Y i✝¹) i✝) = 𝟙 (HomologicalComplex.X (HomologicalComplex.X X i✝¹) i✝) ≫ Hom.f (Hom.f f i✝¹) i✝ [PROOFSTEP] simp only [Category.id_comp, Category.comp_id] [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c') c i j : ι x✝ : ComplexShape.Rel c i j ⊢ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((𝟭 (HomologicalComplex (HomologicalComplex V c') c)).obj C) i j = d ((flip V c' c ⋙ flip V c c').obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j [PROOFSTEP] ext [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c') c i j : ι x✝ : ComplexShape.Rel c i j i✝ : ι' ⊢ Hom.f ((fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((𝟭 (HomologicalComplex (HomologicalComplex V c') c)).obj C) i j) i✝ = Hom.f (d ((flip V c' c ⋙ flip V c c').obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j) i✝ [PROOFSTEP] dsimp [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c') c i j : ι x✝ : ComplexShape.Rel c i j i✝ : ι' ⊢ 𝟙 (X (X C i) i✝) ≫ Hom.f (d C i j) i✝ = Hom.f (d C i j) i✝ ≫ 𝟙 (X (X C j) i✝) [PROOFSTEP] simp only [Category.id_comp, Category.comp_id] [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c') c i j : ι x✝ : ComplexShape.Rel c i j ⊢ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((flip V c' c ⋙ flip V c c').obj C) i j = d ((𝟭 (HomologicalComplex (HomologicalComplex V c') c)).obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j [PROOFSTEP] ext [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c') c i j : ι x✝ : ComplexShape.Rel c i j i✝ : ι' ⊢ Hom.f ((fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((flip V c' c ⋙ flip V c c').obj C) i j) i✝ = Hom.f (d ((𝟭 (HomologicalComplex (HomologicalComplex V c') c)).obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j) i✝ [PROOFSTEP] dsimp [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' C : HomologicalComplex (HomologicalComplex V c') c i j : ι x✝ : ComplexShape.Rel c i j i✝ : ι' ⊢ 𝟙 (X (X C i) i✝) ≫ Hom.f (d C i j) i✝ = Hom.f (d C i j) i✝ ≫ 𝟙 (X (X C j) i✝) [PROOFSTEP] simp only [Category.id_comp, Category.comp_id] [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' X Y : HomologicalComplex (HomologicalComplex V c') c f : X ⟶ Y ⊢ (flip V c' c ⋙ flip V c c').map f ≫ ((fun C => Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)) (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))) Y).hom = ((fun C => Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)) (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))) X).hom ≫ (𝟭 (HomologicalComplex (HomologicalComplex V c') c)).map f [PROOFSTEP] ext [GOAL] case h.h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' X Y : HomologicalComplex (HomologicalComplex V c') c f : X ⟶ Y i✝¹ : ι i✝ : ι' ⊢ Hom.f (Hom.f ((flip V c' c ⋙ flip V c c').map f ≫ ((fun C => Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)) (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))) Y).hom) i✝¹) i✝ = Hom.f (Hom.f (((fun C => Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)) (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))) X).hom ≫ (𝟭 (HomologicalComplex (HomologicalComplex V c') c)).map f) i✝¹) i✝ [PROOFSTEP] dsimp [GOAL] case h.h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ι : Type u_1 c : ComplexShape ι ι' : Type u_2 c' : ComplexShape ι' X Y : HomologicalComplex (HomologicalComplex V c') c f : X ⟶ Y i✝¹ : ι i✝ : ι' ⊢ Hom.f (Hom.f f i✝¹) i✝ ≫ 𝟙 (HomologicalComplex.X (HomologicalComplex.X Y i✝¹) i✝) = 𝟙 (HomologicalComplex.X (HomologicalComplex.X X i✝¹) i✝) ≫ Hom.f (Hom.f f i✝¹) i✝ [PROOFSTEP] simp only [Category.id_comp, Category.comp_id]
{"mathlib_filename": "Mathlib.Algebra.Homology.Flip", "llama_tokens": 5222}
[GOAL] α : Type u β : Type u_1 inst✝ : OrderedSemiring α a b c d : α H : 0 ≤ a ⊢ 0 ≤ a ^ 0 [PROOFSTEP] rw [pow_zero] [GOAL] α : Type u β : Type u_1 inst✝ : OrderedSemiring α a b c d : α H : 0 ≤ a ⊢ 0 ≤ 1 [PROOFSTEP] exact zero_le_one [GOAL] α : Type u β : Type u_1 inst✝ : OrderedSemiring α a b c d : α H : 0 ≤ a n : ℕ ⊢ 0 ≤ a ^ (n + 1) [PROOFSTEP] rw [pow_succ] [GOAL] α : Type u β : Type u_1 inst✝ : OrderedSemiring α a b c d : α H : 0 ≤ a n : ℕ ⊢ 0 ≤ a * a ^ n [PROOFSTEP] exact mul_nonneg H (pow_nonneg H _) [GOAL] α : Type u β : Type u_1 inst✝ : OrderedSemiring α a b c d : α a2 : 2 ≤ a b0 : 0 ≤ b ⊢ a + (a + a * b) ≤ a * (2 + b) [PROOFSTEP] rw [mul_add, mul_two, add_assoc] [GOAL] α : Type u β : Type u_1 inst✝ : OrderedSemiring α a b c d : α h : 0 < a ⊢ 0 < bit1 a [PROOFSTEP] nontriviality [GOAL] α : Type u β : Type u_1 inst✝¹ : OrderedSemiring α a b c d : α h : 0 < a inst✝ : Nontrivial α ⊢ 0 < bit1 a [PROOFSTEP] exact bit1_pos h.le [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a✝ b✝ c✝ d : α src✝¹ : OrderedRing α := inst✝ src✝ : Semiring α := Ring.toSemiring a b c : α h : a ≤ b hc : 0 ≤ c ⊢ c * a ≤ c * b [PROOFSTEP] simpa only [mul_sub, sub_nonneg] using OrderedRing.mul_nonneg _ _ hc (sub_nonneg.2 h) [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a✝ b✝ c✝ d : α src✝¹ : OrderedRing α := inst✝ src✝ : Semiring α := Ring.toSemiring a b c : α h : a ≤ b hc : 0 ≤ c ⊢ a * c ≤ b * c [PROOFSTEP] simpa only [sub_mul, sub_nonneg] using OrderedRing.mul_nonneg _ _ (sub_nonneg.2 h) hc [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α h : b ≤ a hc : c ≤ 0 ⊢ c * a ≤ c * b [PROOFSTEP] simpa only [neg_mul, neg_le_neg_iff] using mul_le_mul_of_nonneg_left h (neg_nonneg.2 hc) [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α h : b ≤ a hc : c ≤ 0 ⊢ a * c ≤ b * c [PROOFSTEP] simpa only [mul_neg, neg_le_neg_iff] using mul_le_mul_of_nonneg_right h (neg_nonneg.2 hc) [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α ha : a ≤ 0 hb : b ≤ 0 ⊢ 0 ≤ a * b [PROOFSTEP] simpa only [zero_mul] using mul_le_mul_of_nonpos_right ha hb [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α hb : b ≤ 0 h : a ≤ 1 ⊢ b ≤ a * b [PROOFSTEP] simpa only [one_mul] using mul_le_mul_of_nonpos_right h hb [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α hb : b ≤ 0 h : 1 ≤ a ⊢ a * b ≤ b [PROOFSTEP] simpa only [one_mul] using mul_le_mul_of_nonpos_right h hb [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α ha : a ≤ 0 h : b ≤ 1 ⊢ a ≤ a * b [PROOFSTEP] simpa only [mul_one] using mul_le_mul_of_nonpos_left h ha [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a b c d : α ha : a ≤ 0 h : 1 ≤ b ⊢ a * b ≤ a [PROOFSTEP] simpa only [mul_one] using mul_le_mul_of_nonpos_left h ha [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a✝ b✝ c d a b : α h : a ≤ b ⊢ b = a + (b - a) [PROOFSTEP] simp [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a✝ b✝ c✝ d a b : α x✝ : ∃ c, c ≥ 0 ∧ b = a + c c : α hc : c ≥ 0 h : b = a + c ⊢ a ≤ b [PROOFSTEP] rw [h, le_add_iff_nonneg_right] [GOAL] α : Type u β : Type u_1 inst✝ : OrderedRing α a✝ b✝ c✝ d a b : α x✝ : ∃ c, c ≥ 0 ∧ b = a + c c : α hc : c ≥ 0 h : b = a + c ⊢ 0 ≤ c [PROOFSTEP] exact hc [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b c : α hab : a ≤ b hc : 0 ≤ c ⊢ c * a ≤ c * b [PROOFSTEP] obtain rfl | hab := Decidable.eq_or_lt_of_le hab [GOAL] case inl α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a c : α hc : 0 ≤ c hab : a ≤ a ⊢ c * a ≤ c * a [PROOFSTEP] rfl [GOAL] case inr α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b c : α hab✝ : a ≤ b hc : 0 ≤ c hab : a < b ⊢ c * a ≤ c * b [PROOFSTEP] obtain rfl | hc := Decidable.eq_or_lt_of_le hc [GOAL] case inr.inl α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b : α hab✝ : a ≤ b hab : a < b hc : 0 ≤ 0 ⊢ 0 * a ≤ 0 * b [PROOFSTEP] simp [GOAL] case inr.inr α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b c : α hab✝ : a ≤ b hc✝ : 0 ≤ c hab : a < b hc : 0 < c ⊢ c * a ≤ c * b [PROOFSTEP] exact (mul_lt_mul_of_pos_left hab hc).le [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b c : α hab : a ≤ b hc : 0 ≤ c ⊢ a * c ≤ b * c [PROOFSTEP] obtain rfl | hab := Decidable.eq_or_lt_of_le hab [GOAL] case inl α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a c : α hc : 0 ≤ c hab : a ≤ a ⊢ a * c ≤ a * c [PROOFSTEP] rfl [GOAL] case inr α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b c : α hab✝ : a ≤ b hc : 0 ≤ c hab : a < b ⊢ a * c ≤ b * c [PROOFSTEP] obtain rfl | hc := Decidable.eq_or_lt_of_le hc [GOAL] case inr.inl α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b : α hab✝ : a ≤ b hab : a < b hc : 0 ≤ 0 ⊢ a * 0 ≤ b * 0 [PROOFSTEP] simp [GOAL] case inr.inr α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a✝ b✝ c✝ d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : StrictOrderedSemiring α := inst✝¹ a b c : α hab✝ : a ≤ b hc✝ : 0 ≤ c hab : a < b hc : 0 < c ⊢ a * c ≤ b * c [PROOFSTEP] exact (mul_lt_mul_of_pos_right hab hc).le [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α H : 0 < a ⊢ 0 < a ^ 0 [PROOFSTEP] nontriviality [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α H : 0 < a inst✝ : Nontrivial α ⊢ 0 < a ^ 0 [PROOFSTEP] rw [pow_zero] [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α H : 0 < a inst✝ : Nontrivial α ⊢ 0 < 1 [PROOFSTEP] exact zero_lt_one [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α H : 0 < a n : ℕ ⊢ 0 < a ^ (n + 1) [PROOFSTEP] rw [pow_succ] [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α H : 0 < a n : ℕ ⊢ 0 < a * a ^ n [PROOFSTEP] exact mul_pos H (pow_pos H _) [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 h1 : a < c h2 : b < d h3 : 0 ≤ a h4 : 0 ≤ b b0 : 0 = b ⊢ a * b < c * d [PROOFSTEP] rw [← b0, mul_zero] [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedSemiring α a b c d : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 h1 : a < c h2 : b < d h3 : 0 ≤ a h4 : 0 ≤ b b0 : 0 = b ⊢ 0 < c * d [PROOFSTEP] exact mul_pos (h3.trans_lt h1) (h4.trans_lt h2) [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α ⊢ a < c → b < d → 0 ≤ a → 0 ≤ b → a * b < c * d [PROOFSTEP] classical exact Decidable.mul_lt_mul'' [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α ⊢ a < c → b < d → 0 ≤ a → 0 ≤ b → a * b < c * d [PROOFSTEP] exact Decidable.mul_lt_mul'' [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α hn : 0 < a hm : 1 < b ⊢ a < b * a [PROOFSTEP] convert mul_lt_mul_of_pos_right hm hn [GOAL] case h.e'_3 α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α hn : 0 < a hm : 1 < b ⊢ a = 1 * a [PROOFSTEP] rw [one_mul] [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α hn : 0 < a hm : 1 < b ⊢ a < a * b [PROOFSTEP] convert mul_lt_mul_of_pos_left hm hn [GOAL] case h.e'_3 α : Type u β : Type u_1 inst✝ : StrictOrderedSemiring α a b c d : α hn : 0 < a hm : 1 < b ⊢ a = a * 1 [PROOFSTEP] rw [mul_one] [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a✝ b✝ c✝ : α src✝¹ : StrictOrderedRing α := inst✝ src✝ : Semiring α := Ring.toSemiring a b c : α h : a < b hc : 0 < c ⊢ c * a < c * b [PROOFSTEP] simpa only [mul_sub, sub_pos] using StrictOrderedRing.mul_pos _ _ hc (sub_pos.2 h) [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a✝ b✝ c✝ : α src✝¹ : StrictOrderedRing α := inst✝ src✝ : Semiring α := Ring.toSemiring a b c : α h : a < b hc : 0 < c ⊢ a * c < b * c [PROOFSTEP] simpa only [sub_mul, sub_pos] using StrictOrderedRing.mul_pos _ _ (sub_pos.2 h) hc [GOAL] α : Type u β : Type u_1 inst✝¹ : StrictOrderedRing α a✝ b✝ c : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : StrictOrderedRing α := inst✝¹ src✝ : Semiring α := Ring.toSemiring a b : α ha : 0 ≤ a hb : 0 ≤ b ⊢ 0 ≤ a * b [PROOFSTEP] obtain ha | ha := Decidable.eq_or_lt_of_le ha [GOAL] case inl α : Type u β : Type u_1 inst✝¹ : StrictOrderedRing α a✝ b✝ c : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : StrictOrderedRing α := inst✝¹ src✝ : Semiring α := Ring.toSemiring a b : α ha✝ : 0 ≤ a hb : 0 ≤ b ha : 0 = a ⊢ 0 ≤ a * b [PROOFSTEP] rw [← ha, zero_mul] [GOAL] case inr α : Type u β : Type u_1 inst✝¹ : StrictOrderedRing α a✝ b✝ c : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : StrictOrderedRing α := inst✝¹ src✝ : Semiring α := Ring.toSemiring a b : α ha✝ : 0 ≤ a hb : 0 ≤ b ha : 0 < a ⊢ 0 ≤ a * b [PROOFSTEP] obtain hb | hb := Decidable.eq_or_lt_of_le hb [GOAL] case inr.inl α : Type u β : Type u_1 inst✝¹ : StrictOrderedRing α a✝ b✝ c : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : StrictOrderedRing α := inst✝¹ src✝ : Semiring α := Ring.toSemiring a b : α ha✝ : 0 ≤ a hb✝ : 0 ≤ b ha : 0 < a hb : 0 = b ⊢ 0 ≤ a * b [PROOFSTEP] rw [← hb, mul_zero] [GOAL] case inr.inr α : Type u β : Type u_1 inst✝¹ : StrictOrderedRing α a✝ b✝ c : α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : StrictOrderedRing α := inst✝¹ src✝ : Semiring α := Ring.toSemiring a b : α ha✝ : 0 ≤ a hb✝ : 0 ≤ b ha : 0 < a hb : 0 < b ⊢ 0 ≤ a * b [PROOFSTEP] exact (StrictOrderedRing.mul_pos _ _ ha hb).le [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a b c : α h : b < a hc : c < 0 ⊢ c * a < c * b [PROOFSTEP] simpa only [neg_mul, neg_lt_neg_iff] using mul_lt_mul_of_pos_left h (neg_pos_of_neg hc) [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a b c : α h : b < a hc : c < 0 ⊢ a * c < b * c [PROOFSTEP] simpa only [mul_neg, neg_lt_neg_iff] using mul_lt_mul_of_pos_right h (neg_pos_of_neg hc) [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a✝ b✝ c a b : α ha : a < 0 hb : b < 0 ⊢ 0 < a * b [PROOFSTEP] simpa only [zero_mul] using mul_lt_mul_of_neg_right ha hb [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a b c : α hb : b < 0 h : a < 1 ⊢ b < a * b [PROOFSTEP] simpa only [one_mul] using mul_lt_mul_of_neg_right h hb [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a b c : α hb : b < 0 h : 1 < a ⊢ a * b < b [PROOFSTEP] simpa only [one_mul] using mul_lt_mul_of_neg_right h hb [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a b c : α ha : a < 0 h : b < 1 ⊢ a < a * b [PROOFSTEP] simpa only [mul_one] using mul_lt_mul_of_neg_left h ha [GOAL] α : Type u β : Type u_1 inst✝ : StrictOrderedRing α a b c : α ha : a < 0 h : 1 < b ⊢ a * b < a [PROOFSTEP] simpa only [mul_one] using mul_lt_mul_of_neg_left h ha [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ⊢ 0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0 [PROOFSTEP] refine' Decidable.or_iff_not_and_not.2 _ [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ⊢ ¬(¬(0 ≤ a ∧ 0 ≤ b) ∧ ¬(a ≤ 0 ∧ b ≤ 0)) [PROOFSTEP] simp only [not_and, not_le] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ⊢ (0 ≤ a → b < 0) → ¬(a ≤ 0 → 0 < b) [PROOFSTEP] intro ab nab [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ab : 0 ≤ a → b < 0 nab : a ≤ 0 → 0 < b ⊢ False [PROOFSTEP] apply not_lt_of_le hab _ -- Porting note: for the middle case, we used to have `rfl`, but it is now rejected. -- https://github.com/leanprover/std4/issues/62 [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ab : 0 ≤ a → b < 0 nab : a ≤ 0 → 0 < b ⊢ a * b < 0 [PROOFSTEP] rcases lt_trichotomy 0 a with (ha | ha | ha) [GOAL] case inl α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ab : 0 ≤ a → b < 0 nab : a ≤ 0 → 0 < b ha : 0 < a ⊢ a * b < 0 [PROOFSTEP] exact mul_neg_of_pos_of_neg ha (ab ha.le) [GOAL] case inr.inl α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ab : 0 ≤ a → b < 0 nab : a ≤ 0 → 0 < b ha : 0 = a ⊢ a * b < 0 [PROOFSTEP] subst ha [GOAL] case inr.inl α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α b c d : α hab : 0 ≤ 0 * b ab : 0 ≤ 0 → b < 0 nab : 0 ≤ 0 → 0 < b ⊢ 0 * b < 0 [PROOFSTEP] exact ((ab le_rfl).asymm (nab le_rfl)).elim [GOAL] case inr.inr α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α hab : 0 ≤ a * b ab : 0 ≤ a → b < 0 nab : a ≤ 0 → 0 < b ha : a < 0 ⊢ a * b < 0 [PROOFSTEP] exact mul_neg_of_neg_of_pos ha (nab ha.le) [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α h : 0 < c ⊢ 0 ≤ c * b ↔ 0 ≤ b [PROOFSTEP] simpa using (mul_le_mul_left h : c * 0 ≤ c * b ↔ 0 ≤ b) [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α h : 0 < c ⊢ 0 ≤ b * c ↔ 0 ≤ b [PROOFSTEP] simpa using (mul_le_mul_right h : 0 * c ≤ b * c ↔ 0 ≤ b) [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α ⊢ bit0 a ≤ bit0 b ↔ a ≤ b [PROOFSTEP] rw [bit0, bit0, ← two_mul, ← two_mul, mul_le_mul_left (zero_lt_two : 0 < (2 : α))] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α ⊢ bit0 a < bit0 b ↔ a < b [PROOFSTEP] rw [bit0, bit0, ← two_mul, ← two_mul, mul_lt_mul_left (zero_lt_two : 0 < (2 : α))] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α ⊢ 1 ≤ bit1 a ↔ 0 ≤ a [PROOFSTEP] rw [bit1, le_add_iff_nonneg_left, bit0, ← two_mul, zero_le_mul_left (zero_lt_two : 0 < (2 : α))] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α ⊢ 1 < bit1 a ↔ 0 < a [PROOFSTEP] rw [bit1, lt_add_iff_pos_left, bit0, ← two_mul, zero_lt_mul_left (zero_lt_two : 0 < (2 : α))] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α ⊢ 0 ≤ bit0 a ↔ 0 ≤ a [PROOFSTEP] rw [bit0, ← two_mul, zero_le_mul_left (zero_lt_two : 0 < (2 : α))] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedSemiring α a b c d : α ⊢ 0 < bit0 a ↔ 0 < a [PROOFSTEP] rw [bit0, ← two_mul, zero_lt_mul_left (zero_lt_two : 0 < (2 : α))] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α src✝ : LinearOrderedRing α := inst✝ ⊢ ∀ {a b : α}, a * b = 0 → a = 0 ∨ b = 0 [PROOFSTEP] intro a b hab [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α hab : a * b = 0 ⊢ a = 0 ∨ b = 0 [PROOFSTEP] refine' Decidable.or_iff_not_and_not.2 fun h => _ [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α hab : a * b = 0 h : ¬a = 0 ∧ ¬b = 0 ⊢ False [PROOFSTEP] revert hab [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ⊢ a * b = 0 → False [PROOFSTEP] cases' lt_or_gt_of_ne h.1 with ha ha [GOAL] case inl α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ha : a < 0 ⊢ a * b = 0 → False [PROOFSTEP] cases' lt_or_gt_of_ne h.2 with hb hb [GOAL] case inr α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ha : a > 0 ⊢ a * b = 0 → False [PROOFSTEP] cases' lt_or_gt_of_ne h.2 with hb hb [GOAL] case inl.inl α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ha : a < 0 hb : b < 0 ⊢ a * b = 0 → False case inl.inr α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ha : a < 0 hb : b > 0 ⊢ a * b = 0 → False case inr.inl α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ha : a > 0 hb : b < 0 ⊢ a * b = 0 → False case inr.inr α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c : α src✝ : LinearOrderedRing α := inst✝ a b : α h : ¬a = 0 ∧ ¬b = 0 ha : a > 0 hb : b > 0 ⊢ a * b = 0 → False [PROOFSTEP] exacts [(mul_pos_of_neg_of_neg ha hb).ne.symm, (mul_neg_of_neg_of_pos ha hb).ne, (mul_neg_of_pos_of_neg ha hb).ne, (mul_pos ha hb).ne.symm] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ : α src✝ : Nontrivial α := inferInstance a b c : α ha : a ≠ 0 h : a * b = a * c ⊢ b = c [PROOFSTEP] rw [← sub_eq_zero, ← mul_sub] at h [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ : α src✝ : Nontrivial α := inferInstance a b c : α ha : a ≠ 0 h✝ : a * b = a * c h : a * (b - c) = 0 ⊢ b = c [PROOFSTEP] exact sub_eq_zero.1 ((eq_zero_or_eq_zero_of_mul_eq_zero h).resolve_left ha) [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ : α src✝ : Nontrivial α := inferInstance a b c : α hb : b ≠ 0 h : a * b = c * b ⊢ a = c [PROOFSTEP] rw [← sub_eq_zero, ← sub_mul] at h [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ : α src✝ : Nontrivial α := inferInstance a b c : α hb : b ≠ 0 h✝ : a * b = c * b h : (a - c) * b = 0 ⊢ a = c [PROOFSTEP] exact sub_eq_zero.1 ((eq_zero_or_eq_zero_of_mul_eq_zero h).resolve_right hb) [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ a * b < 0 ↔ 0 < a ∧ b < 0 ∨ a < 0 ∧ 0 < b [PROOFSTEP] rw [← neg_pos, neg_mul_eq_mul_neg, mul_pos_iff, neg_pos, neg_lt_zero] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α ⊢ 0 ≤ a * b ∨ 0 ≤ b * c ∨ 0 ≤ c * a [PROOFSTEP] iterate 3 rw [mul_nonneg_iff] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α ⊢ 0 ≤ a * b ∨ 0 ≤ b * c ∨ 0 ≤ c * a [PROOFSTEP] rw [mul_nonneg_iff] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α ⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ 0 ≤ b * c ∨ 0 ≤ c * a [PROOFSTEP] rw [mul_nonneg_iff] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α ⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c * a [PROOFSTEP] rw [mul_nonneg_iff] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α ⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c ∧ 0 ≤ a ∨ c ≤ 0 ∧ a ≤ 0 [PROOFSTEP] have or_a := le_total 0 a [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α or_a : 0 ≤ a ∨ a ≤ 0 ⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c ∧ 0 ≤ a ∨ c ≤ 0 ∧ a ≤ 0 [PROOFSTEP] have or_b := le_total 0 b [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α or_a : 0 ≤ a ∨ a ≤ 0 or_b : 0 ≤ b ∨ b ≤ 0 ⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c ∧ 0 ≤ a ∨ c ≤ 0 ∧ a ≤ 0 [PROOFSTEP] have or_c := le_total 0 c [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b✝ c✝ a b c : α or_a : 0 ≤ a ∨ a ≤ 0 or_b : 0 ≤ b ∨ b ≤ 0 or_c : 0 ≤ c ∨ c ≤ 0 ⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c ∧ 0 ≤ a ∨ c ≤ 0 ∧ a ≤ 0 [PROOFSTEP] exact Or.elim or_c (fun (h0 : 0 ≤ c) => Or.elim or_b (fun (h1 : 0 ≤ b) => Or.elim or_a (fun (h2 : 0 ≤ a) => Or.inl (Or.inl ⟨h2, h1⟩)) (fun (_ : a ≤ 0) => Or.inr (Or.inl (Or.inl ⟨h1, h0⟩)))) (fun (h1 : b ≤ 0) => Or.elim or_a (fun (h3 : 0 ≤ a) => Or.inr (Or.inr (Or.inl ⟨h0, h3⟩))) (fun (h3 : a ≤ 0) => Or.inl (Or.inr ⟨h3, h1⟩)))) (fun (h0 : c ≤ 0) => Or.elim or_b (fun (h4 : 0 ≤ b) => Or.elim or_a (fun (h5 : 0 ≤ a) => Or.inl (Or.inl ⟨h5, h4⟩)) (fun (h5 : a ≤ 0) => Or.inr (Or.inr (Or.inr ⟨h0, h5⟩)))) (fun (h4 : b ≤ 0) => Or.elim or_a (fun (_ : 0 ≤ a) => Or.inr (Or.inl (Or.inr ⟨h4, h0⟩))) (fun (h6 : a ≤ 0) => Or.inl (Or.inr ⟨h6, h4⟩)))) [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ a * b ≤ 0 ↔ 0 ≤ a ∧ b ≤ 0 ∨ a ≤ 0 ∧ 0 ≤ b [PROOFSTEP] rw [← neg_nonneg, neg_mul_eq_mul_neg, mul_nonneg_iff, neg_nonneg, neg_nonpos] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ -a ≤ a ↔ 0 ≤ a [PROOFSTEP] simp [neg_le_iff_add_nonneg, ← two_mul, mul_nonneg_iff, zero_le_one, (zero_lt_two' α).not_le] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ -a < a ↔ 0 < a [PROOFSTEP] simp [neg_lt_iff_pos_add, ← two_mul, mul_pos_iff, zero_lt_one, (zero_lt_two' α).not_lt] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ a ≤ -a ↔ - -a ≤ -a [PROOFSTEP] rw [neg_neg] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α ⊢ a < -a ↔ - -a < -a [PROOFSTEP] rw [neg_neg] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α h : c * a < c * b hc : c ≤ 0 ⊢ -c * b < -c * a [PROOFSTEP] rwa [neg_mul, neg_mul, neg_lt_neg_iff] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α h : a * c < b * c hc : c ≤ 0 ⊢ b * -c < a * -c [PROOFSTEP] rwa [mul_neg, mul_neg, neg_lt_neg_iff] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α ⊢ 0 < a * a ↔ a ≠ 0 [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α ⊢ 0 < a * a → a ≠ 0 [PROOFSTEP] rintro h rfl [GOAL] case mp α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α h : 0 < 0 * 0 ⊢ False [PROOFSTEP] rw [mul_zero] at h [GOAL] case mp α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c : α h : 0 < 0 ⊢ False [PROOFSTEP] exact h.false [GOAL] case mpr α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α ⊢ a ≠ 0 → 0 < a * a [PROOFSTEP] intro h [GOAL] case mpr α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α h : a ≠ 0 ⊢ 0 < a * a [PROOFSTEP] cases' h.lt_or_lt with h h [GOAL] case mpr.inl α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α h✝ : a ≠ 0 h : a < 0 ⊢ 0 < a * a case mpr.inr α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α h✝ : a ≠ 0 h : 0 < a ⊢ 0 < a * a [PROOFSTEP] exacts [mul_pos_of_neg_of_neg h h, mul_pos h h] [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c x y : α ⊢ x * x + y * y = 0 ↔ x = 0 ∧ y = 0 [PROOFSTEP] rw [add_eq_zero_iff', mul_self_eq_zero, mul_self_eq_zero] [GOAL] case ha α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c x y : α ⊢ 0 ≤ x * x [PROOFSTEP] apply mul_self_nonneg [GOAL] case hb α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a b c x y : α ⊢ 0 ≤ y * y [PROOFSTEP] apply mul_self_nonneg [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedCommRing α a b✝ c✝ d b c : α ha : 0 ≤ a hd : 0 ≤ d ba : b * a ≤ max d b * max c a cd : c * d ≤ max a c * max b d ⊢ a * b ≤ max a c * max d b [PROOFSTEP] simpa [mul_comm, max_comm] using ba [GOAL] α : Type u β : Type u_1 inst✝ : LinearOrderedCommRing α a b✝ c✝ d b c : α ha : 0 ≤ a hd : 0 ≤ d ba : b * a ≤ max d b * max c a cd : c * d ≤ max a c * max b d ⊢ d * c ≤ max a c * max d b [PROOFSTEP] simpa [mul_comm, max_comm] using cd
{"mathlib_filename": "Mathlib.Algebra.Order.Ring.Defs", "llama_tokens": 13165}
[GOAL] V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A B C : V f : A ⟶ B g : B ⟶ C h : Exact f g ⊢ homology f g (_ : f ≫ g = 0) ≅ 0 [PROOFSTEP] haveI := h.epi [GOAL] V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A B C : V f : A ⟶ B g : B ⟶ C h : Exact f g this : Epi (imageToKernel f g (_ : f ≫ g = 0)) ⊢ homology f g (_ : f ≫ g = 0) ≅ 0 [PROOFSTEP] exact cokernel.ofEpi _ [GOAL] V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A B C : V f : A ⟶ B g : B ⟶ C h : ∃ w, Nonempty (homology f g w ≅ 0) ⊢ Exact f g [PROOFSTEP] obtain ⟨w, ⟨i⟩⟩ := h [GOAL] case intro.intro V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 i : homology f g w ≅ 0 ⊢ Exact f g [PROOFSTEP] exact ⟨w, Preadditive.epi_of_cokernel_zero ((cancel_mono i.hom).mp (by ext))⟩ [GOAL] V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 i : homology f g w ≅ 0 ⊢ cokernel.π (imageToKernel f g w) ≫ i.hom = 0 ≫ i.hom [PROOFSTEP] ext [GOAL] V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left h : Exact f₁ g₁ ⊢ Exact f₂ g₂ [PROOFSTEP] rw [Preadditive.exact_iff_homology_zero] at h ⊢ [GOAL] V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left h✝ : Exact f₁ g₁ h : ∃ w, Nonempty (homology f₁ g₁ w ≅ 0) ⊢ ∃ w, Nonempty (homology f₂ g₂ w ≅ 0) [PROOFSTEP] rcases h with ⟨w₁, ⟨i⟩⟩ [GOAL] case intro.intro V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left h : Exact f₁ g₁ w₁ : f₁ ≫ g₁ = 0 i : homology f₁ g₁ w₁ ≅ 0 ⊢ ∃ w, Nonempty (homology f₂ g₂ w ≅ 0) [PROOFSTEP] suffices w₂ : f₂ ≫ g₂ = 0 [GOAL] case intro.intro V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left h : Exact f₁ g₁ w₁ : f₁ ≫ g₁ = 0 i : homology f₁ g₁ w₁ ≅ 0 w₂ : f₂ ≫ g₂ = 0 ⊢ ∃ w, Nonempty (homology f₂ g₂ w ≅ 0) case w₂ V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left h : Exact f₁ g₁ w₁ : f₁ ≫ g₁ = 0 i : homology f₁ g₁ w₁ ≅ 0 ⊢ f₂ ≫ g₂ = 0 [PROOFSTEP] exact ⟨w₂, ⟨(homology.mapIso w₁ w₂ α β p).symm.trans i⟩⟩ [GOAL] case w₂ V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left h : Exact f₁ g₁ w₁ : f₁ ≫ g₁ = 0 i : homology f₁ g₁ w₁ ≅ 0 ⊢ f₂ ≫ g₂ = 0 [PROOFSTEP] rw [← cancel_epi α.hom.left, ← cancel_mono β.inv.right, comp_zero, zero_comp, ← w₁] [GOAL] case w₂ V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left h : Exact f₁ g₁ w₁ : f₁ ≫ g₁ = 0 i : homology f₁ g₁ w₁ ≅ 0 ⊢ (α.hom.left ≫ f₂ ≫ g₂) ≫ β.inv.right = f₁ ≫ g₁ [PROOFSTEP] have eq₁ := β.inv.w [GOAL] case w₂ V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left h : Exact f₁ g₁ w₁ : f₁ ≫ g₁ = 0 i : homology f₁ g₁ w₁ ≅ 0 eq₁ : (𝟭 V).map β.inv.left ≫ (Arrow.mk g₁).hom = (Arrow.mk g₂).hom ≫ (𝟭 V).map β.inv.right ⊢ (α.hom.left ≫ f₂ ≫ g₂) ≫ β.inv.right = f₁ ≫ g₁ [PROOFSTEP] have eq₂ := α.hom.w [GOAL] case w₂ V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left h : Exact f₁ g₁ w₁ : f₁ ≫ g₁ = 0 i : homology f₁ g₁ w₁ ≅ 0 eq₁ : (𝟭 V).map β.inv.left ≫ (Arrow.mk g₁).hom = (Arrow.mk g₂).hom ≫ (𝟭 V).map β.inv.right eq₂ : (𝟭 V).map α.hom.left ≫ (Arrow.mk f₂).hom = (Arrow.mk f₁).hom ≫ (𝟭 V).map α.hom.right ⊢ (α.hom.left ≫ f₂ ≫ g₂) ≫ β.inv.right = f₁ ≫ g₁ [PROOFSTEP] dsimp at eq₁ eq₂ [GOAL] case w₂ V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left h : Exact f₁ g₁ w₁ : f₁ ≫ g₁ = 0 i : homology f₁ g₁ w₁ ≅ 0 eq₁ : β.inv.left ≫ g₁ = g₂ ≫ β.inv.right eq₂ : α.hom.left ≫ f₂ = f₁ ≫ α.hom.right ⊢ (α.hom.left ≫ f₂ ≫ g₂) ≫ β.inv.right = f₁ ≫ g₁ [PROOFSTEP] simp only [Category.assoc, Category.assoc, ← eq₁, reassoc_of% eq₂, p, ← reassoc_of% (Arrow.comp_left β.hom β.inv), β.hom_inv_id, Arrow.id_left, Category.id_comp] [GOAL] V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ α.symm.hom.right = β.symm.hom.left [PROOFSTEP] rw [← cancel_mono α.hom.right] [GOAL] V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ α.symm.hom.right ≫ α.hom.right = β.symm.hom.left ≫ α.hom.right [PROOFSTEP] simp only [Iso.symm_hom, ← Arrow.comp_right, α.inv_hom_id] [GOAL] V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ (𝟙 (Arrow.mk f₂)).right = β.inv.left ≫ α.hom.right [PROOFSTEP] simp only [p, ← Arrow.comp_left, Arrow.id_right, Arrow.id_left, Iso.inv_hom_id] [GOAL] V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V inst✝³ : HasZeroObject V inst✝² : Preadditive V inst✝¹ : HasKernels V inst✝ : HasCokernels V A₁ B₁ C₁ A₂ B₂ C₂ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ 𝟙 (Arrow.mk f₂).right = 𝟙 (Arrow.mk g₂).left [PROOFSTEP] rfl [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A B C : V f : A ⟶ B g : B ⟶ C p : imageSubobject f = kernelSubobject g ⊢ f ≫ g = 0 [PROOFSTEP] suffices Subobject.arrow (imageSubobject f) ≫ g = 0 by rw [← imageSubobject_arrow_comp f, Category.assoc, this, comp_zero] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A B C : V f : A ⟶ B g : B ⟶ C p : imageSubobject f = kernelSubobject g this : Subobject.arrow (imageSubobject f) ≫ g = 0 ⊢ f ≫ g = 0 [PROOFSTEP] rw [← imageSubobject_arrow_comp f, Category.assoc, this, comp_zero] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A B C : V f : A ⟶ B g : B ⟶ C p : imageSubobject f = kernelSubobject g ⊢ Subobject.arrow (imageSubobject f) ≫ g = 0 [PROOFSTEP] rw [p, kernelSubobject_arrow_comp] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A B C : V f : A ⟶ B g : B ⟶ C p : imageSubobject f = kernelSubobject g ⊢ IsIso (imageToKernel f g (_ : f ≫ g = 0)) [PROOFSTEP] refine' ⟨⟨Subobject.ofLE _ _ p.ge, _⟩⟩ [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A B C : V f : A ⟶ B g : B ⟶ C p : imageSubobject f = kernelSubobject g ⊢ imageToKernel f g (_ : f ≫ g = 0) ≫ Subobject.ofLE (kernelSubobject g) (imageSubobject f) (_ : kernelSubobject g ≤ imageSubobject f) = 𝟙 (Subobject.underlying.obj (imageSubobject f)) ∧ Subobject.ofLE (kernelSubobject g) (imageSubobject f) (_ : kernelSubobject g ≤ imageSubobject f) ≫ imageToKernel f g (_ : f ≫ g = 0) = 𝟙 (Subobject.underlying.obj (kernelSubobject g)) [PROOFSTEP] dsimp [imageToKernel] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A B C : V f : A ⟶ B g : B ⟶ C p : imageSubobject f = kernelSubobject g ⊢ Subobject.ofLE (imageSubobject f) (kernelSubobject g) (_ : imageSubobject f ≤ kernelSubobject g) ≫ Subobject.ofLE (kernelSubobject g) (imageSubobject f) (_ : kernelSubobject g ≤ imageSubobject f) = 𝟙 (Subobject.underlying.obj (imageSubobject f)) ∧ Subobject.ofLE (kernelSubobject g) (imageSubobject f) (_ : kernelSubobject g ≤ imageSubobject f) ≫ Subobject.ofLE (imageSubobject f) (kernelSubobject g) (_ : imageSubobject f ≤ kernelSubobject g) = 𝟙 (Subobject.underlying.obj (kernelSubobject g)) [PROOFSTEP] simp only [Subobject.ofLE_comp_ofLE, Subobject.ofLE_refl] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A B C : V f : A ⟶ B g : B ⟶ C p : imageSubobject f = kernelSubobject g ⊢ Epi (imageToKernel f g (_ : f ≫ g = 0)) [PROOFSTEP] haveI := imageToKernel_isIso_of_image_eq_kernel f g p [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A B C : V f : A ⟶ B g : B ⟶ C p : imageSubobject f = kernelSubobject g this : IsIso (imageToKernel f g (_ : f ≫ g = 0)) ⊢ Epi (imageToKernel f g (_ : f ≫ g = 0)) [PROOFSTEP] infer_instance [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V i : B ≅ D h : Exact f g ⊢ Exact (f ≫ i.hom) (i.inv ≫ g) [PROOFSTEP] refine' ⟨by simp [h.w], _⟩ [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V i : B ≅ D h : Exact f g ⊢ (f ≫ i.hom) ≫ i.inv ≫ g = 0 [PROOFSTEP] simp [h.w] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V i : B ≅ D h : Exact f g ⊢ Epi (imageToKernel (f ≫ i.hom) (i.inv ≫ g) (_ : (f ≫ i.hom) ≫ i.inv ≫ g = 0)) [PROOFSTEP] rw [imageToKernel_comp_hom_inv_comp] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V i : B ≅ D h : Exact f g ⊢ Epi ((imageSubobjectCompIso f i.hom).hom ≫ imageToKernel f g (_ : f ≫ g = 0) ≫ (kernelSubobjectIsoComp i.inv g).inv) [PROOFSTEP] haveI := h.epi [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V i : B ≅ D h : Exact f g this : Epi (imageToKernel f g (_ : f ≫ g = 0)) ⊢ Epi ((imageSubobjectCompIso f i.hom).hom ≫ imageToKernel f g (_ : f ≫ g = 0) ≫ (kernelSubobjectIsoComp i.inv g).inv) [PROOFSTEP] infer_instance [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V i : B ≅ D h : Exact (f ≫ i.hom) (i.inv ≫ g) ⊢ Exact f g [PROOFSTEP] simpa using exact_comp_inv_hom_comp i h [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V hgh : Exact g h inst✝ : Epi f ⊢ Exact (f ≫ g) h [PROOFSTEP] refine' ⟨by simp [hgh.w], _⟩ [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V hgh : Exact g h inst✝ : Epi f ⊢ (f ≫ g) ≫ h = 0 [PROOFSTEP] simp [hgh.w] [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V hgh : Exact g h inst✝ : Epi f ⊢ Epi (imageToKernel (f ≫ g) h (_ : (f ≫ g) ≫ h = 0)) [PROOFSTEP] rw [imageToKernel_comp_left] [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V hgh : Exact g h inst✝ : Epi f ⊢ Epi (Subobject.ofLE (imageSubobject (f ≫ g)) (imageSubobject g) (_ : imageSubobject (f ≫ g) ≤ imageSubobject g) ≫ imageToKernel g h ?w) case w V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V hgh : Exact g h inst✝ : Epi f ⊢ g ≫ h = 0 [PROOFSTEP] haveI := hgh.epi [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V hgh : Exact g h inst✝ : Epi f this : Epi (imageToKernel g h (_ : g ≫ h = 0)) ⊢ Epi (Subobject.ofLE (imageSubobject (f ≫ g)) (imageSubobject g) (_ : imageSubobject (f ≫ g) ≤ imageSubobject g) ≫ imageToKernel g h ?w) case w V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V hgh : Exact g h inst✝ : Epi f ⊢ g ≫ h = 0 [PROOFSTEP] infer_instance [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : IsIso f w : Exact (f ≫ g) h ⊢ Exact g h [PROOFSTEP] rw [← IsIso.inv_hom_id_assoc f g] [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : IsIso f w : Exact (f ≫ g) h ⊢ Exact (inv f ≫ f ≫ g) h [PROOFSTEP] exact exact_epi_comp w [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V hfg : Exact f g inst✝ : Mono h ⊢ Exact f (g ≫ h) [PROOFSTEP] refine' ⟨by simp [hfg.w_assoc], _⟩ [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V hfg : Exact f g inst✝ : Mono h ⊢ f ≫ g ≫ h = 0 [PROOFSTEP] simp [hfg.w_assoc] [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V hfg : Exact f g inst✝ : Mono h ⊢ Epi (imageToKernel f (g ≫ h) (_ : f ≫ g ≫ h = 0)) [PROOFSTEP] rw [imageToKernel_comp_right f g h hfg.w] [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V hfg : Exact f g inst✝ : Mono h ⊢ Epi (imageToKernel f g (_ : f ≫ g = 0) ≫ Subobject.ofLE (kernelSubobject g) (kernelSubobject (g ≫ h)) (_ : kernelSubobject g ≤ kernelSubobject (g ≫ h))) [PROOFSTEP] haveI := hfg.epi [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V hfg : Exact f g inst✝ : Mono h this : Epi (imageToKernel f g (_ : f ≫ g = 0)) ⊢ Epi (imageToKernel f g (_ : f ≫ g = 0) ≫ Subobject.ofLE (kernelSubobject g) (kernelSubobject (g ≫ h)) (_ : kernelSubobject g ≤ kernelSubobject (g ≫ h))) [PROOFSTEP] infer_instance [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : Mono h ⊢ Exact f (g ≫ h) ↔ Exact f g [PROOFSTEP] refine' ⟨fun hfg => ⟨zero_of_comp_mono h (by rw [Category.assoc, hfg.1]), _⟩, fun h => exact_comp_mono h⟩ [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : Mono h hfg : Exact f (g ≫ h) ⊢ (f ≫ g) ≫ h = 0 [PROOFSTEP] rw [Category.assoc, hfg.1] [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : Mono h hfg : Exact f (g ≫ h) ⊢ Epi (imageToKernel f g (_ : f ≫ g = 0)) [PROOFSTEP] rw [← (Iso.eq_comp_inv _).1 (imageToKernel_comp_mono _ _ h hfg.1)] [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : Mono h hfg : Exact f (g ≫ h) ⊢ Epi (imageToKernel f (g ≫ h) (_ : f ≫ g ≫ h = 0) ≫ (Subobject.isoOfEq (kernelSubobject (g ≫ h)) (kernelSubobject g) (_ : kernelSubobject (g ≫ h) = kernelSubobject g)).hom) [PROOFSTEP] haveI := hfg.2 [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : Mono h hfg : Exact f (g ≫ h) this : Epi (imageToKernel f (g ≫ h) (_ : f ≫ g ≫ h = 0)) ⊢ Epi (imageToKernel f (g ≫ h) (_ : f ≫ g ≫ h = 0) ≫ (Subobject.isoOfEq (kernelSubobject (g ≫ h)) (kernelSubobject g) (_ : kernelSubobject (g ≫ h) = kernelSubobject g)).hom) [PROOFSTEP] infer_instance [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V ⊢ Exact (Subobject.arrow (kernelSubobject f)) f [PROOFSTEP] refine' ⟨by simp, _⟩ [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V ⊢ Subobject.arrow (kernelSubobject f) ≫ f = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V ⊢ Epi (imageToKernel (Subobject.arrow (kernelSubobject f)) f (_ : Subobject.arrow (kernelSubobject f) ≫ f = 0)) [PROOFSTEP] refine' @IsIso.epi_of_iso _ _ _ _ _ ?_ [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V ⊢ IsIso (imageToKernel (Subobject.arrow (kernelSubobject f)) f (_ : Subobject.arrow (kernelSubobject f) ≫ f = 0)) [PROOFSTEP] exact ⟨⟨factorThruImageSubobject _, by aesop_cat, by aesop_cat⟩⟩ [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V ⊢ imageToKernel (Subobject.arrow (kernelSubobject f)) f (_ : Subobject.arrow (kernelSubobject f) ≫ f = 0) ≫ factorThruImageSubobject (Subobject.arrow (kernelSubobject f)) = 𝟙 (Subobject.underlying.obj (imageSubobject (Subobject.arrow (kernelSubobject f)))) [PROOFSTEP] aesop_cat [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V ⊢ factorThruImageSubobject (Subobject.arrow (kernelSubobject f)) ≫ imageToKernel (Subobject.arrow (kernelSubobject f)) f (_ : Subobject.arrow (kernelSubobject f) ≫ f = 0) = 𝟙 (Subobject.underlying.obj (kernelSubobject f)) [PROOFSTEP] aesop_cat [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V ⊢ Exact (kernel.ι f) f [PROOFSTEP] rw [← kernelSubobject_arrow', exact_iso_comp] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V ⊢ Exact (Subobject.arrow (kernelSubobject f)) f [PROOFSTEP] exact exact_kernelSubobject_arrow [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V h : Exact f g ⊢ Epi (factorThruKernelSubobject g f (_ : f ≫ g = 0)) [PROOFSTEP] rw [← factorThruImageSubobject_comp_imageToKernel] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V h : Exact f g ⊢ Epi (factorThruImageSubobject f ≫ imageToKernel f g (_ : f ≫ g = 0)) [PROOFSTEP] haveI := h.epi [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V h : Exact f g this : Epi (imageToKernel f g (_ : f ≫ g = 0)) ⊢ Epi (factorThruImageSubobject f ≫ imageToKernel f g (_ : f ≫ g = 0)) [PROOFSTEP] apply epi_comp [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V h : Exact f g ⊢ Epi (kernel.lift g f (_ : f ≫ g = 0)) [PROOFSTEP] rw [← factorThruKernelSubobject_comp_kernelSubobjectIso] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V h : Exact f g ⊢ Epi (factorThruKernelSubobject g f (_ : f ≫ g = 0) ≫ (kernelSubobjectIso g).hom) [PROOFSTEP] haveI := h.epi_factorThruKernelSubobject [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V h : Exact f g this : Epi (factorThruKernelSubobject g f (_ : f ≫ g = 0)) ⊢ Epi (factorThruKernelSubobject g f (_ : f ≫ g = 0) ≫ (kernelSubobjectIso g).hom) [PROOFSTEP] apply epi_comp [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V h : Exact 0 g ⊢ Subobject.arrow (kernelSubobject g) = 0 [PROOFSTEP] haveI := h.epi [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V h : Exact 0 g this : Epi (imageToKernel 0 g (_ : 0 ≫ g = 0)) ⊢ Subobject.arrow (kernelSubobject g) = 0 [PROOFSTEP] rw [← cancel_epi (imageToKernel (0 : A ⟶ B) g h.w), ← cancel_epi (factorThruImageSubobject (0 : A ⟶ B))] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V h : Exact 0 g this : Epi (imageToKernel 0 g (_ : 0 ≫ g = 0)) ⊢ factorThruImageSubobject 0 ≫ imageToKernel 0 g (_ : 0 ≫ g = 0) ≫ Subobject.arrow (kernelSubobject g) = factorThruImageSubobject 0 ≫ imageToKernel 0 g (_ : 0 ≫ g = 0) ≫ 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V h : Exact 0 g ⊢ kernel.ι g = 0 [PROOFSTEP] rw [← kernelSubobject_arrow'] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝¹ : HasZeroMorphisms V inst✝ : HasEqualizers V h : Exact 0 g ⊢ (kernelSubobjectIso g).inv ≫ Subobject.arrow (kernelSubobject g) = 0 [PROOFSTEP] simp [kernelSubobject_arrow_eq_zero_of_exact_zero_left A h] [GOAL] V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h : C ⟶ D inst✝³ : HasZeroMorphisms V inst✝² : HasEqualizers V inst✝¹ : HasZeroObject V inst✝ : Mono g ⊢ 0 ≫ g = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : HasCokernels V h : Exact f g ⊢ kernel.ι g ≫ cokernel.π f = 0 [PROOFSTEP] suffices Subobject.arrow (kernelSubobject g) ≫ cokernel.π f = 0 by rw [← kernelSubobject_arrow', Category.assoc, this, comp_zero] [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : HasCokernels V h : Exact f g this : Subobject.arrow (kernelSubobject g) ≫ cokernel.π f = 0 ⊢ kernel.ι g ≫ cokernel.π f = 0 [PROOFSTEP] rw [← kernelSubobject_arrow', Category.assoc, this, comp_zero] [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : HasCokernels V h : Exact f g ⊢ Subobject.arrow (kernelSubobject g) ≫ cokernel.π f = 0 [PROOFSTEP] haveI := h.epi [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : HasCokernels V h : Exact f g this : Epi (imageToKernel f g (_ : f ≫ g = 0)) ⊢ Subobject.arrow (kernelSubobject g) ≫ cokernel.π f = 0 [PROOFSTEP] apply zero_of_epi_comp (imageToKernel f g h.w) _ [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : HasCokernels V h : Exact f g this : Epi (imageToKernel f g (_ : f ≫ g = 0)) ⊢ imageToKernel f g (_ : f ≫ g = 0) ≫ Subobject.arrow (kernelSubobject g) ≫ cokernel.π f = 0 [PROOFSTEP] rw [imageToKernel_arrow_assoc, ← imageSubobject_arrow, Category.assoc, ← Iso.eq_inv_comp] [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : HasCokernels V h : Exact f g this : Epi (imageToKernel f g (_ : f ≫ g = 0)) ⊢ image.ι f ≫ cokernel.π f = (imageSubobjectIso f).inv ≫ 0 [PROOFSTEP] aesop_cat [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B C D : V f : A ⟶ B g : B ⟶ C h✝ : C ⟶ D inst✝² : HasZeroMorphisms V inst✝¹ : HasEqualizers V inst✝ : HasCokernels V h : Exact f g X Y : V ι : X ⟶ B hι : ι ≫ g = 0 π : B ⟶ Y hπ : f ≫ π = 0 ⊢ ι ≫ π = 0 [PROOFSTEP] rw [← kernel.lift_ι _ _ hι, ← cokernel.π_desc _ _ hπ, Category.assoc, kernel_comp_cokernel_assoc _ _ h, zero_comp, comp_zero] [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B C✝ D : V f✝ : A✝ ⟶ B g✝ : B ⟶ C✝ h : C✝ ⟶ D inst✝² : HasZeroObject V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A C : V f : A ⟶ 0 g : 0 ⟶ C ⊢ Exact f g [PROOFSTEP] obtain rfl : f = 0 := by ext [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B C✝ D : V f✝ : A✝ ⟶ B g✝ : B ⟶ C✝ h : C✝ ⟶ D inst✝² : HasZeroObject V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A C : V f : A ⟶ 0 g : 0 ⟶ C ⊢ f = 0 [PROOFSTEP] ext [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B C✝ D : V f : A✝ ⟶ B g✝ : B ⟶ C✝ h : C✝ ⟶ D inst✝² : HasZeroObject V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A C : V g : 0 ⟶ C ⊢ Exact 0 g [PROOFSTEP] obtain rfl : g = 0 := by ext [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B C✝ D : V f : A✝ ⟶ B g✝ : B ⟶ C✝ h : C✝ ⟶ D inst✝² : HasZeroObject V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A C : V g : 0 ⟶ C ⊢ g = 0 [PROOFSTEP] ext [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B C✝ D : V f : A✝ ⟶ B g : B ⟶ C✝ h : C✝ ⟶ D inst✝² : HasZeroObject V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A C : V ⊢ Exact 0 0 [PROOFSTEP] fconstructor [GOAL] case w V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B C✝ D : V f : A✝ ⟶ B g : B ⟶ C✝ h : C✝ ⟶ D inst✝² : HasZeroObject V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A C : V ⊢ 0 ≫ 0 = 0 [PROOFSTEP] simp [GOAL] case epi V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B C✝ D : V f : A✝ ⟶ B g : B ⟶ C✝ h : C✝ ⟶ D inst✝² : HasZeroObject V inst✝¹ : HasZeroMorphisms V inst✝ : HasKernels V A C : V ⊢ Epi (imageToKernel 0 0 (_ : 0 ≫ 0 = 0)) [PROOFSTEP] exact imageToKernel_epi_of_zero_of_mono 0 [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A B✝ C✝ D : V f✝ : A ⟶ B✝ g : B✝ ⟶ C✝ h✝ : C✝ ⟶ D inst✝² : HasZeroObject V inst✝¹ : Preadditive V inst✝ : HasKernels V B C : V f : B ⟶ C h : Exact 0 f ⊢ Epi 0 [PROOFSTEP] simpa using h.epi [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B✝ C D : V f✝ : A✝ ⟶ B✝ g : B✝ ⟶ C h✝ : C ⟶ D inst✝² : HasZeroObject V inst✝¹ : Preadditive V inst✝ : HasEqualizers V A B : V f : A ⟶ B h : Exact f 0 ⊢ Epi f [PROOFSTEP] have e₁ := h.epi [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B✝ C D : V f✝ : A✝ ⟶ B✝ g : B✝ ⟶ C h✝ : C ⟶ D inst✝² : HasZeroObject V inst✝¹ : Preadditive V inst✝ : HasEqualizers V A B : V f : A ⟶ B h : Exact f 0 e₁ : Epi (imageToKernel f 0 (_ : f ≫ 0 = 0)) ⊢ Epi f [PROOFSTEP] rw [imageToKernel_zero_right] at e₁ [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B✝ C D : V f✝ : A✝ ⟶ B✝ g : B✝ ⟶ C h✝ : C ⟶ D inst✝² : HasZeroObject V inst✝¹ : Preadditive V inst✝ : HasEqualizers V A B : V f : A ⟶ B h : Exact f 0 e₁ : Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0))) ⊢ Epi f [PROOFSTEP] have e₂ : Epi (((imageSubobject f).arrow ≫ inv (kernelSubobject 0).arrow) ≫ (kernelSubobject 0).arrow) := @epi_comp _ _ _ _ _ _ e₁ _ _ [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B✝ C D : V f✝ : A✝ ⟶ B✝ g : B✝ ⟶ C h✝ : C ⟶ D inst✝² : HasZeroObject V inst✝¹ : Preadditive V inst✝ : HasEqualizers V A B : V f : A ⟶ B h : Exact f 0 e₁ : Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0))) e₂ : Epi ((Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0))) ≫ Subobject.arrow (kernelSubobject 0)) ⊢ Epi f [PROOFSTEP] rw [Category.assoc, IsIso.inv_hom_id, Category.comp_id] at e₂ [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B✝ C D : V f✝ : A✝ ⟶ B✝ g : B✝ ⟶ C h✝ : C ⟶ D inst✝² : HasZeroObject V inst✝¹ : Preadditive V inst✝ : HasEqualizers V A B : V f : A ⟶ B h : Exact f 0 e₁ : Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0))) e₂ : Epi (Subobject.arrow (imageSubobject f)) ⊢ Epi f [PROOFSTEP] rw [← imageSubobject_arrow] at e₂ [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B✝ C D : V f✝ : A✝ ⟶ B✝ g : B✝ ⟶ C h✝ : C ⟶ D inst✝² : HasZeroObject V inst✝¹ : Preadditive V inst✝ : HasEqualizers V A B : V f : A ⟶ B h : Exact f 0 e₁ : Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0))) e₂ : Epi ((imageSubobjectIso f).hom ≫ image.ι f) ⊢ Epi f [PROOFSTEP] haveI : Epi (image.ι f) := epi_of_epi (imageSubobjectIso f).hom (image.ι f) [GOAL] V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasImages V A✝ B✝ C D : V f✝ : A✝ ⟶ B✝ g : B✝ ⟶ C h✝ : C ⟶ D inst✝² : HasZeroObject V inst✝¹ : Preadditive V inst✝ : HasEqualizers V A B : V f : A ⟶ B h : Exact f 0 e₁ : Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0))) e₂ : Epi ((imageSubobjectIso f).hom ≫ image.ι f) this : Epi (image.ι f) ⊢ Epi f [PROOFSTEP] apply epi_of_epi_image
{"mathlib_filename": "Mathlib.Algebra.Homology.Exact", "llama_tokens": 17300}
[GOAL] G₁ : Type u_1 G₂ : Type u_2 inst✝¹ : Semigroup G₁ inst✝ : Semigroup G₂ x y : G₁ × G₂ ⊢ x ∣ y ↔ x.fst ∣ y.fst ∧ x.snd ∣ y.snd [PROOFSTEP] cases x [GOAL] case mk G₁ : Type u_1 G₂ : Type u_2 inst✝¹ : Semigroup G₁ inst✝ : Semigroup G₂ y : G₁ × G₂ fst✝ : G₁ snd✝ : G₂ ⊢ (fst✝, snd✝) ∣ y ↔ (fst✝, snd✝).fst ∣ y.fst ∧ (fst✝, snd✝).snd ∣ y.snd [PROOFSTEP] cases y [GOAL] case mk.mk G₁ : Type u_1 G₂ : Type u_2 inst✝¹ : Semigroup G₁ inst✝ : Semigroup G₂ fst✝¹ : G₁ snd✝¹ : G₂ fst✝ : G₁ snd✝ : G₂ ⊢ (fst✝¹, snd✝¹) ∣ (fst✝, snd✝) ↔ (fst✝¹, snd✝¹).fst ∣ (fst✝, snd✝).fst ∧ (fst✝¹, snd✝¹).snd ∣ (fst✝, snd✝).snd [PROOFSTEP] simp only [dvd_def, Prod.exists, Prod.mk_mul_mk, Prod.mk.injEq, exists_and_left, exists_and_right, and_self, true_and]
{"mathlib_filename": "Mathlib.Algebra.Divisibility.Prod", "llama_tokens": 490}
[GOAL] α : Type u_1 inst✝ : Monoid α a b : α h : a = b ⊢ a ∣ b [PROOFSTEP] rw [h] [GOAL] α : Type u_1 inst✝ : CommSemigroup α a b c✝ c : α h : c * a = b ⊢ a * ?m.8269 c h = b [PROOFSTEP] rw [mul_comm] at h [GOAL] α : Type u_1 inst✝ : CommSemigroup α a b c✝ c : α h✝ : c * a = b h : a * c = b ⊢ a * ?m.8269 c h✝ = b [PROOFSTEP] apply h [GOAL] α : Type u_1 inst✝ : CommSemigroup α a b c : α ⊢ (∃ c, b = c * a) → a ∣ b [PROOFSTEP] rintro ⟨c, rfl⟩ [GOAL] case intro α : Type u_1 inst✝ : CommSemigroup α a c✝ c : α ⊢ a ∣ c * a [PROOFSTEP] exact ⟨c, mul_comm _ _⟩ [GOAL] α : Type u_1 inst✝ : CommSemigroup α a b c✝ : α h : a ∣ b c : α ⊢ a ∣ c * b [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u_1 inst✝ : CommSemigroup α a b c✝ : α h : a ∣ b c : α ⊢ a ∣ b * c [PROOFSTEP] exact h.mul_right _ [GOAL] α : Type u_1 inst✝ : CommSemigroup α a✝ b c✝ a c e f : α ⊢ a * e * (c * f) = a * c * (e * f) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : CommSemigroup α a b c : α h : a * b ∣ c d : α ceq : c = a * b * d ⊢ b * (a * d) = c [PROOFSTEP] simp [ceq] [GOAL] α : Type u_1 inst✝ : CommMonoid α a✝ b✝ a b : α h : a ∣ b ⊢ a ^ 0 ∣ b ^ 0 [PROOFSTEP] rw [pow_zero, pow_zero] [GOAL] α : Type u_1 inst✝ : CommMonoid α a✝ b✝ a b : α h : a ∣ b n : ℕ ⊢ a ^ (n + 1) ∣ b ^ (n + 1) [PROOFSTEP] rw [pow_succ, pow_succ] [GOAL] α : Type u_1 inst✝ : CommMonoid α a✝ b✝ a b : α h : a ∣ b n : ℕ ⊢ a * a ^ n ∣ b * b ^ n [PROOFSTEP] exact mul_dvd_mul h (pow_dvd_pow_of_dvd h n)
{"mathlib_filename": "Mathlib.Algebra.Divisibility.Basic", "llama_tokens": 862}
[GOAL] α : Type u_1 inst✝ : Monoid α a b : α u : αˣ ⊢ a = ↑u * (↑u⁻¹ * a) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Monoid α a b : α u : αˣ x✝ : a ∣ b * ↑u c : α Eq : b * ↑u = a * c ⊢ b = a * (c * ↑u⁻¹) [PROOFSTEP] rw [← mul_assoc, ← Eq, Units.mul_inv_cancel_right] [GOAL] α : Type u_1 inst✝ : Monoid α a b : α u : αˣ h : a ∣ b ⊢ a * ↑u * ↑u⁻¹ = a [PROOFSTEP] rw [mul_assoc, u.mul_inv, mul_one] [GOAL] α : Type u_1 inst✝ : CommMonoid α a b : α u : αˣ ⊢ a ∣ ↑u * b ↔ a ∣ b [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u_1 inst✝ : CommMonoid α a b : α u : αˣ ⊢ a ∣ b * ↑u ↔ a ∣ b [PROOFSTEP] apply dvd_mul_right [GOAL] α : Type u_1 inst✝ : CommMonoid α a b : α u : αˣ ⊢ ↑u * a ∣ b ↔ a ∣ b [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u_1 inst✝ : CommMonoid α a b : α u : αˣ ⊢ a * ↑u ∣ b ↔ a ∣ b [PROOFSTEP] apply mul_right_dvd [GOAL] α : Type u_1 inst✝ : Monoid α a b u : α hu : IsUnit u ⊢ u ∣ a [PROOFSTEP] rcases hu with ⟨u, rfl⟩ [GOAL] case intro α : Type u_1 inst✝ : Monoid α a b : α u : αˣ ⊢ ↑u ∣ a [PROOFSTEP] apply Units.coe_dvd [GOAL] α : Type u_1 inst✝ : Monoid α a b u : α hu : IsUnit u ⊢ a ∣ b * u ↔ a ∣ b [PROOFSTEP] rcases hu with ⟨u, rfl⟩ [GOAL] case intro α : Type u_1 inst✝ : Monoid α a b : α u : αˣ ⊢ a ∣ b * ↑u ↔ a ∣ b [PROOFSTEP] apply Units.dvd_mul_right [GOAL] α : Type u_1 inst✝ : Monoid α a b u : α hu : IsUnit u ⊢ a * u ∣ b ↔ a ∣ b [PROOFSTEP] rcases hu with ⟨u, rfl⟩ [GOAL] case intro α : Type u_1 inst✝ : Monoid α a b : α u : αˣ ⊢ a * ↑u ∣ b ↔ a ∣ b [PROOFSTEP] apply Units.mul_right_dvd [GOAL] α : Type u_1 inst✝ : CommMonoid α a b u : α hu : IsUnit u ⊢ a ∣ u * b ↔ a ∣ b [PROOFSTEP] rcases hu with ⟨u, rfl⟩ [GOAL] case intro α : Type u_1 inst✝ : CommMonoid α a b : α u : αˣ ⊢ a ∣ ↑u * b ↔ a ∣ b [PROOFSTEP] apply Units.dvd_mul_left [GOAL] α : Type u_1 inst✝ : CommMonoid α a b u : α hu : IsUnit u ⊢ u * a ∣ b ↔ a ∣ b [PROOFSTEP] rcases hu with ⟨u, rfl⟩ [GOAL] case intro α : Type u_1 inst✝ : CommMonoid α a b : α u : αˣ ⊢ ↑u * a ∣ b ↔ a ∣ b [PROOFSTEP] apply Units.mul_left_dvd [GOAL] α : Type u_1 inst✝ : CommMonoid α x : α x✝ : x ∣ 1 y : α h : 1 = x * y ⊢ y * x = 1 [PROOFSTEP] rw [h, mul_comm]
{"mathlib_filename": "Mathlib.Algebra.Divisibility.Units", "llama_tokens": 1235}
[GOAL] 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A✝ B✝ C✝ A' B' C' : 𝒜 f✝ : A✝ ⟶ B✝ g✝ : B✝ ⟶ C✝ f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Preadditive 𝒜 inst✝¹ : HasKernels 𝒜 inst✝ : HasImages 𝒜 A B C : 𝒜 f : A ⟶ B g : B ⟶ C χ : C ⟶ B φ : B ⟶ A hfg : f ≫ g = 0 H : φ ≫ f + g ≫ χ = 𝟙 B ⊢ Epi (imageToKernel f g hfg) [PROOFSTEP] set ψ : (kernelSubobject g : 𝒜) ⟶ imageSubobject f := Subobject.arrow _ ≫ φ ≫ factorThruImageSubobject f [GOAL] 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A✝ B✝ C✝ A' B' C' : 𝒜 f✝ : A✝ ⟶ B✝ g✝ : B✝ ⟶ C✝ f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Preadditive 𝒜 inst✝¹ : HasKernels 𝒜 inst✝ : HasImages 𝒜 A B C : 𝒜 f : A ⟶ B g : B ⟶ C χ : C ⟶ B φ : B ⟶ A hfg : f ≫ g = 0 H : φ ≫ f + g ≫ χ = 𝟙 B ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) := Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f ⊢ Epi (imageToKernel f g hfg) [PROOFSTEP] suffices : ψ ≫ imageToKernel f g hfg = 𝟙 _ [GOAL] 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A✝ B✝ C✝ A' B' C' : 𝒜 f✝ : A✝ ⟶ B✝ g✝ : B✝ ⟶ C✝ f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Preadditive 𝒜 inst✝¹ : HasKernels 𝒜 inst✝ : HasImages 𝒜 A B C : 𝒜 f : A ⟶ B g : B ⟶ C χ : C ⟶ B φ : B ⟶ A hfg : f ≫ g = 0 H : φ ≫ f + g ≫ χ = 𝟙 B ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) := Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f this : ψ ≫ imageToKernel f g hfg = 𝟙 (Subobject.underlying.obj (kernelSubobject g)) ⊢ Epi (imageToKernel f g hfg) [PROOFSTEP] exact epi_of_epi_fac this [GOAL] case this 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A✝ B✝ C✝ A' B' C' : 𝒜 f✝ : A✝ ⟶ B✝ g✝ : B✝ ⟶ C✝ f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Preadditive 𝒜 inst✝¹ : HasKernels 𝒜 inst✝ : HasImages 𝒜 A B C : 𝒜 f : A ⟶ B g : B ⟶ C χ : C ⟶ B φ : B ⟶ A hfg : f ≫ g = 0 H : φ ≫ f + g ≫ χ = 𝟙 B ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) := Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f ⊢ ψ ≫ imageToKernel f g hfg = 𝟙 (Subobject.underlying.obj (kernelSubobject g)) [PROOFSTEP] rw [← cancel_mono (Subobject.arrow _)] [GOAL] case this 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A✝ B✝ C✝ A' B' C' : 𝒜 f✝ : A✝ ⟶ B✝ g✝ : B✝ ⟶ C✝ f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Preadditive 𝒜 inst✝¹ : HasKernels 𝒜 inst✝ : HasImages 𝒜 A B C : 𝒜 f : A ⟶ B g : B ⟶ C χ : C ⟶ B φ : B ⟶ A hfg : f ≫ g = 0 H : φ ≫ f + g ≫ χ = 𝟙 B ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) := Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f ⊢ (ψ ≫ imageToKernel f g hfg) ≫ Subobject.arrow (kernelSubobject g) = 𝟙 (Subobject.underlying.obj (kernelSubobject g)) ≫ Subobject.arrow (kernelSubobject g) [PROOFSTEP] simp only [imageToKernel_arrow, imageSubobject_arrow_comp, Category.id_comp, Category.assoc] [GOAL] case this 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A✝ B✝ C✝ A' B' C' : 𝒜 f✝ : A✝ ⟶ B✝ g✝ : B✝ ⟶ C✝ f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Preadditive 𝒜 inst✝¹ : HasKernels 𝒜 inst✝ : HasImages 𝒜 A B C : 𝒜 f : A ⟶ B g : B ⟶ C χ : C ⟶ B φ : B ⟶ A hfg : f ≫ g = 0 H : φ ≫ f + g ≫ χ = 𝟙 B ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) := Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f ⊢ Subobject.arrow (kernelSubobject g) ≫ φ ≫ f = Subobject.arrow (kernelSubobject g) [PROOFSTEP] calc (kernelSubobject g).arrow ≫ φ ≫ f = (kernelSubobject g).arrow ≫ 𝟙 B := by rw [← H, Preadditive.comp_add] simp only [add_zero, zero_comp, kernelSubobject_arrow_comp_assoc] _ = (kernelSubobject g).arrow := Category.comp_id _ [GOAL] 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A✝ B✝ C✝ A' B' C' : 𝒜 f✝ : A✝ ⟶ B✝ g✝ : B✝ ⟶ C✝ f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Preadditive 𝒜 inst✝¹ : HasKernels 𝒜 inst✝ : HasImages 𝒜 A B C : 𝒜 f : A ⟶ B g : B ⟶ C χ : C ⟶ B φ : B ⟶ A hfg : f ≫ g = 0 H : φ ≫ f + g ≫ χ = 𝟙 B ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) := Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f ⊢ Subobject.arrow (kernelSubobject g) ≫ φ ≫ f = Subobject.arrow (kernelSubobject g) ≫ 𝟙 B [PROOFSTEP] rw [← H, Preadditive.comp_add] [GOAL] 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A✝ B✝ C✝ A' B' C' : 𝒜 f✝ : A✝ ⟶ B✝ g✝ : B✝ ⟶ C✝ f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Preadditive 𝒜 inst✝¹ : HasKernels 𝒜 inst✝ : HasImages 𝒜 A B C : 𝒜 f : A ⟶ B g : B ⟶ C χ : C ⟶ B φ : B ⟶ A hfg : f ≫ g = 0 H : φ ≫ f + g ≫ χ = 𝟙 B ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) := Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f ⊢ Subobject.arrow (kernelSubobject g) ≫ φ ≫ f = Subobject.arrow (kernelSubobject g) ≫ φ ≫ f + Subobject.arrow (kernelSubobject g) ≫ g ≫ χ [PROOFSTEP] simp only [add_zero, zero_comp, kernelSubobject_arrow_comp_assoc] [GOAL] 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Preadditive 𝒜 inst✝¹ : HasKernels 𝒜 inst✝ : HasImages 𝒜 h : Split f g ⊢ Exact f g [PROOFSTEP] obtain ⟨φ, χ, -, -, h1, -, h2⟩ := h [GOAL] case mk.intro.intro.intro.intro.intro.intro 𝒜 : Type u_1 inst✝³ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : Preadditive 𝒜 inst✝¹ : HasKernels 𝒜 inst✝ : HasImages 𝒜 φ : B ⟶ A χ : C ⟶ B h1 : f ≫ g = 0 h2 : φ ≫ f + g ≫ χ = 𝟙 B ⊢ Exact f g [PROOFSTEP] exact exact_of_split h1 h2 [GOAL] 𝒜✝ : Type u_1 inst✝⁸ : Category.{?u.22622, u_1} 𝒜✝ A✝ B✝ C✝ A' B' C' : 𝒜✝ f✝ : A✝ ⟶ B✝ g✝ : B✝ ⟶ C✝ f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁷ : Preadditive 𝒜✝ inst✝⁶ : HasKernels 𝒜✝ inst✝⁵ : HasImages 𝒜✝ 𝒜 : Type u_2 ℬ : Type u_3 inst✝⁴ : Category.{u_4, u_2} 𝒜 inst✝³ : Preadditive 𝒜 inst✝² : Category.{u_5, u_3} ℬ inst✝¹ : Preadditive ℬ F : 𝒜 ⥤ ℬ inst✝ : Functor.Additive F A B C : 𝒜 f : A ⟶ B g : B ⟶ C h : Split f g ⊢ Split (F.map f) (F.map g) [PROOFSTEP] obtain ⟨φ, χ, h1, h2, h3, h4, h5⟩ := h [GOAL] case mk.intro.intro.intro.intro.intro.intro 𝒜✝ : Type u_1 inst✝⁸ : Category.{?u.22622, u_1} 𝒜✝ A✝ B✝ C✝ A' B' C' : 𝒜✝ f✝ : A✝ ⟶ B✝ g✝ : B✝ ⟶ C✝ f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁷ : Preadditive 𝒜✝ inst✝⁶ : HasKernels 𝒜✝ inst✝⁵ : HasImages 𝒜✝ 𝒜 : Type u_2 ℬ : Type u_3 inst✝⁴ : Category.{u_4, u_2} 𝒜 inst✝³ : Preadditive 𝒜 inst✝² : Category.{u_5, u_3} ℬ inst✝¹ : Preadditive ℬ F : 𝒜 ⥤ ℬ inst✝ : Functor.Additive F A B C : 𝒜 f : A ⟶ B g : B ⟶ C φ : B ⟶ A χ : C ⟶ B h1 : f ≫ φ = 𝟙 A h2 : χ ≫ g = 𝟙 C h3 : f ≫ g = 0 h4 : χ ≫ φ = 0 h5 : φ ≫ f + g ≫ χ = 𝟙 B ⊢ Split (F.map f) (F.map g) [PROOFSTEP] refine ⟨⟨F.map φ, F.map χ, ?_⟩⟩ [GOAL] case mk.intro.intro.intro.intro.intro.intro 𝒜✝ : Type u_1 inst✝⁸ : Category.{?u.22622, u_1} 𝒜✝ A✝ B✝ C✝ A' B' C' : 𝒜✝ f✝ : A✝ ⟶ B✝ g✝ : B✝ ⟶ C✝ f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁷ : Preadditive 𝒜✝ inst✝⁶ : HasKernels 𝒜✝ inst✝⁵ : HasImages 𝒜✝ 𝒜 : Type u_2 ℬ : Type u_3 inst✝⁴ : Category.{u_4, u_2} 𝒜 inst✝³ : Preadditive 𝒜 inst✝² : Category.{u_5, u_3} ℬ inst✝¹ : Preadditive ℬ F : 𝒜 ⥤ ℬ inst✝ : Functor.Additive F A B C : 𝒜 f : A ⟶ B g : B ⟶ C φ : B ⟶ A χ : C ⟶ B h1 : f ≫ φ = 𝟙 A h2 : χ ≫ g = 𝟙 C h3 : f ≫ g = 0 h4 : χ ≫ φ = 0 h5 : φ ≫ f + g ≫ χ = 𝟙 B ⊢ F.map f ≫ F.map φ = 𝟙 (F.obj A) ∧ F.map χ ≫ F.map g = 𝟙 (F.obj C) ∧ F.map f ≫ F.map g = 0 ∧ F.map χ ≫ F.map φ = 0 ∧ F.map φ ≫ F.map f + F.map g ≫ F.map χ = 𝟙 (F.obj B) [PROOFSTEP] simp only [← F.map_comp, ← F.map_id] [GOAL] case mk.intro.intro.intro.intro.intro.intro 𝒜✝ : Type u_1 inst✝⁸ : Category.{?u.22622, u_1} 𝒜✝ A✝ B✝ C✝ A' B' C' : 𝒜✝ f✝ : A✝ ⟶ B✝ g✝ : B✝ ⟶ C✝ f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁷ : Preadditive 𝒜✝ inst✝⁶ : HasKernels 𝒜✝ inst✝⁵ : HasImages 𝒜✝ 𝒜 : Type u_2 ℬ : Type u_3 inst✝⁴ : Category.{u_4, u_2} 𝒜 inst✝³ : Preadditive 𝒜 inst✝² : Category.{u_5, u_3} ℬ inst✝¹ : Preadditive ℬ F : 𝒜 ⥤ ℬ inst✝ : Functor.Additive F A B C : 𝒜 f : A ⟶ B g : B ⟶ C φ : B ⟶ A χ : C ⟶ B h1 : f ≫ φ = 𝟙 A h2 : χ ≫ g = 𝟙 C h3 : f ≫ g = 0 h4 : χ ≫ φ = 0 h5 : φ ≫ f + g ≫ χ = 𝟙 B ⊢ F.map (f ≫ φ) = F.map (𝟙 A) ∧ F.map (χ ≫ g) = F.map (𝟙 C) ∧ F.map (f ≫ g) = 0 ∧ F.map (χ ≫ φ) = 0 ∧ F.map (φ ≫ f) + F.map (g ≫ χ) = F.map (𝟙 B) [PROOFSTEP] rw [← F.map_add] -- porting note: `simp only` fails to use this lemma [GOAL] case mk.intro.intro.intro.intro.intro.intro 𝒜✝ : Type u_1 inst✝⁸ : Category.{?u.22622, u_1} 𝒜✝ A✝ B✝ C✝ A' B' C' : 𝒜✝ f✝ : A✝ ⟶ B✝ g✝ : B✝ ⟶ C✝ f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁷ : Preadditive 𝒜✝ inst✝⁶ : HasKernels 𝒜✝ inst✝⁵ : HasImages 𝒜✝ 𝒜 : Type u_2 ℬ : Type u_3 inst✝⁴ : Category.{u_4, u_2} 𝒜 inst✝³ : Preadditive 𝒜 inst✝² : Category.{u_5, u_3} ℬ inst✝¹ : Preadditive ℬ F : 𝒜 ⥤ ℬ inst✝ : Functor.Additive F A B C : 𝒜 f : A ⟶ B g : B ⟶ C φ : B ⟶ A χ : C ⟶ B h1 : f ≫ φ = 𝟙 A h2 : χ ≫ g = 𝟙 C h3 : f ≫ g = 0 h4 : χ ≫ φ = 0 h5 : φ ≫ f + g ≫ χ = 𝟙 B ⊢ F.map (f ≫ φ) = F.map (𝟙 A) ∧ F.map (χ ≫ g) = F.map (𝟙 C) ∧ F.map (f ≫ g) = 0 ∧ F.map (χ ≫ φ) = 0 ∧ F.map (φ ≫ f + g ≫ χ) = F.map (𝟙 B) [PROOFSTEP] simp only [F.map_zero, *, true_and] [GOAL] 𝒜 : Type u_1 inst✝² : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : HasZeroMorphisms 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ biprod.inl ≫ h.iso.inv = f [PROOFSTEP] rw [Iso.comp_inv_eq, h.comp_iso_eq_inl] [GOAL] 𝒜 : Type u_1 inst✝² : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : HasZeroMorphisms 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ h.iso.inv ≫ g = biprod.snd [PROOFSTEP] rw [Iso.inv_comp_eq, h.iso_comp_snd_eq] [GOAL] 𝒜 : Type u_1 inst✝² : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : HasZeroMorphisms 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ section h ≫ g = 𝟙 C [PROOFSTEP] simp [Splitting.section] [GOAL] 𝒜 : Type u_1 inst✝² : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : HasZeroMorphisms 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ f ≫ retraction h = 𝟙 A [PROOFSTEP] simp [retraction] [GOAL] 𝒜 : Type u_1 inst✝² : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : HasZeroMorphisms 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ section h ≫ retraction h = 0 [PROOFSTEP] delta Splitting.section retraction [GOAL] 𝒜 : Type u_1 inst✝² : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : HasZeroMorphisms 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ (biprod.inr ≫ h.iso.inv) ≫ h.iso.hom ≫ biprod.fst = 0 [PROOFSTEP] simp [GOAL] 𝒜 : Type u_1 inst✝² : Category.{?u.48802, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : HasZeroMorphisms 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ f ≫ retraction h = 𝟙 A [PROOFSTEP] simp [GOAL] 𝒜 : Type u_1 inst✝² : Category.{?u.49754, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : HasZeroMorphisms 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ section h ≫ g = 𝟙 C [PROOFSTEP] simp [GOAL] 𝒜 : Type u_1 inst✝³ : Category.{?u.54404, u_1} 𝒜 A B C A' B' C' : 𝒜 f✝ : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : HasZeroMorphisms 𝒜 inst✝¹ : HasBinaryBiproducts 𝒜 h : Splitting f✝ g X Y Z : 𝒜 f : X ⟶ Y inst✝ : IsIso f hZ : IsZero Z ⊢ f ≫ ((asIso f).symm ≪≫ isoBiprodZero hZ).hom = biprod.inl [PROOFSTEP] simp [hZ.eq_of_tgt _ 0] [GOAL] 𝒜 : Type u_1 inst✝³ : Category.{?u.54404, u_1} 𝒜 A B C A' B' C' : 𝒜 f✝ : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝² : HasZeroMorphisms 𝒜 inst✝¹ : HasBinaryBiproducts 𝒜 h : Splitting f✝ g X Y Z : 𝒜 f : X ⟶ Y inst✝ : IsIso f hZ : IsZero Z ⊢ ((asIso f).symm ≪≫ isoBiprodZero hZ).hom ≫ biprod.snd = 0 [PROOFSTEP] simp [GOAL] 𝒜 : Type u_1 inst✝² : Category.{?u.60340, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : HasZeroMorphisms 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ Mono (section h) [PROOFSTEP] delta Splitting.section [GOAL] 𝒜 : Type u_1 inst✝² : Category.{?u.60340, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : HasZeroMorphisms 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ Mono (biprod.inr ≫ h.iso.inv) [PROOFSTEP] infer_instance [GOAL] 𝒜 : Type u_1 inst✝² : Category.{?u.61269, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : HasZeroMorphisms 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ Epi (retraction h) [PROOFSTEP] delta retraction [GOAL] 𝒜 : Type u_1 inst✝² : Category.{?u.61269, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : HasZeroMorphisms 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ Epi (h.iso.hom ≫ biprod.fst) [PROOFSTEP] apply epi_comp [GOAL] 𝒜 : Type u_1 inst✝² : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : Preadditive 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ retraction h ≫ f + g ≫ section h = 𝟙 B [PROOFSTEP] delta Splitting.section retraction [GOAL] 𝒜 : Type u_1 inst✝² : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : Preadditive 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ (h.iso.hom ≫ biprod.fst) ≫ f + g ≫ biprod.inr ≫ h.iso.inv = 𝟙 B [PROOFSTEP] rw [← cancel_mono h.iso.hom, ← cancel_epi h.iso.inv] [GOAL] 𝒜 : Type u_1 inst✝² : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : Preadditive 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ h.iso.inv ≫ ((h.iso.hom ≫ biprod.fst) ≫ f + g ≫ biprod.inr ≫ h.iso.inv) ≫ h.iso.hom = h.iso.inv ≫ 𝟙 B ≫ h.iso.hom [PROOFSTEP] simp only [Category.comp_id, Category.id_comp, Category.assoc, Iso.inv_hom_id_assoc, Iso.inv_hom_id, Limits.biprod.total, Preadditive.comp_add, Preadditive.add_comp, Splitting.comp_iso_eq_inl, Splitting.iso_comp_eq_snd_assoc] [GOAL] 𝒜 : Type u_1 inst✝² : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : Preadditive 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h✝ h h' : Splitting f g ⊢ section h' ≫ retraction h = -section h ≫ retraction h' [PROOFSTEP] haveI := h.mono [GOAL] 𝒜 : Type u_1 inst✝² : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : Preadditive 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h✝ h h' : Splitting f g this : Mono f ⊢ section h' ≫ retraction h = -section h ≫ retraction h' [PROOFSTEP] rw [← cancel_mono f] [GOAL] 𝒜 : Type u_1 inst✝² : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : Preadditive 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h✝ h h' : Splitting f g this : Mono f ⊢ (section h' ≫ retraction h) ≫ f = (-section h ≫ retraction h') ≫ f [PROOFSTEP] simp [retraction_ι_eq_id_sub] [GOAL] 𝒜 : Type u_1 inst✝² : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝¹ : Preadditive 𝒜 inst✝ : HasBinaryBiproducts 𝒜 h : Splitting f g ⊢ f ≫ g = 0 [PROOFSTEP] rw [← h.inl_comp_iso_eq, Category.assoc, h.iso_comp_eq_snd, biprod.inl_snd] [GOAL] 𝒜 : Type u_1 inst✝⁶ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁵ : Preadditive 𝒜 inst✝⁴ : HasBinaryBiproducts 𝒜 h : Splitting f g inst✝³ : HasKernels 𝒜 inst✝² : HasImages 𝒜 inst✝¹ : HasZeroObject 𝒜 inst✝ : HasCokernels 𝒜 ⊢ Exact f g [PROOFSTEP] rw [exact_iff_exact_of_iso f g (biprod.inl : A ⟶ A ⊞ C) (biprod.snd : A ⊞ C ⟶ C) _ _ _] [GOAL] 𝒜 : Type u_1 inst✝⁶ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁵ : Preadditive 𝒜 inst✝⁴ : HasBinaryBiproducts 𝒜 h : Splitting f g inst✝³ : HasKernels 𝒜 inst✝² : HasImages 𝒜 inst✝¹ : HasZeroObject 𝒜 inst✝ : HasCokernels 𝒜 ⊢ Exact biprod.inl biprod.snd [PROOFSTEP] exact exact_inl_snd _ _ [GOAL] 𝒜 : Type u_1 inst✝⁶ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁵ : Preadditive 𝒜 inst✝⁴ : HasBinaryBiproducts 𝒜 h : Splitting f g inst✝³ : HasKernels 𝒜 inst✝² : HasImages 𝒜 inst✝¹ : HasZeroObject 𝒜 inst✝ : HasCokernels 𝒜 ⊢ Arrow.mk f ≅ Arrow.mk biprod.inl [PROOFSTEP] refine Arrow.isoMk (Iso.refl _) h.iso ?_ [GOAL] 𝒜 : Type u_1 inst✝⁶ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁵ : Preadditive 𝒜 inst✝⁴ : HasBinaryBiproducts 𝒜 h : Splitting f g inst✝³ : HasKernels 𝒜 inst✝² : HasImages 𝒜 inst✝¹ : HasZeroObject 𝒜 inst✝ : HasCokernels 𝒜 ⊢ (Iso.refl (Arrow.mk f).left).hom ≫ (Arrow.mk biprod.inl).hom = (Arrow.mk f).hom ≫ h.iso.hom [PROOFSTEP] simp only [Iso.refl_hom, Arrow.mk_hom, Category.id_comp, comp_iso_eq_inl] [GOAL] 𝒜 : Type u_1 inst✝⁶ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁵ : Preadditive 𝒜 inst✝⁴ : HasBinaryBiproducts 𝒜 h : Splitting f g inst✝³ : HasKernels 𝒜 inst✝² : HasImages 𝒜 inst✝¹ : HasZeroObject 𝒜 inst✝ : HasCokernels 𝒜 ⊢ biprod.inl = biprod.inl [PROOFSTEP] rfl [GOAL] 𝒜 : Type u_1 inst✝⁶ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁵ : Preadditive 𝒜 inst✝⁴ : HasBinaryBiproducts 𝒜 h : Splitting f g inst✝³ : HasKernels 𝒜 inst✝² : HasImages 𝒜 inst✝¹ : HasZeroObject 𝒜 inst✝ : HasCokernels 𝒜 ⊢ Arrow.mk g ≅ Arrow.mk biprod.snd [PROOFSTEP] refine Arrow.isoMk h.iso (Iso.refl _) ?_ [GOAL] 𝒜 : Type u_1 inst✝⁶ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁵ : Preadditive 𝒜 inst✝⁴ : HasBinaryBiproducts 𝒜 h : Splitting f g inst✝³ : HasKernels 𝒜 inst✝² : HasImages 𝒜 inst✝¹ : HasZeroObject 𝒜 inst✝ : HasCokernels 𝒜 ⊢ h.iso.hom ≫ (Arrow.mk biprod.snd).hom = (Arrow.mk g).hom ≫ (Iso.refl (Arrow.mk g).right).hom [PROOFSTEP] dsimp [GOAL] 𝒜 : Type u_1 inst✝⁶ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁵ : Preadditive 𝒜 inst✝⁴ : HasBinaryBiproducts 𝒜 h : Splitting f g inst✝³ : HasKernels 𝒜 inst✝² : HasImages 𝒜 inst✝¹ : HasZeroObject 𝒜 inst✝ : HasCokernels 𝒜 ⊢ h.iso.hom ≫ biprod.snd = g ≫ 𝟙 C [PROOFSTEP] simp [GOAL] 𝒜 : Type u_1 inst✝⁶ : Category.{u_2, u_1} 𝒜 A B C A' B' C' : 𝒜 f : A ⟶ B g : B ⟶ C f' : A' ⟶ B' g' : B' ⟶ C' inst✝⁵ : Preadditive 𝒜 inst✝⁴ : HasBinaryBiproducts 𝒜 h : Splitting f g inst✝³ : HasKernels 𝒜 inst✝² : HasImages 𝒜 inst✝¹ : HasZeroObject 𝒜 inst✝ : HasCokernels 𝒜 ⊢ (Arrow.isoMk (Iso.refl (Arrow.mk f).left) h.iso).hom.right = (Arrow.isoMk h.iso (Iso.refl (Arrow.mk g).right)).hom.left [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Homology.ShortExact.Preadditive", "llama_tokens": 11897}
[GOAL] M : Type u_1 N : Type u_2 inst✝¹ : CommMonoid M inst✝ : AddCommMonoid N n : ℕ f : ℕ × ℕ → M ⊢ ∏ p in antidiagonal (n + 1), f p = f (0, n + 1) * ∏ p in antidiagonal n, f (p.fst + 1, p.snd) [PROOFSTEP] rw [antidiagonal_succ, prod_cons, prod_map] [GOAL] M : Type u_1 N : Type u_2 inst✝¹ : CommMonoid M inst✝ : AddCommMonoid N n : ℕ f : ℕ × ℕ → M ⊢ f (0, n + 1) * ∏ x in antidiagonal n, f (↑(Function.Embedding.prodMap { toFun := Nat.succ, inj' := Nat.succ_injective } (Function.Embedding.refl ℕ)) x) = f (0, n + 1) * ∏ p in antidiagonal n, f (p.fst + 1, p.snd) [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 inst✝¹ : CommMonoid M inst✝ : AddCommMonoid N n : ℕ f : ℕ × ℕ → M ⊢ ∏ p in antidiagonal n, f (Prod.swap p) = ∏ p in antidiagonal n, f p [PROOFSTEP] conv_lhs => rw [← map_swap_antidiagonal, Finset.prod_map] [GOAL] M : Type u_1 N : Type u_2 inst✝¹ : CommMonoid M inst✝ : AddCommMonoid N n : ℕ f : ℕ × ℕ → M | ∏ p in antidiagonal n, f (Prod.swap p) [PROOFSTEP] rw [← map_swap_antidiagonal, Finset.prod_map] [GOAL] M : Type u_1 N : Type u_2 inst✝¹ : CommMonoid M inst✝ : AddCommMonoid N n : ℕ f : ℕ × ℕ → M | ∏ p in antidiagonal n, f (Prod.swap p) [PROOFSTEP] rw [← map_swap_antidiagonal, Finset.prod_map] [GOAL] M : Type u_1 N : Type u_2 inst✝¹ : CommMonoid M inst✝ : AddCommMonoid N n : ℕ f : ℕ × ℕ → M | ∏ p in antidiagonal n, f (Prod.swap p) [PROOFSTEP] rw [← map_swap_antidiagonal, Finset.prod_map] [GOAL] M : Type u_1 N : Type u_2 inst✝¹ : CommMonoid M inst✝ : AddCommMonoid N n : ℕ f : ℕ × ℕ → M ⊢ ∏ p in antidiagonal (n + 1), f p = f (n + 1, 0) * ∏ p in antidiagonal n, f (p.fst, p.snd + 1) [PROOFSTEP] rw [← prod_antidiagonal_swap, prod_antidiagonal_succ, ← prod_antidiagonal_swap] [GOAL] M : Type u_1 N : Type u_2 inst✝¹ : CommMonoid M inst✝ : AddCommMonoid N n : ℕ f : ℕ × ℕ → M ⊢ f (Prod.swap (0, n + 1)) * ∏ p in antidiagonal n, f (Prod.swap ((Prod.swap p).fst + 1, (Prod.swap p).snd)) = f (n + 1, 0) * ∏ p in antidiagonal n, f (p.fst, p.snd + 1) [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 inst✝¹ : CommMonoid M inst✝ : AddCommMonoid N n : ℕ f : ℕ × ℕ → ℕ → M p : ℕ × ℕ hp : p ∈ antidiagonal n ⊢ f p n = f p (p.fst + p.snd) [PROOFSTEP] rw [Nat.mem_antidiagonal.1 hp]
{"mathlib_filename": "Mathlib.Algebra.BigOperators.NatAntidiagonal", "llama_tokens": 1224}
[GOAL] α : Type u_1 M : Type u_2 inst✝ : CommMonoid M f : Option α → M s : Finset α ⊢ ∏ x in ↑insertNone s, f x = f none * ∏ x in s, f (some x) [PROOFSTEP] simp [insertNone] [GOAL] α : Type u_1 M : Type u_2 inst✝ : CommMonoid M f : α → M s : Finset (Option α) ⊢ ∏ x in ↑eraseNone s, f x = ∏ x in s, Option.elim' 1 f x [PROOFSTEP] classical calc ∏ x in eraseNone s, f x = ∏ x in (eraseNone s).map Embedding.some, Option.elim' 1 f x := (prod_map (eraseNone s) Embedding.some <| Option.elim' 1 f).symm _ = ∏ x in s.erase none, Option.elim' 1 f x := by rw [map_some_eraseNone] _ = ∏ x in s, Option.elim' 1 f x := prod_erase _ rfl [GOAL] α : Type u_1 M : Type u_2 inst✝ : CommMonoid M f : α → M s : Finset (Option α) ⊢ ∏ x in ↑eraseNone s, f x = ∏ x in s, Option.elim' 1 f x [PROOFSTEP] calc ∏ x in eraseNone s, f x = ∏ x in (eraseNone s).map Embedding.some, Option.elim' 1 f x := (prod_map (eraseNone s) Embedding.some <| Option.elim' 1 f).symm _ = ∏ x in s.erase none, Option.elim' 1 f x := by rw [map_some_eraseNone] _ = ∏ x in s, Option.elim' 1 f x := prod_erase _ rfl [GOAL] α : Type u_1 M : Type u_2 inst✝ : CommMonoid M f : α → M s : Finset (Option α) ⊢ ∏ x in map Embedding.some (↑eraseNone s), Option.elim' 1 f x = ∏ x in erase s none, Option.elim' 1 f x [PROOFSTEP] rw [map_some_eraseNone]
{"mathlib_filename": "Mathlib.Algebra.BigOperators.Option", "llama_tokens": 665}
[GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J ⊢ (IsLimit.lift h₁ (π₁.mapCone s) ≫ c.pt.f) ≫ NatTrans.app (π₂.mapCone c).π j = (s.pt.f ≫ IsLimit.lift h₂ (π₂.mapCone s)) ≫ NatTrans.app (π₂.mapCone c).π j [PROOFSTEP] have eq₁ := h₁.fac (π₁.mapCone s) [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J eq₁ : ∀ (j : J), IsLimit.lift h₁ (π₁.mapCone s) ≫ NatTrans.app (π₁.mapCone c).π j = NatTrans.app (π₁.mapCone s).π j ⊢ (IsLimit.lift h₁ (π₁.mapCone s) ≫ c.pt.f) ≫ NatTrans.app (π₂.mapCone c).π j = (s.pt.f ≫ IsLimit.lift h₂ (π₂.mapCone s)) ≫ NatTrans.app (π₂.mapCone c).π j [PROOFSTEP] have eq₂ := h₂.fac (π₂.mapCone s) [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J eq₁ : ∀ (j : J), IsLimit.lift h₁ (π₁.mapCone s) ≫ NatTrans.app (π₁.mapCone c).π j = NatTrans.app (π₁.mapCone s).π j eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j ⊢ (IsLimit.lift h₁ (π₁.mapCone s) ≫ c.pt.f) ≫ NatTrans.app (π₂.mapCone c).π j = (s.pt.f ≫ IsLimit.lift h₂ (π₂.mapCone s)) ≫ NatTrans.app (π₂.mapCone c).π j [PROOFSTEP] have eq₁₂ := fun j => (c.π.app j).comm₁₂ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J eq₁ : ∀ (j : J), IsLimit.lift h₁ (π₁.mapCone s) ≫ NatTrans.app (π₁.mapCone c).π j = NatTrans.app (π₁.mapCone s).π j eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j eq₁₂ : ∀ (j : J), (NatTrans.app c.π j).τ₁ ≫ (F.obj j).f = (((Functor.const J).obj c.pt).obj j).f ≫ (NatTrans.app c.π j).τ₂ ⊢ (IsLimit.lift h₁ (π₁.mapCone s) ≫ c.pt.f) ≫ NatTrans.app (π₂.mapCone c).π j = (s.pt.f ≫ IsLimit.lift h₂ (π₂.mapCone s)) ≫ NatTrans.app (π₂.mapCone c).π j [PROOFSTEP] have eq₁₂' := fun j => (s.π.app j).comm₁₂ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J eq₁ : ∀ (j : J), IsLimit.lift h₁ (π₁.mapCone s) ≫ NatTrans.app (π₁.mapCone c).π j = NatTrans.app (π₁.mapCone s).π j eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j eq₁₂ : ∀ (j : J), (NatTrans.app c.π j).τ₁ ≫ (F.obj j).f = (((Functor.const J).obj c.pt).obj j).f ≫ (NatTrans.app c.π j).τ₂ eq₁₂' : ∀ (j : J), (NatTrans.app s.π j).τ₁ ≫ (F.obj j).f = (((Functor.const J).obj s.pt).obj j).f ≫ (NatTrans.app s.π j).τ₂ ⊢ (IsLimit.lift h₁ (π₁.mapCone s) ≫ c.pt.f) ≫ NatTrans.app (π₂.mapCone c).π j = (s.pt.f ≫ IsLimit.lift h₂ (π₂.mapCone s)) ≫ NatTrans.app (π₂.mapCone c).π j [PROOFSTEP] dsimp at eq₁ eq₂ eq₁₂ eq₁₂' ⊢ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J eq₁ : ∀ (j : J), IsLimit.lift h₁ (π₁.mapCone s) ≫ (NatTrans.app c.π j).τ₁ = (NatTrans.app s.π j).τ₁ eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ (NatTrans.app c.π j).τ₂ = (NatTrans.app s.π j).τ₂ eq₁₂ : ∀ (j : J), (NatTrans.app c.π j).τ₁ ≫ (F.obj j).f = c.pt.f ≫ (NatTrans.app c.π j).τ₂ eq₁₂' : ∀ (j : J), (NatTrans.app s.π j).τ₁ ≫ (F.obj j).f = s.pt.f ≫ (NatTrans.app s.π j).τ₂ ⊢ (IsLimit.lift h₁ (π₁.mapCone s) ≫ c.pt.f) ≫ (NatTrans.app c.π j).τ₂ = (s.pt.f ≫ IsLimit.lift h₂ (π₂.mapCone s)) ≫ (NatTrans.app c.π j).τ₂ [PROOFSTEP] rw [assoc, assoc, ← eq₁₂, reassoc_of% eq₁, eq₂, eq₁₂'] [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J ⊢ (IsLimit.lift h₂ (π₂.mapCone s) ≫ c.pt.g) ≫ NatTrans.app (π₃.mapCone c).π j = (s.pt.g ≫ IsLimit.lift h₃ (π₃.mapCone s)) ≫ NatTrans.app (π₃.mapCone c).π j [PROOFSTEP] have eq₂ := h₂.fac (π₂.mapCone s) [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j ⊢ (IsLimit.lift h₂ (π₂.mapCone s) ≫ c.pt.g) ≫ NatTrans.app (π₃.mapCone c).π j = (s.pt.g ≫ IsLimit.lift h₃ (π₃.mapCone s)) ≫ NatTrans.app (π₃.mapCone c).π j [PROOFSTEP] have eq₃ := h₃.fac (π₃.mapCone s) [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j eq₃ : ∀ (j : J), IsLimit.lift h₃ (π₃.mapCone s) ≫ NatTrans.app (π₃.mapCone c).π j = NatTrans.app (π₃.mapCone s).π j ⊢ (IsLimit.lift h₂ (π₂.mapCone s) ≫ c.pt.g) ≫ NatTrans.app (π₃.mapCone c).π j = (s.pt.g ≫ IsLimit.lift h₃ (π₃.mapCone s)) ≫ NatTrans.app (π₃.mapCone c).π j [PROOFSTEP] have eq₂₃ := fun j => (c.π.app j).comm₂₃ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j eq₃ : ∀ (j : J), IsLimit.lift h₃ (π₃.mapCone s) ≫ NatTrans.app (π₃.mapCone c).π j = NatTrans.app (π₃.mapCone s).π j eq₂₃ : ∀ (j : J), (NatTrans.app c.π j).τ₂ ≫ (F.obj j).g = (((Functor.const J).obj c.pt).obj j).g ≫ (NatTrans.app c.π j).τ₃ ⊢ (IsLimit.lift h₂ (π₂.mapCone s) ≫ c.pt.g) ≫ NatTrans.app (π₃.mapCone c).π j = (s.pt.g ≫ IsLimit.lift h₃ (π₃.mapCone s)) ≫ NatTrans.app (π₃.mapCone c).π j [PROOFSTEP] have eq₂₃' := fun j => (s.π.app j).comm₂₃ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j eq₃ : ∀ (j : J), IsLimit.lift h₃ (π₃.mapCone s) ≫ NatTrans.app (π₃.mapCone c).π j = NatTrans.app (π₃.mapCone s).π j eq₂₃ : ∀ (j : J), (NatTrans.app c.π j).τ₂ ≫ (F.obj j).g = (((Functor.const J).obj c.pt).obj j).g ≫ (NatTrans.app c.π j).τ₃ eq₂₃' : ∀ (j : J), (NatTrans.app s.π j).τ₂ ≫ (F.obj j).g = (((Functor.const J).obj s.pt).obj j).g ≫ (NatTrans.app s.π j).τ₃ ⊢ (IsLimit.lift h₂ (π₂.mapCone s) ≫ c.pt.g) ≫ NatTrans.app (π₃.mapCone c).π j = (s.pt.g ≫ IsLimit.lift h₃ (π₃.mapCone s)) ≫ NatTrans.app (π₃.mapCone c).π j [PROOFSTEP] dsimp at eq₂ eq₃ eq₂₃ eq₂₃' ⊢ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ (NatTrans.app c.π j).τ₂ = (NatTrans.app s.π j).τ₂ eq₃ : ∀ (j : J), IsLimit.lift h₃ (π₃.mapCone s) ≫ (NatTrans.app c.π j).τ₃ = (NatTrans.app s.π j).τ₃ eq₂₃ : ∀ (j : J), (NatTrans.app c.π j).τ₂ ≫ (F.obj j).g = c.pt.g ≫ (NatTrans.app c.π j).τ₃ eq₂₃' : ∀ (j : J), (NatTrans.app s.π j).τ₂ ≫ (F.obj j).g = s.pt.g ≫ (NatTrans.app s.π j).τ₃ ⊢ (IsLimit.lift h₂ (π₂.mapCone s) ≫ c.pt.g) ≫ (NatTrans.app c.π j).τ₃ = (s.pt.g ≫ IsLimit.lift h₃ (π₃.mapCone s)) ≫ (NatTrans.app c.π j).τ₃ [PROOFSTEP] rw [assoc, assoc, ← eq₂₃, reassoc_of% eq₂, eq₃, eq₂₃'] [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J ⊢ (fun s => Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s))) s ≫ NatTrans.app c.π j = NatTrans.app s.π j [PROOFSTEP] ext [GOAL] case h₁ J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J ⊢ ((fun s => Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s))) s ≫ NatTrans.app c.π j).τ₁ = (NatTrans.app s.π j).τ₁ [PROOFSTEP] apply IsLimit.fac [GOAL] case h₂ J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J ⊢ ((fun s => Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s))) s ≫ NatTrans.app c.π j).τ₂ = (NatTrans.app s.π j).τ₂ [PROOFSTEP] apply IsLimit.fac [GOAL] case h₃ J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F j : J ⊢ ((fun s => Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s))) s ≫ NatTrans.app c.π j).τ₃ = (NatTrans.app s.π j).τ₃ [PROOFSTEP] apply IsLimit.fac [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F m : s.pt ⟶ c.pt hm : ∀ (j : J), m ≫ NatTrans.app c.π j = NatTrans.app s.π j ⊢ m = (fun s => Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s))) s [PROOFSTEP] ext [GOAL] case h₁ J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F m : s.pt ⟶ c.pt hm : ∀ (j : J), m ≫ NatTrans.app c.π j = NatTrans.app s.π j ⊢ m.τ₁ = ((fun s => Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s))) s).τ₁ [PROOFSTEP] exact h₁.uniq (π₁.mapCone s) _ (fun j => π₁.congr_map (hm j)) [GOAL] case h₂ J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F m : s.pt ⟶ c.pt hm : ∀ (j : J), m ≫ NatTrans.app c.π j = NatTrans.app s.π j ⊢ m.τ₂ = ((fun s => Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s))) s).τ₂ [PROOFSTEP] exact h₂.uniq (π₂.mapCone s) _ (fun j => π₂.congr_map (hm j)) [GOAL] case h₃ J : Type u_1 C : Type u_2 inst✝² : Category.{?u.96, u_1} J inst✝¹ : Category.{?u.100, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cone F h₁ : IsLimit (π₁.mapCone c) h₂ : IsLimit (π₂.mapCone c) h₃ : IsLimit (π₃.mapCone c) s : Cone F m : s.pt ⟶ c.pt hm : ∀ (j : J), m ≫ NatTrans.app c.π j = NatTrans.app s.π j ⊢ m.τ₃ = ((fun s => Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s))) s).τ₃ [PROOFSTEP] exact h₃.uniq (π₃.mapCone s) _ (fun j => π₃.congr_map (hm j)) [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.21982, u_1} J inst✝⁴ : Category.{?u.21986, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) ⊢ limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0 [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.21982, u_1} J inst✝⁴ : Category.{?u.21986, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) j : J ⊢ limit.π (F ⋙ π₁) j ≫ (F.obj j).f = (((Functor.const J).obj (mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃)) (_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).obj j).f ≫ limit.π (F ⋙ π₂) j [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.21982, u_1} J inst✝⁴ : Category.{?u.21986, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) j : J ⊢ limit.π (F ⋙ π₂) j ≫ (F.obj j).g = (((Functor.const J).obj (mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃)) (_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).obj j).g ≫ limit.π (F ⋙ π₃) j [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.21982, u_1} J inst✝⁴ : Category.{?u.21986, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ ((Functor.const J).obj (mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃)) (_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map f ≫ (fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝ = (fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f [PROOFSTEP] ext [GOAL] case h₁ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.21982, u_1} J inst✝⁴ : Category.{?u.21986, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ (((Functor.const J).obj (mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃)) (_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map f ≫ (fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝).τ₁ = ((fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f).τ₁ case h₂ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.21982, u_1} J inst✝⁴ : Category.{?u.21986, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ (((Functor.const J).obj (mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃)) (_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map f ≫ (fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝).τ₂ = ((fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f).τ₂ case h₃ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.21982, u_1} J inst✝⁴ : Category.{?u.21986, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ (((Functor.const J).obj (mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃)) (_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map f ≫ (fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝).τ₃ = ((fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f).τ₃ [PROOFSTEP] all_goals dsimp erw [id_comp, limit.w] [GOAL] case h₁ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.21982, u_1} J inst✝⁴ : Category.{?u.21986, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ (((Functor.const J).obj (mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃)) (_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map f ≫ (fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝).τ₁ = ((fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f).τ₁ [PROOFSTEP] dsimp [GOAL] case h₁ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.21982, u_1} J inst✝⁴ : Category.{?u.21986, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ 𝟙 (limit (F ⋙ π₁)) ≫ limit.π (F ⋙ π₁) x✝ = limit.π (F ⋙ π₁) x✝¹ ≫ (F.map f).τ₁ [PROOFSTEP] erw [id_comp, limit.w] [GOAL] case h₂ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.21982, u_1} J inst✝⁴ : Category.{?u.21986, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ (((Functor.const J).obj (mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃)) (_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map f ≫ (fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝).τ₂ = ((fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f).τ₂ [PROOFSTEP] dsimp [GOAL] case h₂ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.21982, u_1} J inst✝⁴ : Category.{?u.21986, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ 𝟙 (limit (F ⋙ π₂)) ≫ limit.π (F ⋙ π₂) x✝ = limit.π (F ⋙ π₂) x✝¹ ≫ (F.map f).τ₂ [PROOFSTEP] erw [id_comp, limit.w] [GOAL] case h₃ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.21982, u_1} J inst✝⁴ : Category.{?u.21986, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ (((Functor.const J).obj (mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃)) (_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map f ≫ (fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝).τ₃ = ((fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f).τ₃ [PROOFSTEP] dsimp [GOAL] case h₃ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.21982, u_1} J inst✝⁴ : Category.{?u.21986, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ 𝟙 (limit (F ⋙ π₃)) ≫ limit.π (F ⋙ π₃) x✝ = limit.π (F ⋙ π₃) x✝¹ ≫ (F.map f).τ₃ [PROOFSTEP] erw [id_comp, limit.w] [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.38492, u_1} J inst✝⁴ : Category.{?u.38496, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) ⊢ ∀ (j : J), NatTrans.app (limit.cone (F ⋙ π₁)).π j = (Iso.refl (limit.cone (F ⋙ π₁)).pt).hom ≫ NatTrans.app (π₁.mapCone (limitCone F)).π j [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.44003, u_1} J inst✝⁴ : Category.{?u.44007, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) ⊢ ∀ (j : J), NatTrans.app (limit.cone (F ⋙ π₂)).π j = (Iso.refl (limit.cone (F ⋙ π₂)).pt).hom ≫ NatTrans.app (π₂.mapCone (limitCone F)).π j [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.49514, u_1} J inst✝⁴ : Category.{?u.49518, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasLimit (F ⋙ π₁) inst✝¹ : HasLimit (F ⋙ π₂) inst✝ : HasLimit (F ⋙ π₃) ⊢ ∀ (j : J), NatTrans.app (limit.cone (F ⋙ π₃)).π j = (Iso.refl (limit.cone (F ⋙ π₃)).pt).hom ≫ NatTrans.app (π₃.mapCone (limitCone F)).π j [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J ⊢ NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) ≫ s.pt.f = NatTrans.app (π₁.mapCocone c).ι j ≫ c.pt.f ≫ IsColimit.desc h₂ (π₂.mapCocone s) [PROOFSTEP] have eq₁ := h₁.fac (π₁.mapCocone s) [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J eq₁ : ∀ (j : J), NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) = NatTrans.app (π₁.mapCocone s).ι j ⊢ NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) ≫ s.pt.f = NatTrans.app (π₁.mapCocone c).ι j ≫ c.pt.f ≫ IsColimit.desc h₂ (π₂.mapCocone s) [PROOFSTEP] have eq₂ := h₂.fac (π₂.mapCocone s) [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J eq₁ : ∀ (j : J), NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) = NatTrans.app (π₁.mapCocone s).ι j eq₂ : ∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j ⊢ NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) ≫ s.pt.f = NatTrans.app (π₁.mapCocone c).ι j ≫ c.pt.f ≫ IsColimit.desc h₂ (π₂.mapCocone s) [PROOFSTEP] have eq₁₂ := fun j => (c.ι.app j).comm₁₂ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J eq₁ : ∀ (j : J), NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) = NatTrans.app (π₁.mapCocone s).ι j eq₂ : ∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j eq₁₂ : ∀ (j : J), (NatTrans.app c.ι j).τ₁ ≫ (((Functor.const J).obj c.pt).obj j).f = (F.obj j).f ≫ (NatTrans.app c.ι j).τ₂ ⊢ NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) ≫ s.pt.f = NatTrans.app (π₁.mapCocone c).ι j ≫ c.pt.f ≫ IsColimit.desc h₂ (π₂.mapCocone s) [PROOFSTEP] have eq₁₂' := fun j => (s.ι.app j).comm₁₂ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J eq₁ : ∀ (j : J), NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) = NatTrans.app (π₁.mapCocone s).ι j eq₂ : ∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j eq₁₂ : ∀ (j : J), (NatTrans.app c.ι j).τ₁ ≫ (((Functor.const J).obj c.pt).obj j).f = (F.obj j).f ≫ (NatTrans.app c.ι j).τ₂ eq₁₂' : ∀ (j : J), (NatTrans.app s.ι j).τ₁ ≫ (((Functor.const J).obj s.pt).obj j).f = (F.obj j).f ≫ (NatTrans.app s.ι j).τ₂ ⊢ NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) ≫ s.pt.f = NatTrans.app (π₁.mapCocone c).ι j ≫ c.pt.f ≫ IsColimit.desc h₂ (π₂.mapCocone s) [PROOFSTEP] dsimp at eq₁ eq₂ eq₁₂ eq₁₂' ⊢ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J eq₁ : ∀ (j : J), (NatTrans.app c.ι j).τ₁ ≫ IsColimit.desc h₁ (π₁.mapCocone s) = (NatTrans.app s.ι j).τ₁ eq₂ : ∀ (j : J), (NatTrans.app c.ι j).τ₂ ≫ IsColimit.desc h₂ (π₂.mapCocone s) = (NatTrans.app s.ι j).τ₂ eq₁₂ : ∀ (j : J), (NatTrans.app c.ι j).τ₁ ≫ c.pt.f = (F.obj j).f ≫ (NatTrans.app c.ι j).τ₂ eq₁₂' : ∀ (j : J), (NatTrans.app s.ι j).τ₁ ≫ s.pt.f = (F.obj j).f ≫ (NatTrans.app s.ι j).τ₂ ⊢ (NatTrans.app c.ι j).τ₁ ≫ IsColimit.desc h₁ (π₁.mapCocone s) ≫ s.pt.f = (NatTrans.app c.ι j).τ₁ ≫ c.pt.f ≫ IsColimit.desc h₂ (π₂.mapCocone s) [PROOFSTEP] rw [reassoc_of% (eq₁ j), eq₁₂', reassoc_of% eq₁₂, eq₂] [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J ⊢ NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) ≫ s.pt.g = NatTrans.app (π₂.mapCocone c).ι j ≫ c.pt.g ≫ IsColimit.desc h₃ (π₃.mapCocone s) [PROOFSTEP] have eq₂ := h₂.fac (π₂.mapCocone s) [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J eq₂ : ∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j ⊢ NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) ≫ s.pt.g = NatTrans.app (π₂.mapCocone c).ι j ≫ c.pt.g ≫ IsColimit.desc h₃ (π₃.mapCocone s) [PROOFSTEP] have eq₃ := h₃.fac (π₃.mapCocone s) [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J eq₂ : ∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j eq₃ : ∀ (j : J), NatTrans.app (π₃.mapCocone c).ι j ≫ IsColimit.desc h₃ (π₃.mapCocone s) = NatTrans.app (π₃.mapCocone s).ι j ⊢ NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) ≫ s.pt.g = NatTrans.app (π₂.mapCocone c).ι j ≫ c.pt.g ≫ IsColimit.desc h₃ (π₃.mapCocone s) [PROOFSTEP] have eq₂₃ := fun j => (c.ι.app j).comm₂₃ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J eq₂ : ∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j eq₃ : ∀ (j : J), NatTrans.app (π₃.mapCocone c).ι j ≫ IsColimit.desc h₃ (π₃.mapCocone s) = NatTrans.app (π₃.mapCocone s).ι j eq₂₃ : ∀ (j : J), (NatTrans.app c.ι j).τ₂ ≫ (((Functor.const J).obj c.pt).obj j).g = (F.obj j).g ≫ (NatTrans.app c.ι j).τ₃ ⊢ NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) ≫ s.pt.g = NatTrans.app (π₂.mapCocone c).ι j ≫ c.pt.g ≫ IsColimit.desc h₃ (π₃.mapCocone s) [PROOFSTEP] have eq₂₃' := fun j => (s.ι.app j).comm₂₃ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J eq₂ : ∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j eq₃ : ∀ (j : J), NatTrans.app (π₃.mapCocone c).ι j ≫ IsColimit.desc h₃ (π₃.mapCocone s) = NatTrans.app (π₃.mapCocone s).ι j eq₂₃ : ∀ (j : J), (NatTrans.app c.ι j).τ₂ ≫ (((Functor.const J).obj c.pt).obj j).g = (F.obj j).g ≫ (NatTrans.app c.ι j).τ₃ eq₂₃' : ∀ (j : J), (NatTrans.app s.ι j).τ₂ ≫ (((Functor.const J).obj s.pt).obj j).g = (F.obj j).g ≫ (NatTrans.app s.ι j).τ₃ ⊢ NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) ≫ s.pt.g = NatTrans.app (π₂.mapCocone c).ι j ≫ c.pt.g ≫ IsColimit.desc h₃ (π₃.mapCocone s) [PROOFSTEP] dsimp at eq₂ eq₃ eq₂₃ eq₂₃' ⊢ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J eq₂ : ∀ (j : J), (NatTrans.app c.ι j).τ₂ ≫ IsColimit.desc h₂ (π₂.mapCocone s) = (NatTrans.app s.ι j).τ₂ eq₃ : ∀ (j : J), (NatTrans.app c.ι j).τ₃ ≫ IsColimit.desc h₃ (π₃.mapCocone s) = (NatTrans.app s.ι j).τ₃ eq₂₃ : ∀ (j : J), (NatTrans.app c.ι j).τ₂ ≫ c.pt.g = (F.obj j).g ≫ (NatTrans.app c.ι j).τ₃ eq₂₃' : ∀ (j : J), (NatTrans.app s.ι j).τ₂ ≫ s.pt.g = (F.obj j).g ≫ (NatTrans.app s.ι j).τ₃ ⊢ (NatTrans.app c.ι j).τ₂ ≫ IsColimit.desc h₂ (π₂.mapCocone s) ≫ s.pt.g = (NatTrans.app c.ι j).τ₂ ≫ c.pt.g ≫ IsColimit.desc h₃ (π₃.mapCocone s) [PROOFSTEP] rw [reassoc_of% (eq₂ j), eq₂₃', reassoc_of% eq₂₃, eq₃] [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J ⊢ NatTrans.app c.ι j ≫ (fun s => Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s)) (IsColimit.desc h₃ (π₃.mapCocone s))) s = NatTrans.app s.ι j [PROOFSTEP] ext [GOAL] case h₁ J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J ⊢ (NatTrans.app c.ι j ≫ (fun s => Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s)) (IsColimit.desc h₃ (π₃.mapCocone s))) s).τ₁ = (NatTrans.app s.ι j).τ₁ [PROOFSTEP] apply IsColimit.fac h₁ [GOAL] case h₂ J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J ⊢ (NatTrans.app c.ι j ≫ (fun s => Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s)) (IsColimit.desc h₃ (π₃.mapCocone s))) s).τ₂ = (NatTrans.app s.ι j).τ₂ [PROOFSTEP] apply IsColimit.fac h₂ [GOAL] case h₃ J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F j : J ⊢ (NatTrans.app c.ι j ≫ (fun s => Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s)) (IsColimit.desc h₃ (π₃.mapCocone s))) s).τ₃ = (NatTrans.app s.ι j).τ₃ [PROOFSTEP] apply IsColimit.fac h₃ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F m : c.pt ⟶ s.pt hm : ∀ (j : J), NatTrans.app c.ι j ≫ m = NatTrans.app s.ι j ⊢ m = (fun s => Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s)) (IsColimit.desc h₃ (π₃.mapCocone s))) s [PROOFSTEP] ext [GOAL] case h₁ J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F m : c.pt ⟶ s.pt hm : ∀ (j : J), NatTrans.app c.ι j ≫ m = NatTrans.app s.ι j ⊢ m.τ₁ = ((fun s => Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s)) (IsColimit.desc h₃ (π₃.mapCocone s))) s).τ₁ [PROOFSTEP] exact h₁.uniq (π₁.mapCocone s) _ (fun j => π₁.congr_map (hm j)) [GOAL] case h₂ J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F m : c.pt ⟶ s.pt hm : ∀ (j : J), NatTrans.app c.ι j ≫ m = NatTrans.app s.ι j ⊢ m.τ₂ = ((fun s => Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s)) (IsColimit.desc h₃ (π₃.mapCocone s))) s).τ₂ [PROOFSTEP] exact h₂.uniq (π₂.mapCocone s) _ (fun j => π₂.congr_map (hm j)) [GOAL] case h₃ J : Type u_1 C : Type u_2 inst✝² : Category.{?u.84519, u_1} J inst✝¹ : Category.{?u.84523, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C c : Cocone F h₁ : IsColimit (π₁.mapCocone c) h₂ : IsColimit (π₂.mapCocone c) h₃ : IsColimit (π₃.mapCocone c) s : Cocone F m : c.pt ⟶ s.pt hm : ∀ (j : J), NatTrans.app c.ι j ≫ m = NatTrans.app s.ι j ⊢ m.τ₃ = ((fun s => Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s)) (IsColimit.desc h₃ (π₃.mapCocone s))) s).τ₃ [PROOFSTEP] exact h₃.uniq (π₃.mapCocone s) _ (fun j => π₃.congr_map (hm j)) [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.105288, u_1} J inst✝⁴ : Category.{?u.105292, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasColimit (F ⋙ π₁) inst✝¹ : HasColimit (F ⋙ π₂) inst✝ : HasColimit (F ⋙ π₃) ⊢ colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0 [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.105288, u_1} J inst✝⁴ : Category.{?u.105292, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasColimit (F ⋙ π₁) inst✝¹ : HasColimit (F ⋙ π₂) inst✝ : HasColimit (F ⋙ π₃) j : J ⊢ colimit.ι (F ⋙ π₁) j ≫ (((Functor.const J).obj (mk (colimMap (whiskerLeft F π₁Toπ₂)) (colimMap (whiskerLeft F π₂Toπ₃)) (_ : colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0))).obj j).f = (F.obj j).f ≫ colimit.ι (F ⋙ π₂) j [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.105288, u_1} J inst✝⁴ : Category.{?u.105292, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasColimit (F ⋙ π₁) inst✝¹ : HasColimit (F ⋙ π₂) inst✝ : HasColimit (F ⋙ π₃) j : J ⊢ colimit.ι (F ⋙ π₂) j ≫ (((Functor.const J).obj (mk (colimMap (whiskerLeft F π₁Toπ₂)) (colimMap (whiskerLeft F π₂Toπ₃)) (_ : colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0))).obj j).g = (F.obj j).g ≫ colimit.ι (F ⋙ π₃) j [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.105288, u_1} J inst✝⁴ : Category.{?u.105292, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasColimit (F ⋙ π₁) inst✝¹ : HasColimit (F ⋙ π₂) inst✝ : HasColimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ F.map f ≫ (fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝ = (fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝¹ ≫ ((Functor.const J).obj (mk (colimMap (whiskerLeft F π₁Toπ₂)) (colimMap (whiskerLeft F π₂Toπ₃)) (_ : colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0))).map f [PROOFSTEP] ext [GOAL] case h₁ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.105288, u_1} J inst✝⁴ : Category.{?u.105292, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasColimit (F ⋙ π₁) inst✝¹ : HasColimit (F ⋙ π₂) inst✝ : HasColimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ (F.map f ≫ (fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝).τ₁ = ((fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝¹ ≫ ((Functor.const J).obj (mk (colimMap (whiskerLeft F π₁Toπ₂)) (colimMap (whiskerLeft F π₂Toπ₃)) (_ : colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0))).map f).τ₁ [PROOFSTEP] dsimp [GOAL] case h₁ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.105288, u_1} J inst✝⁴ : Category.{?u.105292, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasColimit (F ⋙ π₁) inst✝¹ : HasColimit (F ⋙ π₂) inst✝ : HasColimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ (F.map f).τ₁ ≫ colimit.ι (F ⋙ π₁) x✝ = colimit.ι (F ⋙ π₁) x✝¹ ≫ 𝟙 (colimit (F ⋙ π₁)) [PROOFSTEP] erw [comp_id, colimit.w (F ⋙ π₁)] [GOAL] case h₂ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.105288, u_1} J inst✝⁴ : Category.{?u.105292, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasColimit (F ⋙ π₁) inst✝¹ : HasColimit (F ⋙ π₂) inst✝ : HasColimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ (F.map f ≫ (fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝).τ₂ = ((fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝¹ ≫ ((Functor.const J).obj (mk (colimMap (whiskerLeft F π₁Toπ₂)) (colimMap (whiskerLeft F π₂Toπ₃)) (_ : colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0))).map f).τ₂ [PROOFSTEP] dsimp [GOAL] case h₂ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.105288, u_1} J inst✝⁴ : Category.{?u.105292, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasColimit (F ⋙ π₁) inst✝¹ : HasColimit (F ⋙ π₂) inst✝ : HasColimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ (F.map f).τ₂ ≫ colimit.ι (F ⋙ π₂) x✝ = colimit.ι (F ⋙ π₂) x✝¹ ≫ 𝟙 (colimit (F ⋙ π₂)) [PROOFSTEP] erw [comp_id, colimit.w (F ⋙ π₂)] [GOAL] case h₃ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.105288, u_1} J inst✝⁴ : Category.{?u.105292, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasColimit (F ⋙ π₁) inst✝¹ : HasColimit (F ⋙ π₂) inst✝ : HasColimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ (F.map f ≫ (fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝).τ₃ = ((fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝¹ ≫ ((Functor.const J).obj (mk (colimMap (whiskerLeft F π₁Toπ₂)) (colimMap (whiskerLeft F π₂Toπ₃)) (_ : colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0))).map f).τ₃ [PROOFSTEP] dsimp [GOAL] case h₃ J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.105288, u_1} J inst✝⁴ : Category.{?u.105292, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasColimit (F ⋙ π₁) inst✝¹ : HasColimit (F ⋙ π₂) inst✝ : HasColimit (F ⋙ π₃) x✝¹ x✝ : J f : x✝¹ ⟶ x✝ ⊢ (F.map f).τ₃ ≫ colimit.ι (F ⋙ π₃) x✝ = colimit.ι (F ⋙ π₃) x✝¹ ≫ 𝟙 (colimit (F ⋙ π₃)) [PROOFSTEP] erw [comp_id, colimit.w (F ⋙ π₃)] [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.123211, u_1} J inst✝⁴ : Category.{?u.123215, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasColimit (F ⋙ π₁) inst✝¹ : HasColimit (F ⋙ π₂) inst✝ : HasColimit (F ⋙ π₃) ⊢ ∀ (j : J), NatTrans.app (colimit.cocone (F ⋙ π₁)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ π₁)).pt).hom = NatTrans.app (π₁.mapCocone (colimitCocone F)).ι j [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.128766, u_1} J inst✝⁴ : Category.{?u.128770, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasColimit (F ⋙ π₁) inst✝¹ : HasColimit (F ⋙ π₂) inst✝ : HasColimit (F ⋙ π₃) ⊢ ∀ (j : J), NatTrans.app (colimit.cocone (F ⋙ π₂)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ π₂)).pt).hom = NatTrans.app (π₂.mapCocone (colimitCocone F)).ι j [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝⁵ : Category.{?u.134321, u_1} J inst✝⁴ : Category.{?u.134325, u_2} C inst✝³ : HasZeroMorphisms C F : J ⥤ ShortComplex C inst✝² : HasColimit (F ⋙ π₁) inst✝¹ : HasColimit (F ⋙ π₂) inst✝ : HasColimit (F ⋙ π₃) ⊢ ∀ (j : J), NatTrans.app (colimit.cocone (F ⋙ π₃)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ π₃)).pt).hom = NatTrans.app (π₃.mapCocone (colimitCocone F)).ι j [PROOFSTEP] aesop_cat
{"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.Limits", "llama_tokens": 23681}
[GOAL] V : Type u_1 inst✝¹ : Category.{?u.28, u_1} V inst✝ : Abelian V X Y Z : V f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ g.op ≫ f.op = 0 [PROOFSTEP] rw [← op_comp, w, op_zero] [GOAL] V : Type u_1 inst✝¹ : Category.{?u.28, u_1} V inst✝ : Abelian V X Y Z : V f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ f ≫ factorThruImage g = 0 [PROOFSTEP] rw [← cancel_mono (image.ι g), Category.assoc, image.fac, w, zero_comp] [GOAL] V : Type u_1 inst✝¹ : Category.{u_2, u_1} V inst✝ : Abelian V X Y Z : V f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ imageToKernel g.op f.op (_ : g.op ≫ f.op = 0) = (imageSubobjectIso g.op ≪≫ (imageOpOp g).symm).hom ≫ (cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0)).op ≫ (kernelSubobjectIso f.op ≪≫ kernelOpOp f).inv [PROOFSTEP] ext [GOAL] case h V : Type u_1 inst✝¹ : Category.{u_2, u_1} V inst✝ : Abelian V X Y Z : V f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ imageToKernel g.op f.op (_ : g.op ≫ f.op = 0) ≫ Subobject.arrow (kernelSubobject f.op) = ((imageSubobjectIso g.op ≪≫ (imageOpOp g).symm).hom ≫ (cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0)).op ≫ (kernelSubobjectIso f.op ≪≫ kernelOpOp f).inv) ≫ Subobject.arrow (kernelSubobject f.op) [PROOFSTEP] simp only [Iso.trans_hom, Iso.symm_hom, Iso.trans_inv, kernelOpOp_inv, Category.assoc, imageToKernel_arrow, kernelSubobject_arrow', kernel.lift_ι, ← op_comp, cokernel.π_desc, ← imageSubobject_arrow, ← imageUnopOp_inv_comp_op_factorThruImage g.op] [GOAL] case h V : Type u_1 inst✝¹ : Category.{u_2, u_1} V inst✝ : Abelian V X Y Z : V f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ (imageSubobjectIso g.op).hom ≫ (imageUnopOp g.op).inv ≫ (factorThruImage g.op.unop).op = (imageSubobjectIso g.op).hom ≫ (imageOpOp g).inv ≫ (factorThruImage g).op [PROOFSTEP] rfl [GOAL] V : Type u_1 inst✝¹ : Category.{?u.7815, u_1} V inst✝ : Abelian V X Y Z : Vᵒᵖ f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ g.unop ≫ f.unop = 0 [PROOFSTEP] rw [← unop_comp, w, unop_zero] [GOAL] V : Type u_1 inst✝¹ : Category.{?u.7815, u_1} V inst✝ : Abelian V X Y Z : Vᵒᵖ f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ f ≫ factorThruImage g = 0 [PROOFSTEP] rw [← cancel_mono (image.ι g), Category.assoc, image.fac, w, zero_comp] [GOAL] V : Type u_1 inst✝¹ : Category.{u_2, u_1} V inst✝ : Abelian V X Y Z : Vᵒᵖ f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ imageToKernel g.unop f.unop (_ : g.unop ≫ f.unop = 0) = (imageSubobjectIso g.unop ≪≫ (imageUnopUnop g).symm).hom ≫ (cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0)).unop ≫ (kernelSubobjectIso f.unop ≪≫ kernelUnopUnop f).inv [PROOFSTEP] ext [GOAL] case h V : Type u_1 inst✝¹ : Category.{u_2, u_1} V inst✝ : Abelian V X Y Z : Vᵒᵖ f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ imageToKernel g.unop f.unop (_ : g.unop ≫ f.unop = 0) ≫ Subobject.arrow (kernelSubobject f.unop) = ((imageSubobjectIso g.unop ≪≫ (imageUnopUnop g).symm).hom ≫ (cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0)).unop ≫ (kernelSubobjectIso f.unop ≪≫ kernelUnopUnop f).inv) ≫ Subobject.arrow (kernelSubobject f.unop) [PROOFSTEP] dsimp only [imageUnopUnop] [GOAL] case h V : Type u_1 inst✝¹ : Category.{u_2, u_1} V inst✝ : Abelian V X Y Z : Vᵒᵖ f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ imageToKernel g.unop f.unop (_ : g.unop ≫ f.unop = 0) ≫ Subobject.arrow (kernelSubobject f.unop) = ((imageSubobjectIso g.unop ≪≫ (Iso.unop (imageUnopOp g)).symm).hom ≫ (cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0)).unop ≫ (kernelSubobjectIso f.unop ≪≫ kernelUnopUnop f).inv) ≫ Subobject.arrow (kernelSubobject f.unop) [PROOFSTEP] simp only [Iso.trans_hom, Iso.symm_hom, Iso.trans_inv, kernelUnopUnop_inv, Category.assoc, imageToKernel_arrow, kernelSubobject_arrow', kernel.lift_ι, cokernel.π_desc, Iso.unop_inv, ← unop_comp, factorThruImage_comp_imageUnopOp_inv, Quiver.Hom.unop_op, imageSubobject_arrow] [GOAL] V : Type u_1 inst✝¹ : Category.{?u.16638, u_1} V inst✝ : Abelian V X Y Z : V f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ g.op ≫ f.op = 0 [PROOFSTEP] rw [← op_comp, w, op_zero] [GOAL] V : Type u_1 inst✝¹ : Category.{?u.16638, u_1} V inst✝ : Abelian V X Y Z : V f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ cokernel.desc f g w = cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0) ≫ image.ι g [PROOFSTEP] ext [GOAL] case h V : Type u_1 inst✝¹ : Category.{?u.16638, u_1} V inst✝ : Abelian V X Y Z : V f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ coequalizer.π f 0 ≫ cokernel.desc f g w = coequalizer.π f 0 ≫ cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0) ≫ image.ι g [PROOFSTEP] simp only [image.fac, cokernel.π_desc, cokernel.π_desc_assoc] [GOAL] V : Type u_1 inst✝¹ : Category.{?u.28807, u_1} V inst✝ : Abelian V X Y Z : Vᵒᵖ f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ g.unop ≫ f.unop = 0 [PROOFSTEP] rw [← unop_comp, w, unop_zero] [GOAL] V : Type u_1 inst✝¹ : Category.{?u.28807, u_1} V inst✝ : Abelian V X Y Z : Vᵒᵖ f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ cokernel.desc f g w = cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0) ≫ image.ι g [PROOFSTEP] ext [GOAL] case h V : Type u_1 inst✝¹ : Category.{?u.28807, u_1} V inst✝ : Abelian V X Y Z : Vᵒᵖ f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 ⊢ coequalizer.π f 0 ≫ cokernel.desc f g w = coequalizer.π f 0 ≫ cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0) ≫ image.ι g [PROOFSTEP] simp only [image.fac, cokernel.π_desc, cokernel.π_desc_assoc] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.40782, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : HomologicalComplex V c i j : ι hij : ¬ComplexShape.Rel (ComplexShape.symm c) i j ⊢ (fun i j => (d X j i).op) i j = 0 [PROOFSTEP] simp only [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.40782, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : HomologicalComplex V c i j : ι hij : ¬ComplexShape.Rel (ComplexShape.symm c) i j ⊢ (d X j i).op = 0 [PROOFSTEP] rw [X.shape j i hij, op_zero] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.40782, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : HomologicalComplex V c x✝⁴ x✝³ x✝² : ι x✝¹ : ComplexShape.Rel (ComplexShape.symm c) x✝⁴ x✝³ x✝ : ComplexShape.Rel (ComplexShape.symm c) x✝³ x✝² ⊢ (fun i j => (d X j i).op) x✝⁴ x✝³ ≫ (fun i j => (d X j i).op) x✝³ x✝² = 0 [PROOFSTEP] rw [← op_comp, X.d_comp_d, op_zero] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.42509, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : HomologicalComplex V (ComplexShape.symm c) i j : ι hij : ¬ComplexShape.Rel c i j ⊢ (fun i j => (d X j i).op) i j = 0 [PROOFSTEP] simp only [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.42509, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : HomologicalComplex V (ComplexShape.symm c) i j : ι hij : ¬ComplexShape.Rel c i j ⊢ (d X j i).op = 0 [PROOFSTEP] rw [X.shape j i hij, op_zero] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.42509, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : HomologicalComplex V (ComplexShape.symm c) x✝⁴ x✝³ x✝² : ι x✝¹ : ComplexShape.Rel c x✝⁴ x✝³ x✝ : ComplexShape.Rel c x✝³ x✝² ⊢ (fun i j => (d X j i).op) x✝⁴ x✝³ ≫ (fun i j => (d X j i).op) x✝³ x✝² = 0 [PROOFSTEP] rw [← op_comp, X.d_comp_d, op_zero] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.44206, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : HomologicalComplex Vᵒᵖ c i j : ι hij : ¬ComplexShape.Rel (ComplexShape.symm c) i j ⊢ (fun i j => (d X j i).unop) i j = 0 [PROOFSTEP] simp only [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.44206, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : HomologicalComplex Vᵒᵖ c i j : ι hij : ¬ComplexShape.Rel (ComplexShape.symm c) i j ⊢ (d X j i).unop = 0 [PROOFSTEP] rw [X.shape j i hij, unop_zero] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.44206, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : HomologicalComplex Vᵒᵖ c x✝⁴ x✝³ x✝² : ι x✝¹ : ComplexShape.Rel (ComplexShape.symm c) x✝⁴ x✝³ x✝ : ComplexShape.Rel (ComplexShape.symm c) x✝³ x✝² ⊢ (fun i j => (d X j i).unop) x✝⁴ x✝³ ≫ (fun i j => (d X j i).unop) x✝³ x✝² = 0 [PROOFSTEP] rw [← unop_comp, X.d_comp_d, unop_zero] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.45915, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : HomologicalComplex Vᵒᵖ (ComplexShape.symm c) i j : ι hij : ¬ComplexShape.Rel c i j ⊢ (fun i j => (d X j i).unop) i j = 0 [PROOFSTEP] simp only [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.45915, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : HomologicalComplex Vᵒᵖ (ComplexShape.symm c) i j : ι hij : ¬ComplexShape.Rel c i j ⊢ (d X j i).unop = 0 [PROOFSTEP] rw [X.shape j i hij, unop_zero] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.45915, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : HomologicalComplex Vᵒᵖ (ComplexShape.symm c) x✝⁴ x✝³ x✝² : ι x✝¹ : ComplexShape.Rel c x✝⁴ x✝³ x✝ : ComplexShape.Rel c x✝³ x✝² ⊢ (fun i j => (d X j i).unop) x✝⁴ x✝³ ≫ (fun i j => (d X j i).unop) x✝³ x✝² = 0 [PROOFSTEP] rw [← unop_comp, X.d_comp_d, unop_zero] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.47656, u_2} V c : ComplexShape ι inst✝ : Preadditive V X✝ Y✝ : (HomologicalComplex V c)ᵒᵖ f : X✝ ⟶ Y✝ i j : ι x✝ : ComplexShape.Rel (ComplexShape.symm c) i j ⊢ (fun i => (Hom.f f.unop i).op) i ≫ d ((fun X => HomologicalComplex.op X.unop) Y✝) i j = d ((fun X => HomologicalComplex.op X.unop) X✝) i j ≫ (fun i => (Hom.f f.unop i).op) j [PROOFSTEP] simp only [op_d, ← op_comp, f.unop.comm] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.55812, u_2} V c : ComplexShape ι inst✝ : Preadditive V X✝ Y✝ : HomologicalComplex Vᵒᵖ (ComplexShape.symm c) f : X✝ ⟶ Y✝ i j : ι x✝ : ComplexShape.Rel c i j ⊢ (fun i => (Hom.f f i).unop) i ≫ d (HomologicalComplex.unopSymm X✝) i j = d (HomologicalComplex.unopSymm Y✝) i j ≫ (fun i => (Hom.f f i).unop) j [PROOFSTEP] simp only [unopSymm_d, ← unop_comp, f.comm] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.63659, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : (HomologicalComplex V c)ᵒᵖ i j : ι x✝ : ComplexShape.Rel c i j ⊢ ((fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)) i).hom ≫ d X.unop i j = d (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i j ≫ ((fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)) j).hom [PROOFSTEP] simp only [Iso.refl_hom, Category.id_comp, unopSymm_d, op_d, Quiver.Hom.unop_op, Category.comp_id] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.63659, u_2} V c : ComplexShape ι inst✝ : Preadditive V ⊢ ∀ {X Y : (HomologicalComplex V c)ᵒᵖ} (f : X ⟶ Y), (𝟭 (HomologicalComplex V c)ᵒᵖ).map f ≫ ((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) Y).hom = ((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) X).hom ≫ (opFunctor V c ⋙ opInverse V c).map f [PROOFSTEP] intro X Y f [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.63659, u_2} V c : ComplexShape ι inst✝ : Preadditive V X Y : (HomologicalComplex V c)ᵒᵖ f : X ⟶ Y ⊢ (𝟭 (HomologicalComplex V c)ᵒᵖ).map f ≫ ((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) Y).hom = ((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) X).hom ≫ (opFunctor V c ⋙ opInverse V c).map f [PROOFSTEP] refine' Quiver.Hom.unop_inj _ [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.63659, u_2} V c : ComplexShape ι inst✝ : Preadditive V X Y : (HomologicalComplex V c)ᵒᵖ f : X ⟶ Y ⊢ ((𝟭 (HomologicalComplex V c)ᵒᵖ).map f ≫ ((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) Y).hom).unop = (((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) X).hom ≫ (opFunctor V c ⋙ opInverse V c).map f).unop [PROOFSTEP] ext x [GOAL] case h ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.63659, u_2} V c : ComplexShape ι inst✝ : Preadditive V X Y : (HomologicalComplex V c)ᵒᵖ f : X ⟶ Y x : ι ⊢ Hom.f ((𝟭 (HomologicalComplex V c)ᵒᵖ).map f ≫ ((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) Y).hom).unop x = Hom.f (((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) X).hom ≫ (opFunctor V c ⋙ opInverse V c).map f).unop x [PROOFSTEP] simp only [Quiver.Hom.unop_op, Functor.id_map, Iso.op_hom, Functor.comp_map, unop_comp, comp_f, Hom.isoOfComponents_hom_f] [GOAL] case h ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.63659, u_2} V c : ComplexShape ι inst✝ : Preadditive V X Y : (HomologicalComplex V c)ᵒᵖ f : X ⟶ Y x : ι ⊢ (Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op Y.unop)) x)).hom ≫ Hom.f f.unop x = Hom.f ((opInverse V c).map ((opFunctor V c).map f)).unop x ≫ (Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) x)).hom [PROOFSTEP] erw [Category.id_comp, Category.comp_id (f.unop.f x)] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.82165, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : (HomologicalComplex V c)ᵒᵖ ⊢ (opFunctor V c).map (NatTrans.app (opUnitIso V c).hom X) ≫ NatTrans.app (opCounitIso V c).hom ((opFunctor V c).obj X) = 𝟙 ((opFunctor V c).obj X) [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.82165, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : (HomologicalComplex V c)ᵒᵖ i✝ : ι ⊢ Hom.f ((opFunctor V c).map (NatTrans.app (opUnitIso V c).hom X) ≫ NatTrans.app (opCounitIso V c).hom ((opFunctor V c).obj X)) i✝ = Hom.f (𝟙 ((opFunctor V c).obj X)) i✝ [PROOFSTEP] simp only [opUnitIso, opCounitIso, NatIso.ofComponents_hom_app, Iso.op_hom, comp_f, opFunctor_map_f, Quiver.Hom.unop_op, Hom.isoOfComponents_hom_f] [GOAL] case h ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.82165, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : (HomologicalComplex V c)ᵒᵖ i✝ : ι ⊢ (Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i✝)).hom.op ≫ (Iso.refl (HomologicalComplex.X ((opInverse V c ⋙ opFunctor V c).obj ((opFunctor V c).obj X)) i✝)).hom = Hom.f (𝟙 ((opFunctor V c).obj X)) i✝ [PROOFSTEP] exact Category.comp_id _ [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.83999, u_2} V c : ComplexShape ι inst✝ : Preadditive V X✝ Y✝ : (HomologicalComplex Vᵒᵖ c)ᵒᵖ f : X✝ ⟶ Y✝ i j : ι x✝ : ComplexShape.Rel (ComplexShape.symm c) i j ⊢ (fun i => (Hom.f f.unop i).unop) i ≫ d ((fun X => HomologicalComplex.unop X.unop) Y✝) i j = d ((fun X => HomologicalComplex.unop X.unop) X✝) i j ≫ (fun i => (Hom.f f.unop i).unop) j [PROOFSTEP] simp only [unop_d, ← unop_comp, f.unop.comm] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.92175, u_2} V c : ComplexShape ι inst✝ : Preadditive V X✝ Y✝ : HomologicalComplex V (ComplexShape.symm c) f : X✝ ⟶ Y✝ i j : ι x✝ : ComplexShape.Rel c i j ⊢ (fun i => (Hom.f f i).op) i ≫ d (HomologicalComplex.opSymm X✝) i j = d (HomologicalComplex.opSymm Y✝) i j ≫ (fun i => (Hom.f f i).op) j [PROOFSTEP] simp only [opSymm_d, ← op_comp, f.comm] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.100003, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : (HomologicalComplex Vᵒᵖ c)ᵒᵖ i j : ι x✝ : ComplexShape.Rel c i j ⊢ ((fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)) i).hom ≫ d X.unop i j = d (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i j ≫ ((fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)) j).hom [PROOFSTEP] simp only [Iso.refl_hom, Category.id_comp, unopSymm_d, op_d, Quiver.Hom.unop_op, Category.comp_id] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.100003, u_2} V c : ComplexShape ι inst✝ : Preadditive V ⊢ ∀ {X Y : (HomologicalComplex Vᵒᵖ c)ᵒᵖ} (f : X ⟶ Y), (𝟭 (HomologicalComplex Vᵒᵖ c)ᵒᵖ).map f ≫ ((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) Y).hom = ((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) X).hom ≫ (unopFunctor V c ⋙ unopInverse V c).map f [PROOFSTEP] intro X Y f [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.100003, u_2} V c : ComplexShape ι inst✝ : Preadditive V X Y : (HomologicalComplex Vᵒᵖ c)ᵒᵖ f : X ⟶ Y ⊢ (𝟭 (HomologicalComplex Vᵒᵖ c)ᵒᵖ).map f ≫ ((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) Y).hom = ((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) X).hom ≫ (unopFunctor V c ⋙ unopInverse V c).map f [PROOFSTEP] refine' Quiver.Hom.unop_inj _ [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.100003, u_2} V c : ComplexShape ι inst✝ : Preadditive V X Y : (HomologicalComplex Vᵒᵖ c)ᵒᵖ f : X ⟶ Y ⊢ ((𝟭 (HomologicalComplex Vᵒᵖ c)ᵒᵖ).map f ≫ ((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) Y).hom).unop = (((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) X).hom ≫ (unopFunctor V c ⋙ unopInverse V c).map f).unop [PROOFSTEP] ext x [GOAL] case h ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.100003, u_2} V c : ComplexShape ι inst✝ : Preadditive V X Y : (HomologicalComplex Vᵒᵖ c)ᵒᵖ f : X ⟶ Y x : ι ⊢ Hom.f ((𝟭 (HomologicalComplex Vᵒᵖ c)ᵒᵖ).map f ≫ ((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) Y).hom).unop x = Hom.f (((fun X => Iso.op (Hom.isoOfComponents fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i))) X).hom ≫ (unopFunctor V c ⋙ unopInverse V c).map f).unop x [PROOFSTEP] simp only [Quiver.Hom.unop_op, Functor.id_map, Iso.op_hom, Functor.comp_map, unop_comp, comp_f, Hom.isoOfComponents_hom_f] [GOAL] case h ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.100003, u_2} V c : ComplexShape ι inst✝ : Preadditive V X Y : (HomologicalComplex Vᵒᵖ c)ᵒᵖ f : X ⟶ Y x : ι ⊢ (Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op Y.unop)) x)).hom ≫ Hom.f f.unop x = Hom.f ((unopInverse V c).map ((unopFunctor V c).map f)).unop x ≫ (Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) x)).hom [PROOFSTEP] erw [Category.id_comp, Category.comp_id (f.unop.f x)] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.118561, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : (HomologicalComplex Vᵒᵖ c)ᵒᵖ ⊢ (unopFunctor V c).map (NatTrans.app (unopUnitIso V c).hom X) ≫ NatTrans.app (unopCounitIso V c).hom ((unopFunctor V c).obj X) = 𝟙 ((unopFunctor V c).obj X) [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.118561, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : (HomologicalComplex Vᵒᵖ c)ᵒᵖ i✝ : ι ⊢ Hom.f ((unopFunctor V c).map (NatTrans.app (unopUnitIso V c).hom X) ≫ NatTrans.app (unopCounitIso V c).hom ((unopFunctor V c).obj X)) i✝ = Hom.f (𝟙 ((unopFunctor V c).obj X)) i✝ [PROOFSTEP] simp only [opUnitIso, opCounitIso, NatIso.ofComponents_hom_app, Iso.op_hom, comp_f, opFunctor_map_f, Quiver.Hom.unop_op, Hom.isoOfComponents_hom_f] [GOAL] case h ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.118561, u_2} V c : ComplexShape ι inst✝ : Preadditive V X : (HomologicalComplex Vᵒᵖ c)ᵒᵖ i✝ : ι ⊢ Hom.f ((unopFunctor V c).map (NatTrans.app (unopUnitIso V c).hom X)) i✝ ≫ Hom.f (NatTrans.app (unopCounitIso V c).hom ((unopFunctor V c).obj X)) i✝ = Hom.f (𝟙 ((unopFunctor V c).obj X)) i✝ [PROOFSTEP] exact Category.comp_id _ [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.125717, u_2} V c : ComplexShape ι inst✝ : Abelian V C : HomologicalComplex V c i : ι ⊢ (dFrom C i).op ≫ (dTo C i).op = 0 [PROOFSTEP] rw [← op_comp, C.dTo_comp_dFrom i, op_zero] [GOAL] ι : Type u_1 V : Type u_2 inst✝¹ : Category.{?u.129295, u_2} V c : ComplexShape ι inst✝ : Abelian V C✝ : HomologicalComplex V c i : ι C : HomologicalComplex Vᵒᵖ c ⊢ (dFrom C i).unop ≫ (dTo C i).unop = 0 [PROOFSTEP] rw [← unop_comp, C.dTo_comp_dFrom i, unop_zero]
{"mathlib_filename": "Mathlib.Algebra.Homology.Opposite", "llama_tokens": 10879}
[GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹ : HasImage f g : B ⟶ C inst✝ : HasKernel g w : f ≫ g = 0 ⊢ kernel.lift g f w ≫ kernel.ι g = f [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹ : HasImage f g : B ⟶ C inst✝ : HasKernel g w : f ≫ g = 0 ⊢ Mono (imageToKernel f g w) [PROOFSTEP] dsimp only [imageToKernel] [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹ : HasImage f g : B ⟶ C inst✝ : HasKernel g w : f ≫ g = 0 ⊢ Mono (Subobject.ofLE (imageSubobject f) (kernelSubobject g) (_ : imageSubobject f ≤ kernelSubobject g)) [PROOFSTEP] infer_instance [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹ : HasImage f g : B ⟶ C inst✝ : HasKernel g w : f ≫ g = 0 ⊢ imageToKernel f g w ≫ Subobject.arrow (kernelSubobject g) = Subobject.arrow (imageSubobject f) [PROOFSTEP] simp [imageToKernel] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝² : HasImage f g : B ⟶ C inst✝¹ : HasKernel g inst✝ : ConcreteCategory V w : f ≫ g = 0 x : (forget V).obj (Subobject.underlying.obj (imageSubobject f)) ⊢ ↑(Subobject.arrow (kernelSubobject g)) (↑(imageToKernel f g w) x) = ↑(Subobject.arrow (imageSubobject f)) x [PROOFSTEP] rw [← comp_apply, imageToKernel_arrow] -- This is less useful as a `simp` lemma than it initially appears, -- as it "loses" the information the morphism factors through the image. [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹ : HasImage f g : B ⟶ C inst✝ : HasKernel g w : f ≫ g = 0 ⊢ factorThruImageSubobject f ≫ imageToKernel f g w = factorThruKernelSubobject g f w [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹ : HasImage f g : B ⟶ C inst✝ : HasKernel g w : f ≫ g = 0 ⊢ (factorThruImageSubobject f ≫ imageToKernel f g w) ≫ Subobject.arrow (kernelSubobject g) = factorThruKernelSubobject g f w ≫ Subobject.arrow (kernelSubobject g) [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasKernels V inst✝ : HasZeroObject V w : 0 ≫ g = 0 ⊢ imageToKernel 0 g w = 0 [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasKernels V inst✝ : HasZeroObject V w : 0 ≫ g = 0 ⊢ imageToKernel 0 g w ≫ Subobject.arrow (kernelSubobject g) = 0 ≫ Subobject.arrow (kernelSubobject g) [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝ : HasImages V w : f ≫ 0 = 0 ⊢ imageToKernel f 0 w = Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0)) [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝ : HasImages V w : f ≫ 0 = 0 ⊢ imageToKernel f 0 w ≫ Subobject.arrow (kernelSubobject 0) = (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0))) ≫ Subobject.arrow (kernelSubobject 0) [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasKernels V inst✝ : HasImages V D : V h : C ⟶ D w : f ≫ g = 0 ⊢ f ≫ g ≫ h = 0 [PROOFSTEP] simp [reassoc_of% w] [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasKernels V inst✝ : HasImages V D : V h : C ⟶ D w : f ≫ g = 0 ⊢ imageToKernel f (g ≫ h) (_ : f ≫ g ≫ h = 0) = imageToKernel f g w ≫ Subobject.ofLE (kernelSubobject g) (kernelSubobject (g ≫ h)) (_ : kernelSubobject g ≤ kernelSubobject (g ≫ h)) [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasKernels V inst✝ : HasImages V D : V h : C ⟶ D w : f ≫ g = 0 ⊢ imageToKernel f (g ≫ h) (_ : f ≫ g ≫ h = 0) ≫ Subobject.arrow (kernelSubobject (g ≫ h)) = (imageToKernel f g w ≫ Subobject.ofLE (kernelSubobject g) (kernelSubobject (g ≫ h)) (_ : kernelSubobject g ≤ kernelSubobject (g ≫ h))) ≫ Subobject.arrow (kernelSubobject (g ≫ h)) [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasKernels V inst✝ : HasImages V Z : V h : Z ⟶ A w : f ≫ g = 0 ⊢ (h ≫ f) ≫ g = 0 [PROOFSTEP] simp [w] [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasKernels V inst✝ : HasImages V Z : V h : Z ⟶ A w : f ≫ g = 0 ⊢ imageToKernel (h ≫ f) g (_ : (h ≫ f) ≫ g = 0) = Subobject.ofLE (imageSubobject (h ≫ f)) (imageSubobject f) (_ : imageSubobject (h ≫ f) ≤ imageSubobject f) ≫ imageToKernel f g w [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasKernels V inst✝ : HasImages V Z : V h : Z ⟶ A w : f ≫ g = 0 ⊢ imageToKernel (h ≫ f) g (_ : (h ≫ f) ≫ g = 0) ≫ Subobject.arrow (kernelSubobject g) = (Subobject.ofLE (imageSubobject (h ≫ f)) (imageSubobject f) (_ : imageSubobject (h ≫ f) ≤ imageSubobject f) ≫ imageToKernel f g w) ≫ Subobject.arrow (kernelSubobject g) [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝² : HasKernels V inst✝¹ : HasImages V D : V h : C ⟶ D inst✝ : Mono h w : f ≫ g ≫ h = 0 ⊢ (f ≫ g) ≫ h = 0 ≫ h [PROOFSTEP] simpa using w [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝² : HasKernels V inst✝¹ : HasImages V D : V h : C ⟶ D inst✝ : Mono h w : f ≫ g ≫ h = 0 ⊢ imageToKernel f (g ≫ h) w = imageToKernel f g (_ : f ≫ g = 0) ≫ (Subobject.isoOfEq (kernelSubobject (g ≫ h)) (kernelSubobject g) (_ : kernelSubobject (g ≫ h) = kernelSubobject g)).inv [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝² : HasKernels V inst✝¹ : HasImages V D : V h : C ⟶ D inst✝ : Mono h w : f ≫ g ≫ h = 0 ⊢ imageToKernel f (g ≫ h) w ≫ Subobject.arrow (kernelSubobject (g ≫ h)) = (imageToKernel f g (_ : f ≫ g = 0) ≫ (Subobject.isoOfEq (kernelSubobject (g ≫ h)) (kernelSubobject g) (_ : kernelSubobject (g ≫ h) = kernelSubobject g)).inv) ≫ Subobject.arrow (kernelSubobject (g ≫ h)) [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝² : HasKernels V inst✝¹ : HasImages V Z : V h : Z ⟶ A inst✝ : Epi h w : (h ≫ f) ≫ g = 0 ⊢ h ≫ f ≫ g = h ≫ 0 [PROOFSTEP] simpa using w [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝² : HasKernels V inst✝¹ : HasImages V Z : V h : Z ⟶ A inst✝ : Epi h w : (h ≫ f) ≫ g = 0 ⊢ imageToKernel (h ≫ f) g w = Subobject.ofLE (imageSubobject (h ≫ f)) (imageSubobject f) (_ : imageSubobject (h ≫ f) ≤ imageSubobject f) ≫ imageToKernel f g (_ : f ≫ g = 0) [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝² : HasKernels V inst✝¹ : HasImages V Z : V h : Z ⟶ A inst✝ : Epi h w : (h ≫ f) ≫ g = 0 ⊢ imageToKernel (h ≫ f) g w ≫ Subobject.arrow (kernelSubobject g) = (Subobject.ofLE (imageSubobject (h ≫ f)) (imageSubobject f) (_ : imageSubobject (h ≫ f) ≤ imageSubobject f) ≫ imageToKernel f g (_ : f ≫ g = 0)) ≫ Subobject.arrow (kernelSubobject g) [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasEqualizers V inst✝ : HasImages V Z : V i : B ≅ Z w : (f ≫ i.hom) ≫ i.inv ≫ g = 0 ⊢ f ≫ g = 0 [PROOFSTEP] simpa using w [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasEqualizers V inst✝ : HasImages V Z : V i : B ≅ Z w : (f ≫ i.hom) ≫ i.inv ≫ g = 0 ⊢ imageToKernel (f ≫ i.hom) (i.inv ≫ g) w = (imageSubobjectCompIso f i.hom).hom ≫ imageToKernel f g (_ : f ≫ g = 0) ≫ (kernelSubobjectIsoComp i.inv g).inv [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasEqualizers V inst✝ : HasImages V Z : V i : B ≅ Z w : (f ≫ i.hom) ≫ i.inv ≫ g = 0 ⊢ imageToKernel (f ≫ i.hom) (i.inv ≫ g) w ≫ Subobject.arrow (kernelSubobject (i.inv ≫ g)) = ((imageSubobjectCompIso f i.hom).hom ≫ imageToKernel f g (_ : f ≫ g = 0) ≫ (kernelSubobjectIsoComp i.inv g).inv) ≫ Subobject.arrow (kernelSubobject (i.inv ≫ g)) [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝² : HasKernels V inst✝¹ : HasZeroObject V inst✝ : Mono g ⊢ 0 ≫ g = 0 [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasImages V inst✝ : Epi f ⊢ f ≫ 0 = 0 [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasImages V inst✝ : Epi f ⊢ Epi (imageToKernel f 0 (_ : f ≫ 0 = 0)) [PROOFSTEP] simp only [imageToKernel_zero_right] [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasImages V inst✝ : Epi f ⊢ Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0))) [PROOFSTEP] haveI := epi_image_of_epi f [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasImages V inst✝ : Epi f this : Epi (image.ι f) ⊢ Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0))) [PROOFSTEP] rw [← imageSubobject_arrow] [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C inst✝¹ : HasImages V inst✝ : Epi f this : Epi (image.ι f) ⊢ Epi (((imageSubobjectIso f).hom ≫ image.ι f) ≫ inv (Subobject.arrow (kernelSubobject 0))) [PROOFSTEP] refine' @epi_comp _ _ _ _ _ _ (epi_comp _ _) _ _ [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝² : HasImage f g : B ⟶ C inst✝¹ : HasKernel g w : f ≫ g = 0 inst✝ : HasCokernel (imageToKernel f g w) D : V k : Subobject.underlying.obj (kernelSubobject g) ⟶ D p : imageToKernel f g w ≫ k = 0 ⊢ π f g w ≫ desc f g w k p = k [PROOFSTEP] simp [homology.π, homology.desc] [GOAL] ι : Type u_1 V : Type u inst✝⁸ : Category.{v, u} V inst✝⁷ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝⁶ : HasImage f g : B ⟶ C inst✝⁵ : HasKernel g w : f ≫ g = 0 inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f 0 (_ : f ≫ 0 = 0)) inst✝² : HasCokernel f inst✝¹ : HasCokernel (image.ι f) inst✝ : Epi (factorThruImage f) ⊢ imageToKernel f 0 (_ : f ≫ 0 = 0) ≫ (kernelSubobjectIso 0 ≪≫ kernelZeroIsoSource).hom = (imageSubobjectIso f).hom ≫ image.ι f [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝⁷ : Category.{v, u} V inst✝⁶ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝⁵ : HasImage f g : B ⟶ C inst✝⁴ : HasKernel g w : f ≫ g = 0 inst✝³ : HasCokernel (imageToKernel f g w) inst✝² : HasZeroObject V inst✝¹ : HasImage 0 inst✝ : HasCokernel (imageToKernel 0 0 (_ : 0 ≫ 0 = 0)) ⊢ imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0 [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹⁴ : Category.{v, u} V inst✝¹³ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹² : HasImage f g : B ⟶ C inst✝¹¹ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁰ : HasImage f' g' : B' ⟶ C' inst✝⁹ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝⁸ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝⁷ : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝⁶ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝⁵ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁴ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝³ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝² : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝¹ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ p : α.right = β.left ⊢ imageToKernel f g w ≫ kernelSubobjectMap β = imageSubobjectMap α ≫ imageToKernel f' g' w' [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝¹⁴ : Category.{v, u} V inst✝¹³ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹² : HasImage f g : B ⟶ C inst✝¹¹ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁰ : HasImage f' g' : B' ⟶ C' inst✝⁹ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝⁸ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝⁷ : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝⁶ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝⁵ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁴ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝³ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝² : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝¹ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ p : α.right = β.left ⊢ (imageToKernel f g w ≫ kernelSubobjectMap β) ≫ Subobject.arrow (kernelSubobject g') = (imageSubobjectMap α ≫ imageToKernel f' g' w') ≫ Subobject.arrow (kernelSubobject g') [PROOFSTEP] simp [p] [GOAL] ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) p : α.right = β.left ⊢ imageToKernel f g w ≫ kernelSubobjectMap β ≫ cokernel.π (imageToKernel f' g' w') = 0 [PROOFSTEP] rw [imageSubobjectMap_comp_imageToKernel_assoc w w' α β p] [GOAL] ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) p : α.right = β.left ⊢ imageSubobjectMap α ≫ imageToKernel f' g' w' ≫ cokernel.π (imageToKernel f' g' w') = 0 [PROOFSTEP] simp only [cokernel.condition, comp_zero] [GOAL] ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) p : α.right = β.left ⊢ π f g w ≫ map w w' α β p = kernelSubobjectMap β ≫ π f' g' w' [PROOFSTEP] simp only [homology.π, homology.map, cokernel.π_desc] [GOAL] ι : Type u_1 V : Type u inst✝²⁰ : Category.{v, u} V inst✝¹⁹ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁸ : HasImage f g : B ⟶ C inst✝¹⁷ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁶ : HasImage f' g' : B' ⟶ C' inst✝¹⁵ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝¹⁴ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹³ : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹² : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹¹ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝¹⁰ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁹ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁸ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁷ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁶ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁵ : HasCokernel (imageToKernel f g w) inst✝⁴ : HasCokernel (imageToKernel f' g' w') inst✝³ : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝² : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝¹ : HasCokernel (imageToKernel f₃ g₃ w₃) inst✝ : ConcreteCategory V p : α.right = β.left x : (forget V).obj (Subobject.underlying.obj (kernelSubobject g)) ⊢ ↑(map w w' α β p) (↑(π f g w) x) = ↑(π f' g' w') (↑(kernelSubobjectMap β) x) [PROOFSTEP] simp only [← comp_apply, homology.π_map w w' α β p] [GOAL] ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) p : α.right = β.left D : V k : Subobject.underlying.obj (kernelSubobject g') ⟶ D z : imageToKernel f' g' w' ≫ k = 0 ⊢ imageToKernel f g w ≫ kernelSubobjectMap β ≫ k = 0 [PROOFSTEP] simp only [imageSubobjectMap_comp_imageToKernel_assoc w w' α β p, z, comp_zero] [GOAL] ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) p : α.right = β.left D : V k : Subobject.underlying.obj (kernelSubobject g') ⟶ D z : imageToKernel f' g' w' ≫ k = 0 ⊢ map w w' α β p ≫ desc f' g' w' k z = desc f g w (kernelSubobjectMap β ≫ k) (_ : imageToKernel f g w ≫ kernelSubobjectMap β ≫ k = 0) [PROOFSTEP] ext [GOAL] case p ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) p : α.right = β.left D : V k : Subobject.underlying.obj (kernelSubobject g') ⟶ D z : imageToKernel f' g' w' ≫ k = 0 ⊢ π f g w ≫ map w w' α β p ≫ desc f' g' w' k z = π f g w ≫ desc f g w (kernelSubobjectMap β ≫ k) (_ : imageToKernel f g w ≫ kernelSubobjectMap β ≫ k = 0) [PROOFSTEP] simp only [homology.π_desc, homology.π_map_assoc] [GOAL] ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) ⊢ map w w (𝟙 (Arrow.mk f)) (𝟙 (Arrow.mk g)) (_ : (𝟙 (Arrow.mk f)).right = (𝟙 (Arrow.mk f)).right) = 𝟙 (homology f g w) [PROOFSTEP] ext [GOAL] case p ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) ⊢ π f g w ≫ map w w (𝟙 (Arrow.mk f)) (𝟙 (Arrow.mk g)) (_ : (𝟙 (Arrow.mk f)).right = (𝟙 (Arrow.mk f)).right) = π f g w ≫ 𝟙 (homology f g w) [PROOFSTEP] simp only [homology.π_map, kernelSubobjectMap_id, Category.id_comp, Category.comp_id] [GOAL] ι : Type u_1 V✝ : Type u inst✝²⁰ : Category.{v, u} V✝ inst✝¹⁹ : HasZeroMorphisms V✝ A B C : V✝ f : A ⟶ B inst✝¹⁸ : HasImage f g : B ⟶ C inst✝¹⁷ : HasKernel g w : f ≫ g = 0 A' B' C' : V✝ f' : A' ⟶ B' inst✝¹⁶ : HasImage f' g' : B' ⟶ C' inst✝¹⁵ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝¹⁴ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁✝ B₁✝ C₁✝ : V✝ f₁✝ : A₁✝ ⟶ B₁✝ inst✝¹³ : HasImage f₁✝ g₁✝ : B₁✝ ⟶ C₁✝ inst✝¹² : HasKernel g₁✝ w₁ : f₁✝ ≫ g₁✝ = 0 A₂✝ B₂✝ C₂✝ : V✝ f₂✝ : A₂✝ ⟶ B₂✝ inst✝¹¹ : HasImage f₂✝ g₂✝ : B₂✝ ⟶ C₂✝ inst✝¹⁰ : HasKernel g₂✝ w₂ : f₂✝ ≫ g₂✝ = 0 A₃✝ B₃✝ C₃✝ : V✝ f₃✝ : A₃✝ ⟶ B₃✝ inst✝⁹ : HasImage f₃✝ g₃✝ : B₃✝ ⟶ C₃✝ inst✝⁸ : HasKernel g₃✝ w₃ : f₃✝ ≫ g₃✝ = 0 α₁✝ : Arrow.mk f₁✝ ⟶ Arrow.mk f₂✝ inst✝⁷ : HasImageMap α₁✝ β₁✝ : Arrow.mk g₁✝ ⟶ Arrow.mk g₂✝ α₂✝ : Arrow.mk f₂✝ ⟶ Arrow.mk f₃✝ inst✝⁶ : HasImageMap α₂✝ β₂✝ : Arrow.mk g₂✝ ⟶ Arrow.mk g₃✝ inst✝⁵ : HasCokernel (imageToKernel f g w) inst✝⁴ : HasCokernel (imageToKernel f' g' w') inst✝³ : HasCokernel (imageToKernel f₁✝ g₁✝ w₁) inst✝² : HasCokernel (imageToKernel f₂✝ g₂✝ w₂) inst✝¹ : HasCokernel (imageToKernel f₃✝ g₃✝ w₃) V : Type u_2 inst✝ : Category.{u_3, u_2} V A₁ B₁ C₁ A₂ B₂ C₂ A₃ B₃ C₃ : V f₁ : A₁ ⟶ B₁ g₁ : B₁ ⟶ C₁ f₂ : A₂ ⟶ B₂ g₂ : B₂ ⟶ C₂ f₃ : A₃ ⟶ B₃ g₃ : B₃ ⟶ C₃ α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ p₁ : α₁.right = β₁.left p₂ : α₂.right = β₂.left ⊢ (α₁ ≫ α₂).right = (β₁ ≫ β₂).left [PROOFSTEP] simp only [Arrow.comp_left, Arrow.comp_right, p₁, p₂] [GOAL] ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) p₁ : α₁.right = β₁.left p₂ : α₂.right = β₂.left ⊢ map w₁ w₂ α₁ β₁ p₁ ≫ map w₂ w₃ α₂ β₂ p₂ = map w₁ w₃ (α₁ ≫ α₂) (β₁ ≫ β₂) (_ : (α₁ ≫ α₂).right = (β₁ ≫ β₂).left) [PROOFSTEP] ext [GOAL] case p ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α β : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) p₁ : α₁.right = β₁.left p₂ : α₂.right = β₂.left ⊢ π f₁ g₁ w₁ ≫ map w₁ w₂ α₁ β₁ p₁ ≫ map w₂ w₃ α₂ β₂ p₂ = π f₁ g₁ w₁ ≫ map w₁ w₃ (α₁ ≫ α₂) (β₁ ≫ β₂) (_ : (α₁ ≫ α₂).right = (β₁ ≫ β₂).left) [PROOFSTEP] simp only [kernelSubobjectMap_comp, homology.π_map_assoc, homology.π_map, Category.assoc] [GOAL] ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α✝ : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α✝ β✝ : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ α.inv.right = β.inv.left [PROOFSTEP] rw [← cancel_mono α.hom.right, ← Comma.comp_right, α.inv_hom_id, Comma.id_right, p, ← Comma.comp_left, β.inv_hom_id, Comma.id_left] [GOAL] ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α✝ : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α✝ β✝ : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ 𝟙 (Arrow.mk f₂).right = 𝟙 (Arrow.mk g₂).left [PROOFSTEP] rfl [GOAL] ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α✝ : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α✝ β✝ : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ map w₁ w₂ α.hom β.hom p ≫ map w₂ w₁ α.inv β.inv (_ : α.inv.right = β.inv.left) = 𝟙 (homology f₁ g₁ w₁) [PROOFSTEP] rw [homology.map_comp, ← homology.map_id] [GOAL] ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α✝ : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α✝ β✝ : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ map w₁ w₁ (α.hom ≫ α.inv) (β.hom ≫ β.inv) (_ : (α.hom ≫ α.inv).right = (β.hom ≫ β.inv).left) = map w₁ w₁ (𝟙 (Arrow.mk f₁)) (𝟙 (Arrow.mk g₁)) (_ : (𝟙 (Arrow.mk f₁)).right = (𝟙 (Arrow.mk f₁)).right) [PROOFSTEP] congr [GOAL] case e_α ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α✝ : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α✝ β✝ : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ α.hom ≫ α.inv = 𝟙 (Arrow.mk f₁) [PROOFSTEP] simp only [Iso.hom_inv_id] [GOAL] case e_β ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α✝ : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α✝ β✝ : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ β.hom ≫ β.inv = 𝟙 (Arrow.mk g₁) [PROOFSTEP] simp only [Iso.hom_inv_id] [GOAL] ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α✝ : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α✝ β✝ : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ map w₂ w₁ α.inv β.inv (_ : α.inv.right = β.inv.left) ≫ map w₁ w₂ α.hom β.hom p = 𝟙 (homology f₂ g₂ w₂) [PROOFSTEP] rw [homology.map_comp, ← homology.map_id] [GOAL] ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α✝ : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α✝ β✝ : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ map w₂ w₂ (α.inv ≫ α.hom) (β.inv ≫ β.hom) (_ : (α.inv ≫ α.hom).right = (β.inv ≫ β.hom).left) = map w₂ w₂ (𝟙 (Arrow.mk f₂)) (𝟙 (Arrow.mk g₂)) (_ : (𝟙 (Arrow.mk f₂)).right = (𝟙 (Arrow.mk f₂)).right) [PROOFSTEP] congr [GOAL] case e_α ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α✝ : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α✝ β✝ : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ α.inv ≫ α.hom = 𝟙 (Arrow.mk f₂) [PROOFSTEP] simp only [Iso.inv_hom_id] [GOAL] case e_β ι : Type u_1 V : Type u inst✝¹⁹ : Category.{v, u} V inst✝¹⁸ : HasZeroMorphisms V A B C : V f : A ⟶ B inst✝¹⁷ : HasImage f g : B ⟶ C inst✝¹⁶ : HasKernel g w : f ≫ g = 0 A' B' C' : V f' : A' ⟶ B' inst✝¹⁵ : HasImage f' g' : B' ⟶ C' inst✝¹⁴ : HasKernel g' w' : f' ≫ g' = 0 α✝ : Arrow.mk f ⟶ Arrow.mk f' inst✝¹³ : HasImageMap α✝ β✝ : Arrow.mk g ⟶ Arrow.mk g' A₁ B₁ C₁ : V f₁ : A₁ ⟶ B₁ inst✝¹² : HasImage f₁ g₁ : B₁ ⟶ C₁ inst✝¹¹ : HasKernel g₁ w₁ : f₁ ≫ g₁ = 0 A₂ B₂ C₂ : V f₂ : A₂ ⟶ B₂ inst✝¹⁰ : HasImage f₂ g₂ : B₂ ⟶ C₂ inst✝⁹ : HasKernel g₂ w₂ : f₂ ≫ g₂ = 0 A₃ B₃ C₃ : V f₃ : A₃ ⟶ B₃ inst✝⁸ : HasImage f₃ g₃ : B₃ ⟶ C₃ inst✝⁷ : HasKernel g₃ w₃ : f₃ ≫ g₃ = 0 α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂ inst✝⁶ : HasImageMap α₁ β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂ α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃ inst✝⁵ : HasImageMap α₂ β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃ inst✝⁴ : HasCokernel (imageToKernel f g w) inst✝³ : HasCokernel (imageToKernel f' g' w') inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁) inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂) inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃) α : Arrow.mk f₁ ≅ Arrow.mk f₂ β : Arrow.mk g₁ ≅ Arrow.mk g₂ p : α.hom.right = β.hom.left ⊢ β.inv ≫ β.hom = 𝟙 (Arrow.mk g₂) [PROOFSTEP] simp only [Iso.inv_hom_id] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 f' : A ⟶ B g' : B ⟶ C w' : f' ≫ g' = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V pf : f = f' pg : g = g' ⊢ (𝟭 V).map (𝟙 (Arrow.mk f).left) ≫ (Arrow.mk f').hom = (Arrow.mk f).hom ≫ (𝟭 V).map (𝟙 (Arrow.mk f).right) [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 f' : A ⟶ B g' : B ⟶ C w' : f' ≫ g' = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V pf : f = f' pg : g = g' ⊢ (𝟭 V).map (𝟙 (Arrow.mk g).left) ≫ (Arrow.mk g').hom = (Arrow.mk g).hom ≫ (𝟭 V).map (𝟙 (Arrow.mk g).right) [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 f' : A ⟶ B g' : B ⟶ C w' : f' ≫ g' = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V pf : f = f' pg : g = g' ⊢ (𝟭 V).map (𝟙 (Arrow.mk f').left) ≫ (Arrow.mk f).hom = (Arrow.mk f').hom ≫ (𝟭 V).map (𝟙 (Arrow.mk f').right) [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 f' : A ⟶ B g' : B ⟶ C w' : f' ≫ g' = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V pf : f = f' pg : g = g' ⊢ (𝟭 V).map (𝟙 (Arrow.mk g').left) ≫ (Arrow.mk g).hom = (Arrow.mk g').hom ≫ (𝟭 V).map (𝟙 (Arrow.mk g').right) [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 f' : A ⟶ B g' : B ⟶ C w' : f' ≫ g' = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V pf : f = f' pg : g = g' ⊢ map w w' (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)) (CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) ≫ map w' w (CommaMorphism.mk (𝟙 (Arrow.mk f').left) (𝟙 (Arrow.mk f').right)) (CommaMorphism.mk (𝟙 (Arrow.mk g').left) (𝟙 (Arrow.mk g').right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f').left) (𝟙 (Arrow.mk f').right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk f').left) (𝟙 (Arrow.mk f').right)).right) = 𝟙 (homology f g w) [PROOFSTEP] obtain rfl := pf [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 g' : B ⟶ C inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V pg : g = g' w' : f ≫ g' = 0 ⊢ map w w' (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)) (CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) ≫ map w' w (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)) (CommaMorphism.mk (𝟙 (Arrow.mk g').left) (𝟙 (Arrow.mk g').right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) = 𝟙 (homology f g w) [PROOFSTEP] obtain rfl := pg [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V w' : f ≫ g = 0 ⊢ map w w' (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)) (CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) ≫ map w' w (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)) (CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) = 𝟙 (homology f g w) [PROOFSTEP] rw [homology.map_comp, ← homology.map_id] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V w' : f ≫ g = 0 ⊢ map w w (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) ≫ CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)) (CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) ≫ CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) ≫ CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) ≫ CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)).left) = map w w (𝟙 (Arrow.mk f)) (𝟙 (Arrow.mk g)) (_ : (𝟙 (Arrow.mk f)).right = (𝟙 (Arrow.mk f)).right) [PROOFSTEP] congr [GOAL] case e_α ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V w' : f ≫ g = 0 ⊢ CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) ≫ CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) = 𝟙 (Arrow.mk f) [PROOFSTEP] aesop_cat [GOAL] case e_β ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V w' : f ≫ g = 0 ⊢ CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) ≫ CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) = 𝟙 (Arrow.mk g) [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 f' : A ⟶ B g' : B ⟶ C w' : f' ≫ g' = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V pf : f = f' pg : g = g' ⊢ map w' w (CommaMorphism.mk (𝟙 (Arrow.mk f').left) (𝟙 (Arrow.mk f').right)) (CommaMorphism.mk (𝟙 (Arrow.mk g').left) (𝟙 (Arrow.mk g').right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f').left) (𝟙 (Arrow.mk f').right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk f').left) (𝟙 (Arrow.mk f').right)).right) ≫ map w w' (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)) (CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) = 𝟙 (homology f' g' w') [PROOFSTEP] obtain rfl := pf [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 g' : B ⟶ C inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V pg : g = g' w' : f ≫ g' = 0 ⊢ map w' w (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)) (CommaMorphism.mk (𝟙 (Arrow.mk g').left) (𝟙 (Arrow.mk g').right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) ≫ map w w' (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)) (CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) = 𝟙 (homology f g' w') [PROOFSTEP] obtain rfl := pg [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V w' : f ≫ g = 0 ⊢ map w' w (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)) (CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) ≫ map w w' (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)) (CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) = 𝟙 (homology f g w') [PROOFSTEP] rw [homology.map_comp, ← homology.map_id] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V w' : f ≫ g = 0 ⊢ map w' w' (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) ≫ CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)) (CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) ≫ CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) ≫ CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) ≫ CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)).left) = map w' w' (𝟙 (Arrow.mk f)) (𝟙 (Arrow.mk g)) (_ : (𝟙 (Arrow.mk f)).right = (𝟙 (Arrow.mk f)).right) [PROOFSTEP] congr [GOAL] case e_α ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V w' : f ≫ g = 0 ⊢ CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) ≫ CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) = 𝟙 (Arrow.mk f) [PROOFSTEP] aesop_cat [GOAL] case e_β ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w : f ≫ g = 0 inst✝³ : HasKernels V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V w' : f ≫ g = 0 ⊢ CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) ≫ CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) = 𝟙 (Arrow.mk g) [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝¹ : HasKernels V inst✝ : HasImages V w : f ≫ g = 0 ⊢ image.ι f ≫ g = 0 [PROOFSTEP] ext [GOAL] case w ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝¹ : HasKernels V inst✝ : HasImages V w : f ≫ g = 0 ⊢ factorThruImage f ≫ image.ι f ≫ g = factorThruImage f ≫ 0 [PROOFSTEP] simpa using w [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝¹ : HasKernels V inst✝ : HasImages V w : f ≫ g = 0 ⊢ (imageSubobjectIso f).hom ≫ imageToKernel' f g w = imageToKernel f g w ≫ (kernelSubobjectIso g).hom [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝¹ : HasKernels V inst✝ : HasImages V w : f ≫ g = 0 ⊢ ((imageSubobjectIso f).hom ≫ imageToKernel' f g w) ≫ equalizer.ι g 0 = (imageToKernel f g w ≫ (kernelSubobjectIso g).hom) ≫ equalizer.ι g 0 [PROOFSTEP] simp [imageToKernel'] [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝¹ : HasKernels V inst✝ : HasImages V w : f ≫ g = 0 ⊢ imageToKernel' f g w ≫ (kernelSubobjectIso g).inv = (imageSubobjectIso f).inv ≫ imageToKernel f g w [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝¹ : HasKernels V inst✝ : HasImages V w : f ≫ g = 0 ⊢ (imageToKernel' f g w ≫ (kernelSubobjectIso g).inv) ≫ Subobject.arrow (kernelSubobject g) = ((imageSubobjectIso f).inv ≫ imageToKernel f g w) ≫ Subobject.arrow (kernelSubobject g) [PROOFSTEP] simp [imageToKernel'] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V w : f ≫ g = 0 ⊢ imageToKernel f g w ≫ (kernelSubobjectIso g).hom = (imageSubobjectIso f).hom ≫ imageToKernel' f g w [PROOFSTEP] simp only [imageSubobjectIso_imageToKernel'] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V w : f ≫ g = 0 ⊢ imageToKernel' f g w ≫ (kernelSubobjectIso g).inv = (imageSubobjectIso f).inv ≫ imageToKernel f g w [PROOFSTEP] simp only [imageToKernel'_kernelSubobjectIso] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V w : f ≫ g = 0 ⊢ cokernel.map (imageToKernel f g w) (imageToKernel' f g w) (imageSubobjectIso f).hom (kernelSubobjectIso g).hom (_ : imageToKernel f g w ≫ (kernelSubobjectIso g).hom = (imageSubobjectIso f).hom ≫ imageToKernel' f g w) ≫ cokernel.map (imageToKernel' f g w) (imageToKernel f g w) (imageSubobjectIso f).inv (kernelSubobjectIso g).inv (_ : imageToKernel' f g w ≫ (kernelSubobjectIso g).inv = (imageSubobjectIso f).inv ≫ imageToKernel f g w) = 𝟙 (homology f g w) [PROOFSTEP] apply coequalizer.hom_ext [GOAL] case h ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V w : f ≫ g = 0 ⊢ coequalizer.π (imageToKernel f g w) 0 ≫ cokernel.map (imageToKernel f g w) (imageToKernel' f g w) (imageSubobjectIso f).hom (kernelSubobjectIso g).hom (_ : imageToKernel f g w ≫ (kernelSubobjectIso g).hom = (imageSubobjectIso f).hom ≫ imageToKernel' f g w) ≫ cokernel.map (imageToKernel' f g w) (imageToKernel f g w) (imageSubobjectIso f).inv (kernelSubobjectIso g).inv (_ : imageToKernel' f g w ≫ (kernelSubobjectIso g).inv = (imageSubobjectIso f).inv ≫ imageToKernel f g w) = coequalizer.π (imageToKernel f g w) 0 ≫ 𝟙 (homology f g w) [PROOFSTEP] simp only [Iso.hom_inv_id_assoc, cokernel.π_desc, cokernel.π_desc_assoc, Category.assoc, coequalizer_as_cokernel] [GOAL] case h ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V w : f ≫ g = 0 ⊢ cokernel.π (imageToKernel f g w) = cokernel.π (imageToKernel f g w) ≫ 𝟙 (homology f g w) [PROOFSTEP] exact (Category.comp_id _).symm [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V w : f ≫ g = 0 ⊢ cokernel.map (imageToKernel' f g w) (imageToKernel f g w) (imageSubobjectIso f).inv (kernelSubobjectIso g).inv (_ : imageToKernel' f g w ≫ (kernelSubobjectIso g).inv = (imageSubobjectIso f).inv ≫ imageToKernel f g w) ≫ cokernel.map (imageToKernel f g w) (imageToKernel' f g w) (imageSubobjectIso f).hom (kernelSubobjectIso g).hom (_ : imageToKernel f g w ≫ (kernelSubobjectIso g).hom = (imageSubobjectIso f).hom ≫ imageToKernel' f g w) = 𝟙 (cokernel (imageToKernel' f g w)) [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝² : HasKernels V inst✝¹ : HasImages V inst✝ : HasCokernels V w : f ≫ g = 0 ⊢ coequalizer.π (imageToKernel' f g w) 0 ≫ cokernel.map (imageToKernel' f g w) (imageToKernel f g w) (imageSubobjectIso f).inv (kernelSubobjectIso g).inv (_ : imageToKernel' f g w ≫ (kernelSubobjectIso g).inv = (imageSubobjectIso f).inv ≫ imageToKernel f g w) ≫ cokernel.map (imageToKernel f g w) (imageToKernel' f g w) (imageSubobjectIso f).hom (kernelSubobjectIso g).hom (_ : imageToKernel f g w ≫ (kernelSubobjectIso g).hom = (imageSubobjectIso f).hom ≫ imageToKernel' f g w) = coequalizer.π (imageToKernel' f g w) 0 ≫ 𝟙 (cokernel (imageToKernel' f g w)) [PROOFSTEP] simp only [Iso.inv_hom_id_assoc, cokernel.π_desc, Category.comp_id, cokernel.π_desc_assoc, Category.assoc] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝³ : HasKernels V inst✝² : HasImages V inst✝¹ : HasCokernels V inst✝ : HasEqualizers V w : f ≫ g = 0 ⊢ homology f g w ≅ cokernel (kernel.lift g f w) [PROOFSTEP] refine' homologyIsoCokernelImageToKernel' f g w ≪≫ _ [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝³ : HasKernels V inst✝² : HasImages V inst✝¹ : HasCokernels V inst✝ : HasEqualizers V w : f ≫ g = 0 ⊢ cokernel (imageToKernel' f g w) ≅ cokernel (kernel.lift g f w) [PROOFSTEP] have p : factorThruImage f ≫ imageToKernel' f g w = kernel.lift g f w := by ext simp [imageToKernel'] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝³ : HasKernels V inst✝² : HasImages V inst✝¹ : HasCokernels V inst✝ : HasEqualizers V w : f ≫ g = 0 ⊢ factorThruImage f ≫ imageToKernel' f g w = kernel.lift g f w [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝³ : HasKernels V inst✝² : HasImages V inst✝¹ : HasCokernels V inst✝ : HasEqualizers V w : f ≫ g = 0 ⊢ (factorThruImage f ≫ imageToKernel' f g w) ≫ equalizer.ι g 0 = kernel.lift g f w ≫ equalizer.ι g 0 [PROOFSTEP] simp [imageToKernel'] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : HasZeroMorphisms V A B C : V f : A ⟶ B g : B ⟶ C w✝ : f ≫ g = 0 inst✝³ : HasKernels V inst✝² : HasImages V inst✝¹ : HasCokernels V inst✝ : HasEqualizers V w : f ≫ g = 0 p : factorThruImage f ≫ imageToKernel' f g w = kernel.lift g f w ⊢ cokernel (imageToKernel' f g w) ≅ cokernel (kernel.lift g f w) [PROOFSTEP] exact (cokernelEpiComp _ _).symm ≪≫ cokernelIsoOfEq p
{"mathlib_filename": "Mathlib.Algebra.Homology.ImageToKernel", "llama_tokens": 33702}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α hp : Prime p s✝ : Multiset α a : α s : Multiset α ih : p ∣ Multiset.prod s → ∃ a, a ∈ s ∧ p ∣ a h : p ∣ Multiset.prod (a ::ₘ s) ⊢ p ∣ a * Multiset.prod s [PROOFSTEP] simpa using h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α hp : Prime p s : Multiset β f : β → α h : p ∣ Multiset.prod (Multiset.map f s) ⊢ ∃ a, a ∈ s ∧ p ∣ f a [PROOFSTEP] simpa only [exists_prop, Multiset.mem_map, exists_exists_and_eq_and] using hp.exists_mem_multiset_dvd h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α hp : Prime p s : Multiset α ⊢ (∀ (r : α), r ∈ 0 → Prime r) → p ∣ Multiset.prod 0 → ∃ q, q ∈ 0 ∧ p ~ᵤ q [PROOFSTEP] simp [mt isUnit_iff_dvd_one.2 hp.not_unit] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α hp : Prime p s✝ : Multiset α a : α s : Multiset α ih : (∀ (r : α), r ∈ s → Prime r) → p ∣ Multiset.prod s → ∃ q, q ∈ s ∧ p ~ᵤ q hs : ∀ (r : α), r ∈ a ::ₘ s → Prime r hps : p ∣ Multiset.prod (a ::ₘ s) ⊢ ∃ q, q ∈ a ::ₘ s ∧ p ~ᵤ q [PROOFSTEP] rw [Multiset.prod_cons] at hps [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α hp : Prime p s✝ : Multiset α a : α s : Multiset α ih : (∀ (r : α), r ∈ s → Prime r) → p ∣ Multiset.prod s → ∃ q, q ∈ s ∧ p ~ᵤ q hs : ∀ (r : α), r ∈ a ::ₘ s → Prime r hps : p ∣ a * Multiset.prod s ⊢ ∃ q, q ∈ a ::ₘ s ∧ p ~ᵤ q [PROOFSTEP] cases' hp.dvd_or_dvd hps with h h [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α hp : Prime p s✝ : Multiset α a : α s : Multiset α ih : (∀ (r : α), r ∈ s → Prime r) → p ∣ Multiset.prod s → ∃ q, q ∈ s ∧ p ~ᵤ q hs : ∀ (r : α), r ∈ a ::ₘ s → Prime r hps : p ∣ a * Multiset.prod s h : p ∣ a ⊢ ∃ q, q ∈ a ::ₘ s ∧ p ~ᵤ q [PROOFSTEP] have hap := hs a (Multiset.mem_cons.2 (Or.inl rfl)) [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α hp : Prime p s✝ : Multiset α a : α s : Multiset α ih : (∀ (r : α), r ∈ s → Prime r) → p ∣ Multiset.prod s → ∃ q, q ∈ s ∧ p ~ᵤ q hs : ∀ (r : α), r ∈ a ::ₘ s → Prime r hps : p ∣ a * Multiset.prod s h : p ∣ a hap : Prime a ⊢ ∃ q, q ∈ a ::ₘ s ∧ p ~ᵤ q [PROOFSTEP] exact ⟨a, Multiset.mem_cons_self a _, hp.associated_of_dvd hap h⟩ [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α hp : Prime p s✝ : Multiset α a : α s : Multiset α ih : (∀ (r : α), r ∈ s → Prime r) → p ∣ Multiset.prod s → ∃ q, q ∈ s ∧ p ~ᵤ q hs : ∀ (r : α), r ∈ a ::ₘ s → Prime r hps : p ∣ a * Multiset.prod s h : p ∣ Multiset.prod s ⊢ ∃ q, q ∈ a ::ₘ s ∧ p ~ᵤ q [PROOFSTEP] rcases ih (fun r hr => hs _ (Multiset.mem_cons.2 (Or.inr hr))) h with ⟨q, hq₁, hq₂⟩ [GOAL] case inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α hp : Prime p s✝ : Multiset α a : α s : Multiset α ih : (∀ (r : α), r ∈ s → Prime r) → p ∣ Multiset.prod s → ∃ q, q ∈ s ∧ p ~ᵤ q hs : ∀ (r : α), r ∈ a ::ₘ s → Prime r hps : p ∣ a * Multiset.prod s h : p ∣ Multiset.prod s q : α hq₁ : q ∈ s hq₂ : p ~ᵤ q ⊢ ∃ q, q ∈ a ::ₘ s ∧ p ~ᵤ q [PROOFSTEP] exact ⟨q, Multiset.mem_cons.2 (Or.inr hq₁), hq₂⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s : Multiset α n : α h : ∀ (a : α), a ∈ s → Prime a div : ∀ (a : α), a ∈ s → a ∣ n uniq : ∀ (a : α), countp (Associated a) s ≤ 1 ⊢ prod s ∣ n [PROOFSTEP] induction' s using Multiset.induction_on with a s induct n primes divs generalizing n [GOAL] case empty α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s : Multiset α n✝ : α h✝ : ∀ (a : α), a ∈ s → Prime a div✝ : ∀ (a : α), a ∈ s → a ∣ n✝ uniq✝ : ∀ (a : α), countp (Associated a) s ≤ 1 n : α h : ∀ (a : α), a ∈ 0 → Prime a div : ∀ (a : α), a ∈ 0 → a ∣ n uniq : ∀ (a : α), countp (Associated a) 0 ≤ 1 ⊢ prod 0 ∣ n [PROOFSTEP] simp only [Multiset.prod_zero, one_dvd] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s✝ : Multiset α n✝ : α h✝ : ∀ (a : α), a ∈ s✝ → Prime a div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n✝ uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1 a : α s : Multiset α induct : ∀ (n : α), (∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n n : α h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1 div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ n uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1 ⊢ prod (a ::ₘ s) ∣ n [PROOFSTEP] rw [Multiset.prod_cons] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s✝ : Multiset α n✝ : α h✝ : ∀ (a : α), a ∈ s✝ → Prime a div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n✝ uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1 a : α s : Multiset α induct : ∀ (n : α), (∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n n : α h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1 div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ n uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1 ⊢ a * prod s ∣ n [PROOFSTEP] obtain ⟨k, rfl⟩ : a ∣ n := div a (Multiset.mem_cons_self a s) [GOAL] case cons.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s✝ : Multiset α n : α h✝ : ∀ (a : α), a ∈ s✝ → Prime a div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1 a : α s : Multiset α induct : ∀ (n : α), (∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1 uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1 k : α div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k ⊢ a * prod s ∣ a * k [PROOFSTEP] apply mul_dvd_mul_left a [GOAL] case cons.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s✝ : Multiset α n : α h✝ : ∀ (a : α), a ∈ s✝ → Prime a div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1 a : α s : Multiset α induct : ∀ (n : α), (∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1 uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1 k : α div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k ⊢ prod s ∣ k [PROOFSTEP] refine induct _ (fun a ha => h a (Multiset.mem_cons_of_mem ha)) (fun b b_in_s => ?_) fun a => (Multiset.countp_le_of_le _ (Multiset.le_cons_self _ _)).trans (uniq a) [GOAL] case cons.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s✝ : Multiset α n : α h✝ : ∀ (a : α), a ∈ s✝ → Prime a div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1 a : α s : Multiset α induct : ∀ (n : α), (∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1 uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1 k : α div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k b : α b_in_s : b ∈ s ⊢ b ∣ k [PROOFSTEP] have b_div_n := div b (Multiset.mem_cons_of_mem b_in_s) [GOAL] case cons.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s✝ : Multiset α n : α h✝ : ∀ (a : α), a ∈ s✝ → Prime a div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1 a : α s : Multiset α induct : ∀ (n : α), (∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1 uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1 k : α div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k b : α b_in_s : b ∈ s b_div_n : b ∣ a * k ⊢ b ∣ k [PROOFSTEP] have a_prime := h a (Multiset.mem_cons_self a s) [GOAL] case cons.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s✝ : Multiset α n : α h✝ : ∀ (a : α), a ∈ s✝ → Prime a div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1 a : α s : Multiset α induct : ∀ (n : α), (∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1 uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1 k : α div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k b : α b_in_s : b ∈ s b_div_n : b ∣ a * k a_prime : Prime a ⊢ b ∣ k [PROOFSTEP] have b_prime := h b (Multiset.mem_cons_of_mem b_in_s) [GOAL] case cons.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s✝ : Multiset α n : α h✝ : ∀ (a : α), a ∈ s✝ → Prime a div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1 a : α s : Multiset α induct : ∀ (n : α), (∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1 uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1 k : α div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k b : α b_in_s : b ∈ s b_div_n : b ∣ a * k a_prime : Prime a b_prime : Prime b ⊢ b ∣ k [PROOFSTEP] refine' (b_prime.dvd_or_dvd b_div_n).resolve_left fun b_div_a => _ [GOAL] case cons.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s✝ : Multiset α n : α h✝ : ∀ (a : α), a ∈ s✝ → Prime a div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1 a : α s : Multiset α induct : ∀ (n : α), (∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1 uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1 k : α div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k b : α b_in_s : b ∈ s b_div_n : b ∣ a * k a_prime : Prime a b_prime : Prime b b_div_a : b ∣ a ⊢ False [PROOFSTEP] have assoc := b_prime.associated_of_dvd a_prime b_div_a [GOAL] case cons.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s✝ : Multiset α n : α h✝ : ∀ (a : α), a ∈ s✝ → Prime a div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1 a : α s : Multiset α induct : ∀ (n : α), (∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1 uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1 k : α div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k b : α b_in_s : b ∈ s b_div_n : b ∣ a * k a_prime : Prime a b_prime : Prime b b_div_a : b ∣ a assoc : b ~ᵤ a ⊢ False [PROOFSTEP] have := uniq a [GOAL] case cons.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s✝ : Multiset α n : α h✝ : ∀ (a : α), a ∈ s✝ → Prime a div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1 a : α s : Multiset α induct : ∀ (n : α), (∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1 uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1 k : α div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k b : α b_in_s : b ∈ s b_div_n : b ∣ a * k a_prime : Prime a b_prime : Prime b b_div_a : b ∣ a assoc : b ~ᵤ a this : countp (Associated a) (a ::ₘ s) ≤ 1 ⊢ False [PROOFSTEP] rw [Multiset.countp_cons_of_pos _ (Associated.refl _), Nat.succ_le_succ_iff, ← not_lt, Multiset.countp_pos] at this [GOAL] case cons.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : (a : α) → DecidablePred (Associated a) s✝ : Multiset α n : α h✝ : ∀ (a : α), a ∈ s✝ → Prime a div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1 a : α s : Multiset α induct : ∀ (n : α), (∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1 uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1 k : α div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k b : α b_in_s : b ∈ s b_div_n : b ∣ a * k a_prime : Prime a b_prime : Prime b b_div_a : b ∣ a assoc : b ~ᵤ a this : ¬∃ a_1, a_1 ∈ s ∧ a ~ᵤ a_1 ⊢ False [PROOFSTEP] exact this ⟨b, b_in_s, assoc.symm⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ s : Finset α n : α h : ∀ (a : α), a ∈ s → Prime a div : ∀ (a : α), a ∈ s → a ∣ n ⊢ ∏ p in s, p ∣ n [PROOFSTEP] classical exact Multiset.prod_primes_dvd n (by simpa only [Multiset.map_id', Finset.mem_def] using h) (by simpa only [Multiset.map_id', Finset.mem_def] using div) (by -- POrting note: was -- `simp only [Multiset.map_id', associated_eq_eq, Multiset.countp_eq_card_filter, ← -- Multiset.count_eq_card_filter_eq, ← Multiset.nodup_iff_count_le_one, s.nodup]` intro a simp only [Multiset.map_id', associated_eq_eq, Multiset.countp_eq_card_filter] change Multiset.card (Multiset.filter (fun b => a = b) s.val) ≤ 1 apply le_of_eq_of_le (Multiset.count_eq_card_filter_eq _ _).symm apply Multiset.nodup_iff_count_le_one.mp exact s.nodup) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ s : Finset α n : α h : ∀ (a : α), a ∈ s → Prime a div : ∀ (a : α), a ∈ s → a ∣ n ⊢ ∏ p in s, p ∣ n [PROOFSTEP] exact Multiset.prod_primes_dvd n (by simpa only [Multiset.map_id', Finset.mem_def] using h) (by simpa only [Multiset.map_id', Finset.mem_def] using div) (by -- POrting note: was -- `simp only [Multiset.map_id', associated_eq_eq, Multiset.countp_eq_card_filter, ← -- Multiset.count_eq_card_filter_eq, ← Multiset.nodup_iff_count_le_one, s.nodup]` intro a simp only [Multiset.map_id', associated_eq_eq, Multiset.countp_eq_card_filter] change Multiset.card (Multiset.filter (fun b => a = b) s.val) ≤ 1 apply le_of_eq_of_le (Multiset.count_eq_card_filter_eq _ _).symm apply Multiset.nodup_iff_count_le_one.mp exact s.nodup) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ s : Finset α n : α h : ∀ (a : α), a ∈ s → Prime a div : ∀ (a : α), a ∈ s → a ∣ n ⊢ ∀ (a : α), a ∈ Multiset.map (fun p => p) s.val → Prime a [PROOFSTEP] simpa only [Multiset.map_id', Finset.mem_def] using h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ s : Finset α n : α h : ∀ (a : α), a ∈ s → Prime a div : ∀ (a : α), a ∈ s → a ∣ n ⊢ ∀ (a : α), a ∈ Multiset.map (fun p => p) s.val → a ∣ n [PROOFSTEP] simpa only [Multiset.map_id', Finset.mem_def] using div [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ s : Finset α n : α h : ∀ (a : α), a ∈ s → Prime a div : ∀ (a : α), a ∈ s → a ∣ n ⊢ ∀ (a : α), Multiset.countp (Associated a) (Multiset.map (fun p => p) s.val) ≤ 1 [PROOFSTEP] intro a [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ s : Finset α n : α h : ∀ (a : α), a ∈ s → Prime a div : ∀ (a : α), a ∈ s → a ∣ n a : α ⊢ Multiset.countp (Associated a) (Multiset.map (fun p => p) s.val) ≤ 1 [PROOFSTEP] simp only [Multiset.map_id', associated_eq_eq, Multiset.countp_eq_card_filter] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ s : Finset α n : α h : ∀ (a : α), a ∈ s → Prime a div : ∀ (a : α), a ∈ s → a ∣ n a : α ⊢ ↑Multiset.card (Multiset.filter (Eq a) s.val) ≤ 1 [PROOFSTEP] change Multiset.card (Multiset.filter (fun b => a = b) s.val) ≤ 1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ s : Finset α n : α h : ∀ (a : α), a ∈ s → Prime a div : ∀ (a : α), a ∈ s → a ∣ n a : α ⊢ ↑Multiset.card (Multiset.filter (fun b => a = b) s.val) ≤ 1 [PROOFSTEP] apply le_of_eq_of_le (Multiset.count_eq_card_filter_eq _ _).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ s : Finset α n : α h : ∀ (a : α), a ∈ s → Prime a div : ∀ (a : α), a ∈ s → a ∣ n a : α ⊢ Multiset.count a s.val ≤ 1 [PROOFSTEP] apply Multiset.nodup_iff_count_le_one.mp [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CancelCommMonoidWithZero α inst✝ : Unique αˣ s : Finset α n : α h : ∀ (a : α), a ∈ s → Prime a div : ∀ (a : α), a ∈ s → a ∣ n a : α ⊢ Multiset.Nodup s.val [PROOFSTEP] exact s.nodup [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p : Multiset α ⊢ Multiset.prod (Multiset.map Associates.mk 0) = Associates.mk (Multiset.prod 0) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p : Multiset α a : α s : Multiset α ih : Multiset.prod (Multiset.map Associates.mk s) = Associates.mk (Multiset.prod s) ⊢ Multiset.prod (Multiset.map Associates.mk (a ::ₘ s)) = Associates.mk (Multiset.prod (a ::ₘ s)) [PROOFSTEP] simp [ih, Associates.mk_mul_mk] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p : Finset β f : β → α ⊢ ∏ i in p, Associates.mk (f i) = Associates.mk (∏ i in p, f i) [PROOFSTEP] have : (fun i => Associates.mk (f i)) = Associates.mk ∘ f := funext <| fun x => Function.comp_apply [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p : Finset β f : β → α this : (fun i => Associates.mk (f i)) = Associates.mk ∘ f ⊢ ∏ i in p, Associates.mk (f i) = Associates.mk (∏ i in p, f i) [PROOFSTEP] rw [Finset.prod_eq_multiset_prod, this, ← Multiset.map_map, prod_mk, ← Finset.prod_eq_multiset_prod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p q : Multiset α ⊢ Multiset.Rel Associated p q ↔ Multiset.map Associates.mk p = Multiset.map Associates.mk q [PROOFSTEP] rw [← Multiset.rel_eq, Multiset.rel_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p q : Multiset α ⊢ Multiset.Rel Associated p q ↔ Multiset.Rel (fun a b => Associates.mk a = Associates.mk b) p q [PROOFSTEP] simp only [mk_eq_mk_iff_associated] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p : Multiset (Associates α) ⊢ Multiset.prod 0 = 1 ↔ ∀ (a : Associates α), a ∈ 0 → a = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p : Multiset (Associates α) ⊢ ∀ ⦃a : Associates α⦄ {s : Multiset (Associates α)}, (Multiset.prod s = 1 ↔ ∀ (a : Associates α), a ∈ s → a = 1) → (Multiset.prod (a ::ₘ s) = 1 ↔ ∀ (a_2 : Associates α), a_2 ∈ a ::ₘ s → a_2 = 1) [PROOFSTEP] simp (config := { contextual := true }) [mul_eq_one_iff, or_imp, forall_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p q : Multiset (Associates α) h : p ≤ q ⊢ Multiset.prod p ≤ Multiset.prod q [PROOFSTEP] haveI := Classical.decEq (Associates α) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p q : Multiset (Associates α) h : p ≤ q this : DecidableEq (Associates α) ⊢ Multiset.prod p ≤ Multiset.prod q [PROOFSTEP] haveI := Classical.decEq α [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p q : Multiset (Associates α) h : p ≤ q this✝ : DecidableEq (Associates α) this : DecidableEq α ⊢ Multiset.prod p ≤ Multiset.prod q [PROOFSTEP] suffices p.prod ≤ (p + (q - p)).prod by rwa [add_tsub_cancel_of_le h] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p q : Multiset (Associates α) h : p ≤ q this✝¹ : DecidableEq (Associates α) this✝ : DecidableEq α this : Multiset.prod p ≤ Multiset.prod (p + (q - p)) ⊢ Multiset.prod p ≤ Multiset.prod q [PROOFSTEP] rwa [add_tsub_cancel_of_le h] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p q : Multiset (Associates α) h : p ≤ q this✝ : DecidableEq (Associates α) this : DecidableEq α ⊢ Multiset.prod p ≤ Multiset.prod (p + (q - p)) [PROOFSTEP] suffices p.prod * 1 ≤ p.prod * (q - p).prod by simpa [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p q : Multiset (Associates α) h : p ≤ q this✝¹ : DecidableEq (Associates α) this✝ : DecidableEq α this : Multiset.prod p * 1 ≤ Multiset.prod p * Multiset.prod (q - p) ⊢ Multiset.prod p ≤ Multiset.prod (p + (q - p)) [PROOFSTEP] simpa [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α p q : Multiset (Associates α) h : p ≤ q this✝ : DecidableEq (Associates α) this : DecidableEq α ⊢ Multiset.prod p * 1 ≤ Multiset.prod p * Multiset.prod (q - p) [PROOFSTEP] exact mul_mono (le_refl p.prod) one_le [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α s✝ : Multiset (Associates α) p : Associates α hp : Prime p a : Associates α s : Multiset (Associates α) ih : p ≤ Multiset.prod s → ∃ a, a ∈ s ∧ p ≤ a h : p ≤ Multiset.prod (a ::ₘ s) ⊢ p ≤ a * Multiset.prod s [PROOFSTEP] simpa using h
{"mathlib_filename": "Mathlib.Algebra.BigOperators.Associated", "llama_tokens": 11698}
[GOAL] C : Type u_1 D : Type u_2 inst✝² : Category.{u_3, u_1} C inst✝¹ : Category.{?u.33371, u_2} D inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C ⊢ π₁Toπ₂ ≫ π₂Toπ₃ = 0 [PROOFSTEP] aesop_cat [GOAL] C : Type u_1 D : Type u_2 inst✝⁴ : Category.{?u.36094, u_1} C inst✝³ : Category.{?u.36098, u_2} D inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasZeroMorphisms D F : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms F ⊢ F.map S.f ≫ F.map S.g = 0 [PROOFSTEP] rw [← F.map_comp, S.zero, F.map_zero] [GOAL] C : Type u_1 D : Type u_2 inst✝⁴ : Category.{?u.44556, u_1} C inst✝³ : Category.{?u.44560, u_2} D inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasZeroMorphisms D F : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms F X✝ Y✝ : ShortComplex C φ : X✝ ⟶ Y✝ ⊢ F.map φ.τ₁ ≫ ((fun S => map S F) Y✝).f = ((fun S => map S F) X✝).f ≫ F.map φ.τ₂ [PROOFSTEP] dsimp [GOAL] C : Type u_1 D : Type u_2 inst✝⁴ : Category.{?u.44556, u_1} C inst✝³ : Category.{?u.44560, u_2} D inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasZeroMorphisms D F : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms F X✝ Y✝ : ShortComplex C φ : X✝ ⟶ Y✝ ⊢ F.map φ.τ₁ ≫ F.map Y✝.f = F.map X✝.f ≫ F.map φ.τ₂ [PROOFSTEP] simp only [← F.map_comp, φ.comm₁₂] [GOAL] C : Type u_1 D : Type u_2 inst✝⁴ : Category.{?u.44556, u_1} C inst✝³ : Category.{?u.44560, u_2} D inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasZeroMorphisms D F : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms F X✝ Y✝ : ShortComplex C φ : X✝ ⟶ Y✝ ⊢ F.map φ.τ₂ ≫ ((fun S => map S F) Y✝).g = ((fun S => map S F) X✝).g ≫ F.map φ.τ₃ [PROOFSTEP] dsimp [GOAL] C : Type u_1 D : Type u_2 inst✝⁴ : Category.{?u.44556, u_1} C inst✝³ : Category.{?u.44560, u_2} D inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasZeroMorphisms D F : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms F X✝ Y✝ : ShortComplex C φ : X✝ ⟶ Y✝ ⊢ F.map φ.τ₂ ≫ F.map Y✝.g = F.map X✝.g ≫ F.map φ.τ₃ [PROOFSTEP] simp only [← F.map_comp, φ.comm₂₃] [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.52069, u_1} C inst✝² : Category.{?u.52073, u_2} D inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D e₁ : S₁.X₁ ≅ S₂.X₁ e₂ : S₁.X₂ ≅ S₂.X₂ e₃ : S₁.X₃ ≅ S₂.X₃ comm₁₂ : autoParam (e₁.hom ≫ S₂.f = S₁.f ≫ e₂.hom) _auto✝ comm₂₃ : autoParam (e₂.hom ≫ S₂.g = S₁.g ≫ e₃.hom) _auto✝ ⊢ e₁.inv ≫ S₁.f = S₂.f ≫ e₂.inv [PROOFSTEP] rw [← cancel_mono e₂.hom, assoc, assoc, e₂.inv_hom_id, comp_id, ← comm₁₂, e₁.inv_hom_id_assoc] [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.52069, u_1} C inst✝² : Category.{?u.52073, u_2} D inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D e₁ : S₁.X₁ ≅ S₂.X₁ e₂ : S₁.X₂ ≅ S₂.X₂ e₃ : S₁.X₃ ≅ S₂.X₃ comm₁₂ : autoParam (e₁.hom ≫ S₂.f = S₁.f ≫ e₂.hom) _auto✝ comm₂₃ : autoParam (e₂.hom ≫ S₂.g = S₁.g ≫ e₃.hom) _auto✝ ⊢ e₂.inv ≫ S₁.g = S₂.g ≫ e₃.inv [PROOFSTEP] rw [← cancel_mono e₃.hom, assoc, assoc, e₃.inv_hom_id, comp_id, ← comm₂₃, e₂.inv_hom_id_assoc] [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.62853, u_1} C inst✝² : Category.{?u.62857, u_2} D inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D ⊢ S.g.op ≫ S.f.op = 0 [PROOFSTEP] simp only [← op_comp, S.zero] [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.62853, u_1} C inst✝² : Category.{?u.62857, u_2} D inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D ⊢ 0.op = 0 [PROOFSTEP] rfl [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.63553, u_1} C inst✝² : Category.{?u.63557, u_2} D inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D φ : S₁ ⟶ S₂ ⊢ φ.τ₃.op ≫ (op S₁).f = (op S₂).f ≫ φ.τ₂.op [PROOFSTEP] dsimp [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.63553, u_1} C inst✝² : Category.{?u.63557, u_2} D inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D φ : S₁ ⟶ S₂ ⊢ φ.τ₃.op ≫ S₁.g.op = S₂.g.op ≫ φ.τ₂.op [PROOFSTEP] simp only [← op_comp, φ.comm₂₃] [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.63553, u_1} C inst✝² : Category.{?u.63557, u_2} D inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D φ : S₁ ⟶ S₂ ⊢ φ.τ₂.op ≫ (op S₁).g = (op S₂).g ≫ φ.τ₁.op [PROOFSTEP] dsimp [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.63553, u_1} C inst✝² : Category.{?u.63557, u_2} D inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D φ : S₁ ⟶ S₂ ⊢ φ.τ₂.op ≫ S₁.f.op = S₂.f.op ≫ φ.τ₁.op [PROOFSTEP] simp only [← op_comp, φ.comm₁₂] [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.64969, u_1} C inst✝² : Category.{?u.64973, u_2} D inst✝¹ : HasZeroMorphisms C S✝ S₁ S₂ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D S : ShortComplex Cᵒᵖ ⊢ S.g.unop ≫ S.f.unop = 0 [PROOFSTEP] simp only [← unop_comp, S.zero] [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.64969, u_1} C inst✝² : Category.{?u.64973, u_2} D inst✝¹ : HasZeroMorphisms C S✝ S₁ S₂ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D S : ShortComplex Cᵒᵖ ⊢ 0.unop = 0 [PROOFSTEP] rfl [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.65733, u_1} C inst✝² : Category.{?u.65737, u_2} D inst✝¹ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D S₁ S₂ : ShortComplex Cᵒᵖ φ : S₁ ⟶ S₂ ⊢ φ.τ₃.unop ≫ (unop S₁).f = (unop S₂).f ≫ φ.τ₂.unop [PROOFSTEP] dsimp [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.65733, u_1} C inst✝² : Category.{?u.65737, u_2} D inst✝¹ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D S₁ S₂ : ShortComplex Cᵒᵖ φ : S₁ ⟶ S₂ ⊢ φ.τ₃.unop ≫ S₁.g.unop = S₂.g.unop ≫ φ.τ₂.unop [PROOFSTEP] simp only [← unop_comp, φ.comm₂₃] [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.65733, u_1} C inst✝² : Category.{?u.65737, u_2} D inst✝¹ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D S₁ S₂ : ShortComplex Cᵒᵖ φ : S₁ ⟶ S₂ ⊢ φ.τ₂.unop ≫ (unop S₁).g = (unop S₂).g ≫ φ.τ₁.unop [PROOFSTEP] dsimp [GOAL] C : Type u_1 D : Type u_2 inst✝³ : Category.{?u.65733, u_1} C inst✝² : Category.{?u.65737, u_2} D inst✝¹ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ : ShortComplex C inst✝ : HasZeroMorphisms D S₁ S₂ : ShortComplex Cᵒᵖ φ : S₁ ⟶ S₂ ⊢ φ.τ₂.unop ≫ S₁.f.unop = S₂.f.unop ≫ φ.τ₁.unop [PROOFSTEP] simp only [← unop_comp, φ.comm₁₂]
{"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.Basic", "llama_tokens": 3769}
{"mathlib_filename": "Mathlib.Algebra.BigOperators.RingEquiv", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝ : CommMonoid α s : Multiset α a✝ : α l : List α a : α h : a ∈ Quotient.mk (List.isSetoid α) l ⊢ a ∣ prod (Quotient.mk (List.isSetoid α) l) [PROOFSTEP] simpa using List.dvd_prod h [GOAL] α : Type u_1 inst✝ : CanonicallyOrderedMonoid α m : Multiset α l : List α ⊢ prod (Quotient.mk (List.isSetoid α) l) = 1 ↔ ∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) l → x = 1 [PROOFSTEP] simpa using List.prod_eq_one_iff l [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : CanonicallyOrderedCommSemiring R inst✝ : Nontrivial R m : Multiset R ⊢ 0 < Multiset.prod m ↔ ∀ (x : R), x ∈ m → 0 < x [PROOFSTEP] rcases m with ⟨l⟩ [GOAL] case mk α : Type u_1 R : Type u_2 inst✝¹ : CanonicallyOrderedCommSemiring R inst✝ : Nontrivial R m : Multiset R l : List R ⊢ 0 < Multiset.prod (Quot.mk Setoid.r l) ↔ ∀ (x : R), x ∈ Quot.mk Setoid.r l → 0 < x [PROOFSTEP] rw [Multiset.quot_mk_to_coe'', Multiset.coe_prod] [GOAL] case mk α : Type u_1 R : Type u_2 inst✝¹ : CanonicallyOrderedCommSemiring R inst✝ : Nontrivial R m : Multiset R l : List R ⊢ 0 < List.prod l ↔ ∀ (x : R), x ∈ ↑l → 0 < x [PROOFSTEP] exact CanonicallyOrderedCommSemiring.list_prod_pos [GOAL] α : Type u_1 inst✝ : NonUnitalNonAssocSemiring α s : Multiset α a : α h : ∀ (b : α), b ∈ s → Commute a b ⊢ Commute a (sum s) [PROOFSTEP] induction s using Quotient.inductionOn [GOAL] case h α : Type u_1 inst✝ : NonUnitalNonAssocSemiring α s : Multiset α a : α a✝ : List α h : ∀ (b : α), b ∈ Quotient.mk (List.isSetoid α) a✝ → Commute a b ⊢ Commute a (sum (Quotient.mk (List.isSetoid α) a✝)) [PROOFSTEP] rw [quot_mk_to_coe, coe_sum] [GOAL] case h α : Type u_1 inst✝ : NonUnitalNonAssocSemiring α s : Multiset α a : α a✝ : List α h : ∀ (b : α), b ∈ Quotient.mk (List.isSetoid α) a✝ → Commute a b ⊢ Commute a (List.sum a✝) [PROOFSTEP] exact Commute.list_sum_right _ _ h
{"mathlib_filename": "Mathlib.Algebra.BigOperators.Multiset.Lemmas", "llama_tokens": 907}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : CommMonoid α inst✝ : CommMonoid β s : Finset γ f : γ → α g : γ → β this : DecidableEq γ ⊢ ∀ ⦃a : γ⦄ {s : Finset γ}, ¬a ∈ s → (∏ x in s, f x, ∏ x in s, g x) = ∏ x in s, (f x, g x) → (∏ x in insert a s, f x, ∏ x in insert a s, g x) = ∏ x in insert a s, (f x, g x) [PROOFSTEP] simp (config := { contextual := true }) [Prod.ext_iff] [GOAL] I : Type u_1 inst✝² : DecidableEq I Z : I → Type u_2 inst✝¹ : (i : I) → CommMonoid (Z i) inst✝ : Fintype I f : (i : I) → Z i ⊢ ∏ i : I, Pi.mulSingle i (f i) = f [PROOFSTEP] ext a [GOAL] case h I : Type u_1 inst✝² : DecidableEq I Z : I → Type u_2 inst✝¹ : (i : I) → CommMonoid (Z i) inst✝ : Fintype I f : (i : I) → Z i a : I ⊢ Finset.prod univ (fun i => Pi.mulSingle i (f i)) a = f a [PROOFSTEP] simp [GOAL] I : Type u_1 inst✝³ : DecidableEq I Z : I → Type u_2 inst✝² : (i : I) → CommMonoid (Z i) inst✝¹ : Finite I G : Type u_3 inst✝ : CommMonoid G g h : ((i : I) → Z i) →* G H : ∀ (i : I) (x : Z i), ↑g (Pi.mulSingle i x) = ↑h (Pi.mulSingle i x) ⊢ g = h [PROOFSTEP] cases nonempty_fintype I [GOAL] case intro I : Type u_1 inst✝³ : DecidableEq I Z : I → Type u_2 inst✝² : (i : I) → CommMonoid (Z i) inst✝¹ : Finite I G : Type u_3 inst✝ : CommMonoid G g h : ((i : I) → Z i) →* G H : ∀ (i : I) (x : Z i), ↑g (Pi.mulSingle i x) = ↑h (Pi.mulSingle i x) val✝ : Fintype I ⊢ g = h [PROOFSTEP] ext k [GOAL] case intro.h I : Type u_1 inst✝³ : DecidableEq I Z : I → Type u_2 inst✝² : (i : I) → CommMonoid (Z i) inst✝¹ : Finite I G : Type u_3 inst✝ : CommMonoid G g h : ((i : I) → Z i) →* G H : ∀ (i : I) (x : Z i), ↑g (Pi.mulSingle i x) = ↑h (Pi.mulSingle i x) val✝ : Fintype I k : (i : I) → Z i ⊢ ↑g k = ↑h k [PROOFSTEP] rw [← Finset.univ_prod_mulSingle k, g.map_prod, h.map_prod] [GOAL] case intro.h I : Type u_1 inst✝³ : DecidableEq I Z : I → Type u_2 inst✝² : (i : I) → CommMonoid (Z i) inst✝¹ : Finite I G : Type u_3 inst✝ : CommMonoid G g h : ((i : I) → Z i) →* G H : ∀ (i : I) (x : Z i), ↑g (Pi.mulSingle i x) = ↑h (Pi.mulSingle i x) val✝ : Fintype I k : (i : I) → Z i ⊢ ∏ x : I, ↑g (Pi.mulSingle x (k x)) = ∏ x : I, ↑h (Pi.mulSingle x (k x)) [PROOFSTEP] simp only [H]
{"mathlib_filename": "Mathlib.Algebra.BigOperators.Pi", "llama_tokens": 1200}
[GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝³ : CommMonoid β inst✝² : OrderedCancelAddCommMonoid α inst✝¹ : ExistsAddOfLE α inst✝ : LocallyFiniteOrder α f : α → β a b c : α ⊢ ∏ x in Ico a b, f (x + c) = ∏ x in Ico (a + c) (b + c), f x [PROOFSTEP] rw [← map_add_right_Ico, prod_map] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝³ : CommMonoid β inst✝² : OrderedCancelAddCommMonoid α inst✝¹ : ExistsAddOfLE α inst✝ : LocallyFiniteOrder α f : α → β a b c : α ⊢ ∏ x in Ico a b, f (x + c) = ∏ x in Ico a b, f (↑(addRightEmbedding c) x) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝³ : CommMonoid β inst✝² : OrderedCancelAddCommMonoid α inst✝¹ : ExistsAddOfLE α inst✝ : LocallyFiniteOrder α f : α → β a b c : α ⊢ ∏ x in Ico a b, f (c + x) = ∏ x in Ico (a + c) (b + c), f x [PROOFSTEP] convert prod_Ico_add' f a b c using 2 [GOAL] case h.e'_2.a α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝¹ : α g f✝ : α → β inst✝³ : CommMonoid β inst✝² : OrderedCancelAddCommMonoid α inst✝¹ : ExistsAddOfLE α inst✝ : LocallyFiniteOrder α f : α → β a b c x✝ : α a✝ : x✝ ∈ Ico a b ⊢ f (c + x✝) = f (x✝ + c) [PROOFSTEP] rw [add_comm] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝ : CommMonoid β a b : ℕ hab : a ≤ b f : ℕ → β ⊢ ∏ k in Ico a (b + 1), f k = (∏ k in Ico a b, f k) * f b [PROOFSTEP] rw [Nat.Ico_succ_right_eq_insert_Ico hab, prod_insert right_not_mem_Ico, mul_comm] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝ : CommMonoid β a b : ℕ hab : a < b f : ℕ → β ⊢ ∏ k in Ico a b, f k = f a * ∏ k in Ico (a + 1) b, f k [PROOFSTEP] have ha : a ∉ Ico (a + 1) b := by simp [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝ : CommMonoid β a b : ℕ hab : a < b f : ℕ → β ⊢ ¬a ∈ Ico (a + 1) b [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝ : CommMonoid β a b : ℕ hab : a < b f : ℕ → β ha : ¬a ∈ Ico (a + 1) b ⊢ ∏ k in Ico a b, f k = f a * ∏ k in Ico (a + 1) b, f k [PROOFSTEP] rw [← prod_insert ha, Nat.Ico_insert_succ_left hab] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β m n k : ℕ hmn : m ≤ n hnk : n ≤ k ⊢ (∏ i in Ioc m n, f i) * ∏ i in Ioc n k, f i = ∏ i in Ioc m k, f i [PROOFSTEP] rw [← Ioc_union_Ioc_eq_Ioc hmn hnk, prod_union] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β m n k : ℕ hmn : m ≤ n hnk : n ≤ k ⊢ Disjoint (Ioc m n) (Ioc n k) [PROOFSTEP] apply disjoint_left.2 fun x hx h'x => _ [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β m n k : ℕ hmn : m ≤ n hnk : n ≤ k ⊢ ∀ (x : ℕ), x ∈ Ioc m n → x ∈ Ioc n k → False [PROOFSTEP] intros x hx h'x [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β m n k : ℕ hmn : m ≤ n hnk : n ≤ k x : ℕ hx : x ∈ Ioc m n h'x : x ∈ Ioc n k ⊢ False [PROOFSTEP] exact lt_irrefl _ ((mem_Ioc.1 h'x).1.trans_le (mem_Ioc.1 hx).2) [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝ : CommMonoid β a b : ℕ hab : a ≤ b f : ℕ → β ⊢ ∏ k in Ioc a (b + 1), f k = (∏ k in Ioc a b, f k) * f (b + 1) [PROOFSTEP] rw [← prod_Ioc_consecutive _ hab (Nat.le_succ b), Nat.Ioc_succ_singleton, prod_singleton] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝¹ : CommMonoid β δ : Type u_1 inst✝ : CommGroup δ f : ℕ → δ m n : ℕ h : m ≤ n ⊢ (∏ k in Ico m n, f k) * ∏ k in range m, f k = ∏ k in range n, f k [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝¹ : CommMonoid β δ : Type u_1 inst✝ : CommGroup δ f : ℕ → δ m n : ℕ h : m ≤ n ⊢ (∏ k in range m, f k) * ∏ k in Ico m n, f k = ∏ k in range n, f k [PROOFSTEP] exact prod_range_mul_prod_Ico f h [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝¹ : CommMonoid β δ : Type u_1 inst✝ : CommGroup δ f : ℕ → δ m n : ℕ h : m ≤ n ⊢ ∏ k in Ico m n, f k = (∏ k in range n, f k) / ∏ k in range m, f k [PROOFSTEP] simpa only [div_eq_mul_inv] using prod_Ico_eq_mul_inv f h [GOAL] α✝ : Type u β : Type v γ : Type w s₂ s₁ s : Finset α✝ a : α✝ g f✝ : α✝ → β inst✝¹ : CommMonoid β α : Type u_1 inst✝ : CommGroup α f : ℕ → α n m : ℕ hnm : n ≤ m ⊢ (∏ k in range m, f k) / ∏ k in range n, f k = ∏ k in filter (fun k => n ≤ k) (range m), f k [PROOFSTEP] rw [← prod_Ico_eq_div f hnm] [GOAL] α✝ : Type u β : Type v γ : Type w s₂ s₁ s : Finset α✝ a : α✝ g f✝ : α✝ → β inst✝¹ : CommMonoid β α : Type u_1 inst✝ : CommGroup α f : ℕ → α n m : ℕ hnm : n ≤ m ⊢ ∏ k in Ico n m, f k = ∏ k in filter (fun k => n ≤ k) (range m), f k [PROOFSTEP] congr [GOAL] case e_s α✝ : Type u β : Type v γ : Type w s₂ s₁ s : Finset α✝ a : α✝ g f✝ : α✝ → β inst✝¹ : CommMonoid β α : Type u_1 inst✝ : CommGroup α f : ℕ → α n m : ℕ hnm : n ≤ m ⊢ Ico n m = filter (fun k => n ≤ k) (range m) [PROOFSTEP] apply Finset.ext [GOAL] case e_s.a α✝ : Type u β : Type v γ : Type w s₂ s₁ s : Finset α✝ a : α✝ g f✝ : α✝ → β inst✝¹ : CommMonoid β α : Type u_1 inst✝ : CommGroup α f : ℕ → α n m : ℕ hnm : n ≤ m ⊢ ∀ (a : ℕ), a ∈ Ico n m ↔ a ∈ filter (fun k => n ≤ k) (range m) [PROOFSTEP] simp only [mem_Ico, mem_filter, mem_range, *] [GOAL] case e_s.a α✝ : Type u β : Type v γ : Type w s₂ s₁ s : Finset α✝ a : α✝ g f✝ : α✝ → β inst✝¹ : CommMonoid β α : Type u_1 inst✝ : CommGroup α f : ℕ → α n m : ℕ hnm : n ≤ m ⊢ ∀ (a : ℕ), n ≤ a ∧ a < m ↔ a < m ∧ n ≤ a [PROOFSTEP] tauto [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a b : ℕ f : ℕ → ℕ → M ⊢ ∑ i in Ico a b, ∑ j in Ico i b, f i j = ∑ j in Ico a b, ∑ i in Ico a (j + 1), f i j [PROOFSTEP] rw [Finset.sum_sigma', Finset.sum_sigma'] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a b : ℕ f : ℕ → ℕ → M ⊢ ∑ x in Finset.sigma (Ico a b) fun i => Ico i b, f x.fst x.snd = ∑ x in Finset.sigma (Ico a b) fun j => Ico a (j + 1), f x.snd x.fst [PROOFSTEP] refine' Finset.sum_bij' (fun (x : Σ _ : ℕ, ℕ) _ => (⟨x.2, x.1⟩ : Σ _ : ℕ, ℕ)) _ (fun _ _ => rfl) (fun (x : Σ _ : ℕ, ℕ) _ => (⟨x.2, x.1⟩ : Σ _ : ℕ, ℕ)) _ (by (rintro ⟨⟩ _; rfl)) (by (rintro ⟨⟩ _; rfl)) [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a b : ℕ f : ℕ → ℕ → M ⊢ ∀ (a_1 : (_ : ℕ) × ℕ) (ha : a_1 ∈ Finset.sigma (Ico a b) fun i => Ico i b), (fun x x_1 => { fst := x.snd, snd := x.fst }) ((fun x x_1 => { fst := x.snd, snd := x.fst }) a_1 ha) (_ : (fun x x_1 => { fst := x.snd, snd := x.fst }) a_1 ha ∈ ?m.28850) = a_1 [PROOFSTEP] rintro ⟨⟩ _ [GOAL] case mk α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a b : ℕ f : ℕ → ℕ → M fst✝ snd✝ : ℕ ha✝ : { fst := fst✝, snd := snd✝ } ∈ Finset.sigma (Ico a b) fun i => Ico i b ⊢ (fun x x_1 => { fst := x.snd, snd := x.fst }) ((fun x x_1 => { fst := x.snd, snd := x.fst }) { fst := fst✝, snd := snd✝ } ha✝) (_ : (fun x x_1 => { fst := x.snd, snd := x.fst }) { fst := fst✝, snd := snd✝ } ha✝ ∈ ?m.28850) = { fst := fst✝, snd := snd✝ } [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a b : ℕ f : ℕ → ℕ → M ⊢ ∀ (a_1 : (_ : ℕ) × ℕ) (ha : a_1 ∈ Finset.sigma (Ico a b) fun j => Ico a (j + 1)), (fun x x_1 => { fst := x.snd, snd := x.fst }) ((fun x x_1 => { fst := x.snd, snd := x.fst }) a_1 ha) (_ : (fun x x_1 => { fst := x.snd, snd := x.fst }) a_1 ha ∈ ?m.28849) = a_1 [PROOFSTEP] rintro ⟨⟩ _ [GOAL] case mk α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a b : ℕ f : ℕ → ℕ → M fst✝ snd✝ : ℕ ha✝ : { fst := fst✝, snd := snd✝ } ∈ Finset.sigma (Ico a b) fun j => Ico a (j + 1) ⊢ (fun x x_1 => { fst := x.snd, snd := x.fst }) ((fun x x_1 => { fst := x.snd, snd := x.fst }) { fst := fst✝, snd := snd✝ } ha✝) (_ : (fun x x_1 => { fst := x.snd, snd := x.fst }) { fst := fst✝, snd := snd✝ } ha✝ ∈ ?m.28849) = { fst := fst✝, snd := snd✝ } [PROOFSTEP] rfl [GOAL] case refine'_1 α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a b : ℕ f : ℕ → ℕ → M ⊢ ∀ (a_1 : (_ : ℕ) × ℕ) (ha : a_1 ∈ Finset.sigma (Ico a b) fun i => Ico i b), (fun x x_1 => { fst := x.snd, snd := x.fst }) a_1 ha ∈ Finset.sigma (Ico a b) fun j => Ico a (j + 1) [PROOFSTEP] simp only [Finset.mem_Ico, Sigma.forall, Finset.mem_sigma] [GOAL] case refine'_2 α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a b : ℕ f : ℕ → ℕ → M ⊢ ∀ (a_1 : (_ : ℕ) × ℕ) (ha : a_1 ∈ Finset.sigma (Ico a b) fun j => Ico a (j + 1)), (fun x x_1 => { fst := x.snd, snd := x.fst }) a_1 ha ∈ Finset.sigma (Ico a b) fun i => Ico i b [PROOFSTEP] simp only [Finset.mem_Ico, Sigma.forall, Finset.mem_sigma] [GOAL] case refine'_1 α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a b : ℕ f : ℕ → ℕ → M ⊢ ∀ (a_1 b_1 : ℕ), (a ≤ a_1 ∧ a_1 < b) ∧ a_1 ≤ b_1 ∧ b_1 < b → (a ≤ b_1 ∧ b_1 < b) ∧ a ≤ a_1 ∧ a_1 < b_1 + 1 [PROOFSTEP] rintro a b ⟨⟨h₁, h₂⟩, ⟨h₃, h₄⟩⟩ [GOAL] case refine'_2 α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a b : ℕ f : ℕ → ℕ → M ⊢ ∀ (a_1 b_1 : ℕ), (a ≤ a_1 ∧ a_1 < b) ∧ a ≤ b_1 ∧ b_1 < a_1 + 1 → (a ≤ b_1 ∧ b_1 < b) ∧ b_1 ≤ a_1 ∧ a_1 < b [PROOFSTEP] rintro a b ⟨⟨h₁, h₂⟩, ⟨h₃, h₄⟩⟩ [GOAL] case refine'_1.intro.intro.intro α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝¹ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a✝ b✝ : ℕ f : ℕ → ℕ → M a b : ℕ h₁ : a✝ ≤ a h₂ : a < b✝ h₃ : a ≤ b h₄ : b < b✝ ⊢ (a✝ ≤ b ∧ b < b✝) ∧ a✝ ≤ a ∧ a < b + 1 [PROOFSTEP] refine' ⟨⟨_, _⟩, ⟨_, _⟩⟩ [GOAL] case refine'_2.intro.intro.intro α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝¹ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a✝ b✝ : ℕ f : ℕ → ℕ → M a b : ℕ h₁ : a✝ ≤ a h₂ : a < b✝ h₃ : a✝ ≤ b h₄ : b < a + 1 ⊢ (a✝ ≤ b ∧ b < b✝) ∧ b ≤ a ∧ a < b✝ [PROOFSTEP] refine' ⟨⟨_, _⟩, ⟨_, _⟩⟩ [GOAL] case refine'_1.intro.intro.intro.refine'_1 α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝¹ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a✝ b✝ : ℕ f : ℕ → ℕ → M a b : ℕ h₁ : a✝ ≤ a h₂ : a < b✝ h₃ : a ≤ b h₄ : b < b✝ ⊢ a✝ ≤ b [PROOFSTEP] linarith [GOAL] case refine'_1.intro.intro.intro.refine'_2 α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝¹ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a✝ b✝ : ℕ f : ℕ → ℕ → M a b : ℕ h₁ : a✝ ≤ a h₂ : a < b✝ h₃ : a ≤ b h₄ : b < b✝ ⊢ b < b✝ [PROOFSTEP] linarith [GOAL] case refine'_1.intro.intro.intro.refine'_3 α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝¹ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a✝ b✝ : ℕ f : ℕ → ℕ → M a b : ℕ h₁ : a✝ ≤ a h₂ : a < b✝ h₃ : a ≤ b h₄ : b < b✝ ⊢ a✝ ≤ a [PROOFSTEP] linarith [GOAL] case refine'_1.intro.intro.intro.refine'_4 α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝¹ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a✝ b✝ : ℕ f : ℕ → ℕ → M a b : ℕ h₁ : a✝ ≤ a h₂ : a < b✝ h₃ : a ≤ b h₄ : b < b✝ ⊢ a < b + 1 [PROOFSTEP] linarith [GOAL] case refine'_2.intro.intro.intro.refine'_1 α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝¹ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a✝ b✝ : ℕ f : ℕ → ℕ → M a b : ℕ h₁ : a✝ ≤ a h₂ : a < b✝ h₃ : a✝ ≤ b h₄ : b < a + 1 ⊢ a✝ ≤ b [PROOFSTEP] linarith [GOAL] case refine'_2.intro.intro.intro.refine'_2 α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝¹ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a✝ b✝ : ℕ f : ℕ → ℕ → M a b : ℕ h₁ : a✝ ≤ a h₂ : a < b✝ h₃ : a✝ ≤ b h₄ : b < a + 1 ⊢ b < b✝ [PROOFSTEP] linarith [GOAL] case refine'_2.intro.intro.intro.refine'_3 α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝¹ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a✝ b✝ : ℕ f : ℕ → ℕ → M a b : ℕ h₁ : a✝ ≤ a h₂ : a < b✝ h₃ : a✝ ≤ b h₄ : b < a + 1 ⊢ b ≤ a [PROOFSTEP] linarith [GOAL] case refine'_2.intro.intro.intro.refine'_4 α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a✝¹ : α g f✝ : α → β inst✝¹ : CommMonoid β M : Type u_1 inst✝ : AddCommMonoid M a✝ b✝ : ℕ f : ℕ → ℕ → M a b : ℕ h₁ : a✝ ≤ a h₂ : a < b✝ h₃ : a✝ ≤ b h₄ : b < a + 1 ⊢ a < b✝ [PROOFSTEP] linarith [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β m n : ℕ ⊢ ∏ k in Ico m n, f k = ∏ k in range (n - m), f (m + k) [PROOFSTEP] by_cases h : m ≤ n [GOAL] case pos α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β m n : ℕ h : m ≤ n ⊢ ∏ k in Ico m n, f k = ∏ k in range (n - m), f (m + k) [PROOFSTEP] rw [← Nat.Ico_zero_eq_range, prod_Ico_add, zero_add, tsub_add_cancel_of_le h] [GOAL] case neg α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β m n : ℕ h : ¬m ≤ n ⊢ ∏ k in Ico m n, f k = ∏ k in range (n - m), f (m + k) [PROOFSTEP] replace h : n ≤ m := le_of_not_ge h [GOAL] case neg α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β m n : ℕ h : n ≤ m ⊢ ∏ k in Ico m n, f k = ∏ k in range (n - m), f (m + k) [PROOFSTEP] rw [Ico_eq_empty_of_le h, tsub_eq_zero_iff_le.mpr h, range_zero, prod_empty, prod_empty] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β k m n : ℕ h : m ≤ n + 1 ⊢ ∏ j in Ico k m, f (n - j) = ∏ j in Ico (n + 1 - m) (n + 1 - k), f j [PROOFSTEP] have : ∀ i < m, i ≤ n := by intro i hi exact (add_le_add_iff_right 1).1 (le_trans (Nat.lt_iff_add_one_le.1 hi) h) [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β k m n : ℕ h : m ≤ n + 1 ⊢ ∀ (i : ℕ), i < m → i ≤ n [PROOFSTEP] intro i hi [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β k m n : ℕ h : m ≤ n + 1 i : ℕ hi : i < m ⊢ i ≤ n [PROOFSTEP] exact (add_le_add_iff_right 1).1 (le_trans (Nat.lt_iff_add_one_le.1 hi) h) [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β k m n : ℕ h : m ≤ n + 1 this : ∀ (i : ℕ), i < m → i ≤ n ⊢ ∏ j in Ico k m, f (n - j) = ∏ j in Ico (n + 1 - m) (n + 1 - k), f j [PROOFSTEP] cases' lt_or_le k m with hkm hkm [GOAL] case inl α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β k m n : ℕ h : m ≤ n + 1 this : ∀ (i : ℕ), i < m → i ≤ n hkm : k < m ⊢ ∏ j in Ico k m, f (n - j) = ∏ j in Ico (n + 1 - m) (n + 1 - k), f j [PROOFSTEP] rw [← Nat.Ico_image_const_sub_eq_Ico (this _ hkm)] [GOAL] case inl α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β k m n : ℕ h : m ≤ n + 1 this : ∀ (i : ℕ), i < m → i ≤ n hkm : k < m ⊢ ∏ j in Ico k m, f (n - j) = ∏ j in image (fun x => n - x) (Ico k m), f j [PROOFSTEP] refine' (prod_image _).symm [GOAL] case inl α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β k m n : ℕ h : m ≤ n + 1 this : ∀ (i : ℕ), i < m → i ≤ n hkm : k < m ⊢ ∀ (x : ℕ), x ∈ Ico k m → ∀ (y : ℕ), y ∈ Ico k m → n - x = n - y → x = y [PROOFSTEP] simp only [mem_Ico] [GOAL] case inl α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β k m n : ℕ h : m ≤ n + 1 this : ∀ (i : ℕ), i < m → i ≤ n hkm : k < m ⊢ ∀ (x : ℕ), k ≤ x ∧ x < m → ∀ (y : ℕ), k ≤ y ∧ y < m → n - x = n - y → x = y [PROOFSTEP] rintro i ⟨_, im⟩ j ⟨_, jm⟩ Hij [GOAL] case inl.intro.intro α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β k m n : ℕ h : m ≤ n + 1 this : ∀ (i : ℕ), i < m → i ≤ n hkm : k < m i : ℕ left✝¹ : k ≤ i im : i < m j : ℕ left✝ : k ≤ j jm : j < m Hij : n - i = n - j ⊢ i = j [PROOFSTEP] rw [← tsub_tsub_cancel_of_le (this _ im), Hij, tsub_tsub_cancel_of_le (this _ jm)] [GOAL] case inr α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β k m n : ℕ h : m ≤ n + 1 this : ∀ (i : ℕ), i < m → i ≤ n hkm : m ≤ k ⊢ ∏ j in Ico k m, f (n - j) = ∏ j in Ico (n + 1 - m) (n + 1 - k), f j [PROOFSTEP] have : n + 1 - k ≤ n + 1 - m := by rw [tsub_le_tsub_iff_left h] exact hkm [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β k m n : ℕ h : m ≤ n + 1 this : ∀ (i : ℕ), i < m → i ≤ n hkm : m ≤ k ⊢ n + 1 - k ≤ n + 1 - m [PROOFSTEP] rw [tsub_le_tsub_iff_left h] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β k m n : ℕ h : m ≤ n + 1 this : ∀ (i : ℕ), i < m → i ≤ n hkm : m ≤ k ⊢ m ≤ k [PROOFSTEP] exact hkm [GOAL] case inr α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β k m n : ℕ h : m ≤ n + 1 this✝ : ∀ (i : ℕ), i < m → i ≤ n hkm : m ≤ k this : n + 1 - k ≤ n + 1 - m ⊢ ∏ j in Ico k m, f (n - j) = ∏ j in Ico (n + 1 - m) (n + 1 - k), f j [PROOFSTEP] simp only [ge_iff_le, hkm, Ico_eq_empty_of_le, prod_empty, tsub_le_iff_right, Ico_eq_empty_of_le this] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β n : ℕ ⊢ ∏ j in range n, f (n - 1 - j) = ∏ j in range n, f j [PROOFSTEP] cases n [GOAL] case zero α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β ⊢ ∏ j in range zero, f (zero - 1 - j) = ∏ j in range zero, f j [PROOFSTEP] simp [GOAL] case succ α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β n✝ : ℕ ⊢ ∏ j in range (succ n✝), f (succ n✝ - 1 - j) = ∏ j in range (succ n✝), f j [PROOFSTEP] simp only [← Nat.Ico_zero_eq_range, Nat.succ_sub_succ_eq_sub, tsub_zero] [GOAL] case succ α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β n✝ : ℕ ⊢ ∏ x in Ico 0 (succ n✝), f (n✝ - x) = ∏ x in Ico 0 (succ n✝), f x [PROOFSTEP] rw [prod_Ico_reflect _ _ le_rfl] [GOAL] case succ α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f✝ : α → β inst✝ : CommMonoid β f : ℕ → β n✝ : ℕ ⊢ ∏ j in Ico (n✝ + 1 - (n✝ + 1)) (n✝ + 1 - 0), f j = ∏ x in Ico 0 (succ n✝), f x [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f : α → β inst✝ : CommMonoid β n : ℕ ⊢ ∏ x in Ico 1 (n + 1 + 1), x = (n + 1)! [PROOFSTEP] rw [prod_Ico_succ_top <| Nat.succ_le_succ <| Nat.zero_le n, Nat.factorial_succ, prod_Ico_id_eq_factorial n, Nat.succ_eq_add_one, mul_comm] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f : α → β inst✝ : CommMonoid β n : ℕ ⊢ ∏ x in range (n + 1), (x + 1) = (n + 1)! [PROOFSTEP] simp [Finset.range_succ, prod_range_add_one_eq_factorial n] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f : α → β inst✝ : CommMonoid β n : ℕ ⊢ (∑ i in range n, i) * 2 = ∑ i in range n, i + ∑ i in range n, (n - 1 - i) [PROOFSTEP] rw [sum_range_reflect (fun i => i) n, mul_two] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f : α → β inst✝ : CommMonoid β n : ℕ ⊢ ∑ i in range n, (n - 1) = n * (n - 1) [PROOFSTEP] rw [sum_const, card_range, Nat.nsmul_eq_mul] [GOAL] α : Type u β : Type v γ : Type w s₂ s₁ s : Finset α a : α g f : α → β inst✝ : CommMonoid β n : ℕ ⊢ ∑ i in range n, i = n * (n - 1) / 2 [PROOFSTEP] rw [← sum_range_id_mul_two n, Nat.mul_div_cancel _ zero_lt_two] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n ⊢ ∑ i in Ico m n, f i • g i = f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i - ∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i [PROOFSTEP] have h₁ : (∑ i in Ico (m + 1) n, f i • G i) = ∑ i in Ico m (n - 1), f (i + 1) • G (i + 1) := by rw [← Nat.sub_add_cancel (Nat.one_le_of_lt hmn), ← sum_Ico_add'] simp only [ge_iff_le, tsub_le_iff_right, add_le_iff_nonpos_left, nonpos_iff_eq_zero, tsub_eq_zero_iff_le, add_tsub_cancel_right] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n ⊢ ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i [PROOFSTEP] rw [← Nat.sub_add_cancel (Nat.one_le_of_lt hmn), ← sum_Ico_add'] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n ⊢ ∑ x in Ico m (n - 1), f (x + 1) • ∑ i in range (x + 1), g i = ∑ i in Ico m (n - 1 + 1 - 1), f (i + 1) • ∑ i in range (i + 1), g i [PROOFSTEP] simp only [ge_iff_le, tsub_le_iff_right, add_le_iff_nonpos_left, nonpos_iff_eq_zero, tsub_eq_zero_iff_le, add_tsub_cancel_right] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i ⊢ ∑ i in Ico m n, f i • g i = f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i - ∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i [PROOFSTEP] have h₂ : (∑ i in Ico (m + 1) n, f i • G (i + 1)) = (∑ i in Ico m (n - 1), f i • G (i + 1)) + f (n - 1) • G n - f m • G (m + 1) := by rw [← sum_Ico_sub_bot _ hmn, ← sum_Ico_succ_sub_top _ (Nat.le_pred_of_lt hmn), Nat.sub_add_cancel (pos_of_gt hmn), sub_add_cancel] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i ⊢ ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i [PROOFSTEP] rw [← sum_Ico_sub_bot _ hmn, ← sum_Ico_succ_sub_top _ (Nat.le_pred_of_lt hmn), Nat.sub_add_cancel (pos_of_gt hmn), sub_add_cancel] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i ⊢ ∑ i in Ico m n, f i • g i = f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i - ∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i [PROOFSTEP] rw [sum_eq_sum_Ico_succ_bot hmn] -- porting note: the following used to be done with `conv` [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i ⊢ f m • g m + ∑ k in Ico (m + 1) n, f k • g k = f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i - ∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i [PROOFSTEP] have h₃ : (Finset.sum (Ico (m + 1) n) fun i => f i • g i) = (Finset.sum (Ico (m + 1) n) fun i => f i • ((Finset.sum (Finset.range (i + 1)) g) - (Finset.sum (Finset.range i) g))) := by congr; funext; rw [← sum_range_succ_sub_sum g] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i ⊢ ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) [PROOFSTEP] congr [GOAL] case e_f R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i ⊢ (fun i => f i • g i) = fun i => f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) [PROOFSTEP] funext [GOAL] case e_f.h R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i x✝ : ℕ ⊢ f x✝ • g x✝ = f x✝ • (Finset.sum (range (x✝ + 1)) g - Finset.sum (range x✝) g) [PROOFSTEP] rw [← sum_range_succ_sub_sum g] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i h₃ : ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) ⊢ f m • g m + ∑ k in Ico (m + 1) n, f k • g k = f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i - ∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i [PROOFSTEP] rw [h₃] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i h₃ : ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) ⊢ f m • g m + ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) = f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i - ∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i [PROOFSTEP] simp_rw [smul_sub, sum_sub_distrib, h₂, h₁] -- porting note: the following used to be done with `conv` [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i h₃ : ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) ⊢ f m • g m + (∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i - ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i) = f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i - ∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i [PROOFSTEP] have h₄ : ((((Finset.sum (Ico m (n - 1)) fun i => f i • Finset.sum (range (i + 1)) fun i => g i) + f (n - 1) • Finset.sum (range n) fun i => g i) - f m • Finset.sum (range (m + 1)) fun i => g i) - Finset.sum (Ico m (n - 1)) fun i => f (i + 1) • Finset.sum (range (i + 1)) fun i => g i) = f (n - 1) • (range n).sum g - f m • (range (m + 1)).sum g + Finset.sum (Ico m (n - 1)) (fun i => f i • (range (i + 1)).sum g - f (i + 1) • (range (i + 1)).sum g) := by rw [← add_sub, add_comm, ← add_sub, ← sum_sub_distrib] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i h₃ : ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) ⊢ ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i - ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i = f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g + ∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g) [PROOFSTEP] rw [← add_sub, add_comm, ← add_sub, ← sum_sub_distrib] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i h₃ : ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) h₄ : ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i - ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i = f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g + ∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g) ⊢ f m • g m + (∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i - ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i) = f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i - ∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i [PROOFSTEP] rw [h₄] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i h₃ : ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) h₄ : ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i - ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i = f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g + ∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g) ⊢ f m • g m + (f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g + ∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)) = f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i - ∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i [PROOFSTEP] have : ∀ i, f i • G (i + 1) - f (i + 1) • G (i + 1) = -((f (i + 1) - f i) • G (i + 1)) := by intro i rw [sub_smul] abel [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i h₃ : ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) h₄ : ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i - ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i = f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g + ∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g) ⊢ ∀ (i : ℕ), f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i = -((f (i + 1) - f i) • ∑ i in range (i + 1), g i) [PROOFSTEP] intro i [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i h₃ : ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) h₄ : ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i - ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i = f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g + ∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g) i : ℕ ⊢ f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i = -((f (i + 1) - f i) • ∑ i in range (i + 1), g i) [PROOFSTEP] rw [sub_smul] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i h₃ : ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) h₄ : ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i - ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i = f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g + ∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g) i : ℕ ⊢ f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i = -(f (i + 1) • ∑ i in range (i + 1), g i - f i • ∑ i in range (i + 1), g i) [PROOFSTEP] abel [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i h₃ : ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) h₄ : ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i - ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i = f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g + ∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g) i : ℕ ⊢ f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i = -(f (i + 1) • ∑ i in range (i + 1), g i - f i • ∑ i in range (i + 1), g i) [PROOFSTEP] abel [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i h₃ : ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) h₄ : ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i - ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i = f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g + ∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g) this : ∀ (i : ℕ), f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i = -((f (i + 1) - f i) • ∑ i in range (i + 1), g i) ⊢ f m • g m + (f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g + ∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)) = f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i - ∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i [PROOFSTEP] simp_rw [this, sum_neg_distrib, sum_range_succ, smul_add] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i h₃ : ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) h₄ : ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i - ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i = f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g + ∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g) this : ∀ (i : ℕ), f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i = -((f (i + 1) - f i) • ∑ i in range (i + 1), g i) ⊢ f m • g m + (f (n - 1) • Finset.sum (range n) g - (f m • ∑ x in range m, g x + f m • g m) + -∑ x in Ico m (n - 1), ((f (x + 1) - f x) • ∑ x in range x, g x + (f (x + 1) - f x) • g x)) = f (n - 1) • ∑ x in range n, g x - f m • ∑ x in range m, g x - ∑ x in Ico m (n - 1), ((f (x + 1) - f x) • ∑ x in range x, g x + (f (x + 1) - f x) • g x) [PROOFSTEP] abel [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i h₂ : ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i = ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i h₃ : ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) h₄ : ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range (m + 1), g i - ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i = f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g + ∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g) this : ∀ (i : ℕ), f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i = -((f (i + 1) - f i) • ∑ i in range (i + 1), g i) ⊢ f m • g m + (f (n - 1) • Finset.sum (range n) g - (f m • ∑ x in range m, g x + f m • g m) + -∑ x in Ico m (n - 1), ((f (x + 1) - f x) • ∑ x in range x, g x + (f (x + 1) - f x) • g x)) = f (n - 1) • ∑ x in range n, g x - f m • ∑ x in range m, g x - ∑ x in Ico m (n - 1), ((f (x + 1) - f x) • ∑ x in range x, g x + (f (x + 1) - f x) • g x) [PROOFSTEP] abel [GOAL] R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ ⊢ ∑ i in range n, f i • g i = f (n - 1) • ∑ i in range n, g i - ∑ i in range (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i [PROOFSTEP] by_cases hn : n = 0 [GOAL] case pos R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hn : n = 0 ⊢ ∑ i in range n, f i • g i = f (n - 1) • ∑ i in range n, g i - ∑ i in range (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i [PROOFSTEP] simp [hn] [GOAL] case neg R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hn : ¬n = 0 ⊢ ∑ i in range n, f i • g i = f (n - 1) • ∑ i in range n, g i - ∑ i in range (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i [PROOFSTEP] rw [range_eq_Ico, sum_Ico_by_parts f g (Nat.pos_of_ne_zero hn), sum_range_zero, smul_zero, sub_zero, range_eq_Ico]
{"mathlib_filename": "Mathlib.Algebra.BigOperators.Intervals", "llama_tokens": 24217}
[GOAL] R : Type u_1 S : Type u_2 inst✝ : AddMonoid R l : List R ⊢ trop (sum l) = prod (map trop l) [PROOFSTEP] induction' l with hd tl IH [GOAL] case nil R : Type u_1 S : Type u_2 inst✝ : AddMonoid R ⊢ trop (sum []) = prod (map trop []) [PROOFSTEP] simp [GOAL] case cons R : Type u_1 S : Type u_2 inst✝ : AddMonoid R hd : R tl : List R IH : trop (sum tl) = prod (map trop tl) ⊢ trop (sum (hd :: tl)) = prod (map trop (hd :: tl)) [PROOFSTEP] simp [← IH] [GOAL] R : Type u_1 S : Type u_2 inst✝ : AddCommMonoid R s : Multiset R ⊢ ∀ (a : List R), trop (sum (Quotient.mk (List.isSetoid R) a)) = prod (map trop (Quotient.mk (List.isSetoid R) a)) [PROOFSTEP] simpa using List.trop_sum [GOAL] R : Type u_1 S : Type u_2 inst✝ : AddCommMonoid R s : Finset S f : S → R ⊢ trop (∑ i in s, f i) = ∏ i in s, trop (f i) [PROOFSTEP] convert Multiset.trop_sum (s.val.map f) [GOAL] case h.e'_3 R : Type u_1 S : Type u_2 inst✝ : AddCommMonoid R s : Finset S f : S → R ⊢ ∏ i in s, trop (f i) = Multiset.prod (Multiset.map trop (Multiset.map f s.val)) [PROOFSTEP] simp only [Multiset.map_map, Function.comp_apply] [GOAL] case h.e'_3 R : Type u_1 S : Type u_2 inst✝ : AddCommMonoid R s : Finset S f : S → R ⊢ ∏ i in s, trop (f i) = Multiset.prod (Multiset.map (fun i => trop (f i)) s.val) [PROOFSTEP] rfl [GOAL] R : Type u_1 S : Type u_2 inst✝ : AddMonoid R l : List (Tropical R) ⊢ untrop (prod l) = sum (map untrop l) [PROOFSTEP] induction' l with hd tl IH [GOAL] case nil R : Type u_1 S : Type u_2 inst✝ : AddMonoid R ⊢ untrop (prod []) = sum (map untrop []) [PROOFSTEP] simp [GOAL] case cons R : Type u_1 S : Type u_2 inst✝ : AddMonoid R hd : Tropical R tl : List (Tropical R) IH : untrop (prod tl) = sum (map untrop tl) ⊢ untrop (prod (hd :: tl)) = sum (map untrop (hd :: tl)) [PROOFSTEP] simp [← IH] [GOAL] R : Type u_1 S : Type u_2 inst✝ : AddCommMonoid R s : Multiset (Tropical R) ⊢ ∀ (a : List (Tropical R)), untrop (prod (Quotient.mk (List.isSetoid (Tropical R)) a)) = sum (map untrop (Quotient.mk (List.isSetoid (Tropical R)) a)) [PROOFSTEP] simpa using List.untrop_prod [GOAL] R : Type u_1 S : Type u_2 inst✝ : AddCommMonoid R s : Finset S f : S → Tropical R ⊢ untrop (∏ i in s, f i) = ∑ i in s, untrop (f i) [PROOFSTEP] convert Multiset.untrop_prod (s.val.map f) [GOAL] case h.e'_3 R : Type u_1 S : Type u_2 inst✝ : AddCommMonoid R s : Finset S f : S → Tropical R ⊢ ∑ i in s, untrop (f i) = Multiset.sum (Multiset.map untrop (Multiset.map f s.val)) [PROOFSTEP] simp only [Multiset.map_map, Function.comp_apply] [GOAL] case h.e'_3 R : Type u_1 S : Type u_2 inst✝ : AddCommMonoid R s : Finset S f : S → Tropical R ⊢ ∑ i in s, untrop (f i) = Multiset.sum (Multiset.map (fun i => untrop (f i)) s.val) [PROOFSTEP] rfl [GOAL] R : Type u_1 S : Type u_2 inst✝ : LinearOrder R l : List R ⊢ trop (minimum l) = sum (map (trop ∘ WithTop.some) l) [PROOFSTEP] induction' l with hd tl IH [GOAL] case nil R : Type u_1 S : Type u_2 inst✝ : LinearOrder R ⊢ trop (minimum []) = sum (map (trop ∘ WithTop.some) []) [PROOFSTEP] simp [GOAL] case cons R : Type u_1 S : Type u_2 inst✝ : LinearOrder R hd : R tl : List R IH : trop (minimum tl) = sum (map (trop ∘ WithTop.some) tl) ⊢ trop (minimum (hd :: tl)) = sum (map (trop ∘ WithTop.some) (hd :: tl)) [PROOFSTEP] simp [List.minimum_cons, ← IH] [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : LinearOrder R inst✝ : OrderTop R s : Multiset R ⊢ trop (inf s) = sum (map trop s) [PROOFSTEP] induction' s using Multiset.induction with s x IH [GOAL] case empty R : Type u_1 S : Type u_2 inst✝¹ : LinearOrder R inst✝ : OrderTop R ⊢ trop (inf 0) = sum (map trop 0) [PROOFSTEP] simp [GOAL] case cons R : Type u_1 S : Type u_2 inst✝¹ : LinearOrder R inst✝ : OrderTop R s : R x : Multiset R IH : trop (inf x) = sum (map trop x) ⊢ trop (inf (s ::ₘ x)) = sum (map trop (s ::ₘ x)) [PROOFSTEP] simp [← IH] [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : LinearOrder R inst✝ : OrderTop R s : Finset S f : S → R ⊢ trop (inf s f) = ∑ i in s, trop (f i) [PROOFSTEP] convert Multiset.trop_inf (s.val.map f) [GOAL] case h.e'_3 R : Type u_1 S : Type u_2 inst✝¹ : LinearOrder R inst✝ : OrderTop R s : Finset S f : S → R ⊢ ∑ i in s, trop (f i) = Multiset.sum (Multiset.map trop (Multiset.map f s.val)) [PROOFSTEP] simp only [Multiset.map_map, Function.comp_apply] [GOAL] case h.e'_3 R : Type u_1 S : Type u_2 inst✝¹ : LinearOrder R inst✝ : OrderTop R s : Finset S f : S → R ⊢ ∑ i in s, trop (f i) = Multiset.sum (Multiset.map (fun i => trop (f i)) s.val) [PROOFSTEP] rfl [GOAL] R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R s : Finset S f : S → WithTop R ⊢ trop (sInf (f '' ↑s)) = ∑ i in s, trop (f i) [PROOFSTEP] rcases s.eq_empty_or_nonempty with (rfl | h) [GOAL] case inl R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R f : S → WithTop R ⊢ trop (sInf (f '' ↑∅)) = ∑ i in ∅, trop (f i) [PROOFSTEP] simp only [Set.image_empty, coe_empty, sum_empty, WithTop.sInf_empty, trop_top] [GOAL] case inr R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R s : Finset S f : S → WithTop R h : Finset.Nonempty s ⊢ trop (sInf (f '' ↑s)) = ∑ i in s, trop (f i) [PROOFSTEP] rw [← inf'_eq_csInf_image _ h, inf'_eq_inf, s.trop_inf] [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : ConditionallyCompleteLinearOrder R inst✝ : Fintype S f : S → WithTop R ⊢ trop (⨅ (i : S), f i) = ∑ i : S, trop (f i) [PROOFSTEP] rw [iInf, ← Set.image_univ, ← coe_univ, trop_sInf_image] [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : LinearOrder R inst✝ : OrderTop R s : Multiset (Tropical R) ⊢ untrop (sum s) = inf (map untrop s) [PROOFSTEP] induction' s using Multiset.induction with s x IH [GOAL] case empty R : Type u_1 S : Type u_2 inst✝¹ : LinearOrder R inst✝ : OrderTop R ⊢ untrop (sum 0) = inf (map untrop 0) [PROOFSTEP] simp [GOAL] case cons R : Type u_1 S : Type u_2 inst✝¹ : LinearOrder R inst✝ : OrderTop R s : Tropical R x : Multiset (Tropical R) IH : untrop (sum x) = inf (map untrop x) ⊢ untrop (sum (s ::ₘ x)) = inf (map untrop (s ::ₘ x)) [PROOFSTEP] simp only [sum_cons, ge_iff_le, untrop_add, untrop_le_iff, map_cons, inf_cons, ← IH] [GOAL] case cons R : Type u_1 S : Type u_2 inst✝¹ : LinearOrder R inst✝ : OrderTop R s : Tropical R x : Multiset (Tropical R) IH : untrop (sum x) = inf (map untrop x) ⊢ min (untrop s) (untrop (sum x)) = untrop s ⊓ untrop (sum x) [PROOFSTEP] rfl [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : LinearOrder R inst✝ : OrderTop R s : Finset S f : S → Tropical R ⊢ untrop (∑ i in s, f i) = inf s (untrop ∘ f) [PROOFSTEP] convert Multiset.untrop_sum (s.val.map f) [GOAL] case h.e'_3 R : Type u_1 S : Type u_2 inst✝¹ : LinearOrder R inst✝ : OrderTop R s : Finset S f : S → Tropical R ⊢ inf s (untrop ∘ f) = Multiset.inf (Multiset.map untrop (Multiset.map f s.val)) [PROOFSTEP] simp only [Multiset.map_map, Function.comp_apply] [GOAL] case h.e'_3 R : Type u_1 S : Type u_2 inst✝¹ : LinearOrder R inst✝ : OrderTop R s : Finset S f : S → Tropical R ⊢ inf s (untrop ∘ f) = Multiset.inf (Multiset.map (fun x => untrop (f x)) s.val) [PROOFSTEP] rfl [GOAL] R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R s : Finset S f : S → Tropical (WithTop R) ⊢ untrop (∑ i in s, f i) = sInf (untrop ∘ f '' ↑s) [PROOFSTEP] rcases s.eq_empty_or_nonempty with (rfl | h) [GOAL] case inl R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R f : S → Tropical (WithTop R) ⊢ untrop (∑ i in ∅, f i) = sInf (untrop ∘ f '' ↑∅) [PROOFSTEP] simp only [Set.image_empty, coe_empty, sum_empty, WithTop.sInf_empty, untrop_zero] [GOAL] case inr R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R s : Finset S f : S → Tropical (WithTop R) h : Finset.Nonempty s ⊢ untrop (∑ i in s, f i) = sInf (untrop ∘ f '' ↑s) [PROOFSTEP] rw [← inf'_eq_csInf_image _ h, inf'_eq_inf, Finset.untrop_sum'] [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : ConditionallyCompleteLinearOrder R inst✝ : Fintype S f : S → Tropical (WithTop R) ⊢ untrop (∑ i : S, f i) = ⨅ (i : S), untrop (f i) [PROOFSTEP] rw [iInf, ← Set.image_univ, ← coe_univ, untrop_sum_eq_sInf_image] [GOAL] R : Type u_1 S : Type u_2 inst✝¹ : ConditionallyCompleteLinearOrder R inst✝ : Fintype S f : S → Tropical (WithTop R) ⊢ sInf ((untrop ∘ fun i => f i) '' ↑univ) = sInf ((fun i => untrop (f i)) '' ↑univ) [PROOFSTEP] rfl [GOAL] R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R s : Finset S f : S → Tropical (WithTop R) ⊢ untrop (∑ i in s, f i) = ⨅ (i : { x // x ∈ s }), untrop (f ↑i) [PROOFSTEP] simpa [← _root_.untrop_sum] using sum_attach.symm
{"mathlib_filename": "Mathlib.Algebra.Tropical.BigOperators", "llama_tokens": 4070}
[GOAL] R : Type u inst✝ : LinearOrder R src✝ : PartialOrder (Tropical R) := instPartialOrderTropical a b : Tropical R ⊢ untrop (min a b) = untrop (if a ≤ b then a else b) [PROOFSTEP] simp [min_def] [GOAL] R : Type u inst✝ : LinearOrder R src✝ : PartialOrder (Tropical R) := instPartialOrderTropical a b : Tropical R ⊢ (if a ≤ b then untrop a else untrop b) = untrop (if a ≤ b then a else b) [PROOFSTEP] split_ifs [GOAL] case pos R : Type u inst✝ : LinearOrder R src✝ : PartialOrder (Tropical R) := instPartialOrderTropical a b : Tropical R h✝ : a ≤ b ⊢ untrop a = untrop a [PROOFSTEP] simp [GOAL] case neg R : Type u inst✝ : LinearOrder R src✝ : PartialOrder (Tropical R) := instPartialOrderTropical a b : Tropical R h✝ : ¬a ≤ b ⊢ untrop b = untrop b [PROOFSTEP] simp [GOAL] R : Type u inst✝ : LinearOrder R src✝ : PartialOrder (Tropical R) := instPartialOrderTropical a b : Tropical R ⊢ untrop (max a b) = untrop (if a ≤ b then b else a) [PROOFSTEP] simp [max_def] [GOAL] R : Type u inst✝ : LinearOrder R src✝ : PartialOrder (Tropical R) := instPartialOrderTropical a b : Tropical R ⊢ (if a ≤ b then untrop b else untrop a) = untrop (if a ≤ b then b else a) [PROOFSTEP] split_ifs [GOAL] case pos R : Type u inst✝ : LinearOrder R src✝ : PartialOrder (Tropical R) := instPartialOrderTropical a b : Tropical R h✝ : a ≤ b ⊢ untrop b = untrop b [PROOFSTEP] simp [GOAL] case neg R : Type u inst✝ : LinearOrder R src✝ : PartialOrder (Tropical R) := instPartialOrderTropical a b : Tropical R h✝ : ¬a ≤ b ⊢ untrop a = untrop a [PROOFSTEP] simp [GOAL] R : Type u inst✝ : LinearOrder R x y : Tropical R h : x ≤ y ⊢ untrop (x + y) = untrop x [PROOFSTEP] simpa using h [GOAL] R : Type u inst✝ : LinearOrder R x y : Tropical R h : y ≤ x ⊢ untrop (x + y) = untrop y [PROOFSTEP] simpa using h [GOAL] R : Type u inst✝ : LinearOrder R x y : Tropical R ⊢ x + y = x ↔ x ≤ y [PROOFSTEP] rw [trop_add_def, trop_eq_iff_eq_untrop, ← untrop_le_iff, min_eq_left_iff] [GOAL] R : Type u inst✝ : LinearOrder R x y : Tropical R ⊢ x + y = y ↔ y ≤ x [PROOFSTEP] rw [trop_add_def, trop_eq_iff_eq_untrop, ← untrop_le_iff, min_eq_right_iff] [GOAL] R : Type u inst✝ : LinearOrder R x y z : Tropical R ⊢ x + y = z ↔ x = z ∧ x ≤ y ∨ y = z ∧ y ≤ x [PROOFSTEP] rw [trop_add_def, trop_eq_iff_eq_untrop] [GOAL] R : Type u inst✝ : LinearOrder R x y z : Tropical R ⊢ min (untrop x) (untrop y) = untrop z ↔ x = z ∧ x ≤ y ∨ y = z ∧ y ≤ x [PROOFSTEP] simp [min_eq_iff] [GOAL] R : Type u inst✝ : LinearOrder R a b : Tropical (WithTop R) ⊢ a + b = 0 ↔ a = 0 ∧ b = 0 [PROOFSTEP] rw [add_eq_iff] [GOAL] R : Type u inst✝ : LinearOrder R a b : Tropical (WithTop R) ⊢ a = 0 ∧ a ≤ b ∨ b = 0 ∧ b ≤ a ↔ a = 0 ∧ b = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u inst✝ : LinearOrder R a b : Tropical (WithTop R) ⊢ a = 0 ∧ a ≤ b ∨ b = 0 ∧ b ≤ a → a = 0 ∧ b = 0 [PROOFSTEP] rintro (⟨rfl, h⟩ | ⟨rfl, h⟩) [GOAL] case mp.inl.intro R : Type u inst✝ : LinearOrder R b : Tropical (WithTop R) h : 0 ≤ b ⊢ 0 = 0 ∧ b = 0 [PROOFSTEP] exact ⟨rfl, le_antisymm (le_zero _) h⟩ [GOAL] case mp.inr.intro R : Type u inst✝ : LinearOrder R a : Tropical (WithTop R) h : 0 ≤ a ⊢ a = 0 ∧ 0 = 0 [PROOFSTEP] exact ⟨le_antisymm (le_zero _) h, rfl⟩ [GOAL] case mpr R : Type u inst✝ : LinearOrder R a b : Tropical (WithTop R) ⊢ a = 0 ∧ b = 0 → a = 0 ∧ a ≤ b ∨ b = 0 ∧ b ≤ a [PROOFSTEP] rintro ⟨rfl, rfl⟩ [GOAL] case mpr.intro R : Type u inst✝ : LinearOrder R ⊢ 0 = 0 ∧ 0 ≤ 0 ∨ 0 = 0 ∧ 0 ≤ 0 [PROOFSTEP] simp [GOAL] R : Type u inst✝² : LinearOrder R inst✝¹ : OrderTop R inst✝ : Zero R src✝¹ : One (Tropical R) := instOneTropical src✝ : AddCommMonoid (Tropical R) := instAddCommMonoidTropical n : ℕ ⊢ untrop (NatCast.natCast (n + 1)) = untrop (NatCast.natCast n + 1) [PROOFSTEP] cases n [GOAL] case zero R : Type u inst✝² : LinearOrder R inst✝¹ : OrderTop R inst✝ : Zero R src✝¹ : One (Tropical R) := instOneTropical src✝ : AddCommMonoid (Tropical R) := instAddCommMonoidTropical ⊢ untrop (NatCast.natCast (Nat.zero + 1)) = untrop (NatCast.natCast Nat.zero + 1) [PROOFSTEP] simp [Nat.cast] [GOAL] case succ R : Type u inst✝² : LinearOrder R inst✝¹ : OrderTop R inst✝ : Zero R src✝¹ : One (Tropical R) := instOneTropical src✝ : AddCommMonoid (Tropical R) := instAddCommMonoidTropical n✝ : ℕ ⊢ untrop (NatCast.natCast (Nat.succ n✝ + 1)) = untrop (NatCast.natCast (Nat.succ n✝) + 1) [PROOFSTEP] simp [Nat.cast] [GOAL] R : Type u inst✝ : AddMonoid R src✝¹ : MulOneClass (Tropical R) := instMulOneClassTropical src✝ : Semigroup (Tropical R) := instSemigroupTropical x✝ : Tropical R ⊢ untrop ((fun n x => x ^ n) 0 x✝) = untrop 1 [PROOFSTEP] simp [GOAL] R : Type u inst✝ : AddGroup R src✝ : Monoid (Tropical R) := instMonoidTropical x✝¹ x✝ : Tropical R ⊢ untrop (x✝¹ / x✝) = untrop (x✝¹ * x✝⁻¹) [PROOFSTEP] simp [sub_eq_add_neg] [GOAL] R : Type u inst✝ : LinearOrder R x y z : Tropical R h : y ≤ z ⊢ x + y ≤ x + z [PROOFSTEP] cases' le_total x y with hx hy [GOAL] case inl R : Type u inst✝ : LinearOrder R x y z : Tropical R h : y ≤ z hx : x ≤ y ⊢ x + y ≤ x + z [PROOFSTEP] rw [add_eq_left hx, add_eq_left (hx.trans h)] [GOAL] case inr R : Type u inst✝ : LinearOrder R x y z : Tropical R h : y ≤ z hy : y ≤ x ⊢ x + y ≤ x + z [PROOFSTEP] rw [add_eq_right hy] [GOAL] case inr R : Type u inst✝ : LinearOrder R x y z : Tropical R h : y ≤ z hy : y ≤ x ⊢ y ≤ x + z [PROOFSTEP] cases' le_total x z with hx hx [GOAL] case inr.inl R : Type u inst✝ : LinearOrder R x y z : Tropical R h : y ≤ z hy : y ≤ x hx : x ≤ z ⊢ y ≤ x + z [PROOFSTEP] rwa [add_eq_left hx] [GOAL] case inr.inr R : Type u inst✝ : LinearOrder R x y z : Tropical R h : y ≤ z hy : y ≤ x hx : z ≤ x ⊢ y ≤ x + z [PROOFSTEP] rwa [add_eq_right hx] [GOAL] R : Type u inst✝³ : LinearOrder R inst✝² : AddMonoid R inst✝¹ : CovariantClass R R (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass R R (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 x y : Tropical R n : ℕ ⊢ (x + y) ^ n = x ^ n + y ^ n [PROOFSTEP] cases' le_total x y with h h [GOAL] case inl R : Type u inst✝³ : LinearOrder R inst✝² : AddMonoid R inst✝¹ : CovariantClass R R (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass R R (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 x y : Tropical R n : ℕ h : x ≤ y ⊢ (x + y) ^ n = x ^ n + y ^ n [PROOFSTEP] rw [add_eq_left h, add_eq_left (pow_le_pow_of_le_left' h _)] [GOAL] case inr R : Type u inst✝³ : LinearOrder R inst✝² : AddMonoid R inst✝¹ : CovariantClass R R (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass R R (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 x y : Tropical R n : ℕ h : y ≤ x ⊢ (x + y) ^ n = x ^ n + y ^ n [PROOFSTEP] rw [add_eq_right h, add_eq_right (pow_le_pow_of_le_left' h _)] [GOAL] R : Type u inst✝ : LinearOrderedAddCommMonoidWithTop R src✝³ : AddMonoidWithOne (Tropical R) := instAddMonoidWithOneTropical src✝² : Distrib (Tropical R) := instDistribTropical src✝¹ : AddCommMonoid (Tropical R) := instAddCommMonoidTropical src✝ : CommMonoid (Tropical R) := instCommMonoidTropical x✝ : Tropical R ⊢ untrop (0 * x✝) = untrop 0 [PROOFSTEP] simp [top_add] [GOAL] R : Type u inst✝ : LinearOrderedAddCommMonoidWithTop R src✝³ : AddMonoidWithOne (Tropical R) := instAddMonoidWithOneTropical src✝² : Distrib (Tropical R) := instDistribTropical src✝¹ : AddCommMonoid (Tropical R) := instAddCommMonoidTropical src✝ : CommMonoid (Tropical R) := instCommMonoidTropical x✝ : Tropical R ⊢ untrop (x✝ * 0) = untrop 0 [PROOFSTEP] simp [add_top] [GOAL] R✝ : Type u inst✝² : LinearOrderedAddCommMonoidWithTop R✝ R : Type u_1 inst✝¹ : LinearOrder R inst✝ : OrderTop R x : Tropical R n : ℕ ⊢ (n + 1) • x = x [PROOFSTEP] induction' n with n IH [GOAL] case zero R✝ : Type u inst✝² : LinearOrderedAddCommMonoidWithTop R✝ R : Type u_1 inst✝¹ : LinearOrder R inst✝ : OrderTop R x : Tropical R ⊢ (Nat.zero + 1) • x = x [PROOFSTEP] simp [GOAL] case succ R✝ : Type u inst✝² : LinearOrderedAddCommMonoidWithTop R✝ R : Type u_1 inst✝¹ : LinearOrder R inst✝ : OrderTop R x : Tropical R n : ℕ IH : (n + 1) • x = x ⊢ (Nat.succ n + 1) • x = x [PROOFSTEP] rw [add_nsmul, IH, one_nsmul, add_self] [GOAL] R✝ : Type u inst✝¹ : LinearOrderedAddCommMonoidWithTop R✝ R : Type u_1 inst✝ : LinearOrderedAddCommMonoid R a b : Tropical (WithTop R) ⊢ a * b = 0 ↔ a = 0 ∨ b = 0 [PROOFSTEP] simp [← untrop_inj_iff, WithTop.add_eq_top]
{"mathlib_filename": "Mathlib.Algebra.Tropical.Basic", "llama_tokens": 4154}
[GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f : M → N p : M → Prop h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y hp_mul : ∀ (x y : M), p x → p y → p (x * y) g : ι → M s : Finset ι hs_nonempty : Finset.Nonempty s hs : ∀ (i : ι), i ∈ s → p (g i) ⊢ f (∏ i in s, g i) ≤ ∏ i in s, f (g i) [PROOFSTEP] refine' le_trans (Multiset.le_prod_nonempty_of_submultiplicative_on_pred f p h_mul hp_mul _ _ _) _ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f : M → N p : M → Prop h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y hp_mul : ∀ (x y : M), p x → p y → p (x * y) g : ι → M s : Finset ι hs_nonempty : Finset.Nonempty s hs : ∀ (i : ι), i ∈ s → p (g i) ⊢ Multiset.map (fun i => g i) s.val ≠ ∅ [PROOFSTEP] simp [hs_nonempty.ne_empty] [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f : M → N p : M → Prop h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y hp_mul : ∀ (x y : M), p x → p y → p (x * y) g : ι → M s : Finset ι hs_nonempty : Finset.Nonempty s hs : ∀ (i : ι), i ∈ s → p (g i) ⊢ ∀ (a : M), a ∈ Multiset.map (fun i => g i) s.val → p a [PROOFSTEP] exact Multiset.forall_mem_map_iff.mpr hs [GOAL] case refine'_3 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f : M → N p : M → Prop h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y hp_mul : ∀ (x y : M), p x → p y → p (x * y) g : ι → M s : Finset ι hs_nonempty : Finset.Nonempty s hs : ∀ (i : ι), i ∈ s → p (g i) ⊢ Multiset.prod (Multiset.map f (Multiset.map (fun i => g i) s.val)) ≤ ∏ i in s, f (g i) [PROOFSTEP] rw [Multiset.map_map] [GOAL] case refine'_3 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f : M → N p : M → Prop h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y hp_mul : ∀ (x y : M), p x → p y → p (x * y) g : ι → M s : Finset ι hs_nonempty : Finset.Nonempty s hs : ∀ (i : ι), i ∈ s → p (g i) ⊢ Multiset.prod (Multiset.map (f ∘ fun i => g i) s.val) ≤ ∏ i in s, f (g i) [PROOFSTEP] rfl [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f : M → N p : M → Prop h_one : f 1 = 1 h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y hp_mul : ∀ (x y : M), p x → p y → p (x * y) g : ι → M s : Finset ι hs : ∀ (i : ι), i ∈ s → p (g i) ⊢ f (∏ i in s, g i) ≤ ∏ i in s, f (g i) [PROOFSTEP] rcases eq_empty_or_nonempty s with (rfl | hs_nonempty) [GOAL] case inl ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f : M → N p : M → Prop h_one : f 1 = 1 h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y hp_mul : ∀ (x y : M), p x → p y → p (x * y) g : ι → M hs : ∀ (i : ι), i ∈ ∅ → p (g i) ⊢ f (∏ i in ∅, g i) ≤ ∏ i in ∅, f (g i) [PROOFSTEP] simp [h_one] [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f : M → N p : M → Prop h_one : f 1 = 1 h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y hp_mul : ∀ (x y : M), p x → p y → p (x * y) g : ι → M s : Finset ι hs : ∀ (i : ι), i ∈ s → p (g i) hs_nonempty : Finset.Nonempty s ⊢ f (∏ i in s, g i) ≤ ∏ i in s, f (g i) [PROOFSTEP] exact le_prod_nonempty_of_submultiplicative_on_pred f p h_mul hp_mul g s hs_nonempty hs [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f : M → N h_one : f 1 = 1 h_mul : ∀ (x y : M), f (x * y) ≤ f x * f y s : Finset ι g : ι → M ⊢ f (∏ i in s, g i) ≤ ∏ i in s, f (g i) [PROOFSTEP] refine' le_trans (Multiset.le_prod_of_submultiplicative f h_one h_mul _) _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f : M → N h_one : f 1 = 1 h_mul : ∀ (x y : M), f (x * y) ≤ f x * f y s : Finset ι g : ι → M ⊢ Multiset.prod (Multiset.map f (Multiset.map (fun i => g i) s.val)) ≤ ∏ i in s, f (g i) [PROOFSTEP] rw [Multiset.map_map] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f : M → N h_one : f 1 = 1 h_mul : ∀ (x y : M), f (x * y) ≤ f x * f y s : Finset ι g : ι → M ⊢ Multiset.prod (Multiset.map (f ∘ fun i => g i) s.val) ≤ ∏ i in s, f (g i) [PROOFSTEP] rfl [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f g : ι → N s t : Finset ι h : ∀ (i : ι), i ∈ s → 1 ≤ f i ⊢ 1 ≤ ∏ i in s, 1 [PROOFSTEP] rw [prod_const_one] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f g : ι → N s t : Finset ι h : ∀ (i : ι), i ∈ s → f i ≤ 1 ⊢ ∏ i in s, 1 = 1 [PROOFSTEP] rw [prod_const_one] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f g : ι → N s t : Finset ι h : s ⊆ t hf : ∀ (i : ι), i ∈ t → ¬i ∈ s → 1 ≤ f i ⊢ ∏ i in s, f i ≤ ∏ i in t, f i [PROOFSTEP] classical calc ∏ i in s, f i ≤ (∏ i in t \ s, f i) * ∏ i in s, f i := le_mul_of_one_le_left' <| one_le_prod' <| by simpa only [mem_sdiff, and_imp] _ = ∏ i in t \ s ∪ s, f i := (prod_union sdiff_disjoint).symm _ = ∏ i in t, f i := by rw [sdiff_union_of_subset h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f g : ι → N s t : Finset ι h : s ⊆ t hf : ∀ (i : ι), i ∈ t → ¬i ∈ s → 1 ≤ f i ⊢ ∏ i in s, f i ≤ ∏ i in t, f i [PROOFSTEP] calc ∏ i in s, f i ≤ (∏ i in t \ s, f i) * ∏ i in s, f i := le_mul_of_one_le_left' <| one_le_prod' <| by simpa only [mem_sdiff, and_imp] _ = ∏ i in t \ s ∪ s, f i := (prod_union sdiff_disjoint).symm _ = ∏ i in t, f i := by rw [sdiff_union_of_subset h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f g : ι → N s t : Finset ι h : s ⊆ t hf : ∀ (i : ι), i ∈ t → ¬i ∈ s → 1 ≤ f i ⊢ ∀ (i : ι), i ∈ t \ s → 1 ≤ f i [PROOFSTEP] simpa only [mem_sdiff, and_imp] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f g : ι → N s t : Finset ι h : s ⊆ t hf : ∀ (i : ι), i ∈ t → ¬i ∈ s → 1 ≤ f i ⊢ ∏ i in t \ s ∪ s, f i = ∏ i in t, f i [PROOFSTEP] rw [sdiff_union_of_subset h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f g : ι → N s t : Finset ι ⊢ (∀ (i : ι), i ∈ s → 1 ≤ f i) → (∏ i in s, f i = 1 ↔ ∀ (i : ι), i ∈ s → f i = 1) [PROOFSTEP] classical refine Finset.induction_on s (fun _ ↦ ⟨fun _ _ h ↦ False.elim (Finset.not_mem_empty _ h), fun _ ↦ rfl⟩) ?_ intro a s ha ih H have : ∀ i ∈ s, 1 ≤ f i := fun _ ↦ H _ ∘ mem_insert_of_mem rw [prod_insert ha, mul_eq_one_iff' (H _ <| mem_insert_self _ _) (one_le_prod' this), forall_mem_insert, ih this] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f g : ι → N s t : Finset ι ⊢ (∀ (i : ι), i ∈ s → 1 ≤ f i) → (∏ i in s, f i = 1 ↔ ∀ (i : ι), i ∈ s → f i = 1) [PROOFSTEP] refine Finset.induction_on s (fun _ ↦ ⟨fun _ _ h ↦ False.elim (Finset.not_mem_empty _ h), fun _ ↦ rfl⟩) ?_ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f g : ι → N s t : Finset ι ⊢ ∀ ⦃a : ι⦄ {s : Finset ι}, ¬a ∈ s → ((∀ (i : ι), i ∈ s → 1 ≤ f i) → (∏ i in s, f i = 1 ↔ ∀ (i : ι), i ∈ s → f i = 1)) → (∀ (i : ι), i ∈ insert a s → 1 ≤ f i) → (∏ i in insert a s, f i = 1 ↔ ∀ (i : ι), i ∈ insert a s → f i = 1) [PROOFSTEP] intro a s ha ih H [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f g : ι → N s✝ t : Finset ι a : ι s : Finset ι ha : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → 1 ≤ f i) → (∏ i in s, f i = 1 ↔ ∀ (i : ι), i ∈ s → f i = 1) H : ∀ (i : ι), i ∈ insert a s → 1 ≤ f i ⊢ ∏ i in insert a s, f i = 1 ↔ ∀ (i : ι), i ∈ insert a s → f i = 1 [PROOFSTEP] have : ∀ i ∈ s, 1 ≤ f i := fun _ ↦ H _ ∘ mem_insert_of_mem [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f g : ι → N s✝ t : Finset ι a : ι s : Finset ι ha : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → 1 ≤ f i) → (∏ i in s, f i = 1 ↔ ∀ (i : ι), i ∈ s → f i = 1) H : ∀ (i : ι), i ∈ insert a s → 1 ≤ f i this : ∀ (i : ι), i ∈ s → 1 ≤ f i ⊢ ∏ i in insert a s, f i = 1 ↔ ∀ (i : ι), i ∈ insert a s → f i = 1 [PROOFSTEP] rw [prod_insert ha, mul_eq_one_iff' (H _ <| mem_insert_self _ _) (one_le_prod' this), forall_mem_insert, ih this] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f✝ g : ι → N s✝ t s : Finset ι f : ι → N n : N h : ∀ (x : ι), x ∈ s → f x ≤ n ⊢ Finset.prod s f ≤ n ^ card s [PROOFSTEP] refine' (Multiset.prod_le_pow_card (s.val.map f) n _).trans _ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f✝ g : ι → N s✝ t s : Finset ι f : ι → N n : N h : ∀ (x : ι), x ∈ s → f x ≤ n ⊢ ∀ (x : N), x ∈ Multiset.map f s.val → x ≤ n [PROOFSTEP] simpa using h [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f✝ g : ι → N s✝ t s : Finset ι f : ι → N n : N h : ∀ (x : ι), x ∈ s → f x ≤ n ⊢ n ^ ↑Multiset.card (Multiset.map f s.val) ≤ n ^ card s [PROOFSTEP] simp [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : CommMonoid M inst✝ : OrderedCommMonoid N f✝ g : ι → N s✝ t s : Finset ι f : ι → N n : N h : ∀ (x : ι), x ∈ s → f x ≤ n ⊢ n ^ ↑Multiset.card s.val ≤ n ^ card s [PROOFSTEP] rfl [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G✝ : Type u_6 k : Type u_7 R : Type u_8 G : Type u_9 inst✝ : LinearOrderedAddCommGroup G f : ι → G s : Finset ι hf : ∀ (i : ι), i ∈ s → 0 ≤ f i ⊢ |∑ i in s, f i| = ∑ i in s, f i [PROOFSTEP] rw [abs_of_nonneg (Finset.sum_nonneg hf)] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G✝ : Type u_6 k : Type u_7 R : Type u_8 G : Type u_9 inst✝ : LinearOrderedAddCommGroup G f : ι → G s : Finset ι hf : ∀ (i : ι), 0 ≤ f i ⊢ |∑ i in s, f i| = ∑ i in s, f i [PROOFSTEP] rw [abs_of_nonneg (Finset.sum_nonneg' hf)] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : DecidableEq β f : α → β s : Finset α t : Finset β Hf : ∀ (a : α), a ∈ s → f a ∈ t n : ℕ hn : ∀ (a : β), a ∈ t → card (filter (fun x => f x = a) s) ≤ n ⊢ ∑ _a in t, n = n * card t [PROOFSTEP] simp [mul_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : DecidableEq β f : α → β s : Finset α t : Finset β Hf : ∀ (a : α), a ∈ s → f a ∈ t n : ℕ hn : ∀ (a : β), a ∈ t → n ≤ card (filter (fun x => f x = a) s) ⊢ n * card t = ∑ _a in t, n [PROOFSTEP] simp [mul_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : DecidableEq β f : α → β s : Finset α t : Finset β Hf : ∀ (a : α), a ∈ s → f a ∈ t n : ℕ hn : ∀ (a : β), a ∈ t → n ≤ card (filter (fun x => f x = a) s) ⊢ ∑ a in t, card (filter (fun x => f x = a) s) = card s [PROOFSTEP] rw [← card_eq_sum_card_fiberwise Hf] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : DecidableEq α s : Finset α B : Finset (Finset α) n : ℕ h : ∀ (a : α), a ∈ s → card (filter ((fun x x_1 => x ∈ x_1) a) B) ≤ n ⊢ ∑ t in B, card (s ∩ t) ≤ card s * n [PROOFSTEP] refine' le_trans _ (s.sum_le_card_nsmul _ _ h) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : DecidableEq α s : Finset α B : Finset (Finset α) n : ℕ h : ∀ (a : α), a ∈ s → card (filter ((fun x x_1 => x ∈ x_1) a) B) ≤ n ⊢ ∑ t in B, card (s ∩ t) ≤ ∑ x in s, card (filter ((fun x x_1 => x ∈ x_1) x) B) [PROOFSTEP] simp_rw [← filter_mem_eq_inter, card_eq_sum_ones, sum_filter] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : DecidableEq α s : Finset α B : Finset (Finset α) n : ℕ h : ∀ (a : α), a ∈ s → card (filter ((fun x x_1 => x ∈ x_1) a) B) ≤ n ⊢ (∑ x in B, ∑ a in s, if a ∈ x then 1 else 0) ≤ ∑ x in s, ∑ a in B, if x ∈ a then 1 else 0 [PROOFSTEP] exact sum_comm.le [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : DecidableEq α s : Finset α B : Finset (Finset α) n : ℕ inst✝ : Fintype α h : ∀ (a : α), card (filter ((fun x x_1 => x ∈ x_1) a) B) ≤ n ⊢ ∑ s in B, card s = ∑ s in B, card (univ ∩ s) [PROOFSTEP] simp_rw [univ_inter] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : DecidableEq α s : Finset α B : Finset (Finset α) n : ℕ h : ∀ (a : α), a ∈ s → n ≤ card (filter ((fun x x_1 => x ∈ x_1) a) B) ⊢ card s * n ≤ ∑ t in B, card (s ∩ t) [PROOFSTEP] apply (s.card_nsmul_le_sum _ _ h).trans [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : DecidableEq α s : Finset α B : Finset (Finset α) n : ℕ h : ∀ (a : α), a ∈ s → n ≤ card (filter ((fun x x_1 => x ∈ x_1) a) B) ⊢ ∑ x in s, card (filter ((fun x x_1 => x ∈ x_1) x) B) ≤ ∑ t in B, card (s ∩ t) [PROOFSTEP] simp_rw [← filter_mem_eq_inter, card_eq_sum_ones, sum_filter] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : DecidableEq α s : Finset α B : Finset (Finset α) n : ℕ h : ∀ (a : α), a ∈ s → n ≤ card (filter ((fun x x_1 => x ∈ x_1) a) B) ⊢ (∑ x in s, ∑ a in B, if x ∈ a then 1 else 0) ≤ ∑ x in B, ∑ a in s, if a ∈ x then 1 else 0 [PROOFSTEP] exact sum_comm.le [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : DecidableEq α s : Finset α B : Finset (Finset α) n : ℕ inst✝ : Fintype α h : ∀ (a : α), n ≤ card (filter ((fun x x_1 => x ∈ x_1) a) B) ⊢ ∑ s in B, card (univ ∩ s) = ∑ s in B, card s [PROOFSTEP] simp_rw [univ_inter] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : DecidableEq α s : Finset α B : Finset (Finset α) n : ℕ inst✝ : Fintype α h : ∀ (a : α), card (filter ((fun x x_1 => x ∈ x_1) a) B) = n ⊢ ∑ s in B, card s = Fintype.card α * n [PROOFSTEP] simp_rw [Fintype.card, ← sum_card_inter fun a _ ↦ h a, univ_inter] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : DecidableEq α s✝ : Finset α B : Finset (Finset α) n : ℕ s : Finset ι f : ι → Finset α hs : Set.PairwiseDisjoint (↑s) f hf : ∀ (i : ι), i ∈ s → Finset.Nonempty (f i) ⊢ card s ≤ card (Finset.biUnion s f) [PROOFSTEP] rw [card_biUnion hs, card_eq_sum_ones] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : DecidableEq α s✝ : Finset α B : Finset (Finset α) n : ℕ s : Finset ι f : ι → Finset α hs : Set.PairwiseDisjoint (↑s) f hf : ∀ (i : ι), i ∈ s → Finset.Nonempty (f i) ⊢ ∑ x in s, 1 ≤ ∑ u in s, card (f u) [PROOFSTEP] exact sum_le_sum fun i hi ↦ (hf i hi).card_pos [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : DecidableEq α s✝ : Finset α B : Finset (Finset α) n : ℕ s : Finset ι f : ι → Finset α hs : Set.PairwiseDisjoint (↑s) f ⊢ card s ≤ card (Finset.biUnion s f) + card (filter (fun i => f i = ∅) s) [PROOFSTEP] rw [← Finset.filter_card_add_filter_neg_card_eq_card fun i ↦ f i = ∅, add_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : DecidableEq α s✝ : Finset α B : Finset (Finset α) n : ℕ s : Finset ι f : ι → Finset α hs : Set.PairwiseDisjoint (↑s) f ⊢ card (filter (fun a => ¬f a = ∅) s) + card (filter (fun i => f i = ∅) s) ≤ card (Finset.biUnion s f) + card (filter (fun i => f i = ∅) s) [PROOFSTEP] exact add_le_add_right ((card_le_card_biUnion (hs.subset <| filter_subset _ _) fun i hi ↦ nonempty_of_ne_empty <| (mem_filter.1 hi).2).trans <| card_le_of_subset <| biUnion_subset_biUnion_of_subset_left _ <| filter_subset _ _) _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedMonoid M f : ι → M s t : Finset ι h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t ⊢ ∏ x in s, f x ≤ ∏ x in t, f x [PROOFSTEP] classical calc ∏ x in s, f x = (∏ x in s.filter fun x ↦ f x = 1, f x) * ∏ x in s.filter fun x ↦ f x ≠ 1, f x := by rw [← prod_union, filter_union_filter_neg_eq] exact disjoint_filter.2 fun _ _ h n_h ↦ n_h h _ ≤ ∏ x in t, f x := mul_le_of_le_one_of_le (prod_le_one' <| by simp only [mem_filter, and_imp]; exact fun _ _ ↦ le_of_eq) (prod_le_prod_of_subset' <| by simpa only [subset_iff, mem_filter, and_imp]) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedMonoid M f : ι → M s t : Finset ι h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t ⊢ ∏ x in s, f x ≤ ∏ x in t, f x [PROOFSTEP] calc ∏ x in s, f x = (∏ x in s.filter fun x ↦ f x = 1, f x) * ∏ x in s.filter fun x ↦ f x ≠ 1, f x := by rw [← prod_union, filter_union_filter_neg_eq] exact disjoint_filter.2 fun _ _ h n_h ↦ n_h h _ ≤ ∏ x in t, f x := mul_le_of_le_one_of_le (prod_le_one' <| by simp only [mem_filter, and_imp]; exact fun _ _ ↦ le_of_eq) (prod_le_prod_of_subset' <| by simpa only [subset_iff, mem_filter, and_imp]) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedMonoid M f : ι → M s t : Finset ι h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t ⊢ ∏ x in s, f x = (∏ x in filter (fun x => f x = 1) s, f x) * ∏ x in filter (fun x => f x ≠ 1) s, f x [PROOFSTEP] rw [← prod_union, filter_union_filter_neg_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedMonoid M f : ι → M s t : Finset ι h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t ⊢ Disjoint (filter (fun x => f x = 1) s) (filter (fun x => f x ≠ 1) s) [PROOFSTEP] exact disjoint_filter.2 fun _ _ h n_h ↦ n_h h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedMonoid M f : ι → M s t : Finset ι h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t ⊢ ∀ (i : ι), i ∈ filter (fun x => f x = 1) s → f i ≤ 1 [PROOFSTEP] simp only [mem_filter, and_imp] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedMonoid M f : ι → M s t : Finset ι h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t ⊢ ∀ (i : ι), i ∈ s → f i = 1 → f i ≤ 1 [PROOFSTEP] exact fun _ _ ↦ le_of_eq [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedMonoid M f : ι → M s t : Finset ι h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t ⊢ filter (fun x => f x ≠ 1) s ⊆ t [PROOFSTEP] simpa only [subset_iff, mem_filter, and_imp] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι Hle : ∀ (i : ι), i ∈ s → f i ≤ g i Hlt : ∃ i, i ∈ s ∧ f i < g i ⊢ ∏ i in s, f i < ∏ i in s, g i [PROOFSTEP] classical rcases Hlt with ⟨i, hi, hlt⟩ rw [← insert_erase hi, prod_insert (not_mem_erase _ _), prod_insert (not_mem_erase _ _)] exact mul_lt_mul_of_lt_of_le hlt (prod_le_prod' fun j hj ↦ Hle j <| mem_of_mem_erase hj) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι Hle : ∀ (i : ι), i ∈ s → f i ≤ g i Hlt : ∃ i, i ∈ s ∧ f i < g i ⊢ ∏ i in s, f i < ∏ i in s, g i [PROOFSTEP] rcases Hlt with ⟨i, hi, hlt⟩ [GOAL] case intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι Hle : ∀ (i : ι), i ∈ s → f i ≤ g i i : ι hi : i ∈ s hlt : f i < g i ⊢ ∏ i in s, f i < ∏ i in s, g i [PROOFSTEP] rw [← insert_erase hi, prod_insert (not_mem_erase _ _), prod_insert (not_mem_erase _ _)] [GOAL] case intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι Hle : ∀ (i : ι), i ∈ s → f i ≤ g i i : ι hi : i ∈ s hlt : f i < g i ⊢ f i * ∏ x in erase s i, f x < g i * ∏ x in erase s i, g x [PROOFSTEP] exact mul_lt_mul_of_lt_of_le hlt (prod_le_prod' fun j hj ↦ Hle j <| mem_of_mem_erase hj) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι hs : Finset.Nonempty s Hlt : ∀ (i : ι), i ∈ s → f i < g i ⊢ ∏ i in s, f i < ∏ i in s, g i [PROOFSTEP] apply prod_lt_prod' [GOAL] case Hle ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι hs : Finset.Nonempty s Hlt : ∀ (i : ι), i ∈ s → f i < g i ⊢ ∀ (i : ι), i ∈ s → f i ≤ g i [PROOFSTEP] intro i hi [GOAL] case Hle ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι hs : Finset.Nonempty s Hlt : ∀ (i : ι), i ∈ s → f i < g i i : ι hi : i ∈ s ⊢ f i ≤ g i [PROOFSTEP] apply le_of_lt (Hlt i hi) [GOAL] case Hlt ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι hs : Finset.Nonempty s Hlt : ∀ (i : ι), i ∈ s → f i < g i ⊢ ∃ i, i ∈ s ∧ f i < g i [PROOFSTEP] cases' hs with i hi [GOAL] case Hlt.intro ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι Hlt : ∀ (i : ι), i ∈ s → f i < g i i : ι hi : i ∈ s ⊢ ∃ i, i ∈ s ∧ f i < g i [PROOFSTEP] exact ⟨i, hi, Hlt i hi⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι h : s ⊆ t i : ι ht : i ∈ t hs : ¬i ∈ s hlt : 1 < f i hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j ⊢ ∏ j in s, f j < ∏ j in t, f j [PROOFSTEP] classical calc ∏ j in s, f j < ∏ j in insert i s, f j := by rw [prod_insert hs] exact lt_mul_of_one_lt_left' (∏ j in s, f j) hlt _ ≤ ∏ j in t, f j := by apply prod_le_prod_of_subset_of_one_le' · simp [Finset.insert_subset_iff, h, ht] · intro x hx h'x simp only [mem_insert, not_or] at h'x exact hle x hx h'x.2 [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι h : s ⊆ t i : ι ht : i ∈ t hs : ¬i ∈ s hlt : 1 < f i hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j ⊢ ∏ j in s, f j < ∏ j in t, f j [PROOFSTEP] calc ∏ j in s, f j < ∏ j in insert i s, f j := by rw [prod_insert hs] exact lt_mul_of_one_lt_left' (∏ j in s, f j) hlt _ ≤ ∏ j in t, f j := by apply prod_le_prod_of_subset_of_one_le' · simp [Finset.insert_subset_iff, h, ht] · intro x hx h'x simp only [mem_insert, not_or] at h'x exact hle x hx h'x.2 [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι h : s ⊆ t i : ι ht : i ∈ t hs : ¬i ∈ s hlt : 1 < f i hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j ⊢ ∏ j in s, f j < ∏ j in insert i s, f j [PROOFSTEP] rw [prod_insert hs] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι h : s ⊆ t i : ι ht : i ∈ t hs : ¬i ∈ s hlt : 1 < f i hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j ⊢ ∏ j in s, f j < f i * ∏ x in s, f x [PROOFSTEP] exact lt_mul_of_one_lt_left' (∏ j in s, f j) hlt [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι h : s ⊆ t i : ι ht : i ∈ t hs : ¬i ∈ s hlt : 1 < f i hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j ⊢ ∏ j in insert i s, f j ≤ ∏ j in t, f j [PROOFSTEP] apply prod_le_prod_of_subset_of_one_le' [GOAL] case h ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι h : s ⊆ t i : ι ht : i ∈ t hs : ¬i ∈ s hlt : 1 < f i hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j ⊢ insert i s ⊆ t [PROOFSTEP] simp [Finset.insert_subset_iff, h, ht] [GOAL] case hf ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι h : s ⊆ t i : ι ht : i ∈ t hs : ¬i ∈ s hlt : 1 < f i hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j ⊢ ∀ (i_1 : ι), i_1 ∈ t → ¬i_1 ∈ insert i s → 1 ≤ f i_1 [PROOFSTEP] intro x hx h'x [GOAL] case hf ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι h : s ⊆ t i : ι ht : i ∈ t hs : ¬i ∈ s hlt : 1 < f i hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j x : ι hx : x ∈ t h'x : ¬x ∈ insert i s ⊢ 1 ≤ f x [PROOFSTEP] simp only [mem_insert, not_or] at h'x [GOAL] case hf ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι h : s ⊆ t i : ι ht : i ∈ t hs : ¬i ∈ s hlt : 1 < f i hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j x : ι hx : x ∈ t h'x : ¬x = i ∧ ¬x ∈ s ⊢ 1 ≤ f x [PROOFSTEP] exact hle x hx h'x.2 [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι h : ∀ (i : ι), i ∈ s → 1 < f i hs : Finset.Nonempty s ⊢ 1 ≤ ∏ i in s, 1 [PROOFSTEP] rw [prod_const_one] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f g : ι → M s t : Finset ι h : ∀ (i : ι), i ∈ s → f i < 1 hs : Finset.Nonempty s ⊢ ∏ i in s, 1 ≤ 1 [PROOFSTEP] rw [prod_const_one] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f✝ g✝ : ι → M s t : Finset ι f g : ι → M h : ∀ (i : ι), i ∈ s → f i ≤ g i ⊢ ∏ i in s, f i = ∏ i in s, g i ↔ ∀ (i : ι), i ∈ s → f i = g i [PROOFSTEP] classical revert h refine Finset.induction_on s (fun _ ↦ ⟨fun _ _ h ↦ False.elim (Finset.not_mem_empty _ h), fun _ ↦ rfl⟩) fun a s ha ih H ↦ ?_ specialize ih fun i ↦ H i ∘ Finset.mem_insert_of_mem rw [Finset.prod_insert ha, Finset.prod_insert ha, Finset.forall_mem_insert, ← ih] exact mul_eq_mul_iff_eq_and_eq (H a (s.mem_insert_self a)) (Finset.prod_le_prod' fun i ↦ H i ∘ Finset.mem_insert_of_mem) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f✝ g✝ : ι → M s t : Finset ι f g : ι → M h : ∀ (i : ι), i ∈ s → f i ≤ g i ⊢ ∏ i in s, f i = ∏ i in s, g i ↔ ∀ (i : ι), i ∈ s → f i = g i [PROOFSTEP] revert h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f✝ g✝ : ι → M s t : Finset ι f g : ι → M ⊢ (∀ (i : ι), i ∈ s → f i ≤ g i) → (∏ i in s, f i = ∏ i in s, g i ↔ ∀ (i : ι), i ∈ s → f i = g i) [PROOFSTEP] refine Finset.induction_on s (fun _ ↦ ⟨fun _ _ h ↦ False.elim (Finset.not_mem_empty _ h), fun _ ↦ rfl⟩) fun a s ha ih H ↦ ?_ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f✝ g✝ : ι → M s✝ t : Finset ι f g : ι → M a : ι s : Finset ι ha : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → f i ≤ g i) → (∏ i in s, f i = ∏ i in s, g i ↔ ∀ (i : ι), i ∈ s → f i = g i) H : ∀ (i : ι), i ∈ insert a s → f i ≤ g i ⊢ ∏ i in insert a s, f i = ∏ i in insert a s, g i ↔ ∀ (i : ι), i ∈ insert a s → f i = g i [PROOFSTEP] specialize ih fun i ↦ H i ∘ Finset.mem_insert_of_mem [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f✝ g✝ : ι → M s✝ t : Finset ι f g : ι → M a : ι s : Finset ι ha : ¬a ∈ s H : ∀ (i : ι), i ∈ insert a s → f i ≤ g i ih : ∏ i in s, f i = ∏ i in s, g i ↔ ∀ (i : ι), i ∈ s → f i = g i ⊢ ∏ i in insert a s, f i = ∏ i in insert a s, g i ↔ ∀ (i : ι), i ∈ insert a s → f i = g i [PROOFSTEP] rw [Finset.prod_insert ha, Finset.prod_insert ha, Finset.forall_mem_insert, ← ih] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCancelCommMonoid M f✝ g✝ : ι → M s✝ t : Finset ι f g : ι → M a : ι s : Finset ι ha : ¬a ∈ s H : ∀ (i : ι), i ∈ insert a s → f i ≤ g i ih : ∏ i in s, f i = ∏ i in s, g i ↔ ∀ (i : ι), i ∈ s → f i = g i ⊢ f a * ∏ x in s, f x = g a * ∏ x in s, g x ↔ f a = g a ∧ ∏ i in s, f i = ∏ i in s, g i [PROOFSTEP] exact mul_eq_mul_iff_eq_and_eq (H a (s.mem_insert_self a)) (Finset.prod_le_prod' fun i ↦ H i ∘ Finset.mem_insert_of_mem) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : LinearOrderedCancelCommMonoid M f g : ι → M s t : Finset ι Hlt : ∏ i in s, f i < ∏ i in s, g i ⊢ ∃ i, i ∈ s ∧ f i < g i [PROOFSTEP] contrapose! Hlt with Hle [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : LinearOrderedCancelCommMonoid M f g : ι → M s t : Finset ι Hle : ∀ (i : ι), i ∈ s → g i ≤ f i ⊢ ∏ i in s, g i ≤ ∏ i in s, f i [PROOFSTEP] exact prod_le_prod' Hle [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : LinearOrderedCancelCommMonoid M f g : ι → M s t : Finset ι hs : Finset.Nonempty s Hle : ∏ i in s, f i ≤ ∏ i in s, g i ⊢ ∃ i, i ∈ s ∧ f i ≤ g i [PROOFSTEP] contrapose! Hle with Hlt [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : LinearOrderedCancelCommMonoid M f g : ι → M s t : Finset ι hs : Finset.Nonempty s Hlt : ∀ (i : ι), i ∈ s → g i < f i ⊢ ∏ i in s, g i < ∏ i in s, f i [PROOFSTEP] exact prod_lt_prod_of_nonempty' hs Hlt [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : LinearOrderedCancelCommMonoid M f✝ g : ι → M s t : Finset ι f : ι → M h₁ : ∏ i in s, f i = 1 h₂ : ∃ i, i ∈ s ∧ f i ≠ 1 ⊢ ∃ i, i ∈ s ∧ 1 < f i [PROOFSTEP] contrapose! h₁ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : LinearOrderedCancelCommMonoid M f✝ g : ι → M s t : Finset ι f : ι → M h₂ : ∃ i, i ∈ s ∧ f i ≠ 1 h₁ : ∀ (i : ι), i ∈ s → f i ≤ 1 ⊢ ∏ i in s, f i ≠ 1 [PROOFSTEP] obtain ⟨i, m, i_ne⟩ : ∃ i ∈ s, f i ≠ 1 := h₂ [GOAL] case intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : LinearOrderedCancelCommMonoid M f✝ g : ι → M s t : Finset ι f : ι → M h₁ : ∀ (i : ι), i ∈ s → f i ≤ 1 i : ι m : i ∈ s i_ne : f i ≠ 1 ⊢ ∏ i in s, f i ≠ 1 [PROOFSTEP] apply ne_of_lt [GOAL] case intro.intro.h ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : LinearOrderedCancelCommMonoid M f✝ g : ι → M s t : Finset ι f : ι → M h₁ : ∀ (i : ι), i ∈ s → f i ≤ 1 i : ι m : i ∈ s i_ne : f i ≠ 1 ⊢ ∏ i in s, f i < 1 [PROOFSTEP] calc ∏ j in s, f j < ∏ j in s, 1 := prod_lt_prod' h₁ ⟨i, m, (h₁ i m).lt_of_ne i_ne⟩ _ = 1 := prod_const_one [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f g : ι → R s t : Finset ι h0 : ∀ (i : ι), i ∈ s → 0 ≤ f i h1 : ∀ (i : ι), i ∈ s → f i ≤ g i ⊢ ∏ i in s, f i ≤ ∏ i in s, g i [PROOFSTEP] induction' s using Finset.induction with a s has ih h [GOAL] case empty ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f g : ι → R s t : Finset ι h0✝ : ∀ (i : ι), i ∈ s → 0 ≤ f i h1✝ : ∀ (i : ι), i ∈ s → f i ≤ g i h0 : ∀ (i : ι), i ∈ ∅ → 0 ≤ f i h1 : ∀ (i : ι), i ∈ ∅ → f i ≤ g i ⊢ ∏ i in ∅, f i ≤ ∏ i in ∅, g i [PROOFSTEP] simp [GOAL] case insert ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f g : ι → R s✝ t : Finset ι h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i ⊢ ∏ i in insert a s, f i ≤ ∏ i in insert a s, g i [PROOFSTEP] simp only [prod_insert has] [GOAL] case insert ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f g : ι → R s✝ t : Finset ι h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i ⊢ f a * ∏ i in s, f i ≤ g a * ∏ i in s, g i [PROOFSTEP] apply mul_le_mul [GOAL] case insert.h₁ ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f g : ι → R s✝ t : Finset ι h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i ⊢ f a ≤ g a [PROOFSTEP] exact h1 a (mem_insert_self a s) [GOAL] case insert.h₂ ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f g : ι → R s✝ t : Finset ι h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i ⊢ ∏ i in s, f i ≤ ∏ i in s, g i [PROOFSTEP] refine ih (fun x H ↦ h0 _ ?_) (fun x H ↦ h1 _ ?_) [GOAL] case insert.h₂.refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f g : ι → R s✝ t : Finset ι h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i x : ι H : x ∈ s ⊢ x ∈ insert a s [PROOFSTEP] exact mem_insert_of_mem H [GOAL] case insert.h₂.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f g : ι → R s✝ t : Finset ι h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i x : ι H : x ∈ s ⊢ x ∈ insert a s [PROOFSTEP] exact mem_insert_of_mem H [GOAL] case insert.c0 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f g : ι → R s✝ t : Finset ι h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i ⊢ 0 ≤ ∏ i in s, f i [PROOFSTEP] apply prod_nonneg fun x H ↦ h0 x (mem_insert_of_mem H) [GOAL] case insert.b0 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f g : ι → R s✝ t : Finset ι h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i ⊢ 0 ≤ g a [PROOFSTEP] apply le_trans (h0 a (mem_insert_self a s)) (h1 a (mem_insert_self a s)) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f g : ι → R s t : Finset ι h0 : ∀ (i : ι), i ∈ s → 0 ≤ f i h1 : ∀ (i : ι), i ∈ s → f i ≤ 1 ⊢ ∏ i in s, f i ≤ 1 [PROOFSTEP] convert ← prod_le_prod h0 h1 [GOAL] case h.e'_4 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f g : ι → R s t : Finset ι h0 : ∀ (i : ι), i ∈ s → 0 ≤ f i h1 : ∀ (i : ι), i ∈ s → f i ≤ 1 ⊢ ∏ i in s, 1 = 1 [PROOFSTEP] exact Finset.prod_const_one [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ ∏ i in s, g i + ∏ i in s, h i ≤ ∏ i in s, f i [PROOFSTEP] simp_rw [prod_eq_mul_prod_diff_singleton hi] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i ≤ f i * ∏ i in s \ {i}, f i [PROOFSTEP] refine le_trans ?_ (mul_le_mul_of_nonneg_right h2i ?_) [GOAL] case refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i ≤ (g i + h i) * ∏ i in s \ {i}, f i [PROOFSTEP] rw [right_distrib] [GOAL] case refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i ≤ g i * ∏ i in s \ {i}, f i + h i * ∏ i in s \ {i}, f i [PROOFSTEP] refine add_le_add ?_ ?_ [GOAL] case refine_1.refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ g i * ∏ i in s \ {i}, g i ≤ g i * ∏ i in s \ {i}, f i [PROOFSTEP] refine mul_le_mul_of_nonneg_left ?_ ?_ [GOAL] case refine_1.refine_1.refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ ∏ i in s \ {i}, g i ≤ ∏ i in s \ {i}, f i [PROOFSTEP] refine prod_le_prod ?_ ?_ [GOAL] case refine_1.refine_1.refine_1.refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → 0 ≤ g i_1 [PROOFSTEP] simp (config := { contextual := true }) [*] [GOAL] case refine_1.refine_1.refine_1.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → g i_1 ≤ f i_1 [PROOFSTEP] simp (config := { contextual := true }) [*] [GOAL] case refine_1.refine_1.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ 0 ≤ g i [PROOFSTEP] try apply_assumption [GOAL] case refine_1.refine_1.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ 0 ≤ g i [PROOFSTEP] apply_assumption [GOAL] case refine_1.refine_1.refine_2.a ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ i ∈ s [PROOFSTEP] try assumption [GOAL] case refine_1.refine_1.refine_2.a ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ i ∈ s [PROOFSTEP] assumption [GOAL] case refine_1.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ h i * ∏ i in s \ {i}, h i ≤ h i * ∏ i in s \ {i}, f i [PROOFSTEP] refine mul_le_mul_of_nonneg_left ?_ ?_ [GOAL] case refine_1.refine_2.refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ ∏ i in s \ {i}, h i ≤ ∏ i in s \ {i}, f i [PROOFSTEP] refine prod_le_prod ?_ ?_ [GOAL] case refine_1.refine_2.refine_1.refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → 0 ≤ h i_1 [PROOFSTEP] simp (config := { contextual := true }) [*] [GOAL] case refine_1.refine_2.refine_1.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → h i_1 ≤ f i_1 [PROOFSTEP] simp (config := { contextual := true }) [*] [GOAL] case refine_1.refine_2.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ 0 ≤ h i [PROOFSTEP] try apply_assumption [GOAL] case refine_1.refine_2.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ 0 ≤ h i [PROOFSTEP] apply_assumption [GOAL] case refine_1.refine_2.refine_2.a ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ i ∈ s [PROOFSTEP] try assumption [GOAL] case refine_1.refine_2.refine_2.a ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ i ∈ s [PROOFSTEP] assumption [GOAL] case refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ 0 ≤ ∏ i in s \ {i}, f i [PROOFSTEP] apply prod_nonneg [GOAL] case refine_2.h0 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → 0 ≤ f i_1 [PROOFSTEP] simp only [and_imp, mem_sdiff, mem_singleton] [GOAL] case refine_2.h0 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i ⊢ ∀ (i_1 : ι), i_1 ∈ s → ¬i_1 = i → 0 ≤ f i_1 [PROOFSTEP] intro j h1j h2j [GOAL] case refine_2.h0 ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : OrderedCommSemiring R f✝ g✝ : ι → R s t : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j hg : ∀ (i : ι), i ∈ s → 0 ≤ g i hh : ∀ (i : ι), i ∈ s → 0 ≤ h i j : ι h1j : j ∈ s h2j : ¬j = i ⊢ 0 ≤ f j [PROOFSTEP] exact le_trans (hg j h1j) (hgf j h1j h2j) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j ⊢ ∏ i in s, g i + ∏ i in s, h i ≤ ∏ i in s, f i [PROOFSTEP] classical simp_rw [prod_eq_mul_prod_diff_singleton hi] refine' le_trans _ (mul_le_mul_right' h2i _) rw [right_distrib] apply add_le_add <;> apply mul_le_mul_left' <;> apply prod_le_prod' <;> simp only [and_imp, mem_sdiff, mem_singleton] <;> intros <;> apply_assumption <;> assumption [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j ⊢ ∏ i in s, g i + ∏ i in s, h i ≤ ∏ i in s, f i [PROOFSTEP] simp_rw [prod_eq_mul_prod_diff_singleton hi] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j ⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i ≤ f i * ∏ i in s \ {i}, f i [PROOFSTEP] refine' le_trans _ (mul_le_mul_right' h2i _) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j ⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i ≤ (g i + h i) * ∏ i in s \ {i}, f i [PROOFSTEP] rw [right_distrib] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j ⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i ≤ g i * ∏ i in s \ {i}, f i + h i * ∏ i in s \ {i}, f i [PROOFSTEP] apply add_le_add [GOAL] case h₁ ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j ⊢ g i * ∏ i in s \ {i}, g i ≤ g i * ∏ i in s \ {i}, f i [PROOFSTEP] apply mul_le_mul_left' [GOAL] case h₂ ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j ⊢ h i * ∏ i in s \ {i}, h i ≤ h i * ∏ i in s \ {i}, f i [PROOFSTEP] apply mul_le_mul_left' [GOAL] case h₁.bc ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j ⊢ ∏ i in s \ {i}, g i ≤ ∏ i in s \ {i}, f i [PROOFSTEP] apply prod_le_prod' [GOAL] case h₂.bc ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j ⊢ ∏ i in s \ {i}, h i ≤ ∏ i in s \ {i}, f i [PROOFSTEP] apply prod_le_prod' [GOAL] case h₁.bc.h ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j ⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → g i_1 ≤ f i_1 [PROOFSTEP] simp only [and_imp, mem_sdiff, mem_singleton] [GOAL] case h₂.bc.h ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j ⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → h i_1 ≤ f i_1 [PROOFSTEP] simp only [and_imp, mem_sdiff, mem_singleton] [GOAL] case h₁.bc.h ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j ⊢ ∀ (i_1 : ι), i_1 ∈ s → ¬i_1 = i → g i_1 ≤ f i_1 [PROOFSTEP] intros [GOAL] case h₂.bc.h ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j ⊢ ∀ (i_1 : ι), i_1 ∈ s → ¬i_1 = i → h i_1 ≤ f i_1 [PROOFSTEP] intros [GOAL] case h₁.bc.h ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j i✝ : ι a✝¹ : i✝ ∈ s a✝ : ¬i✝ = i ⊢ g i✝ ≤ f i✝ [PROOFSTEP] apply_assumption [GOAL] case h₂.bc.h ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j i✝ : ι a✝¹ : i✝ ∈ s a✝ : ¬i✝ = i ⊢ h i✝ ≤ f i✝ [PROOFSTEP] apply_assumption [GOAL] case h₁.bc.h.a ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j i✝ : ι a✝¹ : i✝ ∈ s a✝ : ¬i✝ = i ⊢ i✝ ∈ s [PROOFSTEP] assumption [GOAL] case h₁.bc.h.a ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j i✝ : ι a✝¹ : i✝ ∈ s a✝ : ¬i✝ = i ⊢ i✝ ≠ i [PROOFSTEP] assumption [GOAL] case h₂.bc.h.a ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j i✝ : ι a✝¹ : i✝ ∈ s a✝ : ¬i✝ = i ⊢ i✝ ∈ s [PROOFSTEP] assumption [GOAL] case h₂.bc.h.a ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : CanonicallyOrderedCommSemiring R f g h : ι → R s : Finset ι i : ι hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j i✝ : ι a✝¹ : i✝ ∈ s a✝ : ¬i✝ = i ⊢ i✝ ≠ i [PROOFSTEP] assumption [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : AddCommMonoid M s : Finset ι f : ι → WithTop M ⊢ ∑ i in s, f i = ⊤ ↔ ∃ i, i ∈ s ∧ f i = ⊤ [PROOFSTEP] induction s using Finset.cons_induction [GOAL] case empty ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : AddCommMonoid M f : ι → WithTop M ⊢ ∑ i in ∅, f i = ⊤ ↔ ∃ i, i ∈ ∅ ∧ f i = ⊤ [PROOFSTEP] simp [*] [GOAL] case cons ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝ : AddCommMonoid M f : ι → WithTop M a✝¹ : ι s✝ : Finset ι h✝ : ¬a✝¹ ∈ s✝ a✝ : ∑ i in s✝, f i = ⊤ ↔ ∃ i, i ∈ s✝ ∧ f i = ⊤ ⊢ ∑ i in cons a✝¹ s✝ h✝, f i = ⊤ ↔ ∃ i, i ∈ cons a✝¹ s✝ h✝ ∧ f i = ⊤ [PROOFSTEP] simp [*] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 k : Type u_7 R : Type u_8 inst✝¹ : AddCommMonoid M inst✝ : LT M s : Finset ι f : ι → WithTop M ⊢ ∑ i in s, f i < ⊤ ↔ ∀ (i : ι), i ∈ s → f i < ⊤ [PROOFSTEP] simp only [WithTop.lt_top_iff_ne_top, ne_eq, sum_eq_top_iff, not_exists, not_and]
{"mathlib_filename": "Mathlib.Algebra.BigOperators.Order", "llama_tokens": 34395}
[GOAL] R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical ⊢ ∀ (s : Set (Tropical R)), ¬BddAbove s → sSup s = sSup Set.univ [PROOFSTEP] intro s hs [GOAL] R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical s : Set (Tropical R) hs : ¬BddAbove s ⊢ sSup s = sSup Set.univ [PROOFSTEP] have : Set.range untrop = (Set.univ : Set R) := Equiv.range_eq_univ tropEquiv.symm [GOAL] R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical s : Set (Tropical R) hs : ¬BddAbove s this : Set.range untrop = Set.univ ⊢ sSup s = sSup Set.univ [PROOFSTEP] simp [sSup, this] [GOAL] R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical s : Set (Tropical R) hs : ¬BddAbove s this : Set.range untrop = Set.univ ⊢ sSup (untrop '' s) = sSup Set.univ [PROOFSTEP] apply csSup_of_not_bddAbove [GOAL] case hs R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical s : Set (Tropical R) hs : ¬BddAbove s this : Set.range untrop = Set.univ ⊢ ¬BddAbove (untrop '' s) [PROOFSTEP] contrapose! hs [GOAL] case hs R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical s : Set (Tropical R) this : Set.range untrop = Set.univ hs : BddAbove (untrop '' s) ⊢ BddAbove s [PROOFSTEP] change BddAbove (tropOrderIso.symm '' s) at hs [GOAL] case hs R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical s : Set (Tropical R) this : Set.range untrop = Set.univ hs : BddAbove (↑(OrderIso.symm tropOrderIso) '' s) ⊢ BddAbove s [PROOFSTEP] exact tropOrderIso.symm.bddAbove_image.1 hs [GOAL] R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical ⊢ ∀ (s : Set (Tropical R)), ¬BddBelow s → sInf s = sInf Set.univ [PROOFSTEP] intro s hs [GOAL] R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical s : Set (Tropical R) hs : ¬BddBelow s ⊢ sInf s = sInf Set.univ [PROOFSTEP] have : Set.range untrop = (Set.univ : Set R) := Equiv.range_eq_univ tropEquiv.symm [GOAL] R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical s : Set (Tropical R) hs : ¬BddBelow s this : Set.range untrop = Set.univ ⊢ sInf s = sInf Set.univ [PROOFSTEP] simp [sInf, this] [GOAL] R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical s : Set (Tropical R) hs : ¬BddBelow s this : Set.range untrop = Set.univ ⊢ sInf (untrop '' s) = sInf Set.univ [PROOFSTEP] apply csInf_of_not_bddBelow [GOAL] case hs R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical s : Set (Tropical R) hs : ¬BddBelow s this : Set.range untrop = Set.univ ⊢ ¬BddBelow (untrop '' s) [PROOFSTEP] contrapose! hs [GOAL] case hs R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical s : Set (Tropical R) this : Set.range untrop = Set.univ hs : BddBelow (untrop '' s) ⊢ BddBelow s [PROOFSTEP] change BddBelow (tropOrderIso.symm '' s) at hs [GOAL] case hs R : Type u_1 S : Type u_2 inst✝ : ConditionallyCompleteLinearOrder R src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical src✝ : LinearOrder (Tropical R) := instLinearOrderTropical s : Set (Tropical R) this : Set.range untrop = Set.univ hs : BddBelow (↑(OrderIso.symm tropOrderIso) '' s) ⊢ BddBelow s [PROOFSTEP] exact tropOrderIso.symm.bddBelow_image.1 hs
{"mathlib_filename": "Mathlib.Algebra.Tropical.Lattice", "llama_tokens": 2090}
[GOAL] R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c L M N K : ModuleCat R f : L ⟶ M g : M ⟶ N w✝ : f ≫ g = 0 h k : _root_.homology f g w✝ ⟶ K w : ∀ (x : { x // x ∈ LinearMap.ker g }), ↑h (↑(cokernel.π (imageToKernel f g w✝)) (↑toKernelSubobject x)) = ↑k (↑(cokernel.π (imageToKernel f g w✝)) (↑toKernelSubobject x)) ⊢ h = k [PROOFSTEP] refine' cokernel_funext fun n => _ -- porting note: as `equiv_rw` was not ported, it was replaced by `Equiv.surjective` -- Gosh it would be nice if `equiv_rw` could directly use an isomorphism, or an enriched `≃`. [GOAL] R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c L M N K : ModuleCat R f : L ⟶ M g : M ⟶ N w✝ : f ≫ g = 0 h k : _root_.homology f g w✝ ⟶ K w : ∀ (x : { x // x ∈ LinearMap.ker g }), ↑h (↑(cokernel.π (imageToKernel f g w✝)) (↑toKernelSubobject x)) = ↑k (↑(cokernel.π (imageToKernel f g w✝)) (↑toKernelSubobject x)) n : (CategoryTheory.forget (ModuleCat R)).obj (Subobject.underlying.obj (kernelSubobject g)) ⊢ ↑h (↑(cokernel.π (imageToKernel f g w✝)) n) = ↑k (↑(cokernel.π (imageToKernel f g w✝)) n) [PROOFSTEP] obtain ⟨n, rfl⟩ := (kernelSubobjectIso g ≪≫ ModuleCat.kernelIsoKer g).toLinearEquiv.toEquiv.symm.surjective n [GOAL] case intro R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c L M N K : ModuleCat R f : L ⟶ M g : M ⟶ N w✝ : f ≫ g = 0 h k : _root_.homology f g w✝ ⟶ K w : ∀ (x : { x // x ∈ LinearMap.ker g }), ↑h (↑(cokernel.π (imageToKernel f g w✝)) (↑toKernelSubobject x)) = ↑k (↑(cokernel.π (imageToKernel f g w✝)) (↑toKernelSubobject x)) n : ↑(of R { x // x ∈ LinearMap.ker g }) ⊢ ↑h (↑(cokernel.π (imageToKernel f g w✝)) (↑(LinearEquiv.toEquiv (Iso.toLinearEquiv (kernelSubobjectIso g ≪≫ kernelIsoKer g))).symm n)) = ↑k (↑(cokernel.π (imageToKernel f g w✝)) (↑(LinearEquiv.toEquiv (Iso.toLinearEquiv (kernelSubobjectIso g ≪≫ kernelIsoKer g))).symm n)) [PROOFSTEP] exact w n [GOAL] R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C✝ D C : HomologicalComplex (ModuleCat R) c i : ι x y : ↑(Subobject.underlying.obj (cycles C i)) w : ↑(Subobject.arrow (cycles C i)) x = ↑(Subobject.arrow (cycles C i)) y ⊢ x = y [PROOFSTEP] apply_fun (C.cycles i).arrow using (ModuleCat.mono_iff_injective _).mp (cycles C i).arrow_mono [GOAL] R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C✝ D C : HomologicalComplex (ModuleCat R) c i : ι x y : ↑(Subobject.underlying.obj (cycles C i)) w : ↑(Subobject.arrow (cycles C i)) x = ↑(Subobject.arrow (cycles C i)) y ⊢ ↑(Subobject.arrow (cycles C i)) x = ↑(Subobject.arrow (cycles C i)) y [PROOFSTEP] exact w [GOAL] R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f : C ⟶ D i : ι x : { x // x ∈ LinearMap.ker (dFrom C i) } ⊢ ↑(Hom.f f i) ↑x ∈ LinearMap.ker (dFrom D i) [PROOFSTEP] rw [LinearMap.mem_ker, Hom.comm_from_apply, x.2, map_zero] [GOAL] R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f : C ⟶ D i : ι x : { x // x ∈ LinearMap.ker (dFrom C i) } ⊢ ↑(cyclesMap f i) (toCycles x) = toCycles { val := ↑(Hom.f f i) ↑x, property := (_ : ↑(Hom.f f i) ↑x ∈ LinearMap.ker (dFrom D i)) } [PROOFSTEP] ext [GOAL] case w R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f : C ⟶ D i : ι x : { x // x ∈ LinearMap.ker (dFrom C i) } ⊢ ↑(Subobject.arrow (cycles D i)) (↑(cyclesMap f i) (toCycles x)) = ↑(Subobject.arrow (cycles D i)) (toCycles { val := ↑(Hom.f f i) ↑x, property := (_ : ↑(Hom.f f i) ↑x ∈ LinearMap.ker (dFrom D i)) }) [PROOFSTEP] rw [cyclesMap_arrow_apply, toKernelSubobject_arrow, toKernelSubobject_arrow] [GOAL] R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f g : C ⟶ D h : Homotopy f g i : ι ⊢ (homologyFunctor (ModuleCat R) c i).map f = (homologyFunctor (ModuleCat R) c i).map g [PROOFSTEP] apply homology_ext [GOAL] case w R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f g : C ⟶ D h : Homotopy f g i : ι ⊢ ∀ (x : { x // x ∈ LinearMap.ker (dFrom C i) }), ↑((homologyFunctor (ModuleCat R) c i).map f) (↑(cokernel.π (imageToKernel (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0))) (↑toKernelSubobject x)) = ↑((homologyFunctor (ModuleCat R) c i).map g) (↑(cokernel.π (imageToKernel (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0))) (↑toKernelSubobject x)) [PROOFSTEP] intro x [GOAL] case w R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f g : C ⟶ D h : Homotopy f g i : ι x : { x // x ∈ LinearMap.ker (dFrom C i) } ⊢ ↑((homologyFunctor (ModuleCat R) c i).map f) (↑(cokernel.π (imageToKernel (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0))) (↑toKernelSubobject x)) = ↑((homologyFunctor (ModuleCat R) c i).map g) (↑(cokernel.π (imageToKernel (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0))) (↑toKernelSubobject x)) [PROOFSTEP] simp only [homologyFunctor_map] [GOAL] case w R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f g : C ⟶ D h : Homotopy f g i : ι x : { x // x ∈ LinearMap.ker (dFrom C i) } ⊢ ↑(homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo f i) (Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right)) (↑(cokernel.π (imageToKernel (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0))) (↑toKernelSubobject x)) = ↑(homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo g i) (Hom.sqFrom g i) (_ : (Hom.sqTo g i).right = (Hom.sqTo g i).right)) (↑(cokernel.π (imageToKernel (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0))) (↑toKernelSubobject x)) [PROOFSTEP] erw [homology.π_map_apply, homology.π_map_apply] -- To check that two elements are equal mod boundaries, it suffices to exhibit a boundary: [GOAL] case w R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f g : C ⟶ D h : Homotopy f g i : ι x : { x // x ∈ LinearMap.ker (dFrom C i) } ⊢ ↑(homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0)) (↑(kernelSubobjectMap (Hom.sqFrom f i)) (↑toKernelSubobject x)) = ↑(homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0)) (↑(kernelSubobjectMap (Hom.sqFrom g i)) (↑toKernelSubobject x)) [PROOFSTEP] refine' cokernel_π_imageSubobject_ext _ _ ((toPrev i h.hom) x.1) _ -- Moreover, to check that two cycles are equal, it suffices to check their underlying elements: [GOAL] case w R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f g : C ⟶ D h : Homotopy f g i : ι x : { x // x ∈ LinearMap.ker (dFrom C i) } ⊢ ↑(kernelSubobjectMap (Hom.sqFrom f i)) (↑toKernelSubobject x) = ↑(kernelSubobjectMap (Hom.sqFrom g i)) (↑toKernelSubobject x) + ↑(imageToKernel (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0)) (↑(factorThruImageSubobject (dTo D i)) (↑(↑(toPrev i) h.hom) ↑x)) [PROOFSTEP] ext [GOAL] case w.w R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f g : C ⟶ D h : Homotopy f g i : ι x : { x // x ∈ LinearMap.ker (dFrom C i) } ⊢ ↑(Subobject.arrow (cycles D i)) (↑(kernelSubobjectMap (Hom.sqFrom f i)) (↑toKernelSubobject x)) = ↑(Subobject.arrow (cycles D i)) (↑(kernelSubobjectMap (Hom.sqFrom g i)) (↑toKernelSubobject x) + ↑(imageToKernel (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0)) (↑(factorThruImageSubobject (dTo D i)) (↑(↑(toPrev i) h.hom) ↑x))) [PROOFSTEP] erw [map_add, CategoryTheory.Limits.kernelSubobjectMap_arrow_apply, CategoryTheory.Limits.kernelSubobjectMap_arrow_apply, ModuleCat.toKernelSubobject_arrow, imageToKernel_arrow_apply, imageSubobject_arrow_comp_apply] [GOAL] case w.w R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f g : C ⟶ D h : Homotopy f g i : ι x : { x // x ∈ LinearMap.ker (dFrom C i) } ⊢ ↑(Hom.sqFrom f i).left ↑x = ↑(Hom.sqFrom g i).left ↑x + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x) [PROOFSTEP] rw [Hom.sqFrom_left, Hom.sqFrom_left, h.comm i, LinearMap.add_apply, LinearMap.add_apply, prevD_eq_toPrev_dTo, dNext_eq_dFrom_fromNext, comp_apply, comp_apply, x.2, map_zero] [GOAL] case w.w R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f g : C ⟶ D h : Homotopy f g i : ι x : { x // x ∈ LinearMap.ker (dFrom C i) } ⊢ 0 + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x) + ↑(Hom.f g i) ↑x = ↑(Hom.f g i) ↑x + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x) [PROOFSTEP] dsimp [GOAL] case w.w R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f g : C ⟶ D h : Homotopy f g i : ι x : { x // x ∈ LinearMap.ker (dFrom C i) } ⊢ 0 + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x) + ↑(Hom.f g i) ↑x = ↑(Hom.f g i) ↑x + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x) [PROOFSTEP] abel [GOAL] case w.w R : Type v inst✝ : Ring R ι : Type u_1 c : ComplexShape ι C D : HomologicalComplex (ModuleCat R) c f g : C ⟶ D h : Homotopy f g i : ι x : { x // x ∈ LinearMap.ker (dFrom C i) } ⊢ 0 + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x) + ↑(Hom.f g i) ↑x = ↑(Hom.f g i) ↑x + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x) [PROOFSTEP] abel
{"mathlib_filename": "Mathlib.Algebra.Homology.ModuleCat", "llama_tokens": 4418}
[GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s t : Multiset α a : α m : Multiset ι f g : ι → α x y z : α ⊢ (fun x x_1 => x * x_1) x ((fun x x_1 => x * x_1) y z) = (fun x x_1 => x * x_1) y ((fun x x_1 => x * x_1) x z) [PROOFSTEP] simp [mul_left_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f g : ι → α s : Multiset α x y z : α ⊢ (fun x x_1 => x * x_1) x ((fun x x_1 => x * x_1) y z) = (fun x x_1 => x * x_1) y ((fun x x_1 => x * x_1) x z) [PROOFSTEP] simp [mul_left_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f g : ι → α s : Multiset α x y z : α ⊢ (fun x x_1 => x * x_1) ((fun x x_1 => x * x_1) x y) z = (fun x x_1 => x * x_1) ((fun x x_1 => x * x_1) x z) y [PROOFSTEP] simp [mul_right_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f g : ι → α s : Multiset α ⊢ foldl (fun x y => y * x) (_ : ∀ (_x _y _z : α), _z * (_y * _x) = _y * (_z * _x)) 1 s = foldl (fun x x_1 => x * x_1) (_ : ∀ (x y z : α), x * y * z = x * z * y) 1 s [PROOFSTEP] simp [mul_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f g : ι → α s : Multiset α ⊢ List.prod (toList s) = prod s [PROOFSTEP] conv_rhs => rw [← coe_toList s] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f g : ι → α s : Multiset α | prod s [PROOFSTEP] rw [← coe_toList s] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f g : ι → α s : Multiset α | prod s [PROOFSTEP] rw [← coe_toList s] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f g : ι → α s : Multiset α | prod s [PROOFSTEP] rw [← coe_toList s] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f g : ι → α s : Multiset α ⊢ List.prod (toList s) = prod ↑(toList s) [PROOFSTEP] rw [coe_prod] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α s t : Multiset α a : α m : Multiset ι f g : ι → α inst✝ : DecidableEq α h : a ∈ s ⊢ a * prod (erase s a) = prod s [PROOFSTEP] rw [← s.coe_toList, coe_erase, coe_prod, coe_prod, List.prod_erase (mem_toList.2 h)] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α s t : Multiset α a✝ : α m : Multiset ι f g : ι → α inst✝ : DecidableEq ι a : ι h : a ∈ m ⊢ f a * prod (map f (erase m a)) = prod (map f m) [PROOFSTEP] rw [← m.coe_toList, coe_erase, coe_map, coe_map, coe_prod, coe_prod, List.prod_map_erase f (mem_toList.2 h)] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s t : Multiset α a✝ : α m : Multiset ι f g : ι → α a : α ⊢ prod {a} = a [PROOFSTEP] simp only [mul_one, prod_cons, ← cons_zero, eq_self_iff_true, prod_zero] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s t : Multiset α a✝ : α m : Multiset ι f g : ι → α a b : α ⊢ prod {a, b} = a * b [PROOFSTEP] rw [insert_eq_cons, prod_cons, prod_singleton] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t✝ : Multiset α a : α m : Multiset ι f g : ι → α s t : Multiset α l₁ l₂ : List α ⊢ prod (Quotient.mk (List.isSetoid α) l₁ + Quotient.mk (List.isSetoid α) l₂) = prod (Quotient.mk (List.isSetoid α) l₁) * prod (Quotient.mk (List.isSetoid α) l₂) [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s t : Multiset α a : α m✝ : Multiset ι f g : ι → α m : Multiset α ⊢ prod (0 • m) = prod m ^ 0 [PROOFSTEP] rw [zero_nsmul, pow_zero] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s t : Multiset α a : α m✝ : Multiset ι f g : ι → α m : Multiset α ⊢ prod 0 = 1 [PROOFSTEP] rfl [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s t : Multiset α a : α m✝ : Multiset ι f g : ι → α m : Multiset α n : ℕ ⊢ prod ((n + 1) • m) = prod m ^ (n + 1) [PROOFSTEP] rw [add_nsmul, one_nsmul, pow_add, pow_one, prod_add, prod_nsmul m n] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s t : Multiset α a✝ : α m : Multiset ι f g : ι → α n : ℕ a : α ⊢ prod (replicate n a) = a ^ n [PROOFSTEP] simp [replicate, List.prod_replicate] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α s t : Multiset α a : α m : Multiset ι f g : ι → α inst✝ : DecidableEq ι i : ι hf : ∀ (i' : ι), i' ≠ i → i' ∈ m → f i' = 1 ⊢ prod (map f m) = f i ^ count i m [PROOFSTEP] induction' m using Quotient.inductionOn with l [GOAL] case h ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α s t : Multiset α a : α m : Multiset ι f g : ι → α inst✝ : DecidableEq ι i : ι hf✝ : ∀ (i' : ι), i' ≠ i → i' ∈ m → f i' = 1 l : List ι hf : ∀ (i' : ι), i' ≠ i → i' ∈ Quotient.mk (List.isSetoid ι) l → f i' = 1 ⊢ prod (map f (Quotient.mk (List.isSetoid ι) l)) = f i ^ count i (Quotient.mk (List.isSetoid ι) l) [PROOFSTEP] simp [List.prod_map_eq_pow_single i f hf] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α s t : Multiset α a✝ : α m : Multiset ι f g : ι → α inst✝ : DecidableEq α a : α h : ∀ (a' : α), a' ≠ a → a' ∈ s → a' = 1 ⊢ prod s = a ^ count a s [PROOFSTEP] induction' s using Quotient.inductionOn with l [GOAL] case h ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α s t : Multiset α a✝ : α m : Multiset ι f g : ι → α inst✝ : DecidableEq α a : α h✝ : ∀ (a' : α), a' ≠ a → a' ∈ s → a' = 1 l : List α h : ∀ (a' : α), a' ≠ a → a' ∈ Quotient.mk (List.isSetoid α) l → a' = 1 ⊢ prod (Quotient.mk (List.isSetoid α) l) = a ^ count a (Quotient.mk (List.isSetoid α) l) [PROOFSTEP] simp [List.prod_eq_pow_single a h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α s t : Multiset α a✝ : α m : Multiset ι f g : ι → α inst✝ : DecidableEq α a : α ⊢ a ^ count a s = prod (filter (Eq a) s) [PROOFSTEP] rw [filter_eq, prod_replicate] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f✝ g : ι → α inst✝¹ : CommMonoid β s : Multiset α F : Type u_5 inst✝ : MonoidHomClass F α β f : F l : List α ⊢ prod (map (↑f) (Quotient.mk (List.isSetoid α) l)) = ↑f (prod (Quotient.mk (List.isSetoid α) l)) [PROOFSTEP] simp only [l.prod_hom f, quot_mk_to_coe, coe_map, coe_prod] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f✝ g✝ : ι → α inst✝¹ : CommMonoid β s : Multiset ι F : Type u_5 inst✝ : MonoidHomClass F α β f : F g : ι → α ⊢ prod (map (fun i => ↑f (g i)) s) = ↑f (prod (map g s)) [PROOFSTEP] convert (s.map g).prod_hom f [GOAL] case h.e'_2.h.e'_3 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f✝ g✝ : ι → α inst✝¹ : CommMonoid β s : Multiset ι F : Type u_5 inst✝ : MonoidHomClass F α β f : F g : ι → α ⊢ map (fun i => ↑f (g i)) s = map (↑f) (map g s) [PROOFSTEP] exact (map_map _ _ _).symm [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f✝ g : ι → α inst✝¹ : CommMonoid β inst✝ : CommMonoid γ s : Multiset ι f : α → β → γ hf : ∀ (a b : α) (c d : β), f (a * b) (c * d) = f a c * f b d hf' : f 1 1 = 1 f₁ : ι → α f₂ : ι → β l : List ι ⊢ prod (map (fun i => f (f₁ i) (f₂ i)) (Quotient.mk (List.isSetoid ι) l)) = f (prod (map f₁ (Quotient.mk (List.isSetoid ι) l))) (prod (map f₂ (Quotient.mk (List.isSetoid ι) l))) [PROOFSTEP] simp only [l.prod_hom₂ f hf hf', quot_mk_to_coe, coe_map, coe_prod] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f✝ g✝ : ι → α inst✝ : CommMonoid β s : Multiset ι r : α → β → Prop f : ι → α g : ι → β h₁ : r 1 1 h₂ : ∀ ⦃a : ι⦄ ⦃b : α⦄ ⦃c : β⦄, r b c → r (f a * b) (g a * c) l : List ι ⊢ r (prod (map f (Quotient.mk (List.isSetoid ι) l))) (prod (map g (Quotient.mk (List.isSetoid ι) l))) [PROOFSTEP] simp only [l.prod_hom_rel h₁ h₂, quot_mk_to_coe, coe_map, coe_prod] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s t : Multiset α a : α m : Multiset ι f g : ι → α ⊢ prod (map (fun x => 1) m) = 1 [PROOFSTEP] rw [map_const', prod_replicate, one_pow] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f g : ι → α inst✝ : HasDistribNeg α s : Multiset α ⊢ ∀ (a : List α), prod (map Neg.neg (Quotient.mk (List.isSetoid α) a)) = (-1) ^ ↑card (Quotient.mk (List.isSetoid α) a) * prod (Quotient.mk (List.isSetoid α) a) [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s t : Multiset α a : α m✝ : Multiset ι f✝ g : ι → α m : Multiset β n : Multiset γ f : β → γ → α ⊢ prod (map (fun a => prod (map (fun b => f a b) n)) 0) = prod (map (fun b => prod (map (fun a => f a b) 0)) n) [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s t : Multiset α a✝ : α m✝¹ : Multiset ι f✝ g : ι → α m✝ : Multiset β n : Multiset γ f : β → γ → α a : β m : Multiset β ih : prod (map (fun a => prod (map (fun b => f a b) n)) m) = prod (map (fun b => prod (map (fun a => f a b) m)) n) ⊢ prod (map (fun a => prod (map (fun b => f a b) n)) (a ::ₘ m)) = prod (map (fun b => prod (map (fun a => f a b) (a ::ₘ m))) n) [PROOFSTEP] simp [ih] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f g : ι → α p : α → Prop s : Multiset α p_mul : ∀ (a b : α), p a → p b → p (a * b) p_one : p 1 p_s : ∀ (a : α), a ∈ s → p a ⊢ p (prod s) [PROOFSTEP] rw [prod_eq_foldr] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f g : ι → α p : α → Prop s : Multiset α p_mul : ∀ (a b : α), p a → p b → p (a * b) p_one : p 1 p_s : ∀ (a : α), a ∈ s → p a ⊢ p (foldr (fun x x_1 => x * x_1) (_ : ∀ (x y z : α), x * (y * z) = y * (x * z)) 1 s) [PROOFSTEP] exact foldr_induction (· * ·) (fun x y z => by simp [mul_left_comm]) 1 p s p_mul p_one p_s [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a : α m : Multiset ι f g : ι → α p : α → Prop s : Multiset α p_mul : ∀ (a b : α), p a → p b → p (a * b) p_one : p 1 p_s : ∀ (a : α), a ∈ s → p a x y z : α ⊢ (fun x x_1 => x * x_1) x ((fun x x_1 => x * x_1) y z) = (fun x x_1 => x * x_1) y ((fun x x_1 => x * x_1) x z) [PROOFSTEP] simp [mul_left_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s t : Multiset α a : α m : Multiset ι f g : ι → α p : α → Prop p_mul : ∀ (a b : α), p a → p b → p (a * b) hs : s ≠ ∅ p_s : ∀ (a : α), a ∈ s → p a ⊢ p (prod s) [PROOFSTEP] induction' s using Multiset.induction_on with a s hsa [GOAL] case empty ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s t : Multiset α a : α m : Multiset ι f g : ι → α p : α → Prop p_mul : ∀ (a b : α), p a → p b → p (a * b) hs✝ : s ≠ ∅ p_s✝ : ∀ (a : α), a ∈ s → p a hs : 0 ≠ ∅ p_s : ∀ (a : α), a ∈ 0 → p a ⊢ p (prod 0) [PROOFSTEP] simp at hs [GOAL] case cons ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a✝ : α m : Multiset ι f g : ι → α p : α → Prop p_mul : ∀ (a b : α), p a → p b → p (a * b) hs✝ : s✝ ≠ ∅ p_s✝ : ∀ (a : α), a ∈ s✝ → p a a : α s : Multiset α hsa : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → p (prod s) hs : a ::ₘ s ≠ ∅ p_s : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 ⊢ p (prod (a ::ₘ s)) [PROOFSTEP] rw [prod_cons] [GOAL] case cons ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a✝ : α m : Multiset ι f g : ι → α p : α → Prop p_mul : ∀ (a b : α), p a → p b → p (a * b) hs✝ : s✝ ≠ ∅ p_s✝ : ∀ (a : α), a ∈ s✝ → p a a : α s : Multiset α hsa : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → p (prod s) hs : a ::ₘ s ≠ ∅ p_s : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 ⊢ p (a * prod s) [PROOFSTEP] by_cases hs_empty : s = ∅ [GOAL] case pos ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a✝ : α m : Multiset ι f g : ι → α p : α → Prop p_mul : ∀ (a b : α), p a → p b → p (a * b) hs✝ : s✝ ≠ ∅ p_s✝ : ∀ (a : α), a ∈ s✝ → p a a : α s : Multiset α hsa : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → p (prod s) hs : a ::ₘ s ≠ ∅ p_s : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 hs_empty : s = ∅ ⊢ p (a * prod s) [PROOFSTEP] simp [hs_empty, p_s a] [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a✝ : α m : Multiset ι f g : ι → α p : α → Prop p_mul : ∀ (a b : α), p a → p b → p (a * b) hs✝ : s✝ ≠ ∅ p_s✝ : ∀ (a : α), a ∈ s✝ → p a a : α s : Multiset α hsa : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → p (prod s) hs : a ::ₘ s ≠ ∅ p_s : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 hs_empty : ¬s = ∅ ⊢ p (a * prod s) [PROOFSTEP] have hps : ∀ x, x ∈ s → p x := fun x hxs => p_s x (mem_cons_of_mem hxs) [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s✝ t : Multiset α a✝ : α m : Multiset ι f g : ι → α p : α → Prop p_mul : ∀ (a b : α), p a → p b → p (a * b) hs✝ : s✝ ≠ ∅ p_s✝ : ∀ (a : α), a ∈ s✝ → p a a : α s : Multiset α hsa : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → p (prod s) hs : a ::ₘ s ≠ ∅ p_s : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 hs_empty : ¬s = ∅ hps : ∀ (x : α), x ∈ s → p x ⊢ p (a * prod s) [PROOFSTEP] exact p_mul a s.prod (p_s a (mem_cons_self a s)) (hsa hs_empty hps) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s t : Multiset α a : α m : Multiset ι f g : ι → α h : s ≤ t ⊢ prod s ∣ prod t [PROOFSTEP] obtain ⟨z, rfl⟩ := exists_add_of_le h [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α s : Multiset α a : α m : Multiset ι f g : ι → α z : Multiset α h : s ≤ s + z ⊢ prod s ∣ prod (s + z) [PROOFSTEP] simp only [prod_add, dvd_mul_right] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid β S : Multiset α g1 g2 : α → β h : ∀ (a : α), a ∈ S → g1 a ∣ g2 a ⊢ prod (map g1 S) ∣ prod (map g2 S) [PROOFSTEP] apply Multiset.induction_on' S [GOAL] case h₁ ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid β S : Multiset α g1 g2 : α → β h : ∀ (a : α), a ∈ S → g1 a ∣ g2 a ⊢ prod (map g1 0) ∣ prod (map g2 0) [PROOFSTEP] simp [GOAL] case h₂ ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid β S : Multiset α g1 g2 : α → β h : ∀ (a : α), a ∈ S → g1 a ∣ g2 a ⊢ ∀ {a : α} {s : Multiset α}, a ∈ S → s ⊆ S → prod (map g1 s) ∣ prod (map g2 s) → prod (map g1 (insert a s)) ∣ prod (map g2 (insert a s)) [PROOFSTEP] intro a T haS _ IH [GOAL] case h₂ ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid β S : Multiset α g1 g2 : α → β h : ∀ (a : α), a ∈ S → g1 a ∣ g2 a a : α T : Multiset α haS : a ∈ S a✝ : T ⊆ S IH : prod (map g1 T) ∣ prod (map g2 T) ⊢ prod (map g1 (insert a T)) ∣ prod (map g2 (insert a T)) [PROOFSTEP] simp [mul_dvd_mul (h a haS) IH] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoidWithZero α s : Multiset α h : 0 ∈ s ⊢ prod s = 0 [PROOFSTEP] rcases Multiset.exists_cons_of_mem h with ⟨s', hs'⟩ [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoidWithZero α s : Multiset α h : 0 ∈ s s' : Multiset α hs' : s = 0 ::ₘ s' ⊢ prod s = 0 [PROOFSTEP] simp [hs', Multiset.prod_cons] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : CommMonoidWithZero α inst✝¹ : NoZeroDivisors α inst✝ : Nontrivial α s : Multiset α l : List α ⊢ prod (Quotient.mk (List.isSetoid α) l) = 0 ↔ 0 ∈ Quotient.mk (List.isSetoid α) l [PROOFSTEP] rw [quot_mk_to_coe, coe_prod] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : CommMonoidWithZero α inst✝¹ : NoZeroDivisors α inst✝ : Nontrivial α s : Multiset α l : List α ⊢ List.prod l = 0 ↔ 0 ∈ ↑l [PROOFSTEP] exact List.prod_eq_zero_iff [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : DivisionCommMonoid α m : Multiset ι f g : ι → α ⊢ prod (map (fun i => (f i)⁻¹) m) = (prod (map f m))⁻¹ [PROOFSTEP] simp_rw [← (m.map f).prod_map_inv', map_map, Function.comp_apply] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : DivisionCommMonoid α m : Multiset ι f g : ι → α n : ℤ ⊢ prod (map (fun i => f i ^ n) m) = prod (map f m) ^ n [PROOFSTEP] convert (m.map f).prod_hom (zpowGroupHom n : α →* α) [GOAL] case h.e'_2.h.e'_3 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : DivisionCommMonoid α m : Multiset ι f g : ι → α n : ℤ ⊢ map (fun i => f i ^ n) m = map (↑(zpowGroupHom n)) (map f m) [PROOFSTEP] simp only [map_map, Function.comp_apply, zpowGroupHom_apply] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : NonUnitalNonAssocSemiring α a : α s : Multiset ι f : ι → α ⊢ sum (map (fun i => a * f i) 0) = a * sum (map f 0) [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : NonUnitalNonAssocSemiring α a : α s✝ : Multiset ι f : ι → α i : ι s : Multiset ι ih : sum (map (fun i => a * f i) s) = a * sum (map f s) ⊢ sum (map (fun i => a * f i) (i ::ₘ s)) = a * sum (map f (i ::ₘ s)) [PROOFSTEP] simp [ih, mul_add] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : NonUnitalNonAssocSemiring α a : α s : Multiset ι f : ι → α ⊢ sum (map (fun i => f i * a) 0) = sum (map f 0) * a [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : NonUnitalNonAssocSemiring α a✝ : α s✝ : Multiset ι f : ι → α a : ι s : Multiset ι ih : sum (map (fun i => f i * a✝) s) = sum (map f s) * a✝ ⊢ sum (map (fun i => f i * a✝) (a ::ₘ s)) = sum (map f (a ::ₘ s)) * a✝ [PROOFSTEP] simp [ih, add_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : Semiring α a : α s✝ : Multiset α x : α s : Multiset α ih : (∀ (x : α), x ∈ s → a ∣ x) → a ∣ sum s h : ∀ (x_1 : α), x_1 ∈ x ::ₘ s → a ∣ x_1 ⊢ a ∣ sum (x ::ₘ s) [PROOFSTEP] rw [sum_cons] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : Semiring α a : α s✝ : Multiset α x : α s : Multiset α ih : (∀ (x : α), x ∈ s → a ∣ x) → a ∣ sum s h : ∀ (x_1 : α), x_1 ∈ x ::ₘ s → a ∣ x_1 ⊢ a ∣ x + sum s [PROOFSTEP] exact dvd_add (h _ (mem_cons_self _ _)) (ih fun y hy => h _ <| mem_cons.2 <| Or.inr hy) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommMonoid α s t : Multiset α a : α l : List α hl : ∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) l → 1 ≤ x ⊢ 1 ≤ prod (Quotient.mk (List.isSetoid α) l) [PROOFSTEP] simpa using List.one_le_prod_of_one_le hl [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommMonoid α s t : Multiset α a : α l : List α hl : ∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) l → 1 ≤ x x : α hx : x ∈ Quotient.mk (List.isSetoid α) l ⊢ x ≤ prod (Quotient.mk (List.isSetoid α) l) [PROOFSTEP] simpa using List.single_le_prod hl x hx [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommMonoid α s✝ t : Multiset α a : α s : Multiset α n : α h : ∀ (x : α), x ∈ s → x ≤ n ⊢ prod s ≤ n ^ ↑card s [PROOFSTEP] induction s using Quotient.inductionOn [GOAL] case h ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommMonoid α s t : Multiset α a n : α a✝ : List α h : ∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) a✝ → x ≤ n ⊢ prod (Quotient.mk (List.isSetoid α) a✝) ≤ n ^ ↑card (Quotient.mk (List.isSetoid α) a✝) [PROOFSTEP] simpa using List.prod_le_pow_card _ _ h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommMonoid α s t : Multiset α a : α ⊢ ∀ (a : List α), (∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) a → 1 ≤ x) → prod (Quotient.mk (List.isSetoid α) a) = 1 → ∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) a → x = 1 [PROOFSTEP] simp only [quot_mk_to_coe, coe_prod, mem_coe] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommMonoid α s t : Multiset α a : α ⊢ ∀ (a : List α), (∀ (x : α), x ∈ a → 1 ≤ x) → List.prod a = 1 → ∀ (x : α), x ∈ a → x = 1 [PROOFSTEP] exact fun l => List.all_one_of_le_one_le_of_prod_eq_one [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommMonoid α s t : Multiset α a : α h : Rel (fun x x_1 => x ≤ x_1) s t ⊢ prod s ≤ prod t [PROOFSTEP] induction' h with _ _ _ _ rh _ rt [GOAL] case zero ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommMonoid α s t : Multiset α a : α ⊢ prod 0 ≤ prod 0 [PROOFSTEP] rfl [GOAL] case cons ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommMonoid α s t : Multiset α a a✝¹ b✝ : α as✝ bs✝ : Multiset α rh : a✝¹ ≤ b✝ a✝ : Rel (fun x x_1 => x ≤ x_1) as✝ bs✝ rt : prod as✝ ≤ prod bs✝ ⊢ prod (a✝¹ ::ₘ as✝) ≤ prod (b✝ ::ₘ bs✝) [PROOFSTEP] rw [prod_cons, prod_cons] [GOAL] case cons ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommMonoid α s t : Multiset α a a✝¹ b✝ : α as✝ bs✝ : Multiset α rh : a✝¹ ≤ b✝ a✝ : Rel (fun x x_1 => x ≤ x_1) as✝ bs✝ rt : prod as✝ ≤ prod bs✝ ⊢ a✝¹ * prod as✝ ≤ b✝ * prod bs✝ [PROOFSTEP] exact mul_le_mul' rh rt [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommMonoid α s t : Multiset α a : α h : ∀ (x : α), x ∈ s → a ≤ x ⊢ a ^ ↑card s ≤ prod s [PROOFSTEP] rw [← Multiset.prod_replicate, ← Multiset.map_const] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommMonoid α s t : Multiset α a : α h : ∀ (x : α), x ∈ s → a ≤ x ⊢ prod (map (Function.const α a) s) ≤ prod s [PROOFSTEP] exact prod_map_le_prod _ h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommSemiring α m : Multiset α h : ∀ (a : α), a ∈ m → 0 ≤ a ⊢ 0 ≤ prod m [PROOFSTEP] revert h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ (∀ (a : α), a ∈ m → 0 ≤ a) → 0 ≤ prod m [PROOFSTEP] refine' m.induction_on _ _ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ (∀ (a : α), a ∈ 0 → 0 ≤ a) → 0 ≤ prod 0 [PROOFSTEP] rintro - [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ 0 ≤ prod 0 [PROOFSTEP] rw [prod_zero] [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ 0 ≤ 1 [PROOFSTEP] exact zero_le_one [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ ∀ ⦃a : α⦄ {s : Multiset α}, ((∀ (a : α), a ∈ s → 0 ≤ a) → 0 ≤ prod s) → (∀ (a_2 : α), a_2 ∈ a ::ₘ s → 0 ≤ a_2) → 0 ≤ prod (a ::ₘ s) [PROOFSTEP] intro a s hs ih [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommSemiring α m : Multiset α a : α s : Multiset α hs : (∀ (a : α), a ∈ s → 0 ≤ a) → 0 ≤ prod s ih : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → 0 ≤ a_1 ⊢ 0 ≤ prod (a ::ₘ s) [PROOFSTEP] rw [prod_cons] [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : OrderedCommSemiring α m : Multiset α a : α s : Multiset α hs : (∀ (a : α), a ∈ s → 0 ≤ a) → 0 ≤ prod s ih : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → 0 ≤ a_1 ⊢ 0 ≤ a * prod s [PROOFSTEP] exact mul_nonneg (ih _ <| mem_cons_self _ _) (hs fun a ha => ih _ <| mem_cons_of_mem ha) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α m : Multiset α h : ∀ (x : α), x ∈ m → x = 1 ⊢ prod m = 1 [PROOFSTEP] induction' m using Quotient.inductionOn with l [GOAL] case h ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CommMonoid α m : Multiset α h✝ : ∀ (x : α), x ∈ m → x = 1 l : List α h : ∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) l → x = 1 ⊢ prod (Quotient.mk (List.isSetoid α) l) = 1 [PROOFSTEP] simp [List.prod_eq_one h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CanonicallyOrderedMonoid α m : Multiset α a : α h : a ∈ m ⊢ a ≤ prod m [PROOFSTEP] obtain ⟨m', rfl⟩ := exists_cons_of_mem h [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CanonicallyOrderedMonoid α a : α m' : Multiset α h : a ∈ a ::ₘ m' ⊢ a ≤ prod (a ::ₘ m') [PROOFSTEP] rw [prod_cons] [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : CanonicallyOrderedMonoid α a : α m' : Multiset α h : a ∈ a ::ₘ m' ⊢ a ≤ a * prod m' [PROOFSTEP] exact _root_.le_mul_right (le_refl a) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_one : f 1 = 1 hp_one : p 1 h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) s : Multiset α hps : ∀ (a : α), a ∈ s → p a ⊢ f (prod s) ≤ prod (map f s) [PROOFSTEP] revert s [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_one : f 1 = 1 hp_one : p 1 h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) ⊢ ∀ (s : Multiset α), (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s) [PROOFSTEP] refine' Multiset.induction _ _ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_one : f 1 = 1 hp_one : p 1 h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) ⊢ (∀ (a : α), a ∈ 0 → p a) → f (prod 0) ≤ prod (map f 0) [PROOFSTEP] simp [le_of_eq h_one] [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_one : f 1 = 1 hp_one : p 1 h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) ⊢ ∀ ⦃a : α⦄ {s : Multiset α}, ((∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)) → (∀ (a_2 : α), a_2 ∈ a ::ₘ s → p a_2) → f (prod (a ::ₘ s)) ≤ prod (map f (a ::ₘ s)) [PROOFSTEP] intro a s hs hpsa [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_one : f 1 = 1 hp_one : p 1 h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) a : α s : Multiset α hs : (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s) hpsa : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 ⊢ f (prod (a ::ₘ s)) ≤ prod (map f (a ::ₘ s)) [PROOFSTEP] have hps : ∀ x, x ∈ s → p x := fun x hx => hpsa x (mem_cons_of_mem hx) [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_one : f 1 = 1 hp_one : p 1 h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) a : α s : Multiset α hs : (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s) hpsa : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 hps : ∀ (x : α), x ∈ s → p x ⊢ f (prod (a ::ₘ s)) ≤ prod (map f (a ::ₘ s)) [PROOFSTEP] have hp_prod : p s.prod := prod_induction p s hp_mul hp_one hps [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_one : f 1 = 1 hp_one : p 1 h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) a : α s : Multiset α hs : (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s) hpsa : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 hps : ∀ (x : α), x ∈ s → p x hp_prod : p (prod s) ⊢ f (prod (a ::ₘ s)) ≤ prod (map f (a ::ₘ s)) [PROOFSTEP] rw [prod_cons, map_cons, prod_cons] [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_one : f 1 = 1 hp_one : p 1 h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) a : α s : Multiset α hs : (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s) hpsa : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 hps : ∀ (x : α), x ∈ s → p x hp_prod : p (prod s) ⊢ f (a * prod s) ≤ f a * prod (map f s) [PROOFSTEP] exact (h_mul a s.prod (hpsa a (mem_cons_self a s)) hp_prod).trans (mul_le_mul_left' (hs hps) _) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β h_one : f 1 = 1 h_mul : ∀ (a b : α), f (a * b) ≤ f a * f b s : Multiset α ⊢ ∀ (a b : α), (fun x => True) a → (fun x => True) b → (fun x => True) (a * b) [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β h_one : f 1 = 1 h_mul : ∀ (a b : α), f (a * b) ≤ f a * f b s : Multiset α ⊢ ∀ (a : α), a ∈ s → (fun x => True) a [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) s : Multiset α hs_nonempty : s ≠ ∅ hs : ∀ (a : α), a ∈ s → p a ⊢ f (prod s) ≤ prod (map f s) [PROOFSTEP] revert s [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) ⊢ ∀ (s : Multiset α), s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s) [PROOFSTEP] refine' Multiset.induction _ _ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) ⊢ 0 ≠ ∅ → (∀ (a : α), a ∈ 0 → p a) → f (prod 0) ≤ prod (map f 0) [PROOFSTEP] intro h [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) h : 0 ≠ ∅ ⊢ (∀ (a : α), a ∈ 0 → p a) → f (prod 0) ≤ prod (map f 0) [PROOFSTEP] exfalso [GOAL] case refine'_1.h ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) h : 0 ≠ ∅ ⊢ False [PROOFSTEP] exact h rfl [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) ⊢ ∀ ⦃a : α⦄ {s : Multiset α}, (s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)) → a ::ₘ s ≠ ∅ → (∀ (a_2 : α), a_2 ∈ a ::ₘ s → p a_2) → f (prod (a ::ₘ s)) ≤ prod (map f (a ::ₘ s)) [PROOFSTEP] rintro a s hs - hsa_prop [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) a : α s : Multiset α hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s) hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 ⊢ f (prod (a ::ₘ s)) ≤ prod (map f (a ::ₘ s)) [PROOFSTEP] rw [prod_cons, map_cons, prod_cons] [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) a : α s : Multiset α hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s) hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 ⊢ f (a * prod s) ≤ f a * prod (map f s) [PROOFSTEP] by_cases hs_empty : s = ∅ [GOAL] case pos ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) a : α s : Multiset α hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s) hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 hs_empty : s = ∅ ⊢ f (a * prod s) ≤ f a * prod (map f s) [PROOFSTEP] simp [hs_empty] [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) a : α s : Multiset α hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s) hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 hs_empty : ¬s = ∅ ⊢ f (a * prod s) ≤ f a * prod (map f s) [PROOFSTEP] have hsa_restrict : ∀ x, x ∈ s → p x := fun x hx => hsa_prop x (mem_cons_of_mem hx) [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) a : α s : Multiset α hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s) hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 hs_empty : ¬s = ∅ hsa_restrict : ∀ (x : α), x ∈ s → p x ⊢ f (a * prod s) ≤ f a * prod (map f s) [PROOFSTEP] have hp_sup : p s.prod := prod_induction_nonempty p hp_mul hs_empty hsa_restrict [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) a : α s : Multiset α hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s) hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 hs_empty : ¬s = ∅ hsa_restrict : ∀ (x : α), x ∈ s → p x hp_sup : p (prod s) ⊢ f (a * prod s) ≤ f a * prod (map f s) [PROOFSTEP] have hp_a : p a := hsa_prop a (mem_cons_self a s) [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β p : α → Prop h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b hp_mul : ∀ (a b : α), p a → p b → p (a * b) a : α s : Multiset α hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s) hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1 hs_empty : ¬s = ∅ hsa_restrict : ∀ (x : α), x ∈ s → p x hp_sup : p (prod s) hp_a : p a ⊢ f (a * prod s) ≤ f a * prod (map f s) [PROOFSTEP] exact (h_mul a _ hp_a hp_sup).trans (mul_le_mul_left' (hs hs_empty hsa_restrict) _) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β h_mul : ∀ (a b : α), f (a * b) ≤ f a * f b s : Multiset α hs_nonempty : s ≠ ∅ ⊢ ∀ (a b : α), (fun x => True) a → (fun x => True) b → f (a * b) ≤ f a * f b [PROOFSTEP] simp [h_mul] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β h_mul : ∀ (a b : α), f (a * b) ≤ f a * f b s : Multiset α hs_nonempty : s ≠ ∅ ⊢ ∀ (a b : α), (fun x => True) a → (fun x => True) b → (fun x => True) (a * b) [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : CommMonoid α inst✝ : OrderedCommMonoid β f : α → β h_mul : ∀ (a b : α), f (a * b) ≤ f a * f b s : Multiset α hs_nonempty : s ≠ ∅ ⊢ ∀ (a : α), a ∈ s → (fun x => True) a [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 s : Multiset α ⊢ sum (map (fun a => {a}) 0) = 0 [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 s : Multiset α ⊢ ∀ ⦃a : α⦄ {s : Multiset α}, sum (map (fun a => {a}) s) = s → sum (map (fun a => {a}) (a ::ₘ s)) = a ::ₘ s [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 s : Multiset ℕ n : ℕ ⊢ sum s % n = sum (map (fun x => x % n) s) % n [PROOFSTEP] induction s using Multiset.induction [GOAL] case empty ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 n : ℕ ⊢ sum 0 % n = sum (map (fun x => x % n) 0) % n [PROOFSTEP] simp [Nat.add_mod, *] [GOAL] case cons ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 n a✝¹ : ℕ s✝ : Multiset ℕ a✝ : sum s✝ % n = sum (map (fun x => x % n) s✝) % n ⊢ sum (a✝¹ ::ₘ s✝) % n = sum (map (fun x => x % n) (a✝¹ ::ₘ s✝)) % n [PROOFSTEP] simp [Nat.add_mod, *] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 s : Multiset ℕ n : ℕ ⊢ prod s % n = prod (map (fun x => x % n) s) % n [PROOFSTEP] induction s using Multiset.induction [GOAL] case empty ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 n : ℕ ⊢ prod 0 % n = prod (map (fun x => x % n) 0) % n [PROOFSTEP] simp [Nat.mul_mod, *] [GOAL] case cons ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 n a✝¹ : ℕ s✝ : Multiset ℕ a✝ : prod s✝ % n = prod (map (fun x => x % n) s✝) % n ⊢ prod (a✝¹ ::ₘ s✝) % n = prod (map (fun x => x % n) (a✝¹ ::ₘ s✝)) % n [PROOFSTEP] simp [Nat.mul_mod, *] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 s : Multiset ℤ n : ℤ ⊢ sum s % n = sum (map (fun x => x % n) s) % n [PROOFSTEP] induction s using Multiset.induction [GOAL] case empty ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 n : ℤ ⊢ sum 0 % n = sum (map (fun x => x % n) 0) % n [PROOFSTEP] simp [Int.add_emod, *] [GOAL] case cons ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 n a✝¹ : ℤ s✝ : Multiset ℤ a✝ : sum s✝ % n = sum (map (fun x => x % n) s✝) % n ⊢ sum (a✝¹ ::ₘ s✝) % n = sum (map (fun x => x % n) (a✝¹ ::ₘ s✝)) % n [PROOFSTEP] simp [Int.add_emod, *] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 s : Multiset ℤ n : ℤ ⊢ prod s % n = prod (map (fun x => x % n) s) % n [PROOFSTEP] induction s using Multiset.induction [GOAL] case empty ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 n : ℤ ⊢ prod 0 % n = prod (map (fun x => x % n) 0) % n [PROOFSTEP] simp [Int.mul_emod, *] [GOAL] case cons ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 n a✝¹ : ℤ s✝ : Multiset ℤ a✝ : prod s✝ % n = prod (map (fun x => x % n) s✝) % n ⊢ prod (a✝¹ ::ₘ s✝) % n = prod (map (fun x => x % n) (a✝¹ ::ₘ s✝)) % n [PROOFSTEP] simp [Int.mul_emod, *]
{"mathlib_filename": "Mathlib.Algebra.BigOperators.Multiset.Basic", "llama_tokens": 21093}
[GOAL] α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝ : CommMonoid β x : β f : α → ℕ ⊢ ∀ {s : Finset α}, ∏ i in s, x ^ f i = x ^ ∑ x in s, f x [PROOFSTEP] apply Finset.induction [GOAL] case empty α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝ : CommMonoid β x : β f : α → ℕ ⊢ ∏ i in ∅, x ^ f i = x ^ ∑ x in ∅, f x [PROOFSTEP] simp [GOAL] case insert α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝ : CommMonoid β x : β f : α → ℕ ⊢ ∀ ⦃a : α⦄ {s : Finset α}, ¬a ∈ s → ∏ i in s, x ^ f i = x ^ ∑ x in s, f x → ∏ i in insert a s, x ^ f i = x ^ ∑ x in insert a s, f x [PROOFSTEP] intro a s has H [GOAL] case insert α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g : α → β inst✝ : CommMonoid β x : β f : α → ℕ a : α s : Finset α has : ¬a ∈ s H : ∏ i in s, x ^ f i = x ^ ∑ x in s, f x ⊢ ∏ i in insert a s, x ^ f i = x ^ ∑ x in insert a s, f x [PROOFSTEP] rw [Finset.prod_insert has, Finset.sum_insert has, pow_add, H] [GOAL] α : Type u β : Type v γ : Type w s s₁✝ s₂✝ : Finset α a : α b : β f g : α → β inst✝ : NonUnitalNonAssocSemiring β ι₁ : Type u_1 ι₂ : Type u_2 s₁ : Finset ι₁ s₂ : Finset ι₂ f₁ : ι₁ → β f₂ : ι₂ → β ⊢ (∑ x₁ in s₁, f₁ x₁) * ∑ x₂ in s₂, f₂ x₂ = ∑ p in s₁ ×ˢ s₂, f₁ p.fst * f₂ p.snd [PROOFSTEP] rw [sum_product, sum_mul, sum_congr rfl] [GOAL] α : Type u β : Type v γ : Type w s s₁✝ s₂✝ : Finset α a : α b : β f g : α → β inst✝ : NonUnitalNonAssocSemiring β ι₁ : Type u_1 ι₂ : Type u_2 s₁ : Finset ι₁ s₂ : Finset ι₂ f₁ : ι₁ → β f₂ : ι₂ → β ⊢ ∀ (x : ι₁), x ∈ s₁ → f₁ x * ∑ x₂ in s₂, f₂ x₂ = ∑ y in s₂, f₁ (x, y).fst * f₂ (x, y).snd [PROOFSTEP] intros [GOAL] α : Type u β : Type v γ : Type w s s₁✝ s₂✝ : Finset α a : α b : β f g : α → β inst✝ : NonUnitalNonAssocSemiring β ι₁ : Type u_1 ι₂ : Type u_2 s₁ : Finset ι₁ s₂ : Finset ι₂ f₁ : ι₁ → β f₂ : ι₂ → β x✝ : ι₁ a✝ : x✝ ∈ s₁ ⊢ f₁ x✝ * ∑ x₂ in s₂, f₂ x₂ = ∑ y in s₂, f₁ (x✝, y).fst * f₂ (x✝, y).snd [PROOFSTEP] rw [mul_sum] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g : α → β inst✝¹ : NonAssocSemiring β inst✝ : DecidableEq α s : Finset α f : α → β a : α ⊢ (∑ x in s, f x * if a = x then 1 else 0) = if a ∈ s then f a else 0 [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g : α → β inst✝¹ : NonAssocSemiring β inst✝ : DecidableEq α s : Finset α f : α → β a : α ⊢ ∑ x in s, (if a = x then 1 else 0) * f x = if a ∈ s then f a else 0 [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b✝ : β f✝ g : α → β inst✝ : DivisionSemiring β s : Finset α f : α → β b : β ⊢ (∑ x in s, f x) / b = ∑ x in s, f x / b [PROOFSTEP] simp only [div_eq_mul_inv, sum_mul] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) s : Finset α t : (a : α) → Finset (δ a) f : (a : α) → δ a → β ⊢ ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) [PROOFSTEP] induction' s using Finset.induction with a s ha ih [GOAL] case empty α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β ⊢ ∏ a in ∅, ∑ b in t a, f a b = ∑ p in pi ∅ t, ∏ x in attach ∅, f (↑x) (p ↑x (_ : ↑x ∈ ∅)) [PROOFSTEP] rw [pi_empty, sum_singleton] [GOAL] case empty α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β ⊢ ∏ a in ∅, ∑ b in t a, f a b = ∏ x in attach ∅, f (↑x) (Pi.empty (fun a => δ a) ↑x (_ : ↑x ∈ ∅)) [PROOFSTEP] rfl [GOAL] case insert α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) ⊢ ∏ a in insert a s, ∑ b in t a, f a b = ∑ p in pi (insert a s) t, ∏ x in attach (insert a s), f (↑x) (p ↑x (_ : ↑x ∈ insert a s)) [PROOFSTEP] have h₁ : ∀ x ∈ t a, ∀ y ∈ t a, x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) := by intro x _ y _ h simp only [disjoint_iff_ne, mem_image] rintro _ ⟨p₂, _, eq₂⟩ _ ⟨p₃, _, eq₃⟩ eq have : Pi.cons s a x p₂ a (mem_insert_self _ _) = Pi.cons s a y p₃ a (mem_insert_self _ _) := by rw [eq₂, eq₃, eq] rw [Pi.cons_same, Pi.cons_same] at this exact h this [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) ⊢ ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) [PROOFSTEP] intro x _ y _ h [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝² : α b : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) x : δ a a✝¹ : x ∈ t a y : δ a a✝ : y ∈ t a h : x ≠ y ⊢ Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) [PROOFSTEP] simp only [disjoint_iff_ne, mem_image] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝² : α b : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) x : δ a a✝¹ : x ∈ t a y : δ a a✝ : y ∈ t a h : x ≠ y ⊢ ∀ (a_1 : (a' : α) → a' ∈ insert a s → δ a'), (∃ a_2, a_2 ∈ pi s t ∧ Pi.cons s a x a_2 = a_1) → ∀ (b : (a' : α) → a' ∈ insert a s → δ a'), (∃ a_3, a_3 ∈ pi s t ∧ Pi.cons s a y a_3 = b) → a_1 ≠ b [PROOFSTEP] rintro _ ⟨p₂, _, eq₂⟩ _ ⟨p₃, _, eq₃⟩ eq [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝³ : α b : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) x : δ a a✝² : x ∈ t a y : δ a a✝¹ : y ∈ t a h : x ≠ y a✝ : (a' : α) → a' ∈ insert a s → δ a' p₂ : (a : α) → a ∈ s → δ a left✝¹ : p₂ ∈ pi s t eq₂ : Pi.cons s a x p₂ = a✝ b✝ : (a' : α) → a' ∈ insert a s → δ a' p₃ : (a : α) → a ∈ s → δ a left✝ : p₃ ∈ pi s t eq₃ : Pi.cons s a y p₃ = b✝ eq : a✝ = b✝ ⊢ False [PROOFSTEP] have : Pi.cons s a x p₂ a (mem_insert_self _ _) = Pi.cons s a y p₃ a (mem_insert_self _ _) := by rw [eq₂, eq₃, eq] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝³ : α b : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) x : δ a a✝² : x ∈ t a y : δ a a✝¹ : y ∈ t a h : x ≠ y a✝ : (a' : α) → a' ∈ insert a s → δ a' p₂ : (a : α) → a ∈ s → δ a left✝¹ : p₂ ∈ pi s t eq₂ : Pi.cons s a x p₂ = a✝ b✝ : (a' : α) → a' ∈ insert a s → δ a' p₃ : (a : α) → a ∈ s → δ a left✝ : p₃ ∈ pi s t eq₃ : Pi.cons s a y p₃ = b✝ eq : a✝ = b✝ ⊢ Pi.cons s a x p₂ a (_ : a ∈ insert a s) = Pi.cons s a y p₃ a (_ : a ∈ insert a s) [PROOFSTEP] rw [eq₂, eq₃, eq] [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝³ : α b : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) x : δ a a✝² : x ∈ t a y : δ a a✝¹ : y ∈ t a h : x ≠ y a✝ : (a' : α) → a' ∈ insert a s → δ a' p₂ : (a : α) → a ∈ s → δ a left✝¹ : p₂ ∈ pi s t eq₂ : Pi.cons s a x p₂ = a✝ b✝ : (a' : α) → a' ∈ insert a s → δ a' p₃ : (a : α) → a ∈ s → δ a left✝ : p₃ ∈ pi s t eq₃ : Pi.cons s a y p₃ = b✝ eq : a✝ = b✝ this : Pi.cons s a x p₂ a (_ : a ∈ insert a s) = Pi.cons s a y p₃ a (_ : a ∈ insert a s) ⊢ False [PROOFSTEP] rw [Pi.cons_same, Pi.cons_same] at this [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝³ : α b : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) x : δ a a✝² : x ∈ t a y : δ a a✝¹ : y ∈ t a h : x ≠ y a✝ : (a' : α) → a' ∈ insert a s → δ a' p₂ : (a : α) → a ∈ s → δ a left✝¹ : p₂ ∈ pi s t eq₂ : Pi.cons s a x p₂ = a✝ b✝ : (a' : α) → a' ∈ insert a s → δ a' p₃ : (a : α) → a ∈ s → δ a left✝ : p₃ ∈ pi s t eq₃ : Pi.cons s a y p₃ = b✝ eq : a✝ = b✝ this : x = y ⊢ False [PROOFSTEP] exact h this [GOAL] case insert α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) ⊢ ∏ a in insert a s, ∑ b in t a, f a b = ∑ p in pi (insert a s) t, ∏ x in attach (insert a s), f (↑x) (p ↑x (_ : ↑x ∈ insert a s)) [PROOFSTEP] rw [prod_insert ha, pi_insert ha, ih, sum_mul, sum_biUnion h₁] [GOAL] case insert α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) ⊢ ∑ x in t a, f a x * ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) = ∑ x in t a, ∑ i in image (Pi.cons s a x) (pi s t), ∏ x in attach (insert a s), f (↑x) (i ↑x (_ : ↑x ∈ insert a s)) [PROOFSTEP] refine' sum_congr rfl fun b _ => _ [GOAL] case insert α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b✝ : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) b : δ a x✝ : b ∈ t a ⊢ f a b * ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) = ∑ i in image (Pi.cons s a b) (pi s t), ∏ x in attach (insert a s), f (↑x) (i ↑x (_ : ↑x ∈ insert a s)) [PROOFSTEP] have h₂ : ∀ p₁ ∈ pi s t, ∀ p₂ ∈ pi s t, Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ := fun p₁ _ p₂ _ eq => Pi.cons_injective ha eq [GOAL] case insert α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b✝ : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) b : δ a x✝ : b ∈ t a h₂ : ∀ (p₁ : (a : α) → a ∈ s → δ a), p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ ⊢ f a b * ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) = ∑ i in image (Pi.cons s a b) (pi s t), ∏ x in attach (insert a s), f (↑x) (i ↑x (_ : ↑x ∈ insert a s)) [PROOFSTEP] rw [sum_image h₂, mul_sum] [GOAL] case insert α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b✝ : β f✝ g : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) b : δ a x✝ : b ∈ t a h₂ : ∀ (p₁ : (a : α) → a ∈ s → δ a), p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ ⊢ ∑ x in pi s t, f a b * ∏ x_1 in attach s, f (↑x_1) (x ↑x_1 (_ : ↑x_1 ∈ s)) = ∑ x in pi s t, ∏ x_1 in attach (insert a s), f (↑x_1) (Pi.cons s a b x ↑x_1 (_ : ↑x_1 ∈ insert a s)) [PROOFSTEP] refine' sum_congr rfl fun g _ => _ [GOAL] case insert α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b✝ : β f✝ g✝ : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) b : δ a x✝¹ : b ∈ t a h₂ : ∀ (p₁ : (a : α) → a ∈ s → δ a), p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ g : (a : α) → a ∈ s → δ a x✝ : g ∈ pi s t ⊢ f a b * ∏ x in attach s, f (↑x) (g ↑x (_ : ↑x ∈ s)) = ∏ x in attach (insert a s), f (↑x) (Pi.cons s a b g ↑x (_ : ↑x ∈ insert a s)) [PROOFSTEP] rw [attach_insert, prod_insert, prod_image] [GOAL] case insert α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b✝ : β f✝ g✝ : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) b : δ a x✝¹ : b ∈ t a h₂ : ∀ (p₁ : (a : α) → a ∈ s → δ a), p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ g : (a : α) → a ∈ s → δ a x✝ : g ∈ pi s t ⊢ f a b * ∏ x in attach s, f (↑x) (g ↑x (_ : ↑x ∈ s)) = f (↑{ val := a, property := (_ : a ∈ insert a s) }) (Pi.cons s a b g ↑{ val := a, property := (_ : a ∈ insert a s) } (_ : ↑{ val := a, property := (_ : a ∈ insert a s) } ∈ insert a s)) * ∏ x in attach s, f (↑{ val := ↑x, property := (_ : ↑x ∈ insert a s) }) (Pi.cons s a b g ↑{ val := ↑x, property := (_ : ↑x ∈ insert a s) } (_ : ↑{ val := ↑x, property := (_ : ↑x ∈ insert a s) } ∈ insert a s)) [PROOFSTEP] simp only [Pi.cons_same] [GOAL] case insert α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b✝ : β f✝ g✝ : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) b : δ a x✝¹ : b ∈ t a h₂ : ∀ (p₁ : (a : α) → a ∈ s → δ a), p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ g : (a : α) → a ∈ s → δ a x✝ : g ∈ pi s t ⊢ f a b * ∏ x in attach s, f (↑x) (g ↑x (_ : ↑x ∈ s)) = f a b * ∏ x in attach s, f (↑x) (Pi.cons s a b g ↑{ val := ↑x, property := (_ : ↑x ∈ insert a s) } (_ : ↑{ val := ↑x, property := (_ : ↑x ∈ insert a s) } ∈ insert a s)) [PROOFSTEP] congr with ⟨v, hv⟩ [GOAL] case insert.e_a.e_f.h.mk α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b✝ : β f✝ g✝ : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) b : δ a x✝¹ : b ∈ t a h₂ : ∀ (p₁ : (a : α) → a ∈ s → δ a), p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ g : (a : α) → a ∈ s → δ a x✝ : g ∈ pi s t v : α hv : v ∈ s ⊢ f (↑{ val := v, property := hv }) (g ↑{ val := v, property := hv } (_ : ↑{ val := v, property := hv } ∈ s)) = f (↑{ val := v, property := hv }) (Pi.cons s a b g ↑{ val := ↑{ val := v, property := hv }, property := (_ : ↑{ val := v, property := hv } ∈ insert a s) } (_ : ↑{ val := ↑{ val := v, property := hv }, property := (_ : ↑{ val := v, property := hv } ∈ insert a s) } ∈ insert a s)) [PROOFSTEP] congr [GOAL] case insert.e_a.e_f.h.mk.e_a α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b✝ : β f✝ g✝ : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) b : δ a x✝¹ : b ∈ t a h₂ : ∀ (p₁ : (a : α) → a ∈ s → δ a), p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ g : (a : α) → a ∈ s → δ a x✝ : g ∈ pi s t v : α hv : v ∈ s ⊢ g ↑{ val := v, property := hv } (_ : ↑{ val := v, property := hv } ∈ s) = Pi.cons s a b g ↑{ val := ↑{ val := v, property := hv }, property := (_ : ↑{ val := v, property := hv } ∈ insert a s) } (_ : ↑{ val := ↑{ val := v, property := hv }, property := (_ : ↑{ val := v, property := hv } ∈ insert a s) } ∈ insert a s) [PROOFSTEP] exact (Pi.cons_ne (by rintro rfl; exact ha hv)).symm [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b✝ : β f✝ g✝ : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) b : δ a x✝¹ : b ∈ t a h₂ : ∀ (p₁ : (a : α) → a ∈ s → δ a), p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ g : (a : α) → a ∈ s → δ a x✝ : g ∈ pi s t v : α hv : v ∈ s ⊢ a ≠ ↑{ val := v, property := hv } [PROOFSTEP] rintro rfl [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b✝ : β f✝ g✝ : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) b : δ a x✝¹ : b ∈ t a h₂ : ∀ (p₁ : (a : α) → a ∈ s → δ a), p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ g : (a : α) → a ∈ s → δ a x✝ : g ∈ pi s t hv : a ∈ s ⊢ False [PROOFSTEP] exact ha hv [GOAL] case insert α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b✝ : β f✝ g✝ : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) b : δ a x✝¹ : b ∈ t a h₂ : ∀ (p₁ : (a : α) → a ∈ s → δ a), p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ g : (a : α) → a ∈ s → δ a x✝ : g ∈ pi s t ⊢ ∀ (x : { x // x ∈ s }), x ∈ attach s → ∀ (y : { x // x ∈ s }), y ∈ attach s → { val := ↑x, property := (_ : ↑x ∈ insert a s) } = { val := ↑y, property := (_ : ↑y ∈ insert a s) } → x = y [PROOFSTEP] exact fun _ _ _ _ => Subtype.eq ∘ Subtype.mk.inj [GOAL] case insert α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b✝ : β f✝ g✝ : α → β inst✝² : CommSemiring β δ : α → Type u_1 inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (δ a) t : (a : α) → Finset (δ a) f : (a : α) → δ a → β a : α s : Finset α ha : ¬a ∈ s ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) h₁ : ∀ (x : δ a), x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) b : δ a x✝¹ : b ∈ t a h₂ : ∀ (p₁ : (a : α) → a ∈ s → δ a), p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ g : (a : α) → a ∈ s → δ a x✝ : g ∈ pi s t ⊢ ¬{ val := a, property := (_ : a ∈ insert a s) } ∈ image (fun x => { val := ↑x, property := (_ : ↑x ∈ insert a s) }) (attach s) [PROOFSTEP] simpa only [mem_image, mem_attach, Subtype.mk.injEq, true_and, Subtype.exists, exists_prop, exists_eq_right] using ha [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α ⊢ ∏ a in s, (f a + g a) = ∑ t in powerset s, (∏ a in t, f a) * ∏ a in s \ t, g a [PROOFSTEP] classical calc ∏ a in s, (f a + g a) = ∏ a in s, ∑ p in ({ True, False } : Finset Prop), if p then f a else g a := by simp _ = ∑ p in (s.pi fun _ => { True, False } : Finset (∀ a ∈ s, Prop)), ∏ a in s.attach, if p a.1 a.2 then f a.1 else g a.1 := prod_sum _ = ∑ t in s.powerset, (∏ a in t, f a) * ∏ a in s \ t, g a := sum_bij' (fun f _ => s.filter (fun a => ∀ h : a ∈ s, f a h)) (by simp) (fun a _ => by rw [prod_ite] congr 1 exact prod_bij' (fun a _ => a.1) (by simp; tauto) (by simp) (fun a ha => ⟨a, (mem_filter.1 ha).1⟩) (fun a ha => by simp at ha ; simp; tauto) (by simp) (by simp) exact prod_bij' (fun a _ => a.1) (by simp) (by simp) (fun a ha => ⟨a, (mem_sdiff.1 ha).1⟩) (fun a ha => by simp at ha ; simp; tauto) (by simp) (by simp)) (fun t _ a _ => a ∈ t) (by simp [Classical.em]) (by simp_rw [mem_filter, Function.funext_iff, eq_iff_iff, mem_pi, mem_insert]; tauto) (by simp_rw [ext_iff, @mem_filter _ _ (id _), mem_powerset]; tauto) [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α ⊢ ∏ a in s, (f a + g a) = ∑ t in powerset s, (∏ a in t, f a) * ∏ a in s \ t, g a [PROOFSTEP] calc ∏ a in s, (f a + g a) = ∏ a in s, ∑ p in ({ True, False } : Finset Prop), if p then f a else g a := by simp _ = ∑ p in (s.pi fun _ => { True, False } : Finset (∀ a ∈ s, Prop)), ∏ a in s.attach, if p a.1 a.2 then f a.1 else g a.1 := prod_sum _ = ∑ t in s.powerset, (∏ a in t, f a) * ∏ a in s \ t, g a := sum_bij' (fun f _ => s.filter (fun a => ∀ h : a ∈ s, f a h)) (by simp) (fun a _ => by rw [prod_ite] congr 1 exact prod_bij' (fun a _ => a.1) (by simp; tauto) (by simp) (fun a ha => ⟨a, (mem_filter.1 ha).1⟩) (fun a ha => by simp at ha ; simp; tauto) (by simp) (by simp) exact prod_bij' (fun a _ => a.1) (by simp) (by simp) (fun a ha => ⟨a, (mem_sdiff.1 ha).1⟩) (fun a ha => by simp at ha ; simp; tauto) (by simp) (by simp)) (fun t _ a _ => a ∈ t) (by simp [Classical.em]) (by simp_rw [mem_filter, Function.funext_iff, eq_iff_iff, mem_pi, mem_insert]; tauto) (by simp_rw [ext_iff, @mem_filter _ _ (id _), mem_powerset]; tauto) [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α ⊢ ∏ a in s, (f a + g a) = ∏ a in s, ∑ p in {True, False}, if p then f a else g a [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α ⊢ ∀ (a : (a : α) → a ∈ s → Prop) (ha : a ∈ pi s fun x => {True, False}), (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a ha ∈ powerset s [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ (∏ a_1 in attach s, if a ↑a_1 (_ : ↑a_1 ∈ s) then f ↑a_1 else g ↑a_1) = (∏ a in (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, f a) * ∏ a in s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, g a [PROOFSTEP] rw [prod_ite] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ (∏ x in filter (fun a_1 => a ↑a_1 (_ : ↑a_1 ∈ s)) (attach s), f ↑x) * ∏ x in filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s), g ↑x = (∏ a in (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, f a) * ∏ a in s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, g a [PROOFSTEP] congr 1 [GOAL] case e_a α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ ∏ x in filter (fun a_1 => a ↑a_1 (_ : ↑a_1 ∈ s)) (attach s), f ↑x = ∏ a in (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, f a case e_a α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ ∏ x in filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s), g ↑x = ∏ a in s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, g a [PROOFSTEP] exact prod_bij' (fun a _ => a.1) (by simp; tauto) (by simp) (fun a ha => ⟨a, (mem_filter.1 ha).1⟩) (fun a ha => by simp at ha ; simp; tauto) (by simp) (by simp) [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ ∀ (a_1 : { x // x ∈ s }) (ha : a_1 ∈ filter (fun a_2 => a ↑a_2 (_ : ↑a_2 ∈ s)) (attach s)), (fun a_2 x => ↑a_2) a_1 ha ∈ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝ [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ ∀ (a_1 : α) (b : a_1 ∈ s), a a_1 (_ : ↑{ val := a_1, property := b } ∈ s) → ∀ (h : ↑{ val := a_1, property := b } ∈ s), a a_1 h [PROOFSTEP] tauto [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ ∀ (a_1 : { x // x ∈ s }) (ha : a_1 ∈ filter (fun a_2 => a ↑a_2 (_ : ↑a_2 ∈ s)) (attach s)), f ↑a_1 = f ((fun a_2 x => ↑a_2) a_1 ha) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a✝ : (a : α) → a ∈ s → Prop x✝ : a✝ ∈ pi s fun x => {True, False} a : α ha : a ∈ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a✝ x✝ ⊢ (fun a ha => { val := a, property := (_ : a ∈ s) }) a ha ∈ filter (fun a => a✝ ↑a (_ : ↑a ∈ s)) (attach s) [PROOFSTEP] simp at ha [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a✝ : (a : α) → a ∈ s → Prop x✝ : a✝ ∈ pi s fun x => {True, False} a : α ha✝ : a ∈ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a✝ x✝ ha : a ∈ s ∧ ∀ (h : a ∈ s), a✝ a h ⊢ (fun a ha => { val := a, property := (_ : a ∈ s) }) a ha✝ ∈ filter (fun a => a✝ ↑a (_ : ↑a ∈ s)) (attach s) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a✝ : (a : α) → a ∈ s → Prop x✝ : a✝ ∈ pi s fun x => {True, False} a : α ha✝ : a ∈ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a✝ x✝ ha : a ∈ s ∧ ∀ (h : a ∈ s), a✝ a h ⊢ a✝ a (_ : ↑{ val := a, property := (_ : a ∈ s) } ∈ s) [PROOFSTEP] tauto [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ ∀ (a_1 : { x // x ∈ s }) (ha : a_1 ∈ filter (fun a_2 => a ↑a_2 (_ : ↑a_2 ∈ s)) (attach s)), (fun a_2 ha => { val := a_2, property := (_ : a_2 ∈ s) }) ((fun a_2 x => ↑a_2) a_1 ha) (_ : (fun a_2 x => ↑a_2) a_1 ha ∈ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝) = a_1 [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ ∀ (a_1 : α) (ha : a_1 ∈ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝), (fun a_2 x => ↑a_2) ((fun a_2 ha => { val := a_2, property := (_ : a_2 ∈ s) }) a_1 ha) (_ : (fun a_2 ha => { val := a_2, property := (_ : a_2 ∈ s) }) a_1 ha ∈ filter (fun a_2 => a ↑a_2 (_ : ↑a_2 ∈ s)) (attach s)) = a_1 [PROOFSTEP] simp [GOAL] case e_a α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ ∏ x in filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s), g ↑x = ∏ a in s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, g a [PROOFSTEP] exact prod_bij' (fun a _ => a.1) (by simp) (by simp) (fun a ha => ⟨a, (mem_sdiff.1 ha).1⟩) (fun a ha => by simp at ha ; simp; tauto) (by simp) (by simp) [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ ∀ (a_1 : { x // x ∈ s }) (ha : a_1 ∈ filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s)), (fun a_2 x => ↑a_2) a_1 ha ∈ s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝ [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ ∀ (a_1 : { x // x ∈ s }) (ha : a_1 ∈ filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s)), g ↑a_1 = g ((fun a_2 x => ↑a_2) a_1 ha) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a✝ : (a : α) → a ∈ s → Prop x✝ : a✝ ∈ pi s fun x => {True, False} a : α ha : a ∈ s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a✝ x✝ ⊢ (fun a ha => { val := a, property := (_ : a ∈ s) }) a ha ∈ filter (fun x => ¬a✝ ↑x (_ : ↑x ∈ s)) (attach s) [PROOFSTEP] simp at ha [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a✝ : (a : α) → a ∈ s → Prop x✝ : a✝ ∈ pi s fun x => {True, False} a : α ha✝ : a ∈ s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a✝ x✝ ha : a ∈ s ∧ (a ∈ s → ∃ x, ¬a✝ a x) ⊢ (fun a ha => { val := a, property := (_ : a ∈ s) }) a ha✝ ∈ filter (fun x => ¬a✝ ↑x (_ : ↑x ∈ s)) (attach s) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a✝ : (a : α) → a ∈ s → Prop x✝ : a✝ ∈ pi s fun x => {True, False} a : α ha✝ : a ∈ s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a✝ x✝ ha : a ∈ s ∧ (a ∈ s → ∃ x, ¬a✝ a x) ⊢ ¬a✝ a (_ : ↑{ val := a, property := (_ : a ∈ s) } ∈ s) [PROOFSTEP] tauto [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ ∀ (a_1 : { x // x ∈ s }) (ha : a_1 ∈ filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s)), (fun a_2 ha => { val := a_2, property := (_ : a_2 ∈ s) }) ((fun a_2 x => ↑a_2) a_1 ha) (_ : ↑a_1 ∈ s \ filter (fun a_2 => ∀ (h : a_2 ∈ s), a a_2 h) s) = a_1 [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α a : (a : α) → a ∈ s → Prop x✝ : a ∈ pi s fun x => {True, False} ⊢ ∀ (a_1 : α) (ha : a_1 ∈ s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝), (fun a_2 x => ↑a_2) ((fun a_2 ha => { val := a_2, property := (_ : a_2 ∈ s) }) a_1 ha) (_ : (fun a_2 ha => { val := a_2, property := (_ : a_2 ∈ s) }) a_1 ha ∈ filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s)) = a_1 [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α ⊢ ∀ (a : Finset α) (ha : a ∈ powerset s), (fun t x a x => a ∈ t) a ha ∈ pi s fun x => {True, False} [PROOFSTEP] simp [Classical.em] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α ⊢ ∀ (a : (a : α) → a ∈ s → Prop) (ha : a ∈ pi s fun x => {True, False}), (fun t x a x => a ∈ t) ((fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a ha) (_ : filter (fun a_1 => ∀ (h : a_1 ∈ s), a a_1 h) s ∈ powerset s) = a [PROOFSTEP] simp_rw [mem_filter, Function.funext_iff, eq_iff_iff, mem_pi, mem_insert] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α ⊢ ∀ (a : (a : α) → a ∈ s → Prop), (∀ (a_1 : α) (h : a_1 ∈ s), a a_1 h = True ∨ a a_1 h ∈ {False}) → ∀ (a_1 : α) (a_2 : a_1 ∈ s), (a_1 ∈ s ∧ ∀ (h : a_1 ∈ s), a a_1 h) ↔ a a_1 a_2 [PROOFSTEP] tauto [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α ⊢ ∀ (a : Finset α) (ha : a ∈ powerset s), (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) ((fun t x a x => a ∈ t) a ha) (_ : (fun a_1 x => a_1 ∈ a) ∈ pi s fun x => {True, False}) = a [PROOFSTEP] simp_rw [ext_iff, @mem_filter _ _ (id _), mem_powerset] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝¹ : CommSemiring β inst✝ : DecidableEq α f g : α → β s : Finset α ⊢ ∀ (a : Finset α), a ⊆ s → ∀ (a_1 : α), a_1 ∈ s ∧ (a_1 ∈ s → a_1 ∈ a) ↔ a_1 ∈ a [PROOFSTEP] tauto [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι s : Finset ι f g : ι → R ⊢ ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j [PROOFSTEP] refine' Finset.induction_on_max s (by simp) _ [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι s : Finset ι f g : ι → R ⊢ ∏ i in ∅, (f i + g i) = ∏ i in ∅, f i + ∑ i in ∅, (g i * ∏ j in filter (fun x => x < i) ∅, (f j + g j)) * ∏ j in filter (fun j => i < j) ∅, f j [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι s : Finset ι f g : ι → R ⊢ ∀ (a : ι) (s : Finset ι), (∀ (x : ι), x ∈ s → x < a) → ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j → ∏ i in insert a s, (f i + g i) = ∏ i in insert a s, f i + ∑ i in insert a s, (g i * ∏ j in filter (fun x => x < i) (insert a s), (f j + g j)) * ∏ j in filter (fun j => i < j) (insert a s), f j [PROOFSTEP] clear s [GOAL] α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι f g : ι → R ⊢ ∀ (a : ι) (s : Finset ι), (∀ (x : ι), x ∈ s → x < a) → ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j → ∏ i in insert a s, (f i + g i) = ∏ i in insert a s, f i + ∑ i in insert a s, (g i * ∏ j in filter (fun x => x < i) (insert a s), (f j + g j)) * ∏ j in filter (fun j => i < j) (insert a s), f j [PROOFSTEP] intro a s ha ihs [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι f g : ι → R a : ι s : Finset ι ha : ∀ (x : ι), x ∈ s → x < a ihs : ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j ⊢ ∏ i in insert a s, (f i + g i) = ∏ i in insert a s, f i + ∑ i in insert a s, (g i * ∏ j in filter (fun x => x < i) (insert a s), (f j + g j)) * ∏ j in filter (fun j => i < j) (insert a s), f j [PROOFSTEP] have ha' : a ∉ s := fun ha' => lt_irrefl a (ha a ha') [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι f g : ι → R a : ι s : Finset ι ha : ∀ (x : ι), x ∈ s → x < a ihs : ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j ha' : ¬a ∈ s ⊢ ∏ i in insert a s, (f i + g i) = ∏ i in insert a s, f i + ∑ i in insert a s, (g i * ∏ j in filter (fun x => x < i) (insert a s), (f j + g j)) * ∏ j in filter (fun j => i < j) (insert a s), f j [PROOFSTEP] rw [prod_insert ha', prod_insert ha', sum_insert ha', filter_insert, if_neg (lt_irrefl a), filter_true_of_mem ha, ihs, add_mul, mul_add, mul_add, add_assoc] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι f g : ι → R a : ι s : Finset ι ha : ∀ (x : ι), x ∈ s → x < a ihs : ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j ha' : ¬a ∈ s ⊢ f a * ∏ i in s, f i + (f a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j + (g a * ∏ i in s, f i + g a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j)) = f a * ∏ x in s, f x + ((g a * ∏ i in s, f i + g a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j) * ∏ j in filter (fun j => a < j) (insert a s), f j + ∑ x in s, (g x * ∏ j in filter (fun x_1 => x_1 < x) (insert a s), (f j + g j)) * ∏ j in filter (fun j => x < j) (insert a s), f j) [PROOFSTEP] congr 1 [GOAL] case e_a α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι f g : ι → R a : ι s : Finset ι ha : ∀ (x : ι), x ∈ s → x < a ihs : ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j ha' : ¬a ∈ s ⊢ f a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j + (g a * ∏ i in s, f i + g a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j) = (g a * ∏ i in s, f i + g a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j) * ∏ j in filter (fun j => a < j) (insert a s), f j + ∑ x in s, (g x * ∏ j in filter (fun x_1 => x_1 < x) (insert a s), (f j + g j)) * ∏ j in filter (fun j => x < j) (insert a s), f j [PROOFSTEP] rw [add_comm] [GOAL] case e_a α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι f g : ι → R a : ι s : Finset ι ha : ∀ (x : ι), x ∈ s → x < a ihs : ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j ha' : ¬a ∈ s ⊢ g a * ∏ i in s, f i + g a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j + f a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j = (g a * ∏ i in s, f i + g a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j) * ∏ j in filter (fun j => a < j) (insert a s), f j + ∑ x in s, (g x * ∏ j in filter (fun x_1 => x_1 < x) (insert a s), (f j + g j)) * ∏ j in filter (fun j => x < j) (insert a s), f j [PROOFSTEP] congr 1 [GOAL] case e_a.e_a α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι f g : ι → R a : ι s : Finset ι ha : ∀ (x : ι), x ∈ s → x < a ihs : ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j ha' : ¬a ∈ s ⊢ g a * ∏ i in s, f i + g a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j = (g a * ∏ i in s, f i + g a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j) * ∏ j in filter (fun j => a < j) (insert a s), f j [PROOFSTEP] rw [filter_false_of_mem, prod_empty, mul_one] [GOAL] case e_a.e_a α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι f g : ι → R a : ι s : Finset ι ha : ∀ (x : ι), x ∈ s → x < a ihs : ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j ha' : ¬a ∈ s ⊢ ∀ (x : ι), x ∈ insert a s → ¬a < x [PROOFSTEP] exact (forall_mem_insert _ _ _).2 ⟨lt_irrefl a, fun i hi => (ha i hi).not_lt⟩ [GOAL] case e_a.e_a α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι f g : ι → R a : ι s : Finset ι ha : ∀ (x : ι), x ∈ s → x < a ihs : ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j ha' : ¬a ∈ s ⊢ f a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j = ∑ x in s, (g x * ∏ j in filter (fun x_1 => x_1 < x) (insert a s), (f j + g j)) * ∏ j in filter (fun j => x < j) (insert a s), f j [PROOFSTEP] rw [mul_sum] [GOAL] case e_a.e_a α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι f g : ι → R a : ι s : Finset ι ha : ∀ (x : ι), x ∈ s → x < a ihs : ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j ha' : ¬a ∈ s ⊢ ∑ x in s, f a * ((g x * ∏ j in filter (fun x_1 => x_1 < x) s, (f j + g j)) * ∏ j in filter (fun j => x < j) s, f j) = ∑ x in s, (g x * ∏ j in filter (fun x_1 => x_1 < x) (insert a s), (f j + g j)) * ∏ j in filter (fun j => x < j) (insert a s), f j [PROOFSTEP] refine' sum_congr rfl fun i hi => _ [GOAL] case e_a.e_a α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι f g : ι → R a : ι s : Finset ι ha : ∀ (x : ι), x ∈ s → x < a ihs : ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j ha' : ¬a ∈ s i : ι hi : i ∈ s ⊢ f a * ((g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j) = (g i * ∏ j in filter (fun x => x < i) (insert a s), (f j + g j)) * ∏ j in filter (fun j => i < j) (insert a s), f j [PROOFSTEP] rw [filter_insert, if_neg (ha i hi).not_lt, filter_insert, if_pos (ha i hi), prod_insert, mul_left_comm] [GOAL] case e_a.e_a α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommSemiring R inst✝ : LinearOrder ι f g : ι → R a : ι s : Finset ι ha : ∀ (x : ι), x ∈ s → x < a ihs : ∏ i in s, (f i + g i) = ∏ i in s, f i + ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j ha' : ¬a ∈ s i : ι hi : i ∈ s ⊢ ¬a ∈ filter (fun j => i < j) s [PROOFSTEP] exact mt (fun ha => (mem_filter.1 ha).1) ha' [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LinearOrder ι s : Finset ι f g : ι → R ⊢ ∏ i in s, (f i - g i) = ∏ i in s, f i - ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j - g j)) * ∏ j in filter (fun j => i < j) s, f j [PROOFSTEP] simp only [sub_eq_add_neg] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LinearOrder ι s : Finset ι f g : ι → R ⊢ ∏ x in s, (f x + -g x) = ∏ i in s, f i + -∑ x in s, (g x * ∏ x in filter (fun x_1 => x_1 < x) s, (f x + -g x)) * ∏ i in filter (fun j => x < j) s, f i [PROOFSTEP] convert prod_add_ordered s f fun i => -g i [GOAL] case h.e'_3.h.e'_6 α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LinearOrder ι s : Finset ι f g : ι → R ⊢ -∑ x in s, (g x * ∏ x in filter (fun x_1 => x_1 < x) s, (f x + -g x)) * ∏ i in filter (fun j => x < j) s, f i = ∑ i in s, (-g i * ∏ j in filter (fun x => x < i) s, (f j + -g j)) * ∏ j in filter (fun j => i < j) s, f j [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LinearOrder ι s : Finset ι f : ι → R ⊢ ∏ i in s, (1 - f i) = 1 - ∑ i in s, f i * ∏ j in filter (fun x => x < i) s, (1 - f j) [PROOFSTEP] rw [prod_sub_ordered] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝² : CommSemiring β ι : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : LinearOrder ι s : Finset ι f : ι → R ⊢ ∏ i in s, 1 - ∑ i in s, (f i * ∏ j in filter (fun x => x < i) s, (1 - f j)) * ∏ j in filter (fun j => i < j) s, 1 = 1 - ∑ i in s, f i * ∏ j in filter (fun x => x < i) s, (1 - f j) [PROOFSTEP] simp [GOAL] α✝ : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a✝ : α✝ b✝ : β f g : α✝ → β inst✝¹ : CommSemiring β α : Type u_1 R : Type u_2 inst✝ : CommSemiring R a b : R s : Finset α ⊢ ∑ t in powerset s, a ^ card t * b ^ (card s - card t) = (a + b) ^ card s [PROOFSTEP] classical rw [← prod_const, prod_add] refine' Finset.sum_congr rfl fun t ht => _ rw [prod_const, prod_const, ← card_sdiff (mem_powerset.1 ht)] [GOAL] α✝ : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a✝ : α✝ b✝ : β f g : α✝ → β inst✝¹ : CommSemiring β α : Type u_1 R : Type u_2 inst✝ : CommSemiring R a b : R s : Finset α ⊢ ∑ t in powerset s, a ^ card t * b ^ (card s - card t) = (a + b) ^ card s [PROOFSTEP] rw [← prod_const, prod_add] [GOAL] α✝ : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a✝ : α✝ b✝ : β f g : α✝ → β inst✝¹ : CommSemiring β α : Type u_1 R : Type u_2 inst✝ : CommSemiring R a b : R s : Finset α ⊢ ∑ t in powerset s, a ^ card t * b ^ (card s - card t) = ∑ t in powerset s, (∏ a_1 in t, a) * ∏ a in s \ t, b [PROOFSTEP] refine' Finset.sum_congr rfl fun t ht => _ [GOAL] α✝ : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a✝ : α✝ b✝ : β f g : α✝ → β inst✝¹ : CommSemiring β α : Type u_1 R : Type u_2 inst✝ : CommSemiring R a b : R s t : Finset α ht : t ∈ powerset s ⊢ a ^ card t * b ^ (card s - card t) = (∏ a_1 in t, a) * ∏ a in s \ t, b [PROOFSTEP] rw [prod_const, prod_const, ← card_sdiff (mem_powerset.1 ht)] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b✝ : β f✝ g : α → β inst✝ : CommSemiring β b : β s : Finset α f : α → β h : ∀ (x : α), x ∈ s → b ∣ f x y : β hy : y ∈ Multiset.map (fun x => f x) s.val ⊢ b ∣ y [PROOFSTEP] rcases Multiset.mem_map.1 hy with ⟨x, hx, rfl⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b✝ : β f✝ g : α → β inst✝ : CommSemiring β b : β s : Finset α f : α → β h : ∀ (x : α), x ∈ s → b ∣ f x x : α hx : x ∈ s.val hy : f x ∈ Multiset.map (fun x => f x) s.val ⊢ b ∣ f x [PROOFSTEP] exact h x hx [GOAL] α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f g : α → β R : Type u_1 inst✝ : CommRing R n k : ℕ ⊢ ∏ i in range k, (↑n - ↑i) = ↑(∏ i in range k, (n - i)) [PROOFSTEP] rw [prod_natCast] [GOAL] α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f g : α → β R : Type u_1 inst✝ : CommRing R n k : ℕ ⊢ ∏ i in range k, (↑n - ↑i) = ∏ x in range k, ↑(n - x) [PROOFSTEP] cases' le_or_lt k n with hkn hnk [GOAL] case inl α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f g : α → β R : Type u_1 inst✝ : CommRing R n k : ℕ hkn : k ≤ n ⊢ ∏ i in range k, (↑n - ↑i) = ∏ x in range k, ↑(n - x) [PROOFSTEP] exact prod_congr rfl fun i hi => (Nat.cast_sub <| (mem_range.1 hi).le.trans hkn).symm [GOAL] case inr α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f g : α → β R : Type u_1 inst✝ : CommRing R n k : ℕ hnk : n < k ⊢ ∏ i in range k, (↑n - ↑i) = ∏ x in range k, ↑(n - x) [PROOFSTEP] rw [← mem_range] at hnk [GOAL] case inr α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f g : α → β R : Type u_1 inst✝ : CommRing R n k : ℕ hnk : n ∈ range k ⊢ ∏ i in range k, (↑n - ↑i) = ∏ x in range k, ↑(n - x) [PROOFSTEP] rw [prod_eq_zero hnk, prod_eq_zero hnk] [GOAL] case inr α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f g : α → β R : Type u_1 inst✝ : CommRing R n k : ℕ hnk : n ∈ range k ⊢ ↑(n - n) = 0 [PROOFSTEP] simp [GOAL] case inr α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f g : α → β R : Type u_1 inst✝ : CommRing R n k : ℕ hnk : n ∈ range k ⊢ ↑n - ↑n = 0 [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝¹ : DecidableEq α inst✝ : CommMonoid β s : Finset α x : α h : ¬x ∈ s f : Finset α → β ⊢ ∏ a in powerset (insert x s), f a = (∏ a in powerset s, f a) * ∏ t in powerset s, f (insert x t) [PROOFSTEP] rw [powerset_insert, Finset.prod_union, Finset.prod_image] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝¹ : DecidableEq α inst✝ : CommMonoid β s : Finset α x : α h : ¬x ∈ s f : Finset α → β ⊢ ∀ (x_1 : Finset α), x_1 ∈ powerset s → ∀ (y : Finset α), y ∈ powerset s → insert x x_1 = insert x y → x_1 = y [PROOFSTEP] intro t₁ h₁ t₂ h₂ heq [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝¹ : DecidableEq α inst✝ : CommMonoid β s : Finset α x : α h : ¬x ∈ s f : Finset α → β t₁ : Finset α h₁ : t₁ ∈ powerset s t₂ : Finset α h₂ : t₂ ∈ powerset s heq : insert x t₁ = insert x t₂ ⊢ t₁ = t₂ [PROOFSTEP] rw [← Finset.erase_insert (not_mem_of_mem_powerset_of_not_mem h₁ h), ← Finset.erase_insert (not_mem_of_mem_powerset_of_not_mem h₂ h), heq] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝¹ : DecidableEq α inst✝ : CommMonoid β s : Finset α x : α h : ¬x ∈ s f : Finset α → β ⊢ Disjoint (powerset s) (image (insert x) (powerset s)) [PROOFSTEP] rw [Finset.disjoint_iff_ne] [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝¹ : DecidableEq α inst✝ : CommMonoid β s : Finset α x : α h : ¬x ∈ s f : Finset α → β ⊢ ∀ (a : Finset α), a ∈ powerset s → ∀ (b : Finset α), b ∈ image (insert x) (powerset s) → a ≠ b [PROOFSTEP] intro t₁ h₁ t₂ h₂ [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝¹ : DecidableEq α inst✝ : CommMonoid β s : Finset α x : α h : ¬x ∈ s f : Finset α → β t₁ : Finset α h₁ : t₁ ∈ powerset s t₂ : Finset α h₂ : t₂ ∈ image (insert x) (powerset s) ⊢ t₁ ≠ t₂ [PROOFSTEP] rcases Finset.mem_image.1 h₂ with ⟨t₃, _h₃, H₃₂⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝¹ : DecidableEq α inst✝ : CommMonoid β s : Finset α x : α h : ¬x ∈ s f : Finset α → β t₁ : Finset α h₁ : t₁ ∈ powerset s t₂ : Finset α h₂ : t₂ ∈ image (insert x) (powerset s) t₃ : Finset α _h₃ : t₃ ∈ powerset s H₃₂ : insert x t₃ = t₂ ⊢ t₁ ≠ t₂ [PROOFSTEP] rw [← H₃₂] [GOAL] case intro.intro α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝¹ : DecidableEq α inst✝ : CommMonoid β s : Finset α x : α h : ¬x ∈ s f : Finset α → β t₁ : Finset α h₁ : t₁ ∈ powerset s t₂ : Finset α h₂ : t₂ ∈ image (insert x) (powerset s) t₃ : Finset α _h₃ : t₃ ∈ powerset s H₃₂ : insert x t₃ = t₂ ⊢ t₁ ≠ insert x t₃ [PROOFSTEP] exact ne_insert_of_not_mem _ _ (not_mem_of_mem_powerset_of_not_mem h₁ h) [GOAL] α : Type u β : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α b : β f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : Finset α → β ⊢ ∏ t in powerset s, f t = ∏ j in range (card s + 1), ∏ t in powersetLen j s, f t [PROOFSTEP] rw [powerset_card_disjiUnion, prod_disjiUnion] [GOAL] α : Type u β : Type v γ : Type w s s₁ s₂ : Finset α a : α b : β f✝ g✝ : α → β inst✝ : NonUnitalNonAssocSemiring β n k : ℕ f g : ℕ → β ⊢ (∑ i in range (n + 1), f i) * ∑ i in range (k + 1), g i = (∑ i in range n, f i) * ∑ i in range k, g i + f n * ∑ i in range k, g i + (∑ i in range n, f i) * g k + f n * g k [PROOFSTEP] simp only [add_mul, mul_add, add_assoc, sum_range_succ]
{"mathlib_filename": "Mathlib.Algebra.BigOperators.Ring", "llama_tokens": 31883}
[GOAL] C : Type u_1 inst✝¹ : Category.{?u.11751, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ x : A ⟶ S.X₁ hx : k = x ≫ S.f ⊢ k ≫ S.g = 0 [PROOFSTEP] rw [hx, assoc, S.zero, comp_zero] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ x : A ⟶ S.X₁ hx : k = x ≫ S.f ⊢ liftK h k (_ : k ≫ S.g = 0) ≫ h.π = 0 [PROOFSTEP] rw [show 0 = (x ≫ h.f') ≫ h.π by simp] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ x : A ⟶ S.X₁ hx : k = x ≫ S.f ⊢ 0 = (x ≫ f' h) ≫ h.π [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ x : A ⟶ S.X₁ hx : k = x ≫ S.f ⊢ liftK h k (_ : k ≫ S.g = 0) ≫ h.π = (x ≫ f' h) ≫ h.π [PROOFSTEP] congr 1 [GOAL] case e_a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ x : A ⟶ S.X₁ hx : k = x ≫ S.f ⊢ liftK h k (_ : k ≫ S.g = 0) = x ≫ f' h [PROOFSTEP] simp only [← cancel_mono h.i, hx, liftK_i, assoc, f'_i] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hg : S.g = 0 ⊢ 𝟙 S.X₂ ≫ S.g = 0 [PROOFSTEP] rw [hg, id_comp] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hg : S.g = 0 ⊢ h.i ≫ liftK h (𝟙 S.X₂) (_ : 𝟙 S.X₂ ≫ S.g = 0) = 𝟙 h.K [PROOFSTEP] simp only [← cancel_mono h.i, id_comp, assoc, liftK_i, comp_id] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 ⊢ IsIso h.π [PROOFSTEP] have ⟨φ, hφ⟩ := CokernelCofork.IsColimit.desc' h.hπ' (𝟙 _) (by rw [← cancel_mono h.i, comp_id, f'_i, zero_comp, hf]) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 ⊢ f' h ≫ 𝟙 h.K = 0 [PROOFSTEP] rw [← cancel_mono h.i, comp_id, f'_i, zero_comp, hf] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 φ : (CokernelCofork.ofπ h.π (_ : f' h ≫ h.π = 0)).pt ⟶ h.K hφ : Cofork.π (CokernelCofork.ofπ h.π (_ : f' h ≫ h.π = 0)) ≫ φ = 𝟙 h.K ⊢ IsIso h.π [PROOFSTEP] dsimp at hφ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 φ : (CokernelCofork.ofπ h.π (_ : f' h ≫ h.π = 0)).pt ⟶ h.K hφ : h.π ≫ φ = 𝟙 h.K ⊢ IsIso h.π [PROOFSTEP] exact ⟨φ, hφ, by rw [← cancel_epi h.π, reassoc_of% hφ, comp_id]⟩ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 φ : (CokernelCofork.ofπ h.π (_ : f' h ≫ h.π = 0)).pt ⟶ h.K hφ : h.π ≫ φ = 𝟙 h.K ⊢ φ ≫ h.π = 𝟙 h.H [PROOFSTEP] rw [← cancel_epi h.π, reassoc_of% hφ, comp_id] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.20415, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hg : S.g = 0 c : CokernelCofork S.f hc : IsColimit c ⊢ 𝟙 S.X₂ ≫ S.g = 0 [PROOFSTEP] rw [id_comp, hg] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hg : S.g = 0 c : CokernelCofork S.f hc : IsColimit c ⊢ f' (ofIsColimitCokernelCofork S hg c hc) = S.f [PROOFSTEP] rw [← cancel_mono (ofIsColimitCokernelCofork S hg c hc).i, f'_i, ofIsColimitCokernelCofork_i] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hg : S.g = 0 c : CokernelCofork S.f hc : IsColimit c ⊢ S.f = S.f ≫ 𝟙 S.X₂ [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hg : S.g = 0 c : CokernelCofork S.f hc : IsColimit c ⊢ S.f = S.f ≫ 𝟙 S.X₂ [PROOFSTEP] rw [comp_id] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.25743, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 c : KernelFork S.g hc : IsLimit c ⊢ (IsLimit.lift (IsLimit.ofIsoLimit hc (Fork.ext (Iso.refl c.pt))) (KernelFork.ofι S.f (_ : S.f ≫ S.g = 0)) ≫ 𝟙 c.pt) ≫ Fork.ι c = 0 ≫ Fork.ι c [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.25743, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 c : KernelFork S.g hc : IsLimit c ⊢ ((IsLimit.lift hc (KernelFork.ofι S.f (_ : S.f ≫ S.g = 0)) ≫ 𝟙 c.pt) ≫ 𝟙 c.pt) ≫ Fork.ι c = 0 ≫ Fork.ι c [PROOFSTEP] simp only [comp_id, zero_comp, Fork.IsLimit.lift_ι, Fork.ι_ofι, hf] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.25743, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 c : KernelFork S.g hc : IsLimit c ⊢ IsLimit.lift (IsLimit.ofIsoLimit hc (Fork.ext (Iso.refl c.pt))) (KernelFork.ofι S.f (_ : S.f ≫ S.g = 0)) ≫ Fork.ι c = 0 ≫ Fork.ι c [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.25743, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 c : KernelFork S.g hc : IsLimit c ⊢ (IsLimit.lift hc (KernelFork.ofι S.f (_ : S.f ≫ S.g = 0)) ≫ 𝟙 c.pt) ≫ Fork.ι c = 0 ≫ Fork.ι c [PROOFSTEP] simp only [comp_id, zero_comp, Fork.IsLimit.lift_ι, Fork.ι_ofι, hf] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 c : KernelFork S.g hc : IsLimit c ⊢ f' (ofIsLimitKernelFork S hf c hc) = 0 [PROOFSTEP] rw [← cancel_mono (ofIsLimitKernelFork S hf c hc).i, f'_i, hf, zero_comp] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.30745, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 hg : S.g = 0 ⊢ 𝟙 S.X₂ ≫ S.g = 0 [PROOFSTEP] rw [id_comp, hg] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.30745, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 hg : S.g = 0 ⊢ IsLimit.lift (KernelFork.IsLimit.ofId S.g hg) (KernelFork.ofι S.f (_ : S.f ≫ S.g = 0)) ≫ 𝟙 S.X₂ = 0 [PROOFSTEP] change S.f ≫ 𝟙 _ = 0 [GOAL] C : Type u_1 inst✝¹ : Category.{?u.30745, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 hg : S.g = 0 ⊢ S.f ≫ 𝟙 S.X₂ = 0 [PROOFSTEP] simp only [hf, zero_comp] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C hf : S.f = 0 hg : S.g = 0 ⊢ f' (ofZeros S hf hg) = 0 [PROOFSTEP] rw [← cancel_mono ((ofZeros S hf hg).i), zero_comp, f'_i, hf] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.51232, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ψ₁ ψ₂ : LeftHomologyMapData φ h₁ h₂ ⊢ ψ₁ = ψ₂ [PROOFSTEP] have hK : ψ₁.φK = ψ₂.φK := by rw [← cancel_mono h₂.i, commi, commi] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.51232, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ψ₁ ψ₂ : LeftHomologyMapData φ h₁ h₂ ⊢ ψ₁.φK = ψ₂.φK [PROOFSTEP] rw [← cancel_mono h₂.i, commi, commi] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.51232, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ψ₁ ψ₂ : LeftHomologyMapData φ h₁ h₂ hK : ψ₁.φK = ψ₂.φK ⊢ ψ₁ = ψ₂ [PROOFSTEP] have hH : ψ₁.φH = ψ₂.φH := by rw [← cancel_epi h₁.π, commπ, commπ, hK] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.51232, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ψ₁ ψ₂ : LeftHomologyMapData φ h₁ h₂ hK : ψ₁.φK = ψ₂.φK ⊢ ψ₁.φH = ψ₂.φH [PROOFSTEP] rw [← cancel_epi h₁.π, commπ, commπ, hK] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.51232, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ψ₁ ψ₂ : LeftHomologyMapData φ h₁ h₂ hK : ψ₁.φK = ψ₂.φK hH : ψ₁.φH = ψ₂.φH ⊢ ψ₁ = ψ₂ [PROOFSTEP] cases ψ₁ [GOAL] case mk C : Type u_1 inst✝¹ : Category.{?u.51232, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ψ₂ : LeftHomologyMapData φ h₁ h₂ φK✝ : h₁.K ⟶ h₂.K φH✝ : h₁.H ⟶ h₂.H commi✝ : φK✝ ≫ h₂.i = h₁.i ≫ φ.τ₂ commf'✝ : LeftHomologyData.f' h₁ ≫ φK✝ = φ.τ₁ ≫ LeftHomologyData.f' h₂ commπ✝ : h₁.π ≫ φH✝ = φK✝ ≫ h₂.π hK : (mk φK✝ φH✝).φK = ψ₂.φK hH : (mk φK✝ φH✝).φH = ψ₂.φH ⊢ mk φK✝ φH✝ = ψ₂ [PROOFSTEP] cases ψ₂ [GOAL] case mk.mk C : Type u_1 inst✝¹ : Category.{?u.51232, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ φK✝¹ : h₁.K ⟶ h₂.K φH✝¹ : h₁.H ⟶ h₂.H commi✝¹ : φK✝¹ ≫ h₂.i = h₁.i ≫ φ.τ₂ commf'✝¹ : LeftHomologyData.f' h₁ ≫ φK✝¹ = φ.τ₁ ≫ LeftHomologyData.f' h₂ commπ✝¹ : h₁.π ≫ φH✝¹ = φK✝¹ ≫ h₂.π φK✝ : h₁.K ⟶ h₂.K φH✝ : h₁.H ⟶ h₂.H commi✝ : φK✝ ≫ h₂.i = h₁.i ≫ φ.τ₂ commf'✝ : LeftHomologyData.f' h₁ ≫ φK✝ = φ.τ₁ ≫ LeftHomologyData.f' h₂ commπ✝ : h₁.π ≫ φH✝ = φK✝ ≫ h₂.π hK : (mk φK✝¹ φH✝¹).φK = (mk φK✝ φH✝).φK hH : (mk φK✝¹ φH✝¹).φH = (mk φK✝ φH✝).φH ⊢ mk φK✝¹ φH✝¹ = mk φK✝ φH✝ [PROOFSTEP] congr [GOAL] C : Type u_1 inst✝¹ : Category.{?u.53678, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ⊢ LeftHomologyMapData φ h₁ h₂ [PROOFSTEP] let φK : h₁.K ⟶ h₂.K := h₂.liftK (h₁.i ≫ φ.τ₂) (by rw [assoc, φ.comm₂₃, h₁.wi_assoc, zero_comp]) [GOAL] C : Type u_1 inst✝¹ : Category.{?u.53678, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ⊢ (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0 [PROOFSTEP] rw [assoc, φ.comm₂₃, h₁.wi_assoc, zero_comp] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.53678, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0) ⊢ LeftHomologyMapData φ h₁ h₂ [PROOFSTEP] have commf' : h₁.f' ≫ φK = φ.τ₁ ≫ h₂.f' := by rw [← cancel_mono h₂.i, assoc, assoc, LeftHomologyData.liftK_i, LeftHomologyData.f'_i_assoc, LeftHomologyData.f'_i, φ.comm₁₂] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.53678, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0) ⊢ LeftHomologyData.f' h₁ ≫ φK = φ.τ₁ ≫ LeftHomologyData.f' h₂ [PROOFSTEP] rw [← cancel_mono h₂.i, assoc, assoc, LeftHomologyData.liftK_i, LeftHomologyData.f'_i_assoc, LeftHomologyData.f'_i, φ.comm₁₂] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.53678, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0) commf' : LeftHomologyData.f' h₁ ≫ φK = φ.τ₁ ≫ LeftHomologyData.f' h₂ ⊢ LeftHomologyMapData φ h₁ h₂ [PROOFSTEP] let φH : h₁.H ⟶ h₂.H := h₁.descH (φK ≫ h₂.π) (by rw [reassoc_of% commf', h₂.f'_π, comp_zero]) [GOAL] C : Type u_1 inst✝¹ : Category.{?u.53678, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0) commf' : LeftHomologyData.f' h₁ ≫ φK = φ.τ₁ ≫ LeftHomologyData.f' h₂ ⊢ LeftHomologyData.f' h₁ ≫ φK ≫ h₂.π = 0 [PROOFSTEP] rw [reassoc_of% commf', h₂.f'_π, comp_zero] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.53678, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0) commf' : LeftHomologyData.f' h₁ ≫ φK = φ.τ₁ ≫ LeftHomologyData.f' h₂ φH : h₁.H ⟶ h₂.H := LeftHomologyData.descH h₁ (φK ≫ h₂.π) (_ : LeftHomologyData.f' h₁ ≫ φK ≫ h₂.π = 0) ⊢ LeftHomologyMapData φ h₁ h₂ [PROOFSTEP] exact ⟨φK, φH, by simp, commf', by simp⟩ [GOAL] C : Type u_1 inst✝¹ : Category.{?u.53678, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0) commf' : LeftHomologyData.f' h₁ ≫ φK = φ.τ₁ ≫ LeftHomologyData.f' h₂ φH : h₁.H ⟶ h₂.H := LeftHomologyData.descH h₁ (φK ≫ h₂.π) (_ : LeftHomologyData.f' h₁ ≫ φK ≫ h₂.π = 0) ⊢ φK ≫ h₂.i = h₁.i ≫ φ.τ₂ [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.53678, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0) commf' : LeftHomologyData.f' h₁ ≫ φK = φ.τ₁ ≫ LeftHomologyData.f' h₂ φH : h₁.H ⟶ h₂.H := LeftHomologyData.descH h₁ (φK ≫ h₂.π) (_ : LeftHomologyData.f' h₁ ≫ φK ≫ h₂.π = 0) ⊢ h₁.π ≫ φH = φK ≫ h₂.π [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ γ₁ γ₂ : LeftHomologyMapData φ h₁ h₂ eq : γ₁ = γ₂ ⊢ γ₁.φH = γ₂.φH [PROOFSTEP] rw [eq] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ γ₁ γ₂ : LeftHomologyMapData φ h₁ h₂ eq : γ₁ = γ₂ ⊢ γ₁.φK = γ₂.φK [PROOFSTEP] rw [eq] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.62763, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ✝ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ φ : S₁ ⟶ S₂ hg₁ : S₁.g = 0 c₁ : CokernelCofork S₁.f hc₁ : IsColimit c₁ hg₂ : S₂.g = 0 c₂ : CokernelCofork S₂.f hc₂ : IsColimit c₂ f : c₁.pt ⟶ c₂.pt comm : φ.τ₂ ≫ Cofork.π c₂ = Cofork.π c₁ ≫ f ⊢ LeftHomologyData.f' (LeftHomologyData.ofIsColimitCokernelCofork S₁ hg₁ c₁ hc₁) ≫ φ.τ₂ = φ.τ₁ ≫ LeftHomologyData.f' (LeftHomologyData.ofIsColimitCokernelCofork S₂ hg₂ c₂ hc₂) [PROOFSTEP] simp only [LeftHomologyData.ofIsColimitCokernelCofork_f', φ.comm₁₂] [GOAL] C : Type u_1 inst✝² : Category.{?u.82184, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasLeftHomology S ⊢ Mono (iCycles S) [PROOFSTEP] dsimp only [iCycles] [GOAL] C : Type u_1 inst✝² : Category.{?u.82184, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasLeftHomology S ⊢ Mono (leftHomologyData S).i [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝² : Category.{?u.82564, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasLeftHomology S ⊢ Epi (leftHomologyπ S) [PROOFSTEP] dsimp only [leftHomologyπ] [GOAL] C : Type u_1 inst✝² : Category.{?u.82564, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasLeftHomology S ⊢ Epi (leftHomologyData S).π [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasLeftHomology S A : C f₁ f₂ : leftHomology S ⟶ A ⊢ f₁ = f₂ ↔ leftHomologyπ S ≫ f₁ = leftHomologyπ S ≫ f₂ [PROOFSTEP] rw [cancel_epi] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasLeftHomology S A : C f₁ f₂ : leftHomology S ⟶ A h : leftHomologyπ S ≫ f₁ = leftHomologyπ S ≫ f₂ ⊢ f₁ = f₂ [PROOFSTEP] simpa only [leftHomology_ext_iff] using h [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasLeftHomology S A : C f₁ f₂ : A ⟶ cycles S ⊢ f₁ = f₂ ↔ f₁ ≫ iCycles S = f₂ ≫ iCycles S [PROOFSTEP] rw [cancel_mono] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasLeftHomology S A : C f₁ f₂ : A ⟶ cycles S h : f₁ ≫ iCycles S = f₂ ≫ iCycles S ⊢ f₁ = f₂ [PROOFSTEP] simpa only [cycles_ext_iff] using h [GOAL] C : Type u_1 inst✝² : Category.{?u.86307, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasLeftHomology S hg : S.g = 0 ⊢ cycles S ≅ S.X₂ [PROOFSTEP] have := S.isIso_iCycles hg [GOAL] C : Type u_1 inst✝² : Category.{?u.86307, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasLeftHomology S hg : S.g = 0 this : IsIso (iCycles S) ⊢ cycles S ≅ S.X₂ [PROOFSTEP] exact asIso S.iCycles [GOAL] C : Type u_1 inst✝² : Category.{?u.89230, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasLeftHomology S hf : S.f = 0 ⊢ cycles S ≅ leftHomology S [PROOFSTEP] have := S.isIso_leftHomologyπ hf [GOAL] C : Type u_1 inst✝² : Category.{?u.89230, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasLeftHomology S hf : S.f = 0 this : IsIso (leftHomologyπ S) ⊢ cycles S ≅ leftHomology S [PROOFSTEP] exact asIso S.leftHomologyπ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ⊢ LeftHomologyData.f' h₁ ≫ cyclesMap' φ h₁ h₂ = φ.τ₁ ≫ LeftHomologyData.f' h₂ [PROOFSTEP] simp only [← cancel_mono h₂.i, assoc, φ.comm₁₂, cyclesMap'_i, LeftHomologyData.f'_i_assoc, LeftHomologyData.f'_i] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ₁ : S₁ ⟶ S₂ φ₂ : S₂ ⟶ S₃ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ h₃ : LeftHomologyData S₃ ⊢ leftHomologyMap' (φ₁ ≫ φ₂) h₁ h₃ = leftHomologyMap' φ₁ h₁ h₂ ≫ leftHomologyMap' φ₂ h₂ h₃ [PROOFSTEP] let γ₁ := leftHomologyMapData φ₁ h₁ h₂ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ₁ : S₁ ⟶ S₂ φ₂ : S₂ ⟶ S₃ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ h₃ : LeftHomologyData S₃ γ₁ : LeftHomologyMapData φ₁ h₁ h₂ := leftHomologyMapData φ₁ h₁ h₂ ⊢ leftHomologyMap' (φ₁ ≫ φ₂) h₁ h₃ = leftHomologyMap' φ₁ h₁ h₂ ≫ leftHomologyMap' φ₂ h₂ h₃ [PROOFSTEP] let γ₂ := leftHomologyMapData φ₂ h₂ h₃ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ₁ : S₁ ⟶ S₂ φ₂ : S₂ ⟶ S₃ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ h₃ : LeftHomologyData S₃ γ₁ : LeftHomologyMapData φ₁ h₁ h₂ := leftHomologyMapData φ₁ h₁ h₂ γ₂ : LeftHomologyMapData φ₂ h₂ h₃ := leftHomologyMapData φ₂ h₂ h₃ ⊢ leftHomologyMap' (φ₁ ≫ φ₂) h₁ h₃ = leftHomologyMap' φ₁ h₁ h₂ ≫ leftHomologyMap' φ₂ h₂ h₃ [PROOFSTEP] rw [γ₁.leftHomologyMap'_eq, γ₂.leftHomologyMap'_eq, (γ₁.comp γ₂).leftHomologyMap'_eq, LeftHomologyMapData.comp_φH] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ₁ : S₁ ⟶ S₂ φ₂ : S₂ ⟶ S₃ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ h₃ : LeftHomologyData S₃ ⊢ cyclesMap' (φ₁ ≫ φ₂) h₁ h₃ = cyclesMap' φ₁ h₁ h₂ ≫ cyclesMap' φ₂ h₂ h₃ [PROOFSTEP] let γ₁ := leftHomologyMapData φ₁ h₁ h₂ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ₁ : S₁ ⟶ S₂ φ₂ : S₂ ⟶ S₃ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ h₃ : LeftHomologyData S₃ γ₁ : LeftHomologyMapData φ₁ h₁ h₂ := leftHomologyMapData φ₁ h₁ h₂ ⊢ cyclesMap' (φ₁ ≫ φ₂) h₁ h₃ = cyclesMap' φ₁ h₁ h₂ ≫ cyclesMap' φ₂ h₂ h₃ [PROOFSTEP] let γ₂ := leftHomologyMapData φ₂ h₂ h₃ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ₁ : S₁ ⟶ S₂ φ₂ : S₂ ⟶ S₃ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ h₃ : LeftHomologyData S₃ γ₁ : LeftHomologyMapData φ₁ h₁ h₂ := leftHomologyMapData φ₁ h₁ h₂ γ₂ : LeftHomologyMapData φ₂ h₂ h₃ := leftHomologyMapData φ₂ h₂ h₃ ⊢ cyclesMap' (φ₁ ≫ φ₂) h₁ h₃ = cyclesMap' φ₁ h₁ h₂ ≫ cyclesMap' φ₂ h₂ h₃ [PROOFSTEP] rw [γ₁.cyclesMap'_eq, γ₂.cyclesMap'_eq, (γ₁.comp γ₂).cyclesMap'_eq, LeftHomologyMapData.comp_φK] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.116872, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ⊢ leftHomologyMap' e.hom h₁ h₂ ≫ leftHomologyMap' e.inv h₂ h₁ = 𝟙 h₁.H [PROOFSTEP] rw [← leftHomologyMap'_comp, e.hom_inv_id, leftHomologyMap'_id] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.116872, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ⊢ leftHomologyMap' e.inv h₂ h₁ ≫ leftHomologyMap' e.hom h₁ h₂ = 𝟙 h₂.H [PROOFSTEP] rw [← leftHomologyMap'_comp, e.inv_hom_id, leftHomologyMap'_id] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.119499, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ⊢ cyclesMap' e.hom h₁ h₂ ≫ cyclesMap' e.inv h₂ h₁ = 𝟙 h₁.K [PROOFSTEP] rw [← cyclesMap'_comp, e.hom_inv_id, cyclesMap'_id] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.119499, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ⊢ cyclesMap' e.inv h₂ h₁ ≫ cyclesMap' e.hom h₁ h₂ = 𝟙 h₂.K [PROOFSTEP] rw [← cyclesMap'_comp, e.inv_hom_id, cyclesMap'_id] [GOAL] C : Type u_1 inst✝³ : Category.{?u.122110, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ leftHomologyMap e.hom ≫ leftHomologyMap e.inv = 𝟙 (leftHomology S₁) [PROOFSTEP] rw [← leftHomologyMap_comp, e.hom_inv_id, leftHomologyMap_id] [GOAL] C : Type u_1 inst✝³ : Category.{?u.122110, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ leftHomologyMap e.inv ≫ leftHomologyMap e.hom = 𝟙 (leftHomology S₂) [PROOFSTEP] rw [← leftHomologyMap_comp, e.inv_hom_id, leftHomologyMap_id] [GOAL] C : Type u_1 inst✝³ : Category.{?u.125711, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ cyclesMap e.hom ≫ cyclesMap e.inv = 𝟙 (cycles S₁) [PROOFSTEP] rw [← cyclesMap_comp, e.hom_inv_id, cyclesMap_id] [GOAL] C : Type u_1 inst✝³ : Category.{?u.125711, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ cyclesMap e.inv ≫ cyclesMap e.hom = 𝟙 (cycles S₂) [PROOFSTEP] rw [← cyclesMap_comp, e.inv_hom_id, cyclesMap_id] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S inst✝ : HasLeftHomology S ⊢ (cyclesIso h).hom ≫ h.i = iCycles S [PROOFSTEP] dsimp [iCycles, LeftHomologyData.cyclesIso] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S inst✝ : HasLeftHomology S ⊢ cyclesMap' (𝟙 S) (leftHomologyData S) h ≫ h.i = (leftHomologyData S).i [PROOFSTEP] simp only [cyclesMap'_i, id_τ₂, comp_id] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S inst✝ : HasLeftHomology S ⊢ (cyclesIso h).inv ≫ iCycles S = h.i [PROOFSTEP] simp only [← h.cyclesIso_hom_comp_i, Iso.inv_hom_id_assoc] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S inst✝ : HasLeftHomology S ⊢ leftHomologyπ S ≫ (leftHomologyIso h).hom = (cyclesIso h).hom ≫ h.π [PROOFSTEP] dsimp only [leftHomologyπ, leftHomologyIso, cyclesIso, leftHomologyMapIso', cyclesMapIso', Iso.refl] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S inst✝ : HasLeftHomology S ⊢ (leftHomologyData S).π ≫ leftHomologyMap' (𝟙 S) (leftHomologyData S) h = cyclesMap' (𝟙 S) (leftHomologyData S) h ≫ h.π [PROOFSTEP] rw [← leftHomologyπ_naturality'] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S inst✝ : HasLeftHomology S ⊢ h.π ≫ (leftHomologyIso h).inv = (cyclesIso h).inv ≫ leftHomologyπ S [PROOFSTEP] simp only [← cancel_epi h.cyclesIso.hom, ← cancel_mono h.leftHomologyIso.hom, assoc, Iso.inv_hom_id, comp_id, Iso.hom_inv_id_assoc, LeftHomologyData.leftHomologyπ_comp_leftHomologyIso_hom] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ γ : LeftHomologyMapData φ h₁ h₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ leftHomologyMap φ = (LeftHomologyData.leftHomologyIso h₁).hom ≫ γ.φH ≫ (LeftHomologyData.leftHomologyIso h₂).inv [PROOFSTEP] dsimp [LeftHomologyData.leftHomologyIso, leftHomologyMapIso'] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ γ : LeftHomologyMapData φ h₁ h₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ leftHomologyMap φ = leftHomologyMap' (𝟙 S₁) (leftHomologyData S₁) h₁ ≫ γ.φH ≫ leftHomologyMap' (𝟙 S₂) h₂ (leftHomologyData S₂) [PROOFSTEP] rw [← γ.leftHomologyMap'_eq, ← leftHomologyMap'_comp, ← leftHomologyMap'_comp, id_comp, comp_id] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ γ : LeftHomologyMapData φ h₁ h₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ leftHomologyMap φ = leftHomologyMap' φ (leftHomologyData S₁) (leftHomologyData S₂) [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ γ : LeftHomologyMapData φ h₁ h₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ cyclesMap φ = (LeftHomologyData.cyclesIso h₁).hom ≫ γ.φK ≫ (LeftHomologyData.cyclesIso h₂).inv [PROOFSTEP] dsimp [LeftHomologyData.cyclesIso, cyclesMapIso'] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ γ : LeftHomologyMapData φ h₁ h₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ cyclesMap φ = cyclesMap' (𝟙 S₁) (leftHomologyData S₁) h₁ ≫ γ.φK ≫ cyclesMap' (𝟙 S₂) h₂ (leftHomologyData S₂) [PROOFSTEP] rw [← γ.cyclesMap'_eq, ← cyclesMap'_comp, ← cyclesMap'_comp, id_comp, comp_id] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ γ : LeftHomologyMapData φ h₁ h₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ cyclesMap φ = cyclesMap' φ (leftHomologyData S₁) (leftHomologyData S₂) [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ γ : LeftHomologyMapData φ h₁ h₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ leftHomologyMap φ ≫ (LeftHomologyData.leftHomologyIso h₂).hom = (LeftHomologyData.leftHomologyIso h₁).hom ≫ γ.φH [PROOFSTEP] simp only [γ.leftHomologyMap_eq, assoc, Iso.inv_hom_id, comp_id] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ γ : LeftHomologyMapData φ h₁ h₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ cyclesMap φ ≫ (LeftHomologyData.cyclesIso h₂).hom = (LeftHomologyData.cyclesIso h₁).hom ≫ γ.φK [PROOFSTEP] simp only [γ.cyclesMap_eq, assoc, Iso.inv_hom_id, comp_id] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ LeftHomologyData S₂ [PROOFSTEP] let i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ ⊢ LeftHomologyData S₂ [PROOFSTEP] have wi : i ≫ S₂.g = 0 := by simp only [assoc, φ.comm₂₃, h.wi_assoc, zero_comp] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ ⊢ i ≫ S₂.g = 0 [PROOFSTEP] simp only [assoc, φ.comm₂₃, h.wi_assoc, zero_comp] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 ⊢ LeftHomologyData S₂ [PROOFSTEP] have hi : IsLimit (KernelFork.ofι i wi) := KernelFork.IsLimit.ofι _ _ (fun x hx => h.liftK (x ≫ inv φ.τ₂) (by rw [assoc, ← cancel_mono φ.τ₃, assoc, assoc, ← φ.comm₂₃, IsIso.inv_hom_id_assoc, hx, zero_comp])) (fun x hx => by simp) (fun x hx b hb => by dsimp rw [← cancel_mono h.i, ← cancel_mono φ.τ₂, assoc, assoc, liftK_i_assoc, assoc, IsIso.inv_hom_id, comp_id, hb]) [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 W'✝ : C x : W'✝ ⟶ S₂.X₂ hx : x ≫ S₂.g = 0 ⊢ (x ≫ inv φ.τ₂) ≫ S₁.g = 0 [PROOFSTEP] rw [assoc, ← cancel_mono φ.τ₃, assoc, assoc, ← φ.comm₂₃, IsIso.inv_hom_id_assoc, hx, zero_comp] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 W'✝ : C x : W'✝ ⟶ S₂.X₂ hx : x ≫ S₂.g = 0 ⊢ (fun {W'} x hx => liftK h (x ≫ inv φ.τ₂) (_ : (x ≫ inv φ.τ₂) ≫ S₁.g = 0)) x hx ≫ i = x [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 W'✝ : C x : W'✝ ⟶ S₂.X₂ hx : x ≫ S₂.g = 0 b : W'✝ ⟶ h.K hb : b ≫ i = x ⊢ b = (fun {W'} x hx => liftK h (x ≫ inv φ.τ₂) (_ : (x ≫ inv φ.τ₂) ≫ S₁.g = 0)) x hx [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 W'✝ : C x : W'✝ ⟶ S₂.X₂ hx : x ≫ S₂.g = 0 b : W'✝ ⟶ h.K hb : b ≫ i = x ⊢ b = liftK h (x ≫ inv φ.τ₂) (_ : (x ≫ inv φ.τ₂) ≫ S₁.g = 0) [PROOFSTEP] rw [← cancel_mono h.i, ← cancel_mono φ.τ₂, assoc, assoc, liftK_i_assoc, assoc, IsIso.inv_hom_id, comp_id, hb] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 hi : IsLimit (KernelFork.ofι i wi) ⊢ LeftHomologyData S₂ [PROOFSTEP] let f' := hi.lift (KernelFork.ofι S₂.f S₂.zero) [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) ⊢ LeftHomologyData S₂ [PROOFSTEP] have hf' : φ.τ₁ ≫ f' = h.f' := by have eq := @Fork.IsLimit.lift_ι _ _ _ _ _ _ _ ((KernelFork.ofι S₂.f S₂.zero)) hi simp only [Fork.ι_ofι] at eq rw [← cancel_mono h.i, ← cancel_mono φ.τ₂, assoc, assoc, eq, f'_i, φ.comm₁₂] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) ⊢ φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h [PROOFSTEP] have eq := @Fork.IsLimit.lift_ι _ _ _ _ _ _ _ ((KernelFork.ofι S₂.f S₂.zero)) hi [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) eq : IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) ≫ Fork.ι (KernelFork.ofι i wi) = Fork.ι (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) ⊢ φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h [PROOFSTEP] simp only [Fork.ι_ofι] at eq [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) eq : IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) ≫ h.i ≫ φ.τ₂ = S₂.f ⊢ φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h [PROOFSTEP] rw [← cancel_mono h.i, ← cancel_mono φ.τ₂, assoc, assoc, eq, f'_i, φ.comm₁₂] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h ⊢ LeftHomologyData S₂ [PROOFSTEP] have wπ : f' ≫ h.π = 0 := by rw [← cancel_epi φ.τ₁, comp_zero, reassoc_of% hf', h.f'_π] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h ⊢ f' ≫ h.π = 0 [PROOFSTEP] rw [← cancel_epi φ.τ₁, comp_zero, reassoc_of% hf', h.f'_π] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h wπ : f' ≫ h.π = 0 ⊢ LeftHomologyData S₂ [PROOFSTEP] have hπ : IsColimit (CokernelCofork.ofπ h.π wπ) := CokernelCofork.IsColimit.ofπ _ _ (fun x hx => h.descH x (by rw [← hf', assoc, hx, comp_zero])) (fun x hx => by simp) (fun x hx b hb => by rw [← cancel_epi h.π, π_descH, hb]) [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h wπ : f' ≫ h.π = 0 Z'✝ : C x : h.K ⟶ Z'✝ hx : f' ≫ x = 0 ⊢ CategoryTheory.ShortComplex.LeftHomologyData.f' h ≫ x = 0 [PROOFSTEP] rw [← hf', assoc, hx, comp_zero] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h wπ : f' ≫ h.π = 0 Z'✝ : C x : h.K ⟶ Z'✝ hx : f' ≫ x = 0 ⊢ h.π ≫ (fun {Z'} x hx => descH h x (_ : CategoryTheory.ShortComplex.LeftHomologyData.f' h ≫ x = 0)) x hx = x [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h wπ : f' ≫ h.π = 0 Z'✝ : C x : h.K ⟶ Z'✝ hx : f' ≫ x = 0 b : h.H ⟶ Z'✝ hb : h.π ≫ b = x ⊢ b = (fun {Z'} x hx => descH h x (_ : CategoryTheory.ShortComplex.LeftHomologyData.f' h ≫ x = 0)) x hx [PROOFSTEP] rw [← cancel_epi h.π, π_descH, hb] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.150309, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂ wi : i ≫ S₂.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h wπ : f' ≫ h.π = 0 hπ : IsColimit (CokernelCofork.ofπ h.π wπ) ⊢ LeftHomologyData S₂ [PROOFSTEP] exact ⟨h.K, h.H, i, h.π, wi, hi, wπ, hπ⟩ [GOAL] C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ φ.τ₁ ≫ f' (ofEpiOfIsIsoOfMono φ h) = f' h [PROOFSTEP] rw [← cancel_mono (ofEpiOfIsIsoOfMono φ h).i, assoc, f'_i, ofEpiOfIsIsoOfMono_i, f'_i_assoc, φ.comm₁₂] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ LeftHomologyData S₁ [PROOFSTEP] let i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ ⊢ LeftHomologyData S₁ [PROOFSTEP] have wi : i ≫ S₁.g = 0 := by rw [assoc, ← cancel_mono φ.τ₃, zero_comp, assoc, assoc, ← φ.comm₂₃, IsIso.inv_hom_id_assoc, h.wi] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ ⊢ i ≫ S₁.g = 0 [PROOFSTEP] rw [assoc, ← cancel_mono φ.τ₃, zero_comp, assoc, assoc, ← φ.comm₂₃, IsIso.inv_hom_id_assoc, h.wi] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 ⊢ LeftHomologyData S₁ [PROOFSTEP] have hi : IsLimit (KernelFork.ofι i wi) := KernelFork.IsLimit.ofι _ _ (fun x hx => h.liftK (x ≫ φ.τ₂) (by rw [assoc, φ.comm₂₃, reassoc_of% hx, zero_comp])) (fun x hx => by simp) (fun x hx b hb => by rw [← cancel_mono h.i, ← cancel_mono (inv φ.τ₂), assoc, assoc, hb, liftK_i_assoc, assoc, IsIso.hom_inv_id, comp_id]) [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 W'✝ : C x : W'✝ ⟶ S₁.X₂ hx : x ≫ S₁.g = 0 ⊢ (x ≫ φ.τ₂) ≫ S₂.g = 0 [PROOFSTEP] rw [assoc, φ.comm₂₃, reassoc_of% hx, zero_comp] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 W'✝ : C x : W'✝ ⟶ S₁.X₂ hx : x ≫ S₁.g = 0 ⊢ (fun {W'} x hx => liftK h (x ≫ φ.τ₂) (_ : (x ≫ φ.τ₂) ≫ S₂.g = 0)) x hx ≫ i = x [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 W'✝ : C x : W'✝ ⟶ S₁.X₂ hx : x ≫ S₁.g = 0 b : W'✝ ⟶ h.K hb : b ≫ i = x ⊢ b = (fun {W'} x hx => liftK h (x ≫ φ.τ₂) (_ : (x ≫ φ.τ₂) ≫ S₂.g = 0)) x hx [PROOFSTEP] rw [← cancel_mono h.i, ← cancel_mono (inv φ.τ₂), assoc, assoc, hb, liftK_i_assoc, assoc, IsIso.hom_inv_id, comp_id] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 hi : IsLimit (KernelFork.ofι i wi) ⊢ LeftHomologyData S₁ [PROOFSTEP] let f' := hi.lift (KernelFork.ofι S₁.f S₁.zero) [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)) ⊢ LeftHomologyData S₁ [PROOFSTEP] have hf' : f' ≫ i = S₁.f := Fork.IsLimit.lift_ι _ [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)) hf' : f' ≫ i = S₁.f ⊢ LeftHomologyData S₁ [PROOFSTEP] have hf'' : f' = φ.τ₁ ≫ h.f' := by rw [← cancel_mono h.i, ← cancel_mono (inv φ.τ₂), assoc, assoc, assoc, hf', f'_i_assoc, φ.comm₁₂_assoc, IsIso.hom_inv_id, comp_id] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)) hf' : f' ≫ i = S₁.f ⊢ f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h [PROOFSTEP] rw [← cancel_mono h.i, ← cancel_mono (inv φ.τ₂), assoc, assoc, assoc, hf', f'_i_assoc, φ.comm₁₂_assoc, IsIso.hom_inv_id, comp_id] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)) hf' : f' ≫ i = S₁.f hf'' : f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h ⊢ LeftHomologyData S₁ [PROOFSTEP] have wπ : f' ≫ h.π = 0 := by simp only [hf'', assoc, f'_π, comp_zero] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)) hf' : f' ≫ i = S₁.f hf'' : f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h ⊢ f' ≫ h.π = 0 [PROOFSTEP] simp only [hf'', assoc, f'_π, comp_zero] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)) hf' : f' ≫ i = S₁.f hf'' : f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h wπ : f' ≫ h.π = 0 ⊢ LeftHomologyData S₁ [PROOFSTEP] have hπ : IsColimit (CokernelCofork.ofπ h.π wπ) := CokernelCofork.IsColimit.ofπ _ _ (fun x hx => h.descH x (by rw [← cancel_epi φ.τ₁, ← reassoc_of% hf'', hx, comp_zero])) (fun x hx => π_descH _ _ _) (fun x hx b hx => by rw [← cancel_epi h.π, π_descH, hx]) [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)) hf' : f' ≫ i = S₁.f hf'' : f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h wπ : f' ≫ h.π = 0 Z'✝ : C x : h.K ⟶ Z'✝ hx : f' ≫ x = 0 ⊢ CategoryTheory.ShortComplex.LeftHomologyData.f' h ≫ x = 0 [PROOFSTEP] rw [← cancel_epi φ.τ₁, ← reassoc_of% hf'', hx, comp_zero] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)) hf' : f' ≫ i = S₁.f hf'' : f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h wπ : f' ≫ h.π = 0 Z'✝ : C x : h.K ⟶ Z'✝ hx✝ : f' ≫ x = 0 b : h.H ⟶ Z'✝ hx : h.π ≫ b = x ⊢ b = (fun {Z'} x hx => descH h x (_ : CategoryTheory.ShortComplex.LeftHomologyData.f' h ≫ x = 0)) x hx✝ [PROOFSTEP] rw [← cancel_epi h.π, π_descH, hx] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.166978, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂ wi : i ≫ S₁.g = 0 hi : IsLimit (KernelFork.ofι i wi) f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt := IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)) hf' : f' ≫ i = S₁.f hf'' : f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h wπ : f' ≫ h.π = 0 hπ : IsColimit (CokernelCofork.ofπ h.π wπ) ⊢ LeftHomologyData S₁ [PROOFSTEP] exact ⟨h.K, h.H, i, h.π, wi, hi, wπ, hπ⟩ [GOAL] C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ f' (ofEpiOfIsIsoOfMono' φ h) = φ.τ₁ ≫ f' h [PROOFSTEP] rw [← cancel_mono (ofEpiOfIsIsoOfMono' φ h).i, f'_i, ofEpiOfIsIsoOfMono'_i, assoc, f'_i_assoc, φ.comm₁₂_assoc, IsIso.hom_inv_id, comp_id] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.195682, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ IsIso (leftHomologyMap' φ h₁ h₂) [PROOFSTEP] let h₂' := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁ [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.195682, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁ ⊢ IsIso (leftHomologyMap' φ h₁ h₂) [PROOFSTEP] have : IsIso (leftHomologyMap' φ h₁ h₂') := by rw [(LeftHomologyMapData.ofEpiOfIsIsoOfMono φ h₁).leftHomologyMap'_eq] dsimp infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.195682, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁ ⊢ IsIso (leftHomologyMap' φ h₁ h₂') [PROOFSTEP] rw [(LeftHomologyMapData.ofEpiOfIsIsoOfMono φ h₁).leftHomologyMap'_eq] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.195682, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁ ⊢ IsIso (LeftHomologyMapData.ofEpiOfIsIsoOfMono φ h₁).φH [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.195682, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁ ⊢ IsIso (𝟙 h₁.H) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.195682, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁ this : IsIso (leftHomologyMap' φ h₁ h₂') ⊢ IsIso (leftHomologyMap' φ h₁ h₂) [PROOFSTEP] have eq := leftHomologyMap'_comp φ (𝟙 S₂) h₁ h₂' h₂ [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.195682, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁ this : IsIso (leftHomologyMap' φ h₁ h₂') eq : leftHomologyMap' (φ ≫ 𝟙 S₂) h₁ h₂ = leftHomologyMap' φ h₁ h₂' ≫ leftHomologyMap' (𝟙 S₂) h₂' h₂ ⊢ IsIso (leftHomologyMap' φ h₁ h₂) [PROOFSTEP] rw [comp_id] at eq [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.195682, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁ this : IsIso (leftHomologyMap' φ h₁ h₂') eq : leftHomologyMap' φ h₁ h₂ = leftHomologyMap' φ h₁ h₂' ≫ leftHomologyMap' (𝟙 S₂) h₂' h₂ ⊢ IsIso (leftHomologyMap' φ h₁ h₂) [PROOFSTEP] rw [eq] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.195682, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁ this : IsIso (leftHomologyMap' φ h₁ h₂') eq : leftHomologyMap' φ h₁ h₂ = leftHomologyMap' φ h₁ h₂' ≫ leftHomologyMap' (𝟙 S₂) h₂' h₂ ⊢ IsIso (leftHomologyMap' φ h₁ h₂' ≫ leftHomologyMap' (𝟙 S₂) h₂' h₂) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝⁶ : Category.{?u.197546, u_1} C inst✝⁵ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ inst✝⁴ : HasLeftHomology S₁ inst✝³ : HasLeftHomology S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ IsIso (leftHomologyMap φ) [PROOFSTEP] dsimp only [leftHomologyMap] [GOAL] C : Type u_1 inst✝⁶ : Category.{?u.197546, u_1} C inst✝⁵ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ inst✝⁴ : HasLeftHomology S₁ inst✝³ : HasLeftHomology S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ IsIso (leftHomologyMap' φ (leftHomologyData S₁) (leftHomologyData S₂)) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝² : Category.{?u.201841, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ hk : k ≫ S.g = 0 inst✝ : HasLeftHomology S A' : C α : A' ⟶ A ⊢ (α ≫ k) ≫ S.g = 0 [PROOFSTEP] rw [assoc, hk, comp_zero] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ hk : k ≫ S.g = 0 inst✝ : HasLeftHomology S A' : C α : A' ⟶ A ⊢ α ≫ liftCycles S k hk = liftCycles S (α ≫ k) (_ : (α ≫ k) ≫ S.g = 0) [PROOFSTEP] aesop_cat [GOAL] C : Type u_1 inst✝³ : Category.{?u.205152, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ hk : k ≫ S.g = 0 inst✝¹ : HasLeftHomology S inst✝ : HasKernel S.g ⊢ iCycles S ≫ S.g = 0 [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝³ : Category.{?u.205152, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ hk : k ≫ S.g = 0 inst✝¹ : HasLeftHomology S inst✝ : HasKernel S.g ⊢ kernel.ι S.g ≫ S.g = 0 [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝² : Category.{?u.209151, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ hk : k ≫ S.g = 0 inst✝ : HasLeftHomology S x : A ⟶ S.X₁ hx : k = x ≫ S.f ⊢ k ≫ S.g = 0 [PROOFSTEP] rw [hx, assoc, S.zero, comp_zero] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ hk : k ≫ S.g = 0 inst✝ : HasLeftHomology S ⊢ S.f = 𝟙 S.X₁ ≫ S.f [PROOFSTEP] rw [id_comp] [GOAL] C : Type u_1 inst✝³ : Category.{?u.213429, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ hk : k ≫ S.g = 0 inst✝¹ : HasLeftHomology S φ : S ⟶ S₁ inst✝ : HasLeftHomology S₁ ⊢ (k ≫ φ.τ₂) ≫ S₁.g = 0 [PROOFSTEP] rw [assoc, φ.comm₂₃, reassoc_of% hk, zero_comp] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ hk : k ≫ S.g = 0 inst✝¹ : HasLeftHomology S φ : S ⟶ S₁ inst✝ : HasLeftHomology S₁ ⊢ liftCycles S k hk ≫ cyclesMap φ = liftCycles S₁ (k ≫ φ.τ₂) (_ : (k ≫ φ.τ₂) ≫ S₁.g = 0) [PROOFSTEP] aesop_cat [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ hk : k ≫ S.g = 0 inst✝ : HasLeftHomology S ⊢ liftCycles S k hk ≫ (cyclesIso h).hom = liftK h k hk [PROOFSTEP] simp only [← cancel_mono h.i, assoc, LeftHomologyData.cyclesIso_hom_comp_i, liftCycles_i, LeftHomologyData.liftK_i] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : LeftHomologyData S A : C k : A ⟶ S.X₂ hk : k ≫ S.g = 0 inst✝ : HasLeftHomology S ⊢ liftK h k hk ≫ (cyclesIso h).inv = liftCycles S k hk [PROOFSTEP] rw [← h.liftCycles_comp_cyclesIso_hom, assoc, Iso.hom_inv_id, comp_id] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasLeftHomology S inst✝ : HasKernel S.g ⊢ HasCokernel (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) [PROOFSTEP] let h := S.leftHomologyData [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasLeftHomology S inst✝ : HasKernel S.g h : LeftHomologyData S := leftHomologyData S ⊢ HasCokernel (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) [PROOFSTEP] haveI : HasColimit (parallelPair h.f' 0) := ⟨⟨⟨_, h.hπ'⟩⟩⟩ [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasLeftHomology S inst✝ : HasKernel S.g h : LeftHomologyData S := leftHomologyData S this : HasColimit (parallelPair (LeftHomologyData.f' h) 0) ⊢ HasCokernel (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) [PROOFSTEP] let e : parallelPair (kernel.lift S.g S.f S.zero) 0 ≅ parallelPair h.f' 0 := parallelPair.ext (Iso.refl _) (IsLimit.conePointUniqueUpToIso (kernelIsKernel S.g) h.hi) (by aesop_cat) (by aesop_cat) [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasLeftHomology S inst✝ : HasKernel S.g h : LeftHomologyData S := leftHomologyData S this : HasColimit (parallelPair (LeftHomologyData.f' h) 0) ⊢ (parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).map WalkingParallelPairHom.left ≫ (IsLimit.conePointUniqueUpToIso (kernelIsKernel S.g) h.hi).hom = (Iso.refl ((parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.zero)).hom ≫ (parallelPair (LeftHomologyData.f' h) 0).map WalkingParallelPairHom.left [PROOFSTEP] aesop_cat [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasLeftHomology S inst✝ : HasKernel S.g h : LeftHomologyData S := leftHomologyData S this : HasColimit (parallelPair (LeftHomologyData.f' h) 0) ⊢ (parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).map WalkingParallelPairHom.right ≫ (IsLimit.conePointUniqueUpToIso (kernelIsKernel S.g) h.hi).hom = (Iso.refl ((parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.zero)).hom ≫ (parallelPair (LeftHomologyData.f' h) 0).map WalkingParallelPairHom.right [PROOFSTEP] aesop_cat [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasLeftHomology S inst✝ : HasKernel S.g h : LeftHomologyData S := leftHomologyData S this : HasColimit (parallelPair (LeftHomologyData.f' h) 0) e : parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0 ≅ parallelPair (LeftHomologyData.f' h) 0 := parallelPair.ext (Iso.refl ((parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.zero)) (IsLimit.conePointUniqueUpToIso (kernelIsKernel S.g) h.hi) (_ : (parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).map WalkingParallelPairHom.left ≫ (IsLimit.conePointUniqueUpToIso (kernelIsKernel S.g) h.hi).hom = (Iso.refl ((parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.zero)).hom ≫ (parallelPair (LeftHomologyData.f' h) 0).map WalkingParallelPairHom.left) (_ : 0 ≫ (IsLimit.conePointUniqueUpToIso (kernelIsKernel S.g) (leftHomologyData S).hi).hom = 𝟙 S.X₁ ≫ 0) ⊢ HasCokernel (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) [PROOFSTEP] exact hasColimitOfIso e [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₂✝ : IsIso φ.τ₂ h₃ : Mono φ.τ₃ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ⊢ IsIso (cyclesMap' φ h₁ h₂) [PROOFSTEP] refine' ⟨h₁.liftK (h₂.i ≫ inv φ.τ₂) _, _, _⟩ [GOAL] case refine'_1 C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₂✝ : IsIso φ.τ₂ h₃ : Mono φ.τ₃ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ⊢ (h₂.i ≫ inv φ.τ₂) ≫ S₁.g = 0 [PROOFSTEP] simp only [assoc, ← cancel_mono φ.τ₃, zero_comp, ← φ.comm₂₃, IsIso.inv_hom_id_assoc, h₂.wi] [GOAL] case refine'_2 C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₂✝ : IsIso φ.τ₂ h₃ : Mono φ.τ₃ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ⊢ cyclesMap' φ h₁ h₂ ≫ LeftHomologyData.liftK h₁ (h₂.i ≫ inv φ.τ₂) (_ : (h₂.i ≫ inv φ.τ₂) ≫ S₁.g = 0) = 𝟙 h₁.K [PROOFSTEP] simp only [← cancel_mono h₁.i, assoc, h₁.liftK_i, cyclesMap'_i_assoc, IsIso.hom_inv_id, comp_id, id_comp] [GOAL] case refine'_3 C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₂✝ : IsIso φ.τ₂ h₃ : Mono φ.τ₃ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ⊢ LeftHomologyData.liftK h₁ (h₂.i ≫ inv φ.τ₂) (_ : (h₂.i ≫ inv φ.τ₂) ≫ S₁.g = 0) ≫ cyclesMap' φ h₁ h₂ = 𝟙 h₂.K [PROOFSTEP] simp only [← cancel_mono h₂.i, assoc, cyclesMap'_i, h₁.liftK_i_assoc, IsIso.inv_hom_id, comp_id, id_comp]
{"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.LeftHomology", "llama_tokens": 34217}
[GOAL] C : Type u_1 inst✝¹ : Category.{?u.11796, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A x : S.X₃ ⟶ A hx : k = S.g ≫ x ⊢ S.f ≫ k = 0 [PROOFSTEP] rw [hx, S.zero_assoc, zero_comp] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A x : S.X₃ ⟶ A hx : k = S.g ≫ x ⊢ h.ι ≫ descQ h k (_ : S.f ≫ k = 0) = 0 [PROOFSTEP] rw [show 0 = h.ι ≫ h.g' ≫ x by simp] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A x : S.X₃ ⟶ A hx : k = S.g ≫ x ⊢ 0 = h.ι ≫ g' h ≫ x [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A x : S.X₃ ⟶ A hx : k = S.g ≫ x ⊢ h.ι ≫ descQ h k (_ : S.f ≫ k = 0) = h.ι ≫ g' h ≫ x [PROOFSTEP] congr 1 [GOAL] case e_a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A x : S.X₃ ⟶ A hx : k = S.g ≫ x ⊢ descQ h k (_ : S.f ≫ k = 0) = g' h ≫ x [PROOFSTEP] simp only [← cancel_epi h.p, hx, p_descQ, p_g'_assoc] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hf : S.f = 0 ⊢ S.f ≫ 𝟙 S.X₂ = 0 [PROOFSTEP] rw [hf, comp_id] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hf : S.f = 0 ⊢ descQ h (𝟙 S.X₂) (_ : S.f ≫ 𝟙 S.X₂ = 0) ≫ h.p = 𝟙 h.Q [PROOFSTEP] simp only [← cancel_epi h.p, p_descQ_assoc, id_comp, comp_id] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hg : S.g = 0 ⊢ IsIso h.ι [PROOFSTEP] have ⟨φ, hφ⟩ := KernelFork.IsLimit.lift' h.hι' (𝟙 _) (by rw [← cancel_epi h.p, id_comp, p_g', comp_zero, hg]) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hg : S.g = 0 ⊢ 𝟙 h.Q ≫ g' h = 0 [PROOFSTEP] rw [← cancel_epi h.p, id_comp, p_g', comp_zero, hg] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hg : S.g = 0 φ : h.Q ⟶ (KernelFork.ofι h.ι (_ : h.ι ≫ g' h = 0)).pt hφ : φ ≫ Fork.ι (KernelFork.ofι h.ι (_ : h.ι ≫ g' h = 0)) = 𝟙 h.Q ⊢ IsIso h.ι [PROOFSTEP] dsimp at hφ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hg : S.g = 0 φ : h.Q ⟶ (KernelFork.ofι h.ι (_ : h.ι ≫ g' h = 0)).pt hφ : φ ≫ h.ι = 𝟙 h.Q ⊢ IsIso h.ι [PROOFSTEP] exact ⟨φ, by rw [← cancel_mono h.ι, assoc, hφ, comp_id, id_comp], hφ⟩ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hg : S.g = 0 φ : h.Q ⟶ (KernelFork.ofι h.ι (_ : h.ι ≫ g' h = 0)).pt hφ : φ ≫ h.ι = 𝟙 h.Q ⊢ h.ι ≫ φ = 𝟙 h.H [PROOFSTEP] rw [← cancel_mono h.ι, assoc, hφ, comp_id, id_comp] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.20229, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hf : S.f = 0 c : KernelFork S.g hc : IsLimit c ⊢ S.f ≫ 𝟙 S.X₂ = 0 [PROOFSTEP] rw [comp_id, hf] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.20229, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hf : S.f = 0 c : KernelFork S.g hc : IsLimit c ⊢ (Iso.refl c.pt).hom ≫ Fork.ι (KernelFork.ofι (Fork.ι c) (_ : Fork.ι c ≫ S.g = 0)) = Fork.ι c [PROOFSTEP] aesop_cat [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hf : S.f = 0 c : KernelFork S.g hc : IsLimit c ⊢ g' (ofIsLimitKernelFork S hf c hc) = S.g [PROOFSTEP] rw [← cancel_epi (ofIsLimitKernelFork S hf c hc).p, p_g', ofIsLimitKernelFork_p, id_comp] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.25328, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hg : S.g = 0 c : CokernelCofork S.f hc : IsColimit c ⊢ Cofork.π c ≫ (Iso.refl c.pt).hom = Cofork.π (CokernelCofork.ofπ (Cofork.π c) (_ : S.f ≫ Cofork.π c = 0)) [PROOFSTEP] aesop_cat [GOAL] C : Type u_1 inst✝¹ : Category.{?u.25328, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hg : S.g = 0 c : CokernelCofork S.f hc : IsColimit c ⊢ Cofork.π c ≫ 𝟙 c.pt ≫ IsColimit.desc (IsColimit.ofIsoColimit hc (Cofork.ext (Iso.refl c.pt))) (CokernelCofork.ofπ S.g (_ : S.f ≫ S.g = 0)) = Cofork.π c ≫ 0 [PROOFSTEP] simp [hg] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.25328, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hg : S.g = 0 c : CokernelCofork S.f hc : IsColimit c ⊢ Cofork.π c ≫ IsColimit.desc (IsColimit.ofIsoColimit hc (Cofork.ext (Iso.refl c.pt))) (CokernelCofork.ofπ S.g (_ : S.f ≫ S.g = 0)) = Cofork.π c ≫ 0 [PROOFSTEP] simp [hg] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hg : S.g = 0 c : CokernelCofork S.f hc : IsColimit c ⊢ g' (ofIsColimitCokernelCofork S hg c hc) = 0 [PROOFSTEP] rw [← cancel_epi (ofIsColimitCokernelCofork S hg c hc).p, p_g', hg, comp_zero] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.30991, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hf : S.f = 0 hg : S.g = 0 ⊢ S.f ≫ 𝟙 S.X₂ = 0 [PROOFSTEP] rw [comp_id, hf] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.30991, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hf : S.f = 0 hg : S.g = 0 ⊢ 𝟙 S.X₂ ≫ IsColimit.desc (CokernelCofork.IsColimit.ofId S.f hf) (CokernelCofork.ofπ S.g (_ : S.f ≫ S.g = 0)) = 0 [PROOFSTEP] change 𝟙 _ ≫ S.g = 0 [GOAL] C : Type u_1 inst✝¹ : Category.{?u.30991, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hf : S.f = 0 hg : S.g = 0 ⊢ 𝟙 S.X₂ ≫ S.g = 0 [PROOFSTEP] simp only [hg, comp_zero] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C hf : S.f = 0 hg : S.g = 0 ⊢ g' (ofZeros S hf hg) = 0 [PROOFSTEP] rw [← cancel_epi ((ofZeros S hf hg).p), comp_zero, p_g', hg] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.57832, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ψ₁ ψ₂ : RightHomologyMapData φ h₁ h₂ ⊢ ψ₁ = ψ₂ [PROOFSTEP] have hQ : ψ₁.φQ = ψ₂.φQ := by rw [← cancel_epi h₁.p, commp, commp] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.57832, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ψ₁ ψ₂ : RightHomologyMapData φ h₁ h₂ ⊢ ψ₁.φQ = ψ₂.φQ [PROOFSTEP] rw [← cancel_epi h₁.p, commp, commp] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.57832, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ψ₁ ψ₂ : RightHomologyMapData φ h₁ h₂ hQ : ψ₁.φQ = ψ₂.φQ ⊢ ψ₁ = ψ₂ [PROOFSTEP] have hH : ψ₁.φH = ψ₂.φH := by rw [← cancel_mono h₂.ι, commι, commι, hQ] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.57832, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ψ₁ ψ₂ : RightHomologyMapData φ h₁ h₂ hQ : ψ₁.φQ = ψ₂.φQ ⊢ ψ₁.φH = ψ₂.φH [PROOFSTEP] rw [← cancel_mono h₂.ι, commι, commι, hQ] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.57832, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ψ₁ ψ₂ : RightHomologyMapData φ h₁ h₂ hQ : ψ₁.φQ = ψ₂.φQ hH : ψ₁.φH = ψ₂.φH ⊢ ψ₁ = ψ₂ [PROOFSTEP] cases ψ₁ [GOAL] case mk C : Type u_1 inst✝¹ : Category.{?u.57832, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ψ₂ : RightHomologyMapData φ h₁ h₂ φQ✝ : h₁.Q ⟶ h₂.Q φH✝ : h₁.H ⟶ h₂.H commp✝ : h₁.p ≫ φQ✝ = φ.τ₂ ≫ h₂.p commg'✝ : φQ✝ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃ commι✝ : φH✝ ≫ h₂.ι = h₁.ι ≫ φQ✝ hQ : (mk φQ✝ φH✝).φQ = ψ₂.φQ hH : (mk φQ✝ φH✝).φH = ψ₂.φH ⊢ mk φQ✝ φH✝ = ψ₂ [PROOFSTEP] cases ψ₂ [GOAL] case mk.mk C : Type u_1 inst✝¹ : Category.{?u.57832, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ φQ✝¹ : h₁.Q ⟶ h₂.Q φH✝¹ : h₁.H ⟶ h₂.H commp✝¹ : h₁.p ≫ φQ✝¹ = φ.τ₂ ≫ h₂.p commg'✝¹ : φQ✝¹ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃ commι✝¹ : φH✝¹ ≫ h₂.ι = h₁.ι ≫ φQ✝¹ φQ✝ : h₁.Q ⟶ h₂.Q φH✝ : h₁.H ⟶ h₂.H commp✝ : h₁.p ≫ φQ✝ = φ.τ₂ ≫ h₂.p commg'✝ : φQ✝ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃ commι✝ : φH✝ ≫ h₂.ι = h₁.ι ≫ φQ✝ hQ : (mk φQ✝¹ φH✝¹).φQ = (mk φQ✝ φH✝).φQ hH : (mk φQ✝¹ φH✝¹).φH = (mk φQ✝ φH✝).φH ⊢ mk φQ✝¹ φH✝¹ = mk φQ✝ φH✝ [PROOFSTEP] congr [GOAL] C : Type u_1 inst✝¹ : Category.{?u.60291, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ⊢ RightHomologyMapData φ h₁ h₂ [PROOFSTEP] let φQ : h₁.Q ⟶ h₂.Q := h₁.descQ (φ.τ₂ ≫ h₂.p) (by rw [← φ.comm₁₂_assoc, h₂.wp, comp_zero]) [GOAL] C : Type u_1 inst✝¹ : Category.{?u.60291, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ⊢ S₁.f ≫ φ.τ₂ ≫ h₂.p = 0 [PROOFSTEP] rw [← φ.comm₁₂_assoc, h₂.wp, comp_zero] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.60291, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0) ⊢ RightHomologyMapData φ h₁ h₂ [PROOFSTEP] have commg' : φQ ≫ h₂.g' = h₁.g' ≫ φ.τ₃ := by rw [← cancel_epi h₁.p, RightHomologyData.p_descQ_assoc, assoc, RightHomologyData.p_g', φ.comm₂₃, RightHomologyData.p_g'_assoc] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.60291, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0) ⊢ φQ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃ [PROOFSTEP] rw [← cancel_epi h₁.p, RightHomologyData.p_descQ_assoc, assoc, RightHomologyData.p_g', φ.comm₂₃, RightHomologyData.p_g'_assoc] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.60291, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0) commg' : φQ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃ ⊢ RightHomologyMapData φ h₁ h₂ [PROOFSTEP] let φH : h₁.H ⟶ h₂.H := h₂.liftH (h₁.ι ≫ φQ) (by rw [assoc, commg', RightHomologyData.ι_g'_assoc, zero_comp]) [GOAL] C : Type u_1 inst✝¹ : Category.{?u.60291, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0) commg' : φQ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃ ⊢ (h₁.ι ≫ φQ) ≫ RightHomologyData.g' h₂ = 0 [PROOFSTEP] rw [assoc, commg', RightHomologyData.ι_g'_assoc, zero_comp] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.60291, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0) commg' : φQ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃ φH : h₁.H ⟶ h₂.H := RightHomologyData.liftH h₂ (h₁.ι ≫ φQ) (_ : (h₁.ι ≫ φQ) ≫ RightHomologyData.g' h₂ = 0) ⊢ RightHomologyMapData φ h₁ h₂ [PROOFSTEP] exact ⟨φQ, φH, by simp, commg', by simp⟩ [GOAL] C : Type u_1 inst✝¹ : Category.{?u.60291, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0) commg' : φQ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃ φH : h₁.H ⟶ h₂.H := RightHomologyData.liftH h₂ (h₁.ι ≫ φQ) (_ : (h₁.ι ≫ φQ) ≫ RightHomologyData.g' h₂ = 0) ⊢ h₁.p ≫ φQ = φ.τ₂ ≫ h₂.p [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.60291, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0) commg' : φQ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃ φH : h₁.H ⟶ h₂.H := RightHomologyData.liftH h₂ (h₁.ι ≫ φQ) (_ : (h₁.ι ≫ φQ) ≫ RightHomologyData.g' h₂ = 0) ⊢ φH ≫ h₂.ι = h₁.ι ≫ φQ [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ γ₁ γ₂ : RightHomologyMapData φ h₁ h₂ eq : γ₁ = γ₂ ⊢ γ₁.φH = γ₂.φH [PROOFSTEP] rw [eq] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ γ₁ γ₂ : RightHomologyMapData φ h₁ h₂ eq : γ₁ = γ₂ ⊢ γ₁.φQ = γ₂.φQ [PROOFSTEP] rw [eq] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.68471, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ✝ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ φ : S₁ ⟶ S₂ hf₁ : S₁.f = 0 c₁ : KernelFork S₁.g hc₁ : IsLimit c₁ hf₂ : S₂.f = 0 c₂ : KernelFork S₂.g hc₂ : IsLimit c₂ f : c₁.pt ⟶ c₂.pt comm : Fork.ι c₁ ≫ φ.τ₂ = f ≫ Fork.ι c₂ ⊢ φ.τ₂ ≫ RightHomologyData.g' (RightHomologyData.ofIsLimitKernelFork S₂ hf₂ c₂ hc₂) = RightHomologyData.g' (RightHomologyData.ofIsLimitKernelFork S₁ hf₁ c₁ hc₁) ≫ φ.τ₃ [PROOFSTEP] simp only [RightHomologyData.ofIsLimitKernelFork_g', φ.comm₂₃] [GOAL] C : Type u_1 inst✝² : Category.{?u.88776, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasRightHomology S ⊢ Epi (pOpcycles S) [PROOFSTEP] dsimp only [pOpcycles] [GOAL] C : Type u_1 inst✝² : Category.{?u.88776, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasRightHomology S ⊢ Epi (rightHomologyData S).p [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝² : Category.{?u.89155, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasRightHomology S ⊢ Mono (rightHomologyι S) [PROOFSTEP] dsimp only [rightHomologyι] [GOAL] C : Type u_1 inst✝² : Category.{?u.89155, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasRightHomology S ⊢ Mono (rightHomologyData S).ι [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasRightHomology S A : C f₁ f₂ : A ⟶ rightHomology S ⊢ f₁ = f₂ ↔ f₁ ≫ rightHomologyι S = f₂ ≫ rightHomologyι S [PROOFSTEP] rw [cancel_mono] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasRightHomology S A : C f₁ f₂ : A ⟶ rightHomology S h : f₁ ≫ rightHomologyι S = f₂ ≫ rightHomologyι S ⊢ f₁ = f₂ [PROOFSTEP] simpa only [rightHomology_ext_iff] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasRightHomology S A : C f₁ f₂ : opcycles S ⟶ A ⊢ f₁ = f₂ ↔ pOpcycles S ≫ f₁ = pOpcycles S ≫ f₂ [PROOFSTEP] rw [cancel_epi] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasRightHomology S A : C f₁ f₂ : opcycles S ⟶ A h : pOpcycles S ≫ f₁ = pOpcycles S ≫ f₂ ⊢ f₁ = f₂ [PROOFSTEP] simpa only [opcycles_ext_iff] [GOAL] C : Type u_1 inst✝² : Category.{?u.92901, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasRightHomology S hf : S.f = 0 ⊢ opcycles S ≅ S.X₂ [PROOFSTEP] have := S.isIso_pOpcycles hf [GOAL] C : Type u_1 inst✝² : Category.{?u.92901, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasRightHomology S hf : S.f = 0 this : IsIso (pOpcycles S) ⊢ opcycles S ≅ S.X₂ [PROOFSTEP] exact (asIso S.pOpcycles).symm [GOAL] C : Type u_1 inst✝² : Category.{?u.95802, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasRightHomology S hg : S.g = 0 ⊢ opcycles S ≅ rightHomology S [PROOFSTEP] have := S.isIso_rightHomologyι hg [GOAL] C : Type u_1 inst✝² : Category.{?u.95802, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝ : HasRightHomology S hg : S.g = 0 this : IsIso (rightHomologyι S) ⊢ opcycles S ≅ rightHomology S [PROOFSTEP] exact (asIso S.rightHomologyι).symm [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ⊢ opcyclesMap' φ h₁ h₂ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃ [PROOFSTEP] simp only [← cancel_epi h₁.p, assoc, φ.comm₂₃, p_opcyclesMap'_assoc, RightHomologyData.p_g'_assoc, RightHomologyData.p_g'] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ₁ : S₁ ⟶ S₂ φ₂ : S₂ ⟶ S₃ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ h₃ : RightHomologyData S₃ ⊢ rightHomologyMap' (φ₁ ≫ φ₂) h₁ h₃ = rightHomologyMap' φ₁ h₁ h₂ ≫ rightHomologyMap' φ₂ h₂ h₃ [PROOFSTEP] let γ₁ := rightHomologyMapData φ₁ h₁ h₂ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ₁ : S₁ ⟶ S₂ φ₂ : S₂ ⟶ S₃ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ h₃ : RightHomologyData S₃ γ₁ : RightHomologyMapData φ₁ h₁ h₂ := rightHomologyMapData φ₁ h₁ h₂ ⊢ rightHomologyMap' (φ₁ ≫ φ₂) h₁ h₃ = rightHomologyMap' φ₁ h₁ h₂ ≫ rightHomologyMap' φ₂ h₂ h₃ [PROOFSTEP] let γ₂ := rightHomologyMapData φ₂ h₂ h₃ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ₁ : S₁ ⟶ S₂ φ₂ : S₂ ⟶ S₃ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ h₃ : RightHomologyData S₃ γ₁ : RightHomologyMapData φ₁ h₁ h₂ := rightHomologyMapData φ₁ h₁ h₂ γ₂ : RightHomologyMapData φ₂ h₂ h₃ := rightHomologyMapData φ₂ h₂ h₃ ⊢ rightHomologyMap' (φ₁ ≫ φ₂) h₁ h₃ = rightHomologyMap' φ₁ h₁ h₂ ≫ rightHomologyMap' φ₂ h₂ h₃ [PROOFSTEP] rw [γ₁.rightHomologyMap'_eq, γ₂.rightHomologyMap'_eq, (γ₁.comp γ₂).rightHomologyMap'_eq, RightHomologyMapData.comp_φH] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ₁ : S₁ ⟶ S₂ φ₂ : S₂ ⟶ S₃ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ h₃ : RightHomologyData S₃ ⊢ opcyclesMap' (φ₁ ≫ φ₂) h₁ h₃ = opcyclesMap' φ₁ h₁ h₂ ≫ opcyclesMap' φ₂ h₂ h₃ [PROOFSTEP] let γ₁ := rightHomologyMapData φ₁ h₁ h₂ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ₁ : S₁ ⟶ S₂ φ₂ : S₂ ⟶ S₃ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ h₃ : RightHomologyData S₃ γ₁ : RightHomologyMapData φ₁ h₁ h₂ := rightHomologyMapData φ₁ h₁ h₂ ⊢ opcyclesMap' (φ₁ ≫ φ₂) h₁ h₃ = opcyclesMap' φ₁ h₁ h₂ ≫ opcyclesMap' φ₂ h₂ h₃ [PROOFSTEP] let γ₂ := rightHomologyMapData φ₂ h₂ h₃ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ₁ : S₁ ⟶ S₂ φ₂ : S₂ ⟶ S₃ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ h₃ : RightHomologyData S₃ γ₁ : RightHomologyMapData φ₁ h₁ h₂ := rightHomologyMapData φ₁ h₁ h₂ γ₂ : RightHomologyMapData φ₂ h₂ h₃ := rightHomologyMapData φ₂ h₂ h₃ ⊢ opcyclesMap' (φ₁ ≫ φ₂) h₁ h₃ = opcyclesMap' φ₁ h₁ h₂ ≫ opcyclesMap' φ₂ h₂ h₃ [PROOFSTEP] rw [γ₁.opcyclesMap'_eq, γ₂.opcyclesMap'_eq, (γ₁.comp γ₂).opcyclesMap'_eq, RightHomologyMapData.comp_φQ] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.122914, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ⊢ rightHomologyMap' e.hom h₁ h₂ ≫ rightHomologyMap' e.inv h₂ h₁ = 𝟙 h₁.H [PROOFSTEP] rw [← rightHomologyMap'_comp, e.hom_inv_id, rightHomologyMap'_id] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.122914, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ⊢ rightHomologyMap' e.inv h₂ h₁ ≫ rightHomologyMap' e.hom h₁ h₂ = 𝟙 h₂.H [PROOFSTEP] rw [← rightHomologyMap'_comp, e.inv_hom_id, rightHomologyMap'_id] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.125555, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ⊢ opcyclesMap' e.hom h₁ h₂ ≫ opcyclesMap' e.inv h₂ h₁ = 𝟙 h₁.Q [PROOFSTEP] rw [← opcyclesMap'_comp, e.hom_inv_id, opcyclesMap'_id] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.125555, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ⊢ opcyclesMap' e.inv h₂ h₁ ≫ opcyclesMap' e.hom h₁ h₂ = 𝟙 h₂.Q [PROOFSTEP] rw [← opcyclesMap'_comp, e.inv_hom_id, opcyclesMap'_id] [GOAL] C : Type u_1 inst✝³ : Category.{?u.128180, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ rightHomologyMap e.hom ≫ rightHomologyMap e.inv = 𝟙 (rightHomology S₁) [PROOFSTEP] rw [← rightHomologyMap_comp, e.hom_inv_id, rightHomologyMap_id] [GOAL] C : Type u_1 inst✝³ : Category.{?u.128180, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ rightHomologyMap e.inv ≫ rightHomologyMap e.hom = 𝟙 (rightHomology S₂) [PROOFSTEP] rw [← rightHomologyMap_comp, e.inv_hom_id, rightHomologyMap_id] [GOAL] C : Type u_1 inst✝³ : Category.{?u.131838, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ opcyclesMap e.hom ≫ opcyclesMap e.inv = 𝟙 (opcycles S₁) [PROOFSTEP] rw [← opcyclesMap_comp, e.hom_inv_id, opcyclesMap_id] [GOAL] C : Type u_1 inst✝³ : Category.{?u.131838, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C e : S₁ ≅ S₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ opcyclesMap e.inv ≫ opcyclesMap e.hom = 𝟙 (opcycles S₂) [PROOFSTEP] rw [← opcyclesMap_comp, e.inv_hom_id, opcyclesMap_id] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S inst✝ : HasRightHomology S ⊢ h.p ≫ (opcyclesIso h).inv = pOpcycles S [PROOFSTEP] dsimp [pOpcycles, RightHomologyData.opcyclesIso] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S inst✝ : HasRightHomology S ⊢ h.p ≫ opcyclesMap' (𝟙 S) h (rightHomologyData S) = (rightHomologyData S).p [PROOFSTEP] simp only [p_opcyclesMap', id_τ₂, id_comp] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S inst✝ : HasRightHomology S ⊢ pOpcycles S ≫ (opcyclesIso h).hom = h.p [PROOFSTEP] simp only [← h.p_comp_opcyclesIso_inv, assoc, Iso.inv_hom_id, comp_id] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S inst✝ : HasRightHomology S ⊢ (rightHomologyIso h).inv ≫ rightHomologyι S = h.ι ≫ (opcyclesIso h).inv [PROOFSTEP] dsimp only [rightHomologyι, rightHomologyIso, opcyclesIso, rightHomologyMapIso', opcyclesMapIso', Iso.refl] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S inst✝ : HasRightHomology S ⊢ rightHomologyMap' (𝟙 S) h (rightHomologyData S) ≫ (rightHomologyData S).ι = h.ι ≫ opcyclesMap' (𝟙 S) h (rightHomologyData S) [PROOFSTEP] rw [rightHomologyι_naturality'] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S inst✝ : HasRightHomology S ⊢ (rightHomologyIso h).hom ≫ h.ι = rightHomologyι S ≫ (opcyclesIso h).hom [PROOFSTEP] simp only [← cancel_mono h.opcyclesIso.inv, ← cancel_epi h.rightHomologyIso.inv, assoc, Iso.inv_hom_id_assoc, Iso.hom_inv_id, comp_id, rightHomologyIso_inv_comp_rightHomologyι] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ γ : RightHomologyMapData φ h₁ h₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ rightHomologyMap φ = (RightHomologyData.rightHomologyIso h₁).hom ≫ γ.φH ≫ (RightHomologyData.rightHomologyIso h₂).inv [PROOFSTEP] dsimp [RightHomologyData.rightHomologyIso, rightHomologyMapIso'] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ γ : RightHomologyMapData φ h₁ h₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ rightHomologyMap φ = rightHomologyMap' (𝟙 S₁) (rightHomologyData S₁) h₁ ≫ γ.φH ≫ rightHomologyMap' (𝟙 S₂) h₂ (rightHomologyData S₂) [PROOFSTEP] rw [← γ.rightHomologyMap'_eq, ← rightHomologyMap'_comp, ← rightHomologyMap'_comp, id_comp, comp_id] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ γ : RightHomologyMapData φ h₁ h₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ rightHomologyMap φ = rightHomologyMap' φ (rightHomologyData S₁) (rightHomologyData S₂) [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ γ : RightHomologyMapData φ h₁ h₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ opcyclesMap φ = (RightHomologyData.opcyclesIso h₁).hom ≫ γ.φQ ≫ (RightHomologyData.opcyclesIso h₂).inv [PROOFSTEP] dsimp [RightHomologyData.opcyclesIso, cyclesMapIso'] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ γ : RightHomologyMapData φ h₁ h₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ opcyclesMap φ = opcyclesMap' (𝟙 S₁) (rightHomologyData S₁) h₁ ≫ γ.φQ ≫ opcyclesMap' (𝟙 S₂) h₂ (rightHomologyData S₂) [PROOFSTEP] rw [← γ.opcyclesMap'_eq, ← opcyclesMap'_comp, ← opcyclesMap'_comp, id_comp, comp_id] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ γ : RightHomologyMapData φ h₁ h₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ opcyclesMap φ = opcyclesMap' φ (rightHomologyData S₁) (rightHomologyData S₂) [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ γ : RightHomologyMapData φ h₁ h₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ rightHomologyMap φ ≫ (RightHomologyData.rightHomologyIso h₂).hom = (RightHomologyData.rightHomologyIso h₁).hom ≫ γ.φH [PROOFSTEP] simp only [γ.rightHomologyMap_eq, assoc, Iso.inv_hom_id, comp_id] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ γ : RightHomologyMapData φ h₁ h₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ opcyclesMap φ ≫ (RightHomologyData.opcyclesIso h₂).hom = (RightHomologyData.opcyclesIso h₁).hom ≫ γ.φQ [PROOFSTEP] simp only [γ.opcyclesMap_eq, assoc, Iso.inv_hom_id, comp_id] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.155614, u_1} C inst✝ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ S₁ S₂ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ψ : LeftHomologyMapData φ h₁ h₂ ⊢ ((LeftHomologyData.op h₂).p ≫ ψ.φK.op).unop = ((opMap φ).τ₂ ≫ (LeftHomologyData.op h₁).p).unop [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.155614, u_1} C inst✝ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ S₁ S₂ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ψ : LeftHomologyMapData φ h₁ h₂ ⊢ (ψ.φK.op ≫ RightHomologyData.g' (LeftHomologyData.op h₁)).unop = (RightHomologyData.g' (LeftHomologyData.op h₂) ≫ (opMap φ).τ₃).unop [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.155614, u_1} C inst✝ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ S₁ S₂ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ψ : LeftHomologyMapData φ h₁ h₂ ⊢ (ψ.φH.op ≫ (LeftHomologyData.op h₁).ι).unop = ((LeftHomologyData.op h₂).ι ≫ ψ.φK.op).unop [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.158318, u_1} C inst✝ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ : ShortComplex C S₁ S₂ : ShortComplex Cᵒᵖ φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ψ : LeftHomologyMapData φ h₁ h₂ ⊢ ((LeftHomologyData.unop h₂).p ≫ ψ.φK.unop).op = ((unopMap φ).τ₂ ≫ (LeftHomologyData.unop h₁).p).op [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.158318, u_1} C inst✝ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ : ShortComplex C S₁ S₂ : ShortComplex Cᵒᵖ φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ψ : LeftHomologyMapData φ h₁ h₂ ⊢ (ψ.φK.unop ≫ RightHomologyData.g' (LeftHomologyData.unop h₁)).op = (RightHomologyData.g' (LeftHomologyData.unop h₂) ≫ (unopMap φ).τ₃).op [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.158318, u_1} C inst✝ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ : ShortComplex C S₁ S₂ : ShortComplex Cᵒᵖ φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ψ : LeftHomologyMapData φ h₁ h₂ ⊢ (ψ.φH.unop ≫ (LeftHomologyData.unop h₁).ι).op = ((LeftHomologyData.unop h₂).ι ≫ ψ.φK.unop).op [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.160823, u_1} C inst✝ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ S₁ S₂ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ψ : RightHomologyMapData φ h₁ h₂ ⊢ (ψ.φQ.op ≫ (RightHomologyData.op h₁).i).unop = ((RightHomologyData.op h₂).i ≫ (opMap φ).τ₂).unop [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.160823, u_1} C inst✝ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ S₁ S₂ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ψ : RightHomologyMapData φ h₁ h₂ ⊢ (LeftHomologyData.f' (RightHomologyData.op h₂) ≫ ψ.φQ.op).unop = ((opMap φ).τ₁ ≫ LeftHomologyData.f' (RightHomologyData.op h₁)).unop [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.160823, u_1} C inst✝ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ S₁ S₂ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ψ : RightHomologyMapData φ h₁ h₂ ⊢ ((RightHomologyData.op h₂).π ≫ ψ.φH.op).unop = (ψ.φQ.op ≫ (RightHomologyData.op h₁).π).unop [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.163518, u_1} C inst✝ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ : ShortComplex C S₁ S₂ : ShortComplex Cᵒᵖ φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ψ : RightHomologyMapData φ h₁ h₂ ⊢ (ψ.φQ.unop ≫ (RightHomologyData.unop h₁).i).op = ((RightHomologyData.unop h₂).i ≫ (unopMap φ).τ₂).op [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.163518, u_1} C inst✝ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ : ShortComplex C S₁ S₂ : ShortComplex Cᵒᵖ φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ψ : RightHomologyMapData φ h₁ h₂ ⊢ (LeftHomologyData.f' (RightHomologyData.unop h₂) ≫ ψ.φQ.unop).op = ((unopMap φ).τ₁ ≫ LeftHomologyData.f' (RightHomologyData.unop h₁)).op [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.163518, u_1} C inst✝ : HasZeroMorphisms C S S₁✝ S₂✝ S₃ : ShortComplex C S₁ S₂ : ShortComplex Cᵒᵖ φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ψ : RightHomologyMapData φ h₁ h₂ ⊢ ((RightHomologyData.unop h₂).π ≫ ψ.φH.unop).op = (ψ.φQ.unop ≫ (RightHomologyData.unop h₁).π).op [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ ⊢ (leftHomologyMap' φ h₁ h₂).op = rightHomologyMap' (opMap φ) (LeftHomologyData.op h₂) (LeftHomologyData.op h₁) [PROOFSTEP] let γ : LeftHomologyMapData φ h₁ h₂ := leftHomologyMapData φ h₁ h₂ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : LeftHomologyData S₁ h₂ : LeftHomologyData S₂ γ : LeftHomologyMapData φ h₁ h₂ := leftHomologyMapData φ h₁ h₂ ⊢ (leftHomologyMap' φ h₁ h₂).op = rightHomologyMap' (opMap φ) (LeftHomologyData.op h₂) (LeftHomologyData.op h₁) [PROOFSTEP] simp only [γ.leftHomologyMap'_eq, γ.op.rightHomologyMap'_eq, LeftHomologyMapData.op_φH] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ (leftHomologyMap φ).op = (rightHomologyOpIso S₂).inv ≫ rightHomologyMap (opMap φ) ≫ (rightHomologyOpIso S₁).hom [PROOFSTEP] dsimp [rightHomologyOpIso, RightHomologyData.rightHomologyIso, rightHomologyMap, leftHomologyMap] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ inst✝¹ : HasLeftHomology S₁ inst✝ : HasLeftHomology S₂ ⊢ (leftHomologyMap' φ (leftHomologyData S₁) (leftHomologyData S₂)).op = rightHomologyMap' (𝟙 (op S₂)) (LeftHomologyData.op (leftHomologyData S₂)) (rightHomologyData (op S₂)) ≫ rightHomologyMap' (opMap φ) (rightHomologyData (op S₂)) (rightHomologyData (op S₁)) ≫ rightHomologyMap' (𝟙 (op S₁)) (rightHomologyData (op S₁)) (LeftHomologyData.op (leftHomologyData S₁)) [PROOFSTEP] simp only [← rightHomologyMap'_comp, comp_id, id_comp, leftHomologyMap'_op] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ⊢ (rightHomologyMap' φ h₁ h₂).op = leftHomologyMap' (opMap φ) (RightHomologyData.op h₂) (RightHomologyData.op h₁) [PROOFSTEP] let γ : RightHomologyMapData φ h₁ h₂ := rightHomologyMapData φ h₁ h₂ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ γ : RightHomologyMapData φ h₁ h₂ := rightHomologyMapData φ h₁ h₂ ⊢ (rightHomologyMap' φ h₁ h₂).op = leftHomologyMap' (opMap φ) (RightHomologyData.op h₂) (RightHomologyData.op h₁) [PROOFSTEP] simp only [γ.rightHomologyMap'_eq, γ.op.leftHomologyMap'_eq, RightHomologyMapData.op_φH] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ (rightHomologyMap φ).op = (leftHomologyOpIso S₂).inv ≫ leftHomologyMap (opMap φ) ≫ (leftHomologyOpIso S₁).hom [PROOFSTEP] dsimp [leftHomologyOpIso, LeftHomologyData.leftHomologyIso, leftHomologyMap, rightHomologyMap] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ inst✝¹ : HasRightHomology S₁ inst✝ : HasRightHomology S₂ ⊢ (rightHomologyMap' φ (rightHomologyData S₁) (rightHomologyData S₂)).op = leftHomologyMap' (𝟙 (op S₂)) (RightHomologyData.op (rightHomologyData S₂)) (leftHomologyData (op S₂)) ≫ leftHomologyMap' (opMap φ) (leftHomologyData (op S₂)) (leftHomologyData (op S₁)) ≫ leftHomologyMap' (𝟙 (op S₁)) (leftHomologyData (op S₁)) (RightHomologyData.op (rightHomologyData S₁)) [PROOFSTEP] simp only [← leftHomologyMap'_comp, comp_id, id_comp, rightHomologyMap'_op] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.173881, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ RightHomologyData S₂ [PROOFSTEP] haveI : Epi (opMap φ).τ₁ := by dsimp; infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.173881, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ Epi (opMap φ).τ₁ [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.173881, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ Epi φ.τ₃.op [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.173881, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this : Epi (opMap φ).τ₁ ⊢ RightHomologyData S₂ [PROOFSTEP] haveI : IsIso (opMap φ).τ₂ := by dsimp; infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.173881, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this : Epi (opMap φ).τ₁ ⊢ IsIso (opMap φ).τ₂ [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.173881, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this : Epi (opMap φ).τ₁ ⊢ IsIso φ.τ₂.op [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.173881, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this✝ : Epi (opMap φ).τ₁ this : IsIso (opMap φ).τ₂ ⊢ RightHomologyData S₂ [PROOFSTEP] haveI : Mono (opMap φ).τ₃ := by dsimp; infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.173881, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this✝ : Epi (opMap φ).τ₁ this : IsIso (opMap φ).τ₂ ⊢ Mono (opMap φ).τ₃ [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.173881, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this✝ : Epi (opMap φ).τ₁ this : IsIso (opMap φ).τ₂ ⊢ Mono φ.τ₁.op [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.173881, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this✝¹ : Epi (opMap φ).τ₁ this✝ : IsIso (opMap φ).τ₂ this : Mono (opMap φ).τ₃ ⊢ RightHomologyData S₂ [PROOFSTEP] exact (LeftHomologyData.ofEpiOfIsIsoOfMono' (opMap φ) h.op).unop [GOAL] C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ (ofEpiOfIsIsoOfMono φ h).p = inv φ.τ₂ ≫ h.p [PROOFSTEP] simp [ofEpiOfIsIsoOfMono, opMap] [GOAL] C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₁ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ g' (ofEpiOfIsIsoOfMono φ h) = g' h ≫ φ.τ₃ [PROOFSTEP] simp [ofEpiOfIsIsoOfMono, opMap] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.184271, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ RightHomologyData S₁ [PROOFSTEP] haveI : Epi (opMap φ).τ₁ := by dsimp; infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.184271, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ Epi (opMap φ).τ₁ [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.184271, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ Epi φ.τ₃.op [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.184271, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this : Epi (opMap φ).τ₁ ⊢ RightHomologyData S₁ [PROOFSTEP] haveI : IsIso (opMap φ).τ₂ := by dsimp; infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.184271, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this : Epi (opMap φ).τ₁ ⊢ IsIso (opMap φ).τ₂ [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.184271, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this : Epi (opMap φ).τ₁ ⊢ IsIso φ.τ₂.op [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.184271, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this✝ : Epi (opMap φ).τ₁ this : IsIso (opMap φ).τ₂ ⊢ RightHomologyData S₁ [PROOFSTEP] haveI : Mono (opMap φ).τ₃ := by dsimp; infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.184271, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this✝ : Epi (opMap φ).τ₁ this : IsIso (opMap φ).τ₂ ⊢ Mono (opMap φ).τ₃ [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.184271, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this✝ : Epi (opMap φ).τ₁ this : IsIso (opMap φ).τ₂ ⊢ Mono φ.τ₁.op [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.184271, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ this✝¹ : Epi (opMap φ).τ₁ this✝ : IsIso (opMap φ).τ₂ this : Mono (opMap φ).τ₃ ⊢ RightHomologyData S₁ [PROOFSTEP] exact (LeftHomologyData.ofEpiOfIsIsoOfMono (opMap φ) h.op).unop [GOAL] C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ (ofEpiOfIsIsoOfMono' φ h).p = φ.τ₂ ≫ h.p [PROOFSTEP] simp [ofEpiOfIsIsoOfMono', opMap] [GOAL] C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ g' (ofEpiOfIsIsoOfMono' φ h) ≫ φ.τ₃ = g' h [PROOFSTEP] rw [← cancel_epi (ofEpiOfIsIsoOfMono' φ h).p, p_g'_assoc, ofEpiOfIsIsoOfMono'_p, assoc, p_g', φ.comm₂₃] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.203472, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ IsIso (rightHomologyMap' φ h₁ h₂) [PROOFSTEP] let h₂' := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁ [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.203472, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁ ⊢ IsIso (rightHomologyMap' φ h₁ h₂) [PROOFSTEP] haveI : IsIso (rightHomologyMap' φ h₁ h₂') := by rw [(RightHomologyMapData.ofEpiOfIsIsoOfMono φ h₁).rightHomologyMap'_eq] dsimp infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.203472, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁ ⊢ IsIso (rightHomologyMap' φ h₁ h₂') [PROOFSTEP] rw [(RightHomologyMapData.ofEpiOfIsIsoOfMono φ h₁).rightHomologyMap'_eq] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.203472, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁ ⊢ IsIso (RightHomologyMapData.ofEpiOfIsIsoOfMono φ h₁).φH [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.203472, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁ ⊢ IsIso (𝟙 h₁.H) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.203472, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁ this : IsIso (rightHomologyMap' φ h₁ h₂') ⊢ IsIso (rightHomologyMap' φ h₁ h₂) [PROOFSTEP] have eq := rightHomologyMap'_comp φ (𝟙 S₂) h₁ h₂' h₂ [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.203472, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁ this : IsIso (rightHomologyMap' φ h₁ h₂') eq : rightHomologyMap' (φ ≫ 𝟙 S₂) h₁ h₂ = rightHomologyMap' φ h₁ h₂' ≫ rightHomologyMap' (𝟙 S₂) h₂' h₂ ⊢ IsIso (rightHomologyMap' φ h₁ h₂) [PROOFSTEP] rw [comp_id] at eq [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.203472, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁ this : IsIso (rightHomologyMap' φ h₁ h₂') eq : rightHomologyMap' φ h₁ h₂ = rightHomologyMap' φ h₁ h₂' ≫ rightHomologyMap' (𝟙 S₂) h₂' h₂ ⊢ IsIso (rightHomologyMap' φ h₁ h₂) [PROOFSTEP] rw [eq] [GOAL] C : Type u_1 inst✝⁴ : Category.{?u.203472, u_1} C inst✝³ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁ this : IsIso (rightHomologyMap' φ h₁ h₂') eq : rightHomologyMap' φ h₁ h₂ = rightHomologyMap' φ h₁ h₂' ≫ rightHomologyMap' (𝟙 S₂) h₂' h₂ ⊢ IsIso (rightHomologyMap' φ h₁ h₂' ≫ rightHomologyMap' (𝟙 S₂) h₂' h₂) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝⁶ : Category.{?u.205342, u_1} C inst✝⁵ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ inst✝⁴ : HasRightHomology S₁ inst✝³ : HasRightHomology S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ IsIso (rightHomologyMap φ) [PROOFSTEP] dsimp only [rightHomologyMap] [GOAL] C : Type u_1 inst✝⁶ : Category.{?u.205342, u_1} C inst✝⁵ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ inst✝⁴ : HasRightHomology S₁ inst✝³ : HasRightHomology S₂ inst✝² : Epi φ.τ₁ inst✝¹ : IsIso φ.τ₂ inst✝ : Mono φ.τ₃ ⊢ IsIso (rightHomologyMap' φ (rightHomologyData S₁) (rightHomologyData S₂)) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝⁵ : Category.{?u.207199, u_1} C inst✝⁴ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝³ : HasKernels C inst✝² : HasCokernels C inst✝¹ : HasKernels Cᵒᵖ inst✝ : HasCokernels Cᵒᵖ ⊢ ∀ {X Y : (ShortComplex C)ᵒᵖ} (f : X ⟶ Y), (rightHomologyFunctor C).op.map f ≫ ((fun S => (leftHomologyOpIso S.unop).symm) Y).hom = ((fun S => (leftHomologyOpIso S.unop).symm) X).hom ≫ (opFunctor C ⋙ leftHomologyFunctor Cᵒᵖ).map f [PROOFSTEP] simp [rightHomologyMap_op] [GOAL] C : Type u_1 inst✝⁵ : Category.{?u.214499, u_1} C inst✝⁴ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝³ : HasKernels C inst✝² : HasCokernels C inst✝¹ : HasKernels Cᵒᵖ inst✝ : HasCokernels Cᵒᵖ ⊢ ∀ {X Y : (ShortComplex C)ᵒᵖ} (f : X ⟶ Y), (leftHomologyFunctor C).op.map f ≫ ((fun S => (rightHomologyOpIso S.unop).symm) Y).hom = ((fun S => (rightHomologyOpIso S.unop).symm) X).hom ≫ (opFunctor C ⋙ rightHomologyFunctor Cᵒᵖ).map f [PROOFSTEP] simp [leftHomologyMap_op] [GOAL] C : Type u_1 inst✝² : Category.{?u.224277, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A hk : S.f ≫ k = 0 inst✝ : HasRightHomology S A' : C α : A ⟶ A' ⊢ S.f ≫ k ≫ α = 0 [PROOFSTEP] rw [reassoc_of% hk, zero_comp] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A hk : S.f ≫ k = 0 inst✝ : HasRightHomology S A' : C α : A ⟶ A' ⊢ descOpcycles S k hk ≫ α = descOpcycles S (k ≫ α) (_ : S.f ≫ k ≫ α = 0) [PROOFSTEP] simp only [← cancel_epi S.pOpcycles, p_descOpcycles_assoc, p_descOpcycles] [GOAL] C : Type u_1 inst✝³ : Category.{?u.227378, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A hk : S.f ≫ k = 0 inst✝¹ : HasRightHomology S inst✝ : HasCokernel S.f ⊢ S.f ≫ cokernel.π S.f = 0 [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝³ : Category.{?u.227378, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A hk : S.f ≫ k = 0 inst✝¹ : HasRightHomology S inst✝ : HasCokernel S.f ⊢ S.f ≫ pOpcycles S = 0 [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝² : Category.{?u.231633, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A hk : S.f ≫ k = 0 inst✝ : HasRightHomology S x : S.X₃ ⟶ A hx : k = S.g ≫ x ⊢ S.f ≫ k = 0 [PROOFSTEP] rw [hx, S.zero_assoc, zero_comp] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A hk : S.f ≫ k = 0 inst✝ : HasRightHomology S ⊢ S.g = S.g ≫ 𝟙 S.X₃ [PROOFSTEP] rw [comp_id] [GOAL] C : Type u_1 inst✝³ : Category.{?u.236265, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A hk : S.f ≫ k = 0 inst✝¹ : HasRightHomology S φ : S₁ ⟶ S inst✝ : HasRightHomology S₁ ⊢ S₁.f ≫ φ.τ₂ ≫ k = 0 [PROOFSTEP] rw [← φ.comm₁₂_assoc, hk, comp_zero] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A hk : S.f ≫ k = 0 inst✝¹ : HasRightHomology S φ : S₁ ⟶ S inst✝ : HasRightHomology S₁ ⊢ opcyclesMap φ ≫ descOpcycles S k hk = descOpcycles S₁ (φ.τ₂ ≫ k) (_ : S₁.f ≫ φ.τ₂ ≫ k = 0) [PROOFSTEP] simp only [← cancel_epi (S₁.pOpcycles), p_opcyclesMap_assoc, p_descOpcycles] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A hk : S.f ≫ k = 0 inst✝ : HasRightHomology S ⊢ (opcyclesIso h).inv ≫ descOpcycles S k hk = descQ h k hk [PROOFSTEP] simp only [← cancel_epi h.p, p_comp_opcyclesIso_inv_assoc, p_descOpcycles, p_descQ] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C h : RightHomologyData S A : C k : S.X₂ ⟶ A hk : S.f ≫ k = 0 inst✝ : HasRightHomology S ⊢ (opcyclesIso h).hom ≫ descQ h k hk = descOpcycles S k hk [PROOFSTEP] rw [← h.opcyclesIso_inv_comp_descOpcycles, Iso.hom_inv_id_assoc] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasRightHomology S inst✝ : HasCokernel S.f ⊢ HasKernel (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) [PROOFSTEP] let h := S.rightHomologyData [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasRightHomology S inst✝ : HasCokernel S.f h : RightHomologyData S := rightHomologyData S ⊢ HasKernel (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) [PROOFSTEP] haveI : HasLimit (parallelPair h.g' 0) := ⟨⟨⟨_, h.hι'⟩⟩⟩ [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasRightHomology S inst✝ : HasCokernel S.f h : RightHomologyData S := rightHomologyData S this : HasLimit (parallelPair (RightHomologyData.g' h) 0) ⊢ HasKernel (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) [PROOFSTEP] let e : parallelPair (cokernel.desc S.f S.g S.zero) 0 ≅ parallelPair h.g' 0 := parallelPair.ext (IsColimit.coconePointUniqueUpToIso (colimit.isColimit _) h.hp) (Iso.refl _) (coequalizer.hom_ext (by simp)) (by aesop_cat) [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasRightHomology S inst✝ : HasCokernel S.f h : RightHomologyData S := rightHomologyData S this : HasLimit (parallelPair (RightHomologyData.g' h) 0) ⊢ coequalizer.π S.f 0 ≫ (parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).map WalkingParallelPairHom.left ≫ (Iso.refl ((parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.one)).hom = coequalizer.π S.f 0 ≫ (IsColimit.coconePointUniqueUpToIso (colimit.isColimit (parallelPair S.f 0)) h.hp).hom ≫ (parallelPair (RightHomologyData.g' h) 0).map WalkingParallelPairHom.left [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasRightHomology S inst✝ : HasCokernel S.f h : RightHomologyData S := rightHomologyData S this : HasLimit (parallelPair (RightHomologyData.g' h) 0) ⊢ (parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).map WalkingParallelPairHom.right ≫ (Iso.refl ((parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.one)).hom = (IsColimit.coconePointUniqueUpToIso (colimit.isColimit (parallelPair S.f 0)) h.hp).hom ≫ (parallelPair (RightHomologyData.g' h) 0).map WalkingParallelPairHom.right [PROOFSTEP] aesop_cat [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C inst✝¹ : HasRightHomology S inst✝ : HasCokernel S.f h : RightHomologyData S := rightHomologyData S this : HasLimit (parallelPair (RightHomologyData.g' h) 0) e : parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0 ≅ parallelPair (RightHomologyData.g' h) 0 := parallelPair.ext (IsColimit.coconePointUniqueUpToIso (colimit.isColimit (parallelPair S.f 0)) h.hp) (Iso.refl ((parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.one)) (_ : (parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).map WalkingParallelPairHom.left ≫ (Iso.refl ((parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.one)).hom = (IsColimit.coconePointUniqueUpToIso (colimit.isColimit (parallelPair S.f 0)) h.hp).hom ≫ (parallelPair (RightHomologyData.g' h) 0).map WalkingParallelPairHom.left) (_ : 0 ≫ 𝟙 S.X₃ = (IsColimit.coconePointUniqueUpToIso (colimit.isColimit (parallelPair S.f 0)) (rightHomologyData S).hp).hom ≫ 0) ⊢ HasKernel (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) [PROOFSTEP] exact hasLimitOfIso e.symm [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₂✝ : IsIso φ.τ₂ h₁✝ : Epi φ.τ₁ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ⊢ IsIso (opcyclesMap' φ h₁ h₂) [PROOFSTEP] refine' ⟨h₂.descQ (inv φ.τ₂ ≫ h₁.p) _, _, _⟩ [GOAL] case refine'_1 C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₂✝ : IsIso φ.τ₂ h₁✝ : Epi φ.τ₁ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ⊢ S₂.f ≫ inv φ.τ₂ ≫ h₁.p = 0 [PROOFSTEP] simp only [← cancel_epi φ.τ₁, comp_zero, φ.comm₁₂_assoc, IsIso.hom_inv_id_assoc, h₁.wp] [GOAL] case refine'_2 C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₂✝ : IsIso φ.τ₂ h₁✝ : Epi φ.τ₁ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ⊢ opcyclesMap' φ h₁ h₂ ≫ RightHomologyData.descQ h₂ (inv φ.τ₂ ≫ h₁.p) (_ : S₂.f ≫ inv φ.τ₂ ≫ h₁.p = 0) = 𝟙 h₁.Q [PROOFSTEP] simp only [← cancel_epi h₁.p, p_opcyclesMap'_assoc, h₂.p_descQ, IsIso.hom_inv_id_assoc, comp_id] [GOAL] case refine'_3 C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasZeroMorphisms C S S₁ S₂ S₃ : ShortComplex C φ : S₁ ⟶ S₂ h₂✝ : IsIso φ.τ₂ h₁✝ : Epi φ.τ₁ h₁ : RightHomologyData S₁ h₂ : RightHomologyData S₂ ⊢ RightHomologyData.descQ h₂ (inv φ.τ₂ ≫ h₁.p) (_ : S₂.f ≫ inv φ.τ₂ ≫ h₁.p = 0) ≫ opcyclesMap' φ h₁ h₂ = 𝟙 h₂.Q [PROOFSTEP] simp only [← cancel_epi h₂.p, h₂.p_descQ_assoc, assoc, p_opcyclesMap', IsIso.inv_hom_id_assoc, comp_id]
{"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.RightHomology", "llama_tokens": 30095}
[GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β n : ℕ f : Fin n → β ⊢ ∏ i : Fin n, f i = List.prod (List.map f (List.finRange n)) [PROOFSTEP] simp [univ_def] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β n : ℕ f : Fin n → β ⊢ List.prod (List.ofFn f) = ∏ i : Fin n, f i [PROOFSTEP] rw [List.ofFn_eq_map, prod_univ_def] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β n : ℕ f : Fin (n + 1) → β x : Fin (n + 1) ⊢ ∏ i : Fin (n + 1), f i = f x * ∏ i : Fin n, f (succAbove x i) [PROOFSTEP] rw [univ_succAbove, prod_cons, Finset.prod_map _ x.succAboveEmb.toEmbedding, RelEmbedding.coe_toEmbedding] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β n : ℕ f : Fin (n + 1) → β x : Fin (n + 1) ⊢ f x * ∏ x_1 : Fin n, f (↑(succAboveEmb x) x_1) = f x * ∏ i : Fin n, f (succAbove x i) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β n : ℕ f : Fin (n + 1) → β ⊢ ∏ i : Fin (n + 1), f i = (∏ i : Fin n, f (castSucc i)) * f (last n) [PROOFSTEP] simpa [mul_comm] using prod_univ_succAbove f (last n) [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β n : ℕ x : β f : Fin n → β ⊢ ∏ i : Fin (Nat.succ n), cons x f i = x * ∏ i : Fin n, f i [PROOFSTEP] simp_rw [prod_univ_succ, cons_zero, cons_succ] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 1 → β ⊢ ∏ i : Fin 1, f i = f 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 2 → β ⊢ ∏ i : Fin 2, f i = f 0 * f 1 [PROOFSTEP] simp [prod_univ_succ] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 3 → β ⊢ ∏ i : Fin 3, f i = f 0 * f 1 * f 2 [PROOFSTEP] rw [prod_univ_castSucc, prod_univ_two] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 3 → β ⊢ f (castSucc 0) * f (castSucc 1) * f (last 2) = f 0 * f 1 * f 2 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 4 → β ⊢ ∏ i : Fin 4, f i = f 0 * f 1 * f 2 * f 3 [PROOFSTEP] rw [prod_univ_castSucc, prod_univ_three] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 4 → β ⊢ f (castSucc 0) * f (castSucc 1) * f (castSucc 2) * f (last 3) = f 0 * f 1 * f 2 * f 3 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 5 → β ⊢ ∏ i : Fin 5, f i = f 0 * f 1 * f 2 * f 3 * f 4 [PROOFSTEP] rw [prod_univ_castSucc, prod_univ_four] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 5 → β ⊢ f (castSucc 0) * f (castSucc 1) * f (castSucc 2) * f (castSucc 3) * f (last 4) = f 0 * f 1 * f 2 * f 3 * f 4 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 6 → β ⊢ ∏ i : Fin 6, f i = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 [PROOFSTEP] rw [prod_univ_castSucc, prod_univ_five] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 6 → β ⊢ f (castSucc 0) * f (castSucc 1) * f (castSucc 2) * f (castSucc 3) * f (castSucc 4) * f (last 5) = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 7 → β ⊢ ∏ i : Fin 7, f i = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 * f 6 [PROOFSTEP] rw [prod_univ_castSucc, prod_univ_six] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 7 → β ⊢ f (castSucc 0) * f (castSucc 1) * f (castSucc 2) * f (castSucc 3) * f (castSucc 4) * f (castSucc 5) * f (last 6) = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 * f 6 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 8 → β ⊢ ∏ i : Fin 8, f i = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 * f 6 * f 7 [PROOFSTEP] rw [prod_univ_castSucc, prod_univ_seven] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid β f : Fin 8 → β ⊢ f (castSucc 0) * f (castSucc 1) * f (castSucc 2) * f (castSucc 3) * f (castSucc 4) * f (castSucc 5) * f (castSucc 6) * f (last 7) = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 * f 6 * f 7 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 n : ℕ R : Type u_3 inst✝ : CommSemiring R a b : R ⊢ ∑ s : Finset (Fin n), a ^ card s * b ^ (n - card s) = (a + b) ^ n [PROOFSTEP] simpa using Fintype.sum_pow_mul_eq_add_pow (Fin n) a b [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ x : α ⊢ ∏ _i : Fin n, x = x ^ n [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝ : AddCommMonoid α n : ℕ x : α ⊢ ∑ _i : Fin n, x = n • x [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 inst✝ : CommMonoid M n : ℕ v : Fin (Nat.succ n) → M ⊢ ∏ i in Ioi 0, v i = ∏ j : Fin n, v (succ j) [PROOFSTEP] rw [Ioi_zero_eq_map, Finset.prod_map, RelEmbedding.coe_toEmbedding, val_succEmbedding] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 inst✝ : CommMonoid M n : ℕ i : Fin n v : Fin (Nat.succ n) → M ⊢ ∏ j in Ioi (succ i), v j = ∏ j in Ioi i, v (succ j) [PROOFSTEP] rw [Ioi_succ, Finset.prod_map, RelEmbedding.coe_toEmbedding, val_succEmbedding] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 inst✝ : CommMonoid M a b : ℕ f : Fin b → M h : a = b ⊢ ∏ i : Fin a, f (↑(castIso h) i) = ∏ i : Fin b, f i [PROOFSTEP] subst h [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 inst✝ : CommMonoid M a : ℕ f : Fin a → M ⊢ ∏ i : Fin a, f (↑(castIso (_ : a = a)) i) = ∏ i : Fin a, f i [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 inst✝ : CommMonoid M a b : ℕ f : Fin (a + b) → M ⊢ ∏ i : Fin (a + b), f i = (∏ i : Fin a, f (castAdd b i)) * ∏ i : Fin b, f (natAdd a i) [PROOFSTEP] rw [Fintype.prod_equiv finSumFinEquiv.symm f fun i => f (finSumFinEquiv.toFun i)] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 inst✝ : CommMonoid M a b : ℕ f : Fin (a + b) → M ⊢ ∏ x : Fin a ⊕ Fin b, f (Equiv.toFun finSumFinEquiv x) = (∏ i : Fin a, f (castAdd b i)) * ∏ i : Fin b, f (natAdd a i) [PROOFSTEP] apply Fintype.prod_sum_type [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 inst✝ : CommMonoid M a b : ℕ f : Fin (a + b) → M ⊢ ∀ (x : Fin (a + b)), f x = f (Equiv.toFun finSumFinEquiv (↑finSumFinEquiv.symm x)) [PROOFSTEP] intro x [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 inst✝ : CommMonoid M a b : ℕ f : Fin (a + b) → M x : Fin (a + b) ⊢ f x = f (Equiv.toFun finSumFinEquiv (↑finSumFinEquiv.symm x)) [PROOFSTEP] simp only [Equiv.toFun_as_coe, Equiv.apply_symm_apply] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 inst✝ : CommMonoid M a b : ℕ f : Fin (a + b) → M hf : ∀ (j : Fin b), f (natAdd a j) = 1 ⊢ ∏ i : Fin (a + b), f i = ∏ i : Fin a, f (castLE (_ : a ≤ a + b) i) [PROOFSTEP] rw [prod_univ_add, Fintype.prod_eq_one _ hf, mul_one] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 inst✝ : CommMonoid M a b : ℕ f : Fin (a + b) → M hf : ∀ (j : Fin b), f (natAdd a j) = 1 ⊢ ∏ i : Fin a, f (castAdd b i) = ∏ i : Fin a, f (castLE (_ : a ≤ a + b) i) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝ : Monoid α n : ℕ f : Fin n → α ⊢ partialProd f 0 = 1 [PROOFSTEP] simp [partialProd] [GOAL] α : Type u_1 β : Type u_2 inst✝ : Monoid α n : ℕ f : Fin n → α j : Fin n ⊢ partialProd f (succ j) = partialProd f (castSucc j) * f j [PROOFSTEP] simp [partialProd, List.take_succ, List.ofFnNthVal, dif_pos j.is_lt, ← Option.coe_def] [GOAL] α : Type u_1 β : Type u_2 inst✝ : Monoid α n : ℕ f : Fin (n + 1) → α j : Fin (n + 1) ⊢ partialProd f (succ j) = f 0 * partialProd (tail f) j [PROOFSTEP] simp [partialProd] [GOAL] α : Type u_1 β : Type u_2 inst✝ : Monoid α n : ℕ f : Fin (n + 1) → α j : Fin (n + 1) ⊢ f 0 * List.prod (List.take (↑j) (List.ofFn fun i => f (succ i))) = f 0 * List.prod (List.take (↑j) (List.ofFn (tail f))) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin (n + 1) → G x : Fin (n + 1) ⊢ (f 0 • partialProd fun i => (f ↑↑i)⁻¹ * f (succ i)) 0 = f 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin (n + 1) → G x✝ : Fin (n + 1) x : Fin n hx : (f 0 • partialProd fun i => (f ↑↑i)⁻¹ * f (succ i)) (castSucc x) = f (castSucc x) ⊢ (f 0 • partialProd fun i => (f ↑↑i)⁻¹ * f (succ i)) (succ x) = f (succ x) [PROOFSTEP] simp only [coe_eq_castSucc, Pi.smul_apply, smul_eq_mul] at hx ⊢ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin (n + 1) → G x✝ : Fin (n + 1) x : Fin n hx : f 0 * partialProd (fun i => (f (castSucc i))⁻¹ * f (succ i)) (castSucc x) = f (castSucc x) ⊢ f 0 * partialProd (fun i => (f (castSucc i))⁻¹ * f (succ i)) (succ x) = f (succ x) [PROOFSTEP] rw [partialProd_succ, ← mul_assoc, hx, mul_inv_cancel_left] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin n → G i : Fin n ⊢ (partialProd f (castSucc i))⁻¹ * partialProd f (succ i) = f i [PROOFSTEP] cases' i with i hn [GOAL] case mk α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin n → G i : ℕ hn : i < n ⊢ (partialProd f (castSucc { val := i, isLt := hn }))⁻¹ * partialProd f (succ { val := i, isLt := hn }) = f { val := i, isLt := hn } [PROOFSTEP] induction i with | zero => simp [-Fin.succ_mk, partialProd_succ] | succ i hi => specialize hi (lt_trans (Nat.lt_succ_self i) hn) simp only [Fin.coe_eq_castSucc, Fin.succ_mk, Fin.castSucc_mk] at hi ⊢ rw [← Fin.succ_mk _ _ (lt_trans (Nat.lt_succ_self _) hn), ← Fin.succ_mk] rw [Nat.succ_eq_add_one] at hn simp only [partialProd_succ, mul_inv_rev, Fin.castSucc_mk] -- Porting note: was -- assoc_rw [hi, inv_mul_cancel_left] rw [← mul_assoc, mul_left_eq_self, mul_assoc, hi, mul_left_inv] [GOAL] case mk α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin n → G i : ℕ hn : i < n ⊢ (partialProd f (castSucc { val := i, isLt := hn }))⁻¹ * partialProd f (succ { val := i, isLt := hn }) = f { val := i, isLt := hn } [PROOFSTEP] induction i with | zero => simp [-Fin.succ_mk, partialProd_succ] | succ i hi => specialize hi (lt_trans (Nat.lt_succ_self i) hn) simp only [Fin.coe_eq_castSucc, Fin.succ_mk, Fin.castSucc_mk] at hi ⊢ rw [← Fin.succ_mk _ _ (lt_trans (Nat.lt_succ_self _) hn), ← Fin.succ_mk] rw [Nat.succ_eq_add_one] at hn simp only [partialProd_succ, mul_inv_rev, Fin.castSucc_mk] -- Porting note: was -- assoc_rw [hi, inv_mul_cancel_left] rw [← mul_assoc, mul_left_eq_self, mul_assoc, hi, mul_left_inv] [GOAL] case mk.zero α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin n → G hn : Nat.zero < n ⊢ (partialProd f (castSucc { val := Nat.zero, isLt := hn }))⁻¹ * partialProd f (succ { val := Nat.zero, isLt := hn }) = f { val := Nat.zero, isLt := hn } [PROOFSTEP] | zero => simp [-Fin.succ_mk, partialProd_succ] [GOAL] case mk.zero α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin n → G hn : Nat.zero < n ⊢ (partialProd f (castSucc { val := Nat.zero, isLt := hn }))⁻¹ * partialProd f (succ { val := Nat.zero, isLt := hn }) = f { val := Nat.zero, isLt := hn } [PROOFSTEP] simp [-Fin.succ_mk, partialProd_succ] [GOAL] case mk.succ α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin n → G i : ℕ hi : ∀ (hn : i < n), (partialProd f (castSucc { val := i, isLt := hn }))⁻¹ * partialProd f (succ { val := i, isLt := hn }) = f { val := i, isLt := hn } hn : Nat.succ i < n ⊢ (partialProd f (castSucc { val := Nat.succ i, isLt := hn }))⁻¹ * partialProd f (succ { val := Nat.succ i, isLt := hn }) = f { val := Nat.succ i, isLt := hn } [PROOFSTEP] | succ i hi => specialize hi (lt_trans (Nat.lt_succ_self i) hn) simp only [Fin.coe_eq_castSucc, Fin.succ_mk, Fin.castSucc_mk] at hi ⊢ rw [← Fin.succ_mk _ _ (lt_trans (Nat.lt_succ_self _) hn), ← Fin.succ_mk] rw [Nat.succ_eq_add_one] at hn simp only [partialProd_succ, mul_inv_rev, Fin.castSucc_mk] -- Porting note: was -- assoc_rw [hi, inv_mul_cancel_left] rw [← mul_assoc, mul_left_eq_self, mul_assoc, hi, mul_left_inv] [GOAL] case mk.succ α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin n → G i : ℕ hi : ∀ (hn : i < n), (partialProd f (castSucc { val := i, isLt := hn }))⁻¹ * partialProd f (succ { val := i, isLt := hn }) = f { val := i, isLt := hn } hn : Nat.succ i < n ⊢ (partialProd f (castSucc { val := Nat.succ i, isLt := hn }))⁻¹ * partialProd f (succ { val := Nat.succ i, isLt := hn }) = f { val := Nat.succ i, isLt := hn } [PROOFSTEP] specialize hi (lt_trans (Nat.lt_succ_self i) hn) [GOAL] case mk.succ α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin n → G i : ℕ hn : Nat.succ i < n hi : (partialProd f (castSucc { val := i, isLt := (_ : i < n) }))⁻¹ * partialProd f (succ { val := i, isLt := (_ : i < n) }) = f { val := i, isLt := (_ : i < n) } ⊢ (partialProd f (castSucc { val := Nat.succ i, isLt := hn }))⁻¹ * partialProd f (succ { val := Nat.succ i, isLt := hn }) = f { val := Nat.succ i, isLt := hn } [PROOFSTEP] simp only [Fin.coe_eq_castSucc, Fin.succ_mk, Fin.castSucc_mk] at hi ⊢ [GOAL] case mk.succ α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin n → G i : ℕ hn : Nat.succ i < n hi : (partialProd f { val := i, isLt := (_ : i < Nat.succ n) })⁻¹ * partialProd f { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ n) } = f { val := i, isLt := (_ : i < n) } ⊢ (partialProd f { val := Nat.succ i, isLt := (_ : Nat.succ i < Nat.succ n) })⁻¹ * partialProd f { val := Nat.succ i + 1, isLt := (_ : Nat.succ (Nat.succ i) < Nat.succ n) } = f { val := Nat.succ i, isLt := hn } [PROOFSTEP] rw [← Fin.succ_mk _ _ (lt_trans (Nat.lt_succ_self _) hn), ← Fin.succ_mk] [GOAL] case mk.succ α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin n → G i : ℕ hn : Nat.succ i < n hi : (partialProd f { val := i, isLt := (_ : i < Nat.succ n) })⁻¹ * partialProd f { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ n) } = f { val := i, isLt := (_ : i < n) } ⊢ (partialProd f (succ { val := i, isLt := (_ : i < n) }))⁻¹ * partialProd f (succ { val := i + 1, isLt := ?mk.succ.h }) = f { val := Nat.succ i, isLt := hn } case mk.succ.h α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin n → G i : ℕ hn : Nat.succ i < n hi : (partialProd f { val := i, isLt := (_ : i < Nat.succ n) })⁻¹ * partialProd f { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ n) } = f { val := i, isLt := (_ : i < n) } ⊢ i + 1 < n [PROOFSTEP] rw [Nat.succ_eq_add_one] at hn [GOAL] case mk.succ α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin n → G i : ℕ hn✝ : Nat.succ i < n hn : i + 1 < n hi : (partialProd f { val := i, isLt := (_ : i < Nat.succ n) })⁻¹ * partialProd f { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ n) } = f { val := i, isLt := (_ : i < n) } ⊢ (partialProd f (succ { val := i, isLt := (_ : i < n) }))⁻¹ * partialProd f (succ { val := i + 1, isLt := (_ : i + 1 < n) }) = f { val := Nat.succ i, isLt := hn✝ } [PROOFSTEP] simp only [partialProd_succ, mul_inv_rev, Fin.castSucc_mk] -- Porting note: was -- assoc_rw [hi, inv_mul_cancel_left] [GOAL] case mk.succ α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G f : Fin n → G i : ℕ hn✝ : Nat.succ i < n hn : i + 1 < n hi : (partialProd f { val := i, isLt := (_ : i < Nat.succ n) })⁻¹ * partialProd f { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ n) } = f { val := i, isLt := (_ : i < n) } ⊢ (f { val := i, isLt := (_ : i < n) })⁻¹ * (partialProd f { val := i, isLt := (_ : i < Nat.succ n) })⁻¹ * (partialProd f { val := i + 1, isLt := (_ : i + 1 < Nat.succ n) } * f { val := i + 1, isLt := (_ : i + 1 < n) }) = f { val := Nat.succ i, isLt := hn✝ } [PROOFSTEP] rw [← mul_assoc, mul_left_eq_self, mul_assoc, hi, mul_left_inv] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n ⊢ (partialProd g (succAbove (succ j) (castSucc k)))⁻¹ * partialProd g (succ (succAbove j k)) = contractNth j (fun x x_1 => x * x_1) g k [PROOFSTEP] rcases lt_trichotomy (k : ℕ) j with (h | h | h) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑k < ↑j ⊢ (partialProd g (succAbove (succ j) (castSucc k)))⁻¹ * partialProd g (succ (succAbove j k)) = contractNth j (fun x x_1 => x * x_1) g k [PROOFSTEP] rwa [succAbove_below, succAbove_below, partialProd_right_inv, contractNth_apply_of_lt] [GOAL] case inl.h α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑k < ↑j ⊢ castSucc k < j [PROOFSTEP] assumption [GOAL] case inl.h α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑k < ↑j ⊢ castSucc (castSucc k) < succ j [PROOFSTEP] rw [castSucc_lt_iff_succ_le, succ_le_succ_iff, le_iff_val_le_val] [GOAL] case inl.h α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑k < ↑j ⊢ ↑(castSucc k) ≤ ↑j [PROOFSTEP] exact le_of_lt h [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑k = ↑j ⊢ (partialProd g (succAbove (succ j) (castSucc k)))⁻¹ * partialProd g (succ (succAbove j k)) = contractNth j (fun x x_1 => x * x_1) g k [PROOFSTEP] rwa [succAbove_below, succAbove_above, partialProd_succ, castSucc_fin_succ, ← mul_assoc, partialProd_right_inv, contractNth_apply_of_eq] [GOAL] case inr.inl.h α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑k = ↑j ⊢ j ≤ castSucc k [PROOFSTEP] simp [le_iff_val_le_val, ← h] [GOAL] case inr.inl.h α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑k = ↑j ⊢ castSucc (castSucc k) < succ j [PROOFSTEP] rw [castSucc_lt_iff_succ_le, succ_le_succ_iff, le_iff_val_le_val] [GOAL] case inr.inl.h α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑k = ↑j ⊢ ↑(castSucc k) ≤ ↑j [PROOFSTEP] exact le_of_eq h [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑j < ↑k ⊢ (partialProd g (succAbove (succ j) (castSucc k)))⁻¹ * partialProd g (succ (succAbove j k)) = contractNth j (fun x x_1 => x * x_1) g k [PROOFSTEP] rwa [succAbove_above, succAbove_above, partialProd_succ, partialProd_succ, castSucc_fin_succ, partialProd_succ, inv_mul_cancel_left, contractNth_apply_of_gt] [GOAL] case inr.inr.h α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑j < ↑k ⊢ j ≤ castSucc k [PROOFSTEP] exact le_iff_val_le_val.2 (le_of_lt h) [GOAL] case inr.inr.h α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑j < ↑k ⊢ succ j ≤ castSucc (castSucc k) [PROOFSTEP] rw [le_iff_val_le_val, val_succ] [GOAL] case inr.inr.h α : Type u_1 β : Type u_2 inst✝¹ : Monoid α n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑j < ↑k ⊢ ↑j + 1 ≤ ↑(castSucc (castSucc k)) [PROOFSTEP] exact Nat.succ_le_of_lt h [GOAL] α : Type u_1 β : Type u_2 m n : ℕ ⊢ Fintype.card (Fin n → Fin m) = Fintype.card (Fin (m ^ n)) [PROOFSTEP] simp_rw [Fintype.card_fun, Fintype.card_fin] [GOAL] α : Type u_1 β : Type u_2 m n : ℕ f : Fin n → Fin m ⊢ ∑ i : Fin n, ↑(f i) * m ^ ↑i < m ^ n [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 β : Type u_2 m n : ℕ f✝ : Fin n → Fin m f : Fin Nat.zero → Fin m ⊢ ∑ i : Fin Nat.zero, ↑(f i) * m ^ ↑i < m ^ Nat.zero [PROOFSTEP] simp [GOAL] case succ α : Type u_1 β : Type u_2 m n✝ : ℕ f✝ : Fin n✝ → Fin m n : ℕ ih : ∀ (f : Fin n → Fin m), ∑ i : Fin n, ↑(f i) * m ^ ↑i < m ^ n f : Fin (Nat.succ n) → Fin m ⊢ ∑ i : Fin (Nat.succ n), ↑(f i) * m ^ ↑i < m ^ Nat.succ n [PROOFSTEP] cases m [GOAL] case succ.zero α : Type u_1 β : Type u_2 n✝ n : ℕ f✝ : Fin n✝ → Fin Nat.zero ih : ∀ (f : Fin n → Fin Nat.zero), ∑ i : Fin n, ↑(f i) * Nat.zero ^ ↑i < Nat.zero ^ n f : Fin (Nat.succ n) → Fin Nat.zero ⊢ ∑ i : Fin (Nat.succ n), ↑(f i) * Nat.zero ^ ↑i < Nat.zero ^ Nat.succ n [PROOFSTEP] dsimp only [Nat.zero_eq] at f [GOAL] case succ.zero α : Type u_1 β : Type u_2 n✝ n : ℕ f✝ : Fin n✝ → Fin Nat.zero ih : ∀ (f : Fin n → Fin Nat.zero), ∑ i : Fin n, ↑(f i) * Nat.zero ^ ↑i < Nat.zero ^ n f : Fin (Nat.succ n) → Fin 0 ⊢ ∑ i : Fin (Nat.succ n), ↑(f i) * Nat.zero ^ ↑i < Nat.zero ^ Nat.succ n [PROOFSTEP] exact isEmptyElim (f <| Fin.last _) [GOAL] case succ.succ α : Type u_1 β : Type u_2 n✝¹ n n✝ : ℕ f✝ : Fin n✝¹ → Fin (Nat.succ n✝) ih : ∀ (f : Fin n → Fin (Nat.succ n✝)), ∑ i : Fin n, ↑(f i) * Nat.succ n✝ ^ ↑i < Nat.succ n✝ ^ n f : Fin (Nat.succ n) → Fin (Nat.succ n✝) ⊢ ∑ i : Fin (Nat.succ n), ↑(f i) * Nat.succ n✝ ^ ↑i < Nat.succ n✝ ^ Nat.succ n [PROOFSTEP] simp_rw [Fin.sum_univ_castSucc, Fin.coe_castSucc, Fin.val_last] [GOAL] case succ.succ α : Type u_1 β : Type u_2 n✝¹ n n✝ : ℕ f✝ : Fin n✝¹ → Fin (Nat.succ n✝) ih : ∀ (f : Fin n → Fin (Nat.succ n✝)), ∑ i : Fin n, ↑(f i) * Nat.succ n✝ ^ ↑i < Nat.succ n✝ ^ n f : Fin (Nat.succ n) → Fin (Nat.succ n✝) ⊢ ∑ x : Fin n, ↑(f (Fin.castSucc x)) * Nat.succ n✝ ^ ↑x + ↑(f (Fin.last n)) * Nat.succ n✝ ^ n < Nat.succ n✝ ^ Nat.succ n [PROOFSTEP] refine' (add_lt_add_of_lt_of_le (ih _) <| mul_le_mul_right' (Fin.is_le _) _).trans_eq _ [GOAL] case succ.succ α : Type u_1 β : Type u_2 n✝¹ n n✝ : ℕ f✝ : Fin n✝¹ → Fin (Nat.succ n✝) ih : ∀ (f : Fin n → Fin (Nat.succ n✝)), ∑ i : Fin n, ↑(f i) * Nat.succ n✝ ^ ↑i < Nat.succ n✝ ^ n f : Fin (Nat.succ n) → Fin (Nat.succ n✝) ⊢ Nat.succ n✝ ^ n + n✝ * Nat.succ n✝ ^ n = Nat.succ n✝ ^ Nat.succ n [PROOFSTEP] rw [← one_add_mul (_ : ℕ), add_comm, pow_succ] -- porting note: added, wrong `succ` [GOAL] case succ.succ α : Type u_1 β : Type u_2 n✝¹ n n✝ : ℕ f✝ : Fin n✝¹ → Fin (Nat.succ n✝) ih : ∀ (f : Fin n → Fin (Nat.succ n✝)), ∑ i : Fin n, ↑(f i) * Nat.succ n✝ ^ ↑i < Nat.succ n✝ ^ n f : Fin (Nat.succ n) → Fin (Nat.succ n✝) ⊢ (n✝ + 1) * Nat.succ n✝ ^ n = Nat.succ n✝ * Nat.succ n✝ ^ n [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 m n : ℕ a : Fin (m ^ n) b : Fin n ⊢ ↑a / m ^ ↑b % m < m [PROOFSTEP] cases' n with n [GOAL] case zero α : Type u_1 β : Type u_2 m : ℕ a : Fin (m ^ Nat.zero) b : Fin Nat.zero ⊢ ↑a / m ^ ↑b % m < m [PROOFSTEP] exact b.elim0 [GOAL] case succ α : Type u_1 β : Type u_2 m n : ℕ a : Fin (m ^ Nat.succ n) b : Fin (Nat.succ n) ⊢ ↑a / m ^ ↑b % m < m [PROOFSTEP] cases' m with m [GOAL] case succ.zero α : Type u_1 β : Type u_2 n : ℕ b : Fin (Nat.succ n) a : Fin (Nat.zero ^ Nat.succ n) ⊢ ↑a / Nat.zero ^ ↑b % Nat.zero < Nat.zero [PROOFSTEP] dsimp only [Nat.zero_eq] at a [GOAL] case succ.zero α : Type u_1 β : Type u_2 n : ℕ b : Fin (Nat.succ n) a : Fin (0 ^ Nat.succ n) ⊢ ↑a / Nat.zero ^ ↑b % Nat.zero < Nat.zero [PROOFSTEP] rw [zero_pow n.succ_pos] at a [GOAL] case succ.zero α : Type u_1 β : Type u_2 n : ℕ b : Fin (Nat.succ n) a✝ : Fin (0 ^ Nat.succ n) a : Fin 0 ⊢ ↑a✝ / Nat.zero ^ ↑b % Nat.zero < Nat.zero [PROOFSTEP] exact a.elim0 [GOAL] case succ.succ α : Type u_1 β : Type u_2 n : ℕ b : Fin (Nat.succ n) m : ℕ a : Fin (Nat.succ m ^ Nat.succ n) ⊢ ↑a / Nat.succ m ^ ↑b % Nat.succ m < Nat.succ m [PROOFSTEP] exact Nat.mod_lt _ m.succ_pos [GOAL] α : Type u_1 β : Type u_2 m n : ℕ a : Fin (m ^ n) ⊢ (fun f => { val := ∑ i : Fin n, ↑(f i) * m ^ ↑i, isLt := (_ : ∑ i : Fin n, ↑(f i) * m ^ ↑i < m ^ n) }) ((fun a b => { val := ↑a / m ^ ↑b % m, isLt := (_ : ↑a / m ^ ↑b % m < m) }) a) = a [PROOFSTEP] dsimp [GOAL] α : Type u_1 β : Type u_2 m n : ℕ a : Fin (m ^ n) ⊢ { val := ∑ i : Fin n, ↑a / m ^ ↑i % m * m ^ ↑i, isLt := (_ : ∑ i : Fin n, ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i < m ^ n) } = a [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 β : Type u_2 m n : ℕ a✝ : Fin (m ^ n) a : Fin (m ^ Nat.zero) ⊢ { val := ∑ i : Fin Nat.zero, ↑a / m ^ ↑i % m * m ^ ↑i, isLt := (_ : ∑ i : Fin Nat.zero, ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i < m ^ Nat.zero) } = a [PROOFSTEP] haveI : Subsingleton (Fin (m ^ 0)) := (Fin.castIso <| pow_zero _).toEquiv.subsingleton [GOAL] case zero α : Type u_1 β : Type u_2 m n : ℕ a✝ : Fin (m ^ n) a : Fin (m ^ Nat.zero) this : Subsingleton (Fin (m ^ 0)) ⊢ { val := ∑ i : Fin Nat.zero, ↑a / m ^ ↑i % m * m ^ ↑i, isLt := (_ : ∑ i : Fin Nat.zero, ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i < m ^ Nat.zero) } = a [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] case succ α : Type u_1 β : Type u_2 m n✝ : ℕ a✝ : Fin (m ^ n✝) n : ℕ ih : ∀ (a : Fin (m ^ n)), { val := ∑ i : Fin n, ↑a / m ^ ↑i % m * m ^ ↑i, isLt := (_ : ∑ i : Fin n, ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i < m ^ n) } = a a : Fin (m ^ Nat.succ n) ⊢ { val := ∑ i : Fin (Nat.succ n), ↑a / m ^ ↑i % m * m ^ ↑i, isLt := (_ : ∑ i : Fin (Nat.succ n), ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i < m ^ Nat.succ n) } = a [PROOFSTEP] simp_rw [Fin.forall_iff, Fin.ext_iff] at ih [GOAL] case succ α : Type u_1 β : Type u_2 m n✝ : ℕ a✝ : Fin (m ^ n✝) n : ℕ a : Fin (m ^ Nat.succ n) ih : ∀ (i : ℕ), i < m ^ n → ∑ x : Fin n, i / m ^ ↑x % m * m ^ ↑x = i ⊢ { val := ∑ i : Fin (Nat.succ n), ↑a / m ^ ↑i % m * m ^ ↑i, isLt := (_ : ∑ i : Fin (Nat.succ n), ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i < m ^ Nat.succ n) } = a [PROOFSTEP] ext [GOAL] case succ.h α : Type u_1 β : Type u_2 m n✝ : ℕ a✝ : Fin (m ^ n✝) n : ℕ a : Fin (m ^ Nat.succ n) ih : ∀ (i : ℕ), i < m ^ n → ∑ x : Fin n, i / m ^ ↑x % m * m ^ ↑x = i ⊢ ↑{ val := ∑ i : Fin (Nat.succ n), ↑a / m ^ ↑i % m * m ^ ↑i, isLt := (_ : ∑ i : Fin (Nat.succ n), ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i < m ^ Nat.succ n) } = ↑a [PROOFSTEP] simp_rw [Fin.sum_univ_succ, Fin.val_zero, Fin.val_succ, pow_zero, Nat.div_one, mul_one, pow_succ, ← Nat.div_div_eq_div_mul, mul_left_comm _ m, ← mul_sum] [GOAL] case succ.h α : Type u_1 β : Type u_2 m n✝ : ℕ a✝ : Fin (m ^ n✝) n : ℕ a : Fin (m ^ Nat.succ n) ih : ∀ (i : ℕ), i < m ^ n → ∑ x : Fin n, i / m ^ ↑x % m * m ^ ↑x = i ⊢ ↑a % m + m * ∑ x : Fin n, ↑a / m / m ^ ↑x % m * m ^ ↑x = ↑a [PROOFSTEP] rw [ih _ (Nat.div_lt_of_lt_mul ?_), Nat.mod_add_div] -- porting note: replaces `a.is_lt` in the wildcard above. Caused by a refactor of the `npow` -- instance for `Fin`. [GOAL] α : Type u_1 β : Type u_2 m n✝ : ℕ a✝ : Fin (m ^ n✝) n : ℕ a : Fin (m ^ Nat.succ n) ih : ∀ (i : ℕ), i < m ^ n → ∑ x : Fin n, i / m ^ ↑x % m * m ^ ↑x = i ⊢ ↑a < m * m ^ n [PROOFSTEP] exact a.is_lt.trans_eq (pow_succ _ _) [GOAL] α : Type u_1 β : Type u_2 m n : ℕ inst✝ : NeZero m i : Fin n j : Fin m ⊢ ↑(↑finFunctionFinEquiv (Pi.single i j)) = ↑j * m ^ ↑i [PROOFSTEP] rw [finFunctionFinEquiv_apply, Fintype.sum_eq_single i, Pi.single_eq_same] [GOAL] α : Type u_1 β : Type u_2 m n : ℕ inst✝ : NeZero m i : Fin n j : Fin m ⊢ ∀ (x : Fin n), x ≠ i → ↑(Pi.single i j x) * m ^ ↑x = 0 [PROOFSTEP] rintro x hx [GOAL] α : Type u_1 β : Type u_2 m n : ℕ inst✝ : NeZero m i : Fin n j : Fin m x : Fin n hx : x ≠ i ⊢ ↑(Pi.single i j x) * m ^ ↑x = 0 [PROOFSTEP] rw [Pi.single_eq_of_ne hx, Fin.val_zero', zero_mul] [GOAL] α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ ⊢ Fintype.card ((i : Fin m) → Fin (n i)) = Fintype.card (Fin (∏ i : Fin m, n i)) [PROOFSTEP] simp_rw [Fintype.card_pi, Fintype.card_fin] [GOAL] α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ f : (i : Fin m) → Fin (n i) ⊢ ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i [PROOFSTEP] induction' m with m ih [GOAL] case zero α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ f✝ : (i : Fin m) → Fin (n✝ i) n : Fin Nat.zero → ℕ f : (i : Fin Nat.zero) → Fin (n i) ⊢ ∑ i : Fin Nat.zero, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ Nat.zero) j) < ∏ i : Fin Nat.zero, n i [PROOFSTEP] simp [GOAL] case succ α : Type u_1 β : Type u_2 m✝ : ℕ n✝ : Fin m✝ → ℕ f✝ : (i : Fin m✝) → Fin (n✝ i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n : Fin (Nat.succ m) → ℕ f : (i : Fin (Nat.succ m)) → Fin (n i) ⊢ ∑ i : Fin (Nat.succ m), ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ Nat.succ m) j) < ∏ i : Fin (Nat.succ m), n i [PROOFSTEP] rw [Fin.prod_univ_castSucc, Fin.sum_univ_castSucc] [GOAL] case succ α : Type u_1 β : Type u_2 m✝ : ℕ n✝ : Fin m✝ → ℕ f✝ : (i : Fin m✝) → Fin (n✝ i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n : Fin (Nat.succ m) → ℕ f : (i : Fin (Nat.succ m)) → Fin (n i) ⊢ ∑ i : Fin m, ↑(f (Fin.castSucc i)) * ∏ j : Fin ↑(Fin.castSucc i), n (Fin.castLE (_ : ↑(Fin.castSucc i) ≤ Nat.succ m) j) + ↑(f (Fin.last m)) * ∏ j : Fin ↑(Fin.last m), n (Fin.castLE (_ : ↑(Fin.last m) ≤ Nat.succ m) j) < (∏ i : Fin m, n (Fin.castSucc i)) * n (Fin.last m) [PROOFSTEP] suffices ∀ (n : Fin m → ℕ) (nn : ℕ) (f : ∀ i : Fin m, Fin (n i)) (fn : Fin nn), ((∑ i : Fin m, ↑(f i) * ∏ j : Fin i, n (Fin.castLE i.prop.le j)) + ↑fn * ∏ j, n j) < (∏ i : Fin m, n i) * nn by replace := this (Fin.init n) (n (Fin.last _)) (Fin.init f) (f (Fin.last _)) rw [← Fin.snoc_init_self f] simp (config := { singlePass := true }) only [← Fin.snoc_init_self n] simp_rw [Fin.snoc_castSucc, Fin.snoc_last, Fin.snoc_init_self n] exact this [GOAL] α : Type u_1 β : Type u_2 m✝ : ℕ n✝ : Fin m✝ → ℕ f✝ : (i : Fin m✝) → Fin (n✝ i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n : Fin (Nat.succ m) → ℕ f : (i : Fin (Nat.succ m)) → Fin (n i) this : ∀ (n : Fin m → ℕ) (nn : ℕ) (f : (i : Fin m) → Fin (n i)) (fn : Fin nn), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) + ↑fn * ∏ j : Fin m, n j < (∏ i : Fin m, n i) * nn ⊢ ∑ i : Fin m, ↑(f (Fin.castSucc i)) * ∏ j : Fin ↑(Fin.castSucc i), n (Fin.castLE (_ : ↑(Fin.castSucc i) ≤ Nat.succ m) j) + ↑(f (Fin.last m)) * ∏ j : Fin ↑(Fin.last m), n (Fin.castLE (_ : ↑(Fin.last m) ≤ Nat.succ m) j) < (∏ i : Fin m, n (Fin.castSucc i)) * n (Fin.last m) [PROOFSTEP] replace := this (Fin.init n) (n (Fin.last _)) (Fin.init f) (f (Fin.last _)) [GOAL] α : Type u_1 β : Type u_2 m✝ : ℕ n✝ : Fin m✝ → ℕ f✝ : (i : Fin m✝) → Fin (n✝ i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n : Fin (Nat.succ m) → ℕ f : (i : Fin (Nat.succ m)) → Fin (n i) this : ∑ i : Fin m, ↑(Fin.init f i) * ∏ j : Fin ↑i, Fin.init n (Fin.castLE (_ : ↑i ≤ m) j) + ↑(f (Fin.last m)) * ∏ j : Fin m, Fin.init n j < (∏ i : Fin m, Fin.init n i) * n (Fin.last m) ⊢ ∑ i : Fin m, ↑(f (Fin.castSucc i)) * ∏ j : Fin ↑(Fin.castSucc i), n (Fin.castLE (_ : ↑(Fin.castSucc i) ≤ Nat.succ m) j) + ↑(f (Fin.last m)) * ∏ j : Fin ↑(Fin.last m), n (Fin.castLE (_ : ↑(Fin.last m) ≤ Nat.succ m) j) < (∏ i : Fin m, n (Fin.castSucc i)) * n (Fin.last m) [PROOFSTEP] rw [← Fin.snoc_init_self f] [GOAL] α : Type u_1 β : Type u_2 m✝ : ℕ n✝ : Fin m✝ → ℕ f✝ : (i : Fin m✝) → Fin (n✝ i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n : Fin (Nat.succ m) → ℕ f : (i : Fin (Nat.succ m)) → Fin (n i) this : ∑ i : Fin m, ↑(Fin.init f i) * ∏ j : Fin ↑i, Fin.init n (Fin.castLE (_ : ↑i ≤ m) j) + ↑(f (Fin.last m)) * ∏ j : Fin m, Fin.init n j < (∏ i : Fin m, Fin.init n i) * n (Fin.last m) ⊢ ∑ i : Fin m, ↑(Fin.snoc (Fin.init f) (f (Fin.last m)) (Fin.castSucc i)) * ∏ j : Fin ↑(Fin.castSucc i), n (Fin.castLE (_ : ↑(Fin.castSucc i) ≤ Nat.succ m) j) + ↑(Fin.snoc (Fin.init f) (f (Fin.last m)) (Fin.last m)) * ∏ j : Fin ↑(Fin.last m), n (Fin.castLE (_ : ↑(Fin.last m) ≤ Nat.succ m) j) < (∏ i : Fin m, n (Fin.castSucc i)) * n (Fin.last m) [PROOFSTEP] simp (config := { singlePass := true }) only [← Fin.snoc_init_self n] [GOAL] α : Type u_1 β : Type u_2 m✝ : ℕ n✝ : Fin m✝ → ℕ f✝ : (i : Fin m✝) → Fin (n✝ i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n : Fin (Nat.succ m) → ℕ f : (i : Fin (Nat.succ m)) → Fin (n i) this : ∑ i : Fin m, ↑(Fin.init f i) * ∏ j : Fin ↑i, Fin.init n (Fin.castLE (_ : ↑i ≤ m) j) + ↑(f (Fin.last m)) * ∏ j : Fin m, Fin.init n j < (∏ i : Fin m, Fin.init n i) * n (Fin.last m) ⊢ ∑ x : Fin m, ↑(Fin.snoc (Fin.init f) (f (Fin.last m)) (Fin.castSucc x)) * ∏ x_1 : Fin ↑(Fin.castSucc x), Fin.snoc (Fin.init n) (n (Fin.last m)) (Fin.castLE (_ : ↑(Fin.castSucc x) ≤ Nat.succ m) x_1) + ↑(Fin.snoc (Fin.init f) (f (Fin.last m)) (Fin.last m)) * ∏ x : Fin ↑(Fin.last m), Fin.snoc (Fin.init n) (n (Fin.last m)) (Fin.castLE (_ : ↑(Fin.last m) ≤ Nat.succ m) x) < (∏ x : Fin m, Fin.snoc (Fin.init n) (n (Fin.last m)) (Fin.castSucc x)) * Fin.snoc (Fin.init n) (n (Fin.last m)) (Fin.last m) [PROOFSTEP] simp_rw [Fin.snoc_castSucc, Fin.snoc_last, Fin.snoc_init_self n] [GOAL] α : Type u_1 β : Type u_2 m✝ : ℕ n✝ : Fin m✝ → ℕ f✝ : (i : Fin m✝) → Fin (n✝ i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n : Fin (Nat.succ m) → ℕ f : (i : Fin (Nat.succ m)) → Fin (n i) this : ∑ i : Fin m, ↑(Fin.init f i) * ∏ j : Fin ↑i, Fin.init n (Fin.castLE (_ : ↑i ≤ m) j) + ↑(f (Fin.last m)) * ∏ j : Fin m, Fin.init n j < (∏ i : Fin m, Fin.init n i) * n (Fin.last m) ⊢ ∑ x : Fin m, ↑(Fin.init f x) * ∏ x_1 : Fin ↑(Fin.castSucc x), n (Fin.castLE (_ : ↑(Fin.castSucc x) ≤ Nat.succ m) x_1) + ↑(f (Fin.last m)) * ∏ x : Fin ↑(Fin.last m), n (Fin.castLE (_ : ↑(Fin.last m) ≤ Nat.succ m) x) < (∏ x : Fin m, Fin.init n x) * n (Fin.last m) [PROOFSTEP] exact this [GOAL] case succ α : Type u_1 β : Type u_2 m✝ : ℕ n✝ : Fin m✝ → ℕ f✝ : (i : Fin m✝) → Fin (n✝ i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n : Fin (Nat.succ m) → ℕ f : (i : Fin (Nat.succ m)) → Fin (n i) ⊢ ∀ (n : Fin m → ℕ) (nn : ℕ) (f : (i : Fin m) → Fin (n i)) (fn : Fin nn), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) + ↑fn * ∏ j : Fin m, n j < (∏ i : Fin m, n i) * nn [PROOFSTEP] intro n nn f fn [GOAL] case succ α : Type u_1 β : Type u_2 m✝ : ℕ n✝¹ : Fin m✝ → ℕ f✝¹ : (i : Fin m✝) → Fin (n✝¹ i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n✝ : Fin (Nat.succ m) → ℕ f✝ : (i : Fin (Nat.succ m)) → Fin (n✝ i) n : Fin m → ℕ nn : ℕ f : (i : Fin m) → Fin (n i) fn : Fin nn ⊢ ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) + ↑fn * ∏ j : Fin m, n j < (∏ i : Fin m, n i) * nn [PROOFSTEP] cases nn [GOAL] case succ.zero α : Type u_1 β : Type u_2 m✝ : ℕ n✝¹ : Fin m✝ → ℕ f✝¹ : (i : Fin m✝) → Fin (n✝¹ i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n✝ : Fin (Nat.succ m) → ℕ f✝ : (i : Fin (Nat.succ m)) → Fin (n✝ i) n : Fin m → ℕ f : (i : Fin m) → Fin (n i) fn : Fin Nat.zero ⊢ ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) + ↑fn * ∏ j : Fin m, n j < (∏ i : Fin m, n i) * Nat.zero [PROOFSTEP] dsimp only [Nat.zero_eq] at fn [GOAL] case succ.zero α : Type u_1 β : Type u_2 m✝ : ℕ n✝¹ : Fin m✝ → ℕ f✝¹ : (i : Fin m✝) → Fin (n✝¹ i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n✝ : Fin (Nat.succ m) → ℕ f✝ : (i : Fin (Nat.succ m)) → Fin (n✝ i) n : Fin m → ℕ f : (i : Fin m) → Fin (n i) fn : Fin 0 ⊢ ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) + ↑fn * ∏ j : Fin m, n j < (∏ i : Fin m, n i) * Nat.zero [PROOFSTEP] exact isEmptyElim fn [GOAL] case succ.succ α : Type u_1 β : Type u_2 m✝ : ℕ n✝² : Fin m✝ → ℕ f✝¹ : (i : Fin m✝) → Fin (n✝² i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n✝¹ : Fin (Nat.succ m) → ℕ f✝ : (i : Fin (Nat.succ m)) → Fin (n✝¹ i) n : Fin m → ℕ f : (i : Fin m) → Fin (n i) n✝ : ℕ fn : Fin (Nat.succ n✝) ⊢ ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) + ↑fn * ∏ j : Fin m, n j < (∏ i : Fin m, n i) * Nat.succ n✝ [PROOFSTEP] refine' (add_lt_add_of_lt_of_le (ih _) <| mul_le_mul_right' (Fin.is_le _) _).trans_eq _ [GOAL] case succ.succ α : Type u_1 β : Type u_2 m✝ : ℕ n✝² : Fin m✝ → ℕ f✝¹ : (i : Fin m✝) → Fin (n✝² i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n✝¹ : Fin (Nat.succ m) → ℕ f✝ : (i : Fin (Nat.succ m)) → Fin (n✝¹ i) n : Fin m → ℕ f : (i : Fin m) → Fin (n i) n✝ : ℕ fn : Fin (Nat.succ n✝) ⊢ ∏ i : Fin m, n i + n✝ * ∏ j : Fin m, n j = (∏ i : Fin m, n i) * Nat.succ n✝ [PROOFSTEP] rw [← one_add_mul (_ : ℕ), mul_comm, add_comm] -- porting note: added, wrong `succ` [GOAL] case succ.succ α : Type u_1 β : Type u_2 m✝ : ℕ n✝² : Fin m✝ → ℕ f✝¹ : (i : Fin m✝) → Fin (n✝² i) m : ℕ ih : ∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)), ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i n✝¹ : Fin (Nat.succ m) → ℕ f✝ : (i : Fin (Nat.succ m)) → Fin (n✝¹ i) n : Fin m → ℕ f : (i : Fin m) → Fin (n i) n✝ : ℕ fn : Fin (Nat.succ n✝) ⊢ (∏ i : Fin m, n i) * (n✝ + 1) = (∏ i : Fin m, n i) * Nat.succ n✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ a : Fin (∏ i : Fin m, n i) b : Fin m ⊢ (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b < n b [PROOFSTEP] cases m [GOAL] case zero α : Type u_1 β : Type u_2 n : Fin Nat.zero → ℕ a : Fin (∏ i : Fin Nat.zero, n i) b : Fin Nat.zero ⊢ (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ Nat.zero) j)) % n b < n b [PROOFSTEP] exact b.elim0 [GOAL] case succ α : Type u_1 β : Type u_2 n✝ : ℕ n : Fin (Nat.succ n✝) → ℕ a : Fin (∏ i : Fin (Nat.succ n✝), n i) b : Fin (Nat.succ n✝) ⊢ (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ Nat.succ n✝) j)) % n b < n b [PROOFSTEP] cases' h : n b with nb [GOAL] case succ.zero α : Type u_1 β : Type u_2 n✝ : ℕ n : Fin (Nat.succ n✝) → ℕ a : Fin (∏ i : Fin (Nat.succ n✝), n i) b : Fin (Nat.succ n✝) h : n b = Nat.zero ⊢ (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ Nat.succ n✝) j)) % Nat.zero < Nat.zero [PROOFSTEP] rw [prod_eq_zero (Finset.mem_univ _) h] at a [GOAL] case succ.zero α : Type u_1 β : Type u_2 n✝ : ℕ n : Fin (Nat.succ n✝) → ℕ a✝ : Fin (∏ i : Fin (Nat.succ n✝), n i) a : Fin 0 b : Fin (Nat.succ n✝) h : n b = Nat.zero ⊢ (↑a✝ / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ Nat.succ n✝) j)) % Nat.zero < Nat.zero [PROOFSTEP] exact isEmptyElim a [GOAL] case succ.succ α : Type u_1 β : Type u_2 n✝ : ℕ n : Fin (Nat.succ n✝) → ℕ a : Fin (∏ i : Fin (Nat.succ n✝), n i) b : Fin (Nat.succ n✝) nb : ℕ h : n b = Nat.succ nb ⊢ (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ Nat.succ n✝) j)) % Nat.succ nb < Nat.succ nb [PROOFSTEP] exact Nat.mod_lt _ nb.succ_pos [GOAL] α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ ⊢ Function.RightInverse (fun a b => { val := (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b, isLt := (_ : (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b < n b) }) fun f => { val := ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j), isLt := (_ : ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i) } [PROOFSTEP] intro a [GOAL] α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ a : Fin (∏ i : Fin m, n i) ⊢ (fun f => { val := ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j), isLt := (_ : ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i) }) ((fun a b => { val := (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b, isLt := (_ : (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b < n b) }) a) = a [PROOFSTEP] revert a [GOAL] α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ ⊢ ∀ (a : Fin (∏ i : Fin m, n i)), (fun f => { val := ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j), isLt := (_ : ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i) }) ((fun a b => { val := (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b, isLt := (_ : (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b < n b) }) a) = a [PROOFSTEP] dsimp only [Fin.val_mk] [GOAL] α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ ⊢ ∀ (a : Fin (∏ i : Fin m, n i)), { val := ∑ i : Fin m, (↑a / ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j)) % n i * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j), isLt := (_ : ∑ i : Fin m, ↑{ val := (↑a / ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j)) % n i, isLt := (_ : (↑a / ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j)) % n i < n i) } * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i) } = a [PROOFSTEP] refine' Fin.consInduction _ _ n [GOAL] case refine'_1 α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ ⊢ ∀ (a : Fin (∏ i : Fin 0, Fin.elim0 i)), { val := ∑ i : Fin 0, (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i * ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j), isLt := (_ : ∑ i : Fin 0, ↑{ val := (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i, isLt := (_ : (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i < Fin.elim0 i) } * ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j) < ∏ i : Fin 0, Fin.elim0 i) } = a [PROOFSTEP] intro a [GOAL] case refine'_1 α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ a : Fin (∏ i : Fin 0, Fin.elim0 i) ⊢ { val := ∑ i : Fin 0, (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i * ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j), isLt := (_ : ∑ i : Fin 0, ↑{ val := (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i, isLt := (_ : (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i < Fin.elim0 i) } * ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j) < ∏ i : Fin 0, Fin.elim0 i) } = a [PROOFSTEP] haveI : Subsingleton (Fin (∏ i : Fin 0, i.elim0)) := (Fin.castIso <| prod_empty).toEquiv.subsingleton [GOAL] case refine'_1 α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ a : Fin (∏ i : Fin 0, Fin.elim0 i) this : Subsingleton (Fin (∏ i : Fin 0, Fin.elim0 i)) ⊢ { val := ∑ i : Fin 0, (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i * ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j), isLt := (_ : ∑ i : Fin 0, ↑{ val := (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i, isLt := (_ : (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i < Fin.elim0 i) } * ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j) < ∏ i : Fin 0, Fin.elim0 i) } = a [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ ⊢ ∀ {n : ℕ} (x₀ : ℕ) (x : Fin n → ℕ), (∀ (a : Fin (∏ i : Fin n, x i)), { val := ∑ i : Fin n, (↑a / ∏ j : Fin ↑i, x (Fin.castLE (_ : ↑i ≤ n) j)) % x i * ∏ j : Fin ↑i, x (Fin.castLE (_ : ↑i ≤ n) j), isLt := (_ : ∑ i : Fin n, ↑{ val := (↑a / ∏ j : Fin ↑i, x (Fin.castLE (_ : ↑i ≤ n) j)) % x i, isLt := (_ : (↑a / ∏ j : Fin ↑i, x (Fin.castLE (_ : ↑i ≤ n) j)) % x i < x i) } * ∏ j : Fin ↑i, x (Fin.castLE (_ : ↑i ≤ n) j) < ∏ i : Fin n, x i) } = a) → ∀ (a : Fin (∏ i : Fin (n + 1), Fin.cons x₀ x i)), { val := ∑ i : Fin (n + 1), (↑a / ∏ j : Fin ↑i, Fin.cons x₀ x (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x₀ x i * ∏ j : Fin ↑i, Fin.cons x₀ x (Fin.castLE (_ : ↑i ≤ n + 1) j), isLt := (_ : ∑ i : Fin (n + 1), ↑{ val := (↑a / ∏ j : Fin ↑i, Fin.cons x₀ x (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x₀ x i, isLt := (_ : (↑a / ∏ j : Fin ↑i, Fin.cons x₀ x (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x₀ x i < Fin.cons x₀ x i) } * ∏ j : Fin ↑i, Fin.cons x₀ x (Fin.castLE (_ : ↑i ≤ n + 1) j) < ∏ i : Fin (n + 1), Fin.cons x₀ x i) } = a [PROOFSTEP] intro n x xs ih a [GOAL] case refine'_2 α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ n x : ℕ xs : Fin n → ℕ ih : ∀ (a : Fin (∏ i : Fin n, xs i)), { val := ∑ i : Fin n, (↑a / ∏ j : Fin ↑i, xs (Fin.castLE (_ : ↑i ≤ n) j)) % xs i * ∏ j : Fin ↑i, xs (Fin.castLE (_ : ↑i ≤ n) j), isLt := (_ : ∑ i : Fin n, ↑{ val := (↑a / ∏ j : Fin ↑i, xs (Fin.castLE (_ : ↑i ≤ n) j)) % xs i, isLt := (_ : (↑a / ∏ j : Fin ↑i, xs (Fin.castLE (_ : ↑i ≤ n) j)) % xs i < xs i) } * ∏ j : Fin ↑i, xs (Fin.castLE (_ : ↑i ≤ n) j) < ∏ i : Fin n, xs i) } = a a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i) ⊢ { val := ∑ i : Fin (n + 1), (↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i * ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j), isLt := (_ : ∑ i : Fin (n + 1), ↑{ val := (↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i, isLt := (_ : (↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i < Fin.cons x xs i) } * ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j) < ∏ i : Fin (n + 1), Fin.cons x xs i) } = a [PROOFSTEP] simp_rw [Fin.forall_iff, Fin.ext_iff] at ih [GOAL] case refine'_2 α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ n x : ℕ xs : Fin n → ℕ a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i) ih : ∀ (i : ℕ), i < ∏ i : Fin n, xs i → ∑ x : Fin n, (i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) = i ⊢ { val := ∑ i : Fin (n + 1), (↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i * ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j), isLt := (_ : ∑ i : Fin (n + 1), ↑{ val := (↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i, isLt := (_ : (↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i < Fin.cons x xs i) } * ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j) < ∏ i : Fin (n + 1), Fin.cons x xs i) } = a [PROOFSTEP] ext [GOAL] case refine'_2.h α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ n x : ℕ xs : Fin n → ℕ a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i) ih : ∀ (i : ℕ), i < ∏ i : Fin n, xs i → ∑ x : Fin n, (i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) = i ⊢ ↑{ val := ∑ i : Fin (n + 1), (↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i * ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j), isLt := (_ : ∑ i : Fin (n + 1), ↑{ val := (↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i, isLt := (_ : (↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i < Fin.cons x xs i) } * ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j) < ∏ i : Fin (n + 1), Fin.cons x xs i) } = ↑a [PROOFSTEP] simp_rw [Fin.sum_univ_succ, Fin.cons_succ] [GOAL] case refine'_2.h α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ n x : ℕ xs : Fin n → ℕ a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i) ih : ∀ (i : ℕ), i < ∏ i : Fin n, xs i → ∑ x : Fin n, (i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) = i ⊢ (↑a / ∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j)) % Fin.cons x xs 0 * ∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j) + ∑ x_1 : Fin n, (↑a / ∏ j : Fin ↑(Fin.succ x_1), Fin.cons x xs (Fin.castLE (_ : ↑(Fin.succ x_1) ≤ n + 1) j)) % xs x_1 * ∏ j : Fin ↑(Fin.succ x_1), Fin.cons x xs (Fin.castLE (_ : ↑(Fin.succ x_1) ≤ n + 1) j) = ↑a [PROOFSTEP] have := fun i : Fin n => Fintype.prod_equiv (Fin.castIso <| Fin.val_succ i).toEquiv (fun j => (Fin.cons x xs : _ → ℕ) (Fin.castLE (Fin.is_lt _).le j)) (fun j => (Fin.cons x xs : _ → ℕ) (Fin.castLE (Nat.succ_le_succ (Fin.is_lt _).le) j)) fun j => rfl [GOAL] case refine'_2.h α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ n x : ℕ xs : Fin n → ℕ a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i) ih : ∀ (i : ℕ), i < ∏ i : Fin n, xs i → ∑ x : Fin n, (i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) = i this : ∀ (i : Fin n), ∏ x_1 : Fin ↑(Fin.succ i), Fin.cons x xs (Fin.castLE (_ : ↑(Fin.succ i) ≤ n + 1) x_1) = ∏ x_1 : Fin (↑i + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑i ≤ Nat.succ n) x_1) ⊢ (↑a / ∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j)) % Fin.cons x xs 0 * ∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j) + ∑ x_1 : Fin n, (↑a / ∏ j : Fin ↑(Fin.succ x_1), Fin.cons x xs (Fin.castLE (_ : ↑(Fin.succ x_1) ≤ n + 1) j)) % xs x_1 * ∏ j : Fin ↑(Fin.succ x_1), Fin.cons x xs (Fin.castLE (_ : ↑(Fin.succ x_1) ≤ n + 1) j) = ↑a [PROOFSTEP] simp_rw [this] [GOAL] case refine'_2.h α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ n x : ℕ xs : Fin n → ℕ a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i) ih : ∀ (i : ℕ), i < ∏ i : Fin n, xs i → ∑ x : Fin n, (i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) = i this : ∀ (i : Fin n), ∏ x_1 : Fin ↑(Fin.succ i), Fin.cons x xs (Fin.castLE (_ : ↑(Fin.succ i) ≤ n + 1) x_1) = ∏ x_1 : Fin (↑i + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑i ≤ Nat.succ n) x_1) ⊢ (↑a / ∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j)) % Fin.cons x xs 0 * ∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j) + ∑ x_1 : Fin n, (↑a / ∏ x_2 : Fin (↑x_1 + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) x_2)) % xs x_1 * ∏ x_2 : Fin (↑x_1 + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) x_2) = ↑a [PROOFSTEP] clear this [GOAL] case refine'_2.h α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ n x : ℕ xs : Fin n → ℕ a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i) ih : ∀ (i : ℕ), i < ∏ i : Fin n, xs i → ∑ x : Fin n, (i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) = i ⊢ (↑a / ∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j)) % Fin.cons x xs 0 * ∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j) + ∑ x_1 : Fin n, (↑a / ∏ x_2 : Fin (↑x_1 + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) x_2)) % xs x_1 * ∏ x_2 : Fin (↑x_1 + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) x_2) = ↑a [PROOFSTEP] dsimp only [Fin.val_zero] [GOAL] case refine'_2.h α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ n x : ℕ xs : Fin n → ℕ a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i) ih : ∀ (i : ℕ), i < ∏ i : Fin n, xs i → ∑ x : Fin n, (i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) = i ⊢ (↑a / ∏ j : Fin 0, Fin.cons x xs (Fin.castLE (_ : 0 ≤ n + 1) j)) % Fin.cons x xs 0 * ∏ j : Fin 0, Fin.cons x xs (Fin.castLE (_ : 0 ≤ n + 1) j) + ∑ x_1 : Fin n, (↑a / ∏ x_2 : Fin (↑x_1 + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) x_2)) % xs x_1 * ∏ x_2 : Fin (↑x_1 + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) x_2) = ↑a [PROOFSTEP] simp_rw [Fintype.prod_empty, Nat.div_one, mul_one, Fin.cons_zero, Fin.prod_univ_succ] [GOAL] case refine'_2.h α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ n x : ℕ xs : Fin n → ℕ a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i) ih : ∀ (i : ℕ), i < ∏ i : Fin n, xs i → ∑ x : Fin n, (i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) = i ⊢ ↑a % x + ∑ x_1 : Fin n, ↑a / (Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) 0) * ∏ i : Fin ↑x_1, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) (Fin.succ i))) % xs x_1 * (Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) 0) * ∏ i : Fin ↑x_1, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) (Fin.succ i))) = ↑a [PROOFSTEP] change (_ + ∑ y : _, _ / (x * _) % _ * (x * _)) = _ [GOAL] case refine'_2.h α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ n x : ℕ xs : Fin n → ℕ a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i) ih : ∀ (i : ℕ), i < ∏ i : Fin n, xs i → ∑ x : Fin n, (i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) = i ⊢ ↑a % x + ∑ y : Fin n, ↑a / (x * ∏ i : Fin ↑y, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑y ≤ Nat.succ n) (Fin.succ i))) % xs y * (x * ∏ i : Fin ↑y, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑y ≤ Nat.succ n) (Fin.succ i))) = ↑a [PROOFSTEP] simp_rw [← Nat.div_div_eq_div_mul, mul_left_comm (_ % _ : ℕ), ← mul_sum] [GOAL] case refine'_2.h α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ n x : ℕ xs : Fin n → ℕ a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i) ih : ∀ (i : ℕ), i < ∏ i : Fin n, xs i → ∑ x : Fin n, (i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) = i ⊢ ↑a % x + x * ∑ x_1 : Fin n, (↑a / x / ∏ i : Fin ↑x_1, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) (Fin.succ i))) % xs x_1 * ∏ i : Fin ↑x_1, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) (Fin.succ i)) = ↑a [PROOFSTEP] convert Nat.mod_add_div _ _ -- porting note: new [GOAL] case h.e'_2.h.e'_6.h.e'_6 α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ n x : ℕ xs : Fin n → ℕ a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i) ih : ∀ (i : ℕ), i < ∏ i : Fin n, xs i → ∑ x : Fin n, (i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) = i ⊢ ∑ x_1 : Fin n, (↑a / x / ∏ i : Fin ↑x_1, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) (Fin.succ i))) % xs x_1 * ∏ i : Fin ↑x_1, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) (Fin.succ i)) = ↑a / x [PROOFSTEP] refine (ih (a / x) (Nat.div_lt_of_lt_mul <| a.is_lt.trans_eq ?_)) [GOAL] case h.e'_2.h.e'_6.h.e'_6 α : Type u_1 β : Type u_2 m : ℕ n✝ : Fin m → ℕ n x : ℕ xs : Fin n → ℕ a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i) ih : ∀ (i : ℕ), i < ∏ i : Fin n, xs i → ∑ x : Fin n, (i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) = i ⊢ ∏ i : Fin (n + 1), Fin.cons x xs i = x * ∏ i : Fin n, xs i [PROOFSTEP] exact Fin.prod_univ_succ _ -- porting note: was: /- refine' Eq.trans _ (ih (a / x) (Nat.div_lt_of_lt_mul <| a.is_lt.trans_eq _)) swap · convert Fin.prod_univ_succ (Fin.cons x xs : ∀ _, ℕ) simp_rw [Fin.cons_succ] congr with i congr with j · cases j rfl · cases j rfl-/ [GOAL] α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ inst✝ : ∀ (i : Fin m), NeZero (n i) i : Fin m j : Fin (n i) ⊢ ↑(↑finPiFinEquiv (Pi.single i j)) = ↑j * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) [PROOFSTEP] rw [finPiFinEquiv_apply, Fintype.sum_eq_single i, Pi.single_eq_same] [GOAL] α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ inst✝ : ∀ (i : Fin m), NeZero (n i) i : Fin m j : Fin (n i) ⊢ ∀ (x : Fin m), x ≠ i → ↑(Pi.single i j x) * ∏ j : Fin ↑x, n (Fin.castLE (_ : ↑x ≤ m) j) = 0 [PROOFSTEP] rintro x hx [GOAL] α : Type u_1 β : Type u_2 m : ℕ n : Fin m → ℕ inst✝ : ∀ (i : Fin m), NeZero (n i) i : Fin m j : Fin (n i) x : Fin m hx : x ≠ i ⊢ ↑(Pi.single i j x) * ∏ j : Fin ↑x, n (Fin.castLE (_ : ↑x ≤ m) j) = 0 [PROOFSTEP] rw [Pi.single_eq_of_ne hx, Fin.val_zero', zero_mul] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ ⊢ prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j [PROOFSTEP] induction i with | zero => simp | succ i IH => by_cases h : i < n · have : i < length (ofFn f) := by rwa [length_ofFn f] rw [prod_take_succ _ _ this] have A : ((Finset.univ : Finset (Fin n)).filter fun j => j.val < i + 1) = ((Finset.univ : Finset (Fin n)).filter fun j => j.val < i) ∪ {(⟨i, h⟩ : Fin n)} := by ext ⟨_, _⟩ simp [Nat.lt_succ_iff_lt_or_eq] have B : _root_.Disjoint (Finset.filter (fun j : Fin n => j.val < i) Finset.univ) (singleton (⟨i, h⟩ : Fin n)) := by simp rw [A, Finset.prod_union B, IH] simp · have A : (ofFn f).take i = (ofFn f).take i.succ := by rw [← length_ofFn f] at h have : length (ofFn f) ≤ i := not_lt.mp h rw [take_all_of_le this, take_all_of_le (le_trans this (Nat.le_succ _))] have B : ∀ j : Fin n, ((j : ℕ) < i.succ) = ((j : ℕ) < i) := by intro j have : (j : ℕ) < i := lt_of_lt_of_le j.2 (not_lt.mp h) simp [this, lt_trans this (Nat.lt_succ_self _)] simp [← A, B, IH] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ ⊢ prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j [PROOFSTEP] induction i with | zero => simp | succ i IH => by_cases h : i < n · have : i < length (ofFn f) := by rwa [length_ofFn f] rw [prod_take_succ _ _ this] have A : ((Finset.univ : Finset (Fin n)).filter fun j => j.val < i + 1) = ((Finset.univ : Finset (Fin n)).filter fun j => j.val < i) ∪ {(⟨i, h⟩ : Fin n)} := by ext ⟨_, _⟩ simp [Nat.lt_succ_iff_lt_or_eq] have B : _root_.Disjoint (Finset.filter (fun j : Fin n => j.val < i) Finset.univ) (singleton (⟨i, h⟩ : Fin n)) := by simp rw [A, Finset.prod_union B, IH] simp · have A : (ofFn f).take i = (ofFn f).take i.succ := by rw [← length_ofFn f] at h have : length (ofFn f) ≤ i := not_lt.mp h rw [take_all_of_le this, take_all_of_le (le_trans this (Nat.le_succ _))] have B : ∀ j : Fin n, ((j : ℕ) < i.succ) = ((j : ℕ) < i) := by intro j have : (j : ℕ) < i := lt_of_lt_of_le j.2 (not_lt.mp h) simp [this, lt_trans this (Nat.lt_succ_self _)] simp [← A, B, IH] [GOAL] case zero α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α ⊢ prod (take Nat.zero (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.zero) univ, f j [PROOFSTEP] | zero => simp [GOAL] case zero α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α ⊢ prod (take Nat.zero (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.zero) univ, f j [PROOFSTEP] simp [GOAL] case succ α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j ⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j [PROOFSTEP] | succ i IH => by_cases h : i < n · have : i < length (ofFn f) := by rwa [length_ofFn f] rw [prod_take_succ _ _ this] have A : ((Finset.univ : Finset (Fin n)).filter fun j => j.val < i + 1) = ((Finset.univ : Finset (Fin n)).filter fun j => j.val < i) ∪ {(⟨i, h⟩ : Fin n)} := by ext ⟨_, _⟩ simp [Nat.lt_succ_iff_lt_or_eq] have B : _root_.Disjoint (Finset.filter (fun j : Fin n => j.val < i) Finset.univ) (singleton (⟨i, h⟩ : Fin n)) := by simp rw [A, Finset.prod_union B, IH] simp · have A : (ofFn f).take i = (ofFn f).take i.succ := by rw [← length_ofFn f] at h have : length (ofFn f) ≤ i := not_lt.mp h rw [take_all_of_le this, take_all_of_le (le_trans this (Nat.le_succ _))] have B : ∀ j : Fin n, ((j : ℕ) < i.succ) = ((j : ℕ) < i) := by intro j have : (j : ℕ) < i := lt_of_lt_of_le j.2 (not_lt.mp h) simp [this, lt_trans this (Nat.lt_succ_self _)] simp [← A, B, IH] [GOAL] case succ α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j ⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j [PROOFSTEP] by_cases h : i < n [GOAL] case pos α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : i < n ⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j [PROOFSTEP] have : i < length (ofFn f) := by rwa [length_ofFn f] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : i < n ⊢ i < length (ofFn f) [PROOFSTEP] rwa [length_ofFn f] [GOAL] case pos α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : i < n this : i < length (ofFn f) ⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j [PROOFSTEP] rw [prod_take_succ _ _ this] [GOAL] case pos α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : i < n this : i < length (ofFn f) ⊢ prod (take i (ofFn f)) * nthLe (ofFn f) i this = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j [PROOFSTEP] have A : ((Finset.univ : Finset (Fin n)).filter fun j => j.val < i + 1) = ((Finset.univ : Finset (Fin n)).filter fun j => j.val < i) ∪ {(⟨i, h⟩ : Fin n)} := by ext ⟨_, _⟩ simp [Nat.lt_succ_iff_lt_or_eq] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : i < n this : i < length (ofFn f) ⊢ Finset.filter (fun j => ↑j < i + 1) univ = Finset.filter (fun j => ↑j < i) univ ∪ {{ val := i, isLt := h }} [PROOFSTEP] ext ⟨_, _⟩ [GOAL] case a.mk α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : i < n this : i < length (ofFn f) val✝ : ℕ isLt✝ : val✝ < n ⊢ { val := val✝, isLt := isLt✝ } ∈ Finset.filter (fun j => ↑j < i + 1) univ ↔ { val := val✝, isLt := isLt✝ } ∈ Finset.filter (fun j => ↑j < i) univ ∪ {{ val := i, isLt := h }} [PROOFSTEP] simp [Nat.lt_succ_iff_lt_or_eq] [GOAL] case pos α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : i < n this : i < length (ofFn f) A : Finset.filter (fun j => ↑j < i + 1) univ = Finset.filter (fun j => ↑j < i) univ ∪ {{ val := i, isLt := h }} ⊢ prod (take i (ofFn f)) * nthLe (ofFn f) i this = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j [PROOFSTEP] have B : _root_.Disjoint (Finset.filter (fun j : Fin n => j.val < i) Finset.univ) (singleton (⟨i, h⟩ : Fin n)) := by simp [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : i < n this : i < length (ofFn f) A : Finset.filter (fun j => ↑j < i + 1) univ = Finset.filter (fun j => ↑j < i) univ ∪ {{ val := i, isLt := h }} ⊢ _root_.Disjoint (Finset.filter (fun j => ↑j < i) univ) {{ val := i, isLt := h }} [PROOFSTEP] simp [GOAL] case pos α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : i < n this : i < length (ofFn f) A : Finset.filter (fun j => ↑j < i + 1) univ = Finset.filter (fun j => ↑j < i) univ ∪ {{ val := i, isLt := h }} B : _root_.Disjoint (Finset.filter (fun j => ↑j < i) univ) {{ val := i, isLt := h }} ⊢ prod (take i (ofFn f)) * nthLe (ofFn f) i this = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j [PROOFSTEP] rw [A, Finset.prod_union B, IH] [GOAL] case pos α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : i < n this : i < length (ofFn f) A : Finset.filter (fun j => ↑j < i + 1) univ = Finset.filter (fun j => ↑j < i) univ ∪ {{ val := i, isLt := h }} B : _root_.Disjoint (Finset.filter (fun j => ↑j < i) univ) {{ val := i, isLt := h }} ⊢ (∏ j in Finset.filter (fun j => ↑j < i) univ, f j) * nthLe (ofFn f) i this = (∏ x in Finset.filter (fun j => ↑j < i) univ, f x) * ∏ x in {{ val := i, isLt := h }}, f x [PROOFSTEP] simp [GOAL] case neg α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : ¬i < n ⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j [PROOFSTEP] have A : (ofFn f).take i = (ofFn f).take i.succ := by rw [← length_ofFn f] at h have : length (ofFn f) ≤ i := not_lt.mp h rw [take_all_of_le this, take_all_of_le (le_trans this (Nat.le_succ _))] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : ¬i < n ⊢ take i (ofFn f) = take (Nat.succ i) (ofFn f) [PROOFSTEP] rw [← length_ofFn f] at h [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : ¬i < length (ofFn f) ⊢ take i (ofFn f) = take (Nat.succ i) (ofFn f) [PROOFSTEP] have : length (ofFn f) ≤ i := not_lt.mp h [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : ¬i < length (ofFn f) this : length (ofFn f) ≤ i ⊢ take i (ofFn f) = take (Nat.succ i) (ofFn f) [PROOFSTEP] rw [take_all_of_le this, take_all_of_le (le_trans this (Nat.le_succ _))] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : ¬i < n A : take i (ofFn f) = take (Nat.succ i) (ofFn f) ⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j [PROOFSTEP] have B : ∀ j : Fin n, ((j : ℕ) < i.succ) = ((j : ℕ) < i) := by intro j have : (j : ℕ) < i := lt_of_lt_of_le j.2 (not_lt.mp h) simp [this, lt_trans this (Nat.lt_succ_self _)] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : ¬i < n A : take i (ofFn f) = take (Nat.succ i) (ofFn f) ⊢ ∀ (j : Fin n), (↑j < Nat.succ i) = (↑j < i) [PROOFSTEP] intro j [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : ¬i < n A : take i (ofFn f) = take (Nat.succ i) (ofFn f) j : Fin n ⊢ (↑j < Nat.succ i) = (↑j < i) [PROOFSTEP] have : (j : ℕ) < i := lt_of_lt_of_le j.2 (not_lt.mp h) [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : ¬i < n A : take i (ofFn f) = take (Nat.succ i) (ofFn f) j : Fin n this : ↑j < i ⊢ (↑j < Nat.succ i) = (↑j < i) [PROOFSTEP] simp [this, lt_trans this (Nat.lt_succ_self _)] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α i : ℕ IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j h : ¬i < n A : take i (ofFn f) = take (Nat.succ i) (ofFn f) B : ∀ (j : Fin n), (↑j < Nat.succ i) = (↑j < i) ⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j [PROOFSTEP] simp [← A, B, IH] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α ⊢ prod (ofFn f) = ∏ i : Fin n, f i [PROOFSTEP] convert prod_take_ofFn f n [GOAL] case h.e'_2.h.e'_4 α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α ⊢ ofFn f = take n (ofFn f) [PROOFSTEP] rw [take_all_of_le (le_of_eq (length_ofFn f))] [GOAL] case h.e'_3.h α : Type u_1 β : Type u_2 inst✝ : CommMonoid α n : ℕ f : Fin n → α ⊢ univ = Finset.filter (fun j => ↑j < n) univ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 G : Type u_3 inst✝ : CommGroup G ⊢ alternatingProd [] = ∏ i : Fin (length []), get [] i ^ (-1) ^ ↑i [PROOFSTEP] rw [alternatingProd, Finset.prod_eq_one] [GOAL] α : Type u_1 β : Type u_2 G : Type u_3 inst✝ : CommGroup G ⊢ ∀ (x : Fin (length [])), x ∈ univ → get [] x ^ (-1) ^ ↑x = 1 [PROOFSTEP] rintro ⟨i, ⟨⟩⟩ [GOAL] α : Type u_1 β : Type u_2 G : Type u_3 inst✝ : CommGroup G g : G ⊢ alternatingProd [g] = ∏ i : Fin (length [g]), get [g] i ^ (-1) ^ ↑i [PROOFSTEP] show g = ∏ i : Fin 1, [g].get i ^ (-1 : ℤ) ^ (i : ℕ) [GOAL] α : Type u_1 β : Type u_2 G : Type u_3 inst✝ : CommGroup G g : G ⊢ g = ∏ i : Fin 1, get [g] i ^ (-1) ^ ↑i [PROOFSTEP] rw [Fin.prod_univ_succ] [GOAL] α : Type u_1 β : Type u_2 G : Type u_3 inst✝ : CommGroup G g : G ⊢ g = get [g] 0 ^ (-1) ^ ↑0 * ∏ i : Fin 0, get [g] (Fin.succ i) ^ (-1) ^ ↑(Fin.succ i) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 G : Type u_3 inst✝ : CommGroup G g h : G L : List G ⊢ g * h⁻¹ * ∏ i : Fin (length L), get L i ^ (-1) ^ ↑i = ∏ i : Fin (length L + 2), get (g :: h :: L) i ^ (-1) ^ ↑i [PROOFSTEP] { rw [Fin.prod_univ_succ, Fin.prod_univ_succ, mul_assoc] simp [Nat.succ_eq_add_one, pow_add] } [GOAL] α : Type u_1 β : Type u_2 G : Type u_3 inst✝ : CommGroup G g h : G L : List G ⊢ g * h⁻¹ * ∏ i : Fin (length L), get L i ^ (-1) ^ ↑i = ∏ i : Fin (length L + 2), get (g :: h :: L) i ^ (-1) ^ ↑i [PROOFSTEP] rw [Fin.prod_univ_succ, Fin.prod_univ_succ, mul_assoc] [GOAL] α : Type u_1 β : Type u_2 G : Type u_3 inst✝ : CommGroup G g h : G L : List G ⊢ g * (h⁻¹ * ∏ i : Fin (length L), get L i ^ (-1) ^ ↑i) = get (g :: h :: L) 0 ^ (-1) ^ ↑0 * (get (g :: h :: L) (Fin.succ 0) ^ (-1) ^ ↑(Fin.succ 0) * ∏ i : Fin (length L), get (g :: h :: L) (Fin.succ (Fin.succ i)) ^ (-1) ^ ↑(Fin.succ (Fin.succ i))) [PROOFSTEP] simp [Nat.succ_eq_add_one, pow_add]
{"mathlib_filename": "Mathlib.Algebra.BigOperators.Fin", "llama_tokens": 38484}
[GOAL] R : Type u_1 S✝ : Type u_2 M✝ : Type u_3 A : Type u_4 inst✝⁴ : Semiring S✝ inst✝³ : AddCommMonoid M✝ inst✝² : CommSemiring R inst✝¹ : Algebra R S✝ inst✝ : Module S✝ M✝ r : R S : S✝ M : RestrictScalars R S✝ M✝ ⊢ (r • S) • M = r • S • M [PROOFSTEP] rw [Algebra.smul_def, mul_smul] [GOAL] R : Type u_1 S✝ : Type u_2 M✝ : Type u_3 A : Type u_4 inst✝⁴ : Semiring S✝ inst✝³ : AddCommMonoid M✝ inst✝² : CommSemiring R inst✝¹ : Algebra R S✝ inst✝ : Module S✝ M✝ r : R S : S✝ M : RestrictScalars R S✝ M✝ ⊢ ↑(algebraMap R S✝) r • S • M = r • S • M [PROOFSTEP] rfl [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 A : Type u_4 inst✝⁴ : AddCommMonoid M inst✝³ : CommSemiring R inst✝² : Semiring S inst✝¹ : Algebra R S inst✝ : Module S M r : R s : S x : M ⊢ ↑(AddEquiv.symm (addEquiv R S M)) ((r • s) • x) = r • ↑(AddEquiv.symm (addEquiv R S M)) (s • x) [PROOFSTEP] rw [Algebra.smul_def, mul_smul] [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 A : Type u_4 inst✝⁴ : AddCommMonoid M inst✝³ : CommSemiring R inst✝² : Semiring S inst✝¹ : Algebra R S inst✝ : Module S M r : R s : S x : M ⊢ ↑(AddEquiv.symm (addEquiv R S M)) (↑(algebraMap R S) r • s • x) = r • ↑(AddEquiv.symm (addEquiv R S M)) (s • x) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Algebra.RestrictScalars", "llama_tokens": 683}
[GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C src✝¹ : Module R (A × B) := instModule src✝ : R →+* A × B := RingHom.prod (algebraMap R A) (algebraMap R B) ⊢ ∀ (r : R) (x : (fun x => A × B) r), ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * x = x * ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r [PROOFSTEP] rintro r ⟨a, b⟩ [GOAL] case mk R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C src✝¹ : Module R (A × B) := instModule src✝ : R →+* A × B := RingHom.prod (algebraMap R A) (algebraMap R B) r : R a : A b : B ⊢ ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * (a, b) = (a, b) * ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r [PROOFSTEP] dsimp [GOAL] case mk R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C src✝¹ : Module R (A × B) := instModule src✝ : R →+* A × B := RingHom.prod (algebraMap R A) (algebraMap R B) r : R a : A b : B ⊢ (↑(algebraMap R A) r * a, ↑(algebraMap R B) r * b) = (a * ↑(algebraMap R A) r, b * ↑(algebraMap R B) r) [PROOFSTEP] rw [commutes r a, commutes r b] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C src✝¹ : Module R (A × B) := instModule src✝ : R →+* A × B := RingHom.prod (algebraMap R A) (algebraMap R B) ⊢ ∀ (r : R) (x : (fun x => A × B) r), r • x = ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * x [PROOFSTEP] rintro r ⟨a, b⟩ [GOAL] case mk R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C src✝¹ : Module R (A × B) := instModule src✝ : R →+* A × B := RingHom.prod (algebraMap R A) (algebraMap R B) r : R a : A b : B ⊢ r • (a, b) = ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * (a, b) [PROOFSTEP] dsimp [GOAL] case mk R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C src✝¹ : Module R (A × B) := instModule src✝ : R →+* A × B := RingHom.prod (algebraMap R A) (algebraMap R B) r : R a : A b : B ⊢ (r • a, r • b) = (↑(algebraMap R A) r * a, ↑(algebraMap R B) r * b) [PROOFSTEP] rw [Algebra.smul_def r a, Algebra.smul_def r b] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C f : A →ₐ[R] B g : A →ₐ[R] C src✝ : A →+* B × C := RingHom.prod ↑f ↑g r : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap R A) r) = ↑(algebraMap R (B × C)) r [PROOFSTEP] simp only [toRingHom_eq_coe, RingHom.toFun_eq_coe, RingHom.prod_apply, coe_toRingHom, commutes, Prod.algebraMap_apply] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C f : A →ₐ[R] B g : A →ₐ[R] C ⊢ comp (fst R B C) (prod f g) = f [PROOFSTEP] ext [GOAL] case H R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C f : A →ₐ[R] B g : A →ₐ[R] C x✝ : A ⊢ ↑(comp (fst R B C) (prod f g)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C f : A →ₐ[R] B g : A →ₐ[R] C ⊢ comp (snd R B C) (prod f g) = g [PROOFSTEP] ext [GOAL] case H R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C f : A →ₐ[R] B g : A →ₐ[R] C x✝ : A ⊢ ↑(comp (snd R B C) (prod f g)) x✝ = ↑g x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C f : (A →ₐ[R] B) × (A →ₐ[R] C) ⊢ (fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f) = f [PROOFSTEP] ext [GOAL] case h₁.H R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C f : (A →ₐ[R] B) × (A →ₐ[R] C) x✝ : A ⊢ ↑((fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f)).fst x✝ = ↑f.fst x✝ [PROOFSTEP] rfl [GOAL] case h₂.H R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C f : (A →ₐ[R] B) × (A →ₐ[R] C) x✝ : A ⊢ ↑((fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f)).snd x✝ = ↑f.snd x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C f : A →ₐ[R] B × C ⊢ (fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f) = f [PROOFSTEP] ext [GOAL] case H.h₁ R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C f : A →ₐ[R] B × C x✝ : A ⊢ (↑((fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f)) x✝).fst = (↑f x✝).fst [PROOFSTEP] rfl [GOAL] case H.h₂ R : Type u_1 A : Type u_2 B : Type u_3 C : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : Semiring B inst✝² : Algebra R B inst✝¹ : Semiring C inst✝ : Algebra R C f : A →ₐ[R] B × C x✝ : A ⊢ (↑((fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f)) x✝).snd = (↑f x✝).snd [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Algebra.Prod", "llama_tokens": 4200}
[GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M hf : Set.Finite (mulSupport (f ∘ PLift.down)) s : Finset (PLift α) hs : Finite.toFinset hf ⊆ s ⊢ ∏ᶠ (i : α), f i = ∏ i in s, f i.down [PROOFSTEP] rw [finprod, dif_pos] [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M hf : Set.Finite (mulSupport (f ∘ PLift.down)) s : Finset (PLift α) hs : Finite.toFinset hf ⊆ s ⊢ ∏ i in Finite.toFinset ?hc, f i.down = ∏ i in s, f i.down case hc G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M hf : Set.Finite (mulSupport (f ∘ PLift.down)) s : Finset (PLift α) hs : Finite.toFinset hf ⊆ s ⊢ Set.Finite (mulSupport ((fun i => f i) ∘ PLift.down)) [PROOFSTEP] refine' Finset.prod_subset hs fun x _ hxf => _ [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M hf : Set.Finite (mulSupport (f ∘ PLift.down)) s : Finset (PLift α) hs : Finite.toFinset hf ⊆ s x : PLift α x✝ : x ∈ s hxf : ¬x ∈ Finite.toFinset hf ⊢ f x.down = 1 [PROOFSTEP] rwa [hf.mem_toFinset, nmem_mulSupport] at hxf [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Finset (PLift α) hs : mulSupport (f ∘ PLift.down) ⊆ ↑s x : PLift α hx : x ∈ Finite.toFinset (_ : Set.Finite (mulSupport (f ∘ PLift.down))) ⊢ x ∈ s [PROOFSTEP] rw [Finite.mem_toFinset] at hx [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Finset (PLift α) hs : mulSupport (f ∘ PLift.down) ⊆ ↑s x : PLift α hx : x ∈ mulSupport (f ∘ PLift.down) ⊢ x ∈ s [PROOFSTEP] exact hs hx [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N ⊢ ∏ᶠ (x : α), 1 = 1 [PROOFSTEP] have : (mulSupport fun x : PLift α => (fun _ => 1 : α → M) x.down) ⊆ (∅ : Finset (PLift α)) := fun x h => by simp at h [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N x : PLift α h : x ∈ mulSupport fun x => (fun x => 1) x.down ⊢ x ∈ ↑∅ [PROOFSTEP] simp at h [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N this : (mulSupport fun x => (fun x => 1) x.down) ⊆ ↑∅ ⊢ ∏ᶠ (x : α), 1 = 1 [PROOFSTEP] rw [finprod_eq_prod_pLift_of_mulSupport_subset this, Finset.prod_empty] [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : IsEmpty α f : α → M ⊢ ∏ᶠ (i : α), f i = 1 [PROOFSTEP] rw [← finprod_one] [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : IsEmpty α f : α → M ⊢ ∏ᶠ (i : α), f i = ∏ᶠ (x : ?m.32760), 1 G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : IsEmpty α f : α → M ⊢ Sort ?u.32758 [PROOFSTEP] congr [GOAL] case e_f G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N inst✝ : IsEmpty α f : α → M ⊢ (fun i => f i) = fun x => 1 [PROOFSTEP] simp [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M a : α ha : ∀ (x : α), x ≠ a → f x = 1 ⊢ ∏ᶠ (x : α), f x = f a [PROOFSTEP] have : mulSupport (f ∘ PLift.down) ⊆ ({PLift.up a} : Finset (PLift α)) := by intro x contrapose simpa [PLift.eq_up_iff_down_eq] using ha x.down [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M a : α ha : ∀ (x : α), x ≠ a → f x = 1 ⊢ mulSupport (f ∘ PLift.down) ⊆ ↑{{ down := a }} [PROOFSTEP] intro x [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M a : α ha : ∀ (x : α), x ≠ a → f x = 1 x : PLift α ⊢ x ∈ mulSupport (f ∘ PLift.down) → x ∈ ↑{{ down := a }} [PROOFSTEP] contrapose [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M a : α ha : ∀ (x : α), x ≠ a → f x = 1 x : PLift α ⊢ ¬x ∈ ↑{{ down := a }} → ¬x ∈ mulSupport (f ∘ PLift.down) [PROOFSTEP] simpa [PLift.eq_up_iff_down_eq] using ha x.down [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M a : α ha : ∀ (x : α), x ≠ a → f x = 1 this : mulSupport (f ∘ PLift.down) ⊆ ↑{{ down := a }} ⊢ ∏ᶠ (x : α), f x = f a [PROOFSTEP] rw [finprod_eq_prod_pLift_of_mulSupport_subset this, Finset.prod_singleton] [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N p : Prop inst✝ : Decidable p f : p → M ⊢ ∏ᶠ (i : p), f i = if h : p then f h else 1 [PROOFSTEP] split_ifs with h [GOAL] case pos G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N p : Prop inst✝ : Decidable p f : p → M h : p ⊢ ∏ᶠ (i : p), f i = f h [PROOFSTEP] haveI : Unique p := ⟨⟨h⟩, fun _ => rfl⟩ [GOAL] case pos G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N p : Prop inst✝ : Decidable p f : p → M h : p this : Unique p ⊢ ∏ᶠ (i : p), f i = f h [PROOFSTEP] exact finprod_unique f [GOAL] case neg G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N p : Prop inst✝ : Decidable p f : p → M h : ¬p ⊢ ∏ᶠ (i : p), f i = 1 [PROOFSTEP] haveI : IsEmpty p := ⟨h⟩ [GOAL] case neg G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N p : Prop inst✝ : Decidable p f : p → M h : ¬p this : IsEmpty p ⊢ ∏ᶠ (i : p), f i = 1 [PROOFSTEP] exact finprod_of_isEmpty f [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N p q : Prop f : p → M g : q → M hpq : p = q hfg : ∀ (h : q), f (_ : p) = g h ⊢ finprod f = finprod g [PROOFSTEP] subst q [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N p : Prop f g : p → M hfg : ∀ (h : p), f (_ : p) = g h ⊢ finprod f = finprod g [PROOFSTEP] exact finprod_congr hfg [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M p : M → Prop hp₀ : p 1 hp₁ : ∀ (x y : M), p x → p y → p (x * y) hp₂ : ∀ (i : α), p (f i) ⊢ p (∏ᶠ (i : α), f i) [PROOFSTEP] rw [finprod] [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M p : M → Prop hp₀ : p 1 hp₁ : ∀ (x y : M), p x → p y → p (x * y) hp₂ : ∀ (i : α), p (f i) ⊢ p (if h : Set.Finite (mulSupport ((fun i => f i) ∘ PLift.down)) then ∏ i in Finite.toFinset h, f i.down else 1) [PROOFSTEP] split_ifs [GOAL] case pos G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M p : M → Prop hp₀ : p 1 hp₁ : ∀ (x y : M), p x → p y → p (x * y) hp₂ : ∀ (i : α), p (f i) h✝ : Set.Finite (mulSupport ((fun i => f i) ∘ PLift.down)) ⊢ p (∏ i in Finite.toFinset h✝, f i.down) case neg G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M p : M → Prop hp₀ : p 1 hp₁ : ∀ (x y : M), p x → p y → p (x * y) hp₂ : ∀ (i : α), p (f i) h✝ : ¬Set.Finite (mulSupport ((fun i => f i) ∘ PLift.down)) ⊢ p 1 [PROOFSTEP] exacts [Finset.prod_induction _ _ hp₁ hp₀ fun i _ => hp₂ _, hp₀] [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : M →* N g : α → M h : Set.Finite (mulSupport (g ∘ PLift.down)) ⊢ ↑f (∏ᶠ (x : α), g x) = ∏ᶠ (x : α), ↑f (g x) [PROOFSTEP] rw [finprod_eq_prod_pLift_of_mulSupport_subset h.coe_toFinset.ge, finprod_eq_prod_pLift_of_mulSupport_subset, f.map_prod] [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : M →* N g : α → M h : Set.Finite (mulSupport (g ∘ PLift.down)) ⊢ mulSupport ((fun x => ↑f (g x)) ∘ PLift.down) ⊆ ↑(Finite.toFinset h) [PROOFSTEP] rw [h.coe_toFinset] [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : M →* N g : α → M h : Set.Finite (mulSupport (g ∘ PLift.down)) ⊢ mulSupport ((fun x => ↑f (g x)) ∘ PLift.down) ⊆ mulSupport (g ∘ PLift.down) [PROOFSTEP] exact mulSupport_comp_subset f.map_one (g ∘ PLift.down) [GOAL] G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : M →* N hf : ∀ (x : M), ↑f x = 1 → x = 1 g : α → M ⊢ ↑f (∏ᶠ (i : α), g i) = ∏ᶠ (i : α), ↑f (g i) [PROOFSTEP] by_cases hg : (mulSupport <| g ∘ PLift.down).Finite [GOAL] case pos G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : M →* N hf : ∀ (x : M), ↑f x = 1 → x = 1 g : α → M hg : Set.Finite (mulSupport (g ∘ PLift.down)) ⊢ ↑f (∏ᶠ (i : α), g i) = ∏ᶠ (i : α), ↑f (g i) [PROOFSTEP] exact f.map_finprod_pLift g hg [GOAL] case neg G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : M →* N hf : ∀ (x : M), ↑f x = 1 → x = 1 g : α → M hg : ¬Set.Finite (mulSupport (g ∘ PLift.down)) ⊢ ↑f (∏ᶠ (i : α), g i) = ∏ᶠ (i : α), ↑f (g i) [PROOFSTEP] rw [finprod, dif_neg, f.map_one, finprod, dif_neg] [GOAL] case neg.hnc G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : M →* N hf : ∀ (x : M), ↑f x = 1 → x = 1 g : α → M hg : ¬Set.Finite (mulSupport (g ∘ PLift.down)) ⊢ ¬Set.Finite (mulSupport ((fun i => ↑f (g i)) ∘ PLift.down)) case neg.hnc G : Type u_1 M : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : M →* N hf : ∀ (x : M), ↑f x = 1 → x = 1 g : α → M hg : ¬Set.Finite (mulSupport (g ∘ PLift.down)) ⊢ ¬Set.Finite (mulSupport ((fun i => g i) ∘ PLift.down)) [PROOFSTEP] exacts [Infinite.mono (fun x hx => mt (hf (g x.down)) hx) hg, hg] [GOAL] G : Type u_1 M✝ : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝⁵ : CommMonoid M✝ inst✝⁴ : CommMonoid N R : Type u_7 M : Type u_8 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M f : ι → R x : M ⊢ (∑ᶠ (i : ι), f i) • x = ∑ᶠ (i : ι), f i • x [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | hx) [GOAL] case inl G : Type u_1 M✝ : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝⁵ : CommMonoid M✝ inst✝⁴ : CommMonoid N R : Type u_7 M : Type u_8 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M f : ι → R ⊢ (∑ᶠ (i : ι), f i) • 0 = ∑ᶠ (i : ι), f i • 0 [PROOFSTEP] simp [GOAL] case inr G : Type u_1 M✝ : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝⁵ : CommMonoid M✝ inst✝⁴ : CommMonoid N R : Type u_7 M : Type u_8 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M f : ι → R x : M hx : x ≠ 0 ⊢ (∑ᶠ (i : ι), f i) • x = ∑ᶠ (i : ι), f i • x [PROOFSTEP] exact ((smulAddHom R M).flip x).map_finsum_of_injective (smul_left_injective R hx) _ [GOAL] G : Type u_1 M✝ : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝⁵ : CommMonoid M✝ inst✝⁴ : CommMonoid N R : Type u_7 M : Type u_8 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M c : R f : ι → M ⊢ c • ∑ᶠ (i : ι), f i = ∑ᶠ (i : ι), c • f i [PROOFSTEP] rcases eq_or_ne c 0 with (rfl | hc) [GOAL] case inl G : Type u_1 M✝ : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝⁵ : CommMonoid M✝ inst✝⁴ : CommMonoid N R : Type u_7 M : Type u_8 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M f : ι → M ⊢ 0 • ∑ᶠ (i : ι), f i = ∑ᶠ (i : ι), 0 • f i [PROOFSTEP] simp [GOAL] case inr G : Type u_1 M✝ : Type u_2 N : Type u_3 α : Sort u_4 β : Sort u_5 ι : Sort u_6 inst✝⁵ : CommMonoid M✝ inst✝⁴ : CommMonoid N R : Type u_7 M : Type u_8 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M c : R f : ι → M hc : c ≠ 0 ⊢ c • ∑ᶠ (i : ι), f i = ∑ᶠ (i : ι), c • f i [PROOFSTEP] exact (smulAddHom R M c).map_finsum_of_injective (smul_right_injective M hc) _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N s : Set α f : α → M a : α ⊢ ∏ᶠ (_ : a ∈ s), f a = mulIndicator s f a [PROOFSTEP] classical convert finprod_eq_if (M := M) (p := a ∈ s) (x := f a) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N s : Set α f : α → M a : α ⊢ ∏ᶠ (_ : a ∈ s), f a = mulIndicator s f a [PROOFSTEP] convert finprod_eq_if (M := M) (p := a ∈ s) (x := f a) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M a : α ⊢ ∏ᶠ (_ : f a ≠ 1), f a = f a [PROOFSTEP] rw [← mem_mulSupport, finprod_eq_mulIndicator_apply, mulIndicator_mulSupport] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Finset α h : mulSupport f ⊆ ↑s ⊢ ∏ᶠ (i : α), f i = ∏ i in s, f i [PROOFSTEP] have A : mulSupport (f ∘ PLift.down) = Equiv.plift.symm '' mulSupport f := by rw [mulSupport_comp_eq_preimage] exact (Equiv.plift.symm.image_eq_preimage _).symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Finset α h : mulSupport f ⊆ ↑s ⊢ mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f [PROOFSTEP] rw [mulSupport_comp_eq_preimage] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Finset α h : mulSupport f ⊆ ↑s ⊢ PLift.down ⁻¹' mulSupport f = ↑Equiv.plift.symm '' mulSupport f [PROOFSTEP] exact (Equiv.plift.symm.image_eq_preimage _).symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Finset α h : mulSupport f ⊆ ↑s A : mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f ⊢ ∏ᶠ (i : α), f i = ∏ i in s, f i [PROOFSTEP] have : mulSupport (f ∘ PLift.down) ⊆ s.map Equiv.plift.symm.toEmbedding := by rw [A, Finset.coe_map] exact image_subset _ h [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Finset α h : mulSupport f ⊆ ↑s A : mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f ⊢ mulSupport (f ∘ PLift.down) ⊆ ↑(Finset.map (Equiv.toEmbedding Equiv.plift.symm) s) [PROOFSTEP] rw [A, Finset.coe_map] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Finset α h : mulSupport f ⊆ ↑s A : mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f ⊢ ↑Equiv.plift.symm '' mulSupport f ⊆ ↑(Equiv.toEmbedding Equiv.plift.symm) '' ↑s [PROOFSTEP] exact image_subset _ h [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Finset α h : mulSupport f ⊆ ↑s A : mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f this : mulSupport (f ∘ PLift.down) ⊆ ↑(Finset.map (Equiv.toEmbedding Equiv.plift.symm) s) ⊢ ∏ᶠ (i : α), f i = ∏ i in s, f i [PROOFSTEP] rw [finprod_eq_prod_pLift_of_mulSupport_subset this] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Finset α h : mulSupport f ⊆ ↑s A : mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f this : mulSupport (f ∘ PLift.down) ⊆ ↑(Finset.map (Equiv.toEmbedding Equiv.plift.symm) s) ⊢ ∏ i in Finset.map (Equiv.toEmbedding Equiv.plift.symm) s, f i.down = ∏ i in s, f i [PROOFSTEP] simp only [Finset.prod_map, Equiv.coe_toEmbedding] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Finset α h : mulSupport f ⊆ ↑s A : mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f this : mulSupport (f ∘ PLift.down) ⊆ ↑(Finset.map (Equiv.toEmbedding Equiv.plift.symm) s) ⊢ ∏ x in s, f (↑Equiv.plift.symm x).down = ∏ i in s, f i [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Finset α h : mulSupport f ⊆ ↑s ⊢ Finite.toFinset (_ : Set.Finite (mulSupport f)) ⊆ s [PROOFSTEP] simpa [← Finset.coe_subset, Set.coe_toFinset] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f : α → M inst✝ : Decidable (Set.Finite (mulSupport f)) ⊢ ∏ᶠ (i : α), f i = if h : Set.Finite (mulSupport f) then ∏ i in Finite.toFinset h, f i else 1 [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f : α → M inst✝ : Decidable (Set.Finite (mulSupport f)) h : Set.Finite (mulSupport f) ⊢ ∏ᶠ (i : α), f i = ∏ i in Finite.toFinset h, f i [PROOFSTEP] exact finprod_eq_prod_of_mulSupport_toFinset_subset _ h (Finset.Subset.refl _) [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f : α → M inst✝ : Decidable (Set.Finite (mulSupport f)) h : ¬Set.Finite (mulSupport f) ⊢ ∏ᶠ (i : α), f i = 1 [PROOFSTEP] rw [finprod, dif_neg] [GOAL] case neg.hnc α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f : α → M inst✝ : Decidable (Set.Finite (mulSupport f)) h : ¬Set.Finite (mulSupport f) ⊢ ¬Set.Finite (mulSupport ((fun i => f i) ∘ PLift.down)) [PROOFSTEP] rw [mulSupport_comp_eq_preimage] [GOAL] case neg.hnc α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f : α → M inst✝ : Decidable (Set.Finite (mulSupport f)) h : ¬Set.Finite (mulSupport f) ⊢ ¬Set.Finite (PLift.down ⁻¹' mulSupport fun i => f i) [PROOFSTEP] exact mt (fun hf => hf.of_preimage Equiv.plift.surjective) h [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M hf : Set.Infinite (mulSupport f) ⊢ ∏ᶠ (i : α), f i = 1 [PROOFSTEP] classical rw [finprod_def, dif_neg hf] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M hf : Set.Infinite (mulSupport f) ⊢ ∏ᶠ (i : α), f i = 1 [PROOFSTEP] rw [finprod_def, dif_neg hf] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M hf : Set.Finite (mulSupport f) ⊢ ∏ᶠ (i : α), f i = ∏ i in Finite.toFinset hf, f i [PROOFSTEP] classical rw [finprod_def, dif_pos hf] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M hf : Set.Finite (mulSupport f) ⊢ ∏ᶠ (i : α), f i = ∏ i in Finite.toFinset hf, f i [PROOFSTEP] rw [finprod_def, dif_pos hf] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M p : α → Prop t : Finset α h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t) ⊢ ∏ᶠ (i : α) (_ : p i), f i = ∏ i in t, f i [PROOFSTEP] set s := {x | p x} [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M p : α → Prop t : Finset α h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t) s : Set α := {x | p x} ⊢ ∏ᶠ (i : α) (_ : p i), f i = ∏ i in t, f i [PROOFSTEP] have : mulSupport (s.mulIndicator f) ⊆ t := by rw [Set.mulSupport_mulIndicator] intro x hx exact (h hx.2).1 hx.1 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M p : α → Prop t : Finset α h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t) s : Set α := {x | p x} ⊢ mulSupport (mulIndicator s f) ⊆ ↑t [PROOFSTEP] rw [Set.mulSupport_mulIndicator] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M p : α → Prop t : Finset α h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t) s : Set α := {x | p x} ⊢ s ∩ mulSupport f ⊆ ↑t [PROOFSTEP] intro x hx [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M p : α → Prop t : Finset α h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t) s : Set α := {x | p x} x : α hx : x ∈ s ∩ mulSupport f ⊢ x ∈ ↑t [PROOFSTEP] exact (h hx.2).1 hx.1 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M p : α → Prop t : Finset α h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t) s : Set α := {x | p x} this : mulSupport (mulIndicator s f) ⊆ ↑t ⊢ ∏ᶠ (i : α) (_ : p i), f i = ∏ i in t, f i [PROOFSTEP] erw [finprod_mem_def, finprod_eq_prod_of_mulSupport_subset _ this] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M p : α → Prop t : Finset α h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t) s : Set α := {x | p x} this : mulSupport (mulIndicator s f) ⊆ ↑t ⊢ ∏ i in t, mulIndicator s f i = ∏ i in t, f i [PROOFSTEP] refine' Finset.prod_congr rfl fun x hx => mulIndicator_apply_eq_self.2 fun hxs => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M p : α → Prop t : Finset α h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t) s : Set α := {x | p x} this : mulSupport (mulIndicator s f) ⊆ ↑t x : α hx : x ∈ t hxs : ¬x ∈ s ⊢ f x = 1 [PROOFSTEP] contrapose! hxs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M p : α → Prop t : Finset α h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t) s : Set α := {x | p x} this : mulSupport (mulIndicator s f) ⊆ ↑t x : α hx : x ∈ t hxs : f x ≠ 1 ⊢ x ∈ {x | p x} [PROOFSTEP] exact (h hxs).2 hx [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f : α → M a : α inst✝ : DecidableEq α hf : Set.Finite (mulSupport f) ⊢ ∏ᶠ (i : α) (_ : i ≠ a), f i = ∏ i in Finset.erase (Finite.toFinset hf) a, f i [PROOFSTEP] apply finprod_cond_eq_prod_of_cond_iff [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f : α → M a : α inst✝ : DecidableEq α hf : Set.Finite (mulSupport f) ⊢ ∀ {x : α}, f x ≠ 1 → (x ≠ a ↔ x ∈ Finset.erase (Finite.toFinset hf) a) [PROOFSTEP] intro x hx [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f : α → M a : α inst✝ : DecidableEq α hf : Set.Finite (mulSupport f) x : α hx : f x ≠ 1 ⊢ x ≠ a ↔ x ∈ Finset.erase (Finite.toFinset hf) a [PROOFSTEP] rw [Finset.mem_erase, Finite.mem_toFinset, mem_mulSupport] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f : α → M a : α inst✝ : DecidableEq α hf : Set.Finite (mulSupport f) x : α hx : f x ≠ 1 ⊢ x ≠ a ↔ x ≠ a ∧ f x ≠ 1 [PROOFSTEP] exact ⟨fun h => And.intro h hx, fun h => h.1⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α t : Finset α h : s ∩ mulSupport f = ↑t ∩ mulSupport f ⊢ ∀ {x : α}, f x ≠ 1 → (x ∈ s ↔ x ∈ t) [PROOFSTEP] intro x hxf [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α t : Finset α h : s ∩ mulSupport f = ↑t ∩ mulSupport f x : α hxf : f x ≠ 1 ⊢ x ∈ s ↔ x ∈ t [PROOFSTEP] rw [← mem_mulSupport] at hxf [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α t : Finset α h : s ∩ mulSupport f = ↑t ∩ mulSupport f x : α hxf : x ∈ mulSupport f ⊢ x ∈ s ↔ x ∈ t [PROOFSTEP] refine ⟨fun hx => ?_, fun hx => ?_⟩ [GOAL] case refine_1 α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α t : Finset α h : s ∩ mulSupport f = ↑t ∩ mulSupport f x : α hxf : x ∈ mulSupport f hx : x ∈ s ⊢ x ∈ t [PROOFSTEP] refine ((mem_inter_iff x t (mulSupport f)).mp ?_).1 [GOAL] case refine_1 α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α t : Finset α h : s ∩ mulSupport f = ↑t ∩ mulSupport f x : α hxf : x ∈ mulSupport f hx : x ∈ s ⊢ x ∈ ↑t ∩ mulSupport f [PROOFSTEP] rw [← Set.ext_iff.mp h x, mem_inter_iff] [GOAL] case refine_1 α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α t : Finset α h : s ∩ mulSupport f = ↑t ∩ mulSupport f x : α hxf : x ∈ mulSupport f hx : x ∈ s ⊢ x ∈ s ∧ x ∈ mulSupport f [PROOFSTEP] exact ⟨hx, hxf⟩ [GOAL] case refine_2 α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α t : Finset α h : s ∩ mulSupport f = ↑t ∩ mulSupport f x : α hxf : x ∈ mulSupport f hx : x ∈ t ⊢ x ∈ s [PROOFSTEP] refine ((mem_inter_iff x s (mulSupport f)).mp ?_).1 [GOAL] case refine_2 α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α t : Finset α h : s ∩ mulSupport f = ↑t ∩ mulSupport f x : α hxf : x ∈ mulSupport f hx : x ∈ t ⊢ x ∈ s ∩ mulSupport f [PROOFSTEP] rw [Set.ext_iff.mp h x, mem_inter_iff] [GOAL] case refine_2 α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α t : Finset α h : s ∩ mulSupport f = ↑t ∩ mulSupport f x : α hxf : x ∈ mulSupport f hx : x ∈ t ⊢ x ∈ ↑t ∧ x ∈ mulSupport f [PROOFSTEP] exact ⟨hx, hxf⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α hf : Set.Finite (s ∩ mulSupport f) ⊢ (s ∩ mulSupport fun i => f i) = ↑(Finite.toFinset hf) ∩ mulSupport fun i => f i [PROOFSTEP] simp [inter_assoc] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f : α → M s : Set α inst✝ : DecidablePred fun x => x ∈ s hf : Set.Finite (mulSupport f) ⊢ (s ∩ mulSupport fun i => f i) = ↑(Finset.filter (fun x => x ∈ s) (Finite.toFinset hf)) ∩ mulSupport fun i => f i [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f : α → M s : Set α inst✝ : DecidablePred fun x => x ∈ s hf : Set.Finite (mulSupport f) x : α ⊢ (x ∈ s ∩ mulSupport fun i => f i) ↔ x ∈ ↑(Finset.filter (fun x => x ∈ s) (Finite.toFinset hf)) ∩ mulSupport fun i => f i [PROOFSTEP] simp [and_comm] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f : α → M s : Set α inst✝ : Fintype ↑s ⊢ (s ∩ mulSupport fun i => f i) = ↑(toFinset s) ∩ mulSupport fun i => f i [PROOFSTEP] simp_rw [coe_toFinset s] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α hs : Set.Finite s ⊢ (s ∩ mulSupport fun i => f i) = ↑(Finite.toFinset hs) ∩ mulSupport fun i => f i [PROOFSTEP] rw [hs.coe_toFinset] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α hs : Set.Infinite (s ∩ mulSupport f) ⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = 1 [PROOFSTEP] rw [finprod_mem_def] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α hs : Set.Infinite (s ∩ mulSupport f) ⊢ ∏ᶠ (a : α), mulIndicator s (fun i => f i) a = 1 [PROOFSTEP] apply finprod_of_infinite_mulSupport [GOAL] case hf α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α hs : Set.Infinite (s ∩ mulSupport f) ⊢ Set.Infinite (mulSupport fun i => mulIndicator s (fun i => f i) i) [PROOFSTEP] rwa [← mulSupport_mulIndicator] at hs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α h : ∀ (x : α), x ∈ s → f x = 1 ⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = 1 [PROOFSTEP] simp (config := { contextual := true }) [h] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s : Set α ⊢ ∏ᶠ (i : α) (_ : i ∈ s ∩ mulSupport f), f i = ∏ᶠ (i : α) (_ : i ∈ s), f i [PROOFSTEP] rw [finprod_mem_def, finprod_mem_def, mulIndicator_inter_mulSupport] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s t : Set α h : s ∩ mulSupport f = t ∩ mulSupport f ⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = ∏ᶠ (i : α) (_ : i ∈ t), f i [PROOFSTEP] rw [← finprod_mem_inter_mulSupport, h, finprod_mem_inter_mulSupport] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s t : Set α h : ∀ (x : α), x ∈ mulSupport f → (x ∈ s ↔ x ∈ t) ⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = ∏ᶠ (i : α) (_ : i ∈ t), f i [PROOFSTEP] apply finprod_mem_inter_mulSupport_eq [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s t : Set α h : ∀ (x : α), x ∈ mulSupport f → (x ∈ s ↔ x ∈ t) ⊢ (s ∩ mulSupport fun i => f i) = t ∩ mulSupport fun i => f i [PROOFSTEP] ext x [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f : α → M s t : Set α h : ∀ (x : α), x ∈ mulSupport f → (x ∈ s ↔ x ∈ t) x : α ⊢ (x ∈ s ∩ mulSupport fun i => f i) ↔ x ∈ t ∩ mulSupport fun i => f i [PROOFSTEP] exact and_congr_left (h x) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s t : Set α f : α → M h : ∀ (x : α), f x = 1 ⊢ ∏ᶠ (i : α), f i = 1 [PROOFSTEP] simp (config := { contextual := true }) [h] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M✝ : Type u_5 N : Type u_6 inst✝² : CommMonoid M✝ inst✝¹ : CommMonoid N f✝ g : α → M✝ a b : α s t : Set α M : Type u_7 inst✝ : OrderedCancelCommMonoid M f : ι → M h : ∀ (i : ι), 1 ≤ f i h' : ∃ i, 1 < f i hf : Set.Finite (mulSupport f) ⊢ 1 < ∏ᶠ (i : ι), f i [PROOFSTEP] rcases h' with ⟨i, hi⟩ [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M✝ : Type u_5 N : Type u_6 inst✝² : CommMonoid M✝ inst✝¹ : CommMonoid N f✝ g : α → M✝ a b : α s t : Set α M : Type u_7 inst✝ : OrderedCancelCommMonoid M f : ι → M h : ∀ (i : ι), 1 ≤ f i hf : Set.Finite (mulSupport f) i : ι hi : 1 < f i ⊢ 1 < ∏ᶠ (i : ι), f i [PROOFSTEP] rw [finprod_eq_prod _ hf] [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M✝ : Type u_5 N : Type u_6 inst✝² : CommMonoid M✝ inst✝¹ : CommMonoid N f✝ g : α → M✝ a b : α s t : Set α M : Type u_7 inst✝ : OrderedCancelCommMonoid M f : ι → M h : ∀ (i : ι), 1 ≤ f i hf : Set.Finite (mulSupport f) i : ι hi : 1 < f i ⊢ 1 < ∏ i in Finite.toFinset hf, f i [PROOFSTEP] refine Finset.one_lt_prod' (fun i _ ↦ h i) ⟨i, ?_, hi⟩ [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M✝ : Type u_5 N : Type u_6 inst✝² : CommMonoid M✝ inst✝¹ : CommMonoid N f✝ g : α → M✝ a b : α s t : Set α M : Type u_7 inst✝ : OrderedCancelCommMonoid M f : ι → M h : ∀ (i : ι), 1 ≤ f i hf : Set.Finite (mulSupport f) i : ι hi : 1 < f i ⊢ i ∈ Finite.toFinset hf [PROOFSTEP] simpa only [Finite.mem_toFinset, mem_mulSupport] using ne_of_gt hi [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hf : Set.Finite (mulSupport f) hg : Set.Finite (mulSupport g) ⊢ ∏ᶠ (i : α), f i * g i = (∏ᶠ (i : α), f i) * ∏ᶠ (i : α), g i [PROOFSTEP] classical rw [finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_union_left _ _), finprod_eq_prod_of_mulSupport_toFinset_subset _ hg (Finset.subset_union_right _ _), ← Finset.prod_mul_distrib] refine' finprod_eq_prod_of_mulSupport_subset _ _ simp only [Finset.coe_union, Finite.coe_toFinset, mulSupport_subset_iff, mem_union, mem_mulSupport] intro x contrapose! rintro ⟨hf, hg⟩ simp [hf, hg] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hf : Set.Finite (mulSupport f) hg : Set.Finite (mulSupport g) ⊢ ∏ᶠ (i : α), f i * g i = (∏ᶠ (i : α), f i) * ∏ᶠ (i : α), g i [PROOFSTEP] rw [finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_union_left _ _), finprod_eq_prod_of_mulSupport_toFinset_subset _ hg (Finset.subset_union_right _ _), ← Finset.prod_mul_distrib] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hf : Set.Finite (mulSupport f) hg : Set.Finite (mulSupport g) ⊢ ∏ᶠ (i : α), f i * g i = ∏ x in Finite.toFinset hf ∪ Finite.toFinset hg, f x * g x [PROOFSTEP] refine' finprod_eq_prod_of_mulSupport_subset _ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hf : Set.Finite (mulSupport f) hg : Set.Finite (mulSupport g) ⊢ (mulSupport fun i => f i * g i) ⊆ ↑(Finite.toFinset hf ∪ Finite.toFinset hg) [PROOFSTEP] simp only [Finset.coe_union, Finite.coe_toFinset, mulSupport_subset_iff, mem_union, mem_mulSupport] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hf : Set.Finite (mulSupport f) hg : Set.Finite (mulSupport g) ⊢ ∀ (x : α), f x * g x ≠ 1 → f x ≠ 1 ∨ g x ≠ 1 [PROOFSTEP] intro x [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hf : Set.Finite (mulSupport f) hg : Set.Finite (mulSupport g) x : α ⊢ f x * g x ≠ 1 → f x ≠ 1 ∨ g x ≠ 1 [PROOFSTEP] contrapose! [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hf : Set.Finite (mulSupport f) hg : Set.Finite (mulSupport g) x : α ⊢ f x = 1 ∧ g x = 1 → f x * g x = 1 [PROOFSTEP] rintro ⟨hf, hg⟩ [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hf✝ : Set.Finite (mulSupport f) hg✝ : Set.Finite (mulSupport g) x : α hf : f x = 1 hg : g x = 1 ⊢ f x * g x = 1 [PROOFSTEP] simp [hf, hg] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g✝ : α → M a b : α s t : Set α inst✝ : DivisionCommMonoid G f g : α → G hf : Set.Finite (mulSupport f) hg : Set.Finite (mulSupport g) ⊢ ∏ᶠ (i : α), f i / g i = (∏ᶠ (i : α), f i) / ∏ᶠ (i : α), g i [PROOFSTEP] simp only [div_eq_mul_inv, finprod_mul_distrib hf ((mulSupport_inv g).symm.rec hg), finprod_inv_distrib] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hf : Set.Finite (s ∩ mulSupport f) hg : Set.Finite (s ∩ mulSupport g) ⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i * g i = (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ s), g i [PROOFSTEP] rw [← mulSupport_mulIndicator] at hf hg [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hf : Set.Finite (mulSupport (mulIndicator s f)) hg : Set.Finite (mulSupport (mulIndicator s g)) ⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i * g i = (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ s), g i [PROOFSTEP] simp only [finprod_mem_def, mulIndicator_mul, finprod_mul_distrib hf hg] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s✝ t s : Set α ⊢ ∏ᶠ (i : α) (_ : i ∈ s), 1 = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hf : EqOn f 1 s ⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = 1 [PROOFSTEP] rw [← finprod_mem_one s] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hf : EqOn f 1 s ⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = ∏ᶠ (i : α) (_ : i ∈ s), 1 [PROOFSTEP] exact finprod_mem_congr rfl hf [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α h : ∏ᶠ (i : α) (_ : i ∈ s), f i ≠ 1 ⊢ ∃ x, x ∈ s ∧ f x ≠ 1 [PROOFSTEP] by_contra' h' [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α h : ∏ᶠ (i : α) (_ : i ∈ s), f i ≠ 1 h' : ∀ (x : α), x ∈ s → f x = 1 ⊢ False [PROOFSTEP] exact h (finprod_mem_of_eqOn_one h') [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g✝ : α → M a b : α s t : Set α f : α → M g : M →* N h₀ : Set.Finite (s ∩ mulSupport f) ⊢ ↑g (∏ᶠ (j : α) (_ : j ∈ s), f j) = ∏ᶠ (i : α) (_ : i ∈ s), ↑g (f i) [PROOFSTEP] rw [g.map_finprod] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g✝ : α → M a b : α s t : Set α f : α → M g : M →* N h₀ : Set.Finite (s ∩ mulSupport f) ⊢ ∏ᶠ (i : α), ↑g (∏ᶠ (_ : i ∈ s), f i) = ∏ᶠ (i : α) (_ : i ∈ s), ↑g (f i) [PROOFSTEP] simp only [g.map_finprod_Prop] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g✝ : α → M a b : α s t : Set α f : α → M g : M →* N h₀ : Set.Finite (s ∩ mulSupport f) ⊢ Set.Finite (mulSupport fun j => ∏ᶠ (_ : j ∈ s), f j) [PROOFSTEP] simpa only [finprod_eq_mulIndicator_apply, mulSupport_mulIndicator] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g✝ : α → M a b : α s t : Set α inst✝ : DivisionCommMonoid G f g : α → G hs : Set.Finite s ⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i / g i = (∏ᶠ (i : α) (_ : i ∈ s), f i) / ∏ᶠ (i : α) (_ : i ∈ s), g i [PROOFSTEP] simp only [div_eq_mul_inv, finprod_mem_mul_distrib hs, finprod_mem_inv_distrib g hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α ⊢ ∏ᶠ (i : α) (_ : i ∈ ∅), f i = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hs : Set.Finite s ht : Set.Finite t ⊢ (∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i) * ∏ᶠ (i : α) (_ : i ∈ s ∩ t), f i = (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ t), f i [PROOFSTEP] lift s to Finset α using hs [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α t : Set α ht : Set.Finite t s : Finset α ⊢ (∏ᶠ (i : α) (_ : i ∈ ↑s ∪ t), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑s ∩ t), f i = (∏ᶠ (i : α) (_ : i ∈ ↑s), f i) * ∏ᶠ (i : α) (_ : i ∈ t), f i [PROOFSTEP] lift t to Finset α using ht [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Finset α ⊢ (∏ᶠ (i : α) (_ : i ∈ ↑s ∪ ↑t), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑s ∩ ↑t), f i = (∏ᶠ (i : α) (_ : i ∈ ↑s), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑t), f i [PROOFSTEP] classical rw [← Finset.coe_union, ← Finset.coe_inter] simp only [finprod_mem_coe_finset, Finset.prod_union_inter] [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Finset α ⊢ (∏ᶠ (i : α) (_ : i ∈ ↑s ∪ ↑t), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑s ∩ ↑t), f i = (∏ᶠ (i : α) (_ : i ∈ ↑s), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑t), f i [PROOFSTEP] rw [← Finset.coe_union, ← Finset.coe_inter] [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Finset α ⊢ (∏ᶠ (i : α) (_ : i ∈ ↑(s ∪ t)), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑(s ∩ t)), f i = (∏ᶠ (i : α) (_ : i ∈ ↑s), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑t), f i [PROOFSTEP] simp only [finprod_mem_coe_finset, Finset.prod_union_inter] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hs : Set.Finite (s ∩ mulSupport f) ht : Set.Finite (t ∩ mulSupport f) ⊢ (∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i) * ∏ᶠ (i : α) (_ : i ∈ s ∩ t), f i = (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ t), f i [PROOFSTEP] rw [← finprod_mem_inter_mulSupport f s, ← finprod_mem_inter_mulSupport f t, ← finprod_mem_union_inter hs ht, ← union_inter_distrib_right, finprod_mem_inter_mulSupport, ← finprod_mem_inter_mulSupport f (s ∩ t)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hs : Set.Finite (s ∩ mulSupport f) ht : Set.Finite (t ∩ mulSupport f) ⊢ (∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i) * ∏ᶠ (i : α) (_ : i ∈ s ∩ t ∩ mulSupport f), f i = (∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i) * ∏ᶠ (i : α) (_ : i ∈ s ∩ mulSupport f ∩ (t ∩ mulSupport f)), f i [PROOFSTEP] congr 2 [GOAL] case e_a.e_f α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hs : Set.Finite (s ∩ mulSupport f) ht : Set.Finite (t ∩ mulSupport f) ⊢ (fun i => ∏ᶠ (_ : i ∈ s ∩ t ∩ mulSupport f), f i) = fun i => ∏ᶠ (_ : i ∈ s ∩ mulSupport f ∩ (t ∩ mulSupport f)), f i [PROOFSTEP] rw [inter_left_comm, inter_assoc, inter_assoc, inter_self, inter_left_comm] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hst : Disjoint s t hs : Set.Finite (s ∩ mulSupport f) ht : Set.Finite (t ∩ mulSupport f) ⊢ ∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i = (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ t), f i [PROOFSTEP] rw [← finprod_mem_union_inter' hs ht, disjoint_iff_inter_eq_empty.1 hst, finprod_mem_empty, mul_one] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hst : Disjoint (s ∩ mulSupport f) (t ∩ mulSupport f) hs : Set.Finite (s ∩ mulSupport f) ht : Set.Finite (t ∩ mulSupport f) ⊢ ∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i = (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ t), f i [PROOFSTEP] rw [← finprod_mem_inter_mulSupport f s, ← finprod_mem_inter_mulSupport f t, ← finprod_mem_union hst hs ht, ← union_inter_distrib_right, finprod_mem_inter_mulSupport] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α ⊢ ∏ᶠ (i : α) (_ : i ∈ {a}), f i = f a [PROOFSTEP] rw [← Finset.coe_singleton, finprod_mem_coe_finset, Finset.prod_singleton] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α ⊢ ∏ᶠ (i : α) (_ : a = i), f i = f a [PROOFSTEP] simp [@eq_comm _ a] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s t : Set α f : α → M h : ¬a ∈ s hs : Set.Finite (s ∩ mulSupport f) ⊢ ∏ᶠ (i : α) (_ : i ∈ insert a s), f i = f a * ∏ᶠ (i : α) (_ : i ∈ s), f i [PROOFSTEP] rw [insert_eq, finprod_mem_union' _ _ hs, finprod_mem_singleton] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s t : Set α f : α → M h : ¬a ∈ s hs : Set.Finite (s ∩ mulSupport f) ⊢ Disjoint {a} s [PROOFSTEP] rwa [disjoint_singleton_left] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s t : Set α f : α → M h : ¬a ∈ s hs : Set.Finite (s ∩ mulSupport f) ⊢ Set.Finite ({a} ∩ mulSupport f) [PROOFSTEP] exact (finite_singleton a).inter_of_left _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α h : ¬a ∈ s → f a = 1 ⊢ ∏ᶠ (i : α) (_ : i ∈ insert a s), f i = ∏ᶠ (i : α) (_ : i ∈ s), f i [PROOFSTEP] refine' finprod_mem_inter_mulSupport_eq' _ _ _ fun x hx => ⟨_, Or.inr⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α h : ¬a ∈ s → f a = 1 x : α hx : x ∈ mulSupport fun i => f i ⊢ x ∈ insert a s → x ∈ s [PROOFSTEP] rintro (rfl | hxs) [GOAL] case inl α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M b : α s t : Set α x : α hx : x ∈ mulSupport fun i => f i h : ¬x ∈ s → f x = 1 ⊢ x ∈ s case inr α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α h : ¬a ∈ s → f a = 1 x : α hx : x ∈ mulSupport fun i => f i hxs : x ∈ s ⊢ x ∈ s [PROOFSTEP] exacts [not_imp_comm.1 h hx, hxs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a✝ b : α s t : Set α f : α → N a : α hf : Set.Finite (mulSupport f) ⊢ f a ∣ finprod f [PROOFSTEP] by_cases ha : a ∈ mulSupport f [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a✝ b : α s t : Set α f : α → N a : α hf : Set.Finite (mulSupport f) ha : a ∈ mulSupport f ⊢ f a ∣ finprod f [PROOFSTEP] rw [finprod_eq_prod_of_mulSupport_toFinset_subset f hf (Set.Subset.refl _)] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a✝ b : α s t : Set α f : α → N a : α hf : Set.Finite (mulSupport f) ha : a ∈ mulSupport f ⊢ f a ∣ ∏ i in Finite.toFinset hf, f i [PROOFSTEP] exact Finset.dvd_prod_of_mem f ((Finite.mem_toFinset hf).mpr ha) [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a✝ b : α s t : Set α f : α → N a : α hf : Set.Finite (mulSupport f) ha : ¬a ∈ mulSupport f ⊢ f a ∣ finprod f [PROOFSTEP] rw [nmem_mulSupport.mp ha] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a✝ b : α s t : Set α f : α → N a : α hf : Set.Finite (mulSupport f) ha : ¬a ∈ mulSupport f ⊢ 1 ∣ finprod f [PROOFSTEP] exact one_dvd (finprod f) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α h : a ≠ b ⊢ ∏ᶠ (i : α) (_ : i ∈ {a, b}), f i = f a * f b [PROOFSTEP] rw [finprod_mem_insert, finprod_mem_singleton] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α h : a ≠ b ⊢ ¬a ∈ {b} case hs α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α h : a ≠ b ⊢ Set.Finite {b} [PROOFSTEP] exacts [h, finite_singleton b] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s✝ t : Set α s : Set β g : β → α hg : InjOn g (s ∩ mulSupport (f ∘ g)) ⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j) [PROOFSTEP] classical by_cases hs : (s ∩ mulSupport (f ∘ g)).Finite · have hg : ∀ x ∈ hs.toFinset, ∀ y ∈ hs.toFinset, g x = g y → x = y := by simpa only [hs.mem_toFinset] have := finprod_mem_eq_prod (comp f g) hs unfold Function.comp at this rw [this, ← Finset.prod_image hg] refine' finprod_mem_eq_prod_of_inter_mulSupport_eq f _ rw [Finset.coe_image, hs.coe_toFinset, ← image_inter_mulSupport_eq, inter_assoc, inter_self] · unfold Function.comp at hs rw [finprod_mem_eq_one_of_infinite hs, finprod_mem_eq_one_of_infinite] rwa [image_inter_mulSupport_eq, infinite_image_iff hg] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s✝ t : Set α s : Set β g : β → α hg : InjOn g (s ∩ mulSupport (f ∘ g)) ⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j) [PROOFSTEP] by_cases hs : (s ∩ mulSupport (f ∘ g)).Finite [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s✝ t : Set α s : Set β g : β → α hg : InjOn g (s ∩ mulSupport (f ∘ g)) hs : Set.Finite (s ∩ mulSupport (f ∘ g)) ⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j) [PROOFSTEP] have hg : ∀ x ∈ hs.toFinset, ∀ y ∈ hs.toFinset, g x = g y → x = y := by simpa only [hs.mem_toFinset] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s✝ t : Set α s : Set β g : β → α hg : InjOn g (s ∩ mulSupport (f ∘ g)) hs : Set.Finite (s ∩ mulSupport (f ∘ g)) ⊢ ∀ (x : β), x ∈ Finite.toFinset hs → ∀ (y : β), y ∈ Finite.toFinset hs → g x = g y → x = y [PROOFSTEP] simpa only [hs.mem_toFinset] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s✝ t : Set α s : Set β g : β → α hg✝ : InjOn g (s ∩ mulSupport (f ∘ g)) hs : Set.Finite (s ∩ mulSupport (f ∘ g)) hg : ∀ (x : β), x ∈ Finite.toFinset hs → ∀ (y : β), y ∈ Finite.toFinset hs → g x = g y → x = y ⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j) [PROOFSTEP] have := finprod_mem_eq_prod (comp f g) hs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s✝ t : Set α s : Set β g : β → α hg✝ : InjOn g (s ∩ mulSupport (f ∘ g)) hs : Set.Finite (s ∩ mulSupport (f ∘ g)) hg : ∀ (x : β), x ∈ Finite.toFinset hs → ∀ (y : β), y ∈ Finite.toFinset hs → g x = g y → x = y this : ∏ᶠ (i : β) (_ : i ∈ s), (f ∘ g) i = ∏ i in Finite.toFinset hs, (f ∘ g) i ⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j) [PROOFSTEP] unfold Function.comp at this [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s✝ t : Set α s : Set β g : β → α hg✝ : InjOn g (s ∩ mulSupport (f ∘ g)) hs : Set.Finite (s ∩ mulSupport (f ∘ g)) hg : ∀ (x : β), x ∈ Finite.toFinset hs → ∀ (y : β), y ∈ Finite.toFinset hs → g x = g y → x = y this : ∏ᶠ (i : β) (_ : i ∈ s), f (g i) = ∏ i in Finite.toFinset hs, f (g i) ⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j) [PROOFSTEP] rw [this, ← Finset.prod_image hg] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s✝ t : Set α s : Set β g : β → α hg✝ : InjOn g (s ∩ mulSupport (f ∘ g)) hs : Set.Finite (s ∩ mulSupport (f ∘ g)) hg : ∀ (x : β), x ∈ Finite.toFinset hs → ∀ (y : β), y ∈ Finite.toFinset hs → g x = g y → x = y this : ∏ᶠ (i : β) (_ : i ∈ s), f (g i) = ∏ i in Finite.toFinset hs, f (g i) ⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ x in Finset.image (fun x => g x) (Finite.toFinset hs), f x [PROOFSTEP] refine' finprod_mem_eq_prod_of_inter_mulSupport_eq f _ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s✝ t : Set α s : Set β g : β → α hg✝ : InjOn g (s ∩ mulSupport (f ∘ g)) hs : Set.Finite (s ∩ mulSupport (f ∘ g)) hg : ∀ (x : β), x ∈ Finite.toFinset hs → ∀ (y : β), y ∈ Finite.toFinset hs → g x = g y → x = y this : ∏ᶠ (i : β) (_ : i ∈ s), f (g i) = ∏ i in Finite.toFinset hs, f (g i) ⊢ g '' s ∩ mulSupport f = ↑(Finset.image (fun x => g x) (Finite.toFinset hs)) ∩ mulSupport f [PROOFSTEP] rw [Finset.coe_image, hs.coe_toFinset, ← image_inter_mulSupport_eq, inter_assoc, inter_self] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s✝ t : Set α s : Set β g : β → α hg : InjOn g (s ∩ mulSupport (f ∘ g)) hs : ¬Set.Finite (s ∩ mulSupport (f ∘ g)) ⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j) [PROOFSTEP] unfold Function.comp at hs [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s✝ t : Set α s : Set β g : β → α hg : InjOn g (s ∩ mulSupport (f ∘ g)) hs : ¬Set.Finite (s ∩ mulSupport fun x => f (g x)) ⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j) [PROOFSTEP] rw [finprod_mem_eq_one_of_infinite hs, finprod_mem_eq_one_of_infinite] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s✝ t : Set α s : Set β g : β → α hg : InjOn g (s ∩ mulSupport (f ∘ g)) hs : ¬Set.Finite (s ∩ mulSupport fun x => f (g x)) ⊢ Set.Infinite (g '' s ∩ mulSupport fun i => f i) [PROOFSTEP] rwa [image_inter_mulSupport_eq, infinite_image_iff hg] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s t : Set α g : β → α hg : InjOn g (mulSupport (f ∘ g)) ⊢ ∏ᶠ (i : α) (_ : i ∈ range g), f i = ∏ᶠ (j : β), f (g j) [PROOFSTEP] rw [← image_univ, finprod_mem_image', finprod_mem_univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g✝ : α → M a b : α s t : Set α g : β → α hg : InjOn g (mulSupport (f ∘ g)) ⊢ InjOn g (univ ∩ mulSupport ((fun i => f i) ∘ g)) [PROOFSTEP] rwa [univ_inter] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g✝ : α → M a b : α s✝ t✝ s : Set α t : Set β f : α → M g : β → M e : α → β he₀ : BijOn e s t he₁ : ∀ (x : α), x ∈ s → f x = g (e x) ⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = ∏ᶠ (j : β) (_ : j ∈ t), g j [PROOFSTEP] rw [← Set.BijOn.image_eq he₀, finprod_mem_image he₀.2.1] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g✝ : α → M a b : α s✝ t✝ s : Set α t : Set β f : α → M g : β → M e : α → β he₀ : BijOn e s t he₁ : ∀ (x : α), x ∈ s → f x = g (e x) ⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = ∏ᶠ (j : α) (_ : j ∈ s), g (e j) [PROOFSTEP] exact finprod_mem_congr rfl he₁ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g✝ : α → M a b : α s t : Set α f : α → M g : β → M e : α → β he₀ : Bijective e he₁ : ∀ (x : α), f x = g (e x) ⊢ ∏ᶠ (i : α), f i = ∏ᶠ (j : β), g j [PROOFSTEP] rw [← finprod_mem_univ f, ← finprod_mem_univ g] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g✝ : α → M a b : α s t : Set α f : α → M g : β → M e : α → β he₀ : Bijective e he₁ : ∀ (x : α), f x = g (e x) ⊢ ∏ᶠ (i : α) (_ : i ∈ univ), f i = ∏ᶠ (i : β) (_ : i ∈ univ), g i [PROOFSTEP] exact finprod_mem_eq_of_bijOn _ (bijective_iff_bijOn_univ.mp he₀) fun x _ => he₁ x [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s✝ t s : Set α ⊢ ∏ᶠ (j : ↑s), f ↑j = ∏ᶠ (i : α) (_ : i ∈ s), f i [PROOFSTEP] rw [← finprod_mem_range, Subtype.range_coe] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s✝ t s : Set α ⊢ Injective fun j => ↑j [PROOFSTEP] exact Subtype.coe_injective [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t✝ t : Set α h : Set.Finite (s ∩ mulSupport f) ⊢ (∏ᶠ (i : α) (_ : i ∈ s ∩ t), f i) * ∏ᶠ (i : α) (_ : i ∈ s \ t), f i = ∏ᶠ (i : α) (_ : i ∈ s), f i [PROOFSTEP] rw [← finprod_mem_union', inter_union_diff] [GOAL] case hst α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t✝ t : Set α h : Set.Finite (s ∩ mulSupport f) ⊢ Disjoint (s ∩ t) (s \ t) case hs α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t✝ t : Set α h : Set.Finite (s ∩ mulSupport f) ⊢ Set.Finite (s ∩ t ∩ mulSupport fun i => f i) case ht α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t✝ t : Set α h : Set.Finite (s ∩ mulSupport f) ⊢ Set.Finite (s \ t ∩ mulSupport fun i => f i) [PROOFSTEP] rw [disjoint_iff_inf_le] [GOAL] case hst α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t✝ t : Set α h : Set.Finite (s ∩ mulSupport f) ⊢ s ∩ t ⊓ s \ t ≤ ⊥ case hs α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t✝ t : Set α h : Set.Finite (s ∩ mulSupport f) ⊢ Set.Finite (s ∩ t ∩ mulSupport fun i => f i) case ht α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t✝ t : Set α h : Set.Finite (s ∩ mulSupport f) ⊢ Set.Finite (s \ t ∩ mulSupport fun i => f i) [PROOFSTEP] exacts [fun x hx => hx.2.2 hx.1.2, h.subset fun x hx => ⟨hx.1.1, hx.2⟩, h.subset fun x hx => ⟨hx.1.1, hx.2⟩] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t : Set α hst : s ⊆ t ht : Set.Finite (t ∩ mulSupport f) ⊢ (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ t \ s), f i = ∏ᶠ (i : α) (_ : i ∈ t), f i [PROOFSTEP] rw [← finprod_mem_inter_mul_diff' _ ht, inter_eq_self_of_subset_right hst] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f g : α → M a b : α s t✝ : Set α inst✝ : Finite ι t : ι → Set α h : Pairwise (Disjoint on t) ht : ∀ (i : ι), Set.Finite (t i) ⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (i : ι), t i), f a = ∏ᶠ (i : ι) (a : α) (_ : a ∈ t i), f a [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f g : α → M a b : α s t✝ : Set α inst✝ : Finite ι t : ι → Set α h : Pairwise (Disjoint on t) ht : ∀ (i : ι), Set.Finite (t i) val✝ : Fintype ι ⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (i : ι), t i), f a = ∏ᶠ (i : ι) (a : α) (_ : a ∈ t i), f a [PROOFSTEP] lift t to ι → Finset α using ht [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f g : α → M a b : α s t✝ : Set α inst✝ : Finite ι val✝ : Fintype ι t : ι → Finset α h : Pairwise (Disjoint on fun i => ↑(t i)) ⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (i : ι), (fun i => ↑(t i)) i), f a = ∏ᶠ (i : ι) (a : α) (_ : a ∈ (fun i => ↑(t i)) i), f a [PROOFSTEP] classical rw [← biUnion_univ, ← Finset.coe_univ, ← Finset.coe_biUnion, finprod_mem_coe_finset, Finset.prod_biUnion] · simp only [finprod_mem_coe_finset, finprod_eq_prod_of_fintype] · exact fun x _ y _ hxy => Finset.disjoint_coe.1 (h hxy) [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f g : α → M a b : α s t✝ : Set α inst✝ : Finite ι val✝ : Fintype ι t : ι → Finset α h : Pairwise (Disjoint on fun i => ↑(t i)) ⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (i : ι), (fun i => ↑(t i)) i), f a = ∏ᶠ (i : ι) (a : α) (_ : a ∈ (fun i => ↑(t i)) i), f a [PROOFSTEP] rw [← biUnion_univ, ← Finset.coe_univ, ← Finset.coe_biUnion, finprod_mem_coe_finset, Finset.prod_biUnion] [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f g : α → M a b : α s t✝ : Set α inst✝ : Finite ι val✝ : Fintype ι t : ι → Finset α h : Pairwise (Disjoint on fun i => ↑(t i)) ⊢ ∏ x : ι, ∏ i in t x, f i = ∏ᶠ (i : ι) (a : α) (_ : a ∈ (fun i => ↑(t i)) i), f a [PROOFSTEP] simp only [finprod_mem_coe_finset, finprod_eq_prod_of_fintype] [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f g : α → M a b : α s t✝ : Set α inst✝ : Finite ι val✝ : Fintype ι t : ι → Finset α h : Pairwise (Disjoint on fun i => ↑(t i)) ⊢ PairwiseDisjoint ↑Finset.univ fun x => t x [PROOFSTEP] exact fun x _ y _ hxy => Finset.disjoint_coe.1 (h hxy) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t✝ : Set α I : Set ι t : ι → Set α h : PairwiseDisjoint I t hI : Set.Finite I ht : ∀ (i : ι), i ∈ I → Set.Finite (t i) ⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (x : ι) (_ : x ∈ I), t x), f a = ∏ᶠ (i : ι) (_ : i ∈ I) (j : α) (_ : j ∈ t i), f j [PROOFSTEP] haveI := hI.fintype [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t✝ : Set α I : Set ι t : ι → Set α h : PairwiseDisjoint I t hI : Set.Finite I ht : ∀ (i : ι), i ∈ I → Set.Finite (t i) this : Fintype ↑I ⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (x : ι) (_ : x ∈ I), t x), f a = ∏ᶠ (i : ι) (_ : i ∈ I) (j : α) (_ : j ∈ t i), f j [PROOFSTEP] rw [biUnion_eq_iUnion, finprod_mem_iUnion, ← finprod_set_coe_eq_finprod_mem] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t✝ : Set α I : Set ι t : ι → Set α h : PairwiseDisjoint I t hI : Set.Finite I ht : ∀ (i : ι), i ∈ I → Set.Finite (t i) this : Fintype ↑I ⊢ Pairwise (Disjoint on fun x => t ↑x) case ht α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t✝ : Set α I : Set ι t : ι → Set α h : PairwiseDisjoint I t hI : Set.Finite I ht : ∀ (i : ι), i ∈ I → Set.Finite (t i) this : Fintype ↑I ⊢ ∀ (i : ↑I), Set.Finite (t ↑i) [PROOFSTEP] exacts [fun x y hxy => h x.2 y.2 (Subtype.coe_injective.ne hxy), fun b => ht b b.2] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t✝ : Set α t : Set (Set α) h : PairwiseDisjoint t id ht₀ : Set.Finite t ht₁ : ∀ (x : Set α), x ∈ t → Set.Finite x ⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃₀ t), f a = ∏ᶠ (s : Set α) (_ : s ∈ t) (a : α) (_ : a ∈ s), f a [PROOFSTEP] rw [Set.sUnion_eq_biUnion] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a b : α s t✝ : Set α t : Set (Set α) h : PairwiseDisjoint t id ht₀ : Set.Finite t ht₁ : ∀ (x : Set α), x ∈ t → Set.Finite x ⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (i : Set α) (_ : i ∈ t), i), f a = ∏ᶠ (s : Set α) (_ : s ∈ t) (a : α) (_ : a ∈ s), f a [PROOFSTEP] exact finprod_mem_biUnion h ht₀ ht₁ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a✝ b : α s t : Set α a : α hf : Set.Finite (mulSupport f) ⊢ f a * ∏ᶠ (i : α) (_ : i ≠ a), f i = ∏ᶠ (i : α), f i [PROOFSTEP] classical rw [finprod_eq_prod _ hf] have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.toFinset \ { a }) := by intro x hx rw [Finset.mem_sdiff, Finset.mem_singleton, Finite.mem_toFinset, mem_mulSupport] exact ⟨fun h => And.intro hx h, fun h => h.2⟩ rw [finprod_cond_eq_prod_of_cond_iff f (fun hx => h _ hx), Finset.sdiff_singleton_eq_erase] by_cases ha : a ∈ mulSupport f · apply Finset.mul_prod_erase _ _ ((Finite.mem_toFinset _).mpr ha) · rw [mem_mulSupport, not_not] at ha rw [ha, one_mul] apply Finset.prod_erase _ ha [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a✝ b : α s t : Set α a : α hf : Set.Finite (mulSupport f) ⊢ f a * ∏ᶠ (i : α) (_ : i ≠ a), f i = ∏ᶠ (i : α), f i [PROOFSTEP] rw [finprod_eq_prod _ hf] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a✝ b : α s t : Set α a : α hf : Set.Finite (mulSupport f) ⊢ f a * ∏ᶠ (i : α) (_ : i ≠ a), f i = ∏ i in Finite.toFinset hf, f i [PROOFSTEP] have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.toFinset \ { a }) := by intro x hx rw [Finset.mem_sdiff, Finset.mem_singleton, Finite.mem_toFinset, mem_mulSupport] exact ⟨fun h => And.intro hx h, fun h => h.2⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a✝ b : α s t : Set α a : α hf : Set.Finite (mulSupport f) ⊢ ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a}) [PROOFSTEP] intro x hx [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a✝ b : α s t : Set α a : α hf : Set.Finite (mulSupport f) x : α hx : f x ≠ 1 ⊢ x ≠ a ↔ x ∈ Finite.toFinset hf \ {a} [PROOFSTEP] rw [Finset.mem_sdiff, Finset.mem_singleton, Finite.mem_toFinset, mem_mulSupport] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a✝ b : α s t : Set α a : α hf : Set.Finite (mulSupport f) x : α hx : f x ≠ 1 ⊢ x ≠ a ↔ f x ≠ 1 ∧ ¬x = a [PROOFSTEP] exact ⟨fun h => And.intro hx h, fun h => h.2⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a✝ b : α s t : Set α a : α hf : Set.Finite (mulSupport f) h : ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a}) ⊢ f a * ∏ᶠ (i : α) (_ : i ≠ a), f i = ∏ i in Finite.toFinset hf, f i [PROOFSTEP] rw [finprod_cond_eq_prod_of_cond_iff f (fun hx => h _ hx), Finset.sdiff_singleton_eq_erase] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a✝ b : α s t : Set α a : α hf : Set.Finite (mulSupport f) h : ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a}) ⊢ f a * ∏ i in Finset.erase (Finite.toFinset hf) a, f i = ∏ i in Finite.toFinset hf, f i [PROOFSTEP] by_cases ha : a ∈ mulSupport f [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a✝ b : α s t : Set α a : α hf : Set.Finite (mulSupport f) h : ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a}) ha : a ∈ mulSupport f ⊢ f a * ∏ i in Finset.erase (Finite.toFinset hf) a, f i = ∏ i in Finite.toFinset hf, f i [PROOFSTEP] apply Finset.mul_prod_erase _ _ ((Finite.mem_toFinset _).mpr ha) [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a✝ b : α s t : Set α a : α hf : Set.Finite (mulSupport f) h : ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a}) ha : ¬a ∈ mulSupport f ⊢ f a * ∏ i in Finset.erase (Finite.toFinset hf) a, f i = ∏ i in Finite.toFinset hf, f i [PROOFSTEP] rw [mem_mulSupport, not_not] at ha [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a✝ b : α s t : Set α a : α hf : Set.Finite (mulSupport f) h : ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a}) ha : f a = 1 ⊢ f a * ∏ i in Finset.erase (Finite.toFinset hf) a, f i = ∏ i in Finite.toFinset hf, f i [PROOFSTEP] rw [ha, one_mul] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f g : α → M a✝ b : α s t : Set α a : α hf : Set.Finite (mulSupport f) h : ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a}) ha : f a = 1 ⊢ ∏ i in Finset.erase (Finite.toFinset hf) a, f i = ∏ i in Finite.toFinset hf, f i [PROOFSTEP] apply Finset.prod_erase _ ha [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t✝ s : Set α t : Set β f : α → β → M hs : Set.Finite s ht : Set.Finite t ⊢ ∏ᶠ (i : α) (_ : i ∈ s) (j : β) (_ : j ∈ t), f i j = ∏ᶠ (j : β) (_ : j ∈ t) (i : α) (_ : i ∈ s), f i j [PROOFSTEP] lift s to Finset α using hs [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t✝ : Set α t : Set β f : α → β → M ht : Set.Finite t s : Finset α ⊢ ∏ᶠ (i : α) (_ : i ∈ ↑s) (j : β) (_ : j ∈ t), f i j = ∏ᶠ (j : β) (_ : j ∈ t) (i : α) (_ : i ∈ ↑s), f i j [PROOFSTEP] lift t to Finset β using ht [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t✝ : Set α f : α → β → M s : Finset α t : Finset β ⊢ ∏ᶠ (i : α) (_ : i ∈ ↑s) (j : β) (_ : j ∈ ↑t), f i j = ∏ᶠ (j : β) (_ : j ∈ ↑t) (i : α) (_ : i ∈ ↑s), f i j [PROOFSTEP] simp only [finprod_mem_coe_finset] [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t✝ : Set α f : α → β → M s : Finset α t : Finset β ⊢ ∏ i in s, ∏ i_1 in t, f i i_1 = ∏ i in t, ∏ i_1 in s, f i_1 i [PROOFSTEP] exact Finset.prod_comm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M✝ : Type u_5 N : Type u_6 inst✝² : CommMonoid M✝ inst✝¹ : CommMonoid N f✝ g : α → M✝ a b : α s t : Set α M : Type u_7 inst✝ : OrderedCommMonoid M i : α f : α → M hf : Set.Finite (mulSupport f) h : ∀ (j : α), 1 ≤ f j ⊢ f i ≤ ∏ᶠ (j : α), f j [PROOFSTEP] classical calc f i ≤ ∏ j in insert i hf.toFinset, f j := Finset.single_le_prod' (fun j _ => h j) (Finset.mem_insert_self _ _) _ = ∏ᶠ j, f j := (finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_insert _ _)).symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M✝ : Type u_5 N : Type u_6 inst✝² : CommMonoid M✝ inst✝¹ : CommMonoid N f✝ g : α → M✝ a b : α s t : Set α M : Type u_7 inst✝ : OrderedCommMonoid M i : α f : α → M hf : Set.Finite (mulSupport f) h : ∀ (j : α), 1 ≤ f j ⊢ f i ≤ ∏ᶠ (j : α), f j [PROOFSTEP] calc f i ≤ ∏ j in insert i hf.toFinset, f j := Finset.single_le_prod' (fun j _ => h j) (Finset.mem_insert_self _ _) _ = ∏ᶠ j, f j := (finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_insert _ _)).symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g : α → M a b : α s t : Set α M₀ : Type u_7 inst✝ : CommMonoidWithZero M₀ f : α → M₀ x : α hx : f x = 0 hf : Set.Finite (mulSupport f) ⊢ ∏ᶠ (x : α), f x = 0 [PROOFSTEP] nontriviality [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g : α → M a b : α s t : Set α M₀ : Type u_7 inst✝ : CommMonoidWithZero M₀ f : α → M₀ x : α hx : f x = 0 hf : Set.Finite (mulSupport f) ✝ : Nontrivial M₀ ⊢ ∏ᶠ (x : α), f x = 0 [PROOFSTEP] rw [finprod_eq_prod f hf] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g : α → M a b : α s t : Set α M₀ : Type u_7 inst✝ : CommMonoidWithZero M₀ f : α → M₀ x : α hx : f x = 0 hf : Set.Finite (mulSupport f) ✝ : Nontrivial M₀ ⊢ ∏ i in Finite.toFinset hf, f i = 0 [PROOFSTEP] refine' Finset.prod_eq_zero (hf.mem_toFinset.2 _) hx [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g : α → M a b : α s t : Set α M₀ : Type u_7 inst✝ : CommMonoidWithZero M₀ f : α → M₀ x : α hx : f x = 0 hf : Set.Finite (mulSupport f) ✝ : Nontrivial M₀ ⊢ x ∈ mulSupport f [PROOFSTEP] simp [hx] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α s : Finset β f : α → β → M h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b) ⊢ ∏ᶠ (a : α), ∏ b in s, f a b = ∏ b in s, ∏ᶠ (a : α), f a b [PROOFSTEP] have hU : (mulSupport fun a => ∏ b in s, f a b) ⊆ (s.finite_toSet.biUnion fun b hb => h b (Finset.mem_coe.1 hb)).toFinset := by rw [Finite.coe_toFinset] intro x hx simp only [exists_prop, mem_iUnion, Ne.def, mem_mulSupport, Finset.mem_coe] contrapose! hx rw [mem_mulSupport, not_not, Finset.prod_congr rfl hx, Finset.prod_const_one] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α s : Finset β f : α → β → M h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b) ⊢ (mulSupport fun a => ∏ b in s, f a b) ⊆ ↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i))) [PROOFSTEP] rw [Finite.coe_toFinset] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α s : Finset β f : α → β → M h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b) ⊢ (mulSupport fun a => ∏ b in s, f a b) ⊆ ⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i [PROOFSTEP] intro x hx [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α s : Finset β f : α → β → M h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b) x : α hx : x ∈ mulSupport fun a => ∏ b in s, f a b ⊢ x ∈ ⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i [PROOFSTEP] simp only [exists_prop, mem_iUnion, Ne.def, mem_mulSupport, Finset.mem_coe] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α s : Finset β f : α → β → M h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b) x : α hx : x ∈ mulSupport fun a => ∏ b in s, f a b ⊢ ∃ i, i ∈ s ∧ ¬f x i = 1 [PROOFSTEP] contrapose! hx [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α s : Finset β f : α → β → M h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b) x : α hx : ∀ (i : β), i ∈ s → f x i = 1 ⊢ ¬x ∈ mulSupport fun a => ∏ b in s, f a b [PROOFSTEP] rw [mem_mulSupport, not_not, Finset.prod_congr rfl hx, Finset.prod_const_one] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α s : Finset β f : α → β → M h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b) hU : (mulSupport fun a => ∏ b in s, f a b) ⊆ ↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i))) ⊢ ∏ᶠ (a : α), ∏ b in s, f a b = ∏ b in s, ∏ᶠ (a : α), f a b [PROOFSTEP] rw [finprod_eq_prod_of_mulSupport_subset _ hU, Finset.prod_comm] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α s : Finset β f : α → β → M h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b) hU : (mulSupport fun a => ∏ b in s, f a b) ⊆ ↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i))) ⊢ ∏ y in s, ∏ x in Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i)), f x y = ∏ b in s, ∏ᶠ (a : α), f a b [PROOFSTEP] refine' Finset.prod_congr rfl fun b hb => (finprod_eq_prod_of_mulSupport_subset _ _).symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b✝ : α s✝ t : Set α s : Finset β f : α → β → M h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b) hU : (mulSupport fun a => ∏ b in s, f a b) ⊆ ↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i))) b : β hb : b ∈ s ⊢ (mulSupport fun x => f x b) ⊆ ↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i))) [PROOFSTEP] intro a ha [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a✝ b✝ : α s✝ t : Set α s : Finset β f : α → β → M h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b) hU : (mulSupport fun a => ∏ b in s, f a b) ⊆ ↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i))) b : β hb : b ∈ s a : α ha : a ∈ mulSupport fun x => f x b ⊢ a ∈ ↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i))) [PROOFSTEP] simp only [Finite.coe_toFinset, mem_iUnion] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a✝ b✝ : α s✝ t : Set α s : Finset β f : α → β → M h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b) hU : (mulSupport fun a => ∏ b in s, f a b) ⊆ ↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i))) b : β hb : b ∈ s a : α ha : a ∈ mulSupport fun x => f x b ⊢ ∃ i i_1, a ∈ mulSupport fun a => f a i [PROOFSTEP] exact ⟨b, hb, ha⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g✝ : α → M a b : α s✝ t : Set α inst✝ : DecidableEq β s : Finset α f : α → M g : α → β ⊢ (mulSupport fun b => Finset.prod (filter (fun a => g a = b) s) f) ⊆ ↑(image g s) [PROOFSTEP] simp only [Finset.coe_image, Set.mem_image, Finset.mem_coe, Function.support_subset_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g✝ : α → M a b : α s✝ t : Set α inst✝ : DecidableEq β s : Finset α f : α → M g : α → β ⊢ (mulSupport fun b => Finset.prod (filter (fun a => g a = b) s) f) ⊆ g '' ↑s [PROOFSTEP] intro b h [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g✝ : α → M a b✝ : α s✝ t : Set α inst✝ : DecidableEq β s : Finset α f : α → M g : α → β b : β h : b ∈ mulSupport fun b => Finset.prod (filter (fun a => g a = b) s) f ⊢ b ∈ g '' ↑s [PROOFSTEP] suffices (s.filter fun a : α => g a = b).Nonempty by simpa only [s.fiber_nonempty_iff_mem_image g b, Finset.mem_image, exists_prop] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g✝ : α → M a b✝ : α s✝ t : Set α inst✝ : DecidableEq β s : Finset α f : α → M g : α → β b : β h : b ∈ mulSupport fun b => Finset.prod (filter (fun a => g a = b) s) f this : Finset.Nonempty (filter (fun a => g a = b) s) ⊢ b ∈ g '' ↑s [PROOFSTEP] simpa only [s.fiber_nonempty_iff_mem_image g b, Finset.mem_image, exists_prop] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g✝ : α → M a b✝ : α s✝ t : Set α inst✝ : DecidableEq β s : Finset α f : α → M g : α → β b : β h : b ∈ mulSupport fun b => Finset.prod (filter (fun a => g a = b) s) f ⊢ Finset.Nonempty (filter (fun a => g a = b) s) [PROOFSTEP] exact Finset.nonempty_of_prod_ne_one h [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M ⊢ ∏ᶠ (ab : α × β) (_ : ab ∈ s), f ab = ∏ᶠ (a : α) (b : β) (_ : b ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)), f (a, b) [PROOFSTEP] have : ∀ a, (∏ i : β in (s.filter fun ab => Prod.fst ab = a).image Prod.snd, f (a, i)) = (Finset.filter (fun ab => Prod.fst ab = a) s).prod f := by refine' fun a => Finset.prod_bij (fun b _ => (a, b)) _ _ _ _ <;> simp suffices ∀ a' b, (a', b) ∈ s → a' = a → (a, b) ∈ s ∧ a' = a by simpa rintro a' b hp rfl exact ⟨hp, rfl⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M ⊢ ∀ (a : α), ∏ i in Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s), f (a, i) = Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f [PROOFSTEP] refine' fun a => Finset.prod_bij (fun b _ => (a, b)) _ _ _ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a✝ b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M a : α ⊢ ∀ (a_1 : β) (ha : a_1 ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)), (fun b x => (a, b)) a_1 ha ∈ Finset.filter (fun ab => ab.fst = a) s [PROOFSTEP] simp [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a✝ b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M a : α ⊢ ∀ (a_1 : β) (ha : a_1 ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)), f (a, a_1) = f ((fun b x => (a, b)) a_1 ha) [PROOFSTEP] simp [GOAL] case refine'_3 α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a✝ b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M a : α ⊢ ∀ (a₁ a₂ : β) (ha₁ : a₁ ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)) (ha₂ : a₂ ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)), (fun b x => (a, b)) a₁ ha₁ = (fun b x => (a, b)) a₂ ha₂ → a₁ = a₂ [PROOFSTEP] simp [GOAL] case refine'_4 α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a✝ b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M a : α ⊢ ∀ (b : α × β), b ∈ Finset.filter (fun ab => ab.fst = a) s → ∃ a_2 ha, b = (fun b x => (a, b)) a_2 ha [PROOFSTEP] simp [GOAL] case refine'_4 α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a✝ b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M a : α ⊢ ∀ (a_1 : α) (b : β), (a_1, b) ∈ s → a_1 = a → (a, b) ∈ s ∧ a_1 = a [PROOFSTEP] suffices ∀ a' b, (a', b) ∈ s → a' = a → (a, b) ∈ s ∧ a' = a by simpa [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a✝ b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M a : α this : ∀ (a' : α) (b : β), (a', b) ∈ s → a' = a → (a, b) ∈ s ∧ a' = a ⊢ ∀ (a_1 : α) (b : β), (a_1, b) ∈ s → a_1 = a → (a, b) ∈ s ∧ a_1 = a [PROOFSTEP] simpa [GOAL] case refine'_4 α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a✝ b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M a : α ⊢ ∀ (a' : α) (b : β), (a', b) ∈ s → a' = a → (a, b) ∈ s ∧ a' = a [PROOFSTEP] rintro a' b hp rfl [GOAL] case refine'_4 α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a b✝ : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M a' : α b : β hp : (a', b) ∈ s ⊢ (a', b) ∈ s ∧ a' = a' [PROOFSTEP] exact ⟨hp, rfl⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M this : ∀ (a : α), ∏ i in Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s), f (a, i) = Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f ⊢ ∏ᶠ (ab : α × β) (_ : ab ∈ s), f ab = ∏ᶠ (a : α) (b : β) (_ : b ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)), f (a, b) [PROOFSTEP] rw [finprod_mem_finset_eq_prod] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M this : ∀ (a : α), ∏ i in Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s), f (a, i) = Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f ⊢ ∏ i in s, f i = ∏ᶠ (a : α) (b : β) (_ : b ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)), f (a, b) [PROOFSTEP] simp_rw [finprod_mem_finset_eq_prod, this] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M this : ∀ (a : α), ∏ i in Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s), f (a, i) = Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f ⊢ ∏ i in s, f i = ∏ᶠ (a : α), Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f [PROOFSTEP] rw [finprod_eq_prod_of_mulSupport_subset _ (s.mulSupport_of_fiberwise_prod_subset_image f Prod.fst), ← Finset.prod_fiberwise_of_maps_to (t := Finset.image Prod.fst s) _ f] -- `finish` could close the goal here [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M this : ∀ (a : α), ∏ i in Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s), f (a, i) = Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f ⊢ ∀ (x : α × β), x ∈ s → x.fst ∈ Finset.image Prod.fst s [PROOFSTEP] simp only [Finset.mem_image, Prod.mk.eta] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝³ : CommMonoid M inst✝² : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α inst✝¹ : DecidableEq α inst✝ : DecidableEq β s : Finset (α × β) f : α × β → M this : ∀ (a : α), ∏ i in Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s), f (a, i) = Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f ⊢ ∀ (x : α × β), x ∈ s → ∃ a, a ∈ s ∧ a.fst = x.fst [PROOFSTEP] exact fun x hx => ⟨x, hx, rfl⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α s : Finset (α × β) f : α × β → M ⊢ ∏ᶠ (ab : α × β) (_ : ab ∈ s), f ab = ∏ᶠ (a : α) (b : β) (_ : (a, b) ∈ s), f (a, b) [PROOFSTEP] classical rw [finprod_mem_finset_product'] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α s : Finset (α × β) f : α × β → M ⊢ ∏ᶠ (ab : α × β) (_ : ab ∈ s), f ab = ∏ᶠ (a : α) (b : β) (_ : (a, b) ∈ s), f (a, b) [PROOFSTEP] rw [finprod_mem_finset_product'] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α s : Finset (α × β) f : α × β → M ⊢ ∏ᶠ (a : α) (b : β) (_ : b ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)), f (a, b) = ∏ᶠ (a : α) (b : β) (_ : (a, b) ∈ s), f (a, b) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α γ : Type u_7 s : Finset (α × β × γ) f : α × β × γ → M ⊢ ∏ᶠ (abc : α × β × γ) (_ : abc ∈ s), f abc = ∏ᶠ (a : α) (b : β) (c : γ) (_ : (a, b, c) ∈ s), f (a, b, c) [PROOFSTEP] classical rw [finprod_mem_finset_product'] simp_rw [finprod_mem_finset_product'] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α γ : Type u_7 s : Finset (α × β × γ) f : α × β × γ → M ⊢ ∏ᶠ (abc : α × β × γ) (_ : abc ∈ s), f abc = ∏ᶠ (a : α) (b : β) (c : γ) (_ : (a, b, c) ∈ s), f (a, b, c) [PROOFSTEP] rw [finprod_mem_finset_product'] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α γ : Type u_7 s : Finset (α × β × γ) f : α × β × γ → M ⊢ ∏ᶠ (a : α) (b : β × γ) (_ : b ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)), f (a, b) = ∏ᶠ (a : α) (b : β) (c : γ) (_ : (a, b, c) ∈ s), f (a, b, c) [PROOFSTEP] simp_rw [finprod_mem_finset_product'] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s✝ t : Set α γ : Type u_7 s : Finset (α × β × γ) f : α × β × γ → M ⊢ ∏ᶠ (a : α) (a_1 : β) (b : γ) (_ : b ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a_1) (Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)))), f (a, a_1, b) = ∏ᶠ (a : α) (b : β) (c : γ) (_ : (a, b, c) ∈ s), f (a, b, c) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s t : Set α f : α × β → M hf : Set.Finite (mulSupport f) ⊢ ∏ᶠ (ab : α × β), f ab = ∏ᶠ (a : α) (b : β), f (a, b) [PROOFSTEP] have h₁ : ∀ a, ∏ᶠ _ : a ∈ hf.toFinset, f a = f a := by simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s t : Set α f : α × β → M hf : Set.Finite (mulSupport f) ⊢ ∀ (a : α × β), ∏ᶠ (_ : a ∈ Finite.toFinset hf), f a = f a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s t : Set α f : α × β → M hf : Set.Finite (mulSupport f) h₁ : ∀ (a : α × β), ∏ᶠ (_ : a ∈ Finite.toFinset hf), f a = f a ⊢ ∏ᶠ (ab : α × β), f ab = ∏ᶠ (a : α) (b : β), f (a, b) [PROOFSTEP] have h₂ : ∏ᶠ a, f a = ∏ᶠ (a) (_ : a ∈ hf.toFinset), f a := by simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s t : Set α f : α × β → M hf : Set.Finite (mulSupport f) h₁ : ∀ (a : α × β), ∏ᶠ (_ : a ∈ Finite.toFinset hf), f a = f a ⊢ ∏ᶠ (a : α × β), f a = ∏ᶠ (a : α × β) (_ : a ∈ Finite.toFinset hf), f a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s t : Set α f : α × β → M hf : Set.Finite (mulSupport f) h₁ : ∀ (a : α × β), ∏ᶠ (_ : a ∈ Finite.toFinset hf), f a = f a h₂ : ∏ᶠ (a : α × β), f a = ∏ᶠ (a : α × β) (_ : a ∈ Finite.toFinset hf), f a ⊢ ∏ᶠ (ab : α × β), f ab = ∏ᶠ (a : α) (b : β), f (a, b) [PROOFSTEP] simp_rw [h₂, finprod_mem_finset_product, h₁] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s t : Set α γ : Type u_7 f : α × β × γ → M h : Set.Finite (mulSupport f) ⊢ ∏ᶠ (abc : α × β × γ), f abc = ∏ᶠ (a : α) (b : β) (c : γ), f (a, b, c) [PROOFSTEP] rw [finprod_curry f h] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s t : Set α γ : Type u_7 f : α × β × γ → M h : Set.Finite (mulSupport f) ⊢ ∏ᶠ (a : α) (b : β × γ), f (a, b) = ∏ᶠ (a : α) (b : β) (c : γ), f (a, b, c) [PROOFSTEP] congr [GOAL] case e_f α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a b : α s t : Set α γ : Type u_7 f : α × β × γ → M h : Set.Finite (mulSupport f) ⊢ (fun a => ∏ᶠ (b : β × γ), f (a, b)) = fun a => ∏ᶠ (b : β) (c : γ), f (a, b, c) [PROOFSTEP] ext a [GOAL] case e_f.h α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a✝ b : α s t : Set α γ : Type u_7 f : α × β × γ → M h : Set.Finite (mulSupport f) a : α ⊢ ∏ᶠ (b : β × γ), f (a, b) = ∏ᶠ (b : β) (c : γ), f (a, b, c) [PROOFSTEP] rw [finprod_curry] [GOAL] case e_f.h.hf α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝¹ : CommMonoid M inst✝ : CommMonoid N f✝ g : α → M a✝ b : α s t : Set α γ : Type u_7 f : α × β × γ → M h : Set.Finite (mulSupport f) a : α ⊢ Set.Finite (mulSupport fun b => f (a, b)) [PROOFSTEP] simp [h] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g✝ : α → M a b : α s t : Set α f : α → β hf : Injective f inst✝ : DecidablePred fun x => x ∈ range f g : α → M ⊢ (∏ᶠ (b : β), if h : b ∈ range f then g (Classical.choose h) else 1) = ∏ᶠ (a : α), g a [PROOFSTEP] simp_rw [← finprod_eq_dif] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g✝ : α → M a b : α s t : Set α f : α → β hf : Injective f inst✝ : DecidablePred fun x => x ∈ range f g : α → M ⊢ ∏ᶠ (b : β) (h : b ∈ range f), g (Classical.choose h) = ∏ᶠ (a : α), g a [PROOFSTEP] rw [finprod_dmem, finprod_mem_range hf, finprod_congr fun a => _] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g✝ : α → M a b : α s t : Set α f : α → β hf : Injective f inst✝ : DecidablePred fun x => x ∈ range f g : α → M ⊢ ∀ (a : α), (if h' : f a ∈ range f then g (Classical.choose h') else 1) = g a [PROOFSTEP] intro a [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 G : Type u_4 M : Type u_5 N : Type u_6 inst✝² : CommMonoid M inst✝¹ : CommMonoid N f✝ g✝ : α → M a✝ b : α s t : Set α f : α → β hf : Injective f inst✝ : DecidablePred fun x => x ∈ range f g : α → M a : α ⊢ (if h' : f a ∈ range f then g (Classical.choose h') else 1) = g a [PROOFSTEP] rw [dif_pos (Set.mem_range_self a), hf (Classical.choose_spec (Set.mem_range_self a))]
{"mathlib_filename": "Mathlib.Algebra.BigOperators.Finprod", "llama_tokens": 53643}
[GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : X✝ ⟶ Y✝ i : ι h : i = j ⊢ X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) i = X✝ [PROOFSTEP] dsimp [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : X✝ ⟶ Y✝ i : ι h : i = j ⊢ (if i = j then X✝ else 0) = X✝ [PROOFSTEP] rw [if_pos h] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : X✝ ⟶ Y✝ i : ι h : i = j ⊢ Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) i [PROOFSTEP] dsimp [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : X✝ ⟶ Y✝ i : ι h : i = j ⊢ Y✝ = if i = j then Y✝ else 0 [PROOFSTEP] rw [if_pos h] [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι A : V ⊢ { obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0, map := fun {X Y} f => Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫ f ≫ eqToHom (_ : Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i) else 0 }.map (𝟙 A) = 𝟙 ({ obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0, map := fun {X Y} f => Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫ f ≫ eqToHom (_ : Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i) else 0 }.obj A) [PROOFSTEP] ext [GOAL] case h V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι A : V i✝ : ι ⊢ Hom.f ({ obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0, map := fun {X Y} f => Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫ f ≫ eqToHom (_ : Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i) else 0 }.map (𝟙 A)) i✝ = Hom.f (𝟙 ({ obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0, map := fun {X Y} f => Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫ f ≫ eqToHom (_ : Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i) else 0 }.obj A)) i✝ [PROOFSTEP] dsimp [GOAL] case h V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι A : V i✝ : ι ⊢ (if h : i✝ = j then eqToHom (_ : (if i✝ = j then A else 0) = A) ≫ 𝟙 A ≫ eqToHom (_ : A = if i✝ = j then A else 0) else 0) = 𝟙 (if i✝ = j then A else 0) [PROOFSTEP] split_ifs with h [GOAL] case pos V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι A : V i✝ : ι h : i✝ = j ⊢ eqToHom (_ : (if i✝ = j then A else 0) = A) ≫ 𝟙 A ≫ eqToHom (_ : A = if i✝ = j then A else 0) = 𝟙 (if i✝ = j then A else 0) [PROOFSTEP] subst h [GOAL] case pos V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι A : V i✝ : ι ⊢ eqToHom (_ : (if i✝ = i✝ then A else 0) = A) ≫ 𝟙 A ≫ eqToHom (_ : A = if i✝ = i✝ then A else 0) = 𝟙 (if i✝ = i✝ then A else 0) [PROOFSTEP] simp [GOAL] case neg V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι A : V i✝ : ι h : ¬i✝ = j ⊢ 0 = 𝟙 (if i✝ = j then A else 0) [PROOFSTEP] rw [if_neg h] [GOAL] case neg V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι A : V i✝ : ι h : ¬i✝ = j ⊢ 0 = 𝟙 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ Z✝ : V f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ { obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0, map := fun {X Y} f => Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫ f ≫ eqToHom (_ : Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i) else 0 }.map (f ≫ g) = { obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0, map := fun {X Y} f => Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫ f ≫ eqToHom (_ : Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i) else 0 }.map f ≫ { obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0, map := fun {X Y} f => Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫ f ≫ eqToHom (_ : Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i) else 0 }.map g [PROOFSTEP] ext [GOAL] case h V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ Z✝ : V f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ i✝ : ι ⊢ Hom.f ({ obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0, map := fun {X Y} f => Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫ f ≫ eqToHom (_ : Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i) else 0 }.map (f ≫ g)) i✝ = Hom.f ({ obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0, map := fun {X Y} f => Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫ f ≫ eqToHom (_ : Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i) else 0 }.map f ≫ { obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0, map := fun {X Y} f => Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫ f ≫ eqToHom (_ : Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i) else 0 }.map g) i✝ [PROOFSTEP] dsimp [GOAL] case h V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ Z✝ : V f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ i✝ : ι ⊢ (if h : i✝ = j then eqToHom (_ : (if i✝ = j then X✝ else 0) = X✝) ≫ (f ≫ g) ≫ eqToHom (_ : Z✝ = if i✝ = j then Z✝ else 0) else 0) = (if h : i✝ = j then eqToHom (_ : (if i✝ = j then X✝ else 0) = X✝) ≫ f ≫ eqToHom (_ : Y✝ = if i✝ = j then Y✝ else 0) else 0) ≫ if h : i✝ = j then eqToHom (_ : (if i✝ = j then Y✝ else 0) = Y✝) ≫ g ≫ eqToHom (_ : Z✝ = if i✝ = j then Z✝ else 0) else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ Z✝ : V f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ i✝ : ι h : i✝ = j ⊢ eqToHom (_ : (if i✝ = j then X✝ else 0) = X✝) ≫ (f ≫ g) ≫ eqToHom (_ : Z✝ = if i✝ = j then Z✝ else 0) = (eqToHom (_ : (if i✝ = j then X✝ else 0) = X✝) ≫ f ≫ eqToHom (_ : Y✝ = if i✝ = j then Y✝ else 0)) ≫ eqToHom (_ : (if i✝ = j then Y✝ else 0) = Y✝) ≫ g ≫ eqToHom (_ : Z✝ = if i✝ = j then Z✝ else 0) [PROOFSTEP] subst h [GOAL] case pos V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι X✝ Y✝ Z✝ : V f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ i✝ : ι ⊢ eqToHom (_ : (if i✝ = i✝ then X✝ else 0) = X✝) ≫ (f ≫ g) ≫ eqToHom (_ : Z✝ = if i✝ = i✝ then Z✝ else 0) = (eqToHom (_ : (if i✝ = i✝ then X✝ else 0) = X✝) ≫ f ≫ eqToHom (_ : Y✝ = if i✝ = i✝ then Y✝ else 0)) ≫ eqToHom (_ : (if i✝ = i✝ then Y✝ else 0) = Y✝) ≫ g ≫ eqToHom (_ : Z✝ = if i✝ = i✝ then Z✝ else 0) [PROOFSTEP] simp [GOAL] case neg V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ Z✝ : V f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ i✝ : ι h : ¬i✝ = j ⊢ 0 = 0 ≫ 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι A : V ⊢ X ((single V c j).obj A) j = A [PROOFSTEP] simp [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι A B : V f : A ⟶ B ⊢ Hom.f ((single V c j).map f) j = (singleObjXSelf V c j A).hom ≫ f ≫ (singleObjXSelf V c j B).inv [PROOFSTEP] simp [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V a₁✝ a₂✝ : X✝ ⟶ Y✝ w : (single V c j).map a₁✝ = (single V c j).map a₂✝ ⊢ a₁✝ = a₂✝ [PROOFSTEP] have := congr_hom w j [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V a₁✝ a₂✝ : X✝ ⟶ Y✝ w : (single V c j).map a₁✝ = (single V c j).map a₂✝ this : Hom.f ((single V c j).map a₁✝) j = Hom.f ((single V c j).map a₂✝) j ⊢ a₁✝ = a₂✝ [PROOFSTEP] dsimp at this [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V a₁✝ a₂✝ : X✝ ⟶ Y✝ w : (single V c j).map a₁✝ = (single V c j).map a₂✝ this : (if h : j = j then eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) j = X✝) ≫ a₁✝ ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) j) else 0) = if h : j = j then eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) j = X✝) ≫ a₂✝ ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) j) else 0 ⊢ a₁✝ = a₂✝ [PROOFSTEP] simp only [dif_pos] at this [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V a₁✝ a₂✝ : X✝ ⟶ Y✝ w : (single V c j).map a₁✝ = (single V c j).map a₂✝ this : eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) j = X✝) ≫ a₁✝ ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) j) = eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) j = X✝) ≫ a₂✝ ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) j) ⊢ a₁✝ = a₂✝ [PROOFSTEP] rw [← IsIso.inv_comp_eq, inv_eqToHom, eqToHom_trans_assoc, eqToHom_refl, Category.id_comp, ← IsIso.comp_inv_eq, Category.assoc, inv_eqToHom, eqToHom_trans, eqToHom_refl, Category.comp_id] at this [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V a₁✝ a₂✝ : X✝ ⟶ Y✝ w : (single V c j).map a₁✝ = (single V c j).map a₂✝ this : a₁✝ = a₂✝ ⊢ a₁✝ = a₂✝ [PROOFSTEP] exact this [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝ ⊢ X✝ = X ((single V c j).obj X✝) j [PROOFSTEP] simp [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝ ⊢ X ((single V c j).obj Y✝) j = Y✝ [PROOFSTEP] simp [GOAL] V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝ ⊢ (single V c j).map ((fun {X Y} f => eqToHom (_ : X = if j = j then X else 0) ≫ Hom.f f j ≫ eqToHom (_ : (if j = j then Y else 0) = Y)) f) = f [PROOFSTEP] ext i [GOAL] case h V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝ i : ι ⊢ Hom.f ((single V c j).map ((fun {X Y} f => eqToHom (_ : X = if j = j then X else 0) ≫ Hom.f f j ≫ eqToHom (_ : (if j = j then Y else 0) = Y)) f)) i = Hom.f f i [PROOFSTEP] dsimp [GOAL] case h V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝ i : ι ⊢ (if h : i = j then eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) i = X✝) ≫ (eqToHom (_ : X✝ = if j = j then X✝ else 0) ≫ Hom.f f j ≫ eqToHom (_ : (if j = j then Y✝ else 0) = Y✝)) ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) i) else 0) = Hom.f f i [PROOFSTEP] split_ifs with h [GOAL] case pos V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝ i : ι h : i = j ⊢ eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) i = X✝) ≫ (eqToHom (_ : X✝ = if j = j then X✝ else 0) ≫ Hom.f f j ≫ eqToHom (_ : (if j = j then Y✝ else 0) = Y✝)) ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) i) = Hom.f f i [PROOFSTEP] subst h [GOAL] case pos V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι X✝ Y✝ : V i : ι f : (single V c i).obj X✝ ⟶ (single V c i).obj Y✝ ⊢ eqToHom (_ : X ((fun A => mk (fun i_1 => if i_1 = i then A else 0) fun i_1 j => 0) X✝) i = X✝) ≫ (eqToHom (_ : X✝ = if i = i then X✝ else 0) ≫ Hom.f f i ≫ eqToHom (_ : (if i = i then Y✝ else 0) = Y✝)) ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i_1 => if i_1 = i then A else 0) fun i_1 j => 0) Y✝) i) = Hom.f f i [PROOFSTEP] simp [GOAL] case neg V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝ i : ι h : ¬i = j ⊢ 0 = Hom.f f i [PROOFSTEP] symm [GOAL] case neg V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝ i : ι h : ¬i = j ⊢ Hom.f f i = 0 [PROOFSTEP] apply zero_of_target_iso_zero [GOAL] case neg.i V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝ i : ι h : ¬i = j ⊢ X ((single V c j).obj Y✝) i ≅ 0 [PROOFSTEP] dsimp [GOAL] case neg.i V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V inst✝¹ : HasZeroObject V ι : Type u_1 inst✝ : DecidableEq ι c : ComplexShape ι j : ι X✝ Y✝ : V f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝ i : ι h : ¬i = j ⊢ (if i = j then Y✝ else 0) ≅ 0 [PROOFSTEP] rw [if_neg h] [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ { obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map (𝟙 X) = 𝟙 ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.obj X) [PROOFSTEP] ext (_ | _) [GOAL] case h.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ Hom.f ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map (𝟙 X)) Nat.zero = Hom.f (𝟙 ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.obj X)) Nat.zero [PROOFSTEP] rfl [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ Hom.f ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map (𝟙 X)) (Nat.succ n✝) = Hom.f (𝟙 ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.obj X)) (Nat.succ n✝) [PROOFSTEP] simp [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X✝ Y✝ Z✝ : V f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ { obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map (f ≫ g) = { obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map f ≫ { obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map g [PROOFSTEP] ext (_ | _) [GOAL] case h.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X✝ Y✝ Z✝ : V f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ Hom.f ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map (f ≫ g)) Nat.zero = Hom.f ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map f ≫ { obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map g) Nat.zero [PROOFSTEP] rfl [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X✝ Y✝ Z✝ : V f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ n✝ : ℕ ⊢ Hom.f ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map (f ≫ g)) (Nat.succ n✝) = Hom.f ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map f ≫ { obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map g) (Nat.succ n✝) [PROOFSTEP] simp [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V j : ℕ ⊢ dTo ((single₀ V).obj X) j = 0 [PROOFSTEP] rw [dTo_eq ((single₀ V).obj X) rfl] [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V j : ℕ ⊢ (xPrevIso ((single₀ V).obj X) (_ : j + 1 = j + 1)).hom ≫ d ((single₀ V).obj X) (j + 1) j = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V i : ℕ ⊢ dFrom ((single₀ V).obj X) i = 0 [PROOFSTEP] cases i [GOAL] case zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ dFrom ((single₀ V).obj X) Nat.zero = 0 [PROOFSTEP] rw [dFrom_eq_zero] [GOAL] case zero.h V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero (ComplexShape.next (ComplexShape.down ℕ) Nat.zero) [PROOFSTEP] simp [GOAL] case succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ dFrom ((single₀ V).obj X) (Nat.succ n✝) = 0 [PROOFSTEP] erw [dFrom_eq ((single₀ V).obj X) rfl] [GOAL] case succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ d ((single₀ V).obj X) (n✝ + 1) n✝ ≫ (xNextIso ((single₀ V).obj X) (_ : n✝ + 1 = n✝ + 1)).inv = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V X : V ⊢ dTo ((single₀ V).obj X) 0 = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V X : V ⊢ dFrom ((single₀ V).obj X) 0 = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V X✝ Y✝ : V f : X✝ ⟶ Y✝ ⊢ (single₀ V ⋙ homologyFunctor V (ComplexShape.down ℕ) 0).map f ≫ ((fun X => homology.congr (_ : dTo ((single₀ V).obj X) 0 ≫ dFrom ((single₀ V).obj X) 0 = 0) (_ : 0 ≫ 0 = 0) (_ : 0 = 0) (_ : d ((single₀ V).obj X) 0 (ComplexShape.next (ComplexShape.down ℕ) 0) = 0) ≪≫ homologyZeroZero) Y✝).hom = ((fun X => homology.congr (_ : dTo ((single₀ V).obj X) 0 ≫ dFrom ((single₀ V).obj X) 0 = 0) (_ : 0 ≫ 0 = 0) (_ : 0 = 0) (_ : d ((single₀ V).obj X) 0 (ComplexShape.next (ComplexShape.down ℕ) 0) = 0) ≪≫ homologyZeroZero) X✝).hom ≫ (𝟭 V).map f [PROOFSTEP] dsimp [GOAL] V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V X✝ Y✝ : V f : X✝ ⟶ Y✝ ⊢ homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) (_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (Hom.sqTo ((single₀ V).map f) 0) (Hom.sqFrom ((single₀ V).map f) 0) (_ : (Hom.sqTo ((single₀ V).map f) 0).right = (Hom.sqTo ((single₀ V).map f) 0).right) ≫ homology.map (_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (_ : 0 ≫ 0 = 0) (CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj Y✝) 0)) (𝟙 Y✝)) (CommaMorphism.mk (𝟙 Y✝) (𝟙 (xNext ((single₀ V).obj Y✝) 0))) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫ homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0)) (_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0) = (homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) (_ : 0 ≫ 0 = 0) (CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj X✝) 0)) (𝟙 X✝)) (CommaMorphism.mk (𝟙 X✝) (𝟙 (xNext ((single₀ V).obj X✝) 0))) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫ homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0)) (_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0)) ≫ f [PROOFSTEP] ext [GOAL] case p V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V X✝ Y✝ : V f : X✝ ⟶ Y✝ ⊢ homology.π (dTo ((single₀ V).obj X✝) 0) (dFrom ((single₀ V).obj X✝) 0) (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) ≫ homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) (_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (Hom.sqTo ((single₀ V).map f) 0) (Hom.sqFrom ((single₀ V).map f) 0) (_ : (Hom.sqTo ((single₀ V).map f) 0).right = (Hom.sqTo ((single₀ V).map f) 0).right) ≫ homology.map (_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (_ : 0 ≫ 0 = 0) (CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj Y✝) 0)) (𝟙 Y✝)) (CommaMorphism.mk (𝟙 Y✝) (𝟙 (xNext ((single₀ V).obj Y✝) 0))) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫ homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0)) (_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0) = homology.π (dTo ((single₀ V).obj X✝) 0) (dFrom ((single₀ V).obj X✝) 0) (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) ≫ (homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) (_ : 0 ≫ 0 = 0) (CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj X✝) 0)) (𝟙 X✝)) (CommaMorphism.mk (𝟙 X✝) (𝟙 (xNext ((single₀ V).obj X✝) 0))) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫ homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0)) (_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0)) ≫ f [PROOFSTEP] simp [GOAL] V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V n : ℕ X : V ⊢ dTo ((single₀ V).obj X) (n + 1) = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V n : ℕ X : V ⊢ dFrom ((single₀ V).obj X) (n + 1) = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : C ⟶ (single₀ V).obj X ⊢ d C 1 0 ≫ Hom.f f 0 = 0 [PROOFSTEP] rw [← f.comm 1 0] [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : C ⟶ (single₀ V).obj X ⊢ Hom.f f 1 ≫ d ((single₀ V).obj X) 1 0 = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } i j : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) i ≫ d ((single₀ V).obj X) i j = d C i j ≫ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) j [PROOFSTEP] rcases i with (_ | _ | i) [GOAL] case zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } j : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero j ⊢ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) Nat.zero ≫ d ((single₀ V).obj X) Nat.zero j = d C Nat.zero j ≫ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) j [PROOFSTEP] cases j [GOAL] case succ.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } j : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ Nat.zero) j ⊢ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) (Nat.succ Nat.zero) ≫ d ((single₀ V).obj X) (Nat.succ Nat.zero) j = d C (Nat.succ Nat.zero) j ≫ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) j [PROOFSTEP] cases j [GOAL] case succ.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } j i : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ (Nat.succ i)) j ⊢ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) (Nat.succ (Nat.succ i)) ≫ d ((single₀ V).obj X) (Nat.succ (Nat.succ i)) j = d C (Nat.succ (Nat.succ i)) j ≫ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) j [PROOFSTEP] cases j [GOAL] case zero.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero Nat.zero ⊢ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) Nat.zero ≫ d ((single₀ V).obj X) Nat.zero Nat.zero = d C Nat.zero Nat.zero ≫ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) Nat.zero [PROOFSTEP] simp only [single₀_obj_X_d, comp_zero] [GOAL] case zero.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } n✝ : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero (Nat.succ n✝) ⊢ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) Nat.zero ≫ d ((single₀ V).obj X) Nat.zero (Nat.succ n✝) = d C Nat.zero (Nat.succ n✝) ≫ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) (Nat.succ n✝) [PROOFSTEP] simp only [single₀_obj_X_d, comp_zero] [GOAL] case succ.zero.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ Nat.zero) Nat.zero ⊢ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) (Nat.succ Nat.zero) ≫ d ((single₀ V).obj X) (Nat.succ Nat.zero) Nat.zero = d C (Nat.succ Nat.zero) Nat.zero ≫ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) Nat.zero [PROOFSTEP] simp only [single₀_obj_X_d, comp_zero] [GOAL] case succ.zero.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } n✝ : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ Nat.zero) (Nat.succ n✝) ⊢ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) (Nat.succ Nat.zero) ≫ d ((single₀ V).obj X) (Nat.succ Nat.zero) (Nat.succ n✝) = d C (Nat.succ Nat.zero) (Nat.succ n✝) ≫ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) (Nat.succ n✝) [PROOFSTEP] simp only [single₀_obj_X_d, comp_zero] [GOAL] case succ.succ.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } i : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ (Nat.succ i)) Nat.zero ⊢ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) (Nat.succ (Nat.succ i)) ≫ d ((single₀ V).obj X) (Nat.succ (Nat.succ i)) Nat.zero = d C (Nat.succ (Nat.succ i)) Nat.zero ≫ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) Nat.zero [PROOFSTEP] simp only [single₀_obj_X_d, comp_zero] [GOAL] case succ.succ.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } i n✝ : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ (Nat.succ i)) (Nat.succ n✝) ⊢ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) (Nat.succ (Nat.succ i)) ≫ d ((single₀ V).obj X) (Nat.succ (Nat.succ i)) (Nat.succ n✝) = d C (Nat.succ (Nat.succ i)) (Nat.succ n✝) ≫ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) (Nat.succ n✝) [PROOFSTEP] simp only [single₀_obj_X_d, comp_zero] [GOAL] case zero.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero Nat.zero ⊢ 0 = d C Nat.zero Nat.zero ≫ ↑f [PROOFSTEP] rw [C.shape, zero_comp] [GOAL] case zero.zero.a V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero Nat.zero ⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero Nat.zero [PROOFSTEP] simp [GOAL] case succ.zero.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ Nat.zero) Nat.zero ⊢ 0 = d C (Nat.succ Nat.zero) Nat.zero ≫ ↑f [PROOFSTEP] exact f.2.symm [GOAL] case succ.succ.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } i : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ (Nat.succ i)) Nat.zero ⊢ 0 = d C (Nat.succ (Nat.succ i)) Nat.zero ≫ ↑f [PROOFSTEP] rw [C.shape, zero_comp] [GOAL] case succ.succ.zero.a V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : { f // d C 1 0 ≫ f = 0 } i : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ (Nat.succ i)) Nat.zero ⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ (Nat.succ i)) Nat.zero [PROOFSTEP] exact i.succ_succ_ne_one.symm [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : C ⟶ (single₀ V).obj X ⊢ (fun f => Hom.mk fun i => match i with | 0 => ↑f | Nat.succ n => 0) ((fun f => { val := Hom.f f 0, property := (_ : d C 1 0 ≫ Hom.f f 0 = 0) }) f) = f [PROOFSTEP] ext i [GOAL] case h V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : C ⟶ (single₀ V).obj X i : ℕ ⊢ Hom.f ((fun f => Hom.mk fun i => match i with | 0 => ↑f | Nat.succ n => 0) ((fun f => { val := Hom.f f 0, property := (_ : d C 1 0 ≫ Hom.f f 0 = 0) }) f)) i = Hom.f f i [PROOFSTEP] rcases i with ⟨⟩ [GOAL] case h.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : C ⟶ (single₀ V).obj X ⊢ Hom.f ((fun f => Hom.mk fun i => match i with | 0 => ↑f | Nat.succ n => 0) ((fun f => { val := Hom.f f 0, property := (_ : d C 1 0 ≫ Hom.f f 0 = 0) }) f)) Nat.zero = Hom.f f Nat.zero [PROOFSTEP] rfl [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : C ⟶ (single₀ V).obj X n✝ : ℕ ⊢ Hom.f ((fun f => Hom.mk fun i => match i with | 0 => ↑f | Nat.succ n => 0) ((fun f => { val := Hom.f f 0, property := (_ : d C 1 0 ≫ Hom.f f 0 = 0) }) f)) (Nat.succ n✝) = Hom.f f (Nat.succ n✝) [PROOFSTEP] dsimp [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : C ⟶ (single₀ V).obj X n✝ : ℕ ⊢ 0 = Hom.f f (Nat.succ n✝) [PROOFSTEP] ext [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V ⊢ Function.RightInverse (fun f => Hom.mk fun i => match i with | 0 => ↑f | Nat.succ n => 0) fun f => { val := Hom.f f 0, property := (_ : d C 1 0 ≫ Hom.f f 0 = 0) } [PROOFSTEP] aesop_cat [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f g : C ⟶ (single₀ V).obj X h : Hom.f f 0 = Hom.f g 0 ⊢ ↑(toSingle₀Equiv C X) f = ↑(toSingle₀Equiv C X) g [PROOFSTEP] ext [GOAL] case a V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f g : C ⟶ (single₀ V).obj X h : Hom.f f 0 = Hom.f g 0 ⊢ ↑(↑(toSingle₀Equiv C X) f) = ↑(↑(toSingle₀Equiv C X) g) [PROOFSTEP] exact h [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 i j : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ (fun i => match i with | 0 => f | Nat.succ n => 0) i ≫ d C i j = d ((single₀ V).obj X) i j ≫ (fun i => match i with | 0 => f | Nat.succ n => 0) j [PROOFSTEP] cases i [GOAL] case zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 j : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero j ⊢ (fun i => match i with | 0 => f | Nat.succ n => 0) Nat.zero ≫ d C Nat.zero j = d ((single₀ V).obj X) Nat.zero j ≫ (fun i => match i with | 0 => f | Nat.succ n => 0) j [PROOFSTEP] cases j [GOAL] case succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 j n✝ : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ n✝) j ⊢ (fun i => match i with | 0 => f | Nat.succ n => 0) (Nat.succ n✝) ≫ d C (Nat.succ n✝) j = d ((single₀ V).obj X) (Nat.succ n✝) j ≫ (fun i => match i with | 0 => f | Nat.succ n => 0) j [PROOFSTEP] cases j [GOAL] case zero.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero Nat.zero ⊢ (fun i => match i with | 0 => f | Nat.succ n => 0) Nat.zero ≫ d C Nat.zero Nat.zero = d ((single₀ V).obj X) Nat.zero Nat.zero ≫ (fun i => match i with | 0 => f | Nat.succ n => 0) Nat.zero [PROOFSTEP] simp only [shape, ComplexShape.down_Rel, Nat.one_ne_zero, not_false_iff, zero_comp, single₀_obj_X_d, Nat.zero_eq, add_eq_zero, comp_zero] [GOAL] case zero.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 n✝ : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero (Nat.succ n✝) ⊢ (fun i => match i with | 0 => f | Nat.succ n => 0) Nat.zero ≫ d C Nat.zero (Nat.succ n✝) = d ((single₀ V).obj X) Nat.zero (Nat.succ n✝) ≫ (fun i => match i with | 0 => f | Nat.succ n => 0) (Nat.succ n✝) [PROOFSTEP] simp only [shape, ComplexShape.down_Rel, Nat.one_ne_zero, not_false_iff, zero_comp, single₀_obj_X_d, Nat.zero_eq, add_eq_zero, comp_zero] [GOAL] case succ.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 n✝ : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ n✝) Nat.zero ⊢ (fun i => match i with | 0 => f | Nat.succ n => 0) (Nat.succ n✝) ≫ d C (Nat.succ n✝) Nat.zero = d ((single₀ V).obj X) (Nat.succ n✝) Nat.zero ≫ (fun i => match i with | 0 => f | Nat.succ n => 0) Nat.zero [PROOFSTEP] simp only [shape, ComplexShape.down_Rel, Nat.one_ne_zero, not_false_iff, zero_comp, single₀_obj_X_d, Nat.zero_eq, add_eq_zero, comp_zero] [GOAL] case succ.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 n✝¹ n✝ : ℕ h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ n✝¹) (Nat.succ n✝) ⊢ (fun i => match i with | 0 => f | Nat.succ n => 0) (Nat.succ n✝¹) ≫ d C (Nat.succ n✝¹) (Nat.succ n✝) = d ((single₀ V).obj X) (Nat.succ n✝¹) (Nat.succ n✝) ≫ (fun i => match i with | 0 => f | Nat.succ n => 0) (Nat.succ n✝) [PROOFSTEP] simp only [shape, ComplexShape.down_Rel, Nat.one_ne_zero, not_false_iff, zero_comp, single₀_obj_X_d, Nat.zero_eq, add_eq_zero, comp_zero] [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : (single₀ V).obj X ⟶ C ⊢ (fun f => Hom.mk fun i => match i with | 0 => f | Nat.succ n => 0) ((fun f => Hom.f f 0) f) = f [PROOFSTEP] ext i [GOAL] case h V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : (single₀ V).obj X ⟶ C i : ℕ ⊢ Hom.f ((fun f => Hom.mk fun i => match i with | 0 => f | Nat.succ n => 0) ((fun f => Hom.f f 0) f)) i = Hom.f f i [PROOFSTEP] cases i [GOAL] case h.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : (single₀ V).obj X ⟶ C ⊢ Hom.f ((fun f => Hom.mk fun i => match i with | 0 => f | Nat.succ n => 0) ((fun f => Hom.f f 0) f)) Nat.zero = Hom.f f Nat.zero [PROOFSTEP] rfl [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : (single₀ V).obj X ⟶ C n✝ : ℕ ⊢ Hom.f ((fun f => Hom.mk fun i => match i with | 0 => f | Nat.succ n => 0) ((fun f => Hom.f f 0) f)) (Nat.succ n✝) = Hom.f f (Nat.succ n✝) [PROOFSTEP] dsimp [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : ChainComplex V ℕ X : V f : (single₀ V).obj X ⟶ C n✝ : ℕ ⊢ 0 = Hom.f f (Nat.succ n✝) [PROOFSTEP] ext [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V i : ℕ ⊢ HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i [PROOFSTEP] cases i [GOAL] case zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ HomologicalComplex.X ((single₀ V).obj X) Nat.zero ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero [PROOFSTEP] exact 𝟙 _ [GOAL] case succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n✝) ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n✝) [PROOFSTEP] exact 𝟙 _ [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V i : ℕ ⊢ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i [PROOFSTEP] cases i [GOAL] case zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero ⟶ HomologicalComplex.X ((single₀ V).obj X) Nat.zero [PROOFSTEP] exact 𝟙 _ [GOAL] case succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n✝) ⟶ HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n✝) [PROOFSTEP] exact 𝟙 _ [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n))) (_ : i = i)) 0 = Hom.f (𝟙 ((single₀ V).obj X)) 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) = 𝟙 ((single V (ComplexShape.down ℕ) 0).obj X) [PROOFSTEP] ext (_ | _) [GOAL] case h.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) Nat.zero = Hom.f (𝟙 ((single V (ComplexShape.down ℕ) 0).obj X)) Nat.zero [PROOFSTEP] dsimp [GOAL] case h.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ 𝟙 (if 0 = 0 then X else 0) ≫ 𝟙 X = 𝟙 (if 0 = 0 then X else 0) [PROOFSTEP] simp [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) (Nat.succ n✝) = Hom.f (𝟙 ((single V (ComplexShape.down ℕ) 0).obj X)) (Nat.succ n✝) [PROOFSTEP] dsimp [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ 𝟙 (if Nat.succ n✝ = 0 then X else 0) ≫ 𝟙 0 = 𝟙 (if Nat.succ n✝ = 0 then X else 0) [PROOFSTEP] rw [Category.comp_id] [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X✝ Y✝ : V f : X✝ ⟶ Y✝ ⊢ (single₀ V).map f ≫ ((fun X => Iso.mk (Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) (Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n))) (_ : i = i))) Y✝).hom = ((fun X => Iso.mk (Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) (Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n))) (_ : i = i))) X✝).hom ≫ (single V (ComplexShape.down ℕ) 0).map f [PROOFSTEP] ext (_ | _) [GOAL] case h.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X✝ Y✝ : V f : X✝ ⟶ Y✝ ⊢ Hom.f ((single₀ V).map f ≫ ((fun X => Iso.mk (Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) (Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n))) (_ : i = i))) Y✝).hom) Nat.zero = Hom.f (((fun X => Iso.mk (Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) (Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n))) (_ : i = i))) X✝).hom ≫ (single V (ComplexShape.down ℕ) 0).map f) Nat.zero [PROOFSTEP] aesop_cat [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X✝ Y✝ : V f : X✝ ⟶ Y✝ n✝ : ℕ ⊢ Hom.f ((single₀ V).map f ≫ ((fun X => Iso.mk (Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) (Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n))) (_ : i = i))) Y✝).hom) (Nat.succ n✝) = Hom.f (((fun X => Iso.mk (Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) (Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n))) (_ : i = i))) X✝).hom ≫ (single V (ComplexShape.down ℕ) 0).map f) (Nat.succ n✝) [PROOFSTEP] aesop_cat [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ { obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map (𝟙 X) = 𝟙 ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.obj X) [PROOFSTEP] ext (_ | _) [GOAL] case h.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ Hom.f ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map (𝟙 X)) Nat.zero = Hom.f (𝟙 ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.obj X)) Nat.zero [PROOFSTEP] rfl [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ Hom.f ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map (𝟙 X)) (Nat.succ n✝) = Hom.f (𝟙 ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.obj X)) (Nat.succ n✝) [PROOFSTEP] simp [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X✝ Y✝ Z✝ : V f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ { obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map (f ≫ g) = { obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map f ≫ { obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map g [PROOFSTEP] ext (_ | _) [GOAL] case h.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X✝ Y✝ Z✝ : V f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ Hom.f ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map (f ≫ g)) Nat.zero = Hom.f ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map f ≫ { obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map g) Nat.zero [PROOFSTEP] rfl [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X✝ Y✝ Z✝ : V f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ n✝ : ℕ ⊢ Hom.f ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map (f ≫ g)) (Nat.succ n✝) = Hom.f ({ obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map f ≫ { obj := fun X => HomologicalComplex.mk (fun n => match n with | 0 => X | Nat.succ n => 0) fun i j => 0, map := fun {X Y} f => Hom.mk fun n => match n with | 0 => f | Nat.succ n => 0 }.map g) (Nat.succ n✝) [PROOFSTEP] simp [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V j : ℕ ⊢ dFrom ((single₀ V).obj X) j = 0 [PROOFSTEP] rw [dFrom_eq ((single₀ V).obj X) rfl] [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V j : ℕ ⊢ d ((single₀ V).obj X) j (j + 1) ≫ (xNextIso ((single₀ V).obj X) (_ : j + 1 = j + 1)).inv = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V i : ℕ ⊢ dTo ((single₀ V).obj X) i = 0 [PROOFSTEP] cases i [GOAL] case zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ dTo ((single₀ V).obj X) Nat.zero = 0 [PROOFSTEP] rw [dTo_eq_zero] [GOAL] case zero.h V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) (ComplexShape.prev (ComplexShape.up ℕ) Nat.zero) Nat.zero [PROOFSTEP] simp [GOAL] case succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ dTo ((single₀ V).obj X) (Nat.succ n✝) = 0 [PROOFSTEP] erw [dTo_eq ((single₀ V).obj X) rfl] [GOAL] case succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ (xPrevIso ((single₀ V).obj X) (_ : n✝ + 1 = n✝ + 1)).hom ≫ d ((single₀ V).obj X) n✝ (n✝ + 1) = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V X : V ⊢ dTo ((single₀ V).obj X) 0 = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V X : V ⊢ dFrom ((single₀ V).obj X) 0 = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V X✝ Y✝ : V f : X✝ ⟶ Y✝ ⊢ (single₀ V ⋙ homologyFunctor V (ComplexShape.up ℕ) 0).map f ≫ ((fun X => homology.congr (_ : dTo ((single₀ V).obj X) 0 ≫ dFrom ((single₀ V).obj X) 0 = 0) (_ : 0 ≫ 0 = 0) (_ : d ((single₀ V).obj X) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0) (_ : 0 = 0) ≪≫ homologyZeroZero) Y✝).hom = ((fun X => homology.congr (_ : dTo ((single₀ V).obj X) 0 ≫ dFrom ((single₀ V).obj X) 0 = 0) (_ : 0 ≫ 0 = 0) (_ : d ((single₀ V).obj X) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0) (_ : 0 = 0) ≪≫ homologyZeroZero) X✝).hom ≫ (𝟭 V).map f [PROOFSTEP] dsimp [GOAL] V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V X✝ Y✝ : V f : X✝ ⟶ Y✝ ⊢ homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) (_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (Hom.sqTo ((single₀ V).map f) 0) (Hom.sqFrom ((single₀ V).map f) 0) (_ : (Hom.sqTo ((single₀ V).map f) 0).right = (Hom.sqTo ((single₀ V).map f) 0).right) ≫ homology.map (_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (_ : 0 ≫ 0 = 0) (CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj Y✝) 0)) (𝟙 Y✝)) (CommaMorphism.mk (𝟙 Y✝) (𝟙 (xNext ((single₀ V).obj Y✝) 0))) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫ homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0)) (_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0) = (homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) (_ : 0 ≫ 0 = 0) (CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj X✝) 0)) (𝟙 X✝)) (CommaMorphism.mk (𝟙 X✝) (𝟙 (xNext ((single₀ V).obj X✝) 0))) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫ homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0)) (_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0)) ≫ f [PROOFSTEP] ext [GOAL] case p V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V X✝ Y✝ : V f : X✝ ⟶ Y✝ ⊢ homology.π (dTo ((single₀ V).obj X✝) 0) (dFrom ((single₀ V).obj X✝) 0) (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) ≫ homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) (_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (Hom.sqTo ((single₀ V).map f) 0) (Hom.sqFrom ((single₀ V).map f) 0) (_ : (Hom.sqTo ((single₀ V).map f) 0).right = (Hom.sqTo ((single₀ V).map f) 0).right) ≫ homology.map (_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (_ : 0 ≫ 0 = 0) (CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj Y✝) 0)) (𝟙 Y✝)) (CommaMorphism.mk (𝟙 Y✝) (𝟙 (xNext ((single₀ V).obj Y✝) 0))) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫ homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0)) (_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0) = homology.π (dTo ((single₀ V).obj X✝) 0) (dFrom ((single₀ V).obj X✝) 0) (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) ≫ (homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) (_ : 0 ≫ 0 = 0) (CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj X✝) 0)) (𝟙 X✝)) (CommaMorphism.mk (𝟙 X✝) (𝟙 (xNext ((single₀ V).obj X✝) 0))) (_ : (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right = (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫ homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0)) (_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0)) ≫ f [PROOFSTEP] simp [GOAL] V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V n : ℕ X : V ⊢ dTo ((single₀ V).obj X) (n + 1) = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : HasZeroMorphisms V inst✝⁴ : HasZeroObject V inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V n : ℕ X : V ⊢ dFrom ((single₀ V).obj X) (n + 1) = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : (single₀ V).obj X ⟶ C ⊢ Hom.f f 0 ≫ d C 0 1 = 0 [PROOFSTEP] rw [f.comm 0 1] [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : (single₀ V).obj X ⟶ C ⊢ d ((single₀ V).obj X) 0 1 ≫ Hom.f f 1 = 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : { f // f ≫ d C 0 1 = 0 } i j : ℕ h : ComplexShape.Rel (ComplexShape.up ℕ) i j ⊢ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) i ≫ d C i j = d ((single₀ V).obj X) i j ≫ (fun i => match i with | 0 => ↑f | Nat.succ n => 0) j [PROOFSTEP] rcases f with ⟨f, hf⟩ [GOAL] case mk V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V i j : ℕ h : ComplexShape.Rel (ComplexShape.up ℕ) i j f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 ⊢ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) i ≫ d C i j = d ((single₀ V).obj X) i j ≫ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) j [PROOFSTEP] rcases j with (_ | _ | j) [GOAL] case mk.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V i : ℕ f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 h : ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero ⊢ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) i ≫ d C i Nat.zero = d ((single₀ V).obj X) i Nat.zero ≫ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) Nat.zero [PROOFSTEP] cases i [GOAL] case mk.succ.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V i : ℕ f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 h : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ Nat.zero) ⊢ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) i ≫ d C i (Nat.succ Nat.zero) = d ((single₀ V).obj X) i (Nat.succ Nat.zero) ≫ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) (Nat.succ Nat.zero) [PROOFSTEP] cases i [GOAL] case mk.succ.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V i : ℕ f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 j : ℕ h : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ (Nat.succ j)) ⊢ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) i ≫ d C i (Nat.succ (Nat.succ j)) = d ((single₀ V).obj X) i (Nat.succ (Nat.succ j)) ≫ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) (Nat.succ (Nat.succ j)) [PROOFSTEP] cases i [GOAL] case mk.zero.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero ⊢ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) Nat.zero ≫ d C Nat.zero Nat.zero = d ((single₀ V).obj X) Nat.zero Nat.zero ≫ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) Nat.zero [PROOFSTEP] simp only [single₀_obj_X_d, zero_comp] [GOAL] case mk.zero.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 n✝ : ℕ h : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero ⊢ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) (Nat.succ n✝) ≫ d C (Nat.succ n✝) Nat.zero = d ((single₀ V).obj X) (Nat.succ n✝) Nat.zero ≫ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) Nat.zero [PROOFSTEP] simp only [single₀_obj_X_d, zero_comp] [GOAL] case mk.succ.zero.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) ⊢ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) Nat.zero ≫ d C Nat.zero (Nat.succ Nat.zero) = d ((single₀ V).obj X) Nat.zero (Nat.succ Nat.zero) ≫ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) (Nat.succ Nat.zero) [PROOFSTEP] simp only [single₀_obj_X_d, zero_comp] [GOAL] case mk.succ.zero.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 n✝ : ℕ h : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero) ⊢ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) (Nat.succ n✝) ≫ d C (Nat.succ n✝) (Nat.succ Nat.zero) = d ((single₀ V).obj X) (Nat.succ n✝) (Nat.succ Nat.zero) ≫ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) (Nat.succ Nat.zero) [PROOFSTEP] simp only [single₀_obj_X_d, zero_comp] [GOAL] case mk.succ.succ.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 j : ℕ h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) ⊢ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) Nat.zero ≫ d C Nat.zero (Nat.succ (Nat.succ j)) = d ((single₀ V).obj X) Nat.zero (Nat.succ (Nat.succ j)) ≫ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) (Nat.succ (Nat.succ j)) [PROOFSTEP] simp only [single₀_obj_X_d, zero_comp] [GOAL] case mk.succ.succ.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 j n✝ : ℕ h : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ⊢ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) (Nat.succ n✝) ≫ d C (Nat.succ n✝) (Nat.succ (Nat.succ j)) = d ((single₀ V).obj X) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫ (fun i => match i with | 0 => ↑{ val := f, property := hf } | Nat.succ n => 0) (Nat.succ (Nat.succ j)) [PROOFSTEP] simp only [single₀_obj_X_d, zero_comp] [GOAL] case mk.zero.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero ⊢ f ≫ d C Nat.zero Nat.zero = 0 [PROOFSTEP] rw [C.shape, comp_zero] [GOAL] case mk.zero.zero.a V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero ⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero [PROOFSTEP] simp [GOAL] case mk.succ.zero.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) ⊢ f ≫ d C Nat.zero (Nat.succ Nat.zero) = 0 [PROOFSTEP] exact hf [GOAL] case mk.succ.succ.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 j : ℕ h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) ⊢ f ≫ d C Nat.zero (Nat.succ (Nat.succ j)) = 0 [PROOFSTEP] rw [C.shape, comp_zero] [GOAL] case mk.succ.succ.zero.a V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 j : ℕ h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) ⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) [PROOFSTEP] simp [GOAL] case mk.succ.succ.zero.a V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 hf : f ≫ d C 0 1 = 0 j : ℕ h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) ⊢ ¬1 = Nat.succ (Nat.succ j) [PROOFSTEP] exact j.succ_succ_ne_one.symm [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : (single₀ V).obj X ⟶ C ⊢ (fun f => Hom.mk fun i => match i with | 0 => ↑f | Nat.succ n => 0) ((fun f => { val := Hom.f f 0, property := (_ : Hom.f f 0 ≫ d C 0 1 = 0) }) f) = f [PROOFSTEP] ext i [GOAL] case h V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : (single₀ V).obj X ⟶ C i : ℕ ⊢ Hom.f ((fun f => Hom.mk fun i => match i with | 0 => ↑f | Nat.succ n => 0) ((fun f => { val := Hom.f f 0, property := (_ : Hom.f f 0 ≫ d C 0 1 = 0) }) f)) i = Hom.f f i [PROOFSTEP] rcases i with ⟨⟩ [GOAL] case h.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : (single₀ V).obj X ⟶ C ⊢ Hom.f ((fun f => Hom.mk fun i => match i with | 0 => ↑f | Nat.succ n => 0) ((fun f => { val := Hom.f f 0, property := (_ : Hom.f f 0 ≫ d C 0 1 = 0) }) f)) Nat.zero = Hom.f f Nat.zero [PROOFSTEP] rfl [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : (single₀ V).obj X ⟶ C n✝ : ℕ ⊢ Hom.f ((fun f => Hom.mk fun i => match i with | 0 => ↑f | Nat.succ n => 0) ((fun f => { val := Hom.f f 0, property := (_ : Hom.f f 0 ≫ d C 0 1 = 0) }) f)) (Nat.succ n✝) = Hom.f f (Nat.succ n✝) [PROOFSTEP] dsimp [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f : (single₀ V).obj X ⟶ C n✝ : ℕ ⊢ 0 = Hom.f f (Nat.succ n✝) [PROOFSTEP] ext [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V ⊢ Function.RightInverse (fun f => Hom.mk fun i => match i with | 0 => ↑f | Nat.succ n => 0) fun f => { val := Hom.f f 0, property := (_ : Hom.f f 0 ≫ d C 0 1 = 0) } [PROOFSTEP] aesop_cat [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f g : (single₀ V).obj X ⟶ C h : Hom.f f 0 = Hom.f g 0 ⊢ ↑(fromSingle₀Equiv C X) f = ↑(fromSingle₀Equiv C X) g [PROOFSTEP] ext [GOAL] case a V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V C : CochainComplex V ℕ X : V f g : (single₀ V).obj X ⟶ C h : Hom.f f 0 = Hom.f g 0 ⊢ ↑(↑(fromSingle₀Equiv C X) f) = ↑(↑(fromSingle₀Equiv C X) g) [PROOFSTEP] exact h [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V i : ℕ ⊢ HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i [PROOFSTEP] cases i [GOAL] case zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ HomologicalComplex.X ((single₀ V).obj X) Nat.zero ⟶ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) Nat.zero [PROOFSTEP] exact 𝟙 _ [GOAL] case succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n✝) ⟶ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) (Nat.succ n✝) [PROOFSTEP] exact 𝟙 _ [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V i : ℕ ⊢ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i [PROOFSTEP] cases i [GOAL] case zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) Nat.zero ⟶ HomologicalComplex.X ((single₀ V).obj X) Nat.zero [PROOFSTEP] exact 𝟙 _ [GOAL] case succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) (Nat.succ n✝) ⟶ HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n✝) [PROOFSTEP] exact 𝟙 _ [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) (Nat.succ n))) (_ : i = i)) 0 = Hom.f (𝟙 ((single₀ V).obj X)) 0 [PROOFSTEP] simp [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) = 𝟙 ((single V (ComplexShape.up ℕ) 0).obj X) [PROOFSTEP] ext (_ | _) [GOAL] case h.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) Nat.zero = Hom.f (𝟙 ((single V (ComplexShape.up ℕ) 0).obj X)) Nat.zero [PROOFSTEP] dsimp [GOAL] case h.zero V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V ⊢ 𝟙 (if 0 = 0 then X else 0) ≫ 𝟙 X = 𝟙 (if 0 = 0 then X else 0) [PROOFSTEP] simp [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) (Nat.succ n✝) = Hom.f (𝟙 ((single V (ComplexShape.up ℕ) 0).obj X)) (Nat.succ n✝) [PROOFSTEP] dsimp [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ 𝟙 (if Nat.succ n✝ = 0 then X else 0) ≫ 𝟙 0 = 𝟙 (if Nat.succ n✝ = 0 then X else 0) [PROOFSTEP] rw [Category.id_comp] [GOAL] case h.succ V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V inst✝ : HasZeroObject V X : V n✝ : ℕ ⊢ 𝟙 0 = 𝟙 (if Nat.succ n✝ = 0 then X else 0) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Homology.Single", "llama_tokens": 43424}
[GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ w : ¬ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) (i + 1) (j + 1) [PROOFSTEP] simpa [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroObject V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ ⊢ d (truncate.obj C) 1 0 ≫ d C 1 0 = 0 [PROOFSTEP] aesop [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 i j : ℕ h : ¬ComplexShape.Rel (ComplexShape.down ℕ) (i + 1) (j + 1) ⊢ (fun x x_1 => match x, x_1 with | 1, 0 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (i + 1) (j + 1) = 0 [PROOFSTEP] simp only [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 i j : ℕ h : ¬ComplexShape.Rel (ComplexShape.down ℕ) (i + 1) (j + 1) ⊢ d C i j = 0 [PROOFSTEP] exact C.shape i j (Nat.succ_ne_succ.1 h) [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 i j : ℕ ⊢ d (augment C f w) (i + 1) (j + 1) = d C i j [PROOFSTEP] cases i [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 j : ℕ ⊢ d (augment C f w) (Nat.zero + 1) (j + 1) = d C Nat.zero j [PROOFSTEP] rfl [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 j n✝ : ℕ ⊢ d (augment C f w) (Nat.succ n✝ + 1) (j + 1) = d C (Nat.succ n✝) j [PROOFSTEP] rfl [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) i j → (fun i => 𝟙 (HomologicalComplex.X C i)) i ≫ d (truncate.obj (augment C f w)) i j = d C i j ≫ (fun i => 𝟙 (HomologicalComplex.X C i)) j [PROOFSTEP] cases j [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 i : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) i Nat.zero → (fun i => 𝟙 (HomologicalComplex.X C i)) i ≫ d (truncate.obj (augment C f w)) i Nat.zero = d C i Nat.zero ≫ (fun i => 𝟙 (HomologicalComplex.X C i)) Nat.zero [PROOFSTEP] dsimp [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 i : ℕ ⊢ 0 + 1 = i → 𝟙 (HomologicalComplex.X C i) ≫ d (augment C f w) (i + 1) (0 + 1) = d C i 0 ≫ 𝟙 (HomologicalComplex.X C 0) [PROOFSTEP] simp [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 i n✝ : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) i (Nat.succ n✝) → (fun i => 𝟙 (HomologicalComplex.X C i)) i ≫ d (truncate.obj (augment C f w)) i (Nat.succ n✝) = d C i (Nat.succ n✝) ≫ (fun i => 𝟙 (HomologicalComplex.X C i)) (Nat.succ n✝) [PROOFSTEP] dsimp [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 i n✝ : ℕ ⊢ Nat.succ n✝ + 1 = i → 𝟙 (HomologicalComplex.X C i) ≫ d (augment C f w) (i + 1) (Nat.succ n✝ + 1) = d C i (Nat.succ n✝) ≫ 𝟙 (HomologicalComplex.X C (Nat.succ n✝)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 ⊢ ((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) = 𝟙 (truncate.obj (augment C f w)) [PROOFSTEP] ext (_ | i) [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 ⊢ Hom.f ((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) Nat.zero = Hom.f (𝟙 (truncate.obj (augment C f w))) Nat.zero [PROOFSTEP] dsimp [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 ⊢ 𝟙 (HomologicalComplex.X C 0) ≫ 𝟙 (HomologicalComplex.X C 0) = 𝟙 (HomologicalComplex.X C 0) [PROOFSTEP] simp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 i : ℕ ⊢ Hom.f ((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) (Nat.succ i) = Hom.f (𝟙 (truncate.obj (augment C f w))) (Nat.succ i) [PROOFSTEP] dsimp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 i : ℕ ⊢ 𝟙 (HomologicalComplex.X C (Nat.succ i)) ≫ 𝟙 (HomologicalComplex.X C (Nat.succ i)) = 𝟙 (HomologicalComplex.X C (i + 1)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 ⊢ ((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) = 𝟙 C [PROOFSTEP] ext (_ | i) [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 ⊢ Hom.f ((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) Nat.zero = Hom.f (𝟙 C) Nat.zero [PROOFSTEP] dsimp [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 ⊢ 𝟙 (HomologicalComplex.X C 0) ≫ 𝟙 (HomologicalComplex.X C 0) = 𝟙 (HomologicalComplex.X C 0) [PROOFSTEP] simp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 i : ℕ ⊢ Hom.f ((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) (Nat.succ i) = Hom.f (𝟙 C) (Nat.succ i) [PROOFSTEP] dsimp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ X : V f : HomologicalComplex.X C 0 ⟶ X w : d C 1 0 ≫ f = 0 i : ℕ ⊢ 𝟙 (HomologicalComplex.X C (Nat.succ i)) ≫ 𝟙 (HomologicalComplex.X C (Nat.succ i)) = 𝟙 (HomologicalComplex.X C (Nat.succ i)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ d C (i + 2) 0 = 0 [PROOFSTEP] rw [C.shape] [GOAL] case a V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) (i + 2) 0 [PROOFSTEP] exact i.succ_succ_ne_one.symm [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i [PROOFSTEP] cases i [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ ⊢ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero ⟶ X C Nat.zero [PROOFSTEP] exact 𝟙 _ [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ n✝ : ℕ ⊢ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n✝) ⟶ X C (Nat.succ n✝) [PROOFSTEP] exact 𝟙 _ [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) i j → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) i ≫ d C i j = d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i j ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) j [PROOFSTEP] match i with | 0 | 1 | n + 2 => cases' j with j <;> dsimp [augment, truncate] <;> simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) 0 j → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) 0 ≫ d C 0 j = d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 0 j ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) j [PROOFSTEP] cases' j with j [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) 0 Nat.zero → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) 0 ≫ d C 0 Nat.zero = d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 0 Nat.zero ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) Nat.zero [PROOFSTEP] dsimp [augment, truncate] [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) 0 (Nat.succ j) → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) 0 ≫ d C 0 (Nat.succ j) = d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 0 (Nat.succ j) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ j) [PROOFSTEP] dsimp [augment, truncate] [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ 0 + 1 = 0 → 𝟙 (X C 0) ≫ d C 0 0 = 0 ≫ 𝟙 (X C 0) [PROOFSTEP] simp [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ Nat.succ j + 1 = 0 → 𝟙 (X C 0) ≫ d C 0 (Nat.succ j) = 0 ≫ 𝟙 (X C (j + 1)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) 1 j → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) 1 ≫ d C 1 j = d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 1 j ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) j [PROOFSTEP] cases' j with j [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) 1 Nat.zero → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) 1 ≫ d C 1 Nat.zero = d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 1 Nat.zero ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) Nat.zero [PROOFSTEP] dsimp [augment, truncate] [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) 1 (Nat.succ j) → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) 1 ≫ d C 1 (Nat.succ j) = d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 1 (Nat.succ j) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ j) [PROOFSTEP] dsimp [augment, truncate] [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ 0 + 1 = 1 → 𝟙 (X C (0 + 1)) ≫ d C 1 0 = d C 1 0 ≫ 𝟙 (X C 0) [PROOFSTEP] simp [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ Nat.succ j + 1 = 1 → 𝟙 (X C (0 + 1)) ≫ d C 1 (Nat.succ j) = d C (0 + 1) (j + 1) ≫ 𝟙 (X C (j + 1)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j n : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) (n + 2) j → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) (n + 2) ≫ d C (n + 2) j = d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (n + 2) j ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) j [PROOFSTEP] cases' j with j [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i n : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) (n + 2) Nat.zero → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) (n + 2) ≫ d C (n + 2) Nat.zero = d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (n + 2) Nat.zero ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) Nat.zero [PROOFSTEP] dsimp [augment, truncate] [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i n j : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) (n + 2) (Nat.succ j) → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) (n + 2) ≫ d C (n + 2) (Nat.succ j) = d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (n + 2) (Nat.succ j) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ j) [PROOFSTEP] dsimp [augment, truncate] [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i n : ℕ ⊢ 0 + 1 = n + 2 → 𝟙 (X C (n + 1 + 1)) ≫ d C (n + 2) 0 = (match n + 2, 0 with | 1, 0 => d C 1 0 | Nat.succ i, Nat.succ j => d C (i + 1) (j + 1) | x, x_1 => 0) ≫ 𝟙 (X C 0) [PROOFSTEP] simp [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i n j : ℕ ⊢ Nat.succ j + 1 = n + 2 → 𝟙 (X C (n + 1 + 1)) ≫ d C (n + 2) (Nat.succ j) = (match n + 2, Nat.succ j with | 1, 0 => d C 1 0 | Nat.succ i, Nat.succ j => d C (i + 1) (j + 1) | x, x_1 => 0) ≫ 𝟙 (X C (j + 1)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i [PROOFSTEP] cases i [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ ⊢ X C Nat.zero ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero [PROOFSTEP] exact 𝟙 _ [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ n✝ : ℕ ⊢ X C (Nat.succ n✝) ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n✝) [PROOFSTEP] exact 𝟙 _ [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) i j → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) i ≫ d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i j = d C i j ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) j [PROOFSTEP] match i with | 0 | 1 | n + 2 => cases' j with j <;> dsimp [augment, truncate] <;> simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) 0 j → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) 0 ≫ d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 0 j = d C 0 j ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) j [PROOFSTEP] cases' j with j [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) 0 Nat.zero → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) 0 ≫ d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 0 Nat.zero = d C 0 Nat.zero ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) Nat.zero [PROOFSTEP] dsimp [augment, truncate] [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) 0 (Nat.succ j) → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) 0 ≫ d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 0 (Nat.succ j) = d C 0 (Nat.succ j) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ j) [PROOFSTEP] dsimp [augment, truncate] [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ 0 + 1 = 0 → 𝟙 (X C 0) ≫ 0 = d C 0 0 ≫ 𝟙 (X C 0) [PROOFSTEP] simp [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ Nat.succ j + 1 = 0 → 𝟙 (X C 0) ≫ 0 = d C 0 (Nat.succ j) ≫ 𝟙 (X C (Nat.succ j)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) 1 j → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) 1 ≫ d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 1 j = d C 1 j ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) j [PROOFSTEP] cases' j with j [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) 1 Nat.zero → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) 1 ≫ d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 1 Nat.zero = d C 1 Nat.zero ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) Nat.zero [PROOFSTEP] dsimp [augment, truncate] [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) 1 (Nat.succ j) → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) 1 ≫ d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 1 (Nat.succ j) = d C 1 (Nat.succ j) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ j) [PROOFSTEP] dsimp [augment, truncate] [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ 0 + 1 = 1 → 𝟙 (X C (Nat.succ 0)) ≫ d C 1 0 = d C 1 0 ≫ 𝟙 (X C 0) [PROOFSTEP] simp [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j : ℕ ⊢ Nat.succ j + 1 = 1 → 𝟙 (X C (Nat.succ 0)) ≫ d C (0 + 1) (j + 1) = d C 1 (Nat.succ j) ≫ 𝟙 (X C (Nat.succ j)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i j n : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) (n + 2) j → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (n + 2) ≫ d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (n + 2) j = d C (n + 2) j ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) j [PROOFSTEP] cases' j with j [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i n : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) (n + 2) Nat.zero → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (n + 2) ≫ d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (n + 2) Nat.zero = d C (n + 2) Nat.zero ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) Nat.zero [PROOFSTEP] dsimp [augment, truncate] [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i n j : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) (n + 2) (Nat.succ j) → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (n + 2) ≫ d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (n + 2) (Nat.succ j) = d C (n + 2) (Nat.succ j) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ j) [PROOFSTEP] dsimp [augment, truncate] [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i n : ℕ ⊢ 0 + 1 = n + 2 → (𝟙 (X C (Nat.succ (n + 1))) ≫ match n + 2, 0 with | 1, 0 => d C 1 0 | Nat.succ i, Nat.succ j => d C (i + 1) (j + 1) | x, x_1 => 0) = d C (n + 2) 0 ≫ 𝟙 (X C 0) [PROOFSTEP] simp [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i n j : ℕ ⊢ Nat.succ j + 1 = n + 2 → (𝟙 (X C (Nat.succ (n + 1))) ≫ match n + 2, Nat.succ j with | 1, 0 => d C 1 0 | Nat.succ i, Nat.succ j => d C (i + 1) (j + 1) | x, x_1 => 0) = d C (n + 2) (Nat.succ j) ≫ 𝟙 (X C (Nat.succ j)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ ⊢ ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) = 𝟙 (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) [PROOFSTEP] ext i [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) i = Hom.f (𝟙 (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0))) i [PROOFSTEP] cases i [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) Nat.zero = Hom.f (𝟙 (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0))) Nat.zero [PROOFSTEP] dsimp [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ ⊢ 𝟙 (X C 0) ≫ 𝟙 (X C 0) = 𝟙 (X C 0) [PROOFSTEP] simp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ n✝ : ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ n✝) = Hom.f (𝟙 (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0))) (Nat.succ n✝) [PROOFSTEP] dsimp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ n✝ : ℕ ⊢ 𝟙 (X C (n✝ + 1)) ≫ 𝟙 (X C (Nat.succ n✝)) = 𝟙 (X C (n✝ + 1)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ ⊢ ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) = 𝟙 C [PROOFSTEP] ext i [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ i : ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) i = Hom.f (𝟙 C) i [PROOFSTEP] cases i [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) Nat.zero = Hom.f (𝟙 C) Nat.zero [PROOFSTEP] dsimp [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ ⊢ 𝟙 (X C 0) ≫ 𝟙 (X C 0) = 𝟙 (X C 0) [PROOFSTEP] simp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ n✝ : ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ n✝) = Hom.f (𝟙 C) (Nat.succ n✝) [PROOFSTEP] dsimp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : ChainComplex V ℕ n✝ : ℕ ⊢ 𝟙 (X C (Nat.succ n✝)) ≫ 𝟙 (X C (n✝ + 1)) = 𝟙 (X C (Nat.succ n✝)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i j : ℕ w : ¬ComplexShape.Rel (ComplexShape.up ℕ) i j ⊢ (fun i j => d C (i + 1) (j + 1)) i j = 0 [PROOFSTEP] apply C.shape [GOAL] case a V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i j : ℕ w : ¬ComplexShape.Rel (ComplexShape.up ℕ) i j ⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) (i + 1) (j + 1) [PROOFSTEP] simpa [GOAL] V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroObject V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ d C 0 1 ≫ d (truncate.obj C) 0 1 = 0 [PROOFSTEP] aesop [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i j : ℕ s : ¬ComplexShape.Rel (ComplexShape.up ℕ) i j ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i j = 0 [PROOFSTEP] simp at s [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i j : ℕ s : ¬i + 1 = j ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i j = 0 [PROOFSTEP] rcases j with (_ | _ | j) [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i : ℕ s : ¬i + 1 = Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i Nat.zero = 0 [PROOFSTEP] cases i [GOAL] case succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i : ℕ s : ¬i + 1 = Nat.succ Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i (Nat.succ Nat.zero) = 0 [PROOFSTEP] cases i [GOAL] case succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i j : ℕ s : ¬i + 1 = Nat.succ (Nat.succ j) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i (Nat.succ (Nat.succ j)) = 0 [PROOFSTEP] cases i [GOAL] case zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 s : ¬Nat.zero + 1 = Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero Nat.zero = 0 [PROOFSTEP] try simp [GOAL] case zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 s : ¬Nat.zero + 1 = Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero Nat.zero = 0 [PROOFSTEP] simp [GOAL] case zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 n✝ : ℕ s : ¬Nat.succ n✝ + 1 = Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) Nat.zero = 0 [PROOFSTEP] try simp [GOAL] case zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 n✝ : ℕ s : ¬Nat.succ n✝ + 1 = Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) Nat.zero = 0 [PROOFSTEP] simp [GOAL] case succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 s : ¬Nat.zero + 1 = Nat.succ Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ Nat.zero) = 0 [PROOFSTEP] try simp [GOAL] case succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 s : ¬Nat.zero + 1 = Nat.succ Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ Nat.zero) = 0 [PROOFSTEP] simp [GOAL] case succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 n✝ : ℕ s : ¬Nat.succ n✝ + 1 = Nat.succ Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ Nat.zero) = 0 [PROOFSTEP] try simp [GOAL] case succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 n✝ : ℕ s : ¬Nat.succ n✝ + 1 = Nat.succ Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ Nat.zero) = 0 [PROOFSTEP] simp [GOAL] case succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j : ℕ s : ¬Nat.zero + 1 = Nat.succ (Nat.succ j) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ (Nat.succ j)) = 0 [PROOFSTEP] try simp [GOAL] case succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j : ℕ s : ¬Nat.zero + 1 = Nat.succ (Nat.succ j) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ (Nat.succ j)) = 0 [PROOFSTEP] simp [GOAL] case succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j n✝ : ℕ s : ¬Nat.succ n✝ + 1 = Nat.succ (Nat.succ j) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ (Nat.succ j)) = 0 [PROOFSTEP] try simp [GOAL] case succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j n✝ : ℕ s : ¬Nat.succ n✝ + 1 = Nat.succ (Nat.succ j) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ (Nat.succ j)) = 0 [PROOFSTEP] simp [GOAL] case succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 s : ¬Nat.zero + 1 = Nat.succ Nat.zero ⊢ f = 0 [PROOFSTEP] simp at s [GOAL] case succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j n✝ : ℕ s : ¬Nat.succ n✝ + 1 = Nat.succ (Nat.succ j) ⊢ d C n✝ (Nat.succ j) = 0 [PROOFSTEP] rw [C.shape] [GOAL] case succ.succ.succ.a V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j n✝ : ℕ s : ¬Nat.succ n✝ + 1 = Nat.succ (Nat.succ j) ⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) n✝ (Nat.succ j) [PROOFSTEP] simp only [ComplexShape.up_Rel] [GOAL] case succ.succ.succ.a V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j n✝ : ℕ s : ¬Nat.succ n✝ + 1 = Nat.succ (Nat.succ j) ⊢ ¬n✝ + 1 = Nat.succ j [PROOFSTEP] contrapose! s [GOAL] case succ.succ.succ.a V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j n✝ : ℕ s : n✝ + 1 = Nat.succ j ⊢ Nat.succ n✝ + 1 = Nat.succ (Nat.succ j) [PROOFSTEP] rw [← s] [GOAL] case succ.succ.succ.a V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j n✝ : ℕ s : n✝ + 1 = Nat.succ j ⊢ Nat.succ n✝ + 1 = Nat.succ (n✝ + 1) [PROOFSTEP] rfl [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i j k : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) i j hjk : ComplexShape.Rel (ComplexShape.up ℕ) j k ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i j ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) j k = 0 [PROOFSTEP] rcases k with (_ | _ | k) [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i j : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) i j hjk : ComplexShape.Rel (ComplexShape.up ℕ) j Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i j ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) j Nat.zero = 0 [PROOFSTEP] rcases j with (_ | _ | j) [GOAL] case succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i j : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) i j hjk : ComplexShape.Rel (ComplexShape.up ℕ) j (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i j ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) j (Nat.succ Nat.zero) = 0 [PROOFSTEP] rcases j with (_ | _ | j) [GOAL] case succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i j : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) i j k : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) j (Nat.succ (Nat.succ k)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i j ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) j (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] rcases j with (_ | _ | j) [GOAL] case zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero Nat.zero = 0 [PROOFSTEP] cases i [GOAL] case zero.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ Nat.zero) hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) Nat.zero = 0 [PROOFSTEP] cases i [GOAL] case zero.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i j : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ (Nat.succ j)) hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) Nat.zero = 0 [PROOFSTEP] cases i [GOAL] case succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ Nat.zero) = 0 [PROOFSTEP] cases i [GOAL] case succ.zero.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ Nat.zero) hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) (Nat.succ Nat.zero) = 0 [PROOFSTEP] cases i [GOAL] case succ.zero.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i j : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ (Nat.succ j)) hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) = 0 [PROOFSTEP] cases i [GOAL] case succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i k : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ k)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] cases i [GOAL] case succ.succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i k : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ Nat.zero) hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] cases i [GOAL] case succ.succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i k j : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ (Nat.succ j)) hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) i (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] cases i [GOAL] case zero.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero Nat.zero = 0 [PROOFSTEP] try simp [GOAL] case zero.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero Nat.zero = 0 [PROOFSTEP] simp [GOAL] case zero.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero Nat.zero = 0 [PROOFSTEP] try simp [GOAL] case zero.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero Nat.zero = 0 [PROOFSTEP] simp [GOAL] case zero.succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) Nat.zero hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) Nat.zero = 0 [PROOFSTEP] try simp [GOAL] case zero.succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) Nat.zero hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) Nat.zero = 0 [PROOFSTEP] simp [GOAL] case zero.succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) Nat.zero n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) Nat.zero = 0 [PROOFSTEP] try simp [GOAL] case zero.succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) Nat.zero n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) Nat.zero = 0 [PROOFSTEP] simp [GOAL] case zero.succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) Nat.zero hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) Nat.zero = 0 [PROOFSTEP] try simp [GOAL] case zero.succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) Nat.zero hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) Nat.zero = 0 [PROOFSTEP] simp [GOAL] case zero.succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) Nat.zero n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) Nat.zero = 0 [PROOFSTEP] try simp [GOAL] case zero.succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) Nat.zero n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) Nat.zero = 0 [PROOFSTEP] simp [GOAL] case succ.zero.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ Nat.zero) = 0 [PROOFSTEP] try simp [GOAL] case succ.zero.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ Nat.zero) = 0 [PROOFSTEP] simp [GOAL] case succ.zero.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ Nat.zero) = 0 [PROOFSTEP] try simp [GOAL] case succ.zero.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ Nat.zero) = 0 [PROOFSTEP] simp [GOAL] case succ.zero.succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ Nat.zero) hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) (Nat.succ Nat.zero) = 0 [PROOFSTEP] try simp [GOAL] case succ.zero.succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ Nat.zero) hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) (Nat.succ Nat.zero) = 0 [PROOFSTEP] simp [GOAL] case succ.zero.succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ Nat.zero) n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) (Nat.succ Nat.zero) = 0 [PROOFSTEP] try simp [GOAL] case succ.zero.succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ Nat.zero) n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) (Nat.succ Nat.zero) = 0 [PROOFSTEP] simp [GOAL] case succ.zero.succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) = 0 [PROOFSTEP] try simp [GOAL] case succ.zero.succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) = 0 [PROOFSTEP] simp [GOAL] case succ.zero.succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) = 0 [PROOFSTEP] try simp [GOAL] case succ.zero.succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 j : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) = 0 [PROOFSTEP] simp [GOAL] case succ.succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 k : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ k)) hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] try simp [GOAL] case succ.succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 k : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ k)) hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] simp [GOAL] case succ.succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 k : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ k)) n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] try simp [GOAL] case succ.succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 k : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ k)) n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) Nat.zero ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] simp [GOAL] case succ.succ.succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 k : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] try simp [GOAL] case succ.succ.succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 k : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] simp [GOAL] case succ.succ.succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 k : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] try simp [GOAL] case succ.succ.succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 k : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ Nat.zero) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] simp [GOAL] case succ.succ.succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 k j : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] try simp [GOAL] case succ.succ.succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 k j : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) Nat.zero (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] simp [GOAL] case succ.succ.succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 k j : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] try simp [GOAL] case succ.succ.succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 k j : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) n✝ : ℕ hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ⊢ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫ (fun x x_1 => match x, x_1 with | 0, 1 => f | Nat.succ i, Nat.succ j => d C i j | x, x_2 => 0) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) = 0 [PROOFSTEP] simp [GOAL] case succ.succ.succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 k : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) ⊢ f ≫ d C 0 (Nat.succ k) = 0 [PROOFSTEP] cases k [GOAL] case succ.succ.succ.zero.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ Nat.zero)) ⊢ f ≫ d C 0 (Nat.succ Nat.zero) = 0 [PROOFSTEP] exact w [GOAL] case succ.succ.succ.zero.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) n✝ : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ (Nat.succ n✝))) ⊢ f ≫ d C 0 (Nat.succ (Nat.succ n✝)) = 0 [PROOFSTEP] rw [C.shape, comp_zero] [GOAL] case succ.succ.succ.zero.zero.succ.a V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) n✝ : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ (Nat.succ n✝))) ⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) 0 (Nat.succ (Nat.succ n✝)) [PROOFSTEP] simp only [Nat.zero_eq, ComplexShape.up_Rel, zero_add] [GOAL] case succ.succ.succ.zero.zero.succ.a V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) n✝ : ℕ hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ (Nat.succ n✝))) ⊢ ¬1 = Nat.succ (Nat.succ n✝) [PROOFSTEP] exact (Nat.one_lt_succ_succ _).ne [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) i j → (fun i => 𝟙 (HomologicalComplex.X C i)) i ≫ d (truncate.obj (augment C f w)) i j = d C i j ≫ (fun i => 𝟙 (HomologicalComplex.X C i)) j [PROOFSTEP] cases j [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero → (fun i => 𝟙 (HomologicalComplex.X C i)) i ≫ d (truncate.obj (augment C f w)) i Nat.zero = d C i Nat.zero ≫ (fun i => 𝟙 (HomologicalComplex.X C i)) Nat.zero [PROOFSTEP] dsimp [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i : ℕ ⊢ i + 1 = 0 → 𝟙 (HomologicalComplex.X C i) ≫ d C i 0 = d C i 0 ≫ 𝟙 (HomologicalComplex.X C 0) [PROOFSTEP] simp [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i n✝ : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ n✝) → (fun i => 𝟙 (HomologicalComplex.X C i)) i ≫ d (truncate.obj (augment C f w)) i (Nat.succ n✝) = d C i (Nat.succ n✝) ≫ (fun i => 𝟙 (HomologicalComplex.X C i)) (Nat.succ n✝) [PROOFSTEP] dsimp [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i n✝ : ℕ ⊢ i + 1 = Nat.succ n✝ → 𝟙 (HomologicalComplex.X C i) ≫ d C i (n✝ + 1) = d C i (Nat.succ n✝) ≫ 𝟙 (HomologicalComplex.X C (Nat.succ n✝)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 ⊢ ((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) = 𝟙 (truncate.obj (augment C f w)) [PROOFSTEP] ext i [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i : ℕ ⊢ Hom.f ((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) i = Hom.f (𝟙 (truncate.obj (augment C f w))) i [PROOFSTEP] cases i [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 ⊢ Hom.f ((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) Nat.zero = Hom.f (𝟙 (truncate.obj (augment C f w))) Nat.zero [PROOFSTEP] dsimp [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 ⊢ 𝟙 (HomologicalComplex.X C 0) ≫ 𝟙 (HomologicalComplex.X C 0) = 𝟙 (HomologicalComplex.X C 0) [PROOFSTEP] simp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 n✝ : ℕ ⊢ Hom.f ((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) (Nat.succ n✝) = Hom.f (𝟙 (truncate.obj (augment C f w))) (Nat.succ n✝) [PROOFSTEP] dsimp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 n✝ : ℕ ⊢ 𝟙 (HomologicalComplex.X C (Nat.succ n✝)) ≫ 𝟙 (HomologicalComplex.X C (Nat.succ n✝)) = 𝟙 (HomologicalComplex.X C (n✝ + 1)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 ⊢ ((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) = 𝟙 C [PROOFSTEP] ext i [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 i : ℕ ⊢ Hom.f ((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) i = Hom.f (𝟙 C) i [PROOFSTEP] cases i [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 ⊢ Hom.f ((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) Nat.zero = Hom.f (𝟙 C) Nat.zero [PROOFSTEP] dsimp [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 ⊢ 𝟙 (HomologicalComplex.X C 0) ≫ 𝟙 (HomologicalComplex.X C 0) = 𝟙 (HomologicalComplex.X C 0) [PROOFSTEP] simp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 n✝ : ℕ ⊢ Hom.f ((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫ Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) (Nat.succ n✝) = Hom.f (𝟙 C) (Nat.succ n✝) [PROOFSTEP] dsimp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ X : V f : X ⟶ HomologicalComplex.X C 0 w : f ≫ d C 0 1 = 0 n✝ : ℕ ⊢ 𝟙 (HomologicalComplex.X C (Nat.succ n✝)) ≫ 𝟙 (HomologicalComplex.X C (Nat.succ n✝)) = 𝟙 (HomologicalComplex.X C (Nat.succ n✝)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ d C 0 (i + 2) = 0 [PROOFSTEP] rw [C.shape] [GOAL] case a V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) 0 (i + 2) [PROOFSTEP] simp only [ComplexShape.up_Rel, zero_add] [GOAL] case a V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ ¬1 = i + 2 [PROOFSTEP] exact (Nat.one_lt_succ_succ _).ne [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i [PROOFSTEP] cases i [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero ⟶ X C Nat.zero [PROOFSTEP] exact 𝟙 _ [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ n✝ : ℕ ⊢ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n✝) ⟶ X C (Nat.succ n✝) [PROOFSTEP] exact 𝟙 _ [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) i j → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) i ≫ d C i j = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i j ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) j [PROOFSTEP] rcases j with (_ | _ | j) [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) i ≫ d C i Nat.zero = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i Nat.zero ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) Nat.zero [PROOFSTEP] cases i [GOAL] case succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ Nat.zero) → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) i ≫ d C i (Nat.succ Nat.zero) = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i (Nat.succ Nat.zero) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ Nat.zero) [PROOFSTEP] cases i [GOAL] case succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ (Nat.succ j)) → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) i ≫ d C i (Nat.succ (Nat.succ j)) = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i (Nat.succ (Nat.succ j)) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ (Nat.succ j)) [PROOFSTEP] cases i [GOAL] case zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) Nat.zero ≫ d C Nat.zero Nat.zero = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero Nat.zero ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) Nat.zero [PROOFSTEP] dsimp -- Porting note: simp can't handle this now but aesop does [GOAL] case zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ 0 + 1 = 0 → 𝟙 (X C 0) ≫ d C 0 0 = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) 0 0 ≫ 𝟙 (X C 0) [PROOFSTEP] aesop [GOAL] case zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ n✝ : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ n✝) ≫ d C (Nat.succ n✝) Nat.zero = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n✝) Nat.zero ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) Nat.zero [PROOFSTEP] dsimp -- Porting note: simp can't handle this now but aesop does [GOAL] case zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ n✝ : ℕ ⊢ Nat.succ n✝ + 1 = 0 → 𝟙 (X C (n✝ + 1)) ≫ d C (Nat.succ n✝) 0 = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n✝) 0 ≫ 𝟙 (X C 0) [PROOFSTEP] aesop [GOAL] case succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) Nat.zero ≫ d C Nat.zero (Nat.succ Nat.zero) = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero (Nat.succ Nat.zero) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ Nat.zero) [PROOFSTEP] dsimp -- Porting note: simp can't handle this now but aesop does [GOAL] case succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ 0 + 1 = Nat.succ 0 → 𝟙 (X C 0) ≫ d C 0 (Nat.succ 0) = d C 0 1 ≫ 𝟙 (X C (0 + 1)) [PROOFSTEP] aesop [GOAL] case succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ n✝ : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero) → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ n✝) ≫ d C (Nat.succ n✝) (Nat.succ Nat.zero) = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n✝) (Nat.succ Nat.zero) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ Nat.zero) [PROOFSTEP] dsimp -- Porting note: simp can't handle this now but aesop does [GOAL] case succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ n✝ : ℕ ⊢ Nat.succ n✝ + 1 = Nat.succ 0 → 𝟙 (X C (n✝ + 1)) ≫ d C (Nat.succ n✝) (Nat.succ 0) = d C (n✝ + 1) (0 + 1) ≫ 𝟙 (X C (0 + 1)) [PROOFSTEP] aesop [GOAL] case succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ j : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) Nat.zero ≫ d C Nat.zero (Nat.succ (Nat.succ j)) = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero (Nat.succ (Nat.succ j)) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ (Nat.succ j)) [PROOFSTEP] dsimp -- Porting note: simp can't handle this now but aesop does [GOAL] case succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ j : ℕ ⊢ 0 + 1 = Nat.succ (Nat.succ j) → 𝟙 (X C 0) ≫ d C 0 (Nat.succ (Nat.succ j)) = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) 0 (Nat.succ (Nat.succ j)) ≫ 𝟙 (X C (Nat.succ j + 1)) [PROOFSTEP] aesop [GOAL] case succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ j n✝ : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j)) → (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ n✝) ≫ d C (Nat.succ n✝) (Nat.succ (Nat.succ j)) = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ (Nat.succ j)) [PROOFSTEP] dsimp -- Porting note: simp can't handle this now but aesop does [GOAL] case succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ j n✝ : ℕ ⊢ Nat.succ n✝ + 1 = Nat.succ (Nat.succ j) → 𝟙 (X C (n✝ + 1)) ≫ d C (Nat.succ n✝) (Nat.succ (Nat.succ j)) = d C (n✝ + 1) (j + 1 + 1) ≫ 𝟙 (X C (Nat.succ j + 1)) [PROOFSTEP] aesop [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i [PROOFSTEP] cases i [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ X C Nat.zero ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero [PROOFSTEP] exact 𝟙 _ [GOAL] case succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ n✝ : ℕ ⊢ X C (Nat.succ n✝) ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n✝) [PROOFSTEP] exact 𝟙 _ [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) i j → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) i ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i j = d C i j ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) j [PROOFSTEP] rcases j with (_ | _ | j) [GOAL] case zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) i ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i Nat.zero = d C i Nat.zero ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) Nat.zero [PROOFSTEP] cases' i with i [GOAL] case succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ Nat.zero) → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) i ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i (Nat.succ Nat.zero) = d C i (Nat.succ Nat.zero) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ Nat.zero) [PROOFSTEP] cases' i with i [GOAL] case succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i j : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ (Nat.succ j)) → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) i ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i (Nat.succ (Nat.succ j)) = d C i (Nat.succ (Nat.succ j)) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ (Nat.succ j)) [PROOFSTEP] cases' i with i [GOAL] case zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) Nat.zero ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero Nat.zero = d C Nat.zero Nat.zero ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) Nat.zero [PROOFSTEP] dsimp -- Porting note: simp can't handle this now but aesop does [GOAL] case zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ 0 + 1 = 0 → 𝟙 (X C 0) ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) 0 0 = d C 0 0 ≫ 𝟙 (X C 0) [PROOFSTEP] aesop [GOAL] case zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ i) Nat.zero → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ i) ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ i) Nat.zero = d C (Nat.succ i) Nat.zero ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) Nat.zero [PROOFSTEP] dsimp -- Porting note: simp can't handle this now but aesop does [GOAL] case zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ Nat.succ i + 1 = 0 → 𝟙 (X C (Nat.succ i)) ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ i) 0 = d C (Nat.succ i) 0 ≫ 𝟙 (X C 0) [PROOFSTEP] aesop [GOAL] case succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) Nat.zero ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero (Nat.succ Nat.zero) = d C Nat.zero (Nat.succ Nat.zero) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ Nat.zero) [PROOFSTEP] dsimp -- Porting note: simp can't handle this now but aesop does [GOAL] case succ.zero.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ 0 + 1 = Nat.succ 0 → 𝟙 (X C 0) ≫ d C 0 1 = d C 0 (Nat.succ 0) ≫ 𝟙 (X C (Nat.succ 0)) [PROOFSTEP] aesop [GOAL] case succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ i) (Nat.succ Nat.zero) → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ i) ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ i) (Nat.succ Nat.zero) = d C (Nat.succ i) (Nat.succ Nat.zero) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ Nat.zero) [PROOFSTEP] dsimp -- Porting note: simp can't handle this now but aesop does [GOAL] case succ.zero.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ Nat.succ i + 1 = Nat.succ 0 → 𝟙 (X C (Nat.succ i)) ≫ d C (i + 1) (0 + 1) = d C (Nat.succ i) (Nat.succ 0) ≫ 𝟙 (X C (Nat.succ 0)) [PROOFSTEP] aesop [GOAL] case succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ j : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) Nat.zero ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero (Nat.succ (Nat.succ j)) = d C Nat.zero (Nat.succ (Nat.succ j)) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ (Nat.succ j)) [PROOFSTEP] dsimp -- Porting note: simp can't handle this now but aesop does [GOAL] case succ.succ.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ j : ℕ ⊢ 0 + 1 = Nat.succ (Nat.succ j) → 𝟙 (X C 0) ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) 0 (Nat.succ (Nat.succ j)) = d C 0 (Nat.succ (Nat.succ j)) ≫ 𝟙 (X C (Nat.succ (Nat.succ j))) [PROOFSTEP] aesop [GOAL] case succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ j i : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ i) (Nat.succ (Nat.succ j)) → (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ i) ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ i) (Nat.succ (Nat.succ j)) = d C (Nat.succ i) (Nat.succ (Nat.succ j)) ≫ (fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ (Nat.succ j)) [PROOFSTEP] dsimp -- Porting note: simp can't handle this now but aesop does [GOAL] case succ.succ.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ j i : ℕ ⊢ Nat.succ i + 1 = Nat.succ (Nat.succ j) → 𝟙 (X C (Nat.succ i)) ≫ d C (i + 1) (j + 1 + 1) = d C (Nat.succ i) (Nat.succ (Nat.succ j)) ≫ 𝟙 (X C (Nat.succ (Nat.succ j))) [PROOFSTEP] aesop [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) = 𝟙 (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) [PROOFSTEP] ext i [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) i = Hom.f (𝟙 (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0))) i [PROOFSTEP] cases i [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) Nat.zero = Hom.f (𝟙 (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0))) Nat.zero [PROOFSTEP] dsimp [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ 𝟙 (X C 0) ≫ 𝟙 (X C 0) = 𝟙 (X C 0) [PROOFSTEP] simp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ n✝ : ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) (Nat.succ n✝) = Hom.f (𝟙 (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0))) (Nat.succ n✝) [PROOFSTEP] dsimp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ n✝ : ℕ ⊢ 𝟙 (X C (n✝ + 1)) ≫ 𝟙 (X C (Nat.succ n✝)) = 𝟙 (X C (n✝ + 1)) [PROOFSTEP] simp [GOAL] V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) = 𝟙 C [PROOFSTEP] ext i [GOAL] case h V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ i : ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) i = Hom.f (𝟙 C) i [PROOFSTEP] cases i [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) Nat.zero = Hom.f (𝟙 C) Nat.zero [PROOFSTEP] dsimp [GOAL] case h.zero V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ ⊢ 𝟙 (X C 0) ≫ 𝟙 (X C 0) = 𝟙 (X C 0) [PROOFSTEP] simp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ n✝ : ℕ ⊢ Hom.f ((Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i)) ≫ Hom.mk fun i => Nat.casesOn (motive := fun t => i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n))) (_ : i = i)) (Nat.succ n✝) = Hom.f (𝟙 C) (Nat.succ n✝) [PROOFSTEP] dsimp [GOAL] case h.succ V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V C : CochainComplex V ℕ n✝ : ℕ ⊢ 𝟙 (X C (Nat.succ n✝)) ≫ 𝟙 (X C (n✝ + 1)) = 𝟙 (X C (Nat.succ n✝)) [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Algebra.Homology.Augment", "llama_tokens": 68110}
[GOAL] I : Type u R : Type u_1 f✝ : I → Type v x y : (i : I) → f✝ i i : I r : CommSemiring R s : (i : I) → Semiring (f✝ i) inst✝ : (i : I) → Algebra R (f✝ i) src✝ : R →+* (i : I) → f✝ i := Pi.ringHom fun i => algebraMap R (f✝ i) a : R f : (fun x => (i : I) → f✝ i) a ⊢ ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } a * f = f * ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } a [PROOFSTEP] ext [GOAL] case h I : Type u R : Type u_1 f✝ : I → Type v x y : (i : I) → f✝ i i : I r : CommSemiring R s : (i : I) → Semiring (f✝ i) inst✝ : (i : I) → Algebra R (f✝ i) src✝ : R →+* (i : I) → f✝ i := Pi.ringHom fun i => algebraMap R (f✝ i) a : R f : (fun x => (i : I) → f✝ i) a x✝ : I ⊢ (↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } a * f) x✝ = (f * ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } a) x✝ [PROOFSTEP] simp [Algebra.commutes] [GOAL] I : Type u R : Type u_1 f✝ : I → Type v x y : (i : I) → f✝ i i : I r : CommSemiring R s : (i : I) → Semiring (f✝ i) inst✝ : (i : I) → Algebra R (f✝ i) src✝ : R →+* (i : I) → f✝ i := Pi.ringHom fun i => algebraMap R (f✝ i) a : R f : (fun x => (i : I) → f✝ i) a ⊢ a • f = ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } a * f [PROOFSTEP] ext [GOAL] case h I : Type u R : Type u_1 f✝ : I → Type v x y : (i : I) → f✝ i i : I r : CommSemiring R s : (i : I) → Semiring (f✝ i) inst✝ : (i : I) → Algebra R (f✝ i) src✝ : R →+* (i : I) → f✝ i := Pi.ringHom fun i => algebraMap R (f✝ i) a : R f : (fun x => (i : I) → f✝ i) a x✝ : I ⊢ (a • f) x✝ = (↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } a * f) x✝ [PROOFSTEP] simp [Algebra.smul_def] [GOAL] R : Type u A : Type v B : Type w I✝ : Type u_1 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Semiring B inst✝¹ : Algebra R A inst✝ : Algebra R B f : A →ₐ[R] B I : Type u_2 src✝ : (I → A) →+* I → B := RingHom.compLeft (↑f) I c : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun h => ↑f ∘ h, map_one' := (_ : OneHom.toFun (↑↑src✝) 1 = 1) }, map_mul' := (_ : ∀ (x y : I → A), OneHom.toFun (↑↑src✝) (x * y) = OneHom.toFun (↑↑src✝) x * OneHom.toFun (↑↑src✝) y) }, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : I → A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap R (I → A)) c) = ↑(algebraMap R (I → B)) c [PROOFSTEP] ext [GOAL] case h R : Type u A : Type v B : Type w I✝ : Type u_1 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Semiring B inst✝¹ : Algebra R A inst✝ : Algebra R B f : A →ₐ[R] B I : Type u_2 src✝ : (I → A) →+* I → B := RingHom.compLeft (↑f) I c : R x✝ : I ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun h => ↑f ∘ h, map_one' := (_ : OneHom.toFun (↑↑src✝) 1 = 1) }, map_mul' := (_ : ∀ (x y : I → A), OneHom.toFun (↑↑src✝) (x * y) = OneHom.toFun (↑↑src✝) x * OneHom.toFun (↑↑src✝) y) }, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : I → A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap R (I → A)) c) x✝ = ↑(algebraMap R (I → B)) c x✝ [PROOFSTEP] exact f.commutes' c [GOAL] R : Type u_1 ι : Type u_2 A₁ : ι → Type u_3 A₂ : ι → Type u_4 inst✝⁴ : CommSemiring R inst✝³ : (i : ι) → Semiring (A₁ i) inst✝² : (i : ι) → Semiring (A₂ i) inst✝¹ : (i : ι) → Algebra R (A₁ i) inst✝ : (i : ι) → Algebra R (A₂ i) e : (i : ι) → A₁ i ≃ₐ[R] A₂ i src✝ : ((i : ι) → A₁ i) ≃+* ((i : ι) → A₂ i) := RingEquiv.piCongrRight fun i => toRingEquiv (e i) r : R ⊢ Equiv.toFun { toFun := fun x j => ↑(e j) (x j), invFun := fun x j => ↑(symm (e j)) (x j), left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (↑(algebraMap R ((i : ι) → A₁ i)) r) = ↑(algebraMap R ((i : ι) → A₂ i)) r [PROOFSTEP] ext i [GOAL] case h R : Type u_1 ι : Type u_2 A₁ : ι → Type u_3 A₂ : ι → Type u_4 inst✝⁴ : CommSemiring R inst✝³ : (i : ι) → Semiring (A₁ i) inst✝² : (i : ι) → Semiring (A₂ i) inst✝¹ : (i : ι) → Algebra R (A₁ i) inst✝ : (i : ι) → Algebra R (A₂ i) e : (i : ι) → A₁ i ≃ₐ[R] A₂ i src✝ : ((i : ι) → A₁ i) ≃+* ((i : ι) → A₂ i) := RingEquiv.piCongrRight fun i => toRingEquiv (e i) r : R i : ι ⊢ Equiv.toFun { toFun := fun x j => ↑(e j) (x j), invFun := fun x j => ↑(symm (e j)) (x j), left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (↑(algebraMap R ((i : ι) → A₁ i)) r) i = ↑(algebraMap R ((i : ι) → A₂ i)) r i [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Algebra.Algebra.Pi", "llama_tokens": 3071}
[GOAL] R✝ : Type u_1 S : Type u_2 A✝ : Type u_3 B : Type u_4 inst✝¹² : CommSemiring R✝ inst✝¹¹ : CommSemiring S inst✝¹⁰ : Semiring A✝ inst✝⁹ : Semiring B inst✝⁸ : Algebra R✝ S inst✝⁷ : Algebra R✝ A✝ inst✝⁶ : Algebra R✝ B inst✝⁵ : Algebra S A✝ inst✝⁴ : SMulCommClass R✝ S A✝ inst✝³ : IsScalarTower R✝ S A✝ R : Type ?u.2035 A : Type ?u.2038 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A r : R x : A ⊢ ↑(RingHom.toOpposite (algebraMap R A) (_ : ∀ (x y : R), ↑(algebraMap R ((fun x => A) x)) x * ↑(algebraMap R A) y = ↑(algebraMap R A) y * ↑(algebraMap R ((fun x => A) x)) x)) r * op x = op x * ↑(RingHom.toOpposite (algebraMap R A) (_ : ∀ (x y : R), ↑(algebraMap R ((fun x => A) x)) x * ↑(algebraMap R A) y = ↑(algebraMap R A) y * ↑(algebraMap R ((fun x => A) x)) x)) r [PROOFSTEP] simp only [RingHom.toOpposite_apply, Function.comp_apply, ← op_mul, Algebra.commutes] [GOAL] R✝ : Type u_1 S : Type u_2 A✝ : Type u_3 B : Type u_4 inst✝¹² : CommSemiring R✝ inst✝¹¹ : CommSemiring S inst✝¹⁰ : Semiring A✝ inst✝⁹ : Semiring B inst✝⁸ : Algebra R✝ S inst✝⁷ : Algebra R✝ A✝ inst✝⁶ : Algebra R✝ B inst✝⁵ : Algebra S A✝ inst✝⁴ : SMulCommClass R✝ S A✝ inst✝³ : IsScalarTower R✝ S A✝ R : Type ?u.2035 A : Type ?u.2038 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A c : R x : (fun x => Aᵐᵒᵖ) c ⊢ unop (c • x) = unop (↑(RingHom.toOpposite (algebraMap R A) (_ : ∀ (x y : R), ↑(algebraMap R ((fun x => A) x)) x * ↑(algebraMap R A) y = ↑(algebraMap R A) y * ↑(algebraMap R ((fun x => A) x)) x)) c * x) [PROOFSTEP] simp only [unop_smul, RingHom.toOpposite_apply, Function.comp_apply, unop_mul, op_mul, Algebra.smul_def, Algebra.commutes, op_unop, unop_op]
{"mathlib_filename": "Mathlib.Algebra.Algebra.Opposite", "llama_tokens": 930}
[GOAL] R : Type u inst✝¹ : CommRing R D : Type v inst✝ : SmallCategory D I : D ⥤ Ideal R X✝ Y✝ Z✝ : D f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ { obj := fun t => ModuleCat.of R (R ⧸ I.obj t), map := fun {X Y} w => Submodule.mapQ (I.obj X) (I.obj Y) LinearMap.id (_ : I.obj X ≤ I.obj Y) }.map (f ≫ g) = { obj := fun t => ModuleCat.of R (R ⧸ I.obj t), map := fun {X Y} w => Submodule.mapQ (I.obj X) (I.obj Y) LinearMap.id (_ : I.obj X ≤ I.obj Y) }.map f ≫ { obj := fun t => ModuleCat.of R (R ⧸ I.obj t), map := fun {X Y} w => Submodule.mapQ (I.obj X) (I.obj Y) LinearMap.id (_ : I.obj X ≤ I.obj Y) }.map g [PROOFSTEP] apply Submodule.linearMap_qext [GOAL] case h R : Type u inst✝¹ : CommRing R D : Type v inst✝ : SmallCategory D I : D ⥤ Ideal R X✝ Y✝ Z✝ : D f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ LinearMap.comp ({ obj := fun t => ModuleCat.of R (R ⧸ I.obj t), map := fun {X Y} w => Submodule.mapQ (I.obj X) (I.obj Y) LinearMap.id (_ : I.obj X ≤ I.obj Y) }.map (f ≫ g)) (Submodule.mkQ (I.obj X✝)) = LinearMap.comp ({ obj := fun t => ModuleCat.of R (R ⧸ I.obj t), map := fun {X Y} w => Submodule.mapQ (I.obj X) (I.obj Y) LinearMap.id (_ : I.obj X ≤ I.obj Y) }.map f ≫ { obj := fun t => ModuleCat.of R (R ⧸ I.obj t), map := fun {X Y} w => Submodule.mapQ (I.obj X) (I.obj Y) LinearMap.id (_ : I.obj X ≤ I.obj Y) }.map g) (Submodule.mkQ (I.obj X✝)) [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : CommRing R J : Ideal R k : ℕᵒᵖ ⊢ J ≤ Ideal.radical ((idealPowersDiagram J).obj k) [PROOFSTEP] change _ ≤ (J ^ unop k).radical [GOAL] R : Type u inst✝ : CommRing R J : Ideal R k : ℕᵒᵖ ⊢ J ≤ Ideal.radical (J ^ k.unop) [PROOFSTEP] cases' unop k with n [GOAL] case zero R : Type u inst✝ : CommRing R J : Ideal R k : ℕᵒᵖ ⊢ J ≤ Ideal.radical (J ^ Nat.zero) [PROOFSTEP] simp [Ideal.radical_top, pow_zero, Ideal.one_eq_top, le_top, Nat.zero_eq] [GOAL] case succ R : Type u inst✝ : CommRing R J : Ideal R k : ℕᵒᵖ n : ℕ ⊢ J ≤ Ideal.radical (J ^ Nat.succ n) [PROOFSTEP] simp only [J.radical_pow _ n.succ_pos, Ideal.le_radical] [GOAL] R : Type u inst✝ : CommRing R I J K : Ideal R hIJ : I ≤ Ideal.radical J hJ : Ideal.FG (Ideal.radical J) ⊢ ∃ k, I ^ k ≤ J [PROOFSTEP] obtain ⟨k, hk⟩ := J.exists_radical_pow_le_of_fg hJ [GOAL] case intro R : Type u inst✝ : CommRing R I J K : Ideal R hIJ : I ≤ Ideal.radical J hJ : Ideal.FG (Ideal.radical J) k : ℕ hk : Ideal.radical J ^ k ≤ J ⊢ ∃ k, I ^ k ≤ J [PROOFSTEP] use k [GOAL] case h R : Type u inst✝ : CommRing R I J K : Ideal R hIJ : I ≤ Ideal.radical J hJ : Ideal.FG (Ideal.radical J) k : ℕ hk : Ideal.radical J ^ k ≤ J ⊢ I ^ k ≤ J [PROOFSTEP] calc I ^ k ≤ J.radical ^ k := Ideal.pow_mono hIJ _ _ ≤ J := hk [GOAL] R : Type u inst✝ : CommRing R I J K : Ideal R hR : IsNoetherian R R J' : SelfLERadical J ⊢ IsConnected (CostructuredArrow (idealPowersToSelfLERadical J) J') [PROOFSTEP] apply (config := { allowSynthFailures := true }) zigzag_isConnected [GOAL] case inst R : Type u inst✝ : CommRing R I J K : Ideal R hR : IsNoetherian R R J' : SelfLERadical J ⊢ Nonempty (CostructuredArrow (idealPowersToSelfLERadical J) J') [PROOFSTEP] obtain ⟨k, hk⟩ := Ideal.exists_pow_le_of_le_radical_of_fG J'.2 (isNoetherian_def.mp hR _) [GOAL] case inst.intro R : Type u inst✝ : CommRing R I J K : Ideal R hR : IsNoetherian R R J' : SelfLERadical J k : ℕ hk : J ^ k ≤ J'.obj ⊢ Nonempty (CostructuredArrow (idealPowersToSelfLERadical J) J') [PROOFSTEP] exact ⟨CostructuredArrow.mk (⟨⟨hk⟩⟩ : (idealPowersToSelfLERadical J).obj (op k) ⟶ J')⟩ [GOAL] case h R : Type u inst✝ : CommRing R I J K : Ideal R hR : IsNoetherian R R J' : SelfLERadical J ⊢ ∀ (j₁ j₂ : CostructuredArrow (idealPowersToSelfLERadical J) J'), Zigzag j₁ j₂ [PROOFSTEP] intro j1 j2 [GOAL] case h R : Type u inst✝ : CommRing R I J K : Ideal R hR : IsNoetherian R R J' : SelfLERadical J j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J' ⊢ Zigzag j1 j2 [PROOFSTEP] apply Relation.ReflTransGen.single [GOAL] case h.hab R : Type u inst✝ : CommRing R I J K : Ideal R hR : IsNoetherian R R J' : SelfLERadical J j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J' ⊢ Zag j1 j2 [PROOFSTEP] cases' le_total (unop j1.left) (unop j2.left) with h h [GOAL] case h.hab.inl R : Type u inst✝ : CommRing R I J K : Ideal R hR : IsNoetherian R R J' : SelfLERadical J j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J' h : j1.left.unop ≤ j2.left.unop ⊢ Zag j1 j2 case h.hab.inr R : Type u inst✝ : CommRing R I J K : Ideal R hR : IsNoetherian R R J' : SelfLERadical J j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J' h : j2.left.unop ≤ j1.left.unop ⊢ Zag j1 j2 [PROOFSTEP] right [GOAL] case h.hab.inl.h R : Type u inst✝ : CommRing R I J K : Ideal R hR : IsNoetherian R R J' : SelfLERadical J j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J' h : j1.left.unop ≤ j2.left.unop ⊢ Nonempty (j2 ⟶ j1) case h.hab.inr R : Type u inst✝ : CommRing R I J K : Ideal R hR : IsNoetherian R R J' : SelfLERadical J j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J' h : j2.left.unop ≤ j1.left.unop ⊢ Zag j1 j2 [PROOFSTEP] exact ⟨CostructuredArrow.homMk (homOfLE h).op (AsTrue.get trivial)⟩ [GOAL] case h.hab.inr R : Type u inst✝ : CommRing R I J K : Ideal R hR : IsNoetherian R R J' : SelfLERadical J j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J' h : j2.left.unop ≤ j1.left.unop ⊢ Zag j1 j2 [PROOFSTEP] left [GOAL] case h.hab.inr.h R : Type u inst✝ : CommRing R I J K : Ideal R hR : IsNoetherian R R J' : SelfLERadical J j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J' h : j2.left.unop ≤ j1.left.unop ⊢ Nonempty (j1 ⟶ j2) [PROOFSTEP] exact ⟨CostructuredArrow.homMk (homOfLE h).op (AsTrue.get trivial)⟩ [GOAL] R : Type u inst✝ : CommRing R I J K : Ideal R hJK : Ideal.radical J = Ideal.radical K L : Ideal R hL : J ≤ Ideal.radical L ⊢ K ≤ Ideal.radical L [PROOFSTEP] rw [← Ideal.radical_le_radical_iff] at hL ⊢ [GOAL] R : Type u inst✝ : CommRing R I J K : Ideal R hJK : Ideal.radical J = Ideal.radical K L : Ideal R hL : Ideal.radical J ≤ Ideal.radical L ⊢ Ideal.radical K ≤ Ideal.radical L [PROOFSTEP] exact hJK.symm.trans_le hL
{"mathlib_filename": "Mathlib.Algebra.Homology.LocalCohomology", "llama_tokens": 3075}
[GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.24757, u_1} J inst✝¹ : Category.{?u.24761, u_2} C inst✝ : HasZeroMorphisms C F : J ⥤ ShortComplex C ⊢ whiskerLeft F π₁Toπ₂ ≫ whiskerLeft F π₂Toπ₃ = 0 [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.24757, u_1} J inst✝¹ : Category.{?u.24761, u_2} C inst✝ : HasZeroMorphisms C X✝ Y✝ : J ⥤ ShortComplex C φ : X✝ ⟶ Y✝ ⊢ whiskerRight φ π₁ ≫ ((fun F => mk (whiskerLeft F π₁Toπ₂) (whiskerLeft F π₂Toπ₃) (_ : whiskerLeft F π₁Toπ₂ ≫ whiskerLeft F π₂Toπ₃ = 0)) Y✝).f = ((fun F => mk (whiskerLeft F π₁Toπ₂) (whiskerLeft F π₂Toπ₃) (_ : whiskerLeft F π₁Toπ₂ ≫ whiskerLeft F π₂Toπ₃ = 0)) X✝).f ≫ whiskerRight φ π₂ [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.24757, u_1} J inst✝¹ : Category.{?u.24761, u_2} C inst✝ : HasZeroMorphisms C X✝ Y✝ : J ⥤ ShortComplex C φ : X✝ ⟶ Y✝ ⊢ whiskerRight φ π₂ ≫ ((fun F => mk (whiskerLeft F π₁Toπ₂) (whiskerLeft F π₂Toπ₃) (_ : whiskerLeft F π₁Toπ₂ ≫ whiskerLeft F π₂Toπ₃ = 0)) Y✝).g = ((fun F => mk (whiskerLeft F π₁Toπ₂) (whiskerLeft F π₂Toπ₃) (_ : whiskerLeft F π₁Toπ₂ ≫ whiskerLeft F π₂Toπ₃ = 0)) X✝).g ≫ whiskerRight φ π₃ [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.53514, u_1} J inst✝¹ : Category.{?u.53518, u_2} C inst✝ : HasZeroMorphisms C x✝ : ShortComplex (J ⥤ C) ⊢ ∀ {X Y : J} (f : X ⟶ Y), ((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₁.map f ≫ ((fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₁.obj x)) Y).hom = ((fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₁.obj x)) X).hom ≫ ((functor J C ⋙ inverse J C).obj x✝).X₁.map f [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.53514, u_1} J inst✝¹ : Category.{?u.53518, u_2} C inst✝ : HasZeroMorphisms C x✝ : ShortComplex (J ⥤ C) ⊢ ∀ {X Y : J} (f : X ⟶ Y), ((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₂.map f ≫ ((fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₂.obj x)) Y).hom = ((fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₂.obj x)) X).hom ≫ ((functor J C ⋙ inverse J C).obj x✝).X₂.map f [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.53514, u_1} J inst✝¹ : Category.{?u.53518, u_2} C inst✝ : HasZeroMorphisms C x✝ : ShortComplex (J ⥤ C) ⊢ ∀ {X Y : J} (f : X ⟶ Y), ((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₃.map f ≫ ((fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₃.obj x)) Y).hom = ((fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₃.obj x)) X).hom ≫ ((functor J C ⋙ inverse J C).obj x✝).X₃.map f [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.53514, u_1} J inst✝¹ : Category.{?u.53518, u_2} C inst✝ : HasZeroMorphisms C x✝ : ShortComplex (J ⥤ C) ⊢ (NatIso.ofComponents fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₁.obj x)).hom ≫ ((functor J C ⋙ inverse J C).obj x✝).f = ((𝟭 (ShortComplex (J ⥤ C))).obj x✝).f ≫ (NatIso.ofComponents fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₂.obj x)).hom [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.53514, u_1} J inst✝¹ : Category.{?u.53518, u_2} C inst✝ : HasZeroMorphisms C x✝ : ShortComplex (J ⥤ C) ⊢ (NatIso.ofComponents fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₂.obj x)).hom ≫ ((functor J C ⋙ inverse J C).obj x✝).g = ((𝟭 (ShortComplex (J ⥤ C))).obj x✝).g ≫ (NatIso.ofComponents fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₃.obj x)).hom [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.53514, u_1} J inst✝¹ : Category.{?u.53518, u_2} C inst✝ : HasZeroMorphisms C ⊢ ∀ {X Y : ShortComplex (J ⥤ C)} (f : X ⟶ Y), (𝟭 (ShortComplex (J ⥤ C))).map f ≫ ((fun x => isoMk (NatIso.ofComponents fun x_1 => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x).X₁.obj x_1)) (NatIso.ofComponents fun x_1 => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x).X₂.obj x_1)) (NatIso.ofComponents fun x_1 => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x).X₃.obj x_1))) Y).hom = ((fun x => isoMk (NatIso.ofComponents fun x_1 => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x).X₁.obj x_1)) (NatIso.ofComponents fun x_1 => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x).X₂.obj x_1)) (NatIso.ofComponents fun x_1 => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x).X₃.obj x_1))) X).hom ≫ (functor J C ⋙ inverse J C).map f [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.111338, u_1} J inst✝¹ : Category.{?u.111342, u_2} C inst✝ : HasZeroMorphisms C x✝¹ : J ⥤ ShortComplex C x✝ : J ⊢ (Iso.refl (((inverse J C ⋙ functor J C).obj x✝¹).obj x✝).X₁).hom ≫ (((𝟭 (J ⥤ ShortComplex C)).obj x✝¹).obj x✝).f = (((inverse J C ⋙ functor J C).obj x✝¹).obj x✝).f ≫ (Iso.refl (((inverse J C ⋙ functor J C).obj x✝¹).obj x✝).X₂).hom [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.111338, u_1} J inst✝¹ : Category.{?u.111342, u_2} C inst✝ : HasZeroMorphisms C x✝¹ : J ⥤ ShortComplex C x✝ : J ⊢ (Iso.refl (((inverse J C ⋙ functor J C).obj x✝¹).obj x✝).X₂).hom ≫ (((𝟭 (J ⥤ ShortComplex C)).obj x✝¹).obj x✝).g = (((inverse J C ⋙ functor J C).obj x✝¹).obj x✝).g ≫ (Iso.refl (((inverse J C ⋙ functor J C).obj x✝¹).obj x✝).X₃).hom [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.111338, u_1} J inst✝¹ : Category.{?u.111342, u_2} C inst✝ : HasZeroMorphisms C x✝ : J ⥤ ShortComplex C ⊢ ∀ {X Y : J} (f : X ⟶ Y), ((inverse J C ⋙ functor J C).obj x✝).map f ≫ ((fun x => isoMk (Iso.refl (((inverse J C ⋙ functor J C).obj x✝).obj x).X₁) (Iso.refl (((inverse J C ⋙ functor J C).obj x✝).obj x).X₂) (Iso.refl (((inverse J C ⋙ functor J C).obj x✝).obj x).X₃)) Y).hom = ((fun x => isoMk (Iso.refl (((inverse J C ⋙ functor J C).obj x✝).obj x).X₁) (Iso.refl (((inverse J C ⋙ functor J C).obj x✝).obj x).X₂) (Iso.refl (((inverse J C ⋙ functor J C).obj x✝).obj x).X₃)) X).hom ≫ ((𝟭 (J ⥤ ShortComplex C)).obj x✝).map f [PROOFSTEP] aesop_cat [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.111338, u_1} J inst✝¹ : Category.{?u.111342, u_2} C inst✝ : HasZeroMorphisms C ⊢ ∀ {X Y : J ⥤ ShortComplex C} (f : X ⟶ Y), (inverse J C ⋙ functor J C).map f ≫ ((fun x => NatIso.ofComponents fun x_1 => isoMk (Iso.refl (((inverse J C ⋙ functor J C).obj x).obj x_1).X₁) (Iso.refl (((inverse J C ⋙ functor J C).obj x).obj x_1).X₂) (Iso.refl (((inverse J C ⋙ functor J C).obj x).obj x_1).X₃)) Y).hom = ((fun x => NatIso.ofComponents fun x_1 => isoMk (Iso.refl (((inverse J C ⋙ functor J C).obj x).obj x_1).X₁) (Iso.refl (((inverse J C ⋙ functor J C).obj x).obj x_1).X₂) (Iso.refl (((inverse J C ⋙ functor J C).obj x).obj x_1).X₃)) X).hom ≫ (𝟭 (J ⥤ ShortComplex C)).map f [PROOFSTEP] aesop_cat
{"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.FunctorEquivalence", "llama_tokens": 3857}
[GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι f : (i j : ι) → X C i ⟶ X D j i i' : ι w : ComplexShape.Rel c i i' ⊢ ↑(dNext i) f = d C i i' ≫ f i' i [PROOFSTEP] obtain rfl := c.next_eq' w [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι f : (i j : ι) → X C i ⟶ X D j i : ι w : ComplexShape.Rel c i (ComplexShape.next c i) ⊢ ↑(dNext i) f = d C i (ComplexShape.next c i) ≫ f (ComplexShape.next c i) i [PROOFSTEP] rfl [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι f : (i j : ι) → X C i ⟶ X D j j j' : ι w : ComplexShape.Rel c j' j ⊢ ↑(prevD j) f = f j j' ≫ d D j' j [PROOFSTEP] obtain rfl := c.prev_eq' w [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι f : (i j : ι) → X C i ⟶ X D j j : ι w : ComplexShape.Rel c (ComplexShape.prev c j) j ⊢ ↑(prevD j) f = f j (ComplexShape.prev c j) ≫ d D (ComplexShape.prev c j) j [PROOFSTEP] rfl [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι f : (i j : ι) → X C i ⟶ X D j g : D ⟶ E j : ι ⊢ (↑(prevD j) fun i j => f i j ≫ Hom.f g j) = ↑(prevD j) f ≫ Hom.f g j [PROOFSTEP] dsimp [prevD] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι f : (i j : ι) → X C i ⟶ X D j g : D ⟶ E j : ι ⊢ (f j (ComplexShape.prev c j) ≫ Hom.f g (ComplexShape.prev c j)) ≫ d E (ComplexShape.prev c j) j = (f j (ComplexShape.prev c j) ≫ d D (ComplexShape.prev c j) j) ≫ Hom.f g j [PROOFSTEP] simp only [Category.assoc, g.comm] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i✝ : ι C D : ChainComplex V ℕ i : ℕ f : (i j : ℕ) → X C i ⟶ X D j ⊢ ↑(dNext i) f = d C i (i - 1) ≫ f (i - 1) i [PROOFSTEP] dsimp [dNext] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i✝ : ι C D : ChainComplex V ℕ i : ℕ f : (i j : ℕ) → X C i ⟶ X D j ⊢ d C i (ComplexShape.next (ComplexShape.down ℕ) i) ≫ f (ComplexShape.next (ComplexShape.down ℕ) i) i = d C i (i - 1) ≫ f (i - 1) i [PROOFSTEP] cases i [GOAL] case zero ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i : ι C D : ChainComplex V ℕ f : (i j : ℕ) → X C i ⟶ X D j ⊢ d C Nat.zero (ComplexShape.next (ComplexShape.down ℕ) Nat.zero) ≫ f (ComplexShape.next (ComplexShape.down ℕ) Nat.zero) Nat.zero = d C Nat.zero (Nat.zero - 1) ≫ f (Nat.zero - 1) Nat.zero [PROOFSTEP] simp only [shape, ChainComplex.next_nat_zero, ComplexShape.down_Rel, Nat.one_ne_zero, not_false_iff, zero_comp] [GOAL] case succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i : ι C D : ChainComplex V ℕ f : (i j : ℕ) → X C i ⟶ X D j n✝ : ℕ ⊢ d C (Nat.succ n✝) (ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝)) ≫ f (ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝)) (Nat.succ n✝) = d C (Nat.succ n✝) (Nat.succ n✝ - 1) ≫ f (Nat.succ n✝ - 1) (Nat.succ n✝) [PROOFSTEP] congr [GOAL] case succ.h.e_4.h.e_a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i : ι C D : ChainComplex V ℕ f : (i j : ℕ) → X C i ⟶ X D j n✝ : ℕ ⊢ ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝) = Nat.succ n✝ - 1 [PROOFSTEP] simp [GOAL] case succ.h.e_6.e_8.h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i : ι C D : ChainComplex V ℕ f : (i j : ℕ) → X C i ⟶ X D j n✝ : ℕ ⊢ ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝) = Nat.succ n✝ - 1 [PROOFSTEP] simp [GOAL] case succ.h.e_7.e_1 ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i : ι C D : ChainComplex V ℕ f : (i j : ℕ) → X C i ⟶ X D j n✝ : ℕ ⊢ ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝) = Nat.succ n✝ - 1 [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i✝ : ι C D : CochainComplex V ℕ i : ℕ f : (i j : ℕ) → X C i ⟶ X D j ⊢ ↑(prevD i) f = f i (i - 1) ≫ d D (i - 1) i [PROOFSTEP] dsimp [prevD] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i✝ : ι C D : CochainComplex V ℕ i : ℕ f : (i j : ℕ) → X C i ⟶ X D j ⊢ f i (ComplexShape.prev (ComplexShape.up ℕ) i) ≫ d D (ComplexShape.prev (ComplexShape.up ℕ) i) i = f i (i - 1) ≫ d D (i - 1) i [PROOFSTEP] cases i [GOAL] case zero ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i : ι C D : CochainComplex V ℕ f : (i j : ℕ) → X C i ⟶ X D j ⊢ f Nat.zero (ComplexShape.prev (ComplexShape.up ℕ) Nat.zero) ≫ d D (ComplexShape.prev (ComplexShape.up ℕ) Nat.zero) Nat.zero = f Nat.zero (Nat.zero - 1) ≫ d D (Nat.zero - 1) Nat.zero [PROOFSTEP] simp only [shape, CochainComplex.prev_nat_zero, ComplexShape.up_Rel, Nat.one_ne_zero, not_false_iff, comp_zero] [GOAL] case succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i : ι C D : CochainComplex V ℕ f : (i j : ℕ) → X C i ⟶ X D j n✝ : ℕ ⊢ f (Nat.succ n✝) (ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝)) ≫ d D (ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝)) (Nat.succ n✝) = f (Nat.succ n✝) (Nat.succ n✝ - 1) ≫ d D (Nat.succ n✝ - 1) (Nat.succ n✝) [PROOFSTEP] congr [GOAL] case succ.h.e_4.h.e_a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i : ι C D : CochainComplex V ℕ f : (i j : ℕ) → X C i ⟶ X D j n✝ : ℕ ⊢ ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝) = Nat.succ n✝ - 1 [PROOFSTEP] simp [GOAL] case succ.h.e_6.e_2 ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i : ι C D : CochainComplex V ℕ f : (i j : ℕ) → X C i ⟶ X D j n✝ : ℕ ⊢ ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝) = Nat.succ n✝ - 1 [PROOFSTEP] simp [GOAL] case succ.h.e_7.e_7.h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E : HomologicalComplex V c f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i : ι C D : CochainComplex V ℕ f : (i j : ℕ) → X C i ⟶ X D j n✝ : ℕ ⊢ ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝) = Nat.succ n✝ - 1 [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι h : Homotopy f g i : ι ⊢ Hom.f (f - g) i = ((↑(dNext i) fun i j => hom h i j) + ↑(prevD i) fun i j => hom h i j) + Hom.f 0 i [PROOFSTEP] simp [h.comm] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι h : Homotopy (f - g) 0 i : ι ⊢ Hom.f f i = ((↑(dNext i) fun i j => hom h i j) + ↑(prevD i) fun i j => hom h i j) + Hom.f g i [PROOFSTEP] simpa [sub_eq_iff_eq_add] using h.comm i [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι ⊢ Function.LeftInverse (fun h => mk fun i j => hom h i j) fun h => mk fun i j => hom h i j [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι ⊢ Function.RightInverse (fun h => mk fun i j => hom h i j) fun h => mk fun i j => hom h i j [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k : D ⟶ E i✝ : ι f g : C ⟶ D h : Homotopy f g i j : ι w : ¬ComplexShape.Rel c j i ⊢ (-h.hom) i j = 0 [PROOFSTEP] rw [Pi.neg_apply, Pi.neg_apply, h.zero i j w, neg_zero] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k : D ⟶ E i✝ : ι f g : C ⟶ D h : Homotopy f g i : ι ⊢ Hom.f g i = ↑(dNext i) (-h.hom) + ↑(prevD i) (-h.hom) + Hom.f f i [PROOFSTEP] rw [AddMonoidHom.map_neg, AddMonoidHom.map_neg, h.comm, ← neg_add, ← add_assoc, neg_add_self, zero_add] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k✝ : D ⟶ E i✝ : ι e f g : C ⟶ D h : Homotopy e f k : Homotopy f g i j : ι w : ¬ComplexShape.Rel c j i ⊢ (h.hom + k.hom) i j = 0 [PROOFSTEP] rw [Pi.add_apply, Pi.add_apply, h.zero i j w, k.zero i j w, zero_add] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k✝ : D ⟶ E i✝ : ι e f g : C ⟶ D h : Homotopy e f k : Homotopy f g i : ι ⊢ Hom.f e i = ↑(dNext i) (h.hom + k.hom) + ↑(prevD i) (h.hom + k.hom) + Hom.f g i [PROOFSTEP] rw [AddMonoidHom.map_add, AddMonoidHom.map_add, h.comm, k.comm] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k✝ : D ⟶ E i✝ : ι e f g : C ⟶ D h : Homotopy e f k : Homotopy f g i : ι ⊢ ↑(dNext i) h.hom + ↑(prevD i) h.hom + (↑(dNext i) k.hom + ↑(prevD i) k.hom + Hom.f g i) = ↑(dNext i) h.hom + ↑(dNext i) k.hom + (↑(prevD i) h.hom + ↑(prevD i) k.hom) + Hom.f g i [PROOFSTEP] abel [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k✝ : D ⟶ E i✝ : ι e f g : C ⟶ D h : Homotopy e f k : Homotopy f g i : ι ⊢ ↑(dNext i) h.hom + ↑(prevD i) h.hom + (↑(dNext i) k.hom + ↑(prevD i) k.hom + Hom.f g i) = ↑(dNext i) h.hom + ↑(dNext i) k.hom + (↑(prevD i) h.hom + ↑(prevD i) k.hom) + Hom.f g i [PROOFSTEP] abel [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι f₁ g₁ f₂ g₂ : C ⟶ D h₁ : Homotopy f₁ g₁ h₂ : Homotopy f₂ g₂ i j : ι hij : ¬ComplexShape.Rel c j i ⊢ (h₁.hom + h₂.hom) i j = 0 [PROOFSTEP] rw [Pi.add_apply, Pi.add_apply, h₁.zero i j hij, h₂.zero i j hij, add_zero] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι f₁ g₁ f₂ g₂ : C ⟶ D h₁ : Homotopy f₁ g₁ h₂ : Homotopy f₂ g₂ i : ι ⊢ Hom.f (f₁ + f₂) i = ↑(dNext i) (h₁.hom + h₂.hom) + ↑(prevD i) (h₁.hom + h₂.hom) + Hom.f (g₁ + g₂) i [PROOFSTEP] simp only [HomologicalComplex.add_f_apply, h₁.comm, h₂.comm, AddMonoidHom.map_add] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι f₁ g₁ f₂ g₂ : C ⟶ D h₁ : Homotopy f₁ g₁ h₂ : Homotopy f₂ g₂ i : ι ⊢ ↑(dNext i) h₁.hom + ↑(prevD i) h₁.hom + Hom.f g₁ i + (↑(dNext i) h₂.hom + ↑(prevD i) h₂.hom + Hom.f g₂ i) = ↑(dNext i) h₁.hom + ↑(dNext i) h₂.hom + (↑(prevD i) h₁.hom + ↑(prevD i) h₂.hom) + (Hom.f g₁ i + Hom.f g₂ i) [PROOFSTEP] abel [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι f₁ g₁ f₂ g₂ : C ⟶ D h₁ : Homotopy f₁ g₁ h₂ : Homotopy f₂ g₂ i : ι ⊢ ↑(dNext i) h₁.hom + ↑(prevD i) h₁.hom + Hom.f g₁ i + (↑(dNext i) h₂.hom + ↑(prevD i) h₂.hom + Hom.f g₂ i) = ↑(dNext i) h₁.hom + ↑(dNext i) h₂.hom + (↑(prevD i) h₁.hom + ↑(prevD i) h₂.hom) + (Hom.f g₁ i + Hom.f g₂ i) [PROOFSTEP] abel [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k : D ⟶ E i✝ : ι e f : C ⟶ D h : Homotopy e f g : D ⟶ E i j : ι w : ¬ComplexShape.Rel c j i ⊢ (fun i j => hom h i j ≫ Hom.f g j) i j = 0 [PROOFSTEP] dsimp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k : D ⟶ E i✝ : ι e f : C ⟶ D h : Homotopy e f g : D ⟶ E i j : ι w : ¬ComplexShape.Rel c j i ⊢ hom h i j ≫ Hom.f g j = 0 [PROOFSTEP] rw [h.zero i j w, zero_comp] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k : D ⟶ E i✝ : ι e f : C ⟶ D h : Homotopy e f g : D ⟶ E i : ι ⊢ Hom.f (e ≫ g) i = ((↑(dNext i) fun i j => hom h i j ≫ Hom.f g j) + ↑(prevD i) fun i j => hom h i j ≫ Hom.f g j) + Hom.f (f ≫ g) i [PROOFSTEP] rw [comp_f, h.comm i, dNext_comp_right, prevD_comp_right, Preadditive.add_comp, comp_f, Preadditive.add_comp] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k : D ⟶ E i✝ : ι f g : D ⟶ E h : Homotopy f g e : C ⟶ D i j : ι w : ¬ComplexShape.Rel c j i ⊢ (fun i j => Hom.f e i ≫ hom h i j) i j = 0 [PROOFSTEP] dsimp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k : D ⟶ E i✝ : ι f g : D ⟶ E h : Homotopy f g e : C ⟶ D i j : ι w : ¬ComplexShape.Rel c j i ⊢ Hom.f e i ≫ hom h i j = 0 [PROOFSTEP] rw [h.zero i j w, comp_zero] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k : D ⟶ E i✝ : ι f g : D ⟶ E h : Homotopy f g e : C ⟶ D i : ι ⊢ Hom.f (e ≫ f) i = ((↑(dNext i) fun i j => Hom.f e i ≫ hom h i j) + ↑(prevD i) fun i j => Hom.f e i ≫ hom h i j) + Hom.f (e ≫ g) i [PROOFSTEP] rw [comp_f, h.comm i, dNext_comp_left, prevD_comp_left, comp_f, Preadditive.comp_add, Preadditive.comp_add] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι hom : (i j : ι) → X C i ⟶ X D j i j : ι hij : ComplexShape.Rel c i j ⊢ (fun i => ↑(dNext i) hom + ↑(prevD i) hom) i ≫ d D i j = d C i j ≫ (fun i => ↑(dNext i) hom + ↑(prevD i) hom) j [PROOFSTEP] have eq1 : prevD i hom ≫ D.d i j = 0 := by simp only [prevD, AddMonoidHom.mk'_apply, Category.assoc, d_comp_d, comp_zero] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι hom : (i j : ι) → X C i ⟶ X D j i j : ι hij : ComplexShape.Rel c i j ⊢ ↑(prevD i) hom ≫ d D i j = 0 [PROOFSTEP] simp only [prevD, AddMonoidHom.mk'_apply, Category.assoc, d_comp_d, comp_zero] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι hom : (i j : ι) → X C i ⟶ X D j i j : ι hij : ComplexShape.Rel c i j eq1 : ↑(prevD i) hom ≫ d D i j = 0 ⊢ (fun i => ↑(dNext i) hom + ↑(prevD i) hom) i ≫ d D i j = d C i j ≫ (fun i => ↑(dNext i) hom + ↑(prevD i) hom) j [PROOFSTEP] have eq2 : C.d i j ≫ dNext j hom = 0 := by simp only [dNext, AddMonoidHom.mk'_apply, d_comp_d_assoc, zero_comp] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι hom : (i j : ι) → X C i ⟶ X D j i j : ι hij : ComplexShape.Rel c i j eq1 : ↑(prevD i) hom ≫ d D i j = 0 ⊢ d C i j ≫ ↑(dNext j) hom = 0 [PROOFSTEP] simp only [dNext, AddMonoidHom.mk'_apply, d_comp_d_assoc, zero_comp] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι hom : (i j : ι) → X C i ⟶ X D j i j : ι hij : ComplexShape.Rel c i j eq1 : ↑(prevD i) hom ≫ d D i j = 0 eq2 : d C i j ≫ ↑(dNext j) hom = 0 ⊢ (fun i => ↑(dNext i) hom + ↑(prevD i) hom) i ≫ d D i j = d C i j ≫ (fun i => ↑(dNext i) hom + ↑(prevD i) hom) j [PROOFSTEP] dsimp only [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι hom : (i j : ι) → X C i ⟶ X D j i j : ι hij : ComplexShape.Rel c i j eq1 : ↑(prevD i) hom ≫ d D i j = 0 eq2 : d C i j ≫ ↑(dNext j) hom = 0 ⊢ (↑(dNext i) hom + ↑(prevD i) hom) ≫ d D i j = d C i j ≫ (↑(dNext j) hom + ↑(prevD j) hom) [PROOFSTEP] rw [dNext_eq hom hij, prevD_eq hom hij, Preadditive.comp_add, Preadditive.add_comp, eq1, eq2, add_zero, zero_add, Category.assoc] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g✝ : C ⟶ D h k : D ⟶ E i : ι hom : (i j : ι) → X C i ⟶ X D j g : D ⟶ E ⊢ nullHomotopicMap hom ≫ g = nullHomotopicMap fun i j => hom i j ≫ Hom.f g j [PROOFSTEP] ext n [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g✝ : C ⟶ D h k : D ⟶ E i : ι hom : (i j : ι) → X C i ⟶ X D j g : D ⟶ E n : ι ⊢ Hom.f (nullHomotopicMap hom ≫ g) n = Hom.f (nullHomotopicMap fun i j => hom i j ≫ Hom.f g j) n [PROOFSTEP] dsimp [nullHomotopicMap, fromNext, toPrev, AddMonoidHom.mk'_apply] [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g✝ : C ⟶ D h k : D ⟶ E i : ι hom : (i j : ι) → X C i ⟶ X D j g : D ⟶ E n : ι ⊢ (dFrom C n ≫ hom (ComplexShape.next c n) n + hom n (ComplexShape.prev c n) ≫ dTo D n) ≫ Hom.f g n = dFrom C n ≫ hom (ComplexShape.next c n) n ≫ Hom.f g n + (hom n (ComplexShape.prev c n) ≫ Hom.f g (ComplexShape.prev c n)) ≫ dTo E n [PROOFSTEP] simp only [Preadditive.add_comp, Category.assoc, g.comm] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g✝ : C ⟶ D h k : D ⟶ E i : ι hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) g : D ⟶ E ⊢ nullHomotopicMap' hom ≫ g = nullHomotopicMap' fun i j hij => hom i j hij ≫ Hom.f g j [PROOFSTEP] ext n [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g✝ : C ⟶ D h k : D ⟶ E i : ι hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) g : D ⟶ E n : ι ⊢ Hom.f (nullHomotopicMap' hom ≫ g) n = Hom.f (nullHomotopicMap' fun i j hij => hom i j hij ≫ Hom.f g j) n [PROOFSTEP] erw [nullHomotopicMap_comp] [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g✝ : C ⟶ D h k : D ⟶ E i : ι hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) g : D ⟶ E n : ι ⊢ Hom.f (nullHomotopicMap fun i j => (dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) ≫ Hom.f g j) n = Hom.f (nullHomotopicMap' fun i j hij => hom i j hij ≫ Hom.f g j) n [PROOFSTEP] congr [GOAL] case h.e_self.e_hom ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g✝ : C ⟶ D h k : D ⟶ E i : ι hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) g : D ⟶ E n : ι ⊢ (fun i j => (dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) ≫ Hom.f g j) = fun i j => dite (ComplexShape.Rel c j i) ((fun i j hij => hom i j hij ≫ Hom.f g j) i j) fun x => 0 [PROOFSTEP] ext i j [GOAL] case h.e_self.e_hom.h.h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g✝ : C ⟶ D h k : D ⟶ E i✝ : ι hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) g : D ⟶ E n i j : ι ⊢ (dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) ≫ Hom.f g j = dite (ComplexShape.Rel c j i) ((fun i j hij => hom i j hij ≫ Hom.f g j) i j) fun x => 0 [PROOFSTEP] split_ifs [GOAL] case pos ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g✝ : C ⟶ D h k : D ⟶ E i✝ : ι hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) g : D ⟶ E n i j : ι h✝ : ComplexShape.Rel c j i ⊢ hom i j h✝ ≫ Hom.f g j = (fun i j hij => hom i j hij ≫ Hom.f g j) i j h✝ [PROOFSTEP] rfl [GOAL] case neg ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g✝ : C ⟶ D h k : D ⟶ E i✝ : ι hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) g : D ⟶ E n i j : ι h✝ : ¬ComplexShape.Rel c j i ⊢ 0 ≫ Hom.f g j = 0 [PROOFSTEP] rw [zero_comp] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι f : C ⟶ D hom : (i j : ι) → X D i ⟶ X E j ⊢ f ≫ nullHomotopicMap hom = nullHomotopicMap fun i j => Hom.f f i ≫ hom i j [PROOFSTEP] ext n [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι f : C ⟶ D hom : (i j : ι) → X D i ⟶ X E j n : ι ⊢ Hom.f (f ≫ nullHomotopicMap hom) n = Hom.f (nullHomotopicMap fun i j => Hom.f f i ≫ hom i j) n [PROOFSTEP] dsimp [nullHomotopicMap, fromNext, toPrev, AddMonoidHom.mk'_apply] [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι f : C ⟶ D hom : (i j : ι) → X D i ⟶ X E j n : ι ⊢ Hom.f f n ≫ (dFrom D n ≫ hom (ComplexShape.next c n) n + hom n (ComplexShape.prev c n) ≫ dTo E n) = dFrom C n ≫ Hom.f f (ComplexShape.next c n) ≫ hom (ComplexShape.next c n) n + (Hom.f f n ≫ hom n (ComplexShape.prev c n)) ≫ dTo E n [PROOFSTEP] simp only [Preadditive.comp_add, Category.assoc, f.comm_assoc] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι f : C ⟶ D hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j) ⊢ f ≫ nullHomotopicMap' hom = nullHomotopicMap' fun i j hij => Hom.f f i ≫ hom i j hij [PROOFSTEP] ext n [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι f : C ⟶ D hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j) n : ι ⊢ Hom.f (f ≫ nullHomotopicMap' hom) n = Hom.f (nullHomotopicMap' fun i j hij => Hom.f f i ≫ hom i j hij) n [PROOFSTEP] erw [comp_nullHomotopicMap] [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι f : C ⟶ D hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j) n : ι ⊢ Hom.f (nullHomotopicMap fun i j => Hom.f f i ≫ dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) n = Hom.f (nullHomotopicMap' fun i j hij => Hom.f f i ≫ hom i j hij) n [PROOFSTEP] congr [GOAL] case h.e_self.e_hom ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι f : C ⟶ D hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j) n : ι ⊢ (fun i j => Hom.f f i ≫ dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) = fun i j => dite (ComplexShape.Rel c j i) ((fun i j hij => Hom.f f i ≫ hom i j hij) i j) fun x => 0 [PROOFSTEP] ext i j [GOAL] case h.e_self.e_hom.h.h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι f : C ⟶ D hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j) n i j : ι ⊢ (Hom.f f i ≫ dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) = dite (ComplexShape.Rel c j i) ((fun i j hij => Hom.f f i ≫ hom i j hij) i j) fun x => 0 [PROOFSTEP] split_ifs [GOAL] case pos ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι f : C ⟶ D hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j) n i j : ι h✝ : ComplexShape.Rel c j i ⊢ Hom.f f i ≫ hom i j h✝ = (fun i j hij => Hom.f f i ≫ hom i j hij) i j h✝ [PROOFSTEP] rfl [GOAL] case neg ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι f : C ⟶ D hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j) n i j : ι h✝ : ¬ComplexShape.Rel c j i ⊢ Hom.f f i ≫ 0 = 0 [PROOFSTEP] rw [comp_zero] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{?u.264735, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : Functor.Additive G hom : (i j : ι) → X C i ⟶ X D j i j : ι ⊢ X ((Functor.mapHomologicalComplex G c).obj C) i ⟶ X ((Functor.mapHomologicalComplex G c).obj D) j [PROOFSTEP] exact G.map (hom i j) [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : Functor.Additive G hom : (i j : ι) → X C i ⟶ X D j ⊢ (Functor.mapHomologicalComplex G c).map (nullHomotopicMap hom) = nullHomotopicMap fun i j => G.map (hom i j) [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : Functor.Additive G hom : (i j : ι) → X C i ⟶ X D j i : ι ⊢ Hom.f ((Functor.mapHomologicalComplex G c).map (nullHomotopicMap hom)) i = Hom.f (nullHomotopicMap fun i j => G.map (hom i j)) i [PROOFSTEP] dsimp [nullHomotopicMap, dNext, prevD] [GOAL] case h ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : Functor.Additive G hom : (i j : ι) → X C i ⟶ X D j i : ι ⊢ G.map (d C i (ComplexShape.next c i) ≫ hom (ComplexShape.next c i) i + hom i (ComplexShape.prev c i) ≫ d D (ComplexShape.prev c i) i) = G.map (d C i (ComplexShape.next c i)) ≫ G.map (hom (ComplexShape.next c i) i) + G.map (hom i (ComplexShape.prev c i)) ≫ G.map (d D (ComplexShape.prev c i) i) [PROOFSTEP] simp only [G.map_comp, Functor.map_add] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{?u.270178, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : Functor.Additive G hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) i j : ι hij : ComplexShape.Rel c j i ⊢ X ((Functor.mapHomologicalComplex G c).obj C) i ⟶ X ((Functor.mapHomologicalComplex G c).obj D) j [PROOFSTEP] exact G.map (hom i j hij) [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : Functor.Additive G hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ (Functor.mapHomologicalComplex G c).map (nullHomotopicMap' hom) = nullHomotopicMap' fun i j hij => G.map (hom i j hij) [PROOFSTEP] ext n [GOAL] case h ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : Functor.Additive G hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) n : ι ⊢ Hom.f ((Functor.mapHomologicalComplex G c).map (nullHomotopicMap' hom)) n = Hom.f (nullHomotopicMap' fun i j hij => G.map (hom i j hij)) n [PROOFSTEP] erw [map_nullHomotopicMap] [GOAL] case h ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : Functor.Additive G hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) n : ι ⊢ Hom.f (nullHomotopicMap fun i j => G.map (dite (ComplexShape.Rel c j i) (hom i j) fun x => 0)) n = Hom.f (nullHomotopicMap' fun i j hij => G.map (hom i j hij)) n [PROOFSTEP] congr [GOAL] case h.e_self.e_hom ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : Functor.Additive G hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) n : ι ⊢ (fun i j => G.map (dite (ComplexShape.Rel c j i) (hom i j) fun x => 0)) = fun i j => dite (ComplexShape.Rel c j i) ((fun i j hij => G.map (hom i j hij)) i j) fun x => 0 [PROOFSTEP] ext i j [GOAL] case h.e_self.e_hom.h.h ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : Functor.Additive G hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) n i j : ι ⊢ G.map (dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) = dite (ComplexShape.Rel c j i) ((fun i j hij => G.map (hom i j hij)) i j) fun x => 0 [PROOFSTEP] split_ifs [GOAL] case pos ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : Functor.Additive G hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) n i j : ι h✝ : ComplexShape.Rel c j i ⊢ G.map (hom i j h✝) = (fun i j hij => G.map (hom i j hij)) i j h✝ [PROOFSTEP] rfl [GOAL] case neg ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : Functor.Additive G hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) n i j : ι h✝ : ¬ComplexShape.Rel c j i ⊢ G.map 0 = 0 [PROOFSTEP] rw [G.map_zero] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι hom : (i j : ι) → X C i ⟶ X D j zero : ∀ (i j : ι), ¬ComplexShape.Rel c j i → hom i j = 0 ⊢ ∀ (i : ι), Hom.f (nullHomotopicMap hom) i = ↑(dNext i) hom + ↑(prevD i) hom + Hom.f 0 i [PROOFSTEP] intro i [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι hom : (i j : ι) → X C i ⟶ X D j zero : ∀ (i j : ι), ¬ComplexShape.Rel c j i → hom i j = 0 i : ι ⊢ Hom.f (nullHomotopicMap hom) i = ↑(dNext i) hom + ↑(prevD i) hom + Hom.f 0 i [PROOFSTEP] rw [HomologicalComplex.zero_f_apply, add_zero] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι hom : (i j : ι) → X C i ⟶ X D j zero : ∀ (i j : ι), ¬ComplexShape.Rel c j i → hom i j = 0 i : ι ⊢ Hom.f (nullHomotopicMap hom) i = ↑(dNext i) hom + ↑(prevD i) hom [PROOFSTEP] rfl [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i : ι h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ Homotopy (nullHomotopicMap' h) 0 [PROOFSTEP] apply nullHomotopy fun i j => dite (c.Rel j i) (h i j) fun _ => 0 [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i : ι h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ ∀ (i j : ι), ¬ComplexShape.Rel c j i → (dite (ComplexShape.Rel c j i) (h i j) fun x => 0) = 0 [PROOFSTEP] intro i j hij [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) i j : ι hij : ¬ComplexShape.Rel c j i ⊢ (dite (ComplexShape.Rel c j i) (h i j) fun x => 0) = 0 [PROOFSTEP] rw [dite_eq_right_iff] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) i j : ι hij : ¬ComplexShape.Rel c j i ⊢ ∀ (h_1 : ComplexShape.Rel c j i), h i j h_1 = 0 [PROOFSTEP] intro hij' [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) i j : ι hij : ¬ComplexShape.Rel c j i hij' : ComplexShape.Rel c j i ⊢ h i j hij' = 0 [PROOFSTEP] exfalso [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) i j : ι hij : ¬ComplexShape.Rel c j i hij' : ComplexShape.Rel c j i ⊢ False [PROOFSTEP] exact hij hij' [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i k₂ k₁ k₀ : ι r₂₁ : ComplexShape.Rel c k₂ k₁ r₁₀ : ComplexShape.Rel c k₁ k₀ hom : (i j : ι) → X C i ⟶ X D j ⊢ Hom.f (nullHomotopicMap hom) k₁ = d C k₁ k₀ ≫ hom k₀ k₁ + hom k₁ k₂ ≫ d D k₂ k₁ [PROOFSTEP] dsimp only [nullHomotopicMap] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i k₂ k₁ k₀ : ι r₂₁ : ComplexShape.Rel c k₂ k₁ r₁₀ : ComplexShape.Rel c k₁ k₀ hom : (i j : ι) → X C i ⟶ X D j ⊢ ↑(dNext k₁) hom + ↑(prevD k₁) hom = d C k₁ k₀ ≫ hom k₀ k₁ + hom k₁ k₂ ≫ d D k₂ k₁ [PROOFSTEP] rw [dNext_eq hom r₁₀, prevD_eq hom r₂₁] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₂ k₁ k₀ : ι r₂₁ : ComplexShape.Rel c k₂ k₁ r₁₀ : ComplexShape.Rel c k₁ k₀ h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ Hom.f (nullHomotopicMap' h) k₁ = d C k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ d D k₂ k₁ [PROOFSTEP] simp only [nullHomotopicMap'] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₂ k₁ k₀ : ι r₂₁ : ComplexShape.Rel c k₂ k₁ r₁₀ : ComplexShape.Rel c k₁ k₀ h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ Hom.f (nullHomotopicMap fun i j => dite (ComplexShape.Rel c j i) (h i j) fun x => 0) k₁ = d C k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ d D k₂ k₁ [PROOFSTEP] rw [nullHomotopicMap_f r₂₁ r₁₀] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₂ k₁ k₀ : ι r₂₁ : ComplexShape.Rel c k₂ k₁ r₁₀ : ComplexShape.Rel c k₁ k₀ h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ (d C k₁ k₀ ≫ dite (ComplexShape.Rel c k₁ k₀) (h k₀ k₁) fun x => 0) + (dite (ComplexShape.Rel c k₂ k₁) (h k₁ k₂) fun x => 0) ≫ d D k₂ k₁ = d C k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ d D k₂ k₁ [PROOFSTEP] split_ifs [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₂ k₁ k₀ : ι r₂₁ : ComplexShape.Rel c k₂ k₁ r₁₀ : ComplexShape.Rel c k₁ k₀ h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ d C k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ d D k₂ k₁ = d C k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ d D k₂ k₁ [PROOFSTEP] rfl [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l hom : (i j : ι) → X C i ⟶ X D j ⊢ Hom.f (nullHomotopicMap hom) k₀ = hom k₀ k₁ ≫ d D k₁ k₀ [PROOFSTEP] dsimp only [nullHomotopicMap] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l hom : (i j : ι) → X C i ⟶ X D j ⊢ ↑(dNext k₀) hom + ↑(prevD k₀) hom = hom k₀ k₁ ≫ d D k₁ k₀ [PROOFSTEP] rw [prevD_eq hom r₁₀, dNext, AddMonoidHom.mk'_apply, C.shape, zero_comp, zero_add] [GOAL] case a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l hom : (i j : ι) → X C i ⟶ X D j ⊢ ¬ComplexShape.Rel c k₀ (ComplexShape.next c k₀) [PROOFSTEP] exact hk₀ _ [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ Hom.f (nullHomotopicMap' h) k₀ = h k₀ k₁ r₁₀ ≫ d D k₁ k₀ [PROOFSTEP] simp only [nullHomotopicMap'] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ Hom.f (nullHomotopicMap fun i j => dite (ComplexShape.Rel c j i) (h i j) fun x => 0) k₀ = h k₀ k₁ r₁₀ ≫ d D k₁ k₀ [PROOFSTEP] rw [nullHomotopicMap_f_of_not_rel_left r₁₀ hk₀] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ (dite (ComplexShape.Rel c k₁ k₀) (h k₀ k₁) fun x => 0) ≫ d D k₁ k₀ = h k₀ k₁ r₁₀ ≫ d D k₁ k₀ [PROOFSTEP] split_ifs [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ h k₀ k₁ r₁₀ ≫ d D k₁ k₀ = h k₀ k₁ r₁₀ ≫ d D k₁ k₀ [PROOFSTEP] rfl [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁ hom : (i j : ι) → X C i ⟶ X D j ⊢ Hom.f (nullHomotopicMap hom) k₁ = d C k₁ k₀ ≫ hom k₀ k₁ [PROOFSTEP] dsimp only [nullHomotopicMap] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁ hom : (i j : ι) → X C i ⟶ X D j ⊢ ↑(dNext k₁) hom + ↑(prevD k₁) hom = d C k₁ k₀ ≫ hom k₀ k₁ [PROOFSTEP] rw [dNext_eq hom r₁₀, prevD, AddMonoidHom.mk'_apply, D.shape, comp_zero, add_zero] [GOAL] case a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁ hom : (i j : ι) → X C i ⟶ X D j ⊢ ¬ComplexShape.Rel c (ComplexShape.prev c k₁) k₁ [PROOFSTEP] exact hk₁ _ [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁ h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ Hom.f (nullHomotopicMap' h) k₁ = d C k₁ k₀ ≫ h k₀ k₁ r₁₀ [PROOFSTEP] simp only [nullHomotopicMap'] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁ h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ Hom.f (nullHomotopicMap fun i j => dite (ComplexShape.Rel c j i) (h i j) fun x => 0) k₁ = d C k₁ k₀ ≫ h k₀ k₁ r₁₀ [PROOFSTEP] rw [nullHomotopicMap_f_of_not_rel_right r₁₀ hk₁] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁ h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ (d C k₁ k₀ ≫ dite (ComplexShape.Rel c k₁ k₀) (h k₀ k₁) fun x => 0) = d C k₁ k₀ ≫ h k₀ k₁ r₁₀ [PROOFSTEP] split_ifs [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₁ k₀ : ι r₁₀ : ComplexShape.Rel c k₁ k₀ hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁ h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ d C k₁ k₀ ≫ h k₀ k₁ r₁₀ = d C k₁ k₀ ≫ h k₀ k₁ r₁₀ [PROOFSTEP] rfl [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i k₀ : ι hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l hk₀' : ∀ (l : ι), ¬ComplexShape.Rel c l k₀ hom : (i j : ι) → X C i ⟶ X D j ⊢ Hom.f (nullHomotopicMap hom) k₀ = 0 [PROOFSTEP] dsimp [nullHomotopicMap, dNext, prevD] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i k₀ : ι hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l hk₀' : ∀ (l : ι), ¬ComplexShape.Rel c l k₀ hom : (i j : ι) → X C i ⟶ X D j ⊢ d C k₀ (ComplexShape.next c k₀) ≫ hom (ComplexShape.next c k₀) k₀ + hom k₀ (ComplexShape.prev c k₀) ≫ d D (ComplexShape.prev c k₀) k₀ = 0 [PROOFSTEP] rw [C.shape, D.shape, zero_comp, comp_zero, add_zero] [GOAL] case a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i k₀ : ι hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l hk₀' : ∀ (l : ι), ¬ComplexShape.Rel c l k₀ hom : (i j : ι) → X C i ⟶ X D j ⊢ ¬ComplexShape.Rel c (ComplexShape.prev c k₀) k₀ [PROOFSTEP] apply_assumption [GOAL] case a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i k₀ : ι hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l hk₀' : ∀ (l : ι), ¬ComplexShape.Rel c l k₀ hom : (i j : ι) → X C i ⟶ X D j ⊢ ¬ComplexShape.Rel c k₀ (ComplexShape.next c k₀) [PROOFSTEP] apply_assumption [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₀ : ι hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l hk₀' : ∀ (l : ι), ¬ComplexShape.Rel c l k₀ h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ Hom.f (nullHomotopicMap' h) k₀ = 0 [PROOFSTEP] simp only [nullHomotopicMap'] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i k₀ : ι hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l hk₀' : ∀ (l : ι), ¬ComplexShape.Rel c l k₀ h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j) ⊢ Hom.f (nullHomotopicMap fun i j => dite (ComplexShape.Rel c j i) (h i j) fun x => 0) k₀ = 0 [PROOFSTEP] apply nullHomotopicMap_f_eq_zero hk₀ hk₀' [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j j : ℕ ⊢ ↑(prevD j) f = f j (j + 1) ≫ d Q (j + 1) j [PROOFSTEP] dsimp [prevD] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j j : ℕ ⊢ f j (ComplexShape.prev (ComplexShape.down ℕ) j) ≫ d Q (ComplexShape.prev (ComplexShape.down ℕ) j) j = f j (j + 1) ≫ d Q (j + 1) j [PROOFSTEP] have : (ComplexShape.down ℕ).prev j = j + 1 := ChainComplex.prev ℕ j [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j j : ℕ this : ComplexShape.prev (ComplexShape.down ℕ) j = j + 1 ⊢ f j (ComplexShape.prev (ComplexShape.down ℕ) j) ≫ d Q (ComplexShape.prev (ComplexShape.down ℕ) j) j = f j (j + 1) ≫ d Q (j + 1) j [PROOFSTEP] congr 2 [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j i : ℕ ⊢ ↑(dNext (i + 1)) f = d P (i + 1) i ≫ f i (i + 1) [PROOFSTEP] dsimp [dNext] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j i : ℕ ⊢ d P (i + 1) (ComplexShape.next (ComplexShape.down ℕ) (i + 1)) ≫ f (ComplexShape.next (ComplexShape.down ℕ) (i + 1)) (i + 1) = d P (i + 1) i ≫ f i (i + 1) [PROOFSTEP] have : (ComplexShape.down ℕ).next (i + 1) = i := ChainComplex.next_nat_succ _ [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j i : ℕ this : ComplexShape.next (ComplexShape.down ℕ) (i + 1) = i ⊢ d P (i + 1) (ComplexShape.next (ComplexShape.down ℕ) (i + 1)) ≫ f (ComplexShape.next (ComplexShape.down ℕ) (i + 1)) (i + 1) = d P (i + 1) i ≫ f i (i + 1) [PROOFSTEP] congr 2 [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j ⊢ ↑(dNext 0) f = 0 [PROOFSTEP] dsimp [dNext] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j ⊢ d P 0 (ComplexShape.next (ComplexShape.down ℕ) 0) ≫ f (ComplexShape.next (ComplexShape.down ℕ) 0) 0 = 0 [PROOFSTEP] rw [P.shape, zero_comp] [GOAL] case a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j ⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) 0 (ComplexShape.next (ComplexShape.down ℕ) 0) [PROOFSTEP] rw [ChainComplex.next_nat_zero] [GOAL] case a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j ⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) 0 0 [PROOFSTEP] dsimp [GOAL] case a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j ⊢ ¬0 + 1 = 0 [PROOFSTEP] decide [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) ⊢ Hom.f e 0 = dFrom P 0 ≫ 0 + (zero ≫ (xPrevIso Q (_ : 0 + 1 = 0 + 1)).inv) ≫ dTo Q 0 [PROOFSTEP] simpa using comm_zero [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) n : ℕ I : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1) := mkInductiveAux₁ e zero one comm_one succ n ⊢ Hom.f e (n + 1) = dFrom P (n + 1) ≫ (xNextIso P (_ : n + 1 = n + 1)).hom ≫ I.fst + (I.snd.fst ≫ (xPrevIso Q (_ : n + 1 + 1 = n + 1 + 1)).inv) ≫ dTo Q (n + 1) [PROOFSTEP] simpa using I.2.2 [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i j : ℕ h : i + 1 = j ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom = (xNextIso P h).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ j).fst [PROOFSTEP] subst j [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i : ℕ ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q (_ : i + 1 = i + 1)).hom = (xNextIso P (_ : i + 1 = i + 1)).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (i + 1)).fst [PROOFSTEP] rcases i with (_ | _ | i) [GOAL] case zero ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ Nat.zero).snd.fst ≫ (xPrevIso Q (_ : Nat.zero + 1 = Nat.zero + 1)).hom = (xNextIso P (_ : Nat.zero + 1 = Nat.zero + 1)).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.zero + 1)).fst [PROOFSTEP] simp [mkInductiveAux₂] [GOAL] case succ.zero ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ Nat.zero)).snd.fst ≫ (xPrevIso Q (_ : Nat.succ Nat.zero + 1 = Nat.succ Nat.zero + 1)).hom = (xNextIso P (_ : Nat.succ Nat.zero + 1 = Nat.succ Nat.zero + 1)).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ Nat.zero + 1)).fst [PROOFSTEP] simp [mkInductiveAux₂] [GOAL] case succ.succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i : ℕ ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ (Nat.succ i))).snd.fst ≫ (xPrevIso Q (_ : Nat.succ (Nat.succ i) + 1 = Nat.succ (Nat.succ i) + 1)).hom = (xNextIso P (_ : Nat.succ (Nat.succ i) + 1 = Nat.succ (Nat.succ i) + 1)).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ (Nat.succ i) + 1)).fst [PROOFSTEP] simp [mkInductiveAux₂] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i j : ℕ w : ¬ComplexShape.Rel (ComplexShape.down ℕ) j i ⊢ (fun i j => if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) i j = 0 [PROOFSTEP] dsimp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i j : ℕ w : ¬ComplexShape.Rel (ComplexShape.down ℕ) j i ⊢ (if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) = 0 [PROOFSTEP] rw [dif_neg] [GOAL] case hnc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i j : ℕ w : ¬ComplexShape.Rel (ComplexShape.down ℕ) j i ⊢ ¬i + 1 = j [PROOFSTEP] exact w [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i : ℕ ⊢ Hom.f e i = ((↑(dNext i) fun i j => if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) + ↑(prevD i) fun i j => if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) + Hom.f 0 i [PROOFSTEP] dsimp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i : ℕ ⊢ Hom.f e i = (dFrom P i ≫ ↑(fromNext i) fun i j => if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) + (↑(toPrev i) fun i j => if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) ≫ dTo Q i + 0 [PROOFSTEP] simp only [add_zero] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i : ℕ ⊢ Hom.f e i = (dFrom P i ≫ ↑(fromNext i) fun i j => if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) + (↑(toPrev i) fun i j => if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) ≫ dTo Q i [PROOFSTEP] refine' (mkInductiveAux₂ e zero comm_zero one comm_one succ i).2.2.trans _ [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i : ℕ ⊢ dFrom P i ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).fst + (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ dTo Q i = (dFrom P i ≫ ↑(fromNext i) fun i j => if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) + (↑(toPrev i) fun i j => if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) ≫ dTo Q i [PROOFSTEP] congr [GOAL] case e_a.e_a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i : ℕ ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).fst = ↑(fromNext i) fun i j => if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0 [PROOFSTEP] cases i [GOAL] case e_a.e_a.zero ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ Nat.zero).fst = ↑(fromNext Nat.zero) fun i j => if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0 [PROOFSTEP] dsimp [fromNext, mkInductiveAux₂] [GOAL] case e_a.e_a.zero ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) ⊢ 0 = if h : ComplexShape.next (ComplexShape.down ℕ) 0 + 1 = 0 then (match ComplexShape.next (ComplexShape.down ℕ) 0 with | 0 => { fst := 0, snd := { fst := zero ≫ (xPrevIso Q mkInductiveAux₂.proof_1).inv, snd := (_ : Hom.f e 0 = dFrom P 0 ≫ 0 + (zero ≫ (xPrevIso Q (_ : 0 + 1 = 0 + 1)).inv) ≫ dTo Q 0) } } | Nat.succ n => { fst := (xNextIso P (_ : n + 1 = n + 1)).hom ≫ (mkInductiveAux₁ e zero one comm_one succ n).fst, snd := { fst := (mkInductiveAux₁ e zero one comm_one succ n).snd.fst ≫ (xPrevIso Q (_ : n + 1 + 1 = n + 1 + 1)).inv, snd := (_ : Hom.f e (n + 1) = dFrom P (n + 1) ≫ (xNextIso P (_ : n + 1 = n + 1)).hom ≫ (mkInductiveAux₁ e zero one comm_one succ n).fst + ((mkInductiveAux₁ e zero one comm_one succ n).snd.fst ≫ (xPrevIso Q (_ : n + 1 + 1 = n + 1 + 1)).inv) ≫ dTo Q (n + 1)) } }).snd.fst ≫ (xPrevIso Q h).hom else 0 [PROOFSTEP] rw [dif_neg] [GOAL] case e_a.e_a.zero.hnc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) ⊢ ¬ComplexShape.next (ComplexShape.down ℕ) 0 + 1 = 0 [PROOFSTEP] simp only [GOAL] case e_a.e_a.succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) n✝ : ℕ ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ n✝)).fst = ↑(fromNext (Nat.succ n✝)) fun i j => if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0 [PROOFSTEP] dsimp [fromNext] [GOAL] case e_a.e_a.succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) n✝ : ℕ ⊢ (xNextIso P (_ : n✝ + 1 = n✝ + 1)).hom ≫ (mkInductiveAux₁ e zero one comm_one succ n✝).fst = if h : ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝) + 1 = Nat.succ n✝ then (mkInductiveAux₂ e zero comm_zero one comm_one succ (ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝))).snd.fst ≫ (xPrevIso Q h).hom else 0 [PROOFSTEP] simp only [ChainComplex.next_nat_succ, dite_true] [GOAL] case e_a.e_a.succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) n✝ : ℕ ⊢ (xNextIso P (_ : n✝ + 1 = n✝ + 1)).hom ≫ (mkInductiveAux₁ e zero one comm_one succ n✝).fst = (mkInductiveAux₂ e zero comm_zero one comm_one succ (ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝))).snd.fst ≫ (xPrevIso Q (_ : ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝) + 1 = Nat.succ n✝)).hom [PROOFSTEP] rw [mkInductiveAux₃ e zero comm_zero one comm_one succ] [GOAL] case e_a.e_a.succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) n✝ : ℕ ⊢ (xNextIso P (_ : n✝ + 1 = n✝ + 1)).hom ≫ (mkInductiveAux₁ e zero one comm_one succ n✝).fst = (xNextIso P (_ : ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝) + 1 = Nat.succ n✝)).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ n✝)).fst [PROOFSTEP] dsimp [xNextIso] [GOAL] case e_a.e_a.succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) n✝ : ℕ ⊢ eqToHom (_ : xNext P (n✝ + 1) = X P n✝) ≫ (mkInductiveAux₁ e zero one comm_one succ n✝).fst = 𝟙 (xNext P (Nat.succ n✝)) ≫ eqToHom (_ : xNext P (n✝ + 1) = X P n✝) ≫ (mkInductiveAux₁ e zero one comm_one succ n✝).fst [PROOFSTEP] rw [Category.id_comp] [GOAL] case e_a.e_a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i : ℕ ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst = ↑(toPrev i) fun i j => if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0 [PROOFSTEP] dsimp [toPrev] [GOAL] case e_a.e_a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i : ℕ ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst = if h : i + 1 = ComplexShape.prev (ComplexShape.down ℕ) i then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0 [PROOFSTEP] erw [dif_pos, Category.comp_id] [GOAL] case e_a.e_a.hc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i : ℕ ⊢ i + 1 = ComplexShape.prev (ComplexShape.down ℕ) i case e_a.e_a.hc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : X P 0 ⟶ X Q 1 comm_zero : Hom.f e 0 = zero ≫ d Q 1 0 one : X P 1 ⟶ X Q 2 comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1 succ : (n : ℕ) → (p : (f : X P n ⟶ X Q (n + 1)) ×' (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) → (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2) i : ℕ ⊢ i + 1 = ComplexShape.prev (ComplexShape.down ℕ) i [PROOFSTEP] simp only [ChainComplex.prev] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j j : ℕ ⊢ ↑(dNext j) f = d P j (j + 1) ≫ f (j + 1) j [PROOFSTEP] dsimp [dNext] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j j : ℕ ⊢ d P j (ComplexShape.next (ComplexShape.up ℕ) j) ≫ f (ComplexShape.next (ComplexShape.up ℕ) j) j = d P j (j + 1) ≫ f (j + 1) j [PROOFSTEP] have : (ComplexShape.up ℕ).next j = j + 1 := CochainComplex.next ℕ j [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j j : ℕ this : ComplexShape.next (ComplexShape.up ℕ) j = j + 1 ⊢ d P j (ComplexShape.next (ComplexShape.up ℕ) j) ≫ f (ComplexShape.next (ComplexShape.up ℕ) j) j = d P j (j + 1) ≫ f (j + 1) j [PROOFSTEP] congr 2 [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j i : ℕ ⊢ ↑(prevD (i + 1)) f = f (i + 1) i ≫ d Q i (i + 1) [PROOFSTEP] dsimp [prevD] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j i : ℕ ⊢ f (i + 1) (ComplexShape.prev (ComplexShape.up ℕ) (i + 1)) ≫ d Q (ComplexShape.prev (ComplexShape.up ℕ) (i + 1)) (i + 1) = f (i + 1) i ≫ d Q i (i + 1) [PROOFSTEP] have : (ComplexShape.up ℕ).prev (i + 1) = i := CochainComplex.prev_nat_succ i [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j i : ℕ this : ComplexShape.prev (ComplexShape.up ℕ) (i + 1) = i ⊢ f (i + 1) (ComplexShape.prev (ComplexShape.up ℕ) (i + 1)) ≫ d Q (ComplexShape.prev (ComplexShape.up ℕ) (i + 1)) (i + 1) = f (i + 1) i ≫ d Q i (i + 1) [PROOFSTEP] congr 2 [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j ⊢ ↑(prevD 0) f = 0 [PROOFSTEP] dsimp [prevD] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j ⊢ f 0 (ComplexShape.prev (ComplexShape.up ℕ) 0) ≫ d Q (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0 [PROOFSTEP] rw [Q.shape, comp_zero] [GOAL] case a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j ⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 [PROOFSTEP] rw [CochainComplex.prev_nat_zero] [GOAL] case a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j ⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) 0 0 [PROOFSTEP] dsimp [GOAL] case a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ f : (i j : ℕ) → X P i ⟶ X Q j ⊢ ¬0 + 1 = 0 [PROOFSTEP] decide [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' ⊢ Hom.f e 0 = 0 ≫ dTo Q 0 + dFrom P 0 ≫ (xNextIso P (_ : 0 + 1 = 0 + 1)).hom ≫ zero [PROOFSTEP] simpa using comm_zero [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' n : ℕ I : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f' := mkCoinductiveAux₁ e zero one comm_one succ n ⊢ Hom.f e (n + 1) = (I.fst ≫ (xPrevIso Q (_ : n + 1 = n + 1)).inv) ≫ dTo Q (n + 1) + dFrom P (n + 1) ≫ (xNextIso P (_ : n + 1 + 1 = n + 1 + 1)).hom ≫ I.snd.fst [PROOFSTEP] simpa using I.2.2 [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i j : ℕ h : i + 1 = j ⊢ (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst = (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).fst ≫ (xPrevIso Q h).hom [PROOFSTEP] subst j [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i : ℕ ⊢ (xNextIso P (_ : i + 1 = i + 1)).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst = (mkCoinductiveAux₂ e zero comm_zero one comm_one succ (i + 1)).fst ≫ (xPrevIso Q (_ : i + 1 = i + 1)).hom [PROOFSTEP] rcases i with (_ | _ | i) [GOAL] case zero ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' ⊢ (xNextIso P (_ : Nat.zero + 1 = Nat.zero + 1)).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ Nat.zero).snd.fst = (mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.zero + 1)).fst ≫ (xPrevIso Q (_ : Nat.zero + 1 = Nat.zero + 1)).hom [PROOFSTEP] simp [mkCoinductiveAux₂] [GOAL] case succ.zero ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' ⊢ (xNextIso P (_ : Nat.succ Nat.zero + 1 = Nat.succ Nat.zero + 1)).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ Nat.zero)).snd.fst = (mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ Nat.zero + 1)).fst ≫ (xPrevIso Q (_ : Nat.succ Nat.zero + 1 = Nat.succ Nat.zero + 1)).hom [PROOFSTEP] simp [mkCoinductiveAux₂] [GOAL] case succ.succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i : ℕ ⊢ (xNextIso P (_ : Nat.succ (Nat.succ i) + 1 = Nat.succ (Nat.succ i) + 1)).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ (Nat.succ i))).snd.fst = (mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ (Nat.succ i) + 1)).fst ≫ (xPrevIso Q (_ : Nat.succ (Nat.succ i) + 1 = Nat.succ (Nat.succ i) + 1)).hom [PROOFSTEP] simp [mkCoinductiveAux₂] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i j : ℕ w : ¬ComplexShape.Rel (ComplexShape.up ℕ) j i ⊢ (fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0) i j = 0 [PROOFSTEP] dsimp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i j : ℕ w : ¬ComplexShape.Rel (ComplexShape.up ℕ) j i ⊢ (if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0) = 0 [PROOFSTEP] rw [dif_neg] [GOAL] case hnc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i j : ℕ w : ¬ComplexShape.Rel (ComplexShape.up ℕ) j i ⊢ ¬j + 1 = i [PROOFSTEP] exact w [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i : ℕ ⊢ Hom.f e i = ((↑(dNext i) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0) + ↑(prevD i) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0) + Hom.f 0 i [PROOFSTEP] dsimp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i : ℕ ⊢ Hom.f e i = (dFrom P i ≫ ↑(fromNext i) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0) + (↑(toPrev i) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0) ≫ dTo Q i + 0 [PROOFSTEP] simp only [add_zero] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i : ℕ ⊢ Hom.f e i = (dFrom P i ≫ ↑(fromNext i) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0) + (↑(toPrev i) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0) ≫ dTo Q i [PROOFSTEP] rw [add_comm] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i : ℕ ⊢ Hom.f e i = (↑(toPrev i) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0) ≫ dTo Q i + dFrom P i ≫ ↑(fromNext i) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0 [PROOFSTEP] refine' (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).2.2.trans _ [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i : ℕ ⊢ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).fst ≫ dTo Q i + dFrom P i ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst = (↑(toPrev i) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0) ≫ dTo Q i + dFrom P i ≫ ↑(fromNext i) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0 [PROOFSTEP] congr [GOAL] case e_a.e_a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i : ℕ ⊢ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).fst = ↑(toPrev i) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0 [PROOFSTEP] cases i [GOAL] case e_a.e_a.zero ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' ⊢ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ Nat.zero).fst = ↑(toPrev Nat.zero) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0 [PROOFSTEP] dsimp [toPrev, mkCoinductiveAux₂] [GOAL] case e_a.e_a.zero ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' ⊢ 0 = if h : ComplexShape.prev (ComplexShape.up ℕ) 0 + 1 = 0 then (xNextIso P h).inv ≫ (match ComplexShape.prev (ComplexShape.up ℕ) 0 with | 0 => { fst := 0, snd := { fst := (xNextIso P mkCoinductiveAux₂.proof_1).hom ≫ zero, snd := (_ : Hom.f e 0 = 0 ≫ dTo Q 0 + dFrom P 0 ≫ (xNextIso P (_ : 0 + 1 = 0 + 1)).hom ≫ zero) } } | Nat.succ n => { fst := (mkCoinductiveAux₁ e zero one comm_one succ n).fst ≫ (xPrevIso Q (_ : n + 1 = n + 1)).inv, snd := { fst := (xNextIso P (_ : n + 1 + 1 = n + 1 + 1)).hom ≫ (mkCoinductiveAux₁ e zero one comm_one succ n).snd.fst, snd := (_ : Hom.f e (n + 1) = ((mkCoinductiveAux₁ e zero one comm_one succ n).fst ≫ (xPrevIso Q (_ : n + 1 = n + 1)).inv) ≫ dTo Q (n + 1) + dFrom P (n + 1) ≫ (xNextIso P (_ : n + 1 + 1 = n + 1 + 1)).hom ≫ (mkCoinductiveAux₁ e zero one comm_one succ n).snd.fst) } }).snd.fst else 0 [PROOFSTEP] rw [dif_neg] [GOAL] case e_a.e_a.zero.hnc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' ⊢ ¬ComplexShape.prev (ComplexShape.up ℕ) 0 + 1 = 0 [PROOFSTEP] simp only [GOAL] case e_a.e_a.succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' n✝ : ℕ ⊢ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ n✝)).fst = ↑(toPrev (Nat.succ n✝)) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0 [PROOFSTEP] dsimp [toPrev] [GOAL] case e_a.e_a.succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' n✝ : ℕ ⊢ (mkCoinductiveAux₁ e zero one comm_one succ n✝).fst ≫ (xPrevIso Q (_ : n✝ + 1 = n✝ + 1)).inv = if h : ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝) + 1 = Nat.succ n✝ then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ (ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝))).snd.fst else 0 [PROOFSTEP] simp only [CochainComplex.prev_nat_succ, dite_true] [GOAL] case e_a.e_a.succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' n✝ : ℕ ⊢ (mkCoinductiveAux₁ e zero one comm_one succ n✝).fst ≫ (xPrevIso Q (_ : n✝ + 1 = n✝ + 1)).inv = (xNextIso P (_ : ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝) + 1 = Nat.succ n✝)).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ (ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝))).snd.fst [PROOFSTEP] rw [mkCoinductiveAux₃ e zero comm_zero one comm_one succ] [GOAL] case e_a.e_a.succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' n✝ : ℕ ⊢ (mkCoinductiveAux₁ e zero one comm_one succ n✝).fst ≫ (xPrevIso Q (_ : n✝ + 1 = n✝ + 1)).inv = (mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ n✝)).fst ≫ (xPrevIso Q (_ : ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝) + 1 = Nat.succ n✝)).hom [PROOFSTEP] dsimp [xPrevIso] [GOAL] case e_a.e_a.succ ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' n✝ : ℕ ⊢ (mkCoinductiveAux₁ e zero one comm_one succ n✝).fst ≫ eqToHom (_ : X Q n✝ = xPrev Q (n✝ + 1)) = ((mkCoinductiveAux₁ e zero one comm_one succ n✝).fst ≫ eqToHom (_ : X Q n✝ = xPrev Q (n✝ + 1))) ≫ 𝟙 (xPrev Q (Nat.succ n✝)) [PROOFSTEP] rw [Category.comp_id] [GOAL] case e_a.e_a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i : ℕ ⊢ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst = ↑(fromNext i) fun i j => if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0 [PROOFSTEP] dsimp [fromNext] [GOAL] case e_a.e_a ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i : ℕ ⊢ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst = if h : i + 1 = ComplexShape.next (ComplexShape.up ℕ) i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst else 0 [PROOFSTEP] erw [dif_pos, Category.id_comp] [GOAL] case e_a.e_a.hc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i : ℕ ⊢ i + 1 = ComplexShape.next (ComplexShape.up ℕ) i case e_a.e_a.hc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : CochainComplex V ℕ e : P ⟶ Q zero : X P 1 ⟶ X Q 0 comm_zero : Hom.f e 0 = d P 0 1 ≫ zero one : X P 2 ⟶ X Q 1 comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one succ : (n : ℕ) → (p : (f : X P (n + 1) ⟶ X Q n) ×' (f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') → (f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f'' i : ℕ ⊢ i + 1 = ComplexShape.next (ComplexShape.up ℕ) i [PROOFSTEP] simp only [CochainComplex.next] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D E : HomologicalComplex V c f g : C✝ ⟶ D h k : D ⟶ E i : ι C : HomologicalComplex V c ⊢ 𝟙 C ≫ 𝟙 C = 𝟙 C [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D E : HomologicalComplex V c f g : C✝ ⟶ D h k : D ⟶ E i : ι C : HomologicalComplex V c ⊢ 𝟙 C ≫ 𝟙 C = 𝟙 C [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E✝ : HomologicalComplex V c f✝ g✝ : C✝ ⟶ D✝ h k : D✝ ⟶ E✝ i : ι C D E : HomologicalComplex V c f : HomotopyEquiv C D g : HomotopyEquiv D E ⊢ Homotopy ((f.hom ≫ g.hom) ≫ g.inv ≫ f.inv) (𝟙 C) [PROOFSTEP] simpa using ((g.homotopyHomInvId.compRightId f.inv).compLeft f.hom).trans f.homotopyHomInvId [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C✝ D✝ E✝ : HomologicalComplex V c f✝ g✝ : C✝ ⟶ D✝ h k : D✝ ⟶ E✝ i : ι C D E : HomologicalComplex V c f : HomotopyEquiv C D g : HomotopyEquiv D E ⊢ Homotopy ((g.inv ≫ f.inv) ≫ f.hom ≫ g.hom) (𝟙 E) [PROOFSTEP] simpa using ((f.homotopyInvHomId.compRightId g.hom).compLeft g.inv).trans g.homotopyInvHomId [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V h : Homotopy f g i : ι ⊢ (homologyFunctor V c i).map f = (homologyFunctor V c i).map g [PROOFSTEP] dsimp [homologyFunctor] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V h : Homotopy f g i : ι ⊢ homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo f i) (Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) = homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo g i) (Hom.sqFrom g i) (_ : (Hom.sqTo g i).right = (Hom.sqTo g i).right) [PROOFSTEP] apply eq_of_sub_eq_zero [GOAL] case h ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V h : Homotopy f g i : ι ⊢ homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo f i) (Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) - homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo g i) (Hom.sqFrom g i) (_ : (Hom.sqTo g i).right = (Hom.sqTo g i).right) = 0 [PROOFSTEP] ext [GOAL] case h.p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V h : Homotopy f g i : ι ⊢ homology.π (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0) ≫ (homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo f i) (Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) - homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo g i) (Hom.sqFrom g i) (_ : (Hom.sqTo g i).right = (Hom.sqTo g i).right)) = homology.π (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0) ≫ 0 [PROOFSTEP] simp only [homology.π_map, comp_zero, Preadditive.comp_sub] [GOAL] case h.p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V h : Homotopy f g i : ι ⊢ kernelSubobjectMap (Hom.sqFrom f i) ≫ homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) - kernelSubobjectMap (Hom.sqFrom g i) ≫ homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) = 0 [PROOFSTEP] dsimp [kernelSubobjectMap] [GOAL] case h.p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V h : Homotopy f g i : ι ⊢ Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f f i) (_ : Subobject.Factors (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (Hom.sqFrom f i).left)) ≫ homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) - Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i) (_ : Subobject.Factors (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (Hom.sqFrom g i).left)) ≫ homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) = 0 [PROOFSTEP] simp_rw [h.comm i] [GOAL] case h.p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V h : Homotopy f g i : ι ⊢ Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (↑(dNext i) h.hom + ↑(prevD i) h.hom + Hom.f g i)) (_ : Subobject.Factors (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (↑(dNext i) h.hom + ↑(prevD i) h.hom + Hom.f g i))) ≫ homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) - Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i) (_ : Subobject.Factors (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (Hom.sqFrom g i).left)) ≫ homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) = 0 [PROOFSTEP] simp only [zero_add, zero_comp, dNext_eq_dFrom_fromNext, kernelSubobject_arrow_comp_assoc, Preadditive.comp_add] [GOAL] case h.p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V h : Homotopy f g i : ι ⊢ Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom + Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i) (_ : Subobject.Factors (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom + Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i)) ≫ homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) - Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i) (_ : Subobject.Factors (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (Hom.sqFrom g i).left)) ≫ homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) = 0 [PROOFSTEP] rw [← Preadditive.sub_comp] [GOAL] case h.p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V h : Homotopy f g i : ι ⊢ (Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom + Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i) (_ : Subobject.Factors (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom + Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i)) - Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i) (_ : Subobject.Factors (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (Hom.sqFrom g i).left))) ≫ homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) = 0 [PROOFSTEP] simp only [CategoryTheory.Subobject.factorThru_add_sub_factorThru_right] [GOAL] case h.p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V h : Homotopy f g i : ι ⊢ Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom) (_ : Subobject.Factors (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom)) ≫ homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) = 0 [PROOFSTEP] erw [Subobject.factorThru_ofLE (D.boundaries_le_cycles i)] [GOAL] case h.p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V h : Homotopy f g i : ι ⊢ (Subobject.factorThru (boundaries D i) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom) ?h.p ≫ Subobject.ofLE (boundaries D i) (cycles D i) (_ : boundaries D i ≤ cycles D i)) ≫ homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) = 0 [PROOFSTEP] simp [GOAL] case h.p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V h : Homotopy f g i : ι ⊢ Subobject.Factors (boundaries D i) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom) [PROOFSTEP] rw [prevD_eq_toPrev_dTo, ← Category.assoc] [GOAL] case h.p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V h : Homotopy f g i : ι ⊢ Subobject.Factors (boundaries D i) ((Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(toPrev i) h.hom) ≫ dTo D i) [PROOFSTEP] apply imageSubobject_factors_comp_self [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V f : HomotopyEquiv C D i : ι ⊢ (homologyFunctor V c i).map f.hom ≫ (homologyFunctor V c i).map f.inv = 𝟙 ((homologyFunctor V c i).obj C) [PROOFSTEP] rw [← Functor.map_comp, homology_map_eq_of_homotopy f.homotopyHomInvId, CategoryTheory.Functor.map_id] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι inst✝³ : HasEqualizers V inst✝² : HasCokernels V inst✝¹ : HasImages V inst✝ : HasImageMaps V f : HomotopyEquiv C D i : ι ⊢ (homologyFunctor V c i).map f.inv ≫ (homologyFunctor V c i).map f.hom = 𝟙 ((homologyFunctor V c i).obj D) [PROOFSTEP] rw [← Functor.map_comp, homology_map_eq_of_homotopy f.homotopyInvHomId, CategoryTheory.Functor.map_id] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{?u.479401, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F f g : C ⟶ D h : Homotopy f g i j : ι w : ¬ComplexShape.Rel c j i ⊢ (fun i j => F.map (Homotopy.hom h i j)) i j = 0 [PROOFSTEP] dsimp [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{?u.479401, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F f g : C ⟶ D h : Homotopy f g i j : ι w : ¬ComplexShape.Rel c j i ⊢ F.map (Homotopy.hom h i j) = 0 [PROOFSTEP] rw [h.zero i j w, F.map_zero] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{?u.479401, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F f g : C ⟶ D h : Homotopy f g i : ι ⊢ Hom.f ((mapHomologicalComplex F c).map f) i = ((↑(dNext i) fun i j => F.map (Homotopy.hom h i j)) + ↑(prevD i) fun i j => F.map (Homotopy.hom h i j)) + Hom.f ((mapHomologicalComplex F c).map g) i [PROOFSTEP] have H := h.comm i [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{?u.479401, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F f g : C ⟶ D h : Homotopy f g i : ι H : Hom.f f i = ↑(dNext i) h.hom + ↑(prevD i) h.hom + Hom.f g i ⊢ Hom.f ((mapHomologicalComplex F c).map f) i = ((↑(dNext i) fun i j => F.map (Homotopy.hom h i j)) + ↑(prevD i) fun i j => F.map (Homotopy.hom h i j)) + Hom.f ((mapHomologicalComplex F c).map g) i [PROOFSTEP] dsimp [dNext, prevD] at H ⊢ [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h✝ k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{?u.479401, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F f g : C ⟶ D h : Homotopy f g i : ι H : Hom.f f i = d C i (ComplexShape.next c i) ≫ Homotopy.hom h (ComplexShape.next c i) i + Homotopy.hom h i (ComplexShape.prev c i) ≫ d D (ComplexShape.prev c i) i + Hom.f g i ⊢ F.map (Hom.f f i) = F.map (d C i (ComplexShape.next c i)) ≫ F.map (Homotopy.hom h (ComplexShape.next c i) i) + F.map (Homotopy.hom h i (ComplexShape.prev c i)) ≫ F.map (d D (ComplexShape.prev c i) i) + F.map (Hom.f g i) [PROOFSTEP] simp [H] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i : ι W : Type u_2 inst✝² : Category.{?u.486182, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F h : HomotopyEquiv C D ⊢ Homotopy ((mapHomologicalComplex F c).map h.hom ≫ (mapHomologicalComplex F c).map h.inv) (𝟙 ((mapHomologicalComplex F c).obj C)) [PROOFSTEP] rw [← (F.mapHomologicalComplex c).map_comp, ← (F.mapHomologicalComplex c).map_id] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i : ι W : Type u_2 inst✝² : Category.{?u.486182, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F h : HomotopyEquiv C D ⊢ Homotopy ((mapHomologicalComplex F c).map (h.hom ≫ h.inv)) ((mapHomologicalComplex F c).map (𝟙 C)) [PROOFSTEP] exact F.mapHomotopy h.homotopyHomInvId [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i : ι W : Type u_2 inst✝² : Category.{?u.486182, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F h : HomotopyEquiv C D ⊢ Homotopy ((mapHomologicalComplex F c).map h.inv ≫ (mapHomologicalComplex F c).map h.hom) (𝟙 ((mapHomologicalComplex F c).obj D)) [PROOFSTEP] rw [← (F.mapHomologicalComplex c).map_comp, ← (F.mapHomologicalComplex c).map_id] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i : ι W : Type u_2 inst✝² : Category.{?u.486182, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F h : HomotopyEquiv C D ⊢ Homotopy ((mapHomologicalComplex F c).map (h.inv ≫ h.hom)) ((mapHomologicalComplex F c).map (𝟙 D)) [PROOFSTEP] exact F.mapHomotopy h.homotopyInvHomId
{"mathlib_filename": "Mathlib.Algebra.Homology.Homotopy", "llama_tokens": 64601}
[GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : Zero M inst✝¹ : Zero M' inst✝ : CommMonoid N f : α →₀ M s : Finset α hs : f.support ⊆ s g : α → M → N h : ∀ (i : α), i ∈ s → g i 0 = 1 ⊢ prod f g = ∏ x in s, g x (↑f x) [PROOFSTEP] refine Finset.prod_subset hs fun x hxs hx => h x hxs ▸ (congr_arg (g x) ?_) [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x✝ : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : Zero M inst✝¹ : Zero M' inst✝ : CommMonoid N f : α →₀ M s : Finset α hs : f.support ⊆ s g : α → M → N h : ∀ (i : α), i ∈ s → g i 0 = 1 x : α hxs : x ∈ s hx : ¬x ∈ f.support ⊢ ↑f x = 0 [PROOFSTEP] exact not_mem_support_iff.1 hx [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : Zero M inst✝¹ : Zero M' inst✝ : CommMonoid N a : α b : M h : α → M → N h_zero : h a 0 = 1 ⊢ ∏ x in {a}, h x (↑(single a b) x) = h a b [PROOFSTEP] simp [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0✝ : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H✝ : Type u_13 R : Type u_14 S : Type u_15 inst✝² : Zero M inst✝¹ : Zero M' inst✝ : CommMonoid N f : M → M' hf : f 0 = 0 g : α →₀ M h : α → M' → N h0 : ∀ (a : α), h a 0 = 1 x✝¹ : α x✝ : x✝¹ ∈ g.support H : ¬x✝¹ ∈ (mapRange f hf g).support ⊢ h x✝¹ (↑(mapRange f hf g) x✝¹) = 1 [PROOFSTEP] rw [not_mem_support_iff.1 H, h0] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁶ : AddCommMonoid A inst✝⁵ : AddCommMonoid B inst✝⁴ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝³ : Zero M inst✝² : Zero M' inst✝¹ : CommMonoid N inst✝ : DecidableEq α f : α →₀ M a : α b : α → M → N ⊢ (prod f fun x v => if a = x then b x v else 1) = if a ∈ f.support then b a (↑f a) else 1 [PROOFSTEP] dsimp [Finsupp.prod] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁶ : AddCommMonoid A inst✝⁵ : AddCommMonoid B inst✝⁴ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝³ : Zero M inst✝² : Zero M' inst✝¹ : CommMonoid N inst✝ : DecidableEq α f : α →₀ M a : α b : α → M → N ⊢ (∏ a_1 in f.support, if a = a_1 then b a_1 (↑f a_1) else 1) = if a ∈ f.support then b a (↑f a) else 1 [PROOFSTEP] rw [f.support.prod_ite_eq] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁷ : AddCommMonoid A inst✝⁶ : AddCommMonoid B inst✝⁵ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N✝ : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝⁴ : Zero M inst✝³ : Zero M' inst✝² : CommMonoid N✝ inst✝¹ : DecidableEq α N : Type u_16 inst✝ : AddCommMonoid N f : α →₀ N a : α ⊢ (sum f fun x v => if a = x then v else 0) = ↑f a [PROOFSTEP] classical convert f.sum_ite_eq a fun _ => id simp [ite_eq_right_iff.2 Eq.symm] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁷ : AddCommMonoid A inst✝⁶ : AddCommMonoid B inst✝⁵ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N✝ : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝⁴ : Zero M inst✝³ : Zero M' inst✝² : CommMonoid N✝ inst✝¹ : DecidableEq α N : Type u_16 inst✝ : AddCommMonoid N f : α →₀ N a : α ⊢ (sum f fun x v => if a = x then v else 0) = ↑f a [PROOFSTEP] convert f.sum_ite_eq a fun _ => id [GOAL] case h.e'_3 α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁷ : AddCommMonoid A inst✝⁶ : AddCommMonoid B inst✝⁵ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N✝ : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝⁴ : Zero M inst✝³ : Zero M' inst✝² : CommMonoid N✝ inst✝¹ : DecidableEq α N : Type u_16 inst✝ : AddCommMonoid N f : α →₀ N a : α ⊢ ↑f a = if a ∈ f.support then id (↑f a) else 0 [PROOFSTEP] simp [ite_eq_right_iff.2 Eq.symm] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁷ : AddCommMonoid A inst✝⁶ : AddCommMonoid B inst✝⁵ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N✝ : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝⁴ : Zero M inst✝³ : Zero M' inst✝² : CommMonoid N✝ inst✝¹ : DecidableEq α N : Type u_16 inst✝ : AddCommMonoid N f : α →₀ N a : α ⊢ (if a ∈ f.support then ↑f a else 0) = ↑f a [PROOFSTEP] simp only [mem_support_iff, ne_eq, ite_eq_left_iff, not_not] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁷ : AddCommMonoid A inst✝⁶ : AddCommMonoid B inst✝⁵ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N✝ : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝⁴ : Zero M inst✝³ : Zero M' inst✝² : CommMonoid N✝ inst✝¹ : DecidableEq α N : Type u_16 inst✝ : AddCommMonoid N f : α →₀ N a : α ⊢ ↑f a = 0 → 0 = ↑f a [PROOFSTEP] exact fun h ↦ h.symm [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁶ : AddCommMonoid A inst✝⁵ : AddCommMonoid B inst✝⁴ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝³ : Zero M inst✝² : Zero M' inst✝¹ : CommMonoid N inst✝ : DecidableEq α f : α →₀ M a : α b : α → M → N ⊢ (prod f fun x v => if x = a then b x v else 1) = if a ∈ f.support then b a (↑f a) else 1 [PROOFSTEP] dsimp [Finsupp.prod] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁶ : AddCommMonoid A inst✝⁵ : AddCommMonoid B inst✝⁴ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝³ : Zero M inst✝² : Zero M' inst✝¹ : CommMonoid N inst✝ : DecidableEq α f : α →₀ M a : α b : α → M → N ⊢ (∏ a_1 in f.support, if a_1 = a then b a_1 (↑f a_1) else 1) = if a ∈ f.support then b a (↑f a) else 1 [PROOFSTEP] rw [f.support.prod_ite_eq'] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁷ : AddCommMonoid A inst✝⁶ : AddCommMonoid B inst✝⁵ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N✝ : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝⁴ : Zero M inst✝³ : Zero M' inst✝² : CommMonoid N✝ inst✝¹ : DecidableEq α N : Type u_16 inst✝ : AddCommMonoid N f : α →₀ N a : α ⊢ (sum f fun x v => if x = a then v else 0) = ↑f a [PROOFSTEP] classical convert f.sum_ite_eq' a fun _ => id simp [ite_eq_right_iff.2 Eq.symm] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁷ : AddCommMonoid A inst✝⁶ : AddCommMonoid B inst✝⁵ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N✝ : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝⁴ : Zero M inst✝³ : Zero M' inst✝² : CommMonoid N✝ inst✝¹ : DecidableEq α N : Type u_16 inst✝ : AddCommMonoid N f : α →₀ N a : α ⊢ (sum f fun x v => if x = a then v else 0) = ↑f a [PROOFSTEP] convert f.sum_ite_eq' a fun _ => id [GOAL] case h.e'_3 α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁷ : AddCommMonoid A inst✝⁶ : AddCommMonoid B inst✝⁵ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N✝ : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝⁴ : Zero M inst✝³ : Zero M' inst✝² : CommMonoid N✝ inst✝¹ : DecidableEq α N : Type u_16 inst✝ : AddCommMonoid N f : α →₀ N a : α ⊢ ↑f a = if a ∈ f.support then id (↑f a) else 0 [PROOFSTEP] simp [ite_eq_right_iff.2 Eq.symm] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : Zero M inst✝¹ : Zero M' inst✝ : CommMonoid N s : Finset α f : α → M g : α → M → N hf : ∀ (a : α), f a ≠ 0 → a ∈ s hg : ∀ (a : α), g a 0 = 1 ⊢ ∀ (x : α), x ∈ s → ¬x ∈ (onFinset s f hf).support → g x (↑(onFinset s f hf) x) = 1 [PROOFSTEP] simp (config := { contextual := true }) [*] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : Zero M inst✝¹ : Zero M' inst✝ : CommMonoid N f : α →₀ M y : α g : α → M → N hyf : y ∈ f.support ⊢ g y (↑f y) * prod (erase y f) g = prod f g [PROOFSTEP] classical rw [Finsupp.prod, Finsupp.prod, ← Finset.mul_prod_erase _ _ hyf, Finsupp.support_erase, Finset.prod_congr rfl] intro h hx rw [Finsupp.erase_ne (ne_of_mem_erase hx)] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : Zero M inst✝¹ : Zero M' inst✝ : CommMonoid N f : α →₀ M y : α g : α → M → N hyf : y ∈ f.support ⊢ g y (↑f y) * prod (erase y f) g = prod f g [PROOFSTEP] rw [Finsupp.prod, Finsupp.prod, ← Finset.mul_prod_erase _ _ hyf, Finsupp.support_erase, Finset.prod_congr rfl] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : Zero M inst✝¹ : Zero M' inst✝ : CommMonoid N f : α →₀ M y : α g : α → M → N hyf : y ∈ f.support ⊢ ∀ (x : α), x ∈ Finset.erase f.support y → g x (↑(erase y f) x) = g x (↑f x) [PROOFSTEP] intro h hx [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : Zero M inst✝¹ : Zero M' inst✝ : CommMonoid N f : α →₀ M y : α g : α → M → N hyf : y ∈ f.support h : α hx : h ∈ Finset.erase f.support y ⊢ g h (↑(erase y f) h) = g h (↑f h) [PROOFSTEP] rw [Finsupp.erase_ne (ne_of_mem_erase hx)] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : Zero M inst✝¹ : Zero M' inst✝ : CommMonoid N f : α →₀ M y : α g : α → M → N hg : ∀ (i : α), g i 0 = 1 ⊢ g y (↑f y) * prod (erase y f) g = prod f g [PROOFSTEP] classical by_cases hyf : y ∈ f.support · exact Finsupp.mul_prod_erase f y g hyf · rw [not_mem_support_iff.mp hyf, hg y, erase_of_not_mem_support hyf, one_mul] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : Zero M inst✝¹ : Zero M' inst✝ : CommMonoid N f : α →₀ M y : α g : α → M → N hg : ∀ (i : α), g i 0 = 1 ⊢ g y (↑f y) * prod (erase y f) g = prod f g [PROOFSTEP] by_cases hyf : y ∈ f.support [GOAL] case pos α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : Zero M inst✝¹ : Zero M' inst✝ : CommMonoid N f : α →₀ M y : α g : α → M → N hg : ∀ (i : α), g i 0 = 1 hyf : y ∈ f.support ⊢ g y (↑f y) * prod (erase y f) g = prod f g [PROOFSTEP] exact Finsupp.mul_prod_erase f y g hyf [GOAL] case neg α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : Zero M inst✝¹ : Zero M' inst✝ : CommMonoid N f : α →₀ M y : α g : α → M → N hg : ∀ (i : α), g i 0 = 1 hyf : ¬y ∈ f.support ⊢ g y (↑f y) * prod (erase y f) g = prod f g [PROOFSTEP] rw [not_mem_support_iff.mp hyf, hg y, erase_of_not_mem_support hyf, one_mul] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝³ : AddCommMonoid A inst✝² : AddCommMonoid B inst✝¹ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝¹ : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝ : AddCommMonoid M s✝ : Multiset M a✝ : α a : M s : Multiset M ih : single a✝ (Multiset.sum s) = Multiset.sum (Multiset.map (single a✝) s) ⊢ single a✝ (Multiset.sum (a ::ₘ s)) = Multiset.sum (Multiset.map (single a✝) (a ::ₘ s)) [PROOFSTEP] rw [Multiset.sum_cons, single_add, ih, Multiset.map_cons, Multiset.sum_cons] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝³ : AddCommMonoid A inst✝² : AddCommMonoid B inst✝¹ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝ : AddCommMonoid M s : Finset ι f : ι → M a : α ⊢ single a (∑ b in s, f b) = ∑ b in s, single a (f b) [PROOFSTEP] trans [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝³ : AddCommMonoid A inst✝² : AddCommMonoid B inst✝¹ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝ : AddCommMonoid M s : Finset ι f : ι → M a : α ⊢ single a (∑ b in s, f b) = ?m.275536 [PROOFSTEP] apply single_multiset_sum [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝³ : AddCommMonoid A inst✝² : AddCommMonoid B inst✝¹ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝ : AddCommMonoid M s : Finset ι f : ι → M a : α ⊢ Multiset.sum (Multiset.map (single a) (Multiset.map (fun b => f b) s.val)) = ∑ b in s, single a (f b) [PROOFSTEP] rw [Multiset.map_map] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝³ : AddCommMonoid A inst✝² : AddCommMonoid B inst✝¹ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝ : AddCommMonoid M s : Finset ι f : ι → M a : α ⊢ Multiset.sum (Multiset.map (single a ∘ fun b => f b) s.val) = ∑ b in s, single a (f b) [PROOFSTEP] rfl [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : DecidableEq β inst✝¹ : Zero M inst✝ : AddCommMonoid N f : α →₀ M g : α → M → β →₀ N ⊢ (sum f g).support ⊆ Finset.biUnion f.support fun a => (g a (↑f a)).support [PROOFSTEP] have : ∀ c, (f.sum fun a b => g a b c) ≠ 0 → ∃ a, f a ≠ 0 ∧ ¬(g a (f a)) c = 0 := fun a₁ h => let ⟨a, ha, ne⟩ := Finset.exists_ne_zero_of_sum_ne_zero h ⟨a, mem_support_iff.mp ha, ne⟩ [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : DecidableEq β inst✝¹ : Zero M inst✝ : AddCommMonoid N f : α →₀ M g : α → M → β →₀ N this : ∀ (c : β), (sum f fun a b => ↑(g a b) c) ≠ 0 → ∃ a, ↑f a ≠ 0 ∧ ¬↑(g a (↑f a)) c = 0 ⊢ (sum f g).support ⊆ Finset.biUnion f.support fun a => (g a (↑f a)).support [PROOFSTEP] simpa only [Finset.subset_iff, mem_support_iff, Finset.mem_biUnion, sum_apply, exists_prop] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : DecidableEq β inst✝ : AddCommMonoid M s : Finset α f : α → β →₀ M ⊢ (Finset.sum s f).support ⊆ Finset.biUnion s fun x => (f x).support [PROOFSTEP] rw [← Finset.sup_eq_biUnion] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : DecidableEq β inst✝ : AddCommMonoid M s : Finset α f : α → β →₀ M ⊢ (Finset.sum s f).support ⊆ sup s fun x => (f x).support [PROOFSTEP] induction' s using Finset.cons_induction_on with a s ha ih [GOAL] case h₁ α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : DecidableEq β inst✝ : AddCommMonoid M f : α → β →₀ M ⊢ (Finset.sum ∅ f).support ⊆ sup ∅ fun x => (f x).support [PROOFSTEP] rfl [GOAL] case h₂ α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : DecidableEq β inst✝ : AddCommMonoid M f : α → β →₀ M a : α s : Finset α ha : ¬a ∈ s ih : (Finset.sum s f).support ⊆ sup s fun x => (f x).support ⊢ (Finset.sum (cons a s ha) f).support ⊆ sup (cons a s ha) fun x => (f x).support [PROOFSTEP] rw [Finset.sum_cons, Finset.sup_cons] [GOAL] case h₂ α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : DecidableEq β inst✝ : AddCommMonoid M f : α → β →₀ M a : α s : Finset α ha : ¬a ∈ s ih : (Finset.sum s f).support ⊆ sup s fun x => (f x).support ⊢ (f a + ∑ x in s, f x).support ⊆ (f a).support ⊔ sup s fun x => (f x).support [PROOFSTEP] exact support_add.trans (Finset.union_subset_union (Finset.Subset.refl _) ih) [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : DecidableEq α inst✝¹ : AddZeroClass M inst✝ : CommMonoid N f g : α →₀ M h : α → M → N h_zero : ∀ (a : α), a ∈ f.support ∪ g.support → h a 0 = 1 h_add : ∀ (a : α), a ∈ f.support ∪ g.support → ∀ (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ * h a b₂ ⊢ prod (f + g) h = prod f h * prod g h [PROOFSTEP] rw [Finsupp.prod_of_support_subset f (subset_union_left _ g.support) h h_zero, Finsupp.prod_of_support_subset g (subset_union_right f.support _) h h_zero, ← Finset.prod_mul_distrib, Finsupp.prod_of_support_subset (f + g) Finsupp.support_add h h_zero] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : DecidableEq α inst✝¹ : AddZeroClass M inst✝ : CommMonoid N f g : α →₀ M h : α → M → N h_zero : ∀ (a : α), a ∈ f.support ∪ g.support → h a 0 = 1 h_add : ∀ (a : α), a ∈ f.support ∪ g.support → ∀ (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ * h a b₂ ⊢ ∏ x in f.support ∪ g.support, h x (↑(f + g) x) = ∏ x in f.support ∪ g.support, h x (↑f x) * h x (↑g x) [PROOFSTEP] exact Finset.prod_congr rfl fun x hx => by apply h_add x hx [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x✝ : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : DecidableEq α inst✝¹ : AddZeroClass M inst✝ : CommMonoid N f g : α →₀ M h : α → M → N h_zero : ∀ (a : α), a ∈ f.support ∪ g.support → h a 0 = 1 h_add : ∀ (a : α), a ∈ f.support ∪ g.support → ∀ (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ * h a b₂ x : α hx : x ∈ f.support ∪ g.support ⊢ h x (↑(f + g) x) = h x (↑f x) * h x (↑g x) [PROOFSTEP] apply h_add x hx [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddZeroClass M inst✝ : CommMonoid N f g : α →₀ M h : α → M → N h_zero : ∀ (a : α), h a 0 = 1 h_add : ∀ (a : α) (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ * h a b₂ ⊢ prod (f + g) h = prod f h * prod g h [PROOFSTEP] classical exact prod_add_index (fun a _ => h_zero a) fun a _ => h_add a [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddZeroClass M inst✝ : CommMonoid N f g : α →₀ M h : α → M → N h_zero : ∀ (a : α), h a 0 = 1 h_add : ∀ (a : α) (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ * h a b₂ ⊢ prod (f + g) h = prod f h * prod g h [PROOFSTEP] exact prod_add_index (fun a _ => h_zero a) fun a _ => h_add a [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddZeroClass M inst✝ : AddCommMonoid N F : α → M →+ N ⊢ (fun F x => AddMonoidHom.comp F (singleAddHom x)) ((fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) F) = F [PROOFSTEP] ext [GOAL] case h.h α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddZeroClass M inst✝ : AddCommMonoid N F : α → M →+ N x✝¹ : α x✝ : M ⊢ ↑((fun F x => AddMonoidHom.comp F (singleAddHom x)) ((fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) F) x✝¹) x✝ = ↑(F x✝¹) x✝ [PROOFSTEP] simp [singleAddHom] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddZeroClass M inst✝ : AddCommMonoid N F : (α →₀ M) →+ N ⊢ (fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) ((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) = F [PROOFSTEP] apply Finsupp.addHom_ext' [GOAL] case H α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddZeroClass M inst✝ : AddCommMonoid N F : (α →₀ M) →+ N ⊢ ∀ (x : α), AddMonoidHom.comp ((fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) ((fun F x => AddMonoidHom.comp F (singleAddHom x)) F)) (singleAddHom x) = AddMonoidHom.comp F (singleAddHom x) [PROOFSTEP] simp [singleAddHom, AddMonoidHom.comp, Function.comp] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G✝ : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddZeroClass M inst✝ : AddCommMonoid N F G : α → M →+ N ⊢ Equiv.toFun { toFun := fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }, invFun := fun F x => AddMonoidHom.comp F (singleAddHom x), left_inv := (_ : ∀ (F : α → M →+ N), (fun F x => AddMonoidHom.comp F (singleAddHom x)) ((fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) F) = F), right_inv := (_ : ∀ (F : (α →₀ M) →+ N), (fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) ((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) = F) } (F + G) = Equiv.toFun { toFun := fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }, invFun := fun F x => AddMonoidHom.comp F (singleAddHom x), left_inv := (_ : ∀ (F : α → M →+ N), (fun F x => AddMonoidHom.comp F (singleAddHom x)) ((fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) F) = F), right_inv := (_ : ∀ (F : (α →₀ M) →+ N), (fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) ((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) = F) } F + Equiv.toFun { toFun := fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }, invFun := fun F x => AddMonoidHom.comp F (singleAddHom x), left_inv := (_ : ∀ (F : α → M →+ N), (fun F x => AddMonoidHom.comp F (singleAddHom x)) ((fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) F) = F), right_inv := (_ : ∀ (F : (α →₀ M) →+ N), (fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) ((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) = F) } G [PROOFSTEP] ext x [GOAL] case H.h α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x✝¹ : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G✝ : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddZeroClass M inst✝ : AddCommMonoid N F G : α → M →+ N x : α x✝ : M ⊢ ↑(AddMonoidHom.comp (Equiv.toFun { toFun := fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }, invFun := fun F x => AddMonoidHom.comp F (singleAddHom x), left_inv := (_ : ∀ (F : α → M →+ N), (fun F x => AddMonoidHom.comp F (singleAddHom x)) ((fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) F) = F), right_inv := (_ : ∀ (F : (α →₀ M) →+ N), (fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) ((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) = F) } (F + G)) (singleAddHom x)) x✝ = ↑(AddMonoidHom.comp (Equiv.toFun { toFun := fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }, invFun := fun F x => AddMonoidHom.comp F (singleAddHom x), left_inv := (_ : ∀ (F : α → M →+ N), (fun F x => AddMonoidHom.comp F (singleAddHom x)) ((fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) F) = F), right_inv := (_ : ∀ (F : (α →₀ M) →+ N), (fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) ((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) = F) } F + Equiv.toFun { toFun := fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }, invFun := fun F x => AddMonoidHom.comp F (singleAddHom x), left_inv := (_ : ∀ (F : α → M →+ N), (fun F x => AddMonoidHom.comp F (singleAddHom x)) ((fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) F) = F), right_inv := (_ : ∀ (F : (α →₀ M) →+ N), (fun F => { toZeroHom := { toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) }, map_add' := (_ : ∀ (x x_1 : α →₀ M), (sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) }) ((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) = F) } G) (singleAddHom x)) x✝ [PROOFSTEP] exact sum_add [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i✝ : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : Fintype α i : α m : M ⊢ ∑ j : α, ↑(single i m) j = m [PROOFSTEP] classical rw [single, coe_mk, Finset.sum_pi_single'] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i✝ : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : Fintype α i : α m : M ⊢ ∑ j : α, ↑(single i m) j = m [PROOFSTEP] rw [single, coe_mk, Finset.sum_pi_single'] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i✝ : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : Fintype α i : α m : M ⊢ (if i ∈ univ then m else 0) = m [PROOFSTEP] simp [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i✝ : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : Fintype α i : α m : M ⊢ ∑ j : α, ↑(single j m) i = m [PROOFSTEP] simp_rw [single, coe_mk] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i✝ : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : Fintype α i : α m : M ⊢ ∑ x : α, Pi.single x m i = m [PROOFSTEP] classical rw [Finset.sum_pi_single] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i✝ : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : Fintype α i : α m : M ⊢ ∑ x : α, Pi.single x m i = m [PROOFSTEP] rw [Finset.sum_pi_single] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i✝ : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : Fintype α i : α m : M ⊢ (if i ∈ univ then m else 0) = m [PROOFSTEP] simp [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁵ : AddCommMonoid A inst✝⁴ : AddCommMonoid B inst✝³ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N inst✝ : AddCommMonoid P g : N →+ P f : α → M →+ N a : α ⊢ ↑(AddEquiv.symm liftAddHom) (AddMonoidHom.comp g (↑liftAddHom f)) a = AddMonoidHom.comp g (f a) [PROOFSTEP] rw [liftAddHom_symm_apply, AddMonoidHom.comp_assoc, liftAddHom_comp_single] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : Zero M inst✝ : CommMonoid N v : α →₀ M f : α ↪ β g : β → M → N ⊢ prod (embDomain f v) g = prod v fun a b => g (↑f a) b [PROOFSTEP] rw [prod, prod, support_embDomain, Finset.prod_map] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : Zero M inst✝ : CommMonoid N v : α →₀ M f : α ↪ β g : β → M → N ⊢ ∏ x in v.support, g (↑f x) (↑(embDomain f v) (↑f x)) = ∏ a in v.support, g (↑f a) (↑v a) [PROOFSTEP] simp_rw [embDomain_apply] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝¹ : Finset α f : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : CommMonoid N s✝ : Finset ι g : ι → α →₀ M h : α → M → N h_zero : ∀ (a : α), h a 0 = 1 h_add : ∀ (a : α) (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ * h a b₂ a : ι s : Finset ι has : ¬a ∈ s ih : ∏ i in s, prod (g i) h = prod (∑ i in s, g i) h ⊢ ∏ i in cons a s has, prod (g i) h = prod (∑ i in cons a s has, g i) h [PROOFSTEP] rw [prod_cons, ih, sum_cons, prod_add_index' h_zero h_add] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : AddCommMonoid N f : Multiset (α →₀ M) h : α → M → N h₀ : ∀ (a : α), h a 0 = 0 h₁ : ∀ (a : α) (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ + h a b₂ a : α →₀ M s : Multiset (α →₀ M) ih : sum (Multiset.sum s) h = Multiset.sum (Multiset.map (fun g => sum g h) s) ⊢ sum (Multiset.sum (a ::ₘ s)) h = Multiset.sum (Multiset.map (fun g => sum g h) (a ::ₘ s)) [PROOFSTEP] rw [Multiset.sum_cons, Multiset.map_cons, Multiset.sum_cons, sum_add_index' h₀ h₁, ih] [GOAL] α✝ : Type u_1 ι✝ : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι✝ → A → C h0 : ∀ (i : ι✝), t i 0 = 0 h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α✝ f : α✝ → ι✝ →₀ A i : ι✝ g✝ : ι✝ →₀ A k : ι✝ → A → γ → B x : γ β : Type u_7 M✝ : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 α : Type u_16 ι : Type u_17 M : Type u_18 inst✝¹ : DecidableEq α inst✝ : AddCommMonoid M g : ι → α →₀ M s : Finset ι h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support ⊢ (∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support [PROOFSTEP] classical -- Porting note: apply Finset.induction_on s was not working; refine does. refine Finset.induction_on s ?_ ?_ · simp · intro i s hi simp only [hi, sum_insert, not_false_iff, biUnion_insert] intro hs rw [Finsupp.support_add_eq, hs] rw [hs, Finset.disjoint_biUnion_right] intro j hj refine' h _ _ (ne_of_mem_of_not_mem hj hi).symm [GOAL] α✝ : Type u_1 ι✝ : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι✝ → A → C h0 : ∀ (i : ι✝), t i 0 = 0 h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α✝ f : α✝ → ι✝ →₀ A i : ι✝ g✝ : ι✝ →₀ A k : ι✝ → A → γ → B x : γ β : Type u_7 M✝ : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 α : Type u_16 ι : Type u_17 M : Type u_18 inst✝¹ : DecidableEq α inst✝ : AddCommMonoid M g : ι → α →₀ M s : Finset ι h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support ⊢ (∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support [PROOFSTEP] refine Finset.induction_on s ?_ ?_ [GOAL] case refine_1 α✝ : Type u_1 ι✝ : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι✝ → A → C h0 : ∀ (i : ι✝), t i 0 = 0 h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α✝ f : α✝ → ι✝ →₀ A i : ι✝ g✝ : ι✝ →₀ A k : ι✝ → A → γ → B x : γ β : Type u_7 M✝ : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 α : Type u_16 ι : Type u_17 M : Type u_18 inst✝¹ : DecidableEq α inst✝ : AddCommMonoid M g : ι → α →₀ M s : Finset ι h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support ⊢ (∑ i in ∅, g i).support = Finset.biUnion ∅ fun i => (g i).support [PROOFSTEP] simp [GOAL] case refine_2 α✝ : Type u_1 ι✝ : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι✝ → A → C h0 : ∀ (i : ι✝), t i 0 = 0 h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α✝ f : α✝ → ι✝ →₀ A i : ι✝ g✝ : ι✝ →₀ A k : ι✝ → A → γ → B x : γ β : Type u_7 M✝ : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 α : Type u_16 ι : Type u_17 M : Type u_18 inst✝¹ : DecidableEq α inst✝ : AddCommMonoid M g : ι → α →₀ M s : Finset ι h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support ⊢ ∀ ⦃a : ι⦄ {s : Finset ι}, ¬a ∈ s → ((∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support) → (∑ i in insert a s, g i).support = Finset.biUnion (insert a s) fun i => (g i).support [PROOFSTEP] intro i s hi [GOAL] case refine_2 α✝ : Type u_1 ι✝ : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι✝ → A → C h0 : ∀ (i : ι✝), t i 0 = 0 h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y s✝¹ : Finset α✝ f : α✝ → ι✝ →₀ A i✝ : ι✝ g✝ : ι✝ →₀ A k : ι✝ → A → γ → B x : γ β : Type u_7 M✝ : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 α : Type u_16 ι : Type u_17 M : Type u_18 inst✝¹ : DecidableEq α inst✝ : AddCommMonoid M g : ι → α →₀ M s✝ : Finset ι h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support i : ι s : Finset ι hi : ¬i ∈ s ⊢ ((∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support) → (∑ i in insert i s, g i).support = Finset.biUnion (insert i s) fun i => (g i).support [PROOFSTEP] simp only [hi, sum_insert, not_false_iff, biUnion_insert] [GOAL] case refine_2 α✝ : Type u_1 ι✝ : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι✝ → A → C h0 : ∀ (i : ι✝), t i 0 = 0 h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y s✝¹ : Finset α✝ f : α✝ → ι✝ →₀ A i✝ : ι✝ g✝ : ι✝ →₀ A k : ι✝ → A → γ → B x : γ β : Type u_7 M✝ : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 α : Type u_16 ι : Type u_17 M : Type u_18 inst✝¹ : DecidableEq α inst✝ : AddCommMonoid M g : ι → α →₀ M s✝ : Finset ι h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support i : ι s : Finset ι hi : ¬i ∈ s ⊢ ((∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support) → (g i + ∑ i in s, g i).support = (g i).support ∪ Finset.biUnion s fun i => (g i).support [PROOFSTEP] intro hs [GOAL] case refine_2 α✝ : Type u_1 ι✝ : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι✝ → A → C h0 : ∀ (i : ι✝), t i 0 = 0 h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y s✝¹ : Finset α✝ f : α✝ → ι✝ →₀ A i✝ : ι✝ g✝ : ι✝ →₀ A k : ι✝ → A → γ → B x : γ β : Type u_7 M✝ : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 α : Type u_16 ι : Type u_17 M : Type u_18 inst✝¹ : DecidableEq α inst✝ : AddCommMonoid M g : ι → α →₀ M s✝ : Finset ι h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support i : ι s : Finset ι hi : ¬i ∈ s hs : (∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support ⊢ (g i + ∑ i in s, g i).support = (g i).support ∪ Finset.biUnion s fun i => (g i).support [PROOFSTEP] rw [Finsupp.support_add_eq, hs] [GOAL] case refine_2 α✝ : Type u_1 ι✝ : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι✝ → A → C h0 : ∀ (i : ι✝), t i 0 = 0 h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y s✝¹ : Finset α✝ f : α✝ → ι✝ →₀ A i✝ : ι✝ g✝ : ι✝ →₀ A k : ι✝ → A → γ → B x : γ β : Type u_7 M✝ : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 α : Type u_16 ι : Type u_17 M : Type u_18 inst✝¹ : DecidableEq α inst✝ : AddCommMonoid M g : ι → α →₀ M s✝ : Finset ι h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support i : ι s : Finset ι hi : ¬i ∈ s hs : (∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support ⊢ Disjoint (g i).support (∑ i in s, g i).support [PROOFSTEP] rw [hs, Finset.disjoint_biUnion_right] [GOAL] case refine_2 α✝ : Type u_1 ι✝ : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι✝ → A → C h0 : ∀ (i : ι✝), t i 0 = 0 h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y s✝¹ : Finset α✝ f : α✝ → ι✝ →₀ A i✝ : ι✝ g✝ : ι✝ →₀ A k : ι✝ → A → γ → B x : γ β : Type u_7 M✝ : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 α : Type u_16 ι : Type u_17 M : Type u_18 inst✝¹ : DecidableEq α inst✝ : AddCommMonoid M g : ι → α →₀ M s✝ : Finset ι h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support i : ι s : Finset ι hi : ¬i ∈ s hs : (∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support ⊢ ∀ (i_1 : ι), i_1 ∈ s → Disjoint (g i).support (g i_1).support [PROOFSTEP] intro j hj [GOAL] case refine_2 α✝ : Type u_1 ι✝ : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι✝ → A → C h0 : ∀ (i : ι✝), t i 0 = 0 h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y s✝¹ : Finset α✝ f : α✝ → ι✝ →₀ A i✝ : ι✝ g✝ : ι✝ →₀ A k : ι✝ → A → γ → B x : γ β : Type u_7 M✝ : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 α : Type u_16 ι : Type u_17 M : Type u_18 inst✝¹ : DecidableEq α inst✝ : AddCommMonoid M g : ι → α →₀ M s✝ : Finset ι h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support i : ι s : Finset ι hi : ¬i ∈ s hs : (∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support j : ι hj : j ∈ s ⊢ Disjoint (g i).support (g j).support [PROOFSTEP] refine' h _ _ (ne_of_mem_of_not_mem hj hi).symm [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β✝ : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M f1 f2 : α →₀ M hd : Disjoint f1.support f2.support β : Type u_16 inst✝ : CommMonoid β g : α → M → β ⊢ prod (f1 + f2) g = prod f1 g * prod f2 g [PROOFSTEP] have : ∀ {f1 f2 : α →₀ M}, Disjoint f1.support f2.support → (∏ x in f1.support, g x (f1 x + f2 x)) = f1.prod g := fun hd => Finset.prod_congr rfl fun x hx => by simp only [not_mem_support_iff.mp (disjoint_left.mp hd hx), add_zero] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x✝ : γ β✝ : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M f1 f2 : α →₀ M hd✝ : Disjoint f1.support f2.support β : Type u_16 inst✝ : CommMonoid β g : α → M → β f1✝ f2✝ : α →₀ M hd : Disjoint f1✝.support f2✝.support x : α hx : x ∈ f1✝.support ⊢ g x (↑f1✝ x + ↑f2✝ x) = g x (↑f1✝ x) [PROOFSTEP] simp only [not_mem_support_iff.mp (disjoint_left.mp hd hx), add_zero] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β✝ : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M f1 f2 : α →₀ M hd : Disjoint f1.support f2.support β : Type u_16 inst✝ : CommMonoid β g : α → M → β this : ∀ {f1 f2 : α →₀ M}, Disjoint f1.support f2.support → ∏ x in f1.support, g x (↑f1 x + ↑f2 x) = prod f1 g ⊢ prod (f1 + f2) g = prod f1 g * prod f2 g [PROOFSTEP] classical simp_rw [← this hd, ← this hd.symm, add_comm (f2 _), Finsupp.prod, support_add_eq hd, prod_union hd, add_apply] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g✝ : ι →₀ A k : ι → A → γ → B x : γ β✝ : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M f1 f2 : α →₀ M hd : Disjoint f1.support f2.support β : Type u_16 inst✝ : CommMonoid β g : α → M → β this : ∀ {f1 f2 : α →₀ M}, Disjoint f1.support f2.support → ∏ x in f1.support, g x (↑f1 x + ↑f2 x) = prod f1 g ⊢ prod (f1 + f2) g = prod f1 g * prod f2 g [PROOFSTEP] simp_rw [← this hd, ← this hd.symm, add_comm (f2 _), Finsupp.prod, support_add_eq hd, prod_union hd, add_apply] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1✝ : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : CommMonoid N f1 f2 : α →₀ M g1 g2 : α → M → N h1 : f1.support ⊆ f2.support h2 : ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a) ⊢ prod f1 g1 ∣ prod f2 g2 [PROOFSTEP] classical simp only [Finsupp.prod, Finsupp.prod_mul] rw [← sdiff_union_of_subset h1, prod_union sdiff_disjoint] apply dvd_mul_of_dvd_right apply prod_dvd_prod_of_dvd exact h2 [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1✝ : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : CommMonoid N f1 f2 : α →₀ M g1 g2 : α → M → N h1 : f1.support ⊆ f2.support h2 : ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a) ⊢ prod f1 g1 ∣ prod f2 g2 [PROOFSTEP] simp only [Finsupp.prod, Finsupp.prod_mul] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1✝ : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : CommMonoid N f1 f2 : α →₀ M g1 g2 : α → M → N h1 : f1.support ⊆ f2.support h2 : ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a) ⊢ ∏ x in f1.support, g1 x (↑f1 x) ∣ ∏ x in f2.support, g2 x (↑f2 x) [PROOFSTEP] rw [← sdiff_union_of_subset h1, prod_union sdiff_disjoint] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1✝ : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : CommMonoid N f1 f2 : α →₀ M g1 g2 : α → M → N h1 : f1.support ⊆ f2.support h2 : ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a) ⊢ ∏ x in f1.support, g1 x (↑f1 x) ∣ (∏ x in f2.support \ f1.support, g2 x (↑f2 x)) * ∏ x in f1.support, g2 x (↑f2 x) [PROOFSTEP] apply dvd_mul_of_dvd_right [GOAL] case h α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1✝ : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : CommMonoid N f1 f2 : α →₀ M g1 g2 : α → M → N h1 : f1.support ⊆ f2.support h2 : ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a) ⊢ ∏ x in f1.support, g1 x (↑f1 x) ∣ ∏ x in f1.support, g2 x (↑f2 x) [PROOFSTEP] apply prod_dvd_prod_of_dvd [GOAL] case h.h α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1✝ : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : AddCommMonoid M inst✝ : CommMonoid N f1 f2 : α →₀ M g1 g2 : α → M → N h1 : f1.support ⊆ f2.support h2 : ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a) ⊢ ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a) [PROOFSTEP] exact h2 [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝³ : AddCommMonoid A inst✝² : AddCommMonoid B inst✝¹ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝ : AddCommMonoid M s : Finset α f : (a : α) → a ∈ s → M ⊢ indicator s f = ∑ x in attach s, single (↑x) (f ↑x (_ : ↑x ∈ s)) [PROOFSTEP] rw [← sum_single (indicator s f), sum, sum_subset (support_indicator_subset _ _), ← sum_attach] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝³ : AddCommMonoid A inst✝² : AddCommMonoid B inst✝¹ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝ : AddCommMonoid M s : Finset α f : (a : α) → a ∈ s → M ⊢ ∑ x in attach s, single (↑x) (↑(indicator s f) ↑x) = ∑ x in attach s, single (↑x) (f ↑x (_ : ↑x ∈ s)) [PROOFSTEP] refine' Finset.sum_congr rfl (fun _ _ => _) [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝³ : AddCommMonoid A inst✝² : AddCommMonoid B inst✝¹ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝ : AddCommMonoid M s : Finset α f : (a : α) → a ∈ s → M x✝¹ : { x // x ∈ s } x✝ : x✝¹ ∈ attach s ⊢ single (↑x✝¹) (↑(indicator s f) ↑x✝¹) = single (↑x✝¹) (f ↑x✝¹ (_ : ↑x✝¹ ∈ s)) [PROOFSTEP] rw [indicator_of_mem] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝³ : AddCommMonoid A inst✝² : AddCommMonoid B inst✝¹ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝ : AddCommMonoid M s : Finset α f : (a : α) → a ∈ s → M ⊢ ∀ (x : α), x ∈ s → ¬x ∈ (indicator s f).support → single x (↑(indicator s f) x) = 0 [PROOFSTEP] intro i _ hi [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝³ : AddCommMonoid A inst✝² : AddCommMonoid B inst✝¹ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i✝ : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝ : AddCommMonoid M s : Finset α f : (a : α) → a ∈ s → M i : α a✝ : i ∈ s hi : ¬i ∈ (indicator s f).support ⊢ single i (↑(indicator s f) i) = 0 [PROOFSTEP] rw [not_mem_support_iff.mp hi, single_zero] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : Zero M inst✝ : CommMonoid N s : Finset α f : (a : α) → a ∈ s → M h : α → M → N h_zero : ∀ (a : α), a ∈ s → h a 0 = 1 ⊢ prod (indicator s f) h = ∏ x in attach s, h (↑x) (f ↑x (_ : ↑x ∈ s)) [PROOFSTEP] rw [prod_of_support_subset _ (support_indicator_subset _ _) h h_zero, ← prod_attach] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : Zero M inst✝ : CommMonoid N s : Finset α f : (a : α) → a ∈ s → M h : α → M → N h_zero : ∀ (a : α), a ∈ s → h a 0 = 1 ⊢ ∏ x in attach s, h (↑x) (↑(indicator s f) ↑x) = ∏ x in attach s, h (↑x) (f ↑x (_ : ↑x ∈ s)) [PROOFSTEP] refine' Finset.prod_congr rfl (fun _ _ => _) [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : Zero M inst✝ : CommMonoid N s : Finset α f : (a : α) → a ∈ s → M h : α → M → N h_zero : ∀ (a : α), a ∈ s → h a 0 = 1 x✝¹ : { x // x ∈ s } x✝ : x✝¹ ∈ attach s ⊢ h (↑x✝¹) (↑(indicator s f) ↑x✝¹) = h (↑x✝¹) (f ↑x✝¹ (_ : ↑x✝¹ ∈ s)) [PROOFSTEP] rw [indicator_of_mem] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 a : α s : Finset α has : ¬a ∈ s ih : sum (∑ x in s, f x) t = ∑ x in s, sum (f x) t ⊢ sum (∑ x in insert a s, f x) t = ∑ x in insert a s, sum (f x) t [PROOFSTEP] simp_rw [Finset.sum_insert has, Finsupp.sum_add_index' h0 h1, ih] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : NonUnitalNonAssocSemiring R inst✝ : NonUnitalNonAssocSemiring S b : S s : α →₀ R f : α → R → S ⊢ sum s f * b = sum s fun a c => f a c * b [PROOFSTEP] simp only [Finsupp.sum, Finset.sum_mul] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝⁴ : AddCommMonoid A inst✝³ : AddCommMonoid B inst✝² : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s✝ : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 inst✝¹ : NonUnitalNonAssocSemiring R inst✝ : NonUnitalNonAssocSemiring S b : S s : α →₀ R f : α → R → S ⊢ b * sum s f = sum s fun a c => b * f a c [PROOFSTEP] simp only [Finsupp.sum, Finset.mul_sum] [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H✝ : Type u_13 R : Type u_14 S : Type u_15 f : ℕ →₀ ℕ hf : ¬0 ∈ f.support a : ℕ ha : a ∈ f.support H : a = 0 ⊢ False [PROOFSTEP] subst H [GOAL] α : Type u_1 ι : Type u_2 γ : Type u_3 A : Type u_4 B : Type u_5 C : Type u_6 inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : AddCommMonoid C t : ι → A → C h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y s : Finset α f✝ : α → ι →₀ A i : ι g : ι →₀ A k : ι → A → γ → B x : γ β : Type u_7 M : Type u_8 M' : Type u_9 N : Type u_10 P : Type u_11 G : Type u_12 H : Type u_13 R : Type u_14 S : Type u_15 f : ℕ →₀ ℕ hf : ¬0 ∈ f.support ha : 0 ∈ f.support ⊢ False [PROOFSTEP] exact hf ha
{"mathlib_filename": "Mathlib.Algebra.BigOperators.Finsupp", "llama_tokens": 42515}
[GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι n : ℕ f : C ⟶ D i j : ι x✝ : ComplexShape.Rel c i j ⊢ (fun i => n • Hom.f f i) i ≫ d D i j = d C i j ≫ (fun i => n • Hom.f f i) j [PROOFSTEP] simp [Preadditive.nsmul_comp, Preadditive.comp_nsmul] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι n : ℤ f : C ⟶ D i j : ι x✝ : ComplexShape.Rel c i j ⊢ (fun i => n • Hom.f f i) i ≫ d D i j = d C i j ≫ (fun i => n • Hom.f f i) j [PROOFSTEP] simp [Preadditive.zsmul_comp, Preadditive.comp_zsmul] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι ⊢ 0.f = 0 [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι ⊢ ∀ (x y : C ⟶ D), (x + y).f = x.f + y.f [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι ⊢ ∀ (x : C ⟶ D), (-x).f = -x.f [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι ⊢ ∀ (x y : C ⟶ D), (x - y).f = x.f - y.f [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι ⊢ ∀ (x : C ⟶ D) (n : ℕ), (n • x).f = n • x.f [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι ⊢ ∀ (x : C ⟶ D) (n : ℤ), (n • x).f = n • x.f [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι x✝² x✝¹ x✝ : HomologicalComplex V c f f' : x✝² ⟶ x✝¹ g : x✝¹ ⟶ x✝ ⊢ (f + f') ≫ g = f ≫ g + f' ≫ g [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι x✝² x✝¹ x✝ : HomologicalComplex V c f f' : x✝² ⟶ x✝¹ g : x✝¹ ⟶ x✝ i✝ : ι ⊢ Hom.f ((f + f') ≫ g) i✝ = Hom.f (f ≫ g + f' ≫ g) i✝ [PROOFSTEP] simp only [comp_f, add_f_apply] [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι x✝² x✝¹ x✝ : HomologicalComplex V c f f' : x✝² ⟶ x✝¹ g : x✝¹ ⟶ x✝ i✝ : ι ⊢ (Hom.f f i✝ + Hom.f f' i✝) ≫ Hom.f g i✝ = Hom.f f i✝ ≫ Hom.f g i✝ + Hom.f f' i✝ ≫ Hom.f g i✝ [PROOFSTEP] rw [Preadditive.add_comp] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι x✝² x✝¹ x✝ : HomologicalComplex V c f : x✝² ⟶ x✝¹ g g' : x✝¹ ⟶ x✝ ⊢ f ≫ (g + g') = f ≫ g + f ≫ g' [PROOFSTEP] ext [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι x✝² x✝¹ x✝ : HomologicalComplex V c f : x✝² ⟶ x✝¹ g g' : x✝¹ ⟶ x✝ i✝ : ι ⊢ Hom.f (f ≫ (g + g')) i✝ = Hom.f (f ≫ g + f ≫ g') i✝ [PROOFSTEP] simp only [comp_f, add_f_apply] [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι x✝² x✝¹ x✝ : HomologicalComplex V c f : x✝² ⟶ x✝¹ g g' : x✝¹ ⟶ x✝ i✝ : ι ⊢ Hom.f f i✝ ≫ (Hom.f g i✝ + Hom.f g' i✝) = Hom.f f i✝ ≫ Hom.f g i✝ + Hom.f f i✝ ≫ Hom.f g' i✝ [PROOFSTEP] rw [Preadditive.comp_add] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι inst✝³ : HasImages V inst✝² : HasImageMaps V inst✝¹ : HasEqualizers V inst✝ : HasCokernels V x✝¹ x✝ : HomologicalComplex V c f g : x✝¹ ⟶ x✝ ⊢ (homologyFunctor V c i).map (f + g) = (homologyFunctor V c i).map f + (homologyFunctor V c i).map g [PROOFSTEP] dsimp [homologyFunctor] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι inst✝³ : HasImages V inst✝² : HasImageMaps V inst✝¹ : HasEqualizers V inst✝ : HasCokernels V x✝¹ x✝ : HomologicalComplex V c f g : x✝¹ ⟶ x✝ ⊢ homology.map (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo (f + g) i) (Hom.sqFrom (f + g) i) (_ : (Hom.sqTo (f + g) i).right = (Hom.sqTo (f + g) i).right) = homology.map (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo f i) (Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) + homology.map (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo g i) (Hom.sqFrom g i) (_ : (Hom.sqTo g i).right = (Hom.sqTo g i).right) [PROOFSTEP] ext [GOAL] case p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι inst✝³ : HasImages V inst✝² : HasImageMaps V inst✝¹ : HasEqualizers V inst✝ : HasCokernels V x✝¹ x✝ : HomologicalComplex V c f g : x✝¹ ⟶ x✝ ⊢ homology.π (dTo x✝¹ i) (dFrom x✝¹ i) (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) ≫ homology.map (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo (f + g) i) (Hom.sqFrom (f + g) i) (_ : (Hom.sqTo (f + g) i).right = (Hom.sqTo (f + g) i).right) = homology.π (dTo x✝¹ i) (dFrom x✝¹ i) (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) ≫ (homology.map (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo f i) (Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) + homology.map (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo g i) (Hom.sqFrom g i) (_ : (Hom.sqTo g i).right = (Hom.sqTo g i).right)) [PROOFSTEP] simp only [homology.π_map, Preadditive.comp_add, ← Preadditive.add_comp] [GOAL] case p ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι inst✝³ : HasImages V inst✝² : HasImageMaps V inst✝¹ : HasEqualizers V inst✝ : HasCokernels V x✝¹ x✝ : HomologicalComplex V c f g : x✝¹ ⟶ x✝ ⊢ kernelSubobjectMap (Hom.sqFrom (f + g) i) ≫ homology.π (dTo x✝ i) (dFrom x✝ i) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) = (kernelSubobjectMap (Hom.sqFrom f i) + kernelSubobjectMap (Hom.sqFrom g i)) ≫ homology.π (dTo x✝ i) (dFrom x✝ i) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) [PROOFSTEP] congr [GOAL] case p.e_a ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι inst✝³ : HasImages V inst✝² : HasImageMaps V inst✝¹ : HasEqualizers V inst✝ : HasCokernels V x✝¹ x✝ : HomologicalComplex V c f g : x✝¹ ⟶ x✝ ⊢ kernelSubobjectMap (Hom.sqFrom (f + g) i) = kernelSubobjectMap (Hom.sqFrom f i) + kernelSubobjectMap (Hom.sqFrom g i) [PROOFSTEP] ext [GOAL] case p.e_a.h ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g✝ : C ⟶ D h k : D ⟶ E i : ι inst✝³ : HasImages V inst✝² : HasImageMaps V inst✝¹ : HasEqualizers V inst✝ : HasCokernels V x✝¹ x✝ : HomologicalComplex V c f g : x✝¹ ⟶ x✝ ⊢ kernelSubobjectMap (Hom.sqFrom (f + g) i) ≫ Subobject.arrow (kernelSubobject (dFrom x✝ i)) = (kernelSubobjectMap (Hom.sqFrom f i) + kernelSubobjectMap (Hom.sqFrom g i)) ≫ Subobject.arrow (kernelSubobject (dFrom x✝ i)) [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c✝ : ComplexShape ι C✝ D E : HomologicalComplex V c✝ f g : C✝ ⟶ D h k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{?u.55346, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F c : ComplexShape ι C : HomologicalComplex V c i j : ι w : ¬ComplexShape.Rel c i j ⊢ (fun i j => F.map (d C i j)) i j = 0 [PROOFSTEP] dsimp only [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c✝ : ComplexShape ι C✝ D E : HomologicalComplex V c✝ f g : C✝ ⟶ D h k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{?u.55346, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F c : ComplexShape ι C : HomologicalComplex V c i j : ι w : ¬ComplexShape.Rel c i j ⊢ F.map (d C i j) = 0 [PROOFSTEP] rw [C.shape _ _ w, F.map_zero] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c✝ : ComplexShape ι C✝ D E : HomologicalComplex V c✝ f g : C✝ ⟶ D h k✝ : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{?u.55346, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F c : ComplexShape ι C : HomologicalComplex V c i j k : ι x✝¹ : ComplexShape.Rel c i j x✝ : ComplexShape.Rel c j k ⊢ (fun i j => F.map (d C i j)) i j ≫ (fun i j => F.map (d C i j)) j k = 0 [PROOFSTEP] rw [← F.map_comp, C.d_comp_d, F.map_zero] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{?u.55346, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F c : ComplexShape ι X✝ Y✝ : HomologicalComplex V c f : X✝ ⟶ Y✝ i j : ι x✝ : ComplexShape.Rel c i j ⊢ (fun i => F.map (Hom.f f i)) i ≫ d ((fun C => HomologicalComplex.mk (fun i => F.obj (X C i)) fun i j => F.map (d C i j)) Y✝) i j = d ((fun C => HomologicalComplex.mk (fun i => F.obj (X C i)) fun i j => F.map (d C i j)) X✝) i j ≫ (fun i => F.map (Hom.f f i)) j [PROOFSTEP] dsimp [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι W : Type u_2 inst✝² : Category.{?u.55346, u_2} W inst✝¹ : Preadditive W F : V ⥤ W inst✝ : Additive F c : ComplexShape ι X✝ Y✝ : HomologicalComplex V c f : X✝ ⟶ Y✝ i j : ι x✝ : ComplexShape.Rel c i j ⊢ F.map (Hom.f f i) ≫ F.map (d Y✝ i j) = F.map (d X✝ i j) ≫ F.map (Hom.f f j) [PROOFSTEP] rw [← F.map_comp, ← F.map_comp, f.comm] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f✝ g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝³ : Category.{?u.91619, u_2} W inst✝² : Preadditive W F : V ⥤ W inst✝¹ : Additive F inst✝ : ReflectsIsomorphisms F c : ComplexShape ι A✝ B✝ : HomologicalComplex V c f : A✝ ⟶ B✝ ⊢ ∀ [inst : IsIso ((mapHomologicalComplex F c).map f)], IsIso f [PROOFSTEP] intro [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f✝ g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝⁴ : Category.{?u.91619, u_2} W inst✝³ : Preadditive W F : V ⥤ W inst✝² : Additive F inst✝¹ : ReflectsIsomorphisms F c : ComplexShape ι A✝ B✝ : HomologicalComplex V c f : A✝ ⟶ B✝ inst✝ : IsIso ((mapHomologicalComplex F c).map f) ⊢ IsIso f [PROOFSTEP] haveI : ∀ n : ι, IsIso (F.map (f.f n)) := fun n => IsIso.of_iso ((HomologicalComplex.eval W c n).mapIso (asIso ((F.mapHomologicalComplex c).map f))) [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f✝ g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝⁴ : Category.{?u.91619, u_2} W inst✝³ : Preadditive W F : V ⥤ W inst✝² : Additive F inst✝¹ : ReflectsIsomorphisms F c : ComplexShape ι A✝ B✝ : HomologicalComplex V c f : A✝ ⟶ B✝ inst✝ : IsIso ((mapHomologicalComplex F c).map f) this : ∀ (n : ι), IsIso (F.map (Hom.f f n)) ⊢ IsIso f [PROOFSTEP] haveI := fun n => isIso_of_reflects_iso (f.f n) F [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f✝ g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝⁴ : Category.{?u.91619, u_2} W inst✝³ : Preadditive W F : V ⥤ W inst✝² : Additive F inst✝¹ : ReflectsIsomorphisms F c : ComplexShape ι A✝ B✝ : HomologicalComplex V c f : A✝ ⟶ B✝ inst✝ : IsIso ((mapHomologicalComplex F c).map f) this✝ : ∀ (n : ι), IsIso (F.map (Hom.f f n)) this : ∀ (n : ι), IsIso (Hom.f f n) ⊢ IsIso f [PROOFSTEP] exact HomologicalComplex.Hom.isIso_of_components f [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W c : ComplexShape ι F : V ⥤ W inst✝ : Functor.Additive F ⊢ mapHomologicalComplex (𝟙 F) c = 𝟙 (Functor.mapHomologicalComplex F c) [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝⁴ : Category.{u_3, u_2} W inst✝³ : Preadditive W c : ComplexShape ι F G H : V ⥤ W inst✝² : Functor.Additive F inst✝¹ : Functor.Additive G inst✝ : Functor.Additive H α : F ⟶ G β : G ⟶ H ⊢ mapHomologicalComplex (α ≫ β) c = mapHomologicalComplex α c ≫ mapHomologicalComplex β c [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c✝ : ComplexShape ι C✝ D✝ E : HomologicalComplex V c✝ f✝ g : C✝ ⟶ D✝ h k : D✝ ⟶ E i : ι W : Type u_2 inst✝³ : Category.{u_3, u_2} W inst✝² : Preadditive W c : ComplexShape ι F G : V ⥤ W inst✝¹ : Functor.Additive F inst✝ : Functor.Additive G α : F ⟶ G C D : HomologicalComplex V c f : C ⟶ D ⊢ (Functor.mapHomologicalComplex F c).map f ≫ app (mapHomologicalComplex α c) D = app (mapHomologicalComplex α c) C ≫ (Functor.mapHomologicalComplex G c).map f [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝³ : Category.{?u.106581, u_2} W inst✝² : Preadditive W F G : V ⥤ W inst✝¹ : Functor.Additive F inst✝ : Functor.Additive G α : F ≅ G c : ComplexShape ι ⊢ NatTrans.mapHomologicalComplex α.hom c ≫ NatTrans.mapHomologicalComplex α.inv c = 𝟙 (Functor.mapHomologicalComplex F c) [PROOFSTEP] simp only [← NatTrans.mapHomologicalComplex_comp, α.hom_inv_id, NatTrans.mapHomologicalComplex_id] [GOAL] ι : Type u_1 V : Type u inst✝⁵ : Category.{v, u} V inst✝⁴ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝³ : Category.{?u.106581, u_2} W inst✝² : Preadditive W F G : V ⥤ W inst✝¹ : Functor.Additive F inst✝ : Functor.Additive G α : F ≅ G c : ComplexShape ι ⊢ NatTrans.mapHomologicalComplex α.inv c ≫ NatTrans.mapHomologicalComplex α.hom c = 𝟙 (Functor.mapHomologicalComplex G c) [PROOFSTEP] simp only [← NatTrans.mapHomologicalComplex_comp, α.inv_hom_id, NatTrans.mapHomologicalComplex_id] [GOAL] ι : Type u_1 V : Type u inst✝⁷ : Category.{v, u} V inst✝⁶ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝⁵ : Category.{?u.119648, u_2} W inst✝⁴ : Preadditive W α : Type u_3 inst✝³ : AddRightCancelSemigroup α inst✝² : One α inst✝¹ : DecidableEq α F : V ⥤ W inst✝ : Functor.Additive F X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 n : α ⊢ (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0 [PROOFSTEP] rw [← F.map_comp, sq n, Functor.map_zero] [GOAL] ι : Type u_1 V : Type u inst✝⁷ : Category.{v, u} V inst✝⁶ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝⁵ : Category.{u_4, u_2} W inst✝⁴ : Preadditive W α : Type u_3 inst✝³ : AddRightCancelSemigroup α inst✝² : One α inst✝¹ : DecidableEq α F : V ⥤ W inst✝ : Functor.Additive F X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 ⊢ (Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq) = of (fun n => F.obj (X n)) (fun n => F.map (d n)) (_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0) [PROOFSTEP] refine' HomologicalComplex.ext rfl _ [GOAL] ι : Type u_1 V : Type u inst✝⁷ : Category.{v, u} V inst✝⁶ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝⁵ : Category.{u_4, u_2} W inst✝⁴ : Preadditive W α : Type u_3 inst✝³ : AddRightCancelSemigroup α inst✝² : One α inst✝¹ : DecidableEq α F : V ⥤ W inst✝ : Functor.Additive F X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 ⊢ ∀ (i j : α), ComplexShape.Rel (ComplexShape.down α) i j → HomologicalComplex.d ((Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq)) i j ≫ eqToHom (_ : HomologicalComplex.X ((Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq)) j = HomologicalComplex.X (of (fun n => F.obj (X n)) (fun n => F.map (d n)) (_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0)) j) = eqToHom (_ : HomologicalComplex.X ((Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq)) i = HomologicalComplex.X (of (fun n => F.obj (X n)) (fun n => F.map (d n)) (_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0)) i) ≫ HomologicalComplex.d (of (fun n => F.obj (X n)) (fun n => F.map (d n)) (_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0)) i j [PROOFSTEP] rintro i j (rfl : j + 1 = i) [GOAL] ι : Type u_1 V : Type u inst✝⁷ : Category.{v, u} V inst✝⁶ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι W : Type u_2 inst✝⁵ : Category.{u_4, u_2} W inst✝⁴ : Preadditive W α : Type u_3 inst✝³ : AddRightCancelSemigroup α inst✝² : One α inst✝¹ : DecidableEq α F : V ⥤ W inst✝ : Functor.Additive F X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 j : α ⊢ HomologicalComplex.d ((Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq)) (j + 1) j ≫ eqToHom (_ : HomologicalComplex.X ((Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq)) j = HomologicalComplex.X (of (fun n => F.obj (X n)) (fun n => F.map (d n)) (_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0)) j) = eqToHom (_ : HomologicalComplex.X ((Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq)) (j + 1) = HomologicalComplex.X (of (fun n => F.obj (X n)) (fun n => F.map (d n)) (_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0)) (j + 1)) ≫ HomologicalComplex.d (of (fun n => F.obj (X n)) (fun n => F.map (d n)) (_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0)) (j + 1) j [PROOFSTEP] simp only [CategoryTheory.Functor.mapHomologicalComplex_obj_d, of_d, eqToHom_refl, comp_id, id_comp] [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V i : ι h : i = j ⊢ HomologicalComplex.X ((single V c j ⋙ Functor.mapHomologicalComplex F c).obj X) i = HomologicalComplex.X ((F ⋙ single W c j).obj X) i [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V i : ι h : i = j ⊢ HomologicalComplex.X ((F ⋙ single W c j).obj X) i = HomologicalComplex.X ((single V c j ⋙ Functor.mapHomologicalComplex F c).obj X) i [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V ⊢ ((Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i = HomologicalComplex.X ((single W c j).obj (F.obj X)) i) else 0) ≫ Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((single W c j).obj (F.obj X)) i = HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i) else 0) = 𝟙 ((single V c j ⋙ Functor.mapHomologicalComplex F c).obj X) [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V i : ι ⊢ Hom.f ((Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i = HomologicalComplex.X ((single W c j).obj (F.obj X)) i) else 0) ≫ Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((single W c j).obj (F.obj X)) i = HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i) else 0) i = Hom.f (𝟙 ((single V c j ⋙ Functor.mapHomologicalComplex F c).obj X)) i [PROOFSTEP] dsimp [GOAL] case h ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V i : ι ⊢ ((if h : i = j then eqToHom (_ : F.obj (if i = j then X else 0) = if i = j then F.obj X else 0) else 0) ≫ if h : i = j then eqToHom (_ : (if i = j then F.obj X else 0) = F.obj (if i = j then X else 0)) else 0) = 𝟙 (F.obj (if i = j then X else 0)) [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V i : ι h : i = j ⊢ eqToHom (_ : F.obj (if i = j then X else 0) = if i = j then F.obj X else 0) ≫ eqToHom (_ : (if i = j then F.obj X else 0) = F.obj (if i = j then X else 0)) = 𝟙 (F.obj (if i = j then X else 0)) [PROOFSTEP] simp [h] [GOAL] case neg ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V i : ι h : ¬i = j ⊢ 0 ≫ 0 = 𝟙 (F.obj (if i = j then X else 0)) [PROOFSTEP] rw [zero_comp, if_neg h] [GOAL] case neg ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V i : ι h : ¬i = j ⊢ 0 = 𝟙 (F.obj 0) [PROOFSTEP] exact (zero_of_source_iso_zero _ F.mapZeroObject).symm [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V ⊢ ((Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((single W c j).obj (F.obj X)) i = HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i) else 0) ≫ Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i = HomologicalComplex.X ((single W c j).obj (F.obj X)) i) else 0) = 𝟙 ((F ⋙ single W c j).obj X) [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V i : ι ⊢ Hom.f ((Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((single W c j).obj (F.obj X)) i = HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i) else 0) ≫ Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i = HomologicalComplex.X ((single W c j).obj (F.obj X)) i) else 0) i = Hom.f (𝟙 ((F ⋙ single W c j).obj X)) i [PROOFSTEP] dsimp [GOAL] case h ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V i : ι ⊢ ((if h : i = j then eqToHom (_ : (if i = j then F.obj X else 0) = F.obj (if i = j then X else 0)) else 0) ≫ if h : i = j then eqToHom (_ : F.obj (if i = j then X else 0) = if i = j then F.obj X else 0) else 0) = 𝟙 (if i = j then F.obj X else 0) [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V i : ι h : i = j ⊢ eqToHom (_ : (if i = j then F.obj X else 0) = F.obj (if i = j then X else 0)) ≫ eqToHom (_ : F.obj (if i = j then X else 0) = if i = j then F.obj X else 0) = 𝟙 (if i = j then F.obj X else 0) [PROOFSTEP] simp [h] [GOAL] case neg ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V i : ι h : ¬i = j ⊢ 0 ≫ 0 = 𝟙 (if i = j then F.obj X else 0) [PROOFSTEP] rw [zero_comp, if_neg h] [GOAL] case neg ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X : V i : ι h : ¬i = j ⊢ 0 = 𝟙 0 [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f✝ g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X✝ Y✝ : V f : X✝ ⟶ Y✝ ⊢ (single V c j ⋙ Functor.mapHomologicalComplex F c).map f ≫ ((fun X => Iso.mk (Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i = HomologicalComplex.X ((single W c j).obj (F.obj X)) i) else 0) (Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((single W c j).obj (F.obj X)) i = HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i) else 0)) Y✝).hom = ((fun X => Iso.mk (Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i = HomologicalComplex.X ((single W c j).obj (F.obj X)) i) else 0) (Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((single W c j).obj (F.obj X)) i = HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i) else 0)) X✝).hom ≫ (F ⋙ single W c j).map f [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X✝ Y✝ : V f : X✝ ⟶ Y✝ i : ι ⊢ Hom.f ((single V c j ⋙ Functor.mapHomologicalComplex F c).map f ≫ ((fun X => Iso.mk (Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i = HomologicalComplex.X ((single W c j).obj (F.obj X)) i) else 0) (Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((single W c j).obj (F.obj X)) i = HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i) else 0)) Y✝).hom) i = Hom.f (((fun X => Iso.mk (Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i = HomologicalComplex.X ((single W c j).obj (F.obj X)) i) else 0) (Hom.mk fun i => if h : i = j then eqToHom (_ : HomologicalComplex.X ((single W c j).obj (F.obj X)) i = HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i) else 0)) X✝).hom ≫ (F ⋙ single W c j).map f) i [PROOFSTEP] dsimp [GOAL] case h ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f✝ g : C ⟶ D h k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X✝ Y✝ : V f : X✝ ⟶ Y✝ i : ι ⊢ (F.map (if h : i = j then eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) i = X✝) ≫ f ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) i) else 0) ≫ if h : i = j then eqToHom (_ : F.obj (if i = j then Y✝ else 0) = if i = j then F.obj Y✝ else 0) else 0) = (if h : i = j then eqToHom (_ : F.obj (if i = j then X✝ else 0) = if i = j then F.obj X✝ else 0) else 0) ≫ if h : i = j then eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) (F.obj X✝)) i = F.obj X✝) ≫ F.map f ≫ eqToHom (_ : F.obj Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) (F.obj Y✝)) i) else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f✝ g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X✝ Y✝ : V f : X✝ ⟶ Y✝ i : ι h : i = j ⊢ F.map (eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) i = X✝) ≫ f ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) i)) ≫ eqToHom (_ : F.obj (if i = j then Y✝ else 0) = if i = j then F.obj Y✝ else 0) = eqToHom (_ : F.obj (if i = j then X✝ else 0) = if i = j then F.obj X✝ else 0) ≫ eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) (F.obj X✝)) i = F.obj X✝) ≫ F.map f ≫ eqToHom (_ : F.obj Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) (F.obj Y✝)) i) [PROOFSTEP] simp [h] [GOAL] case neg ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c✝ : ComplexShape ι C D E : HomologicalComplex V c✝ f✝ g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.125669, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F c : ComplexShape ι j : ι X✝ Y✝ : V f : X✝ ⟶ Y✝ i : ι h : ¬i = j ⊢ F.map 0 ≫ 0 = 0 ≫ 0 [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.161257, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F j : ι X : V ⊢ HomologicalComplex.X ((single V c j ⋙ Functor.mapHomologicalComplex F c).obj X) j = HomologicalComplex.X ((F ⋙ single W c j).obj X) j [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{u_3, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F j : ι X : V ⊢ Hom.f (NatTrans.app (singleMapHomologicalComplex F c j).hom X) j = eqToHom (_ : F.obj (if j = j then X else 0) = if j = j then F.obj X else 0) [PROOFSTEP] simp [singleMapHomologicalComplex] [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{u_3, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F i j : ι h : i ≠ j X : V ⊢ Hom.f (NatTrans.app (singleMapHomologicalComplex F c j).hom X) i = 0 [PROOFSTEP] simp [singleMapHomologicalComplex, h] [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.177119, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F j : ι X : V ⊢ HomologicalComplex.X ((F ⋙ single W c j).obj X) j = HomologicalComplex.X ((single V c j ⋙ Functor.mapHomologicalComplex F c).obj X) j [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{u_3, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F j : ι X : V ⊢ Hom.f (NatTrans.app (singleMapHomologicalComplex F c j).inv X) j = eqToHom (_ : (if j = j then F.obj X else 0) = F.obj (if j = j then X else 0)) [PROOFSTEP] simp [singleMapHomologicalComplex] [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i✝ : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{u_3, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F i j : ι h : i ≠ j X : V ⊢ Hom.f (NatTrans.app (singleMapHomologicalComplex F c j).inv X) i = 0 [PROOFSTEP] simp [singleMapHomologicalComplex, h] [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.192981, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X : V ⊢ ((Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) ≫ Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv) = 𝟙 ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) [PROOFSTEP] ext (_ | _) [GOAL] case h.zero ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.192981, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X : V ⊢ Hom.f ((Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) ≫ Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv) Nat.zero = Hom.f (𝟙 ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X)) Nat.zero [PROOFSTEP] simp [GOAL] case h.succ ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.192981, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X : V n✝ : ℕ ⊢ Hom.f ((Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) ≫ Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv) (Nat.succ n✝) = Hom.f (𝟙 ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X)) (Nat.succ n✝) [PROOFSTEP] exact IsZero.eq_of_src (IsZero.of_iso (isZero_zero _) F.mapZeroObject) _ _ [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.192981, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X : V ⊢ ((Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv) ≫ Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) = 𝟙 ((F ⋙ single₀ W).obj X) [PROOFSTEP] ext (_ | _) [GOAL] case h.zero ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.192981, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X : V ⊢ Hom.f ((Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv) ≫ Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) Nat.zero = Hom.f (𝟙 ((F ⋙ single₀ W).obj X)) Nat.zero [PROOFSTEP] simp [GOAL] case h.succ ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.192981, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X : V n✝ : ℕ ⊢ Hom.f ((Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv) ≫ Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Nat.succ n✝) = Hom.f (𝟙 ((F ⋙ single₀ W).obj X)) (Nat.succ n✝) [PROOFSTEP] exact IsZero.eq_of_src (isZero_zero _) _ _ [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.192981, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X✝ Y✝ : V f : X✝ ⟶ Y✝ ⊢ (single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).map f ≫ ((fun X => Iso.mk (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv)) Y✝).hom = ((fun X => Iso.mk (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv)) X✝).hom ≫ (F ⋙ single₀ W).map f [PROOFSTEP] ext (_ | _) [GOAL] case h.zero ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.192981, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X✝ Y✝ : V f : X✝ ⟶ Y✝ ⊢ Hom.f ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).map f ≫ ((fun X => Iso.mk (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv)) Y✝).hom) Nat.zero = Hom.f (((fun X => Iso.mk (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv)) X✝).hom ≫ (F ⋙ single₀ W).map f) Nat.zero [PROOFSTEP] simp [GOAL] case h.succ ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.192981, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X✝ Y✝ : V f : X✝ ⟶ Y✝ n✝ : ℕ ⊢ Hom.f ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).map f ≫ ((fun X => Iso.mk (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv)) Y✝).hom) (Nat.succ n✝) = Hom.f (((fun X => Iso.mk (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv)) X✝).hom ≫ (F ⋙ single₀ W).map f) (Nat.succ n✝) [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.241808, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X : V ⊢ ((Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) ≫ Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv) = 𝟙 ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) [PROOFSTEP] ext (_ | _) [GOAL] case h.zero ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.241808, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X : V ⊢ Hom.f ((Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) ≫ Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv) Nat.zero = Hom.f (𝟙 ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X)) Nat.zero [PROOFSTEP] simp [GOAL] case h.succ ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.241808, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X : V n✝ : ℕ ⊢ Hom.f ((Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) ≫ Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv) (Nat.succ n✝) = Hom.f (𝟙 ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X)) (Nat.succ n✝) [PROOFSTEP] exact IsZero.eq_of_src (IsZero.of_iso (isZero_zero _) F.mapZeroObject) _ _ [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.241808, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X : V ⊢ ((Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv) ≫ Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) = 𝟙 ((F ⋙ single₀ W).obj X) [PROOFSTEP] ext (_ | _) [GOAL] case h.zero ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.241808, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X : V ⊢ Hom.f ((Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv) ≫ Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) Nat.zero = Hom.f (𝟙 ((F ⋙ single₀ W).obj X)) Nat.zero [PROOFSTEP] simp [GOAL] case h.succ ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.241808, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X : V n✝ : ℕ ⊢ Hom.f ((Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv) ≫ Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Nat.succ n✝) = Hom.f (𝟙 ((F ⋙ single₀ W).obj X)) (Nat.succ n✝) [PROOFSTEP] exact IsZero.eq_of_src (isZero_zero _) _ _ [GOAL] ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.241808, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X✝ Y✝ : V f : X✝ ⟶ Y✝ ⊢ (single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).map f ≫ ((fun X => Iso.mk (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv)) Y✝).hom = ((fun X => Iso.mk (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv)) X✝).hom ≫ (F ⋙ single₀ W).map f [PROOFSTEP] ext (_ | _) [GOAL] case h.zero ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.241808, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X✝ Y✝ : V f : X✝ ⟶ Y✝ ⊢ Hom.f ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).map f ≫ ((fun X => Iso.mk (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv)) Y✝).hom) Nat.zero = Hom.f (((fun X => Iso.mk (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv)) X✝).hom ≫ (F ⋙ single₀ W).map f) Nat.zero [PROOFSTEP] simp [GOAL] case h.succ ι : Type u_1 V : Type u inst✝⁶ : Category.{v, u} V inst✝⁵ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f✝ g : C ⟶ D h k : D ⟶ E i : ι inst✝⁴ : HasZeroObject V W : Type u_2 inst✝³ : Category.{?u.241808, u_2} W inst✝² : Preadditive W inst✝¹ : HasZeroObject W F : V ⥤ W inst✝ : Functor.Additive F X✝ Y✝ : V f : X✝ ⟶ Y✝ n✝ : ℕ ⊢ Hom.f ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).map f ≫ ((fun X => Iso.mk (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv)) Y✝).hom) (Nat.succ n✝) = Hom.f (((fun X => Iso.mk (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).hom) (Hom.mk fun i => match i with | 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0) | Nat.succ n => (Functor.mapZeroObject F).inv)) X✝).hom ≫ (F ⋙ single₀ W).map f) (Nat.succ n✝) [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Algebra.Homology.Additive", "llama_tokens": 27570}
[GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : NonUnitalSemiring A inst✝² : Module R A inst✝¹ : SMulCommClass R A A inst✝ : IsScalarTower R A A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A ⊢ MulActionHom.toFun { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) } 0 = 0 [PROOFSTEP] ext a [GOAL] case h R : Type u_1 A : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : NonUnitalSemiring A inst✝² : Module R A inst✝¹ : SMulCommClass R A A inst✝ : IsScalarTower R A A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A a : A ⊢ ↑(MulActionHom.toFun { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) } 0) a = ↑0 a [PROOFSTEP] exact zero_mul a [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : NonUnitalSemiring A inst✝² : Module R A inst✝¹ : SMulCommClass R A A inst✝ : IsScalarTower R A A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A ⊢ ∀ (x y : A), MulActionHom.toFun { toMulActionHom := { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }, map_zero' := (_ : MulActionHom.toFun { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) } 0 = 0), map_add' := (_ : ∀ (x y : A), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }, map_zero' := (_ : MulActionHom.toFun { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) } 0 = 0), map_add' := (_ : ∀ (x y : A), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }, map_zero' := (_ : MulActionHom.toFun { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) } 0 = 0), map_add' := (_ : ∀ (x y : A), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom y [PROOFSTEP] intro a b [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : NonUnitalSemiring A inst✝² : Module R A inst✝¹ : SMulCommClass R A A inst✝ : IsScalarTower R A A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A a b : A ⊢ MulActionHom.toFun { toMulActionHom := { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }, map_zero' := (_ : MulActionHom.toFun { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) } 0 = 0), map_add' := (_ : ∀ (x y : A), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom (a * b) = MulActionHom.toFun { toMulActionHom := { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }, map_zero' := (_ : MulActionHom.toFun { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) } 0 = 0), map_add' := (_ : ∀ (x y : A), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom a * MulActionHom.toFun { toMulActionHom := { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }, map_zero' := (_ : MulActionHom.toFun { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) } 0 = 0), map_add' := (_ : ∀ (x y : A), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom b [PROOFSTEP] ext c [GOAL] case h R : Type u_1 A : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : NonUnitalSemiring A inst✝² : Module R A inst✝¹ : SMulCommClass R A A inst✝ : IsScalarTower R A A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A a b c : A ⊢ ↑(MulActionHom.toFun { toMulActionHom := { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }, map_zero' := (_ : MulActionHom.toFun { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) } 0 = 0), map_add' := (_ : ∀ (x y : A), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom (a * b)) c = ↑(MulActionHom.toFun { toMulActionHom := { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }, map_zero' := (_ : MulActionHom.toFun { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) } 0 = 0), map_add' := (_ : ∀ (x y : A), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom a * MulActionHom.toFun { toMulActionHom := { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }, map_zero' := (_ : MulActionHom.toFun { toFun := src✝.toFun, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) } 0 = 0), map_add' := (_ : ∀ (x y : A), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom b) c [PROOFSTEP] exact mul_assoc a b c [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : NonUnitalSemiring A inst✝² : Module R A inst✝¹ : SMulCommClass R A A inst✝ : IsScalarTower R A A a b : A ⊢ Commute (mulLeft R a) (mulRight R b) [PROOFSTEP] ext c [GOAL] case h R : Type u_1 A : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : NonUnitalSemiring A inst✝² : Module R A inst✝¹ : SMulCommClass R A A inst✝ : IsScalarTower R A A a b c : A ⊢ ↑(mulLeft R a * mulRight R b) c = ↑(mulRight R b * mulLeft R a) c [PROOFSTEP] exact (mul_assoc a c b).symm [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : NonUnitalSemiring A inst✝² : Module R A inst✝¹ : SMulCommClass R A A inst✝ : IsScalarTower R A A a b : A ⊢ mulLeft R (a * b) = comp (mulLeft R a) (mulLeft R b) [PROOFSTEP] ext [GOAL] case h R : Type u_1 A : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : NonUnitalSemiring A inst✝² : Module R A inst✝¹ : SMulCommClass R A A inst✝ : IsScalarTower R A A a b x✝ : A ⊢ ↑(mulLeft R (a * b)) x✝ = ↑(comp (mulLeft R a) (mulLeft R b)) x✝ [PROOFSTEP] simp only [mulLeft_apply, comp_apply, mul_assoc] [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : NonUnitalSemiring A inst✝² : Module R A inst✝¹ : SMulCommClass R A A inst✝ : IsScalarTower R A A a b : A ⊢ mulRight R (a * b) = comp (mulRight R b) (mulRight R a) [PROOFSTEP] ext [GOAL] case h R : Type u_1 A : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : NonUnitalSemiring A inst✝² : Module R A inst✝¹ : SMulCommClass R A A inst✝ : IsScalarTower R A A a b x✝ : A ⊢ ↑(mulRight R (a * b)) x✝ = ↑(comp (mulRight R b) (mulRight R a)) x✝ [PROOFSTEP] simp only [mulRight_apply, comp_apply, mul_assoc] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A ⊢ AddHom.toFun src✝.toAddHom 1 = 1 [PROOFSTEP] ext a [GOAL] case h R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A a : A ⊢ ↑(AddHom.toFun src✝.toAddHom 1) a = ↑1 a [PROOFSTEP] exact one_mul a [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A ⊢ ∀ (x y : A), OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (x * y) = OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } x * OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } y [PROOFSTEP] intro a b [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A a b : A ⊢ OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b) = OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a * OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b [PROOFSTEP] ext c [GOAL] case h R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A a b c : A ⊢ ↑(OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b)) c = ↑(OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a * OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) c [PROOFSTEP] exact mul_assoc a b c [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A ⊢ OneHom.toFun (↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b) = OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a * OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) }) 0 = 0 [PROOFSTEP] ext a [GOAL] case h R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A a : A ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b) = OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a * OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) }) 0) a = ↑0 a [PROOFSTEP] exact zero_mul a [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A ⊢ ∀ (r : R), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b) = OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a * OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b) = OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a * OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) }) 0 = 0), map_add' := (_ : ∀ (x y : A), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }) (↑(algebraMap R A) r) = ↑(algebraMap R (End R A)) r [PROOFSTEP] intro r [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A r : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b) = OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a * OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b) = OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a * OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) }) 0 = 0), map_add' := (_ : ∀ (x y : A), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }) (↑(algebraMap R A) r) = ↑(algebraMap R (End R A)) r [PROOFSTEP] ext a [GOAL] case h R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A src✝ : A →ₗ[R] A →ₗ[R] A := mul R A r : R a : A ⊢ ↑(OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b) = OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a * OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }, map_mul' := (_ : ∀ (a b : A), OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b) = OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a * OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) }) 0 = 0), map_add' := (_ : ∀ (x y : A), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }) (↑(algebraMap R A) r)) a = ↑(↑(algebraMap R (End R A)) r) a [PROOFSTEP] exact (Algebra.smul_def r a).symm [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A ⊢ mulLeft R a = 0 ↔ a = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A ⊢ mulLeft R a = 0 → a = 0 [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A ⊢ a = 0 → mulLeft R a = 0 [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A h : mulLeft R a = 0 ⊢ a = 0 [PROOFSTEP] rw [← mul_one a, ← @mulLeft_apply R _ _ _ _ _ _ a 1, h, LinearMap.zero_apply] [GOAL] case mpr R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A h : a = 0 ⊢ mulLeft R a = 0 [PROOFSTEP] rw [h] [GOAL] case mpr R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A h : a = 0 ⊢ mulLeft R 0 = 0 [PROOFSTEP] exact mulLeft_zero_eq_zero [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A ⊢ mulRight R a = 0 ↔ a = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A ⊢ mulRight R a = 0 → a = 0 [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A ⊢ a = 0 → mulRight R a = 0 [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A h : mulRight R a = 0 ⊢ a = 0 [PROOFSTEP] rw [← one_mul a, ← @mulRight_apply R _ _ _ _ _ _ a 1, h, LinearMap.zero_apply] [GOAL] case mpr R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A h : a = 0 ⊢ mulRight R a = 0 [PROOFSTEP] rw [h] [GOAL] case mpr R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A h : a = 0 ⊢ mulRight R 0 = 0 [PROOFSTEP] exact mulRight_zero_eq_zero [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A ⊢ mulLeft R 1 = id [PROOFSTEP] ext [GOAL] case h R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A x✝ : A ⊢ ↑(mulLeft R 1) x✝ = ↑id x✝ [PROOFSTEP] simp only [LinearMap.id_coe, one_mul, id.def, mulLeft_apply] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A ⊢ mulRight R 1 = id [PROOFSTEP] ext [GOAL] case h R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A x✝ : A ⊢ ↑(mulRight R 1) x✝ = ↑id x✝ [PROOFSTEP] simp only [LinearMap.id_coe, mul_one, id.def, mulRight_apply] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A n : ℕ ⊢ mulLeft R a ^ n = mulLeft R (a ^ n) [PROOFSTEP] simpa only [mulLeft, ← Algebra.coe_lmul_eq_mul] using ((Algebra.lmul R A).map_pow a n).symm [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A n : ℕ ⊢ mulRight R a ^ n = mulRight R (a ^ n) [PROOFSTEP] simp only [mulRight, ← Algebra.coe_lmul_eq_mul] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A n : ℕ ⊢ ↑(flip (mul R A)) a ^ n = ↑(flip (mul R A)) (a ^ n) [PROOFSTEP] exact LinearMap.coe_injective (((mulRight R a).coe_pow n).symm ▸ mul_right_iterate a n) [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : NoZeroDivisors A x : A hx : x ≠ 0 ⊢ Function.Injective ↑(mulLeft R x) [PROOFSTEP] letI : Nontrivial A := ⟨⟨x, 0, hx⟩⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : NoZeroDivisors A x : A hx : x ≠ 0 this : Nontrivial A := { exists_pair_ne := Exists.intro x (Exists.intro 0 hx) } ⊢ Function.Injective ↑(mulLeft R x) [PROOFSTEP] letI := NoZeroDivisors.to_isDomain A [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : NoZeroDivisors A x : A hx : x ≠ 0 this✝ : Nontrivial A := { exists_pair_ne := Exists.intro x (Exists.intro 0 hx) } this : IsDomain A := NoZeroDivisors.to_isDomain A ⊢ Function.Injective ↑(mulLeft R x) [PROOFSTEP] exact mul_right_injective₀ hx [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : NoZeroDivisors A x : A hx : x ≠ 0 ⊢ Function.Injective ↑(mulRight R x) [PROOFSTEP] letI : Nontrivial A := ⟨⟨x, 0, hx⟩⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : NoZeroDivisors A x : A hx : x ≠ 0 this : Nontrivial A := { exists_pair_ne := Exists.intro x (Exists.intro 0 hx) } ⊢ Function.Injective ↑(mulRight R x) [PROOFSTEP] letI := NoZeroDivisors.to_isDomain A [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : NoZeroDivisors A x : A hx : x ≠ 0 this✝ : Nontrivial A := { exists_pair_ne := Exists.intro x (Exists.intro 0 hx) } this : IsDomain A := NoZeroDivisors.to_isDomain A ⊢ Function.Injective ↑(mulRight R x) [PROOFSTEP] exact mul_left_injective₀ hx [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : NoZeroDivisors A x : A hx : x ≠ 0 ⊢ Function.Injective ↑(↑(mul R A) x) [PROOFSTEP] letI : Nontrivial A := ⟨⟨x, 0, hx⟩⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : NoZeroDivisors A x : A hx : x ≠ 0 this : Nontrivial A := { exists_pair_ne := Exists.intro x (Exists.intro 0 hx) } ⊢ Function.Injective ↑(↑(mul R A) x) [PROOFSTEP] letI := NoZeroDivisors.to_isDomain A [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : NoZeroDivisors A x : A hx : x ≠ 0 this✝ : Nontrivial A := { exists_pair_ne := Exists.intro x (Exists.intro 0 hx) } this : IsDomain A := NoZeroDivisors.to_isDomain A ⊢ Function.Injective ↑(↑(mul R A) x) [PROOFSTEP] exact mul_right_injective₀ hx
{"mathlib_filename": "Mathlib.Algebra.Algebra.Bilinear", "llama_tokens": 11347}
{"mathlib_filename": "Mathlib.Algebra.Module.Opposites", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Algebra.Module.Algebra", "llama_tokens": 0}
[GOAL] K : Type u_1 ι : Type u_2 R : ι → Type u_3 inst✝ : (i : ι) → SMul K (R i) r : K s : Set ι t : (i : ι) → Set (R i) ⊢ r • pi s t ⊆ pi s (r • t) [PROOFSTEP] rintro x ⟨y, h, rfl⟩ i hi [GOAL] case intro.intro K : Type u_1 ι : Type u_2 R : ι → Type u_3 inst✝ : (i : ι) → SMul K (R i) r : K s : Set ι t : (i : ι) → Set (R i) y : (i : ι) → R i h : y ∈ pi s t i : ι hi : i ∈ s ⊢ (fun x => r • x) y i ∈ (r • t) i [PROOFSTEP] exact smul_mem_smul_set (h i hi) [GOAL] K : Type u_1 ι : Type u_2 R : ι → Type u_3 inst✝ : (i : ι) → SMul K (R i) r : K t : (i : ι) → Set (R i) x : (i : ι) → R i h : x ∈ pi univ (r • t) ⊢ x ∈ r • pi univ t [PROOFSTEP] refine' ⟨fun i ↦ Classical.choose (h i <| Set.mem_univ _), fun i _ ↦ _, funext fun i ↦ _⟩ [GOAL] case refine'_1 K : Type u_1 ι : Type u_2 R : ι → Type u_3 inst✝ : (i : ι) → SMul K (R i) r : K t : (i : ι) → Set (R i) x : (i : ι) → R i h : x ∈ pi univ (r • t) i : ι x✝ : i ∈ univ ⊢ (fun i => Classical.choose (_ : x i ∈ (r • t) i)) i ∈ t i [PROOFSTEP] exact (Classical.choose_spec (h i <| Set.mem_univ i)).left [GOAL] case refine'_2 K : Type u_1 ι : Type u_2 R : ι → Type u_3 inst✝ : (i : ι) → SMul K (R i) r : K t : (i : ι) → Set (R i) x : (i : ι) → R i h : x ∈ pi univ (r • t) i : ι ⊢ (fun x => r • x) (fun i => Classical.choose (_ : x i ∈ (r • t) i)) i = x i [PROOFSTEP] exact (Classical.choose_spec (h i <| Set.mem_univ i)).right
{"mathlib_filename": "Mathlib.Algebra.Module.PointwisePi", "llama_tokens": 773}
[GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A S T : Subalgebra R A ⊢ ↑toSubmodule S * ↑toSubmodule T ≤ ↑toSubmodule (S ⊔ T) [PROOFSTEP] rw [Submodule.mul_le] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A S T : Subalgebra R A ⊢ ∀ (m : A), m ∈ ↑toSubmodule S → ∀ (n : A), n ∈ ↑toSubmodule T → m * n ∈ ↑toSubmodule (S ⊔ T) [PROOFSTEP] intro y hy z hz [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A S T : Subalgebra R A y : A hy : y ∈ ↑toSubmodule S z : A hz : z ∈ ↑toSubmodule T ⊢ y * z ∈ ↑toSubmodule (S ⊔ T) [PROOFSTEP] show y * z ∈ S ⊔ T [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A S T : Subalgebra R A y : A hy : y ∈ ↑toSubmodule S z : A hz : z ∈ ↑toSubmodule T ⊢ y * z ∈ S ⊔ T [PROOFSTEP] exact mul_mem (Algebra.mem_sup_left hy) (Algebra.mem_sup_right hz) [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A S : Subalgebra R A ⊢ ↑toSubmodule S * ↑toSubmodule S = ↑toSubmodule S [PROOFSTEP] apply le_antisymm [GOAL] case a R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A S : Subalgebra R A ⊢ ↑toSubmodule S * ↑toSubmodule S ≤ ↑toSubmodule S [PROOFSTEP] refine' (mul_toSubmodule_le _ _).trans_eq _ [GOAL] case a R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A S : Subalgebra R A ⊢ ↑toSubmodule (S ⊔ S) = ↑toSubmodule S [PROOFSTEP] rw [sup_idem] [GOAL] case a R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A S : Subalgebra R A ⊢ ↑toSubmodule S ≤ ↑toSubmodule S * ↑toSubmodule S [PROOFSTEP] intro x hx1 [GOAL] case a R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A S : Subalgebra R A x : A hx1 : x ∈ ↑toSubmodule S ⊢ x ∈ ↑toSubmodule S * ↑toSubmodule S [PROOFSTEP] rw [← mul_one x] [GOAL] case a R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A S : Subalgebra R A x : A hx1 : x ∈ ↑toSubmodule S ⊢ x * 1 ∈ ↑toSubmodule S * ↑toSubmodule S [PROOFSTEP] exact Submodule.mul_mem_mul hx1 (show (1 : A) ∈ S from one_mem S) [GOAL] R✝ : Type u_1 A✝ : Type u_2 inst✝⁵ : CommSemiring R✝ inst✝⁴ : Semiring A✝ inst✝³ : Algebra R✝ A✝ R : Type u_3 A : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S T : Subalgebra R A ⊢ ↑toSubmodule S * ↑toSubmodule T = ↑toSubmodule (S ⊔ T) [PROOFSTEP] refine' le_antisymm (mul_toSubmodule_le _ _) _ [GOAL] R✝ : Type u_1 A✝ : Type u_2 inst✝⁵ : CommSemiring R✝ inst✝⁴ : Semiring A✝ inst✝³ : Algebra R✝ A✝ R : Type u_3 A : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S T : Subalgebra R A ⊢ ↑toSubmodule (S ⊔ T) ≤ ↑toSubmodule S * ↑toSubmodule T [PROOFSTEP] rintro x (hx : x ∈ Algebra.adjoin R (S ∪ T : Set A)) [GOAL] R✝ : Type u_1 A✝ : Type u_2 inst✝⁵ : CommSemiring R✝ inst✝⁴ : Semiring A✝ inst✝³ : Algebra R✝ A✝ R : Type u_3 A : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S T : Subalgebra R A x : A hx : x ∈ Algebra.adjoin R (↑S ∪ ↑T) ⊢ x ∈ ↑toSubmodule S * ↑toSubmodule T [PROOFSTEP] refine' Algebra.adjoin_induction hx (fun x hx => _) (fun r => _) (fun _ _ => Submodule.add_mem _) fun x y hx hy => _ [GOAL] case refine'_1 R✝ : Type u_1 A✝ : Type u_2 inst✝⁵ : CommSemiring R✝ inst✝⁴ : Semiring A✝ inst✝³ : Algebra R✝ A✝ R : Type u_3 A : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S T : Subalgebra R A x✝ : A hx✝ : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T) x : A hx : x ∈ ↑S ∪ ↑T ⊢ x ∈ ↑toSubmodule S * ↑toSubmodule T [PROOFSTEP] cases' hx with hxS hxT [GOAL] case refine'_1.inl R✝ : Type u_1 A✝ : Type u_2 inst✝⁵ : CommSemiring R✝ inst✝⁴ : Semiring A✝ inst✝³ : Algebra R✝ A✝ R : Type u_3 A : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S T : Subalgebra R A x✝ : A hx : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T) x : A hxS : x ∈ ↑S ⊢ x ∈ ↑toSubmodule S * ↑toSubmodule T [PROOFSTEP] rw [← mul_one x] [GOAL] case refine'_1.inl R✝ : Type u_1 A✝ : Type u_2 inst✝⁵ : CommSemiring R✝ inst✝⁴ : Semiring A✝ inst✝³ : Algebra R✝ A✝ R : Type u_3 A : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S T : Subalgebra R A x✝ : A hx : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T) x : A hxS : x ∈ ↑S ⊢ x * 1 ∈ ↑toSubmodule S * ↑toSubmodule T [PROOFSTEP] exact Submodule.mul_mem_mul hxS (show (1 : A) ∈ T from one_mem T) [GOAL] case refine'_1.inr R✝ : Type u_1 A✝ : Type u_2 inst✝⁵ : CommSemiring R✝ inst✝⁴ : Semiring A✝ inst✝³ : Algebra R✝ A✝ R : Type u_3 A : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S T : Subalgebra R A x✝ : A hx : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T) x : A hxT : x ∈ ↑T ⊢ x ∈ ↑toSubmodule S * ↑toSubmodule T [PROOFSTEP] rw [← one_mul x] [GOAL] case refine'_1.inr R✝ : Type u_1 A✝ : Type u_2 inst✝⁵ : CommSemiring R✝ inst✝⁴ : Semiring A✝ inst✝³ : Algebra R✝ A✝ R : Type u_3 A : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S T : Subalgebra R A x✝ : A hx : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T) x : A hxT : x ∈ ↑T ⊢ 1 * x ∈ ↑toSubmodule S * ↑toSubmodule T [PROOFSTEP] exact Submodule.mul_mem_mul (show (1 : A) ∈ S from one_mem S) hxT [GOAL] case refine'_2 R✝ : Type u_1 A✝ : Type u_2 inst✝⁵ : CommSemiring R✝ inst✝⁴ : Semiring A✝ inst✝³ : Algebra R✝ A✝ R : Type u_3 A : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S T : Subalgebra R A x : A hx : x ∈ Algebra.adjoin R (↑S ∪ ↑T) r : R ⊢ ↑(algebraMap R A) r ∈ ↑toSubmodule S * ↑toSubmodule T [PROOFSTEP] rw [← one_mul (algebraMap _ _ _)] [GOAL] case refine'_2 R✝ : Type u_1 A✝ : Type u_2 inst✝⁵ : CommSemiring R✝ inst✝⁴ : Semiring A✝ inst✝³ : Algebra R✝ A✝ R : Type u_3 A : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S T : Subalgebra R A x : A hx : x ∈ Algebra.adjoin R (↑S ∪ ↑T) r : R ⊢ 1 * ↑(algebraMap R A) r ∈ ↑toSubmodule S * ↑toSubmodule T [PROOFSTEP] exact Submodule.mul_mem_mul (show (1 : A) ∈ S from one_mem S) (algebraMap_mem T _) [GOAL] case refine'_3 R✝ : Type u_1 A✝ : Type u_2 inst✝⁵ : CommSemiring R✝ inst✝⁴ : Semiring A✝ inst✝³ : Algebra R✝ A✝ R : Type u_3 A : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S T : Subalgebra R A x✝ : A hx✝ : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T) x y : A hx : x ∈ ↑toSubmodule S * ↑toSubmodule T hy : y ∈ ↑toSubmodule S * ↑toSubmodule T ⊢ x * y ∈ ↑toSubmodule S * ↑toSubmodule T [PROOFSTEP] have := Submodule.mul_mem_mul hx hy [GOAL] case refine'_3 R✝ : Type u_1 A✝ : Type u_2 inst✝⁵ : CommSemiring R✝ inst✝⁴ : Semiring A✝ inst✝³ : Algebra R✝ A✝ R : Type u_3 A : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S T : Subalgebra R A x✝ : A hx✝ : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T) x y : A hx : x ∈ ↑toSubmodule S * ↑toSubmodule T hy : y ∈ ↑toSubmodule S * ↑toSubmodule T this : x * y ∈ ↑toSubmodule S * ↑toSubmodule T * (↑toSubmodule S * ↑toSubmodule T) ⊢ x * y ∈ ↑toSubmodule S * ↑toSubmodule T [PROOFSTEP] rwa [mul_assoc, mul_comm _ (Subalgebra.toSubmodule T), ← mul_assoc _ _ (Subalgebra.toSubmodule S), mul_self, mul_comm (Subalgebra.toSubmodule T), ← mul_assoc, mul_self] at this
{"mathlib_filename": "Mathlib.Algebra.Algebra.Subalgebra.Pointwise", "llama_tokens": 3875}
[GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Algebra R S inst✝⁵ : Algebra S A inst✝⁴ : Algebra R A inst✝³ : Algebra S B inst✝² : Algebra R B inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S B U : Subalgebra S A x : R ⊢ ↑(algebraMap R A) x ∈ U.carrier [PROOFSTEP] rw [algebraMap_apply R S A] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Algebra R S inst✝⁵ : Algebra S A inst✝⁴ : Algebra R A inst✝³ : Algebra S B inst✝² : Algebra R B inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S B U : Subalgebra S A x : R ⊢ ↑(algebraMap S A) (↑(algebraMap R S) x) ∈ U.carrier [PROOFSTEP] exact U.algebraMap_mem _ [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Algebra R S inst✝⁵ : Algebra S A inst✝⁴ : Algebra R A inst✝³ : Algebra S B inst✝² : Algebra R B inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S B ⊢ ↑(restrictScalars R ⊤) = ↑⊤ [PROOFSTEP] dsimp -- porting note: why does `rfl` not work instead of `by dsimp`? [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Algebra R S inst✝⁵ : Algebra S A inst✝⁴ : Algebra R A inst✝³ : Algebra S B inst✝² : Algebra R B inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S B U V : Subalgebra S A H : restrictScalars R U = restrictScalars R V x : A ⊢ x ∈ U ↔ x ∈ V [PROOFSTEP] rw [← mem_restrictScalars R, H, mem_restrictScalars] [GOAL] R : Type u S✝ : Type v A : Type w B : Type u₁ M : Type v₁ inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S : Subalgebra R A ⊢ LinearMap.range (toAlgHom R { x // x ∈ S } A) = ↑toSubmodule S [PROOFSTEP] ext [GOAL] case h R : Type u S✝ : Type v A : Type w B : Type u₁ M : Type v₁ inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S : Subalgebra R A x✝ : A ⊢ x✝ ∈ LinearMap.range (toAlgHom R { x // x ∈ S } A) ↔ x✝ ∈ ↑toSubmodule S [PROOFSTEP] simp only [← Submodule.range_subtype (Subalgebra.toSubmodule S), LinearMap.mem_range, IsScalarTower.coe_toAlgHom', Subalgebra.mem_toSubmodule] [GOAL] case h R : Type u S✝ : Type v A : Type w B : Type u₁ M : Type v₁ inst✝² : CommSemiring R inst✝¹ : CommSemiring A inst✝ : Algebra R A S : Subalgebra R A x✝ : A ⊢ (∃ y, ↑(algebraMap { x // x ∈ S } A) y = x✝) ↔ ∃ y, ↑(Submodule.subtype (↑toSubmodule S)) y = x✝ [PROOFSTEP] rfl [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring S inst✝⁴ : CommSemiring A inst✝³ : Algebra R S inst✝² : Algebra S A inst✝¹ : Algebra R A inst✝ : IsScalarTower R S A t : Set A z : A ⊢ z ∈ Subsemiring.closure (Set.range ↑(algebraMap { x // x ∈ AlgHom.range (toAlgHom R S A) } A) ∪ t) ↔ z ∈ Subsemiring.closure (Set.range ↑(algebraMap S A) ∪ t) [PROOFSTEP] suffices Set.range (algebraMap (toAlgHom R S A).range A) = Set.range (algebraMap S A) by rw [this] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring S inst✝⁴ : CommSemiring A inst✝³ : Algebra R S inst✝² : Algebra S A inst✝¹ : Algebra R A inst✝ : IsScalarTower R S A t : Set A z : A this : Set.range ↑(algebraMap { x // x ∈ AlgHom.range (toAlgHom R S A) } A) = Set.range ↑(algebraMap S A) ⊢ z ∈ Subsemiring.closure (Set.range ↑(algebraMap { x // x ∈ AlgHom.range (toAlgHom R S A) } A) ∪ t) ↔ z ∈ Subsemiring.closure (Set.range ↑(algebraMap S A) ∪ t) [PROOFSTEP] rw [this] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring S inst✝⁴ : CommSemiring A inst✝³ : Algebra R S inst✝² : Algebra S A inst✝¹ : Algebra R A inst✝ : IsScalarTower R S A t : Set A z : A ⊢ Set.range ↑(algebraMap { x // x ∈ AlgHom.range (toAlgHom R S A) } A) = Set.range ↑(algebraMap S A) [PROOFSTEP] ext z [GOAL] case h R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring S inst✝⁴ : CommSemiring A inst✝³ : Algebra R S inst✝² : Algebra S A inst✝¹ : Algebra R A inst✝ : IsScalarTower R S A t : Set A z✝ z : A ⊢ z ∈ Set.range ↑(algebraMap { x // x ∈ AlgHom.range (toAlgHom R S A) } A) ↔ z ∈ Set.range ↑(algebraMap S A) [PROOFSTEP] exact ⟨fun ⟨⟨_, y, h1⟩, h2⟩ ↦ ⟨y, h2 ▸ h1⟩, fun ⟨y, hy⟩ ↦ ⟨⟨z, y, hy⟩, rfl⟩⟩
{"mathlib_filename": "Mathlib.Algebra.Algebra.Subalgebra.Tower", "llama_tokens": 2200}
[GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁵ : CommSemiring R inst✝⁴ : Semiring A inst✝³ : Algebra R A inst✝² : SMul R M inst✝¹ : MulAction A M inst✝ : IsScalarTower R A M r : R x : M ⊢ ↑(algebraMap R A) r • x = r • x [PROOFSTEP] rw [Algebra.algebraMap_eq_smul_one, smul_assoc, one_smul] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁷ : CommSemiring R inst✝⁶ : CommSemiring S inst✝⁵ : Semiring A inst✝⁴ : Semiring B inst✝³ : Algebra R S inst✝² : Algebra S A inst✝¹ : Algebra S B inst✝ : Algebra R A h : ∀ (x : R), ↑(algebraMap R A) x = ↑(algebraMap S A) (↑(algebraMap R S) x) x : R y : S z : A ⊢ (x • y) • z = x • y • z [PROOFSTEP] simp_rw [Algebra.smul_def, RingHom.map_mul, mul_assoc, h] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Algebra R S inst✝⁵ : Algebra S A inst✝⁴ : Algebra S B inst✝³ : Algebra R A inst✝² : Algebra R B inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S B x : R ⊢ ↑(algebraMap R A) x = ↑(RingHom.comp (algebraMap S A) (algebraMap R S)) x [PROOFSTEP] simp_rw [RingHom.comp_apply, Algebra.algebraMap_eq_smul_one, smul_assoc, one_smul] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Algebra R S inst✝⁵ : Algebra S A inst✝⁴ : Algebra S B inst✝³ : Algebra R A inst✝² : Algebra R B inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S B x : R ⊢ ↑(algebraMap R A) x = ↑(algebraMap S A) (↑(algebraMap R S) x) [PROOFSTEP] rw [algebraMap_eq R S A, RingHom.comp_apply] [GOAL] R : Type u S✝ : Type v A✝ : Type w B : Type u₁ M : Type v₁ inst✝¹² : CommSemiring R inst✝¹¹ : CommSemiring S✝ inst✝¹⁰ : Semiring A✝ inst✝⁹ : Semiring B inst✝⁸ : Algebra R S✝ inst✝⁷ : Algebra S✝ A✝ inst✝⁶ : Algebra S✝ B inst✝⁵ : Algebra R A✝ inst✝⁴ : Algebra R B inst✝³ : IsScalarTower R S✝ A✝ inst✝² : IsScalarTower R S✝ B S : Type u A : Type v inst✝¹ : CommSemiring S inst✝ : Semiring A h1 h2 : Algebra S A r : S x : A ⊢ A [PROOFSTEP] have I := h1 [GOAL] R : Type u S✝ : Type v A✝ : Type w B : Type u₁ M : Type v₁ inst✝¹² : CommSemiring R inst✝¹¹ : CommSemiring S✝ inst✝¹⁰ : Semiring A✝ inst✝⁹ : Semiring B inst✝⁸ : Algebra R S✝ inst✝⁷ : Algebra S✝ A✝ inst✝⁶ : Algebra S✝ B inst✝⁵ : Algebra R A✝ inst✝⁴ : Algebra R B inst✝³ : IsScalarTower R S✝ A✝ inst✝² : IsScalarTower R S✝ B S : Type u A : Type v inst✝¹ : CommSemiring S inst✝ : Semiring A h1 h2 : Algebra S A r : S x : A I : Algebra S A ⊢ A [PROOFSTEP] exact r • x [GOAL] R : Type u S✝ : Type v A✝ : Type w B : Type u₁ M : Type v₁ inst✝¹² : CommSemiring R inst✝¹¹ : CommSemiring S✝ inst✝¹⁰ : Semiring A✝ inst✝⁹ : Semiring B inst✝⁸ : Algebra R S✝ inst✝⁷ : Algebra S✝ A✝ inst✝⁶ : Algebra S✝ B inst✝⁵ : Algebra R A✝ inst✝⁴ : Algebra R B inst✝³ : IsScalarTower R S✝ A✝ inst✝² : IsScalarTower R S✝ B S : Type u A : Type v inst✝¹ : CommSemiring S inst✝ : Semiring A h1 h2 : Algebra S A h : ∀ (r : S) (x : A), (let_fun I := h1; r • x) = r • x r : S ⊢ ↑(algebraMap S A) r = ↑(algebraMap S A) r [PROOFSTEP] simpa only [@Algebra.smul_def _ _ _ _ h1, @Algebra.smul_def _ _ _ _ h2, mul_one] using h r 1 [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Algebra R S inst✝⁵ : Algebra S A inst✝⁴ : Algebra S B inst✝³ : Algebra R A inst✝² : Algebra R B inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S B f : A →ₐ[S] B r : R ⊢ ↑f (↑(algebraMap R A) r) = ↑(algebraMap R B) r [PROOFSTEP] rw [algebraMap_apply R S A r, f.commutes, ← algebraMap_apply R S B] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Algebra R S inst✝⁵ : Algebra S A inst✝⁴ : Algebra S B inst✝³ : Algebra R A inst✝² : Algebra R B inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S B f : A →ₐ[S] B src✝ : A →+* B := ↑f r : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap R A) r) = ↑(algebraMap R B) r [PROOFSTEP] rw [algebraMap_apply R S A, algebraMap_apply R S B] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Algebra R S inst✝⁵ : Algebra S A inst✝⁴ : Algebra S B inst✝³ : Algebra R A inst✝² : Algebra R B inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S B f : A →ₐ[S] B src✝ : A →+* B := ↑f r : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap S A) (↑(algebraMap R S) r)) = ↑(algebraMap S B) (↑(algebraMap R S) r) [PROOFSTEP] exact f.commutes (algebraMap R S r) [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Algebra R S inst✝⁵ : Algebra S A inst✝⁴ : Algebra S B inst✝³ : Algebra R A inst✝² : Algebra R B inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S B f : A ≃ₐ[S] B src✝ : A ≃+* B := ↑f r : R ⊢ Equiv.toFun src✝.toEquiv (↑(algebraMap R A) r) = ↑(algebraMap R B) r [PROOFSTEP] rw [algebraMap_apply R S A, algebraMap_apply R S B] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring S inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Algebra R S inst✝⁵ : Algebra S A inst✝⁴ : Algebra S B inst✝³ : Algebra R A inst✝² : Algebra R B inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S B f : A ≃ₐ[S] B src✝ : A ≃+* B := ↑f r : R ⊢ Equiv.toFun src✝.toEquiv (↑(algebraMap S A) (↑(algebraMap R S) r)) = ↑(algebraMap S B) (↑(algebraMap R S) r) [PROOFSTEP] exact f.commutes (algebraMap R S r) [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Module A M inst✝ : IsScalarTower R A M hsur : Function.Surjective ↑(algebraMap R A) X : Set M ⊢ restrictScalars R (span A X) = span R X [PROOFSTEP] refine' ((span_le_restrictScalars R A X).antisymm fun m hm => _).symm [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Module A M inst✝ : IsScalarTower R A M hsur : Function.Surjective ↑(algebraMap R A) X : Set M m : M hm : m ∈ restrictScalars R (span A X) ⊢ m ∈ span R X [PROOFSTEP] refine' span_induction hm subset_span (zero_mem _) (fun _ _ => add_mem) fun a m hm => _ [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Module A M inst✝ : IsScalarTower R A M hsur : Function.Surjective ↑(algebraMap R A) X : Set M m✝ : M hm✝ : m✝ ∈ restrictScalars R (span A X) a : A m : M hm : m ∈ span R X ⊢ a • m ∈ span R X [PROOFSTEP] obtain ⟨r, rfl⟩ := hsur a [GOAL] case intro R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Algebra R A inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Module A M inst✝ : IsScalarTower R A M hsur : Function.Surjective ↑(algebraMap R A) X : Set M m✝ : M hm✝ : m✝ ∈ restrictScalars R (span A X) m : M hm : m ∈ span R X r : R ⊢ ↑(algebraMap R A) r • m ∈ span R X [PROOFSTEP] simpa [algebraMap_smul] using smul_mem _ r hm [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : Semiring R inst✝⁵ : Semiring S inst✝⁴ : AddCommMonoid A inst✝³ : Module R S inst✝² : Module S A inst✝¹ : Module R A inst✝ : IsScalarTower R S A s : Set S t : Set A k : S hks : k ∈ span R s x : A hx : x ∈ t ⊢ 0 • x ∈ span R (s • t) [PROOFSTEP] rw [zero_smul] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : Semiring R inst✝⁵ : Semiring S inst✝⁴ : AddCommMonoid A inst✝³ : Module R S inst✝² : Module S A inst✝¹ : Module R A inst✝ : IsScalarTower R S A s : Set S t : Set A k : S hks : k ∈ span R s x : A hx : x ∈ t ⊢ 0 ∈ span R (s • t) [PROOFSTEP] exact zero_mem _ [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : Semiring R inst✝⁵ : Semiring S inst✝⁴ : AddCommMonoid A inst✝³ : Module R S inst✝² : Module S A inst✝¹ : Module R A inst✝ : IsScalarTower R S A s : Set S t : Set A k : S hks : k ∈ span R s x : A hx : x ∈ t c₁ c₂ : S ih₁ : c₁ • x ∈ span R (s • t) ih₂ : c₂ • x ∈ span R (s • t) ⊢ (c₁ + c₂) • x ∈ span R (s • t) [PROOFSTEP] rw [add_smul] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : Semiring R inst✝⁵ : Semiring S inst✝⁴ : AddCommMonoid A inst✝³ : Module R S inst✝² : Module S A inst✝¹ : Module R A inst✝ : IsScalarTower R S A s : Set S t : Set A k : S hks : k ∈ span R s x : A hx : x ∈ t c₁ c₂ : S ih₁ : c₁ • x ∈ span R (s • t) ih₂ : c₂ • x ∈ span R (s • t) ⊢ c₁ • x + c₂ • x ∈ span R (s • t) [PROOFSTEP] exact add_mem ih₁ ih₂ [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : Semiring R inst✝⁵ : Semiring S inst✝⁴ : AddCommMonoid A inst✝³ : Module R S inst✝² : Module S A inst✝¹ : Module R A inst✝ : IsScalarTower R S A s : Set S t : Set A k : S hks : k ∈ span R s x : A hx : x ∈ t b : R c : S hc : c • x ∈ span R (s • t) ⊢ (b • c) • x ∈ span R (s • t) [PROOFSTEP] rw [IsScalarTower.smul_assoc] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁶ : Semiring R inst✝⁵ : Semiring S inst✝⁴ : AddCommMonoid A inst✝³ : Module R S inst✝² : Module S A inst✝¹ : Module R A inst✝ : IsScalarTower R S A s : Set S t : Set A k : S hks : k ∈ span R s x : A hx : x ∈ t b : R c : S hc : c • x ∈ span R (s • t) ⊢ b • c • x ∈ span R (s • t) [PROOFSTEP] exact smul_mem _ _ hc [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R S inst✝³ : Module S A inst✝² : Module R A inst✝¹ : IsScalarTower R S A inst✝ : SMulCommClass R S A s : Set S hs : span R s = ⊤ t : Set A k : S x : A hx : x ∈ span R t ⊢ k • 0 ∈ span R (s • t) [PROOFSTEP] rw [smul_zero] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R S inst✝³ : Module S A inst✝² : Module R A inst✝¹ : IsScalarTower R S A inst✝ : SMulCommClass R S A s : Set S hs : span R s = ⊤ t : Set A k : S x : A hx : x ∈ span R t ⊢ 0 ∈ span R (s • t) [PROOFSTEP] exact zero_mem _ [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R S inst✝³ : Module S A inst✝² : Module R A inst✝¹ : IsScalarTower R S A inst✝ : SMulCommClass R S A s : Set S hs : span R s = ⊤ t : Set A k : S x✝ : A hx : x✝ ∈ span R t x y : A ihx : k • x ∈ span R (s • t) ihy : k • y ∈ span R (s • t) ⊢ k • (x + y) ∈ span R (s • t) [PROOFSTEP] rw [smul_add] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R S inst✝³ : Module S A inst✝² : Module R A inst✝¹ : IsScalarTower R S A inst✝ : SMulCommClass R S A s : Set S hs : span R s = ⊤ t : Set A k : S x✝ : A hx : x✝ ∈ span R t x y : A ihx : k • x ∈ span R (s • t) ihy : k • y ∈ span R (s • t) ⊢ k • x + k • y ∈ span R (s • t) [PROOFSTEP] exact add_mem ihx ihy [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R S inst✝³ : Module S A inst✝² : Module R A inst✝¹ : IsScalarTower R S A inst✝ : SMulCommClass R S A s : Set S hs : span R s = ⊤ t : Set A k : S x✝ : A hx✝ : x✝ ∈ span R (s • t) x : A hx : x ∈ s • t ⊢ k • x ∈ span R (s • t) [PROOFSTEP] let ⟨p, q, _hp, hq, hpq⟩ := Set.mem_smul.1 hx [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R S inst✝³ : Module S A inst✝² : Module R A inst✝¹ : IsScalarTower R S A inst✝ : SMulCommClass R S A s : Set S hs : span R s = ⊤ t : Set A k : S x✝ : A hx✝ : x✝ ∈ span R (s • t) x : A hx : x ∈ s • t p : S q : A _hp : p ∈ s hq : q ∈ t hpq : p • q = x ⊢ k • x ∈ span R (s • t) [PROOFSTEP] rw [← hpq, smul_smul] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R S inst✝³ : Module S A inst✝² : Module R A inst✝¹ : IsScalarTower R S A inst✝ : SMulCommClass R S A s : Set S hs : span R s = ⊤ t : Set A k : S x✝ : A hx✝ : x✝ ∈ span R (s • t) x : A hx : x ∈ s • t p : S q : A _hp : p ∈ s hq : q ∈ t hpq : p • q = x ⊢ (k * p) • q ∈ span R (s • t) [PROOFSTEP] exact smul_mem_span_smul_of_mem (hs.symm ▸ mem_top) hq [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R S inst✝³ : Module S A inst✝² : Module R A inst✝¹ : IsScalarTower R S A inst✝ : SMulCommClass R S A s : Set S hs : span R s = ⊤ t : Set A k : S x : A hx : x ∈ span R (s • t) ⊢ k • 0 ∈ span R (s • t) [PROOFSTEP] rw [smul_zero] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R S inst✝³ : Module S A inst✝² : Module R A inst✝¹ : IsScalarTower R S A inst✝ : SMulCommClass R S A s : Set S hs : span R s = ⊤ t : Set A k : S x : A hx : x ∈ span R (s • t) ⊢ 0 ∈ span R (s • t) [PROOFSTEP] exact zero_mem _ [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R S inst✝³ : Module S A inst✝² : Module R A inst✝¹ : IsScalarTower R S A inst✝ : SMulCommClass R S A s : Set S hs : span R s = ⊤ t : Set A k : S x✝ : A hx : x✝ ∈ span R (s • t) x y : A ihx : k • x ∈ span R (s • t) ihy : k • y ∈ span R (s • t) ⊢ k • (x + y) ∈ span R (s • t) [PROOFSTEP] rw [smul_add] [GOAL] R : Type u S : Type v A : Type w B : Type u₁ M : Type v₁ inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R S inst✝³ : Module S A inst✝² : Module R A inst✝¹ : IsScalarTower R S A inst✝ : SMulCommClass R S A s : Set S hs : span R s = ⊤ t : Set A k : S x✝ : A hx : x✝ ∈ span R (s • t) x y : A ihx : k • x ∈ span R (s • t) ihy : k • y ∈ span R (s • t) ⊢ k • x + k • y ∈ span R (s • t) [PROOFSTEP] exact add_mem ihx ihy [GOAL] R : Type u S✝ : Type v A : Type w B : Type u₁ M : Type v₁ inst✝¹² : CommSemiring R inst✝¹¹ : Semiring S✝ inst✝¹⁰ : AddCommMonoid A inst✝⁹ : Algebra R S✝ inst✝⁸ : Module S✝ A inst✝⁷ : Module R A inst✝⁶ : IsScalarTower R S✝ A S : Type u_1 T : Type u_2 inst✝⁵ : CommSemiring S inst✝⁴ : Semiring T inst✝³ : Algebra R S inst✝² : Algebra R T inst✝¹ : Algebra S T inst✝ : IsScalarTower R S T x : S a : Set S hx : x ∈ span R a ⊢ ↑(algebraMap S T) x ∈ span R (↑(algebraMap S T) '' a) [PROOFSTEP] rw [span_algebraMap_image_of_tower, mem_map] [GOAL] R : Type u S✝ : Type v A : Type w B : Type u₁ M : Type v₁ inst✝¹² : CommSemiring R inst✝¹¹ : Semiring S✝ inst✝¹⁰ : AddCommMonoid A inst✝⁹ : Algebra R S✝ inst✝⁸ : Module S✝ A inst✝⁷ : Module R A inst✝⁶ : IsScalarTower R S✝ A S : Type u_1 T : Type u_2 inst✝⁵ : CommSemiring S inst✝⁴ : Semiring T inst✝³ : Algebra R S inst✝² : Algebra R T inst✝¹ : Algebra S T inst✝ : IsScalarTower R S T x : S a : Set S hx : x ∈ span R a ⊢ ∃ y, y ∈ span R a ∧ ↑(↑R (Algebra.linearMap S T)) y = ↑(algebraMap S T) x [PROOFSTEP] exact ⟨x, hx, rfl⟩
{"mathlib_filename": "Mathlib.Algebra.Algebra.Tower", "llama_tokens": 8273}
[GOAL] R : Type u_1 S : Type u_2 M : Type u_3 N : Type u_4 r : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid N inst✝³ : Module R M inst✝² : Module R N inst✝¹ : NoZeroSMulDivisors R M inst✝ : NoZeroSMulDivisors R N ⊢ ∀ {c : R} {x : M × N}, c • x = 0 → c = 0 ∨ x = 0 [PROOFSTEP] intro c ⟨x, y⟩ h [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 N : Type u_4 r : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid N inst✝³ : Module R M inst✝² : Module R N inst✝¹ : NoZeroSMulDivisors R M inst✝ : NoZeroSMulDivisors R N c : R x : M y : N h : c • (x, y) = 0 ⊢ c = 0 ∨ (x, y) = 0 [PROOFSTEP] exact or_iff_not_imp_left.mpr fun hc => mk.inj_iff.mpr ⟨(smul_eq_zero.mp (congr_arg fst h)).resolve_left hc, (smul_eq_zero.mp (congr_arg snd h)).resolve_left hc⟩
{"mathlib_filename": "Mathlib.Algebra.Module.Prod", "llama_tokens": 413}
[GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : MonoidAlgebra k G ⊢ f * (g + h) = f * g + f * h [PROOFSTEP] haveI := Classical.decEq G [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : MonoidAlgebra k G this : DecidableEq G ⊢ f * (g + h) = f * g + f * h [PROOFSTEP] simp only [mul_def] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : MonoidAlgebra k G this : DecidableEq G ⊢ (sum f fun a₁ b₁ => sum (g + h) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = (sum f fun a₁ b₁ => sum g fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) + sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) [PROOFSTEP] refine Eq.trans (congr_arg (sum f) (funext₂ fun a₁ b₁ => sum_add_index ?_ ?_)) ?_ [GOAL] case refine_1 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : MonoidAlgebra k G this : DecidableEq G a₁ : G b₁ : k ⊢ ∀ (a : G), a ∈ g.support ∪ h.support → single (a₁ * a) (b₁ * 0) = 0 [PROOFSTEP] simp only [mul_add, mul_zero, single_zero, single_add, forall_true_iff, sum_add] [GOAL] case refine_2 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : MonoidAlgebra k G this : DecidableEq G a₁ : G b₁ : k ⊢ ∀ (a : G), a ∈ g.support ∪ h.support → ∀ (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) [PROOFSTEP] simp only [mul_add, mul_zero, single_zero, single_add, forall_true_iff, sum_add] [GOAL] case refine_3 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : MonoidAlgebra k G this : DecidableEq G ⊢ (sum f fun a₁ b₁ => (sum g fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) + sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = (sum f fun a₁ b₁ => sum g fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) + sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) [PROOFSTEP] simp only [mul_add, mul_zero, single_zero, single_add, forall_true_iff, sum_add] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : MonoidAlgebra k G ⊢ (f + g) * h = f * h + g * h [PROOFSTEP] haveI := Classical.decEq G [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : MonoidAlgebra k G this : DecidableEq G ⊢ (f + g) * h = f * h + g * h [PROOFSTEP] simp only [mul_def] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : MonoidAlgebra k G this : DecidableEq G ⊢ (sum (f + g) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = (sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) + sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) [PROOFSTEP] refine Eq.trans (sum_add_index ?_ ?_) ?_ [GOAL] case refine_1 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : MonoidAlgebra k G this : DecidableEq G ⊢ ∀ (a : G), a ∈ f.support ∪ g.support → (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 [PROOFSTEP] simp only [add_mul, zero_mul, single_zero, single_add, forall_true_iff, sum_zero, sum_add] [GOAL] case refine_2 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : MonoidAlgebra k G this : DecidableEq G ⊢ ∀ (a : G), a ∈ f.support ∪ g.support → ∀ (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) [PROOFSTEP] simp only [add_mul, zero_mul, single_zero, single_add, forall_true_iff, sum_zero, sum_add] [GOAL] case refine_3 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : MonoidAlgebra k G this : DecidableEq G ⊢ ((sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) + sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = (sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) + sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) [PROOFSTEP] simp only [add_mul, zero_mul, single_zero, single_add, forall_true_iff, sum_zero, sum_add] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f : MonoidAlgebra k G ⊢ 0 * f = 0 [PROOFSTEP] simp only [mul_def] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f : MonoidAlgebra k G ⊢ (sum 0 fun a₁ b₁ => sum f fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = 0 [PROOFSTEP] exact sum_zero_index [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f : MonoidAlgebra k G ⊢ f * 0 = 0 [PROOFSTEP] simp only [mul_def] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f : MonoidAlgebra k G ⊢ (sum f fun a₁ b₁ => sum 0 fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = 0 [PROOFSTEP] exact Eq.trans (congr_arg (sum f) (funext₂ fun a₁ b₁ => sum_zero_index)) sum_zero [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : Mul G inst✝¹ : Semiring R g_hom : Type u_3 inst✝ : MulHomClass g_hom G R f : k →+* R g : g_hom a b : MonoidAlgebra k G h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y) ⊢ ↑(liftNC ↑f ↑g) (a * b) = ↑(liftNC ↑f ↑g) a * ↑(liftNC ↑f ↑g) b [PROOFSTEP] conv_rhs => rw [← sum_single a, ← sum_single b] -- Porting note: `(liftNC _ g).map_finsupp_sum` → `map_finsupp_sum` [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : Mul G inst✝¹ : Semiring R g_hom : Type u_3 inst✝ : MulHomClass g_hom G R f : k →+* R g : g_hom a b : MonoidAlgebra k G h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y) | ↑(liftNC ↑f ↑g) a * ↑(liftNC ↑f ↑g) b [PROOFSTEP] rw [← sum_single a, ← sum_single b] -- Porting note: `(liftNC _ g).map_finsupp_sum` → `map_finsupp_sum` [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : Mul G inst✝¹ : Semiring R g_hom : Type u_3 inst✝ : MulHomClass g_hom G R f : k →+* R g : g_hom a b : MonoidAlgebra k G h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y) | ↑(liftNC ↑f ↑g) a * ↑(liftNC ↑f ↑g) b [PROOFSTEP] rw [← sum_single a, ← sum_single b] -- Porting note: `(liftNC _ g).map_finsupp_sum` → `map_finsupp_sum` [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : Mul G inst✝¹ : Semiring R g_hom : Type u_3 inst✝ : MulHomClass g_hom G R f : k →+* R g : g_hom a b : MonoidAlgebra k G h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y) | ↑(liftNC ↑f ↑g) a * ↑(liftNC ↑f ↑g) b [PROOFSTEP] rw [← sum_single a, ← sum_single b] -- Porting note: `(liftNC _ g).map_finsupp_sum` → `map_finsupp_sum` [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : Mul G inst✝¹ : Semiring R g_hom : Type u_3 inst✝ : MulHomClass g_hom G R f : k →+* R g : g_hom a b : MonoidAlgebra k G h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y) ⊢ ↑(liftNC ↑f ↑g) (a * b) = ↑(liftNC ↑f ↑g) (sum a single) * ↑(liftNC ↑f ↑g) (sum b single) [PROOFSTEP] simp_rw [mul_def, map_finsupp_sum, liftNC_single, Finsupp.sum_mul, Finsupp.mul_sum] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : Mul G inst✝¹ : Semiring R g_hom : Type u_3 inst✝ : MulHomClass g_hom G R f : k →+* R g : g_hom a b : MonoidAlgebra k G h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y) ⊢ (sum a fun a b_1 => sum b fun a_1 b => ↑↑f (b_1 * b) * ↑g (a * a_1)) = sum a fun a c => sum b fun a_1 c_1 => ↑↑f c * ↑g a * (↑↑f c_1 * ↑g a_1) [PROOFSTEP] refine Finset.sum_congr rfl fun y hy => Finset.sum_congr rfl fun x _hx => ?_ [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : Mul G inst✝¹ : Semiring R g_hom : Type u_3 inst✝ : MulHomClass g_hom G R f : k →+* R g : g_hom a b : MonoidAlgebra k G h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y) y : G hy : y ∈ a.support x : G _hx : x ∈ b.support ⊢ (fun a_1 b => ↑↑f (↑a y * b) * ↑g (y * a_1)) x (↑b x) = (fun a_1 c => ↑↑f (↑a y) * ↑g y * (↑↑f c * ↑g a_1)) x (↑b x) [PROOFSTEP] simp [mul_assoc, (h_comm hy).left_comm] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ f * g * h = f * (g * h) [PROOFSTEP] simp only [mul_def] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ (sum (sum f fun a₁ b₁ => sum g fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = sum f fun a₁ b₁ => sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) [PROOFSTEP] rw [sum_sum_index] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ (sum f fun a b => sum (sum g fun a₂ b₂ => single (a * a₂) (b * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = sum f fun a₁ b₁ => sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) [PROOFSTEP] congr [GOAL] case e_g k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ (fun a b => sum (sum g fun a₂ b₂ => single (a * a₂) (b * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = fun a₁ b₁ => sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) [PROOFSTEP] ext a₁ b₁ [GOAL] case e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ (sum (sum g fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) [PROOFSTEP] rw [sum_sum_index, sum_sum_index] [GOAL] case e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ (sum g fun a b => sum (single (a₁ * a) (b₁ * b)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = sum g fun a b => sum (sum h fun a₂ b₂ => single (a * a₂) (b * b₂)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) [PROOFSTEP] congr [GOAL] case e_g.h.h.e_g k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ (fun a b => sum (single (a₁ * a) (b₁ * b)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = fun a b => sum (sum h fun a₂ b₂ => single (a * a₂) (b * b₂)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) [PROOFSTEP] ext a₂ b₂ [GOAL] case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum (single (a₁ * a₂) (b₁ * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = sum (sum h fun a₂_1 b₂_1 => single (a₂ * a₂_1) (b₂ * b₂_1)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) [PROOFSTEP] rw [sum_sum_index, sum_single_index] [GOAL] case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum h fun a₂_1 b₂_1 => single (a₁ * a₂ * a₂_1) (b₁ * b₂ * b₂_1)) = sum h fun a b => sum (single (a₂ * a) (b₂ * b)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum h fun a₂_1 b₂ => single (a₁ * a₂ * a₂_1) (0 * b₂)) = 0 case e_g.h.h.e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0 case e_g.h.h.e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) [PROOFSTEP] congr [GOAL] case e_g.h.h.e_g.h.h.e_g k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (fun a₂_1 b₂_1 => single (a₁ * a₂ * a₂_1) (b₁ * b₂ * b₂_1)) = fun a b => sum (single (a₂ * a) (b₂ * b)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum h fun a₂_1 b₂ => single (a₁ * a₂ * a₂_1) (0 * b₂)) = 0 case e_g.h.h.e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0 case e_g.h.h.e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) [PROOFSTEP] ext a₃ b₃ [GOAL] case e_g.h.h.e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k a₃ : G b₃ : k ⊢ single (a₁ * a₂ * a₃) (b₁ * b₂ * b₃) = sum (single (a₂ * a₃) (b₂ * b₃)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum h fun a₂_1 b₂ => single (a₁ * a₂ * a₂_1) (0 * b₂)) = 0 case e_g.h.h.e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0 case e_g.h.h.e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) [PROOFSTEP] rw [sum_single_index, mul_assoc, mul_assoc] [GOAL] case e_g.h.h.e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k a₃ : G b₃ : k ⊢ single (a₁ * (a₂ * a₃)) (b₁ * 0) = 0 case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum h fun a₂_1 b₂ => single (a₁ * a₂ * a₂_1) (0 * b₂)) = 0 case e_g.h.h.e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0 case e_g.h.h.e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) [PROOFSTEP] all_goals simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k a₃ : G b₃ : k ⊢ single (a₁ * (a₂ * a₃)) (b₁ * 0) = 0 [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum h fun a₂_1 b₂ => single (a₁ * a₂ * a₂_1) (0 * b₂)) = 0 [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0 [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0 [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂) [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0 [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Semigroup G inst✝ : Semiring R src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : MonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1) [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : NonAssocSemiring R inst✝² : Semiring k inst✝¹ : One G g_hom : Type u_3 inst✝ : OneHomClass g_hom G R f : k →+* R g : g_hom ⊢ ↑(liftNC ↑f ↑g) 1 = 1 [PROOFSTEP] simp [one_def] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : MulOneClass G src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f : MonoidAlgebra k G ⊢ 1 * f = f [PROOFSTEP] simp only [mul_def, one_def, sum_single_index, zero_mul, single_zero, sum_zero, zero_add, one_mul, sum_single] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : MulOneClass G src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring f : MonoidAlgebra k G ⊢ f * 1 = f [PROOFSTEP] simp only [mul_def, one_def, sum_single_index, mul_zero, single_zero, sum_zero, add_zero, mul_one, sum_single] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : MulOneClass G src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring ⊢ NatCast.natCast 0 = 0 [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : MulOneClass G src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring x✝ : ℕ ⊢ NatCast.natCast (x✝ + 1) = NatCast.natCast x✝ + 1 [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : MulOneClass G src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring x✝ : ℕ ⊢ Finsupp.single 1 ↑x✝ + Finsupp.single 1 1 = single 1 ↑x✝ + 1 [PROOFSTEP] rfl [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : CommSemiring k inst✝ : CommSemigroup G src✝ : NonUnitalSemiring (MonoidAlgebra k G) := nonUnitalSemiring f g : MonoidAlgebra k G ⊢ f * g = g * f [PROOFSTEP] simp only [mul_def, Finsupp.sum, mul_comm] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : CommSemiring k inst✝ : CommSemigroup G src✝ : NonUnitalSemiring (MonoidAlgebra k G) := nonUnitalSemiring f g : MonoidAlgebra k G ⊢ ∑ x in f.support, ∑ x_1 in g.support, single (x * x_1) (↑f x * ↑g x_1) = ∑ x in g.support, ∑ x_1 in f.support, single (x * x_1) (↑f x_1 * ↑g x) [PROOFSTEP] rw [Finset.sum_comm] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : CommSemiring k inst✝ : CommSemigroup G src✝ : NonUnitalSemiring (MonoidAlgebra k G) := nonUnitalSemiring f g : MonoidAlgebra k G ⊢ ∑ y in g.support, ∑ x in f.support, single (x * y) (↑f x * ↑g y) = ∑ x in g.support, ∑ x_1 in f.support, single (x * x_1) (↑f x_1 * ↑g x) [PROOFSTEP] simp only [mul_comm] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Ring k inst✝ : MulOneClass G src✝¹ : AddCommGroup (MonoidAlgebra k G) := addCommGroup src✝ : NonAssocSemiring (MonoidAlgebra k G) := nonAssocSemiring n : ℕ ⊢ IntCast.intCast ↑n = ↑n [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Ring k inst✝ : MulOneClass G src✝¹ : AddCommGroup (MonoidAlgebra k G) := addCommGroup src✝ : NonAssocSemiring (MonoidAlgebra k G) := nonAssocSemiring n : ℕ ⊢ single 1 ↑n = ↑n [PROOFSTEP] rfl [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Ring k inst✝ : MulOneClass G src✝¹ : AddCommGroup (MonoidAlgebra k G) := addCommGroup src✝ : NonAssocSemiring (MonoidAlgebra k G) := nonAssocSemiring n : ℕ ⊢ IntCast.intCast (Int.negSucc n) = -↑(n + 1) [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Ring k inst✝ : MulOneClass G src✝¹ : AddCommGroup (MonoidAlgebra k G) := addCommGroup src✝ : NonAssocSemiring (MonoidAlgebra k G) := nonAssocSemiring n : ℕ ⊢ -Finsupp.single 1 1 + -Finsupp.single 1 ↑n = -1 + -↑n [PROOFSTEP] rfl [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f g : MonoidAlgebra k G x : G ⊢ ↑(f * g) x = sum f fun a₁ b₁ => sum g fun a₂ b₂ => if a₁ * a₂ = x then b₁ * b₂ else 0 [PROOFSTEP] rw [mul_def, Finsupp.sum_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f g : MonoidAlgebra k G x : G ⊢ (sum f fun a₁ b => ↑(sum g fun a₂ b₂ => single (a₁ * a₂) (b * b₂)) x) = sum f fun a₁ b₁ => sum g fun a₂ b₂ => if a₁ * a₂ = x then b₁ * b₂ else 0 [PROOFSTEP] congr [GOAL] case e_g k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f g : MonoidAlgebra k G x : G ⊢ (fun a₁ b => ↑(sum g fun a₂ b₂ => single (a₁ * a₂) (b * b₂)) x) = fun a₁ b₁ => sum g fun a₂ b₂ => if a₁ * a₂ = x then b₁ * b₂ else 0 [PROOFSTEP] ext [GOAL] case e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f g : MonoidAlgebra k G x x✝¹ : G x✝ : k ⊢ ↑(sum g fun a₂ b₂ => single (x✝¹ * a₂) (x✝ * b₂)) x = sum g fun a₂ b₂ => if x✝¹ * a₂ = x then x✝ * b₂ else 0 [PROOFSTEP] rw [Finsupp.sum_apply] [GOAL] case e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f g : MonoidAlgebra k G x x✝¹ : G x✝ : k ⊢ (sum g fun a₁ b => ↑(single (x✝¹ * a₁) (x✝ * b)) x) = sum g fun a₂ b₂ => if x✝¹ * a₂ = x then x✝ * b₂ else 0 [PROOFSTEP] congr [GOAL] case e_g.h.h.e_g k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f g : MonoidAlgebra k G x x✝¹ : G x✝ : k ⊢ (fun a₁ b => ↑(single (x✝¹ * a₁) (x✝ * b)) x) = fun a₂ b₂ => if x✝¹ * a₂ = x then x✝ * b₂ else 0 [PROOFSTEP] ext [GOAL] case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : DecidableEq G inst✝ : Mul G f g : MonoidAlgebra k G x x✝³ : G x✝² : k x✝¹ : G x✝ : k ⊢ ↑(single (x✝³ * x✝¹) (x✝² * x✝)) x = if x✝³ * x✝¹ = x then x✝² * x✝ else 0 [PROOFSTEP] apply single_apply [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f g : MonoidAlgebra k G x : G s : Finset (G × G) hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x ⊢ ↑(f * g) x = ∑ p in s, ↑f p.fst * ↑g p.snd [PROOFSTEP] classical exact let F : G × G → k := fun p => if p.1 * p.2 = x then f p.1 * g p.2 else 0 calc (f * g) x = ∑ a₁ in f.support, ∑ a₂ in g.support, F (a₁, a₂) := mul_apply f g x _ = ∑ p in f.support ×ˢ g.support, F p := Finset.sum_product.symm _ = ∑ p in (f.support ×ˢ g.support).filter fun p : G × G => p.1 * p.2 = x, f p.1 * g p.2 := (Finset.sum_filter _ _).symm _ = ∑ p in s.filter fun p : G × G => p.1 ∈ f.support ∧ p.2 ∈ g.support, f p.1 * g p.2 := (sum_congr (by ext simp only [mem_filter, mem_product, hs, and_comm]) fun _ _ => rfl) _ = ∑ p in s, f p.1 * g p.2 := sum_subset (filter_subset _ _) fun p hps hp => by simp only [mem_filter, mem_support_iff, not_and, Classical.not_not] at hp ⊢ by_cases h1 : f p.1 = 0 · rw [h1, zero_mul] · rw [hp hps h1, mul_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f g : MonoidAlgebra k G x : G s : Finset (G × G) hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x ⊢ ↑(f * g) x = ∑ p in s, ↑f p.fst * ↑g p.snd [PROOFSTEP] exact let F : G × G → k := fun p => if p.1 * p.2 = x then f p.1 * g p.2 else 0 calc (f * g) x = ∑ a₁ in f.support, ∑ a₂ in g.support, F (a₁, a₂) := mul_apply f g x _ = ∑ p in f.support ×ˢ g.support, F p := Finset.sum_product.symm _ = ∑ p in (f.support ×ˢ g.support).filter fun p : G × G => p.1 * p.2 = x, f p.1 * g p.2 := (Finset.sum_filter _ _).symm _ = ∑ p in s.filter fun p : G × G => p.1 ∈ f.support ∧ p.2 ∈ g.support, f p.1 * g p.2 := (sum_congr (by ext simp only [mem_filter, mem_product, hs, and_comm]) fun _ _ => rfl) _ = ∑ p in s, f p.1 * g p.2 := sum_subset (filter_subset _ _) fun p hps hp => by simp only [mem_filter, mem_support_iff, not_and, Classical.not_not] at hp ⊢ by_cases h1 : f p.1 = 0 · rw [h1, zero_mul] · rw [hp hps h1, mul_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f g : MonoidAlgebra k G x : G s : Finset (G × G) hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x F : G × G → k := fun p => if p.fst * p.snd = x then ↑f p.fst * ↑g p.snd else 0 ⊢ Finset.filter (fun p => p.fst * p.snd = x) (f.support ×ˢ g.support) = Finset.filter (fun p => p.fst ∈ f.support ∧ p.snd ∈ g.support) s [PROOFSTEP] ext [GOAL] case a k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f g : MonoidAlgebra k G x : G s : Finset (G × G) hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x F : G × G → k := fun p => if p.fst * p.snd = x then ↑f p.fst * ↑g p.snd else 0 a✝ : G × G ⊢ a✝ ∈ Finset.filter (fun p => p.fst * p.snd = x) (f.support ×ˢ g.support) ↔ a✝ ∈ Finset.filter (fun p => p.fst ∈ f.support ∧ p.snd ∈ g.support) s [PROOFSTEP] simp only [mem_filter, mem_product, hs, and_comm] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f g : MonoidAlgebra k G x : G s : Finset (G × G) hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x F : G × G → k := fun p => if p.fst * p.snd = x then ↑f p.fst * ↑g p.snd else 0 p : G × G hps : p ∈ s hp : ¬p ∈ Finset.filter (fun p => p.fst ∈ f.support ∧ p.snd ∈ g.support) s ⊢ ↑f p.fst * ↑g p.snd = 0 [PROOFSTEP] simp only [mem_filter, mem_support_iff, not_and, Classical.not_not] at hp ⊢ [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f g : MonoidAlgebra k G x : G s : Finset (G × G) hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x F : G × G → k := fun p => if p.fst * p.snd = x then ↑f p.fst * ↑g p.snd else 0 p : G × G hps : p ∈ s hp : p ∈ s → ↑f p.fst ≠ 0 → ↑g p.snd = 0 ⊢ ↑f p.fst * ↑g p.snd = 0 [PROOFSTEP] by_cases h1 : f p.1 = 0 [GOAL] case pos k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f g : MonoidAlgebra k G x : G s : Finset (G × G) hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x F : G × G → k := fun p => if p.fst * p.snd = x then ↑f p.fst * ↑g p.snd else 0 p : G × G hps : p ∈ s hp : p ∈ s → ↑f p.fst ≠ 0 → ↑g p.snd = 0 h1 : ↑f p.fst = 0 ⊢ ↑f p.fst * ↑g p.snd = 0 [PROOFSTEP] rw [h1, zero_mul] [GOAL] case neg k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f g : MonoidAlgebra k G x : G s : Finset (G × G) hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x F : G × G → k := fun p => if p.fst * p.snd = x then ↑f p.fst * ↑g p.snd else 0 p : G × G hps : p ∈ s hp : p ∈ s → ↑f p.fst ≠ 0 → ↑g p.snd = 0 h1 : ¬↑f p.fst = 0 ⊢ ↑f p.fst * ↑g p.snd = 0 [PROOFSTEP] rw [hp hps h1, mul_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G a₁ a₂ : G b₁ b₂ : k ⊢ (sum (single a₂ b₂) fun a₂ b₂ => single (a₁ * a₂) (0 * b₂)) = 0 [PROOFSTEP] simp only [zero_mul, single_zero, sum_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G a₁ a₂ : G b₁ b₂ : k ⊢ single (a₁ * a₂) (b₁ * 0) = 0 [PROOFSTEP] rw [mul_zero, single_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G a : G b : k ⊢ single a b ^ 0 = single (a ^ 0) (b ^ 0) [PROOFSTEP] simp only [pow_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G a : G b : k ⊢ 1 = single 1 1 [PROOFSTEP] rfl [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G a : G b : k n : ℕ ⊢ single a b ^ (n + 1) = single (a ^ (n + 1)) (b ^ (n + 1)) [PROOFSTEP] simp only [pow_succ, single_pow n, single_mul_single] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : One α inst✝¹ : One α₂ F : Type u_6 inst✝ : OneHomClass F α α₂ f : F ⊢ mapDomain (↑f) 1 = 1 [PROOFSTEP] simp_rw [one_def, mapDomain_single, map_one] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Mul α inst✝¹ : Mul α₂ F : Type u_6 inst✝ : MulHomClass F α α₂ f : F x y : MonoidAlgebra β α ⊢ mapDomain (↑f) (x * y) = mapDomain (↑f) x * mapDomain (↑f) y [PROOFSTEP] simp_rw [mul_def, mapDomain_sum, mapDomain_single, map_mul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Mul α inst✝¹ : Mul α₂ F : Type u_6 inst✝ : MulHomClass F α α₂ f : F x y : MonoidAlgebra β α ⊢ (sum x fun a b => sum y fun a_1 b_1 => Finsupp.single (↑f a * ↑f a_1) (b * b_1)) = sum (mapDomain (↑f) x) fun a₁ b₁ => sum (mapDomain (↑f) y) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂) [PROOFSTEP] rw [Finsupp.sum_mapDomain_index] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Mul α inst✝¹ : Mul α₂ F : Type u_6 inst✝ : MulHomClass F α α₂ f : F x y : MonoidAlgebra β α ⊢ (sum x fun a b => sum y fun a_1 b_1 => Finsupp.single (↑f a * ↑f a_1) (b * b_1)) = sum x fun a m => sum (mapDomain (↑f) y) fun a₂ b₂ => single (↑f a * a₂) (m * b₂) [PROOFSTEP] congr [GOAL] case e_g k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Mul α inst✝¹ : Mul α₂ F : Type u_6 inst✝ : MulHomClass F α α₂ f : F x y : MonoidAlgebra β α ⊢ (fun a b => sum y fun a_1 b_1 => Finsupp.single (↑f a * ↑f a_1) (b * b_1)) = fun a m => sum (mapDomain (↑f) y) fun a₂ b₂ => single (↑f a * a₂) (m * b₂) [PROOFSTEP] ext a b [GOAL] case e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Mul α inst✝¹ : Mul α₂ F : Type u_6 inst✝ : MulHomClass F α α₂ f : F x y : MonoidAlgebra β α a : α b : β ⊢ (sum y fun a_1 b_1 => Finsupp.single (↑f a * ↑f a_1) (b * b_1)) = sum (mapDomain (↑f) y) fun a₂ b₂ => single (↑f a * a₂) (b * b₂) [PROOFSTEP] rw [Finsupp.sum_mapDomain_index] [GOAL] case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Mul α inst✝¹ : Mul α₂ F : Type u_6 inst✝ : MulHomClass F α α₂ f : F x y : MonoidAlgebra β α a : α b : β ⊢ ∀ (b_1 : α₂), single (↑f a * b_1) (b * 0) = 0 [PROOFSTEP] simp [GOAL] case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Mul α inst✝¹ : Mul α₂ F : Type u_6 inst✝ : MulHomClass F α α₂ f : F x y : MonoidAlgebra β α a : α b : β ⊢ ∀ (b_1 : α₂) (m₁ m₂ : β), single (↑f a * b_1) (b * (m₁ + m₂)) = single (↑f a * b_1) (b * m₁) + single (↑f a * b_1) (b * m₂) [PROOFSTEP] simp [mul_add] [GOAL] case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Mul α inst✝¹ : Mul α₂ F : Type u_6 inst✝ : MulHomClass F α α₂ f : F x y : MonoidAlgebra β α ⊢ ∀ (b : α₂), (sum (mapDomain (↑f) y) fun a₂ b₂ => single (b * a₂) (0 * b₂)) = 0 [PROOFSTEP] simp [GOAL] case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Mul α inst✝¹ : Mul α₂ F : Type u_6 inst✝ : MulHomClass F α α₂ f : F x y : MonoidAlgebra β α ⊢ ∀ (b : α₂) (m₁ m₂ : β), (sum (mapDomain (↑f) y) fun a₂ b₂ => single (b * a₂) ((m₁ + m₂) * b₂)) = (sum (mapDomain (↑f) y) fun a₂ b₂ => single (b * a₂) (m₁ * b₂)) + sum (mapDomain (↑f) y) fun a₂ b₂ => single (b * a₂) (m₂ * b₂) [PROOFSTEP] simp [add_mul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G a b : G ⊢ (fun a => single a 1) (a * b) = (fun a => single a 1) a * (fun a => single a 1) b [PROOFSTEP] simp only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : MulOneClass G g : G r : k ⊢ r • ↑(of k G) g = single g r [PROOFSTEP] rw [of_apply, smul_single', mul_one] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : MulOneClass G inst✝ : Nontrivial k a b : G h : ↑(of k G) a = ↑(of k G) b ⊢ a = b [PROOFSTEP] simpa using (single_eq_single_iff _ _ _ _).mp h [GOAL] k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), a * x = z ↔ a = y ⊢ ↑(f * single x r) z = ↑f y * r [PROOFSTEP] classical exact have A : ∀ a₁ b₁, ((single x r).sum fun a₂ b₂ => ite (a₁ * a₂ = z) (b₁ * b₂) 0) = ite (a₁ * x = z) (b₁ * r) 0 := fun a₁ b₁ => sum_single_index <| by simp calc (HMul.hMul (β := MonoidAlgebra k G) f (single x r)) z = sum f fun a b => if a = y then b * r else 0 := by simp only [mul_apply, A, H] _ = if y ∈ f.support then f y * r else 0 := (f.support.sum_ite_eq' _ _) _ = f y * r := by split_ifs with h <;> simp at h <;> simp [h] [GOAL] k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), a * x = z ↔ a = y ⊢ ↑(f * single x r) z = ↑f y * r [PROOFSTEP] exact have A : ∀ a₁ b₁, ((single x r).sum fun a₂ b₂ => ite (a₁ * a₂ = z) (b₁ * b₂) 0) = ite (a₁ * x = z) (b₁ * r) 0 := fun a₁ b₁ => sum_single_index <| by simp calc (HMul.hMul (β := MonoidAlgebra k G) f (single x r)) z = sum f fun a b => if a = y then b * r else 0 := by simp only [mul_apply, A, H] _ = if y ∈ f.support then f y * r else 0 := (f.support.sum_ite_eq' _ _) _ = f y * r := by split_ifs with h <;> simp at h <;> simp [h] [GOAL] k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), a * x = z ↔ a = y a₁ : G b₁ : k ⊢ (if a₁ * x = z then b₁ * 0 else 0) = 0 [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), a * x = z ↔ a = y A : ∀ (a₁ : G) (b₁ : k), (sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0 ⊢ ↑(f * single x r) z = sum f fun a b => if a = y then b * r else 0 [PROOFSTEP] simp only [mul_apply, A, H] [GOAL] k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), a * x = z ↔ a = y A : ∀ (a₁ : G) (b₁ : k), (sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0 ⊢ (if y ∈ f.support then ↑f y * r else 0) = ↑f y * r [PROOFSTEP] split_ifs with h [GOAL] case pos k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), a * x = z ↔ a = y A : ∀ (a₁ : G) (b₁ : k), (sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0 h : y ∈ f.support ⊢ ↑f y * r = ↑f y * r [PROOFSTEP] simp at h [GOAL] case neg k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), a * x = z ↔ a = y A : ∀ (a₁ : G) (b₁ : k), (sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0 h : ¬y ∈ f.support ⊢ 0 = ↑f y * r [PROOFSTEP] simp at h [GOAL] case pos k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), a * x = z ↔ a = y A : ∀ (a₁ : G) (b₁ : k), (sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0 h : ¬↑f y = 0 ⊢ ↑f y * r = ↑f y * r [PROOFSTEP] simp [h] [GOAL] case neg k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), a * x = z ↔ a = y A : ∀ (a₁ : G) (b₁ : k), (sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0 h : ↑f y = 0 ⊢ 0 = ↑f y * r [PROOFSTEP] simp [h] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : MulOneClass G f : MonoidAlgebra k G r : k x a : G ⊢ a * 1 = x ↔ a = x [PROOFSTEP] rw [mul_one] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = d * g ⊢ ↑(x * single g r) g' = 0 [PROOFSTEP] classical rw [mul_apply, Finsupp.sum_comm, Finsupp.sum_single_index] swap · simp_rw [Finsupp.sum, mul_zero, ite_self, Finset.sum_const_zero] · apply Finset.sum_eq_zero simp_rw [ite_eq_right_iff] rintro g'' _hg'' rfl exfalso exact h ⟨_, rfl⟩ [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = d * g ⊢ ↑(x * single g r) g' = 0 [PROOFSTEP] rw [mul_apply, Finsupp.sum_comm, Finsupp.sum_single_index] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = d * g ⊢ (sum x fun x v => if x * g = g' then v * r else 0) = 0 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = d * g ⊢ (sum x fun x v => if x * g = g' then v * 0 else 0) = 0 [PROOFSTEP] swap [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = d * g ⊢ (sum x fun x v => if x * g = g' then v * 0 else 0) = 0 [PROOFSTEP] simp_rw [Finsupp.sum, mul_zero, ite_self, Finset.sum_const_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = d * g ⊢ (sum x fun x v => if x * g = g' then v * r else 0) = 0 [PROOFSTEP] apply Finset.sum_eq_zero [GOAL] case h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = d * g ⊢ ∀ (x_1 : G), x_1 ∈ x.support → (fun x v => if x * g = g' then v * r else 0) x_1 (↑x x_1) = 0 [PROOFSTEP] simp_rw [ite_eq_right_iff] [GOAL] case h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = d * g ⊢ ∀ (x_1 : G), x_1 ∈ x.support → x_1 * g = g' → ↑x x_1 * r = 0 [PROOFSTEP] rintro g'' _hg'' rfl [GOAL] case h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g : G x : MonoidAlgebra k G g'' : G _hg'' : g'' ∈ x.support h : ¬∃ d, g'' * g = d * g ⊢ ↑x g'' * r = 0 [PROOFSTEP] exfalso [GOAL] case h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g : G x : MonoidAlgebra k G g'' : G _hg'' : g'' ∈ x.support h : ¬∃ d, g'' * g = d * g ⊢ False [PROOFSTEP] exact h ⟨_, rfl⟩ [GOAL] k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), x * a = y ↔ a = z ⊢ ↑(single x r * f) y = r * ↑f z [PROOFSTEP] classical exact have : (f.sum fun a b => ite (x * a = y) (0 * b) 0) = 0 := by simp calc (HMul.hMul (α := MonoidAlgebra k G) (single x r) f) y = sum f fun a b => ite (x * a = y) (r * b) 0 := (mul_apply _ _ _).trans <| sum_single_index this _ = f.sum fun a b => ite (a = z) (r * b) 0 := by simp only [H] _ = if z ∈ f.support then r * f z else 0 := (f.support.sum_ite_eq' _ _) _ = _ := by split_ifs with h <;> simp at h <;> simp [h] [GOAL] k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), x * a = y ↔ a = z ⊢ ↑(single x r * f) y = r * ↑f z [PROOFSTEP] exact have : (f.sum fun a b => ite (x * a = y) (0 * b) 0) = 0 := by simp calc (HMul.hMul (α := MonoidAlgebra k G) (single x r) f) y = sum f fun a b => ite (x * a = y) (r * b) 0 := (mul_apply _ _ _).trans <| sum_single_index this _ = f.sum fun a b => ite (a = z) (r * b) 0 := by simp only [H] _ = if z ∈ f.support then r * f z else 0 := (f.support.sum_ite_eq' _ _) _ = _ := by split_ifs with h <;> simp at h <;> simp [h] [GOAL] k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), x * a = y ↔ a = z ⊢ (sum f fun a b => if x * a = y then 0 * b else 0) = 0 [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), x * a = y ↔ a = z this : (sum f fun a b => if x * a = y then 0 * b else 0) = 0 ⊢ (sum f fun a b => if x * a = y then r * b else 0) = sum f fun a b => if a = z then r * b else 0 [PROOFSTEP] simp only [H] [GOAL] k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), x * a = y ↔ a = z this : (sum f fun a b => if x * a = y then 0 * b else 0) = 0 ⊢ (if z ∈ f.support then r * ↑f z else 0) = r * ↑f z [PROOFSTEP] split_ifs with h [GOAL] case pos k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), x * a = y ↔ a = z this : (sum f fun a b => if x * a = y then 0 * b else 0) = 0 h : z ∈ f.support ⊢ r * ↑f z = r * ↑f z [PROOFSTEP] simp at h [GOAL] case neg k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), x * a = y ↔ a = z this : (sum f fun a b => if x * a = y then 0 * b else 0) = 0 h : ¬z ∈ f.support ⊢ 0 = r * ↑f z [PROOFSTEP] simp at h [GOAL] case pos k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), x * a = y ↔ a = z this : (sum f fun a b => if x * a = y then 0 * b else 0) = 0 h : ¬↑f z = 0 ⊢ r * ↑f z = r * ↑f z [PROOFSTEP] simp [h] [GOAL] case neg k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G f : MonoidAlgebra k G r : k x y z : G H : ∀ (a : G), x * a = y ↔ a = z this : (sum f fun a b => if x * a = y then 0 * b else 0) = 0 h : ↑f z = 0 ⊢ 0 = r * ↑f z [PROOFSTEP] simp [h] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : MulOneClass G f : MonoidAlgebra k G r : k x a : G ⊢ 1 * a = x ↔ a = x [PROOFSTEP] rw [one_mul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = g * d ⊢ ↑(single g r * x) g' = 0 [PROOFSTEP] classical rw [mul_apply, Finsupp.sum_single_index] swap · simp_rw [Finsupp.sum, zero_mul, ite_self, Finset.sum_const_zero] · apply Finset.sum_eq_zero simp_rw [ite_eq_right_iff] rintro g'' _hg'' rfl exfalso exact h ⟨_, rfl⟩ [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = g * d ⊢ ↑(single g r * x) g' = 0 [PROOFSTEP] rw [mul_apply, Finsupp.sum_single_index] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = g * d ⊢ (sum x fun a₂ b₂ => if g * a₂ = g' then r * b₂ else 0) = 0 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = g * d ⊢ (sum x fun a₂ b₂ => if g * a₂ = g' then 0 * b₂ else 0) = 0 [PROOFSTEP] swap [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = g * d ⊢ (sum x fun a₂ b₂ => if g * a₂ = g' then 0 * b₂ else 0) = 0 [PROOFSTEP] simp_rw [Finsupp.sum, zero_mul, ite_self, Finset.sum_const_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = g * d ⊢ (sum x fun a₂ b₂ => if g * a₂ = g' then r * b₂ else 0) = 0 [PROOFSTEP] apply Finset.sum_eq_zero [GOAL] case h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = g * d ⊢ ∀ (x_1 : G), x_1 ∈ x.support → (fun a₂ b₂ => if g * a₂ = g' then r * b₂ else 0) x_1 (↑x x_1) = 0 [PROOFSTEP] simp_rw [ite_eq_right_iff] [GOAL] case h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g g' : G x : MonoidAlgebra k G h : ¬∃ d, g' = g * d ⊢ ∀ (x_1 : G), x_1 ∈ x.support → g * x_1 = g' → r * ↑x x_1 = 0 [PROOFSTEP] rintro g'' _hg'' rfl [GOAL] case h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g : G x : MonoidAlgebra k G g'' : G _hg'' : g'' ∈ x.support h : ¬∃ d, g * g'' = g * d ⊢ r * ↑x g'' = 0 [PROOFSTEP] exfalso [GOAL] case h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G r : k g : G x : MonoidAlgebra k G g'' : G _hg'' : g'' ∈ x.support h : ¬∃ d, g * g'' = g * d ⊢ False [PROOFSTEP] exact h ⟨_, rfl⟩ [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R✝ : Type u_2 inst✝² : Semiring k inst✝¹ : MulOneClass G R : Type u_3 inst✝ : Semiring R f : k →+* R g : G →* R c : k φ : MonoidAlgebra k G ⊢ ↑(liftNC ↑f ↑g) (c • φ) = ↑f c * ↑(liftNC ↑f ↑g) φ [PROOFSTEP] suffices : (liftNC (↑f) g).comp (smulAddHom k (MonoidAlgebra k G) c) = (AddMonoidHom.mulLeft (f c)).comp (liftNC (↑f) g) [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R✝ : Type u_2 inst✝² : Semiring k inst✝¹ : MulOneClass G R : Type u_3 inst✝ : Semiring R f : k →+* R g : G →* R c : k φ : MonoidAlgebra k G this : AddMonoidHom.comp (liftNC ↑f ↑g) (↑(smulAddHom k (MonoidAlgebra k G)) c) = AddMonoidHom.comp (AddMonoidHom.mulLeft (↑f c)) (liftNC ↑f ↑g) ⊢ ↑(liftNC ↑f ↑g) (c • φ) = ↑f c * ↑(liftNC ↑f ↑g) φ case this k : Type u₁ G : Type u₂ H : Type u_1 R✝ : Type u_2 inst✝² : Semiring k inst✝¹ : MulOneClass G R : Type u_3 inst✝ : Semiring R f : k →+* R g : G →* R c : k φ : MonoidAlgebra k G ⊢ AddMonoidHom.comp (liftNC ↑f ↑g) (↑(smulAddHom k (MonoidAlgebra k G)) c) = AddMonoidHom.comp (AddMonoidHom.mulLeft (↑f c)) (liftNC ↑f ↑g) [PROOFSTEP] exact FunLike.congr_fun this φ [GOAL] case this k : Type u₁ G : Type u₂ H : Type u_1 R✝ : Type u_2 inst✝² : Semiring k inst✝¹ : MulOneClass G R : Type u_3 inst✝ : Semiring R f : k →+* R g : G →* R c : k φ : MonoidAlgebra k G ⊢ AddMonoidHom.comp (liftNC ↑f ↑g) (↑(smulAddHom k (MonoidAlgebra k G)) c) = AddMonoidHom.comp (AddMonoidHom.mulLeft (↑f c)) (liftNC ↑f ↑g) [PROOFSTEP] refine addHom_ext' fun a => AddMonoidHom.ext fun b => ?_ -- Porting note: `reducible` cannot be `local` so the proof gets more complex. [GOAL] case this k : Type u₁ G : Type u₂ H : Type u_1 R✝ : Type u_2 inst✝² : Semiring k inst✝¹ : MulOneClass G R : Type u_3 inst✝ : Semiring R f : k →+* R g : G →* R c : k φ : MonoidAlgebra k G a : G b : k ⊢ ↑(AddMonoidHom.comp (AddMonoidHom.comp (liftNC ↑f ↑g) (↑(smulAddHom k (MonoidAlgebra k G)) c)) (singleAddHom a)) b = ↑(AddMonoidHom.comp (AddMonoidHom.comp (AddMonoidHom.mulLeft (↑f c)) (liftNC ↑f ↑g)) (singleAddHom a)) b [PROOFSTEP] unfold MonoidAlgebra [GOAL] case this k : Type u₁ G : Type u₂ H : Type u_1 R✝ : Type u_2 inst✝² : Semiring k inst✝¹ : MulOneClass G R : Type u_3 inst✝ : Semiring R f : k →+* R g : G →* R c : k φ : MonoidAlgebra k G a : G b : k ⊢ ↑(AddMonoidHom.comp (AddMonoidHom.comp (liftNC ↑f ↑g) (↑(smulAddHom k (G →₀ k)) c)) (singleAddHom a)) b = ↑(AddMonoidHom.comp (AddMonoidHom.comp (AddMonoidHom.mulLeft (↑f c)) (liftNC ↑f ↑g)) (singleAddHom a)) b [PROOFSTEP] simp [GOAL] case this k : Type u₁ G : Type u₂ H : Type u_1 R✝ : Type u_2 inst✝² : Semiring k inst✝¹ : MulOneClass G R : Type u_3 inst✝ : Semiring R f : k →+* R g : G →* R c : k φ : MonoidAlgebra k G a : G b : k ⊢ ↑(liftNC ↑f ↑g) (Finsupp.single a (c * b)) = ↑f c * ↑(liftNC ↑f ↑g) (Finsupp.single a b) [PROOFSTEP] rw [liftNC_single, liftNC_single, AddMonoidHom.coe_coe, map_mul, mul_assoc] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : IsScalarTower R k k t : R a b : MonoidAlgebra k G ⊢ (t • a) • b = t • a • b [PROOFSTEP] refine Finsupp.ext fun m => ?_ -- Porting note: `refine` & `rw` are required because `simp` behaves differently. [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : IsScalarTower R k k t : R a b : MonoidAlgebra k G m : G ⊢ ↑((t • a) • b) m = ↑(t • a • b) m [PROOFSTEP] classical simp only [smul_eq_mul, mul_apply] rw [coe_smul] refine Eq.trans (sum_smul_index' (g := a) (b := t) ?_) ?_ <;> simp only [mul_apply, Finsupp.smul_sum, smul_ite, smul_mul_assoc, zero_mul, ite_self, imp_true_iff, sum_zero, Pi.smul_apply, smul_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : IsScalarTower R k k t : R a b : MonoidAlgebra k G m : G ⊢ ↑((t • a) • b) m = ↑(t • a • b) m [PROOFSTEP] simp only [smul_eq_mul, mul_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : IsScalarTower R k k t : R a b : MonoidAlgebra k G m : G ⊢ (sum (t • a) fun a₁ b₁ => sum b fun a₂ b₂ => if a₁ * a₂ = m then b₁ * b₂ else 0) = ↑(t • (a * b)) m [PROOFSTEP] rw [coe_smul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : IsScalarTower R k k t : R a b : MonoidAlgebra k G m : G ⊢ (sum (t • a) fun a₁ b₁ => sum b fun a₂ b₂ => if a₁ * a₂ = m then b₁ * b₂ else 0) = (t • ↑(a * b)) m [PROOFSTEP] refine Eq.trans (sum_smul_index' (g := a) (b := t) ?_) ?_ [GOAL] case refine_1 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : IsScalarTower R k k t : R a b : MonoidAlgebra k G m : G ⊢ ∀ (i : G), (sum b fun a₂ b₂ => if i * a₂ = m then 0 * b₂ else 0) = 0 [PROOFSTEP] simp only [mul_apply, Finsupp.smul_sum, smul_ite, smul_mul_assoc, zero_mul, ite_self, imp_true_iff, sum_zero, Pi.smul_apply, smul_zero] [GOAL] case refine_2 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : IsScalarTower R k k t : R a b : MonoidAlgebra k G m : G ⊢ (sum a fun i c => sum b fun a₂ b₂ => if i * a₂ = m then t • c * b₂ else 0) = (t • ↑(a * b)) m [PROOFSTEP] simp only [mul_apply, Finsupp.smul_sum, smul_ite, smul_mul_assoc, zero_mul, ite_self, imp_true_iff, sum_zero, Pi.smul_apply, smul_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : SMulCommClass R k k t : R a b : MonoidAlgebra k G ⊢ t • a • b = a • t • b [PROOFSTEP] refine Finsupp.ext fun m => ?_ -- Porting note: `refine` & `rw` are required because `simp` behaves differently. [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : SMulCommClass R k k t : R a b : MonoidAlgebra k G m : G ⊢ ↑(t • a • b) m = ↑(a • t • b) m [PROOFSTEP] classical simp only [smul_eq_mul, mul_apply] rw [coe_smul] refine Eq.symm (Eq.trans (congr_arg (sum a) (funext₂ fun a₁ b₁ => sum_smul_index' (g := b) (b := t) ?_)) ?_) <;> simp only [mul_apply, Finsupp.sum, Finset.smul_sum, smul_ite, mul_smul_comm, imp_true_iff, ite_eq_right_iff, Pi.smul_apply, mul_zero, smul_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : SMulCommClass R k k t : R a b : MonoidAlgebra k G m : G ⊢ ↑(t • a • b) m = ↑(a • t • b) m [PROOFSTEP] simp only [smul_eq_mul, mul_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : SMulCommClass R k k t : R a b : MonoidAlgebra k G m : G ⊢ ↑(t • (a * b)) m = sum a fun a₁ b₁ => sum (t • b) fun a₂ b₂ => if a₁ * a₂ = m then b₁ * b₂ else 0 [PROOFSTEP] rw [coe_smul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : SMulCommClass R k k t : R a b : MonoidAlgebra k G m : G ⊢ (t • ↑(a * b)) m = sum a fun a₁ b₁ => sum (t • b) fun a₂ b₂ => if a₁ * a₂ = m then b₁ * b₂ else 0 [PROOFSTEP] refine Eq.symm (Eq.trans (congr_arg (sum a) (funext₂ fun a₁ b₁ => sum_smul_index' (g := b) (b := t) ?_)) ?_) [GOAL] case refine_1 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : SMulCommClass R k k t : R a b : MonoidAlgebra k G m a₁ : G b₁ : k ⊢ ∀ (i : G), (if a₁ * i = m then b₁ * 0 else 0) = 0 [PROOFSTEP] simp only [mul_apply, Finsupp.sum, Finset.smul_sum, smul_ite, mul_smul_comm, imp_true_iff, ite_eq_right_iff, Pi.smul_apply, mul_zero, smul_zero] [GOAL] case refine_2 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : SMulCommClass R k k t : R a b : MonoidAlgebra k G m : G ⊢ (sum a fun a₁ b₁ => sum b fun i c => if a₁ * i = m then b₁ * t • c else 0) = (t • ↑(a * b)) m [PROOFSTEP] simp only [mul_apply, Finsupp.sum, Finset.smul_sum, smul_ite, mul_smul_comm, imp_true_iff, ite_eq_right_iff, Pi.smul_apply, mul_zero, smul_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : SMulCommClass k R k t : MonoidAlgebra k G a : R b : MonoidAlgebra k G ⊢ t • a • b = a • t • b [PROOFSTEP] haveI := SMulCommClass.symm k R k [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : Semiring k inst✝² : DistribSMul R k inst✝¹ : Mul G inst✝ : SMulCommClass k R k t : MonoidAlgebra k G a : R b : MonoidAlgebra k G this : SMulCommClass R k k ⊢ t • a • b = a • t • b [PROOFSTEP] rw [← smul_comm] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) t' : k a : MonoidAlgebra k G ⊢ (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a [PROOFSTEP] dsimp only [] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) t' : k a : MonoidAlgebra k G ⊢ (sum (t' • a) fun m t => t • ↑f m) = t' • sum a fun m t => t • ↑f m [PROOFSTEP] rw [Finsupp.smul_sum, sum_smul_index'] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) t' : k a : MonoidAlgebra k G ⊢ (sum a fun i c => (t' • c) • ↑f i) = sum a fun a b => t' • b • ↑f a [PROOFSTEP] simp_rw [smul_assoc] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) t' : k a : MonoidAlgebra k G ⊢ ∀ (i : G), 0 • ↑f i = 0 [PROOFSTEP] intro m [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) t' : k a : MonoidAlgebra k G m : G ⊢ 0 • ↑f m = 0 [PROOFSTEP] exact zero_smul k (f m) [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G ⊢ MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom (a₁ * a₂) = MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom a₁ * MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom a₂ [PROOFSTEP] let g : G → k → A := fun m t => t • f m [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m ⊢ MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom (a₁ * a₂) = MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom a₁ * MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom a₂ [PROOFSTEP] have h₁ : ∀ m, g m 0 = 0 := by intro m exact zero_smul k (f m) [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m ⊢ ∀ (m : G), g m 0 = 0 [PROOFSTEP] intro m [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m m : G ⊢ g m 0 = 0 [PROOFSTEP] exact zero_smul k (f m) [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m h₁ : ∀ (m : G), g m 0 = 0 ⊢ MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom (a₁ * a₂) = MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom a₁ * MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom a₂ [PROOFSTEP] have h₂ : ∀ (m) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂ := by intros rw [← add_smul] -- Porting note: `reducible` cannot be `local` so proof gets long. [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m h₁ : ∀ (m : G), g m 0 = 0 ⊢ ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂ [PROOFSTEP] intros [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m h₁ : ∀ (m : G), g m 0 = 0 m✝ : G t₁✝ t₂✝ : k ⊢ g m✝ (t₁✝ + t₂✝) = g m✝ t₁✝ + g m✝ t₂✝ [PROOFSTEP] rw [← add_smul] -- Porting note: `reducible` cannot be `local` so proof gets long. [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m h₁ : ∀ (m : G), g m 0 = 0 h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂ ⊢ MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom (a₁ * a₂) = MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom a₁ * MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom a₂ [PROOFSTEP] simp_rw [Finsupp.mul_sum, Finsupp.sum_mul, smul_mul_smul, ← f.map_mul, mul_def, sum_comm a₂ a₁] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m h₁ : ∀ (m : G), g m 0 = 0 h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂ ⊢ (sum (sum a₁ fun a₁ b₁ => sum a₂ fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun m t => t • ↑f m) = sum a₁ fun x' v' => sum a₂ fun x v => (v' * v) • ↑f (x' * x) [PROOFSTEP] rw [sum_sum_index h₁ h₂] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m h₁ : ∀ (m : G), g m 0 = 0 h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂ ⊢ (sum a₁ fun a b => sum (sum a₂ fun a₂ b₂ => single (a * a₂) (b * b₂)) fun a => g a) = sum a₁ fun x' v' => sum a₂ fun x v => (v' * v) • ↑f (x' * x) [PROOFSTEP] congr [GOAL] case e_g k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m h₁ : ∀ (m : G), g m 0 = 0 h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂ ⊢ (fun a b => sum (sum a₂ fun a₂ b₂ => single (a * a₂) (b * b₂)) fun a => g a) = fun x' v' => sum a₂ fun x v => (v' * v) • ↑f (x' * x) [PROOFSTEP] ext [GOAL] case e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m h₁ : ∀ (m : G), g m 0 = 0 h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂ x✝¹ : G x✝ : k ⊢ (sum (sum a₂ fun a₂ b₂ => single (x✝¹ * a₂) (x✝ * b₂)) fun a => g a) = sum a₂ fun x v => (x✝ * v) • ↑f (x✝¹ * x) [PROOFSTEP] rw [sum_sum_index h₁ h₂] [GOAL] case e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m h₁ : ∀ (m : G), g m 0 = 0 h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂ x✝¹ : G x✝ : k ⊢ (sum a₂ fun a b => sum (single (x✝¹ * a) (x✝ * b)) fun a => g a) = sum a₂ fun x v => (x✝ * v) • ↑f (x✝¹ * x) [PROOFSTEP] congr [GOAL] case e_g.h.h.e_g k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m h₁ : ∀ (m : G), g m 0 = 0 h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂ x✝¹ : G x✝ : k ⊢ (fun a b => sum (single (x✝¹ * a) (x✝ * b)) fun a => g a) = fun x v => (x✝ * v) • ↑f (x✝¹ * x) [PROOFSTEP] ext [GOAL] case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) a₁ a₂ : MonoidAlgebra k G g : G → k → A := fun m t => t • ↑f m h₁ : ∀ (m : G), g m 0 = 0 h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂ x✝³ : G x✝² : k x✝¹ : G x✝ : k ⊢ (sum (single (x✝³ * x✝¹) (x✝² * x✝)) fun a => g a) = (x✝² * x✝) • ↑f (x✝³ * x✝¹) [PROOFSTEP] rw [sum_single_index (h₁ _)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A ⊢ (fun F => MulHom.comp (NonUnitalAlgHom.toMulHom F) (ofMagma k G)) ((fun f => let src := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x); { toDistribMulActionHom := { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_mul' := (_ : ∀ (a₁ a₂ : MonoidAlgebra k G), MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom (a₁ * a₂) = MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom a₁ * MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom a₂) }) f) = f [PROOFSTEP] ext m [GOAL] case h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A f : G →ₙ* A m : G ⊢ ↑((fun F => MulHom.comp (NonUnitalAlgHom.toMulHom F) (ofMagma k G)) ((fun f => let src := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x); { toDistribMulActionHom := { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_mul' := (_ : ∀ (a₁ a₂ : MonoidAlgebra k G), MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom (a₁ * a₂) = MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom a₁ * MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom a₂) }) f)) m = ↑f m [PROOFSTEP] simp only [NonUnitalAlgHom.coe_mk, ofMagma_apply, NonUnitalAlgHom.toMulHom_eq_coe, sum_single_index, Function.comp_apply, one_smul, zero_smul, MulHom.coe_comp, NonUnitalAlgHom.coe_to_mulHom] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A F : MonoidAlgebra k G →ₙₐ[k] A ⊢ (fun f => let src := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x); { toDistribMulActionHom := { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_mul' := (_ : ∀ (a₁ a₂ : MonoidAlgebra k G), MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom (a₁ * a₂) = MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom a₁ * MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom a₂) }) ((fun F => MulHom.comp (NonUnitalAlgHom.toMulHom F) (ofMagma k G)) F) = F [PROOFSTEP] refine nonUnitalAlgHom_ext' k (MulHom.ext fun m => ?_) [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : Semiring k inst✝⁵ : DistribSMul R k inst✝⁴ : Mul G A : Type u₃ inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module k A inst✝¹ : IsScalarTower k A A inst✝ : SMulCommClass k A A F : MonoidAlgebra k G →ₙₐ[k] A m : G ⊢ ↑(MulHom.comp (NonUnitalAlgHom.toMulHom ((fun f => let src := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x); { toDistribMulActionHom := { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_mul' := (_ : ∀ (a₁ a₂ : MonoidAlgebra k G), MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom (a₁ * a₂) = MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom a₁ * MulActionHom.toFun { toMulActionHom := { toFun := fun a => sum a fun m t => t • ↑f m, map_smul' := (_ : ∀ (t' : k) (a : MonoidAlgebra k G), (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom a₂) }) ((fun F => MulHom.comp (NonUnitalAlgHom.toMulHom F) (ofMagma k G)) F))) (ofMagma k G)) m = ↑(MulHom.comp (NonUnitalAlgHom.toMulHom F) (ofMagma k G)) m [PROOFSTEP] simp only [NonUnitalAlgHom.coe_mk, ofMagma_apply, NonUnitalAlgHom.toMulHom_eq_coe, sum_single_index, Function.comp_apply, one_smul, zero_smul, MulHom.coe_comp, NonUnitalAlgHom.coe_to_mulHom] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : CommSemiring k inst✝ : MulOneClass G r : k f : MonoidAlgebra k G ⊢ single 1 r * f = f * single 1 r [PROOFSTEP] refine Finsupp.ext fun _ => ?_ [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : CommSemiring k inst✝ : MulOneClass G r : k f : MonoidAlgebra k G x✝ : G ⊢ ↑(single 1 r * f) x✝ = ↑(f * single 1 r) x✝ [PROOFSTEP] rw [single_one_mul_apply, mul_single_one_apply, mul_comm] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : MulOneClass G src✝ : k →+ G →₀ k := singleAddHom 1 x y : k ⊢ OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = ZeroHom.toFun (↑src✝) 1) } (x * y) = OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = ZeroHom.toFun (↑src✝) 1) } x * OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = ZeroHom.toFun (↑src✝) 1) } y [PROOFSTEP] simp only [ZeroHom.toFun_eq_coe, AddMonoidHom.toZeroHom_coe, singleAddHom_apply, single_mul_single, mul_one] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R✝ : Type u_2 R : Type u_3 inst✝² : Semiring k inst✝¹ : MulOneClass G inst✝ : Semiring R f g : MonoidAlgebra k G →+* R h₁ : ∀ (b : k), ↑f (single 1 b) = ↑g (single 1 b) h_of : ∀ (a : G), ↑f (single a 1) = ↑g (single a 1) a : G b : k ⊢ ↑((fun f => ↑f) f) (Finsupp.single a b) = ↑((fun f => ↑f) g) (Finsupp.single a b) [PROOFSTEP] rw [← single, ← one_mul a, ← mul_one b, ← single_mul_single, AddMonoidHom.coe_coe f, AddMonoidHom.coe_coe g, f.map_mul, g.map_mul, h₁, h_of] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 A : Type u_3 inst✝³ : CommSemiring k inst✝² : Semiring A inst✝¹ : Algebra k A inst✝ : Monoid G src✝ : k →+* MonoidAlgebra A G := RingHom.comp singleOneRingHom (algebraMap k A) r : k f : (fun x => MonoidAlgebra A G) r ⊢ ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * f = f * ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r [PROOFSTEP] refine Finsupp.ext fun _ => ?_ [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 A : Type u_3 inst✝³ : CommSemiring k inst✝² : Semiring A inst✝¹ : Algebra k A inst✝ : Monoid G src✝ : k →+* MonoidAlgebra A G := RingHom.comp singleOneRingHom (algebraMap k A) r : k f : (fun x => MonoidAlgebra A G) r x✝ : G ⊢ ↑(↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * f) x✝ = ↑(f * ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r) x✝ [PROOFSTEP] simp [single_one_mul_apply, mul_single_one_apply, Algebra.commutes] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 A : Type u_3 inst✝³ : CommSemiring k inst✝² : Semiring A inst✝¹ : Algebra k A inst✝ : Monoid G src✝ : k →+* MonoidAlgebra A G := RingHom.comp singleOneRingHom (algebraMap k A) r : k a : (fun x => MonoidAlgebra A G) r ⊢ r • a = ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * a [PROOFSTEP] refine Finsupp.ext fun _ => ?_ -- Porting note: Newly required. [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 A : Type u_3 inst✝³ : CommSemiring k inst✝² : Semiring A inst✝¹ : Algebra k A inst✝ : Monoid G src✝ : k →+* MonoidAlgebra A G := RingHom.comp singleOneRingHom (algebraMap k A) r : k a : (fun x => MonoidAlgebra A G) r x✝ : G ⊢ ↑(r • a) x✝ = ↑(↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * a) x✝ [PROOFSTEP] rw [Finsupp.coe_smul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 A : Type u_3 inst✝³ : CommSemiring k inst✝² : Semiring A inst✝¹ : Algebra k A inst✝ : Monoid G src✝ : k →+* MonoidAlgebra A G := RingHom.comp singleOneRingHom (algebraMap k A) r : k a : (fun x => MonoidAlgebra A G) r x✝ : G ⊢ (r • ↑a) x✝ = ↑(↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * a) x✝ [PROOFSTEP] simp [single_one_mul_apply, Algebra.smul_def, Pi.smul_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 A : Type u_3 inst✝³ : CommSemiring k inst✝² : Semiring A inst✝¹ : Algebra k A inst✝ : Monoid G src✝ : A →+* MonoidAlgebra A G := singleOneRingHom r : k ⊢ OneHom.toFun (↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap k A) r) = ↑(algebraMap k (MonoidAlgebra A G)) r [PROOFSTEP] refine Finsupp.ext fun _ => ?_ [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 A : Type u_3 inst✝³ : CommSemiring k inst✝² : Semiring A inst✝¹ : Algebra k A inst✝ : Monoid G src✝ : A →+* MonoidAlgebra A G := singleOneRingHom r : k x✝ : G ⊢ ↑(OneHom.toFun (↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap k A) r)) x✝ = ↑(↑(algebraMap k (MonoidAlgebra A G)) r) x✝ [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 A : Type u_3 inst✝³ : CommSemiring k inst✝² : Semiring A inst✝¹ : Algebra k A inst✝ : Monoid G src✝ : A →+* MonoidAlgebra A G := singleOneRingHom r : k x✝ : G ⊢ ↑(Finsupp.single 1 (↑(algebraMap k A) r)) x✝ = ↑(↑(algebraMap k (MonoidAlgebra A G)) r) x✝ [PROOFSTEP] rfl [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : CommSemiring k inst✝ : Monoid G a : G b : k ⊢ single a b = ↑(algebraMap k (MonoidAlgebra k G)) b * ↑(of k G) a [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 A : Type u_3 inst✝³ : CommSemiring k inst✝² : Semiring A inst✝¹ : Algebra k A inst✝ : Monoid G a : G b : k ⊢ single a (↑(algebraMap k A) b) = ↑(algebraMap k (MonoidAlgebra A G)) b * ↑(of A G) a [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G p : MonoidAlgebra k G → Prop f : MonoidAlgebra k G hM : ∀ (g : G), p (↑(of k G) g) hadd : ∀ (f g : MonoidAlgebra k G), p f → p g → p (f + g) hsmul : ∀ (r : k) (f : MonoidAlgebra k G), p f → p (r • f) ⊢ p f [PROOFSTEP] refine' Finsupp.induction_linear f _ (fun f g hf hg => hadd f g hf hg) fun g r => _ [GOAL] case refine'_1 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G p : MonoidAlgebra k G → Prop f : MonoidAlgebra k G hM : ∀ (g : G), p (↑(of k G) g) hadd : ∀ (f g : MonoidAlgebra k G), p f → p g → p (f + g) hsmul : ∀ (r : k) (f : MonoidAlgebra k G), p f → p (r • f) ⊢ p 0 [PROOFSTEP] simpa using hsmul 0 (of k G 1) (hM 1) [GOAL] case refine'_2 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G p : MonoidAlgebra k G → Prop f : MonoidAlgebra k G hM : ∀ (g : G), p (↑(of k G) g) hadd : ∀ (f g : MonoidAlgebra k G), p f → p g → p (f + g) hsmul : ∀ (r : k) (f : MonoidAlgebra k G), p f → p (r • f) g : G r : k ⊢ p (Finsupp.single g r) [PROOFSTEP] convert hsmul r (of k G g) (hM g) -- Porting note: Was `simp only`. [GOAL] case h.e'_1 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G p : MonoidAlgebra k G → Prop f : MonoidAlgebra k G hM : ∀ (g : G), p (↑(of k G) g) hadd : ∀ (f g : MonoidAlgebra k G), p f → p g → p (f + g) hsmul : ∀ (r : k) (f : MonoidAlgebra k G), p f → p (r • f) g : G r : k ⊢ Finsupp.single g r = r • ↑(of k G) g [PROOFSTEP] rw [of_apply, smul_single', mul_one] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : CommSemiring k inst✝⁵ : Monoid G inst✝⁴ : Monoid H A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B f : A →ₐ[k] B g : G →* B h_comm : ∀ (x : A) (y : G), Commute (↑f x) (↑g y) src✝ : MonoidAlgebra A G →+* B := liftNCRingHom (↑f) g h_comm ⊢ ∀ (r : k), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := ↑(liftNCRingHom (↑f) g h_comm), map_one' := (_ : OneHom.toFun (↑↑src✝) 1 = 1) }, map_mul' := (_ : ∀ (x y : MonoidAlgebra A G), OneHom.toFun (↑↑src✝) (x * y) = OneHom.toFun (↑↑src✝) x * OneHom.toFun (↑↑src✝) y) }, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : MonoidAlgebra A G), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap k (MonoidAlgebra A G)) r) = ↑(algebraMap k B) r [PROOFSTEP] simp [liftNCRingHom] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : CommSemiring k inst✝⁵ : Monoid G inst✝⁴ : Monoid H A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B f : G →* A ⊢ (fun f => MonoidHom.comp (↑f) (of k G)) ((fun F => liftNCAlgHom (Algebra.ofId k A) F (_ : ∀ (x : k) (x_1 : G), ↑(algebraMap k ((fun x => A) x)) x * ↑F x_1 = ↑F x_1 * ↑(algebraMap k ((fun x => A) x)) x)) f) = f [PROOFSTEP] ext [GOAL] case h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : CommSemiring k inst✝⁵ : Monoid G inst✝⁴ : Monoid H A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B f : G →* A x✝ : G ⊢ ↑((fun f => MonoidHom.comp (↑f) (of k G)) ((fun F => liftNCAlgHom (Algebra.ofId k A) F (_ : ∀ (x : k) (x_1 : G), ↑(algebraMap k ((fun x => A) x)) x * ↑F x_1 = ↑F x_1 * ↑(algebraMap k ((fun x => A) x)) x)) f)) x✝ = ↑f x✝ [PROOFSTEP] simp [liftNCAlgHom, liftNCRingHom] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : CommSemiring k inst✝⁵ : Monoid G inst✝⁴ : Monoid H A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : MonoidAlgebra k G →ₐ[k] A ⊢ (fun F => liftNCAlgHom (Algebra.ofId k A) F (_ : ∀ (x : k) (x_1 : G), ↑(algebraMap k ((fun x => A) x)) x * ↑F x_1 = ↑F x_1 * ↑(algebraMap k ((fun x => A) x)) x)) ((fun f => MonoidHom.comp (↑f) (of k G)) F) = F [PROOFSTEP] ext [GOAL] case h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : CommSemiring k inst✝⁵ : Monoid G inst✝⁴ : Monoid H A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : MonoidAlgebra k G →ₐ[k] A x✝ : G ⊢ ↑(MonoidHom.comp (↑((fun F => liftNCAlgHom (Algebra.ofId k A) F (_ : ∀ (x : k) (x_1 : G), ↑(algebraMap k ((fun x => A) x)) x * ↑F x_1 = ↑F x_1 * ↑(algebraMap k ((fun x => A) x)) x)) ((fun f => MonoidHom.comp (↑f) (of k G)) F))) (of k G)) x✝ = ↑(MonoidHom.comp (↑F) (of k G)) x✝ [PROOFSTEP] simp [liftNCAlgHom, liftNCRingHom] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : CommSemiring k inst✝⁵ : Monoid G inst✝⁴ : Monoid H A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : G →* A f : MonoidAlgebra k G ⊢ ↑(↑(lift k G A) F) f = sum f fun a b => b • ↑F a [PROOFSTEP] simp only [lift_apply', Algebra.smul_def] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : CommSemiring k inst✝⁵ : Monoid G inst✝⁴ : Monoid H A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : G →* A x : G ⊢ ↑(↑(lift k G A) F) (↑(of k G) x) = ↑F x [PROOFSTEP] rw [of_apply, ← lift_symm_apply, Equiv.symm_apply_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : CommSemiring k inst✝⁵ : Monoid G inst✝⁴ : Monoid H A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : G →* A a : G b : k ⊢ ↑(↑(lift k G A) F) (single a b) = b • ↑F a [PROOFSTEP] rw [lift_def, liftNC_single, Algebra.smul_def, AddMonoidHom.coe_coe] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : CommSemiring k inst✝⁵ : Monoid G inst✝⁴ : Monoid H A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : MonoidAlgebra k G →ₐ[k] A f : MonoidAlgebra k G ⊢ ↑F f = sum f fun a b => b • ↑F (single a 1) [PROOFSTEP] conv_lhs => rw [lift_unique' F] simp [lift_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : CommSemiring k inst✝⁵ : Monoid G inst✝⁴ : Monoid H A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : MonoidAlgebra k G →ₐ[k] A f : MonoidAlgebra k G | ↑F f [PROOFSTEP] rw [lift_unique' F] simp [lift_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : CommSemiring k inst✝⁵ : Monoid G inst✝⁴ : Monoid H A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : MonoidAlgebra k G →ₐ[k] A f : MonoidAlgebra k G | ↑F f [PROOFSTEP] rw [lift_unique' F] simp [lift_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : CommSemiring k inst✝⁵ : Monoid G inst✝⁴ : Monoid H A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : MonoidAlgebra k G →ₐ[k] A f : MonoidAlgebra k G | ↑F f [PROOFSTEP] rw [lift_unique' F] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁶ : CommSemiring k inst✝⁵ : Monoid G inst✝⁴ : Monoid H A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : MonoidAlgebra k G →ₐ[k] A f : MonoidAlgebra k G | ↑(↑(lift k G A) (MonoidHom.comp (↑F) (of k G))) f [PROOFSTEP] simp [lift_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁷ : CommSemiring k inst✝⁶ : Monoid G inst✝⁵ : Monoid H A : Type u₃ inst✝⁴ : Semiring A inst✝³ : Algebra k A B : Type u_3 inst✝² : Semiring B inst✝¹ : Algebra k B F : Type u_4 inst✝ : MonoidHomClass F G H f : F r : k ⊢ mapDomain (↑f) (↑(algebraMap k (MonoidAlgebra A G)) r) = ↑(algebraMap k (MonoidAlgebra A H)) r [PROOFSTEP] simp only [coe_algebraMap, mapDomain_single, map_one, (· ∘ ·)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁹ : Monoid G inst✝⁸ : CommSemiring k V : Type u₃ W : Type u₄ inst✝⁷ : AddCommMonoid V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V inst✝³ : AddCommMonoid W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W f : V →ₗ[k] W h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v v v' : V ⊢ ↑f (v + v') = ↑f v + ↑f v' [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁹ : Monoid G inst✝⁸ : CommSemiring k V : Type u₃ W : Type u₄ inst✝⁷ : AddCommMonoid V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V inst✝³ : AddCommMonoid W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W f : V →ₗ[k] W h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v c : MonoidAlgebra k G v : V ⊢ AddHom.toFun { toFun := ↑f, map_add' := (_ : ∀ (v v' : V), ↑f (v + v') = ↑f v + ↑f v') } (c • v) = ↑(RingHom.id (MonoidAlgebra k G)) c • AddHom.toFun { toFun := ↑f, map_add' := (_ : ∀ (v v' : V), ↑f (v + v') = ↑f v + ↑f v') } v [PROOFSTEP] dsimp only [] -- Porting note: Was `apply`. [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁹ : Monoid G inst✝⁸ : CommSemiring k V : Type u₃ W : Type u₄ inst✝⁷ : AddCommMonoid V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V inst✝³ : AddCommMonoid W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W f : V →ₗ[k] W h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v c : MonoidAlgebra k G v : V ⊢ ↑f (c • v) = ↑(RingHom.id (MonoidAlgebra k G)) c • ↑f v [PROOFSTEP] refine Finsupp.induction c ?_ ?_ [GOAL] case refine_1 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁹ : Monoid G inst✝⁸ : CommSemiring k V : Type u₃ W : Type u₄ inst✝⁷ : AddCommMonoid V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V inst✝³ : AddCommMonoid W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W f : V →ₗ[k] W h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v c : MonoidAlgebra k G v : V ⊢ ↑f (0 • v) = ↑(RingHom.id (MonoidAlgebra k G)) 0 • ↑f v [PROOFSTEP] simp [GOAL] case refine_2 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁹ : Monoid G inst✝⁸ : CommSemiring k V : Type u₃ W : Type u₄ inst✝⁷ : AddCommMonoid V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V inst✝³ : AddCommMonoid W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W f : V →ₗ[k] W h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v c : MonoidAlgebra k G v : V ⊢ ∀ (a : G) (b : k) (f_1 : G →₀ k), ¬a ∈ f_1.support → b ≠ 0 → ↑f (f_1 • v) = ↑(RingHom.id (MonoidAlgebra k G)) f_1 • ↑f v → ↑f ((Finsupp.single a b + f_1) • v) = ↑(RingHom.id (MonoidAlgebra k G)) (Finsupp.single a b + f_1) • ↑f v [PROOFSTEP] intro g r c' _nm _nz w [GOAL] case refine_2 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁹ : Monoid G inst✝⁸ : CommSemiring k V : Type u₃ W : Type u₄ inst✝⁷ : AddCommMonoid V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V inst✝³ : AddCommMonoid W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W f : V →ₗ[k] W h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v c : MonoidAlgebra k G v : V g : G r : k c' : G →₀ k _nm : ¬g ∈ c'.support _nz : r ≠ 0 w : ↑f (c' • v) = ↑(RingHom.id (MonoidAlgebra k G)) c' • ↑f v ⊢ ↑f ((Finsupp.single g r + c') • v) = ↑(RingHom.id (MonoidAlgebra k G)) (Finsupp.single g r + c') • ↑f v [PROOFSTEP] dsimp at * [GOAL] case refine_2 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁹ : Monoid G inst✝⁸ : CommSemiring k V : Type u₃ W : Type u₄ inst✝⁷ : AddCommMonoid V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V inst✝³ : AddCommMonoid W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W f : V →ₗ[k] W h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v c : MonoidAlgebra k G v : V g : G r : k c' : G →₀ k _nm : ¬g ∈ c'.support _nz : ¬r = 0 w : ↑f (c' • v) = c' • ↑f v ⊢ ↑f ((Finsupp.single g r + c') • v) = (Finsupp.single g r + c') • ↑f v [PROOFSTEP] simp only [add_smul, f.map_add, w, add_left_inj, single_eq_algebraMap_mul_of, ← smul_smul] [GOAL] case refine_2 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁹ : Monoid G inst✝⁸ : CommSemiring k V : Type u₃ W : Type u₄ inst✝⁷ : AddCommMonoid V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V inst✝³ : AddCommMonoid W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W f : V →ₗ[k] W h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v c : MonoidAlgebra k G v : V g : G r : k c' : G →₀ k _nm : ¬g ∈ c'.support _nz : ¬r = 0 w : ↑f (c' • v) = c' • ↑f v ⊢ ↑f (↑(algebraMap k (MonoidAlgebra k G)) r • ↑(of k G) g • v) + c' • ↑f v = ↑(algebraMap k (MonoidAlgebra k G)) r • ↑(of k G) g • ↑f v + c' • ↑f v [PROOFSTEP] erw [algebraMap_smul (MonoidAlgebra k G) r, algebraMap_smul (MonoidAlgebra k G) r, f.map_smul, h g v, of_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 ι : Type ui inst✝¹ : CommSemiring k inst✝ : CommMonoid G s✝ : Finset ι a✝ : ι → G b : ι → k a : ι s : Finset ι has : ¬a ∈ s ih : ∏ i in s, single (a✝ i) (b i) = single (∏ i in s, a✝ i) (∏ i in s, b i) ⊢ ∏ i in cons a s has, single (a✝ i) (b i) = single (∏ i in cons a s has, a✝ i) (∏ i in cons a s has, b i) [PROOFSTEP] rw [prod_cons has, ih, single_mul_single, prod_cons has, prod_cons has] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Group G f g : MonoidAlgebra k G x : G ⊢ ↑(f * g) x = sum f fun a b => ↑(single a b * g) x [PROOFSTEP] rw [← Finsupp.sum_apply, ← Finsupp.sum_mul g f, f.sum_single] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Group G f g : MonoidAlgebra k G x : G ⊢ (sum f fun a b => ↑(single a b * g) x) = sum f fun a b => b * ↑g (a⁻¹ * x) [PROOFSTEP] simp only [single_mul_apply, Finsupp.sum] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Group G f g : MonoidAlgebra k G x : G ⊢ ↑(f * g) x = sum g fun a b => ↑(f * single a b) x [PROOFSTEP] rw [← Finsupp.sum_apply, ← Finsupp.mul_sum f g, g.sum_single] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Group G f g : MonoidAlgebra k G x : G ⊢ (sum g fun a b => ↑(f * single a b) x) = sum g fun a b => ↑f (x * a⁻¹) * b [PROOFSTEP] simp only [mul_single_apply, Finsupp.sum] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (Gᵐᵒᵖ →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv)) ⊢ ∀ (x y : (MonoidAlgebra k G)ᵐᵒᵖ), Equiv.toFun src✝.toEquiv (x * y) = Equiv.toFun src✝.toEquiv x * Equiv.toFun src✝.toEquiv y [PROOFSTEP] rw [Equiv.toFun_as_coe, AddEquiv.toEquiv_eq_coe, AddEquiv.coe_toEquiv, ← AddEquiv.coe_toAddMonoidHom] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (Gᵐᵒᵖ →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv)) ⊢ ∀ (x y : (MonoidAlgebra k G)ᵐᵒᵖ), ↑(AddEquiv.toAddMonoidHom src✝) (x * y) = ↑(AddEquiv.toAddMonoidHom src✝) x * ↑(AddEquiv.toAddMonoidHom src✝) y [PROOFSTEP] refine Iff.mpr (AddMonoidHom.map_mul_iff (R := (MonoidAlgebra k G)ᵐᵒᵖ) (S := MonoidAlgebra kᵐᵒᵖ Gᵐᵒᵖ) _) ?_ -- Porting note: Was `ext`. [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (Gᵐᵒᵖ →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv)) ⊢ AddMonoidHom.compr₂ AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝) = AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝)) (AddEquiv.toAddMonoidHom src✝) [PROOFSTEP] refine AddMonoidHom.mul_op_ext _ _ <| addHom_ext' fun i₁ => AddMonoidHom.ext fun r₁ => AddMonoidHom.mul_op_ext _ _ <| addHom_ext' fun i₂ => AddMonoidHom.ext fun r₂ => ?_ -- Porting note: `reducible` cannot be `local` so proof gets long. [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (Gᵐᵒᵖ →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv)) i₁ : G r₁ : k i₂ : G r₂ : k ⊢ ↑(AddMonoidHom.comp (AddMonoidHom.comp (↑(AddMonoidHom.comp (AddMonoidHom.comp (AddMonoidHom.compr₂ AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝)) (AddEquiv.toAddMonoidHom opAddEquiv)) (singleAddHom i₁)) r₁) (AddEquiv.toAddMonoidHom opAddEquiv)) (singleAddHom i₂)) r₂ = ↑(AddMonoidHom.comp (AddMonoidHom.comp (↑(AddMonoidHom.comp (AddMonoidHom.comp (AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝)) (AddEquiv.toAddMonoidHom src✝)) (AddEquiv.toAddMonoidHom opAddEquiv)) (singleAddHom i₁)) r₁) (AddEquiv.toAddMonoidHom opAddEquiv)) (singleAddHom i₂)) r₂ [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (Gᵐᵒᵖ →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv)) i₁ : G r₁ : k i₂ : G r₂ : k ⊢ ↑(AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv))) (↑opAddEquiv (Finsupp.single i₁ r₁) * ↑opAddEquiv (Finsupp.single i₂ r₂)) = ↑(AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv))) (↑opAddEquiv (Finsupp.single i₁ r₁)) * ↑(AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv))) (↑opAddEquiv (Finsupp.single i₂ r₂)) [PROOFSTEP] rw [AddEquiv.trans_apply, AddEquiv.trans_apply, AddEquiv.trans_apply, AddEquiv.trans_apply, AddEquiv.trans_apply, AddEquiv.trans_apply, MulOpposite.opAddEquiv_apply, MulOpposite.opAddEquiv_symm_apply, MulOpposite.unop_mul (α := MonoidAlgebra k G)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (Gᵐᵒᵖ →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv)) i₁ : G r₁ : k i₂ : G r₂ : k ⊢ ↑(Finsupp.domCongr opEquiv) (↑(mapRange.addEquiv opAddEquiv) (unop (op (Finsupp.single i₂ r₂)) * unop (op (Finsupp.single i₁ r₁)))) = ↑(Finsupp.domCongr opEquiv) (↑(mapRange.addEquiv opAddEquiv) (unop (op (Finsupp.single i₁ r₁)))) * ↑(Finsupp.domCongr opEquiv) (↑(mapRange.addEquiv opAddEquiv) (unop (op (Finsupp.single i₂ r₂)))) [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G r : k x : G ⊢ ↑MonoidAlgebra.opRingEquiv (op (single x r)) = single (op x) (op r) [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Monoid G r : kᵐᵒᵖ x : Gᵐᵒᵖ ⊢ ↑(RingEquiv.symm MonoidAlgebra.opRingEquiv) (single x r) = op (single (unop x) (unop r)) [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G V : Type u_3 inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : Module (MonoidAlgebra k G) V inst✝ : IsScalarTower k (MonoidAlgebra k G) V W : Submodule k V h : ∀ (g : G) (v : V), v ∈ W → ↑(of k G) g • v ∈ W ⊢ ∀ (c : MonoidAlgebra k G) {x : V}, x ∈ { toAddSubsemigroup := { carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) }, zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier → c • x ∈ { toAddSubsemigroup := { carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) }, zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier [PROOFSTEP] intro f v hv [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G V : Type u_3 inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : Module (MonoidAlgebra k G) V inst✝ : IsScalarTower k (MonoidAlgebra k G) V W : Submodule k V h : ∀ (g : G) (v : V), v ∈ W → ↑(of k G) g • v ∈ W f : MonoidAlgebra k G v : V hv : v ∈ { toAddSubsemigroup := { carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) }, zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier ⊢ f • v ∈ { toAddSubsemigroup := { carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) }, zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier [PROOFSTEP] rw [← Finsupp.sum_single f, Finsupp.sum, Finset.sum_smul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G V : Type u_3 inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : Module (MonoidAlgebra k G) V inst✝ : IsScalarTower k (MonoidAlgebra k G) V W : Submodule k V h : ∀ (g : G) (v : V), v ∈ W → ↑(of k G) g • v ∈ W f : MonoidAlgebra k G v : V hv : v ∈ { toAddSubsemigroup := { carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) }, zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier ⊢ ∑ i in f.support, Finsupp.single i (↑f i) • v ∈ { toAddSubsemigroup := { carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) }, zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier [PROOFSTEP] simp_rw [← smul_of, smul_assoc] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G V : Type u_3 inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : Module (MonoidAlgebra k G) V inst✝ : IsScalarTower k (MonoidAlgebra k G) V W : Submodule k V h : ∀ (g : G) (v : V), v ∈ W → ↑(of k G) g • v ∈ W f : MonoidAlgebra k G v : V hv : v ∈ { toAddSubsemigroup := { carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) }, zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier ⊢ ∑ x in f.support, ↑f x • ↑(of k G) x • v ∈ ↑W [PROOFSTEP] exact Submodule.sum_smul_mem W _ fun g _ => h g v hv [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid ⊢ ∀ (x : AddMonoidAlgebra k G), (fun n f => n • f) 0 x = 0 [PROOFSTEP] intros [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid x✝ : AddMonoidAlgebra k G ⊢ (fun n f => n • f) 0 x✝ = 0 [PROOFSTEP] refine Finsupp.ext fun _ => ?_ [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid x✝¹ : AddMonoidAlgebra k G x✝ : G ⊢ ↑((fun n f => n • f) 0 x✝¹) x✝ = ↑0 x✝ [PROOFSTEP] simp [-nsmul_eq_mul, add_smul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid ⊢ ∀ (n : ℕ) (x : AddMonoidAlgebra k G), (fun n f => n • f) (n + 1) x = x + (fun n f => n • f) n x [PROOFSTEP] intros [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid n✝ : ℕ x✝ : AddMonoidAlgebra k G ⊢ (fun n f => n • f) (n✝ + 1) x✝ = x✝ + (fun n f => n • f) n✝ x✝ [PROOFSTEP] refine Finsupp.ext fun _ => ?_ -- Porting note: The definition of `nsmul_succ` is different, so next line is required. [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid n✝ : ℕ x✝¹ : AddMonoidAlgebra k G x✝ : G ⊢ ↑((fun n f => n • f) (n✝ + 1) x✝¹) x✝ = ↑(x✝¹ + (fun n f => n • f) n✝ x✝¹) x✝ [PROOFSTEP] simp only [fun n => Nat.add_comm n 1] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid n✝ : ℕ x✝¹ : AddMonoidAlgebra k G x✝ : G ⊢ ↑((1 + n✝) • x✝¹) x✝ = ↑(x✝¹ + n✝ • x✝¹) x✝ [PROOFSTEP] simp [-nsmul_eq_mul, add_smul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : AddMonoidAlgebra k G ⊢ f * (g + h) = f * g + f * h [PROOFSTEP] haveI := Classical.decEq G [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : AddMonoidAlgebra k G this : DecidableEq G ⊢ f * (g + h) = f * g + f * h [PROOFSTEP] simp only [mul_def] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : AddMonoidAlgebra k G this : DecidableEq G ⊢ (sum f fun a₁ b₁ => sum (g + h) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = (sum f fun a₁ b₁ => sum g fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) + sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) [PROOFSTEP] refine Eq.trans (congr_arg (sum f) (funext₂ fun a₁ b₁ => sum_add_index ?_ ?_)) ?_ [GOAL] case refine_1 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : AddMonoidAlgebra k G this : DecidableEq G a₁ : G b₁ : k ⊢ ∀ (a : G), a ∈ g.support ∪ h.support → single (a₁ + a) (b₁ * 0) = 0 [PROOFSTEP] simp only [mul_add, mul_zero, single_zero, single_add, forall_true_iff, sum_add] [GOAL] case refine_2 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : AddMonoidAlgebra k G this : DecidableEq G a₁ : G b₁ : k ⊢ ∀ (a : G), a ∈ g.support ∪ h.support → ∀ (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) [PROOFSTEP] simp only [mul_add, mul_zero, single_zero, single_add, forall_true_iff, sum_add] [GOAL] case refine_3 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : AddMonoidAlgebra k G this : DecidableEq G ⊢ (sum f fun a₁ b₁ => (sum g fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) + sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = (sum f fun a₁ b₁ => sum g fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) + sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) [PROOFSTEP] simp only [mul_add, mul_zero, single_zero, single_add, forall_true_iff, sum_add] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : AddMonoidAlgebra k G ⊢ (f + g) * h = f * h + g * h [PROOFSTEP] haveI := Classical.decEq G [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : AddMonoidAlgebra k G this : DecidableEq G ⊢ (f + g) * h = f * h + g * h [PROOFSTEP] simp only [mul_def] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : AddMonoidAlgebra k G this : DecidableEq G ⊢ (sum (f + g) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = (sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) + sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) [PROOFSTEP] refine Eq.trans (sum_add_index ?_ ?_) ?_ [GOAL] case refine_1 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : AddMonoidAlgebra k G this : DecidableEq G ⊢ ∀ (a : G), a ∈ f.support ∪ g.support → (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 [PROOFSTEP] simp only [add_mul, zero_mul, single_zero, single_add, forall_true_iff, sum_zero, sum_add] [GOAL] case refine_2 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : AddMonoidAlgebra k G this : DecidableEq G ⊢ ∀ (a : G), a ∈ f.support ∪ g.support → ∀ (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) [PROOFSTEP] simp only [add_mul, zero_mul, single_zero, single_add, forall_true_iff, sum_zero, sum_add] [GOAL] case refine_3 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f g h : AddMonoidAlgebra k G this : DecidableEq G ⊢ ((sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) + sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = (sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) + sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) [PROOFSTEP] simp only [add_mul, zero_mul, single_zero, single_add, forall_true_iff, sum_zero, sum_add] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f : AddMonoidAlgebra k G ⊢ 0 * f = 0 [PROOFSTEP] simp only [mul_def] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f : AddMonoidAlgebra k G ⊢ (sum 0 fun a₁ b₁ => sum f fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = 0 [PROOFSTEP] exact sum_zero_index [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f : AddMonoidAlgebra k G ⊢ f * 0 = 0 [PROOFSTEP] simp only [mul_def] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid f : AddMonoidAlgebra k G ⊢ (sum f fun a₁ b₁ => sum 0 fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = 0 [PROOFSTEP] exact Eq.trans (congr_arg (sum f) (funext₂ fun a₁ b₁ => sum_zero_index)) sum_zero [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ f * g * h = f * (g * h) [PROOFSTEP] simp only [mul_def] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ (sum (sum f fun a₁ b₁ => sum g fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = sum f fun a₁ b₁ => sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) [PROOFSTEP] rw [sum_sum_index] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ (sum f fun a b => sum (sum g fun a₂ b₂ => single (a + a₂) (b * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = sum f fun a₁ b₁ => sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) [PROOFSTEP] congr [GOAL] case e_g k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ (fun a b => sum (sum g fun a₂ b₂ => single (a + a₂) (b * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = fun a₁ b₁ => sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) [PROOFSTEP] ext a₁ b₁ [GOAL] case e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ (sum (sum g fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) [PROOFSTEP] rw [sum_sum_index, sum_sum_index] [GOAL] case e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ (sum g fun a b => sum (single (a₁ + a) (b₁ * b)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = sum g fun a b => sum (sum h fun a₂ b₂ => single (a + a₂) (b * b₂)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) [PROOFSTEP] congr [GOAL] case e_g.h.h.e_g k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ (fun a b => sum (single (a₁ + a) (b₁ * b)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = fun a b => sum (sum h fun a₂ b₂ => single (a + a₂) (b * b₂)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) [PROOFSTEP] ext a₂ b₂ [GOAL] case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum (single (a₁ + a₂) (b₁ * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = sum (sum h fun a₂_1 b₂_1 => single (a₂ + a₂_1) (b₂ * b₂_1)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) [PROOFSTEP] rw [sum_sum_index, sum_single_index] [GOAL] case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum h fun a₂_1 b₂_1 => single (a₁ + a₂ + a₂_1) (b₁ * b₂ * b₂_1)) = sum h fun a b => sum (single (a₂ + a) (b₂ * b)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum h fun a₂_1 b₂ => single (a₁ + a₂ + a₂_1) (0 * b₂)) = 0 case e_g.h.h.e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0 case e_g.h.h.e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) [PROOFSTEP] congr [GOAL] case e_g.h.h.e_g.h.h.e_g k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (fun a₂_1 b₂_1 => single (a₁ + a₂ + a₂_1) (b₁ * b₂ * b₂_1)) = fun a b => sum (single (a₂ + a) (b₂ * b)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum h fun a₂_1 b₂ => single (a₁ + a₂ + a₂_1) (0 * b₂)) = 0 case e_g.h.h.e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0 case e_g.h.h.e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) [PROOFSTEP] ext a₃ b₃ [GOAL] case e_g.h.h.e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k a₃ : G b₃ : k ⊢ single (a₁ + a₂ + a₃) (b₁ * b₂ * b₃) = sum (single (a₂ + a₃) (b₂ * b₃)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum h fun a₂_1 b₂ => single (a₁ + a₂ + a₂_1) (0 * b₂)) = 0 case e_g.h.h.e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0 case e_g.h.h.e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) [PROOFSTEP] rw [sum_single_index, mul_assoc, add_assoc] [GOAL] case e_g.h.h.e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k a₃ : G b₃ : k ⊢ single (a₁ + (a₂ + a₃)) (b₁ * 0) = 0 case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum h fun a₂_1 b₂ => single (a₁ + a₂ + a₂_1) (0 * b₂)) = 0 case e_g.h.h.e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0 case e_g.h.h.e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) [PROOFSTEP] all_goals simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k a₃ : G b₃ : k ⊢ single (a₁ + (a₂ + a₃)) (b₁ * 0) = 0 [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ (sum h fun a₂_1 b₂ => single (a₁ + a₂ + a₂_1) (0 * b₂)) = 0 [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0 [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k a₂ : G b₂ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0 [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂) [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G a₁ : G b₁ : k ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0 [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddSemigroup G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f g h : AddMonoidAlgebra k G ⊢ ∀ (a : G) (b₁ b₂ : k), (sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) = (sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1) [PROOFSTEP] simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddZeroClass G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f : AddMonoidAlgebra k G ⊢ 1 * f = f [PROOFSTEP] simp only [mul_def, one_def, sum_single_index, zero_mul, single_zero, sum_zero, zero_add, one_mul, sum_single] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddZeroClass G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring f : AddMonoidAlgebra k G ⊢ f * 1 = f [PROOFSTEP] simp only [mul_def, one_def, sum_single_index, mul_zero, single_zero, sum_zero, add_zero, mul_one, sum_single] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddZeroClass G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring ⊢ NatCast.natCast 0 = 0 [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddZeroClass G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring x✝ : ℕ ⊢ NatCast.natCast (x✝ + 1) = NatCast.natCast x✝ + 1 [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddZeroClass G src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring x✝ : ℕ ⊢ Finsupp.single 0 ↑x✝ + Finsupp.single 0 1 = single 0 ↑x✝ + 1 [PROOFSTEP] rfl [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Ring k inst✝ : AddZeroClass G src✝¹ : AddCommGroup (AddMonoidAlgebra k G) := addCommGroup src✝ : NonAssocSemiring (AddMonoidAlgebra k G) := nonAssocSemiring n : ℕ ⊢ IntCast.intCast ↑n = ↑n [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Ring k inst✝ : AddZeroClass G src✝¹ : AddCommGroup (AddMonoidAlgebra k G) := addCommGroup src✝ : NonAssocSemiring (AddMonoidAlgebra k G) := nonAssocSemiring n : ℕ ⊢ single 0 ↑n = ↑n [PROOFSTEP] rfl [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Ring k inst✝ : AddZeroClass G src✝¹ : AddCommGroup (AddMonoidAlgebra k G) := addCommGroup src✝ : NonAssocSemiring (AddMonoidAlgebra k G) := nonAssocSemiring n : ℕ ⊢ IntCast.intCast (Int.negSucc n) = -↑(n + 1) [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Ring k inst✝ : AddZeroClass G src✝¹ : AddCommGroup (AddMonoidAlgebra k G) := addCommGroup src✝ : NonAssocSemiring (AddMonoidAlgebra k G) := nonAssocSemiring n : ℕ ⊢ -Finsupp.single 0 1 + -Finsupp.single 0 ↑n = -1 + -↑n [PROOFSTEP] rfl [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddMonoid G a : G b : k ⊢ single a b ^ 0 = single (0 • a) (b ^ 0) [PROOFSTEP] simp only [pow_zero, zero_nsmul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddMonoid G a : G b : k ⊢ 1 = single 0 1 [PROOFSTEP] rfl [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddMonoid G a : G b : k n : ℕ ⊢ single a b ^ (n + 1) = single ((n + 1) • a) (b ^ (n + 1)) [PROOFSTEP] rw [pow_succ, pow_succ, single_pow n, single_mul_single, add_comm, add_nsmul, one_nsmul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Zero α inst✝¹ : Zero α₂ F : Type u_6 inst✝ : ZeroHomClass F α α₂ f : F ⊢ mapDomain (↑f) 1 = 1 [PROOFSTEP] simp_rw [one_def, mapDomain_single, map_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Add α inst✝¹ : Add α₂ F : Type u_6 inst✝ : AddHomClass F α α₂ f : F x y : AddMonoidAlgebra β α ⊢ mapDomain (↑f) (x * y) = mapDomain (↑f) x * mapDomain (↑f) y [PROOFSTEP] simp_rw [mul_def, mapDomain_sum, mapDomain_single, map_add] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Add α inst✝¹ : Add α₂ F : Type u_6 inst✝ : AddHomClass F α α₂ f : F x y : AddMonoidAlgebra β α ⊢ (sum x fun a b => sum y fun a_1 b_1 => single (↑f a + ↑f a_1) (b * b_1)) = sum (mapDomain (↑f) x) fun a₁ b₁ => sum (mapDomain (↑f) y) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂) [PROOFSTEP] rw [Finsupp.sum_mapDomain_index] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Add α inst✝¹ : Add α₂ F : Type u_6 inst✝ : AddHomClass F α α₂ f : F x y : AddMonoidAlgebra β α ⊢ (sum x fun a b => sum y fun a_1 b_1 => single (↑f a + ↑f a_1) (b * b_1)) = sum x fun a m => sum (mapDomain (↑f) y) fun a₂ b₂ => single (↑f a + a₂) (m * b₂) [PROOFSTEP] congr [GOAL] case e_g k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Add α inst✝¹ : Add α₂ F : Type u_6 inst✝ : AddHomClass F α α₂ f : F x y : AddMonoidAlgebra β α ⊢ (fun a b => sum y fun a_1 b_1 => single (↑f a + ↑f a_1) (b * b_1)) = fun a m => sum (mapDomain (↑f) y) fun a₂ b₂ => single (↑f a + a₂) (m * b₂) [PROOFSTEP] ext a b [GOAL] case e_g.h.h k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Add α inst✝¹ : Add α₂ F : Type u_6 inst✝ : AddHomClass F α α₂ f : F x y : AddMonoidAlgebra β α a : α b : β ⊢ (sum y fun a_1 b_1 => single (↑f a + ↑f a_1) (b * b_1)) = sum (mapDomain (↑f) y) fun a₂ b₂ => single (↑f a + a₂) (b * b₂) [PROOFSTEP] rw [Finsupp.sum_mapDomain_index] [GOAL] case e_g.h.h.h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Add α inst✝¹ : Add α₂ F : Type u_6 inst✝ : AddHomClass F α α₂ f : F x y : AddMonoidAlgebra β α a : α b : β ⊢ ∀ (b_1 : α₂), single (↑f a + b_1) (b * 0) = 0 [PROOFSTEP] simp [GOAL] case e_g.h.h.h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Add α inst✝¹ : Add α₂ F : Type u_6 inst✝ : AddHomClass F α α₂ f : F x y : AddMonoidAlgebra β α a : α b : β ⊢ ∀ (b_1 : α₂) (m₁ m₂ : β), single (↑f a + b_1) (b * (m₁ + m₂)) = single (↑f a + b_1) (b * m₁) + single (↑f a + b_1) (b * m₂) [PROOFSTEP] simp [mul_add] [GOAL] case h_zero k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Add α inst✝¹ : Add α₂ F : Type u_6 inst✝ : AddHomClass F α α₂ f : F x y : AddMonoidAlgebra β α ⊢ ∀ (b : α₂), (sum (mapDomain (↑f) y) fun a₂ b₂ => single (b + a₂) (0 * b₂)) = 0 [PROOFSTEP] simp [GOAL] case h_add k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁴ : Semiring k α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝³ : Semiring β inst✝² : Add α inst✝¹ : Add α₂ F : Type u_6 inst✝ : AddHomClass F α α₂ f : F x y : AddMonoidAlgebra β α ⊢ ∀ (b : α₂) (m₁ m₂ : β), (sum (mapDomain (↑f) y) fun a₂ b₂ => single (b + a₂) ((m₁ + m₂) * b₂)) = (sum (mapDomain (↑f) y) fun a₂ b₂ => single (b + a₂) (m₁ * b₂)) + sum (mapDomain (↑f) y) fun a₂ b₂ => single (b + a₂) (m₂ * b₂) [PROOFSTEP] simp [add_mul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G a b : Multiplicative G ⊢ (fun a => single a 1) (a * b) = (fun a => single a 1) a * (fun a => single a 1) b [PROOFSTEP] simp only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G a b : Multiplicative G ⊢ single (a * b) 1 = single (a + b) 1 [PROOFSTEP] rfl [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝² : Semiring k inst✝¹ : Nontrivial k inst✝ : AddZeroClass G a b : Multiplicative G h : ↑(of k G) a = ↑(of k G) b ⊢ a = b [PROOFSTEP] simpa using (single_eq_single_iff _ _ _ _).mp h [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddZeroClass G f : AddMonoidAlgebra k G r : k x a : G ⊢ a + 0 = x ↔ a = x [PROOFSTEP] rw [add_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddZeroClass G f : AddMonoidAlgebra k G r : k x a : G ⊢ 0 + a = x ↔ a = x [PROOFSTEP] rw [zero_add] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddMonoid G p : AddMonoidAlgebra k G → Prop f : AddMonoidAlgebra k G hM : ∀ (g : G), p (↑(of k G) (↑Multiplicative.ofAdd g)) hadd : ∀ (f g : AddMonoidAlgebra k G), p f → p g → p (f + g) hsmul : ∀ (r : k) (f : AddMonoidAlgebra k G), p f → p (r • f) ⊢ p f [PROOFSTEP] refine' Finsupp.induction_linear f _ (fun f g hf hg => hadd f g hf hg) fun g r => _ [GOAL] case refine'_1 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddMonoid G p : AddMonoidAlgebra k G → Prop f : AddMonoidAlgebra k G hM : ∀ (g : G), p (↑(of k G) (↑Multiplicative.ofAdd g)) hadd : ∀ (f g : AddMonoidAlgebra k G), p f → p g → p (f + g) hsmul : ∀ (r : k) (f : AddMonoidAlgebra k G), p f → p (r • f) ⊢ p 0 [PROOFSTEP] simpa using hsmul 0 (of k G (Multiplicative.ofAdd 0)) (hM 0) [GOAL] case refine'_2 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddMonoid G p : AddMonoidAlgebra k G → Prop f : AddMonoidAlgebra k G hM : ∀ (g : G), p (↑(of k G) (↑Multiplicative.ofAdd g)) hadd : ∀ (f g : AddMonoidAlgebra k G), p f → p g → p (f + g) hsmul : ∀ (r : k) (f : AddMonoidAlgebra k G), p f → p (r • f) g : G r : k ⊢ p (Finsupp.single g r) [PROOFSTEP] convert hsmul r (of k G (Multiplicative.ofAdd g)) (hM g) -- Porting note: Was `simp only`. [GOAL] case h.e'_1 k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddMonoid G p : AddMonoidAlgebra k G → Prop f : AddMonoidAlgebra k G hM : ∀ (g : G), p (↑(of k G) (↑Multiplicative.ofAdd g)) hadd : ∀ (f g : AddMonoidAlgebra k G), p f → p g → p (f + g) hsmul : ∀ (r : k) (f : AddMonoidAlgebra k G), p f → p (r • f) g : G r : k ⊢ Finsupp.single g r = r • ↑(of k G) (↑Multiplicative.ofAdd g) [PROOFSTEP] rw [of_apply, toAdd_ofAdd, smul_single', mul_one] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd x y : AddMonoidAlgebra k G ⊢ Equiv.toFun { toFun := equivMapDomain Multiplicative.ofAdd, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (x * y) = Equiv.toFun { toFun := equivMapDomain Multiplicative.ofAdd, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } x * Equiv.toFun { toFun := equivMapDomain Multiplicative.ofAdd, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } y [PROOFSTEP] dsimp only [] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd x y : AddMonoidAlgebra k G ⊢ equivMapDomain Multiplicative.ofAdd (x * y) = equivMapDomain Multiplicative.ofAdd x * equivMapDomain Multiplicative.ofAdd y [PROOFSTEP] repeat' rw [equivMapDomain_eq_mapDomain (M := k)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd x y : AddMonoidAlgebra k G ⊢ equivMapDomain Multiplicative.ofAdd (x * y) = equivMapDomain Multiplicative.ofAdd x * equivMapDomain Multiplicative.ofAdd y [PROOFSTEP] rw [equivMapDomain_eq_mapDomain (M := k)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd x y : AddMonoidAlgebra k G ⊢ Finsupp.mapDomain (↑Multiplicative.ofAdd) (x * y) = equivMapDomain Multiplicative.ofAdd x * equivMapDomain Multiplicative.ofAdd y [PROOFSTEP] rw [equivMapDomain_eq_mapDomain (M := k)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd x y : AddMonoidAlgebra k G ⊢ Finsupp.mapDomain (↑Multiplicative.ofAdd) (x * y) = Finsupp.mapDomain (↑Multiplicative.ofAdd) x * equivMapDomain Multiplicative.ofAdd y [PROOFSTEP] rw [equivMapDomain_eq_mapDomain (M := k)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd x y : AddMonoidAlgebra k G ⊢ Finsupp.mapDomain (↑Multiplicative.ofAdd) (x * y) = Finsupp.mapDomain (↑Multiplicative.ofAdd) x * Finsupp.mapDomain (↑Multiplicative.ofAdd) y [PROOFSTEP] rw [equivMapDomain_eq_mapDomain (M := k)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd x y : AddMonoidAlgebra k G ⊢ Finsupp.mapDomain (↑Multiplicative.ofAdd) (x * y) = Finsupp.mapDomain (↑Multiplicative.ofAdd) x * Finsupp.mapDomain (↑Multiplicative.ofAdd) y [PROOFSTEP] dsimp [Multiplicative.ofAdd] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Add G src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd x y : AddMonoidAlgebra k G ⊢ Finsupp.mapDomain (fun x => x) (x * y) = Finsupp.mapDomain (fun x => x) x * Finsupp.mapDomain (fun x => x) y [PROOFSTEP] exact MonoidAlgebra.mapDomain_mul (α := Multiplicative G) (β := k) (MulHom.id (Multiplicative G)) x y [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul x y : MonoidAlgebra k G ⊢ Equiv.toFun { toFun := equivMapDomain Additive.ofMul, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (x * y) = Equiv.toFun { toFun := equivMapDomain Additive.ofMul, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } x * Equiv.toFun { toFun := equivMapDomain Additive.ofMul, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } y [PROOFSTEP] dsimp only [] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul x y : MonoidAlgebra k G ⊢ equivMapDomain Additive.ofMul (x * y) = equivMapDomain Additive.ofMul x * equivMapDomain Additive.ofMul y [PROOFSTEP] repeat' rw [equivMapDomain_eq_mapDomain (M := k)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul x y : MonoidAlgebra k G ⊢ equivMapDomain Additive.ofMul (x * y) = equivMapDomain Additive.ofMul x * equivMapDomain Additive.ofMul y [PROOFSTEP] rw [equivMapDomain_eq_mapDomain (M := k)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul x y : MonoidAlgebra k G ⊢ Finsupp.mapDomain (↑Additive.ofMul) (x * y) = equivMapDomain Additive.ofMul x * equivMapDomain Additive.ofMul y [PROOFSTEP] rw [equivMapDomain_eq_mapDomain (M := k)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul x y : MonoidAlgebra k G ⊢ Finsupp.mapDomain (↑Additive.ofMul) (x * y) = Finsupp.mapDomain (↑Additive.ofMul) x * equivMapDomain Additive.ofMul y [PROOFSTEP] rw [equivMapDomain_eq_mapDomain (M := k)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul x y : MonoidAlgebra k G ⊢ Finsupp.mapDomain (↑Additive.ofMul) (x * y) = Finsupp.mapDomain (↑Additive.ofMul) x * Finsupp.mapDomain (↑Additive.ofMul) y [PROOFSTEP] rw [equivMapDomain_eq_mapDomain (M := k)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul x y : MonoidAlgebra k G ⊢ Finsupp.mapDomain (↑Additive.ofMul) (x * y) = Finsupp.mapDomain (↑Additive.ofMul) x * Finsupp.mapDomain (↑Additive.ofMul) y [PROOFSTEP] dsimp [Additive.ofMul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : Mul G src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul x y : MonoidAlgebra k G ⊢ Finsupp.mapDomain (fun x => x) (x * y) = Finsupp.mapDomain (fun x => x) x * Finsupp.mapDomain (fun x => x) y [PROOFSTEP] convert MonoidAlgebra.mapDomain_mul (β := k) (MulHom.id G) x y [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddMonoid G src✝ : k →+ G →₀ k := singleAddHom 0 x y : k ⊢ OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = ZeroHom.toFun (↑src✝) 1) } (x * y) = OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = ZeroHom.toFun (↑src✝) 1) } x * OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = ZeroHom.toFun (↑src✝) 1) } y [PROOFSTEP] simp only [singleAddHom, single_mul_single, zero_add] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddCommMonoid G src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv) ⊢ ∀ (x y : (AddMonoidAlgebra k G)ᵐᵒᵖ), Equiv.toFun src✝.toEquiv (x * y) = Equiv.toFun src✝.toEquiv x * Equiv.toFun src✝.toEquiv y [PROOFSTEP] rw [Equiv.toFun_as_coe, AddEquiv.toEquiv_eq_coe, AddEquiv.coe_toEquiv, ← AddEquiv.coe_toAddMonoidHom] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddCommMonoid G src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv) ⊢ ∀ (x y : (AddMonoidAlgebra k G)ᵐᵒᵖ), ↑(AddEquiv.toAddMonoidHom src✝) (x * y) = ↑(AddEquiv.toAddMonoidHom src✝) x * ↑(AddEquiv.toAddMonoidHom src✝) y [PROOFSTEP] refine Iff.mpr (AddMonoidHom.map_mul_iff (R := (AddMonoidAlgebra k G)ᵐᵒᵖ) (S := AddMonoidAlgebra kᵐᵒᵖ G) _) ?_ -- Porting note: Was `ext`. [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddCommMonoid G src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv) ⊢ AddMonoidHom.compr₂ AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝) = AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝)) (AddEquiv.toAddMonoidHom src✝) [PROOFSTEP] refine AddMonoidHom.mul_op_ext _ _ <| addHom_ext' fun i₁ => AddMonoidHom.ext fun r₁ => AddMonoidHom.mul_op_ext _ _ <| addHom_ext' fun i₂ => AddMonoidHom.ext fun r₂ => ?_ -- Porting note: `reducible` cannot be `local` so proof gets long. [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddCommMonoid G src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv) i₁ : G r₁ : k i₂ : G r₂ : k ⊢ ↑(AddMonoidHom.comp (AddMonoidHom.comp (↑(AddMonoidHom.comp (AddMonoidHom.comp (AddMonoidHom.compr₂ AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝)) (AddEquiv.toAddMonoidHom opAddEquiv)) (singleAddHom i₁)) r₁) (AddEquiv.toAddMonoidHom opAddEquiv)) (singleAddHom i₂)) r₂ = ↑(AddMonoidHom.comp (AddMonoidHom.comp (↑(AddMonoidHom.comp (AddMonoidHom.comp (AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝)) (AddEquiv.toAddMonoidHom src✝)) (AddEquiv.toAddMonoidHom opAddEquiv)) (singleAddHom i₁)) r₁) (AddEquiv.toAddMonoidHom opAddEquiv)) (singleAddHom i₂)) r₂ [PROOFSTEP] dsimp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddCommMonoid G src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv) i₁ : G r₁ : k i₂ : G r₂ : k ⊢ ↑(AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv)) (↑opAddEquiv (Finsupp.single i₁ r₁) * ↑opAddEquiv (Finsupp.single i₂ r₂)) = ↑(AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv)) (↑opAddEquiv (Finsupp.single i₁ r₁)) * ↑(AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv)) (↑opAddEquiv (Finsupp.single i₂ r₂)) [PROOFSTEP] rw [AddEquiv.trans_apply, AddEquiv.trans_apply, AddEquiv.trans_apply, MulOpposite.opAddEquiv_apply, MulOpposite.opAddEquiv_symm_apply, MulOpposite.unop_mul (α := AddMonoidAlgebra k G)] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddCommMonoid G src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv) i₁ : G r₁ : k i₂ : G r₂ : k ⊢ ↑(mapRange.addEquiv opAddEquiv) (unop (op (Finsupp.single i₂ r₂)) * unop (op (Finsupp.single i₁ r₁))) = ↑(mapRange.addEquiv opAddEquiv) (unop (op (Finsupp.single i₁ r₁))) * ↑(mapRange.addEquiv opAddEquiv) (unop (op (Finsupp.single i₂ r₂))) [PROOFSTEP] dsimp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddCommMonoid G src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv) i₁ : G r₁ : k i₂ : G r₂ : k ⊢ mapRange op (_ : ↑opAddEquiv 0 = 0) (Finsupp.single i₂ r₂ * Finsupp.single i₁ r₁) = mapRange op (_ : ↑opAddEquiv 0 = 0) (Finsupp.single i₁ r₁) * mapRange op (_ : ↑opAddEquiv 0 = 0) (Finsupp.single i₂ r₂) [PROOFSTEP] simp only [mapRange_single, single_mul_single, ← op_mul, add_comm] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddCommMonoid G r : k x : G ⊢ ↑AddMonoidAlgebra.opRingEquiv (op (single x r)) = single x (op r) [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝¹ : Semiring k inst✝ : AddCommMonoid G r : kᵐᵒᵖ x : Gᵐᵒᵖ ⊢ ↑(RingEquiv.symm AddMonoidAlgebra.opRingEquiv) (single x r) = op (single x (unop r)) [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : CommSemiring R inst✝² : Semiring k inst✝¹ : Algebra R k inst✝ : AddMonoid G src✝ : R →+* AddMonoidAlgebra k G := RingHom.comp singleZeroRingHom (algebraMap R k) r : R f : (fun x => AddMonoidAlgebra k G) r ⊢ ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * f = f * ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r [PROOFSTEP] refine Finsupp.ext fun _ => ?_ [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : CommSemiring R inst✝² : Semiring k inst✝¹ : Algebra R k inst✝ : AddMonoid G src✝ : R →+* AddMonoidAlgebra k G := RingHom.comp singleZeroRingHom (algebraMap R k) r : R f : (fun x => AddMonoidAlgebra k G) r x✝ : G ⊢ ↑(↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * f) x✝ = ↑(f * ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r) x✝ [PROOFSTEP] simp [single_zero_mul_apply, mul_single_zero_apply, Algebra.commutes] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : CommSemiring R inst✝² : Semiring k inst✝¹ : Algebra R k inst✝ : AddMonoid G src✝ : R →+* AddMonoidAlgebra k G := RingHom.comp singleZeroRingHom (algebraMap R k) r : R a : (fun x => AddMonoidAlgebra k G) r ⊢ r • a = ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * a [PROOFSTEP] refine Finsupp.ext fun _ => ?_ -- Porting note: Newly required. [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : CommSemiring R inst✝² : Semiring k inst✝¹ : Algebra R k inst✝ : AddMonoid G src✝ : R →+* AddMonoidAlgebra k G := RingHom.comp singleZeroRingHom (algebraMap R k) r : R a : (fun x => AddMonoidAlgebra k G) r x✝ : G ⊢ ↑(r • a) x✝ = ↑(↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * a) x✝ [PROOFSTEP] rw [Finsupp.coe_smul] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : CommSemiring R inst✝² : Semiring k inst✝¹ : Algebra R k inst✝ : AddMonoid G src✝ : R →+* AddMonoidAlgebra k G := RingHom.comp singleZeroRingHom (algebraMap R k) r : R a : (fun x => AddMonoidAlgebra k G) r x✝ : G ⊢ (r • ↑a) x✝ = ↑(↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) } r * a) x✝ [PROOFSTEP] simp [single_zero_mul_apply, Algebra.smul_def, Pi.smul_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : CommSemiring R inst✝² : Semiring k inst✝¹ : Algebra R k inst✝ : AddMonoid G src✝ : k →+* AddMonoidAlgebra k G := singleZeroRingHom r : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap R k) r) = ↑(algebraMap R (AddMonoidAlgebra k G)) r [PROOFSTEP] refine Finsupp.ext fun _ => ?_ [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : CommSemiring R inst✝² : Semiring k inst✝¹ : Algebra R k inst✝ : AddMonoid G src✝ : k →+* AddMonoidAlgebra k G := singleZeroRingHom r : R x✝ : G ⊢ ↑(OneHom.toFun (↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap R k) r)) x✝ = ↑(↑(algebraMap R (AddMonoidAlgebra k G)) r) x✝ [PROOFSTEP] simp [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : CommSemiring R inst✝² : Semiring k inst✝¹ : Algebra R k inst✝ : AddMonoid G src✝ : k →+* AddMonoidAlgebra k G := singleZeroRingHom r : R x✝ : G ⊢ ↑(Finsupp.single 0 (↑(algebraMap R k) r)) x✝ = ↑(↑(algebraMap R (AddMonoidAlgebra k G)) r) x✝ [PROOFSTEP] rfl [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : AddMonoid G A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B f : A →ₐ[k] B g : Multiplicative G →* B h_comm : ∀ (x : A) (y : Multiplicative G), Commute (↑f x) (↑g y) src✝ : AddMonoidAlgebra A G →+* B := liftNCRingHom (↑f) g h_comm ⊢ ∀ (r : k), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := ↑(liftNCRingHom (↑f) g h_comm), map_one' := (_ : OneHom.toFun (↑↑src✝) 1 = 1) }, map_mul' := (_ : ∀ (x y : AddMonoidAlgebra A G), OneHom.toFun (↑↑src✝) (x * y) = OneHom.toFun (↑↑src✝) x * OneHom.toFun (↑↑src✝) y) }, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : AddMonoidAlgebra A G), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap k (AddMonoidAlgebra A G)) r) = ↑(algebraMap k B) r [PROOFSTEP] simp [liftNCRingHom] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : AddMonoid G A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : Multiplicative G →* A f : MonoidAlgebra k G ⊢ ↑(↑(lift k G A) F) f = sum f fun a b => b • ↑F (↑Multiplicative.ofAdd a) [PROOFSTEP] simp only [lift_apply', Algebra.smul_def] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : AddMonoid G A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : Multiplicative G →* A x : Multiplicative G ⊢ ↑(↑(lift k G A) F) (↑(of k G) x) = ↑F x [PROOFSTEP] rw [of_apply, ← lift_symm_apply, Equiv.symm_apply_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : AddMonoid G A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : Multiplicative G →* A a : G b : k ⊢ ↑(↑(lift k G A) F) (single a b) = b • ↑F (↑Multiplicative.ofAdd a) [PROOFSTEP] rw [lift_def, liftNC_single, Algebra.smul_def, AddMonoidHom.coe_coe] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : AddMonoid G A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : AddMonoidAlgebra k G →ₐ[k] A f : MonoidAlgebra k G ⊢ ↑F f = sum f fun a b => b • ↑F (single a 1) [PROOFSTEP] conv_lhs => rw [lift_unique' F] simp [lift_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : AddMonoid G A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : AddMonoidAlgebra k G →ₐ[k] A f : MonoidAlgebra k G | ↑F f [PROOFSTEP] rw [lift_unique' F] simp [lift_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : AddMonoid G A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : AddMonoidAlgebra k G →ₐ[k] A f : MonoidAlgebra k G | ↑F f [PROOFSTEP] rw [lift_unique' F] simp [lift_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : AddMonoid G A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : AddMonoidAlgebra k G →ₐ[k] A f : MonoidAlgebra k G | ↑F f [PROOFSTEP] rw [lift_unique' F] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : AddMonoid G A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B F : AddMonoidAlgebra k G →ₐ[k] A f : MonoidAlgebra k G | ↑(↑(lift k G A) (MonoidHom.comp (↑F) (of k G))) f [PROOFSTEP] simp [lift_apply] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : AddMonoid G A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B φ₁ φ₂ : AddMonoidAlgebra k G →ₐ[k] A ⊢ φ₁ = φ₂ → ∀ (x : G), ↑φ₁ (Finsupp.single x 1) = ↑φ₂ (Finsupp.single x 1) [PROOFSTEP] rintro rfl _ [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝⁵ : CommSemiring k inst✝⁴ : AddMonoid G A : Type u₃ inst✝³ : Semiring A inst✝² : Algebra k A B : Type u_3 inst✝¹ : Semiring B inst✝ : Algebra k B φ₁ : AddMonoidAlgebra k G →ₐ[k] A x✝ : G ⊢ ↑φ₁ (Finsupp.single x✝ 1) = ↑φ₁ (Finsupp.single x✝ 1) [PROOFSTEP] rfl [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 ι : Type ui inst✝¹ : CommSemiring k inst✝ : AddCommMonoid G s✝ : Finset ι a✝ : ι → G b : ι → k a : ι s : Finset ι has : ¬a ∈ s ih : ∏ i in s, single (a✝ i) (b i) = single (∑ i in s, a✝ i) (∏ i in s, b i) ⊢ ∏ i in cons a s has, single (a✝ i) (b i) = single (∑ i in cons a s has, a✝ i) (∏ i in cons a s has, b i) [PROOFSTEP] rw [prod_cons has, ih, single_mul_single, sum_cons has, prod_cons has] [GOAL] k : Type u₁ G : Type u₂ H✝ : Type u_1 R : Type u_2 A : Type u_3 H : Type u_4 F : Type u_5 inst✝⁵ : CommSemiring k inst✝⁴ : Semiring A inst✝³ : Algebra k A inst✝² : AddMonoid G inst✝¹ : AddMonoid H inst✝ : AddMonoidHomClass F G H f : F r : k ⊢ mapDomain (↑f) (↑(algebraMap k (AddMonoidAlgebra A G)) r) = ↑(algebraMap k (AddMonoidAlgebra A H)) r [PROOFSTEP] simp only [Function.comp_apply, mapDomain_single, AddMonoidAlgebra.coe_algebraMap, map_zero] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : CommSemiring R inst✝² : Semiring k inst✝¹ : Algebra R k inst✝ : AddMonoid G src✝ : AddMonoidAlgebra k G ≃+* MonoidAlgebra k (Multiplicative G) := AddMonoidAlgebra.toMultiplicative k G r : R ⊢ Equiv.toFun src✝.toEquiv (↑(algebraMap R (AddMonoidAlgebra k G)) r) = ↑(algebraMap R (MonoidAlgebra k (Multiplicative G))) r [PROOFSTEP] simp [AddMonoidAlgebra.toMultiplicative] [GOAL] k : Type u₁ G : Type u₂ H : Type u_1 R : Type u_2 inst✝³ : CommSemiring R inst✝² : Semiring k inst✝¹ : Algebra R k inst✝ : Monoid G src✝ : MonoidAlgebra k G ≃+* AddMonoidAlgebra k (Additive G) := MonoidAlgebra.toAdditive k G r : R ⊢ Equiv.toFun src✝.toEquiv (↑(algebraMap R (MonoidAlgebra k G)) r) = ↑(algebraMap R (AddMonoidAlgebra k (Additive G))) r [PROOFSTEP] simp [MonoidAlgebra.toAdditive]
{"mathlib_filename": "Mathlib.Algebra.MonoidAlgebra.Basic", "llama_tokens": 106642}
[GOAL] α : Type u_1 β : Type u_2 R : Type u_3 M : Type u_4 ι : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s✝ : R x y : M s : Multiset R t : Multiset M ⊢ sum s • sum t = sum (map (fun p => p.fst • p.snd) (s ×ˢ t)) [PROOFSTEP] induction' s using Multiset.induction with a s ih [GOAL] case empty α : Type u_1 β : Type u_2 R : Type u_3 M : Type u_4 ι : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s : R x y : M t : Multiset M ⊢ sum 0 • sum t = sum (map (fun p => p.fst • p.snd) (0 ×ˢ t)) [PROOFSTEP] simp [GOAL] case cons α : Type u_1 β : Type u_2 R : Type u_3 M : Type u_4 ι : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s✝ : R x y : M t : Multiset M a : R s : Multiset R ih : sum s • sum t = sum (map (fun p => p.fst • p.snd) (s ×ˢ t)) ⊢ sum (a ::ₘ s) • sum t = sum (map (fun p => p.fst • p.snd) ((a ::ₘ s) ×ˢ t)) [PROOFSTEP] simp [add_smul, ih, ← Multiset.smul_sum] [GOAL] α : Type u_1 β : Type u_2 R : Type u_3 M : Type u_4 ι : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s✝ : R x y : M f : α → R g : β → M s : Finset α t : Finset β ⊢ (∑ i in s, f i) • ∑ i in t, g i = ∑ p in s ×ˢ t, f p.fst • g p.snd [PROOFSTEP] rw [Finset.sum_product, Finset.sum_smul, Finset.sum_congr rfl] [GOAL] α : Type u_1 β : Type u_2 R : Type u_3 M : Type u_4 ι : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s✝ : R x y : M f : α → R g : β → M s : Finset α t : Finset β ⊢ ∀ (x : α), x ∈ s → f x • ∑ i in t, g i = ∑ y in t, f (x, y).fst • g (x, y).snd [PROOFSTEP] intros [GOAL] α : Type u_1 β : Type u_2 R : Type u_3 M : Type u_4 ι : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s✝ : R x y : M f : α → R g : β → M s : Finset α t : Finset β x✝ : α a✝ : x✝ ∈ s ⊢ f x✝ • ∑ i in t, g i = ∑ y in t, f (x✝, y).fst • g (x✝, y).snd [PROOFSTEP] rw [Finset.smul_sum] [GOAL] α : Type u_1 β : Type u_2 R : Type u_3 M : Type u_4 ι : Type u_5 inst✝ : CommSemiring R s : Finset α ⊢ ↑(card s) = ∑ a in s, 1 [PROOFSTEP] rw [Finset.sum_const, Nat.smul_one_eq_coe]
{"mathlib_filename": "Mathlib.Algebra.Module.BigOperators", "llama_tokens": 1155}
[GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 r : (i : I) → Semiring (f i) m : (i : I) → AddCommMonoid (g i) inst✝ : (i : I) → Module (f i) (g i) ⊢ ∀ (r_1 s : (i : I) → f i) (x : (i : I) → g i), (r_1 + s) • x = r_1 • x + s • x [PROOFSTEP] intros [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 r : (i : I) → Semiring (f i) m : (i : I) → AddCommMonoid (g i) inst✝ : (i : I) → Module (f i) (g i) r✝ s✝ : (i : I) → f i x✝ : (i : I) → g i ⊢ (r✝ + s✝) • x✝ = r✝ • x✝ + s✝ • x✝ [PROOFSTEP] ext1 [GOAL] case h I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 r : (i : I) → Semiring (f i) m : (i : I) → AddCommMonoid (g i) inst✝ : (i : I) → Module (f i) (g i) r✝ s✝ : (i : I) → f i x✝¹ : (i : I) → g i x✝ : I ⊢ ((r✝ + s✝) • x✝¹) x✝ = (r✝ • x✝¹ + s✝ • x✝¹) x✝ [PROOFSTEP] apply add_smul [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 r : (i : I) → Semiring (f i) m : (i : I) → AddCommMonoid (g i) inst✝ : (i : I) → Module (f i) (g i) ⊢ ∀ (x : (i : I) → g i), 0 • x = 0 [PROOFSTEP] intros [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 r : (i : I) → Semiring (f i) m : (i : I) → AddCommMonoid (g i) inst✝ : (i : I) → Module (f i) (g i) x✝ : (i : I) → g i ⊢ 0 • x✝ = 0 [PROOFSTEP] ext1 -- Porting note: not sure why `apply zero_smul` fails here. [GOAL] case h I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 r : (i : I) → Semiring (f i) m : (i : I) → AddCommMonoid (g i) inst✝ : (i : I) → Module (f i) (g i) x✝¹ : (i : I) → g i x✝ : I ⊢ (0 • x✝¹) x✝ = OfNat.ofNat 0 x✝ [PROOFSTEP] rw [zero_smul]
{"mathlib_filename": "Mathlib.Algebra.Module.Pi", "llama_tokens": 982}
[GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j k : ι ⊢ d C i j ≫ d C j k = 0 [PROOFSTEP] by_cases hij : c.Rel i j [GOAL] case pos ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j k : ι hij : ComplexShape.Rel c i j ⊢ d C i j ≫ d C j k = 0 [PROOFSTEP] by_cases hjk : c.Rel j k [GOAL] case pos ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j k : ι hij : ComplexShape.Rel c i j hjk : ComplexShape.Rel c j k ⊢ d C i j ≫ d C j k = 0 [PROOFSTEP] exact C.d_comp_d' i j k hij hjk [GOAL] case neg ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j k : ι hij : ComplexShape.Rel c i j hjk : ¬ComplexShape.Rel c j k ⊢ d C i j ≫ d C j k = 0 [PROOFSTEP] rw [C.shape j k hjk, comp_zero] [GOAL] case neg ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j k : ι hij : ¬ComplexShape.Rel c i j ⊢ d C i j ≫ d C j k = 0 [PROOFSTEP] rw [C.shape i j hij, zero_comp] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C₁ C₂ : HomologicalComplex V c h_X : C₁.X = C₂.X h_d : ∀ (i j : ι), ComplexShape.Rel c i j → d C₁ i j ≫ eqToHom (_ : X C₁ j = X C₂ j) = eqToHom (_ : X C₁ i = X C₂ i) ≫ d C₂ i j ⊢ C₁ = C₂ [PROOFSTEP] obtain ⟨X₁, d₁, s₁, h₁⟩ := C₁ [GOAL] case mk ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C₂ : HomologicalComplex V c X₁ : ι → V d₁ : (i j : ι) → X₁ i ⟶ X₁ j s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0 h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0 h_X : (mk X₁ d₁).X = C₂.X h_d : ∀ (i j : ι), ComplexShape.Rel c i j → d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X C₂ j) = eqToHom (_ : X (mk X₁ d₁) i = X C₂ i) ≫ d C₂ i j ⊢ mk X₁ d₁ = C₂ [PROOFSTEP] obtain ⟨X₂, d₂, s₂, h₂⟩ := C₂ [GOAL] case mk.mk ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι X₁ : ι → V d₁ : (i j : ι) → X₁ i ⟶ X₁ j s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0 h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0 X₂ : ι → V d₂ : (i j : ι) → X₂ i ⟶ X₂ j s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0 h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0 h_X : (mk X₁ d₁).X = (mk X₂ d₂).X h_d : ∀ (i j : ι), ComplexShape.Rel c i j → d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₂ d₂) j) = eqToHom (_ : X (mk X₁ d₁) i = X (mk X₂ d₂) i) ≫ d (mk X₂ d₂) i j ⊢ mk X₁ d₁ = mk X₂ d₂ [PROOFSTEP] dsimp at h_X [GOAL] case mk.mk ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι X₁ : ι → V d₁ : (i j : ι) → X₁ i ⟶ X₁ j s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0 h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0 X₂ : ι → V d₂ : (i j : ι) → X₂ i ⟶ X₂ j s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0 h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0 h_X : X₁ = X₂ h_d : ∀ (i j : ι), ComplexShape.Rel c i j → d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₂ d₂) j) = eqToHom (_ : X (mk X₁ d₁) i = X (mk X₂ d₂) i) ≫ d (mk X₂ d₂) i j ⊢ mk X₁ d₁ = mk X₂ d₂ [PROOFSTEP] subst h_X [GOAL] case mk.mk ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι X₁ : ι → V d₁ : (i j : ι) → X₁ i ⟶ X₁ j s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0 h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0 d₂ : (i j : ι) → X₁ i ⟶ X₁ j s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0 h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0 h_d : ∀ (i j : ι), ComplexShape.Rel c i j → d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₁ d₂) j) = eqToHom (_ : X (mk X₁ d₁) i = X (mk X₁ d₂) i) ≫ d (mk X₁ d₂) i j ⊢ mk X₁ d₁ = mk X₁ d₂ [PROOFSTEP] simp only [mk.injEq, heq_eq_eq, true_and] [GOAL] case mk.mk ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι X₁ : ι → V d₁ : (i j : ι) → X₁ i ⟶ X₁ j s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0 h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0 d₂ : (i j : ι) → X₁ i ⟶ X₁ j s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0 h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0 h_d : ∀ (i j : ι), ComplexShape.Rel c i j → d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₁ d₂) j) = eqToHom (_ : X (mk X₁ d₁) i = X (mk X₁ d₂) i) ≫ d (mk X₁ d₂) i j ⊢ d₁ = d₂ [PROOFSTEP] ext i j [GOAL] case mk.mk.h.h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι X₁ : ι → V d₁ : (i j : ι) → X₁ i ⟶ X₁ j s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0 h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0 d₂ : (i j : ι) → X₁ i ⟶ X₁ j s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0 h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0 h_d : ∀ (i j : ι), ComplexShape.Rel c i j → d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₁ d₂) j) = eqToHom (_ : X (mk X₁ d₁) i = X (mk X₁ d₂) i) ≫ d (mk X₁ d₂) i j i j : ι ⊢ d₁ i j = d₂ i j [PROOFSTEP] by_cases hij : c.Rel i j [GOAL] case pos ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι X₁ : ι → V d₁ : (i j : ι) → X₁ i ⟶ X₁ j s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0 h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0 d₂ : (i j : ι) → X₁ i ⟶ X₁ j s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0 h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0 h_d : ∀ (i j : ι), ComplexShape.Rel c i j → d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₁ d₂) j) = eqToHom (_ : X (mk X₁ d₁) i = X (mk X₁ d₂) i) ≫ d (mk X₁ d₂) i j i j : ι hij : ComplexShape.Rel c i j ⊢ d₁ i j = d₂ i j [PROOFSTEP] simpa only [comp_id, id_comp, eqToHom_refl] using h_d i j hij [GOAL] case neg ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι X₁ : ι → V d₁ : (i j : ι) → X₁ i ⟶ X₁ j s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0 h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0 d₂ : (i j : ι) → X₁ i ⟶ X₁ j s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0 h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0 h_d : ∀ (i j : ι), ComplexShape.Rel c i j → d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₁ d₂) j) = eqToHom (_ : X (mk X₁ d₁) i = X (mk X₁ d₂) i) ≫ d (mk X₁ d₂) i j i j : ι hij : ¬ComplexShape.Rel c i j ⊢ d₁ i j = d₂ i j [PROOFSTEP] rw [s₁ i j hij, s₂ i j hij] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p q : ι h : p = q ⊢ X K p = X K q [PROOFSTEP] rw [h] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₁ p₂ p₃ : ι h₁₂ : p₁ = p₂ h₂₃ : p₂ = p₃ ⊢ (XIsoOfEq K h₁₂).hom ≫ (XIsoOfEq K h₂₃).hom = (XIsoOfEq K (_ : p₁ = p₃)).hom [PROOFSTEP] dsimp [XIsoOfEq] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₁ p₂ p₃ : ι h₁₂ : p₁ = p₂ h₂₃ : p₂ = p₃ ⊢ eqToHom (_ : X K p₁ = X K p₂) ≫ eqToHom (_ : X K p₂ = X K p₃) = eqToHom (_ : X K p₁ = X K p₃) [PROOFSTEP] simp only [eqToHom_trans] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₁ p₂ p₃ : ι h₁₂ : p₁ = p₂ h₃₂ : p₃ = p₂ ⊢ (XIsoOfEq K h₁₂).hom ≫ (XIsoOfEq K h₃₂).inv = (XIsoOfEq K (_ : p₁ = p₃)).hom [PROOFSTEP] dsimp [XIsoOfEq] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₁ p₂ p₃ : ι h₁₂ : p₁ = p₂ h₃₂ : p₃ = p₂ ⊢ eqToHom (_ : X K p₁ = X K p₂) ≫ eqToHom (_ : X K p₂ = X K p₃) = eqToHom (_ : X K p₁ = X K p₃) [PROOFSTEP] simp only [eqToHom_trans] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₁ p₂ p₃ : ι h₂₁ : p₂ = p₁ h₂₃ : p₂ = p₃ ⊢ (XIsoOfEq K h₂₁).inv ≫ (XIsoOfEq K h₂₃).hom = (XIsoOfEq K (_ : p₁ = p₃)).hom [PROOFSTEP] dsimp [XIsoOfEq] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₁ p₂ p₃ : ι h₂₁ : p₂ = p₁ h₂₃ : p₂ = p₃ ⊢ eqToHom (_ : X K p₁ = X K p₂) ≫ eqToHom (_ : X K p₂ = X K p₃) = eqToHom (_ : X K p₁ = X K p₃) [PROOFSTEP] simp only [eqToHom_trans] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₁ p₂ p₃ : ι h₂₁ : p₂ = p₁ h₃₂ : p₃ = p₂ ⊢ (XIsoOfEq K h₂₁).inv ≫ (XIsoOfEq K h₃₂).inv = (XIsoOfEq K (_ : p₁ = p₃)).hom [PROOFSTEP] dsimp [XIsoOfEq] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₁ p₂ p₃ : ι h₂₁ : p₂ = p₁ h₃₂ : p₃ = p₂ ⊢ eqToHom (_ : X K p₁ = X K p₂) ≫ eqToHom (_ : X K p₂ = X K p₃) = eqToHom (_ : X K p₁ = X K p₃) [PROOFSTEP] simp only [eqToHom_trans] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₁ p₂ : ι h : p₁ = p₂ p₃ : ι ⊢ (XIsoOfEq K h).hom ≫ d K p₂ p₃ = d K p₁ p₃ [PROOFSTEP] subst h [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₁ p₃ : ι ⊢ (XIsoOfEq K (_ : p₁ = p₁)).hom ≫ d K p₁ p₃ = d K p₁ p₃ [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₂ p₁ : ι h : p₂ = p₁ p₃ : ι ⊢ (XIsoOfEq K h).inv ≫ d K p₂ p₃ = d K p₁ p₃ [PROOFSTEP] subst h [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₂ p₃ : ι ⊢ (XIsoOfEq K (_ : p₂ = p₂)).inv ≫ d K p₂ p₃ = d K p₂ p₃ [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₂ p₃ : ι h : p₂ = p₃ p₁ : ι ⊢ d K p₁ p₂ ≫ (XIsoOfEq K h).hom = d K p₁ p₃ [PROOFSTEP] subst h [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₂ p₁ : ι ⊢ d K p₁ p₂ ≫ (XIsoOfEq K (_ : p₂ = p₂)).hom = d K p₁ p₂ [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₂ p₃ : ι h : p₃ = p₂ p₁ : ι ⊢ d K p₁ p₂ ≫ (XIsoOfEq K h).inv = d K p₁ p₃ [PROOFSTEP] subst h [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι K : HomologicalComplex V c p₃ p₁ : ι ⊢ d K p₁ p₃ ≫ (XIsoOfEq K (_ : p₃ = p₃)).inv = d K p₁ p₃ [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ⊢ ComplexShape.next (ComplexShape.down ℕ) 0 = 0 [PROOFSTEP] classical refine' dif_neg _ push_neg intro apply Nat.noConfusion [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ⊢ ComplexShape.next (ComplexShape.down ℕ) 0 = 0 [PROOFSTEP] refine' dif_neg _ [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ⊢ ¬∃ j, ComplexShape.Rel (ComplexShape.down ℕ) 0 j [PROOFSTEP] push_neg [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ⊢ ∀ (j : ℕ), ¬ComplexShape.Rel (ComplexShape.down ℕ) 0 j [PROOFSTEP] intro [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V j✝ : ℕ ⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) 0 j✝ [PROOFSTEP] apply Nat.noConfusion [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ⊢ ComplexShape.prev (ComplexShape.up ℕ) 0 = 0 [PROOFSTEP] classical refine' dif_neg _ push_neg intro apply Nat.noConfusion [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ⊢ ComplexShape.prev (ComplexShape.up ℕ) 0 = 0 [PROOFSTEP] refine' dif_neg _ [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ⊢ ¬∃ i, ComplexShape.Rel (ComplexShape.up ℕ) i 0 [PROOFSTEP] push_neg [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V ⊢ ∀ (i : ℕ), ¬ComplexShape.Rel (ComplexShape.up ℕ) i 0 [PROOFSTEP] intro [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V i✝ : ℕ ⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) i✝ 0 [PROOFSTEP] apply Nat.noConfusion [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C A B : HomologicalComplex V c f : Hom A B i j : ι ⊢ HomologicalComplex.Hom.f f i ≫ d B i j = d A i j ≫ HomologicalComplex.Hom.f f j [PROOFSTEP] by_cases hij : c.Rel i j [GOAL] case pos ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C A B : HomologicalComplex V c f : Hom A B i j : ι hij : ComplexShape.Rel c i j ⊢ HomologicalComplex.Hom.f f i ≫ d B i j = d A i j ≫ HomologicalComplex.Hom.f f j [PROOFSTEP] exact f.comm' i j hij [GOAL] case neg ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C A B : HomologicalComplex V c f : Hom A B i j : ι hij : ¬ComplexShape.Rel c i j ⊢ HomologicalComplex.Hom.f f i ≫ d B i j = d A i j ≫ HomologicalComplex.Hom.f f j [PROOFSTEP] rw [A.shape i j hij, B.shape i j hij, comp_zero, zero_comp] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C✝ C D : HomologicalComplex V c f g : C ⟶ D h : ∀ (i : ι), Hom.f f i = Hom.f g i ⊢ f = g [PROOFSTEP] apply Hom.ext [GOAL] case f ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C✝ C D : HomologicalComplex V c f g : C ⟶ D h : ∀ (i : ι), Hom.f f i = Hom.f g i ⊢ f.f = g.f [PROOFSTEP] funext [GOAL] case f.h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C✝ C D : HomologicalComplex V c f g : C ⟶ D h : ∀ (i : ι), Hom.f f i = Hom.f g i x✝ : ι ⊢ Hom.f f x✝ = Hom.f g x✝ [PROOFSTEP] apply h [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ : HomologicalComplex V c h : C₁ = C₂ n : ι ⊢ Hom.f (eqToHom h) n = eqToHom (_ : X C₁ n = X C₂ n) [PROOFSTEP] subst h [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ : HomologicalComplex V c n : ι ⊢ Hom.f (eqToHom (_ : C₁ = C₁)) n = eqToHom (_ : X C₁ n = X C₁ n) [PROOFSTEP] rfl [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ : HomologicalComplex V c ⊢ Function.Injective fun f => f.f [PROOFSTEP] aesop_cat [GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasZeroObject V ⊢ IsZero zero [PROOFSTEP] refine' ⟨fun X => ⟨⟨⟨0⟩, fun f => _⟩⟩, fun X => ⟨⟨⟨0⟩, fun f => _⟩⟩⟩ [GOAL] case refine'_1 ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasZeroObject V X : HomologicalComplex V c f : zero ⟶ X ⊢ f = default case refine'_2 ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasZeroObject V X : HomologicalComplex V c f : X ⟶ zero ⊢ f = default [PROOFSTEP] all_goals ext dsimp [zero] apply Subsingleton.elim [GOAL] case refine'_1 ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasZeroObject V X : HomologicalComplex V c f : zero ⟶ X ⊢ f = default [PROOFSTEP] ext [GOAL] case refine'_1.h ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasZeroObject V X : HomologicalComplex V c f : zero ⟶ X i✝ : ι ⊢ Hom.f f i✝ = Hom.f default i✝ [PROOFSTEP] dsimp [zero] [GOAL] case refine'_1.h ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasZeroObject V X : HomologicalComplex V c f : zero ⟶ X i✝ : ι ⊢ Hom.f f i✝ = 0 [PROOFSTEP] apply Subsingleton.elim [GOAL] case refine'_2 ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasZeroObject V X : HomologicalComplex V c f : X ⟶ zero ⊢ f = default [PROOFSTEP] ext [GOAL] case refine'_2.h ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasZeroObject V X : HomologicalComplex V c f : X ⟶ zero i✝ : ι ⊢ Hom.f f i✝ = Hom.f default i✝ [PROOFSTEP] dsimp [zero] [GOAL] case refine'_2.h ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasZeroObject V X : HomologicalComplex V c f : X ⟶ zero i✝ : ι ⊢ Hom.f f i✝ = 0 [PROOFSTEP] apply Subsingleton.elim [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j j' : ι rij : ComplexShape.Rel c i j rij' : ComplexShape.Rel c i j' ⊢ d C i j' ≫ eqToHom (_ : X C j' = X C j) = d C i j [PROOFSTEP] obtain rfl := c.next_eq rij rij' [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j : ι rij rij' : ComplexShape.Rel c i j ⊢ d C i j ≫ eqToHom (_ : X C j = X C j) = d C i j [PROOFSTEP] simp only [eqToHom_refl, comp_id] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i i' j : ι rij : ComplexShape.Rel c i j rij' : ComplexShape.Rel c i' j ⊢ eqToHom (_ : X C i = X C i') ≫ d C i' j = d C i j [PROOFSTEP] obtain rfl := c.prev_eq rij rij' [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j : ι rij rij' : ComplexShape.Rel c i j ⊢ eqToHom (_ : X C i = X C i) ≫ d C i j = d C i j [PROOFSTEP] simp only [eqToHom_refl, id_comp] [GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasKernels V i j j' : ι r : ComplexShape.Rel c i j r' : ComplexShape.Rel c i j' ⊢ kernelSubobject (d C i j) = kernelSubobject (d C i j') [PROOFSTEP] rw [← d_comp_eqToHom C r r'] [GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasKernels V i j j' : ι r : ComplexShape.Rel c i j r' : ComplexShape.Rel c i j' ⊢ kernelSubobject (d C i j' ≫ eqToHom (_ : X C j' = X C j)) = kernelSubobject (d C i j') [PROOFSTEP] apply kernelSubobject_comp_mono [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝¹ : HasImages V inst✝ : HasEqualizers V i i' j : ι r : ComplexShape.Rel c i j r' : ComplexShape.Rel c i' j ⊢ imageSubobject (d C i j) = imageSubobject (d C i' j) [PROOFSTEP] rw [← eqToHom_comp_d C r r'] [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝¹ : HasImages V inst✝ : HasEqualizers V i i' j : ι r : ComplexShape.Rel c i j r' : ComplexShape.Rel c i' j ⊢ imageSubobject (eqToHom (_ : X C i = X C i') ≫ d C i' j) = imageSubobject (d C i' j) [PROOFSTEP] apply imageSubobject_iso_comp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j : ι r : ComplexShape.Rel c i j ⊢ xPrev C j = X C i [PROOFSTEP] rw [← c.prev_eq' r] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c j : ι h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j ⊢ ComplexShape.prev c j = j [PROOFSTEP] dsimp [ComplexShape.prev] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c j : ι h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j ⊢ (if h : ∃ i, ComplexShape.Rel c i j then Exists.choose h else j) = j [PROOFSTEP] rw [dif_neg] [GOAL] case hnc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c j : ι h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j ⊢ ¬∃ i, ComplexShape.Rel c i j [PROOFSTEP] push_neg [GOAL] case hnc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c j : ι h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j ⊢ ∀ (i : ι), ¬ComplexShape.Rel c i j [PROOFSTEP] intro i hi [GOAL] case hnc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c j : ι h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j i : ι hi : ComplexShape.Rel c i j ⊢ False [PROOFSTEP] have : c.prev j = i := c.prev_eq' hi [GOAL] case hnc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c j : ι h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j i : ι hi : ComplexShape.Rel c i j this : ComplexShape.prev c j = i ⊢ False [PROOFSTEP] rw [this] at h [GOAL] case hnc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c j i : ι h : ¬ComplexShape.Rel c i j hi : ComplexShape.Rel c i j this : ComplexShape.prev c j = i ⊢ False [PROOFSTEP] contradiction [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j : ι r : ComplexShape.Rel c i j ⊢ xNext C i = X C j [PROOFSTEP] rw [← c.next_eq' r] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i : ι h : ¬ComplexShape.Rel c i (ComplexShape.next c i) ⊢ ComplexShape.next c i = i [PROOFSTEP] dsimp [ComplexShape.next] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i : ι h : ¬ComplexShape.Rel c i (ComplexShape.next c i) ⊢ (if h : ∃ j, ComplexShape.Rel c i j then Exists.choose h else i) = i [PROOFSTEP] rw [dif_neg] [GOAL] case hnc ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i : ι h : ¬ComplexShape.Rel c i (ComplexShape.next c i) ⊢ ¬∃ j, ComplexShape.Rel c i j [PROOFSTEP] rintro ⟨j, hj⟩ [GOAL] case hnc.intro ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i : ι h : ¬ComplexShape.Rel c i (ComplexShape.next c i) j : ι hj : ComplexShape.Rel c i j ⊢ False [PROOFSTEP] have : c.next i = j := c.next_eq' hj [GOAL] case hnc.intro ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i : ι h : ¬ComplexShape.Rel c i (ComplexShape.next c i) j : ι hj : ComplexShape.Rel c i j this : ComplexShape.next c i = j ⊢ False [PROOFSTEP] rw [this] at h [GOAL] case hnc.intro ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j : ι h : ¬ComplexShape.Rel c i j hj : ComplexShape.Rel c i j this : ComplexShape.next c i = j ⊢ False [PROOFSTEP] contradiction [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j : ι r : ComplexShape.Rel c i j ⊢ dTo C j = (xPrevIso C r).hom ≫ d C i j [PROOFSTEP] obtain rfl := c.prev_eq' r [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c j : ι r : ComplexShape.Rel c (ComplexShape.prev c j) j ⊢ dTo C j = (xPrevIso C r).hom ≫ d C (ComplexShape.prev c j) j [PROOFSTEP] exact (Category.id_comp _).symm [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j : ι r : ComplexShape.Rel c i j ⊢ dFrom C i = d C i j ≫ (xNextIso C r).inv [PROOFSTEP] obtain rfl := c.next_eq' r [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i : ι r : ComplexShape.Rel c i (ComplexShape.next c i) ⊢ dFrom C i = d C i (ComplexShape.next c i) ≫ (xNextIso C r).inv [PROOFSTEP] exact (Category.comp_id _).symm [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j : ι r : ComplexShape.Rel c i j ⊢ (xPrevIso C r).inv ≫ dTo C j = d C i j [PROOFSTEP] simp [C.dTo_eq r] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c j : ι h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j ⊢ (xPrevIsoSelf C h).inv ≫ dTo C j = 0 [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i j : ι r : ComplexShape.Rel c i j ⊢ dFrom C i ≫ (xNextIso C r).hom = d C i j [PROOFSTEP] simp [C.dFrom_eq r] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c i : ι h : ¬ComplexShape.Rel c i (ComplexShape.next c i) ⊢ dFrom C i ≫ (xNextIsoSelf C h).hom = 0 [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasKernels V i j : ι r : ComplexShape.Rel c i j ⊢ kernelSubobject (dFrom C i) = kernelSubobject (d C i j) [PROOFSTEP] rw [C.dFrom_eq r] [GOAL] ι : Type u_1 V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝ : HasKernels V i j : ι r : ComplexShape.Rel c i j ⊢ kernelSubobject (d C i j ≫ (xNextIso C r).inv) = kernelSubobject (d C i j) [PROOFSTEP] apply kernelSubobject_comp_mono [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝¹ : HasImages V inst✝ : HasEqualizers V i j : ι r : ComplexShape.Rel c i j ⊢ imageSubobject (dTo C j) = imageSubobject (d C i j) [PROOFSTEP] rw [C.dTo_eq r] [GOAL] ι : Type u_1 V : Type u inst✝³ : Category.{v, u} V inst✝² : HasZeroMorphisms V c : ComplexShape ι C : HomologicalComplex V c inst✝¹ : HasImages V inst✝ : HasEqualizers V i j : ι r : ComplexShape.Rel c i j ⊢ imageSubobject ((xPrevIso C r).hom ≫ d C i j) = imageSubobject (d C i j) [PROOFSTEP] apply imageSubobject_iso_comp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ C₃ : HomologicalComplex V c f : (i : ι) → X C₁ i ≅ X C₂ i hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝ i j : ι hij : ComplexShape.Rel c i j ⊢ (f i).inv ≫ d C₁ i j = (f i).inv ≫ (d C₁ i j ≫ (f j).hom) ≫ (f j).inv [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ C₃ : HomologicalComplex V c f : (i : ι) → X C₁ i ≅ X C₂ i hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝ i j : ι hij : ComplexShape.Rel c i j ⊢ (f i).inv ≫ (d C₁ i j ≫ (f j).hom) ≫ (f j).inv = (f i).inv ≫ ((f i).hom ≫ d C₂ i j) ≫ (f j).inv [PROOFSTEP] rw [hf i j hij] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ C₃ : HomologicalComplex V c f : (i : ι) → X C₁ i ≅ X C₂ i hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝ i j : ι hij : ComplexShape.Rel c i j ⊢ (f i).inv ≫ ((f i).hom ≫ d C₂ i j) ≫ (f j).inv = d C₂ i j ≫ (f j).inv [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ C₃ : HomologicalComplex V c f : (i : ι) → X C₁ i ≅ X C₂ i hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝ ⊢ ((mk fun i => (f i).hom) ≫ mk fun i => (f i).inv) = 𝟙 C₁ [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ C₃ : HomologicalComplex V c f : (i : ι) → X C₁ i ≅ X C₂ i hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝ i : ι ⊢ HomologicalComplex.Hom.f ((mk fun i => (f i).hom) ≫ mk fun i => (f i).inv) i = HomologicalComplex.Hom.f (𝟙 C₁) i [PROOFSTEP] exact (f i).hom_inv_id [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ C₃ : HomologicalComplex V c f : (i : ι) → X C₁ i ≅ X C₂ i hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝ ⊢ ((mk fun i => (f i).inv) ≫ mk fun i => (f i).hom) = 𝟙 C₂ [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ C₃ : HomologicalComplex V c f : (i : ι) → X C₁ i ≅ X C₂ i hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝ i : ι ⊢ HomologicalComplex.Hom.f ((mk fun i => (f i).inv) ≫ mk fun i => (f i).hom) i = HomologicalComplex.Hom.f (𝟙 C₂) i [PROOFSTEP] exact (f i).inv_hom_id [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ C₃ : HomologicalComplex V c f : (i : ι) → X C₁ i ≅ X C₂ i hf : ∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom i : ι ⊢ isoApp (isoOfComponents f) i = f i [PROOFSTEP] ext [GOAL] case w ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ C₃ : HomologicalComplex V c f : (i : ι) → X C₁ i ≅ X C₂ i hf : ∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom i : ι ⊢ (isoApp (isoOfComponents f) i).hom = (f i).hom [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ C₃ : HomologicalComplex V c f : Hom C₁ C₂ i j : ι w : ComplexShape.Rel c i j ⊢ prev f j = (xPrevIso C₁ w).hom ≫ HomologicalComplex.Hom.f f i ≫ (xPrevIso C₂ w).inv [PROOFSTEP] obtain rfl := c.prev_eq' w [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ C₃ : HomologicalComplex V c f : Hom C₁ C₂ j : ι w : ComplexShape.Rel c (ComplexShape.prev c j) j ⊢ prev f j = (xPrevIso C₁ w).hom ≫ HomologicalComplex.Hom.f f (ComplexShape.prev c j) ≫ (xPrevIso C₂ w).inv [PROOFSTEP] simp only [xPrevIso, eqToIso_refl, Iso.refl_hom, Iso.refl_inv, comp_id, id_comp] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ C₃ : HomologicalComplex V c f : Hom C₁ C₂ i j : ι w : ComplexShape.Rel c i j ⊢ next f i = (xNextIso C₁ w).hom ≫ HomologicalComplex.Hom.f f j ≫ (xNextIso C₂ w).inv [PROOFSTEP] obtain rfl := c.next_eq' w [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V c : ComplexShape ι C C₁ C₂ C₃ : HomologicalComplex V c f : Hom C₁ C₂ i : ι w : ComplexShape.Rel c i (ComplexShape.next c i) ⊢ next f i = (xNextIso C₁ w).hom ≫ HomologicalComplex.Hom.f f (ComplexShape.next c i) ≫ (xNextIso C₂ w).inv [PROOFSTEP] simp only [xNextIso, eqToIso_refl, Iso.refl_hom, Iso.refl_inv, comp_id, id_comp] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 i j : α h : i = j + 1 ⊢ X i = X (j + 1) [PROOFSTEP] rw [h] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 i j : α w : ¬ComplexShape.Rel (ComplexShape.down α) i j ⊢ (fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) i j = 0 [PROOFSTEP] dsimp [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 i j : α w : ¬ComplexShape.Rel (ComplexShape.down α) i j ⊢ (if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) = 0 [PROOFSTEP] rw [dif_neg (Ne.symm w)] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 i j k : α hij : ComplexShape.Rel (ComplexShape.down α) i j hjk : ComplexShape.Rel (ComplexShape.down α) j k ⊢ (fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) i j ≫ (fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) j k = 0 [PROOFSTEP] dsimp at hij hjk [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 i j k : α hij : j + 1 = i hjk : k + 1 = j ⊢ (fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) i j ≫ (fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) j k = 0 [PROOFSTEP] substs hij hjk [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 k : α ⊢ (fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) (k + 1 + 1) (k + 1) ≫ (fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) (k + 1) k = 0 [PROOFSTEP] simp only [eqToHom_refl, id_comp, dite_eq_ite, ite_true, sq] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 j : α ⊢ HomologicalComplex.d (of X d sq) (j + 1) j = d j [PROOFSTEP] dsimp [of] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 j : α ⊢ (if j + 1 = j + 1 then 𝟙 (X (j + 1)) ≫ d j else 0) = d j [PROOFSTEP] rw [if_pos rfl, Category.id_comp] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 i j : α h : i ≠ j + 1 ⊢ HomologicalComplex.d (of X d sq) i j = 0 [PROOFSTEP] dsimp [of] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X (n + 1) ⟶ X n sq : ∀ (n : α), d (n + 1) ≫ d n = 0 i j : α h : i ≠ j + 1 ⊢ (if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) = 0 [PROOFSTEP] rw [dif_neg h] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d_X : (n : α) → X (n + 1) ⟶ X n sq_X : ∀ (n : α), d_X (n + 1) ≫ d_X n = 0 Y : α → V d_Y : (n : α) → Y (n + 1) ⟶ Y n sq_Y : ∀ (n : α), d_Y (n + 1) ≫ d_Y n = 0 f : (i : α) → X i ⟶ Y i comm : ∀ (i : α), f (i + 1) ≫ d_Y i = d_X i ≫ f i n m : α ⊢ ComplexShape.Rel (ComplexShape.down α) n m → f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n m = HomologicalComplex.d (of X d_X sq_X) n m ≫ f m [PROOFSTEP] by_cases h : n = m + 1 [GOAL] case pos ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d_X : (n : α) → X (n + 1) ⟶ X n sq_X : ∀ (n : α), d_X (n + 1) ≫ d_X n = 0 Y : α → V d_Y : (n : α) → Y (n + 1) ⟶ Y n sq_Y : ∀ (n : α), d_Y (n + 1) ≫ d_Y n = 0 f : (i : α) → X i ⟶ Y i comm : ∀ (i : α), f (i + 1) ≫ d_Y i = d_X i ≫ f i n m : α h : n = m + 1 ⊢ ComplexShape.Rel (ComplexShape.down α) n m → f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n m = HomologicalComplex.d (of X d_X sq_X) n m ≫ f m [PROOFSTEP] subst h [GOAL] case pos ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d_X : (n : α) → X (n + 1) ⟶ X n sq_X : ∀ (n : α), d_X (n + 1) ≫ d_X n = 0 Y : α → V d_Y : (n : α) → Y (n + 1) ⟶ Y n sq_Y : ∀ (n : α), d_Y (n + 1) ≫ d_Y n = 0 f : (i : α) → X i ⟶ Y i comm : ∀ (i : α), f (i + 1) ≫ d_Y i = d_X i ≫ f i m : α ⊢ ComplexShape.Rel (ComplexShape.down α) (m + 1) m → f (m + 1) ≫ HomologicalComplex.d (of Y d_Y sq_Y) (m + 1) m = HomologicalComplex.d (of X d_X sq_X) (m + 1) m ≫ f m [PROOFSTEP] simpa using comm m [GOAL] case neg ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d_X : (n : α) → X (n + 1) ⟶ X n sq_X : ∀ (n : α), d_X (n + 1) ≫ d_X n = 0 Y : α → V d_Y : (n : α) → Y (n + 1) ⟶ Y n sq_Y : ∀ (n : α), d_Y (n + 1) ≫ d_Y n = 0 f : (i : α) → X i ⟶ Y i comm : ∀ (i : α), f (i + 1) ≫ d_Y i = d_X i ≫ f i n m : α h : ¬n = m + 1 ⊢ ComplexShape.Rel (ComplexShape.down α) n m → f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n m = HomologicalComplex.d (of X d_X sq_X) n m ≫ f m [PROOFSTEP] rw [of_d_ne X _ _ h, of_d_ne Y _ _ h] [GOAL] case neg ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d_X : (n : α) → X (n + 1) ⟶ X n sq_X : ∀ (n : α), d_X (n + 1) ≫ d_X n = 0 Y : α → V d_Y : (n : α) → Y (n + 1) ⟶ Y n sq_Y : ∀ (n : α), d_Y (n + 1) ≫ d_Y n = 0 f : (i : α) → X i ⟶ Y i comm : ∀ (i : α), f (i + 1) ≫ d_Y i = d_X i ≫ f i n m : α h : ¬n = m + 1 ⊢ ComplexShape.Rel (ComplexShape.down α) n m → f n ≫ 0 = 0 ≫ f m [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V X₀ X₁ X₂ : V d₀ : X₁ ⟶ X₀ d₁ : X₂ ⟶ X₁ s : d₁ ≫ d₀ = 0 succ : (t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₁ ⟶ X₀) ×' (d₁ : X₂ ⟶ X₁) ×' d₁ ≫ d₀ = 0) → (X₃ : V) ×' (d₂ : X₃ ⟶ t.snd.snd.fst) ×' d₂ ≫ t.snd.snd.snd.snd.fst = 0 ⊢ HomologicalComplex.d (mk X₀ X₁ X₂ d₀ d₁ s succ) 1 0 = d₀ [PROOFSTEP] change ite (1 = 0 + 1) (𝟙 X₁ ≫ d₀) 0 = d₀ [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V X₀ X₁ X₂ : V d₀ : X₁ ⟶ X₀ d₁ : X₂ ⟶ X₁ s : d₁ ≫ d₀ = 0 succ : (t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₁ ⟶ X₀) ×' (d₁ : X₂ ⟶ X₁) ×' d₁ ≫ d₀ = 0) → (X₃ : V) ×' (d₂ : X₃ ⟶ t.snd.snd.fst) ×' d₂ ≫ t.snd.snd.snd.snd.fst = 0 ⊢ (if 1 = 0 + 1 then 𝟙 X₁ ≫ d₀ else 0) = d₀ [PROOFSTEP] rw [if_pos rfl, Category.id_comp] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V X₀ X₁ X₂ : V d₀ : X₁ ⟶ X₀ d₁ : X₂ ⟶ X₁ s : d₁ ≫ d₀ = 0 succ : (t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₁ ⟶ X₀) ×' (d₁ : X₂ ⟶ X₁) ×' d₁ ≫ d₀ = 0) → (X₃ : V) ×' (d₂ : X₃ ⟶ t.snd.snd.fst) ×' d₂ ≫ t.snd.snd.snd.snd.fst = 0 ⊢ HomologicalComplex.d (mk X₀ X₁ X₂ d₀ d₁ s succ) 2 1 = d₁ [PROOFSTEP] change ite (2 = 1 + 1) (𝟙 X₂ ≫ d₁) 0 = d₁ [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V X₀ X₁ X₂ : V d₀ : X₁ ⟶ X₀ d₁ : X₂ ⟶ X₁ s : d₁ ≫ d₀ = 0 succ : (t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₁ ⟶ X₀) ×' (d₁ : X₂ ⟶ X₁) ×' d₁ ≫ d₀ = 0) → (X₃ : V) ×' (d₂ : X₃ ⟶ t.snd.snd.fst) ×' d₂ ≫ t.snd.snd.snd.snd.fst = 0 ⊢ (if 2 = 1 + 1 then 𝟙 X₂ ≫ d₁ else 0) = d₁ [PROOFSTEP] rw [if_pos rfl, Category.id_comp] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V X₀ X₁ X₂ : V d₀ : X₁ ⟶ X₀ d₁ : X₂ ⟶ X₁ s : d₁ ≫ d₀ = 0 succ : (t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₁ ⟶ X₀) ×' (d₁ : X₂ ⟶ X₁) ×' d₁ ≫ d₀ = 0) → (X₃ : V) ×' (d₂ : X₃ ⟶ t.snd.snd.fst) ×' d₂ ≫ t.snd.snd.snd.snd.fst = 0 succ' : (t : (X₀ : V) × (X₁ : V) × (X₁ ⟶ X₀)) → (X₂ : V) ×' (d : X₂ ⟶ t.snd.fst) ×' d ≫ t.snd.snd = 0 ⊢ HomologicalComplex.d (mk' X₀ X₁ d₀ succ') 1 0 = d₀ [PROOFSTEP] change ite (1 = 0 + 1) (𝟙 X₁ ≫ d₀) 0 = d₀ [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V X₀ X₁ X₂ : V d₀ : X₁ ⟶ X₀ d₁ : X₂ ⟶ X₁ s : d₁ ≫ d₀ = 0 succ : (t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₁ ⟶ X₀) ×' (d₁ : X₂ ⟶ X₁) ×' d₁ ≫ d₀ = 0) → (X₃ : V) ×' (d₂ : X₃ ⟶ t.snd.snd.fst) ×' d₂ ≫ t.snd.snd.snd.snd.fst = 0 succ' : (t : (X₀ : V) × (X₁ : V) × (X₁ ⟶ X₀)) → (X₂ : V) ×' (d : X₂ ⟶ t.snd.fst) ×' d ≫ t.snd.snd = 0 ⊢ (if 1 = 0 + 1 then 𝟙 X₁ ≫ d₀ else 0) = d₀ [PROOFSTEP] rw [if_pos rfl, Category.id_comp] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V P Q : ChainComplex V ℕ zero : HomologicalComplex.X P 0 ⟶ HomologicalComplex.X Q 0 one : HomologicalComplex.X P 1 ⟶ HomologicalComplex.X Q 1 one_zero_comm : one ≫ HomologicalComplex.d Q 1 0 = HomologicalComplex.d P 1 0 ≫ zero succ : (n : ℕ) → (p : (f : HomologicalComplex.X P n ⟶ HomologicalComplex.X Q n) ×' (f' : HomologicalComplex.X P (n + 1) ⟶ HomologicalComplex.X Q (n + 1)) ×' f' ≫ HomologicalComplex.d Q (n + 1) n = HomologicalComplex.d P (n + 1) n ≫ f) → (f'' : HomologicalComplex.X P (n + 2) ⟶ HomologicalComplex.X Q (n + 2)) ×' f'' ≫ HomologicalComplex.d Q (n + 2) (n + 1) = HomologicalComplex.d P (n + 2) (n + 1) ≫ p.snd.fst n m : ℕ ⊢ ComplexShape.Rel (ComplexShape.down ℕ) n m → (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) n ≫ HomologicalComplex.d Q n m = HomologicalComplex.d P n m ≫ (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) m [PROOFSTEP] rintro (rfl : m + 1 = n) [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V P Q : ChainComplex V ℕ zero : HomologicalComplex.X P 0 ⟶ HomologicalComplex.X Q 0 one : HomologicalComplex.X P 1 ⟶ HomologicalComplex.X Q 1 one_zero_comm : one ≫ HomologicalComplex.d Q 1 0 = HomologicalComplex.d P 1 0 ≫ zero succ : (n : ℕ) → (p : (f : HomologicalComplex.X P n ⟶ HomologicalComplex.X Q n) ×' (f' : HomologicalComplex.X P (n + 1) ⟶ HomologicalComplex.X Q (n + 1)) ×' f' ≫ HomologicalComplex.d Q (n + 1) n = HomologicalComplex.d P (n + 1) n ≫ f) → (f'' : HomologicalComplex.X P (n + 2) ⟶ HomologicalComplex.X Q (n + 2)) ×' f'' ≫ HomologicalComplex.d Q (n + 2) (n + 1) = HomologicalComplex.d P (n + 2) (n + 1) ≫ p.snd.fst m : ℕ ⊢ (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) (m + 1) ≫ HomologicalComplex.d Q (m + 1) m = HomologicalComplex.d P (m + 1) m ≫ (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) m [PROOFSTEP] exact (mkHomAux P Q zero one one_zero_comm succ m).2.2 [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V P Q : ChainComplex V ℕ zero : HomologicalComplex.X P 0 ⟶ HomologicalComplex.X Q 0 one : HomologicalComplex.X P 1 ⟶ HomologicalComplex.X Q 1 one_zero_comm : one ≫ HomologicalComplex.d Q 1 0 = HomologicalComplex.d P 1 0 ≫ zero succ : (n : ℕ) → (p : (f : HomologicalComplex.X P n ⟶ HomologicalComplex.X Q n) ×' (f' : HomologicalComplex.X P (n + 1) ⟶ HomologicalComplex.X Q (n + 1)) ×' f' ≫ HomologicalComplex.d Q (n + 1) n = HomologicalComplex.d P (n + 1) n ≫ f) → (f'' : HomologicalComplex.X P (n + 2) ⟶ HomologicalComplex.X Q (n + 2)) ×' f'' ≫ HomologicalComplex.d Q (n + 2) (n + 1) = HomologicalComplex.d P (n + 2) (n + 1) ≫ p.snd.fst n : ℕ ⊢ HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) (n + 2) = (succ n { fst := HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) n, snd := { fst := HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) (n + 1), snd := (_ : HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) (n + 1) ≫ HomologicalComplex.d Q (n + 1) n = HomologicalComplex.d P (n + 1) n ≫ HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) n) } }).fst [PROOFSTEP] dsimp [mkHom, mkHomAux] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j : α h : i + 1 = j ⊢ X (i + 1) = X j [PROOFSTEP] rw [h] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j : α w : ¬ComplexShape.Rel (ComplexShape.up α) i j ⊢ (fun i j => if h : i + 1 = j then d i ≫ eqToHom (_ : X (i + 1) = X j) else 0) i j = 0 [PROOFSTEP] dsimp [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j : α w : ¬ComplexShape.Rel (ComplexShape.up α) i j ⊢ (if h : i + 1 = j then d i ≫ eqToHom (_ : X (i + 1) = X j) else 0) = 0 [PROOFSTEP] rw [dif_neg] [GOAL] case hnc ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j : α w : ¬ComplexShape.Rel (ComplexShape.up α) i j ⊢ ¬i + 1 = j [PROOFSTEP] exact w [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j k : α ⊢ ComplexShape.Rel (ComplexShape.up α) i j → ComplexShape.Rel (ComplexShape.up α) j k → (fun i j => if h : i + 1 = j then d i ≫ eqToHom (_ : X (i + 1) = X j) else 0) i j ≫ (fun i j => if h : i + 1 = j then d i ≫ eqToHom (_ : X (i + 1) = X j) else 0) j k = 0 [PROOFSTEP] dsimp [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j k : α ⊢ i + 1 = j → j + 1 = k → ((if h : i + 1 = j then d i ≫ eqToHom (_ : X (i + 1) = X j) else 0) ≫ if h : j + 1 = k then d j ≫ eqToHom (_ : X (j + 1) = X k) else 0) = 0 [PROOFSTEP] split_ifs with h h' h' [GOAL] case pos ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j k : α h : i + 1 = j h' : j + 1 = k ⊢ i + 1 = j → j + 1 = k → (d i ≫ eqToHom (_ : X (i + 1) = X j)) ≫ d j ≫ eqToHom (_ : X (j + 1) = X k) = 0 [PROOFSTEP] substs h h' [GOAL] case pos ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i : α ⊢ i + 1 = i + 1 → i + 1 + 1 = i + 1 + 1 → (d i ≫ eqToHom (_ : X (i + 1) = X (i + 1))) ≫ d (i + 1) ≫ eqToHom (_ : X (i + 1 + 1) = X (i + 1 + 1)) = 0 [PROOFSTEP] simp [sq] [GOAL] case neg ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j k : α h : i + 1 = j h' : ¬j + 1 = k ⊢ i + 1 = j → j + 1 = k → (d i ≫ eqToHom (_ : X (i + 1) = X j)) ≫ 0 = 0 case pos ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j k : α h : ¬i + 1 = j h' : j + 1 = k ⊢ i + 1 = j → j + 1 = k → 0 ≫ d j ≫ eqToHom (_ : X (j + 1) = X k) = 0 case neg ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j k : α h : ¬i + 1 = j h' : ¬j + 1 = k ⊢ i + 1 = j → j + 1 = k → 0 ≫ 0 = 0 [PROOFSTEP] all_goals simp [GOAL] case neg ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j k : α h : i + 1 = j h' : ¬j + 1 = k ⊢ i + 1 = j → j + 1 = k → (d i ≫ eqToHom (_ : X (i + 1) = X j)) ≫ 0 = 0 [PROOFSTEP] simp [GOAL] case pos ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j k : α h : ¬i + 1 = j h' : j + 1 = k ⊢ i + 1 = j → j + 1 = k → 0 ≫ d j ≫ eqToHom (_ : X (j + 1) = X k) = 0 [PROOFSTEP] simp [GOAL] case neg ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j k : α h : ¬i + 1 = j h' : ¬j + 1 = k ⊢ i + 1 = j → j + 1 = k → 0 ≫ 0 = 0 [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 j : α ⊢ HomologicalComplex.d (of X d sq) j (j + 1) = d j [PROOFSTEP] dsimp [of] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 j : α ⊢ (if j + 1 = j + 1 then d j ≫ 𝟙 (X (j + 1)) else 0) = d j [PROOFSTEP] rw [if_pos rfl, Category.comp_id] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j : α h : i + 1 ≠ j ⊢ HomologicalComplex.d (of X d sq) i j = 0 [PROOFSTEP] dsimp [of] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d : (n : α) → X n ⟶ X (n + 1) sq : ∀ (n : α), d n ≫ d (n + 1) = 0 i j : α h : i + 1 ≠ j ⊢ (if h : i + 1 = j then d i ≫ eqToHom (_ : X (i + 1) = X j) else 0) = 0 [PROOFSTEP] rw [dif_neg h] [GOAL] ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d_X : (n : α) → X n ⟶ X (n + 1) sq_X : ∀ (n : α), d_X n ≫ d_X (n + 1) = 0 Y : α → V d_Y : (n : α) → Y n ⟶ Y (n + 1) sq_Y : ∀ (n : α), d_Y n ≫ d_Y (n + 1) = 0 f : (i : α) → X i ⟶ Y i comm : ∀ (i : α), f i ≫ d_Y i = d_X i ≫ f (i + 1) n m : α ⊢ ComplexShape.Rel (ComplexShape.up α) n m → f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n m = HomologicalComplex.d (of X d_X sq_X) n m ≫ f m [PROOFSTEP] by_cases h : n + 1 = m [GOAL] case pos ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d_X : (n : α) → X n ⟶ X (n + 1) sq_X : ∀ (n : α), d_X n ≫ d_X (n + 1) = 0 Y : α → V d_Y : (n : α) → Y n ⟶ Y (n + 1) sq_Y : ∀ (n : α), d_Y n ≫ d_Y (n + 1) = 0 f : (i : α) → X i ⟶ Y i comm : ∀ (i : α), f i ≫ d_Y i = d_X i ≫ f (i + 1) n m : α h : n + 1 = m ⊢ ComplexShape.Rel (ComplexShape.up α) n m → f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n m = HomologicalComplex.d (of X d_X sq_X) n m ≫ f m [PROOFSTEP] subst h [GOAL] case pos ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d_X : (n : α) → X n ⟶ X (n + 1) sq_X : ∀ (n : α), d_X n ≫ d_X (n + 1) = 0 Y : α → V d_Y : (n : α) → Y n ⟶ Y (n + 1) sq_Y : ∀ (n : α), d_Y n ≫ d_Y (n + 1) = 0 f : (i : α) → X i ⟶ Y i comm : ∀ (i : α), f i ≫ d_Y i = d_X i ≫ f (i + 1) n : α ⊢ ComplexShape.Rel (ComplexShape.up α) n (n + 1) → f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n (n + 1) = HomologicalComplex.d (of X d_X sq_X) n (n + 1) ≫ f (n + 1) [PROOFSTEP] simpa using comm n [GOAL] case neg ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d_X : (n : α) → X n ⟶ X (n + 1) sq_X : ∀ (n : α), d_X n ≫ d_X (n + 1) = 0 Y : α → V d_Y : (n : α) → Y n ⟶ Y (n + 1) sq_Y : ∀ (n : α), d_Y n ≫ d_Y (n + 1) = 0 f : (i : α) → X i ⟶ Y i comm : ∀ (i : α), f i ≫ d_Y i = d_X i ≫ f (i + 1) n m : α h : ¬n + 1 = m ⊢ ComplexShape.Rel (ComplexShape.up α) n m → f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n m = HomologicalComplex.d (of X d_X sq_X) n m ≫ f m [PROOFSTEP] rw [of_d_ne X _ _ h, of_d_ne Y _ _ h] [GOAL] case neg ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : HasZeroMorphisms V α : Type u_2 inst✝² : AddRightCancelSemigroup α inst✝¹ : One α inst✝ : DecidableEq α X : α → V d_X : (n : α) → X n ⟶ X (n + 1) sq_X : ∀ (n : α), d_X n ≫ d_X (n + 1) = 0 Y : α → V d_Y : (n : α) → Y n ⟶ Y (n + 1) sq_Y : ∀ (n : α), d_Y n ≫ d_Y (n + 1) = 0 f : (i : α) → X i ⟶ Y i comm : ∀ (i : α), f i ≫ d_Y i = d_X i ≫ f (i + 1) n m : α h : ¬n + 1 = m ⊢ ComplexShape.Rel (ComplexShape.up α) n m → f n ≫ 0 = 0 ≫ f m [PROOFSTEP] simp [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V X₀ X₁ X₂ : V d₀ : X₀ ⟶ X₁ d₁ : X₁ ⟶ X₂ s : d₀ ≫ d₁ = 0 succ : (t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₀ ⟶ X₁) ×' (d₁ : X₁ ⟶ X₂) ×' d₀ ≫ d₁ = 0) → (X₃ : V) ×' (d₂ : t.snd.snd.fst ⟶ X₃) ×' t.snd.snd.snd.snd.fst ≫ d₂ = 0 ⊢ HomologicalComplex.d (mk X₀ X₁ X₂ d₀ d₁ s succ) 0 1 = d₀ [PROOFSTEP] change ite (1 = 0 + 1) (d₀ ≫ 𝟙 X₁) 0 = d₀ [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V X₀ X₁ X₂ : V d₀ : X₀ ⟶ X₁ d₁ : X₁ ⟶ X₂ s : d₀ ≫ d₁ = 0 succ : (t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₀ ⟶ X₁) ×' (d₁ : X₁ ⟶ X₂) ×' d₀ ≫ d₁ = 0) → (X₃ : V) ×' (d₂ : t.snd.snd.fst ⟶ X₃) ×' t.snd.snd.snd.snd.fst ≫ d₂ = 0 ⊢ (if 1 = 0 + 1 then d₀ ≫ 𝟙 X₁ else 0) = d₀ [PROOFSTEP] rw [if_pos rfl, Category.comp_id] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V X₀ X₁ X₂ : V d₀ : X₀ ⟶ X₁ d₁ : X₁ ⟶ X₂ s : d₀ ≫ d₁ = 0 succ : (t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₀ ⟶ X₁) ×' (d₁ : X₁ ⟶ X₂) ×' d₀ ≫ d₁ = 0) → (X₃ : V) ×' (d₂ : t.snd.snd.fst ⟶ X₃) ×' t.snd.snd.snd.snd.fst ≫ d₂ = 0 ⊢ HomologicalComplex.d (mk X₀ X₁ X₂ d₀ d₁ s succ) 1 2 = d₁ [PROOFSTEP] change ite (2 = 1 + 1) (d₁ ≫ 𝟙 X₂) 0 = d₁ [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V X₀ X₁ X₂ : V d₀ : X₀ ⟶ X₁ d₁ : X₁ ⟶ X₂ s : d₀ ≫ d₁ = 0 succ : (t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₀ ⟶ X₁) ×' (d₁ : X₁ ⟶ X₂) ×' d₀ ≫ d₁ = 0) → (X₃ : V) ×' (d₂ : t.snd.snd.fst ⟶ X₃) ×' t.snd.snd.snd.snd.fst ≫ d₂ = 0 ⊢ (if 2 = 1 + 1 then d₁ ≫ 𝟙 X₂ else 0) = d₁ [PROOFSTEP] rw [if_pos rfl, Category.comp_id] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V X₀ X₁ X₂ : V d₀ : X₀ ⟶ X₁ d₁ : X₁ ⟶ X₂ s : d₀ ≫ d₁ = 0 succ : (t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₀ ⟶ X₁) ×' (d₁ : X₁ ⟶ X₂) ×' d₀ ≫ d₁ = 0) → (X₃ : V) ×' (d₂ : t.snd.snd.fst ⟶ X₃) ×' t.snd.snd.snd.snd.fst ≫ d₂ = 0 succ' : (t : (X₀ : V) × (X₁ : V) × (X₀ ⟶ X₁)) → (X₂ : V) ×' (d : t.snd.fst ⟶ X₂) ×' t.snd.snd ≫ d = 0 ⊢ HomologicalComplex.d (mk' X₀ X₁ d₀ succ') 0 1 = d₀ [PROOFSTEP] change ite (1 = 0 + 1) (d₀ ≫ 𝟙 X₁) 0 = d₀ [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V X₀ X₁ X₂ : V d₀ : X₀ ⟶ X₁ d₁ : X₁ ⟶ X₂ s : d₀ ≫ d₁ = 0 succ : (t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₀ ⟶ X₁) ×' (d₁ : X₁ ⟶ X₂) ×' d₀ ≫ d₁ = 0) → (X₃ : V) ×' (d₂ : t.snd.snd.fst ⟶ X₃) ×' t.snd.snd.snd.snd.fst ≫ d₂ = 0 succ' : (t : (X₀ : V) × (X₁ : V) × (X₀ ⟶ X₁)) → (X₂ : V) ×' (d : t.snd.fst ⟶ X₂) ×' t.snd.snd ≫ d = 0 ⊢ (if 1 = 0 + 1 then d₀ ≫ 𝟙 X₁ else 0) = d₀ [PROOFSTEP] rw [if_pos rfl, Category.comp_id] [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V P Q : CochainComplex V ℕ zero : HomologicalComplex.X P 0 ⟶ HomologicalComplex.X Q 0 one : HomologicalComplex.X P 1 ⟶ HomologicalComplex.X Q 1 one_zero_comm : zero ≫ HomologicalComplex.d Q 0 1 = HomologicalComplex.d P 0 1 ≫ one succ : (n : ℕ) → (p : (f : HomologicalComplex.X P n ⟶ HomologicalComplex.X Q n) ×' (f' : HomologicalComplex.X P (n + 1) ⟶ HomologicalComplex.X Q (n + 1)) ×' f ≫ HomologicalComplex.d Q n (n + 1) = HomologicalComplex.d P n (n + 1) ≫ f') → (f'' : HomologicalComplex.X P (n + 2) ⟶ HomologicalComplex.X Q (n + 2)) ×' p.snd.fst ≫ HomologicalComplex.d Q (n + 1) (n + 2) = HomologicalComplex.d P (n + 1) (n + 2) ≫ f'' n m : ℕ ⊢ ComplexShape.Rel (ComplexShape.up ℕ) n m → (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) n ≫ HomologicalComplex.d Q n m = HomologicalComplex.d P n m ≫ (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) m [PROOFSTEP] rintro (rfl : n + 1 = m) [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V P Q : CochainComplex V ℕ zero : HomologicalComplex.X P 0 ⟶ HomologicalComplex.X Q 0 one : HomologicalComplex.X P 1 ⟶ HomologicalComplex.X Q 1 one_zero_comm : zero ≫ HomologicalComplex.d Q 0 1 = HomologicalComplex.d P 0 1 ≫ one succ : (n : ℕ) → (p : (f : HomologicalComplex.X P n ⟶ HomologicalComplex.X Q n) ×' (f' : HomologicalComplex.X P (n + 1) ⟶ HomologicalComplex.X Q (n + 1)) ×' f ≫ HomologicalComplex.d Q n (n + 1) = HomologicalComplex.d P n (n + 1) ≫ f') → (f'' : HomologicalComplex.X P (n + 2) ⟶ HomologicalComplex.X Q (n + 2)) ×' p.snd.fst ≫ HomologicalComplex.d Q (n + 1) (n + 2) = HomologicalComplex.d P (n + 1) (n + 2) ≫ f'' n : ℕ ⊢ (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) n ≫ HomologicalComplex.d Q n (n + 1) = HomologicalComplex.d P n (n + 1) ≫ (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) (n + 1) [PROOFSTEP] exact (mkHomAux P Q zero one one_zero_comm succ n).2.2 [GOAL] ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : HasZeroMorphisms V P Q : CochainComplex V ℕ zero : HomologicalComplex.X P 0 ⟶ HomologicalComplex.X Q 0 one : HomologicalComplex.X P 1 ⟶ HomologicalComplex.X Q 1 one_zero_comm : zero ≫ HomologicalComplex.d Q 0 1 = HomologicalComplex.d P 0 1 ≫ one succ : (n : ℕ) → (p : (f : HomologicalComplex.X P n ⟶ HomologicalComplex.X Q n) ×' (f' : HomologicalComplex.X P (n + 1) ⟶ HomologicalComplex.X Q (n + 1)) ×' f ≫ HomologicalComplex.d Q n (n + 1) = HomologicalComplex.d P n (n + 1) ≫ f') → (f'' : HomologicalComplex.X P (n + 2) ⟶ HomologicalComplex.X Q (n + 2)) ×' p.snd.fst ≫ HomologicalComplex.d Q (n + 1) (n + 2) = HomologicalComplex.d P (n + 1) (n + 2) ≫ f'' n : ℕ ⊢ HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) (n + 2) = (succ n { fst := HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) n, snd := { fst := HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) (n + 1), snd := (_ : HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) n ≫ HomologicalComplex.d Q n (n + 1) = HomologicalComplex.d P n (n + 1) ≫ HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) (n + 1)) } }).fst [PROOFSTEP] dsimp [mkHom, mkHomAux]
{"mathlib_filename": "Mathlib.Algebra.Homology.HomologicalComplex", "llama_tokens": 32180}
[GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I ⊢ DirectSum.IsInternal fun p => torsionBySet R M ↑(↑p ^ Multiset.count (↑p) (factors I)) [PROOFSTEP] let P := factors I [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I ⊢ DirectSum.IsInternal fun p => torsionBySet R M ↑(↑p ^ Multiset.count (↑p) (factors I)) [PROOFSTEP] have prime_of_mem := fun p (hp : p ∈ P.toFinset) => prime_of_factor p (Multiset.mem_toFinset.mp hp) [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p ⊢ DirectSum.IsInternal fun p => torsionBySet R M ↑(↑p ^ Multiset.count (↑p) (factors I)) [PROOFSTEP] apply @torsionBySet_isInternal _ _ _ _ _ _ _ _ (fun p => p ^ P.count p) _ [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p ⊢ Module.IsTorsionBySet R M ↑(⨅ (i : Ideal R) (_ : i ∈ Multiset.toFinset (factors I)), i ^ Multiset.count i P) [PROOFSTEP] convert hM [GOAL] case h.e'_6.h.e'_4 R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p ⊢ ⨅ (i : Ideal R) (_ : i ∈ Multiset.toFinset (factors I)), i ^ Multiset.count i P = I [PROOFSTEP] rw [← Finset.inf_eq_iInf, IsDedekindDomain.inf_prime_pow_eq_prod, ← Finset.prod_multiset_count, ← associated_iff_eq] [GOAL] case h.e'_6.h.e'_4 R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p ⊢ Associated (Multiset.prod (factors I)) I [PROOFSTEP] exact factors_prod hI [GOAL] case h.e'_6.h.e'_4.prime R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p ⊢ ∀ (i : Ideal R), i ∈ Multiset.toFinset (factors I) → Prime i [PROOFSTEP] exact prime_of_mem [GOAL] case h.e'_6.h.e'_4.coprime R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p ⊢ ∀ (i : Ideal R), i ∈ Multiset.toFinset (factors I) → ∀ (j : Ideal R), j ∈ Multiset.toFinset (factors I) → i ≠ j → i ≠ j [PROOFSTEP] exact fun _ _ _ _ ij => ij [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p ⊢ Set.Pairwise ↑(Multiset.toFinset (factors I)) fun i j => (fun p => p ^ Multiset.count p P) i ⊔ (fun p => p ^ Multiset.count p P) j = ⊤ [PROOFSTEP] intro p hp q hq pq [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p p : Ideal R hp : p ∈ ↑(Multiset.toFinset (factors I)) q : Ideal R hq : q ∈ ↑(Multiset.toFinset (factors I)) pq : p ≠ q ⊢ (fun p => p ^ Multiset.count p P) p ⊔ (fun p => p ^ Multiset.count p P) q = ⊤ [PROOFSTEP] dsimp [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p p : Ideal R hp : p ∈ ↑(Multiset.toFinset (factors I)) q : Ideal R hq : q ∈ ↑(Multiset.toFinset (factors I)) pq : p ≠ q ⊢ p ^ Multiset.count p (factors I) ⊔ q ^ Multiset.count q (factors I) = ⊤ [PROOFSTEP] rw [irreducible_pow_sup] [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p p : Ideal R hp : p ∈ ↑(Multiset.toFinset (factors I)) q : Ideal R hq : q ∈ ↑(Multiset.toFinset (factors I)) pq : p ≠ q ⊢ p ^ min (Multiset.count p (normalizedFactors (q ^ Multiset.count q (factors I)))) (Multiset.count p (factors I)) = ⊤ [PROOFSTEP] suffices (normalizedFactors _).count p = 0 by rw [this, zero_min, pow_zero, Ideal.one_eq_top] [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p p : Ideal R hp : p ∈ ↑(Multiset.toFinset (factors I)) q : Ideal R hq : q ∈ ↑(Multiset.toFinset (factors I)) pq : p ≠ q this : Multiset.count p (normalizedFactors ?m.97629) = 0 ⊢ p ^ min (Multiset.count p (normalizedFactors (q ^ Multiset.count q (factors I)))) (Multiset.count p (factors I)) = ⊤ [PROOFSTEP] rw [this, zero_min, pow_zero, Ideal.one_eq_top] [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p p : Ideal R hp : p ∈ ↑(Multiset.toFinset (factors I)) q : Ideal R hq : q ∈ ↑(Multiset.toFinset (factors I)) pq : p ≠ q ⊢ Multiset.count p (normalizedFactors (q ^ Multiset.count q (factors I))) = 0 [PROOFSTEP] rw [Multiset.count_eq_zero, normalizedFactors_of_irreducible_pow (prime_of_mem q hq).irreducible, Multiset.mem_replicate] [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p p : Ideal R hp : p ∈ ↑(Multiset.toFinset (factors I)) q : Ideal R hq : q ∈ ↑(Multiset.toFinset (factors I)) pq : p ≠ q ⊢ ¬(Multiset.count q (factors I) ≠ 0 ∧ p = ↑normalize q) [PROOFSTEP] exact fun H => pq <| H.2.trans <| normalize_eq q [GOAL] case hI R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p p : Ideal R hp : p ∈ ↑(Multiset.toFinset (factors I)) q : Ideal R hq : q ∈ ↑(Multiset.toFinset (factors I)) pq : p ≠ q ⊢ q ^ Multiset.count q (factors I) ≠ ⊥ [PROOFSTEP] rw [← Ideal.zero_eq_bot] [GOAL] case hI R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p p : Ideal R hp : p ∈ ↑(Multiset.toFinset (factors I)) q : Ideal R hq : q ∈ ↑(Multiset.toFinset (factors I)) pq : p ≠ q ⊢ q ^ Multiset.count q (factors I) ≠ 0 [PROOFSTEP] apply pow_ne_zero [GOAL] case hI.h R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p p : Ideal R hp : p ∈ ↑(Multiset.toFinset (factors I)) q : Ideal R hq : q ∈ ↑(Multiset.toFinset (factors I)) pq : p ≠ q ⊢ q ≠ 0 [PROOFSTEP] exact (prime_of_mem q hq).ne_zero [GOAL] case hJ R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ ⊥ hM : Module.IsTorsionBySet R M ↑I P : Multiset (Ideal R) := factors I prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p p : Ideal R hp : p ∈ ↑(Multiset.toFinset (factors I)) q : Ideal R hq : q ∈ ↑(Multiset.toFinset (factors I)) pq : p ≠ q ⊢ Irreducible p [PROOFSTEP] exact (prime_of_mem p hp).irreducible [GOAL] R : Type u inst✝⁵ : CommRing R inst✝⁴ : IsDomain R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsDedekindDomain R inst✝ : Module.Finite R M hM : Module.IsTorsion R M ⊢ DirectSum.IsInternal fun p => torsionBySet R M ↑(↑p ^ Multiset.count (↑p) (factors (annihilator ⊤))) [PROOFSTEP] have hM' := Module.isTorsionBySet_annihilator_top R M [GOAL] R : Type u inst✝⁵ : CommRing R inst✝⁴ : IsDomain R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsDedekindDomain R inst✝ : Module.Finite R M hM : Module.IsTorsion R M hM' : Module.IsTorsionBySet R M ↑(annihilator ⊤) ⊢ DirectSum.IsInternal fun p => torsionBySet R M ↑(↑p ^ Multiset.count (↑p) (factors (annihilator ⊤))) [PROOFSTEP] have hI := Submodule.annihilator_top_inter_nonZeroDivisors hM [GOAL] R : Type u inst✝⁵ : CommRing R inst✝⁴ : IsDomain R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsDedekindDomain R inst✝ : Module.Finite R M hM : Module.IsTorsion R M hM' : Module.IsTorsionBySet R M ↑(annihilator ⊤) hI : ↑(annihilator ⊤) ∩ ↑(nonZeroDivisors R) ≠ ∅ ⊢ DirectSum.IsInternal fun p => torsionBySet R M ↑(↑p ^ Multiset.count (↑p) (factors (annihilator ⊤))) [PROOFSTEP] refine' isInternal_prime_power_torsion_of_is_torsion_by_ideal _ hM' [GOAL] R : Type u inst✝⁵ : CommRing R inst✝⁴ : IsDomain R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsDedekindDomain R inst✝ : Module.Finite R M hM : Module.IsTorsion R M hM' : Module.IsTorsionBySet R M ↑(annihilator ⊤) hI : ↑(annihilator ⊤) ∩ ↑(nonZeroDivisors R) ≠ ∅ ⊢ annihilator ⊤ ≠ ⊥ [PROOFSTEP] rw [← Set.nonempty_iff_ne_empty] at hI [GOAL] R : Type u inst✝⁵ : CommRing R inst✝⁴ : IsDomain R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsDedekindDomain R inst✝ : Module.Finite R M hM : Module.IsTorsion R M hM' : Module.IsTorsionBySet R M ↑(annihilator ⊤) hI : Set.Nonempty (↑(annihilator ⊤) ∩ ↑(nonZeroDivisors R)) ⊢ annihilator ⊤ ≠ ⊥ [PROOFSTEP] rw [Submodule.ne_bot_iff] [GOAL] R : Type u inst✝⁵ : CommRing R inst✝⁴ : IsDomain R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsDedekindDomain R inst✝ : Module.Finite R M hM : Module.IsTorsion R M hM' : Module.IsTorsionBySet R M ↑(annihilator ⊤) hI : Set.Nonempty (↑(annihilator ⊤) ∩ ↑(nonZeroDivisors R)) ⊢ ∃ x, x ∈ annihilator ⊤ ∧ x ≠ 0 [PROOFSTEP] obtain ⟨x, H, hx⟩ := hI [GOAL] case intro.intro R : Type u inst✝⁵ : CommRing R inst✝⁴ : IsDomain R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsDedekindDomain R inst✝ : Module.Finite R M hM : Module.IsTorsion R M hM' : Module.IsTorsionBySet R M ↑(annihilator ⊤) x : R H : x ∈ ↑(annihilator ⊤) hx : x ∈ ↑(nonZeroDivisors R) ⊢ ∃ x, x ∈ annihilator ⊤ ∧ x ≠ 0 [PROOFSTEP] exact ⟨x, H, nonZeroDivisors.ne_zero hx⟩
{"mathlib_filename": "Mathlib.Algebra.Module.DedekindDomain", "llama_tokens": 5974}
[GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w inst✝ : CommMonoid α s : Finset α ⊢ Multiset.prod s.val = Finset.prod s id [PROOFSTEP] rw [Finset.prod, Multiset.map_id] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β s : Finset α ⊢ ∑ x in s, {x} = s.val [PROOFSTEP] simp only [sum_eq_multiset_sum, Multiset.sum_map_singleton] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w inst✝² : CommMonoid β inst✝¹ : CommMonoid γ G : Type u_2 inst✝ : MonoidHomClass G β γ g : G f : α → β s : Finset α ⊢ ↑g (∏ x in s, f x) = ∏ x in s, ↑g (f x) [PROOFSTEP] simp only [Finset.prod_eq_multiset_prod, map_multiset_prod, Multiset.map_map] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w inst✝² : CommMonoid β inst✝¹ : CommMonoid γ G : Type u_2 inst✝ : MonoidHomClass G β γ g : G f : α → β s : Finset α ⊢ Multiset.prod (Multiset.map ((fun x => ↑g x) ∘ fun x => f x) s.val) = Multiset.prod (Multiset.map (fun x => ↑g (f x)) s.val) [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β inst✝ : IsEmpty α s : Finset α ⊢ ∏ i in s, f i = 1 [PROOFSTEP] rw [eq_empty_of_isEmpty s, prod_empty] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α h : ¬a ∈ s → f a = 1 ⊢ ∏ x in insert a s, f x = ∏ x in s, f x [PROOFSTEP] by_cases hm : a ∈ s [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α h : ¬a ∈ s → f a = 1 hm : a ∈ s ⊢ ∏ x in insert a s, f x = ∏ x in s, f x [PROOFSTEP] simp_rw [insert_eq_of_mem hm] [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α h : ¬a ∈ s → f a = 1 hm : ¬a ∈ s ⊢ ∏ x in insert a s, f x = ∏ x in s, f x [PROOFSTEP] rw [prod_insert hm, h hm, one_mul] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α a b : α h : a ≠ b ⊢ ∏ x in {a, b}, f x = f a * f b [PROOFSTEP] rw [prod_insert (not_mem_singleton.2 h), prod_singleton] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β ⊢ ∏ _x in s, 1 = 1 [PROOFSTEP] simp only [Finset.prod, Multiset.map_const', Multiset.prod_replicate, one_pow] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α e : α ↪ γ f : γ → β ⊢ ∏ x in map e s, f x = ∏ x in s, f (↑e x) [PROOFSTEP] rw [Finset.prod, Finset.map_val, Multiset.map_map] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α e : α ↪ γ f : γ → β ⊢ Multiset.prod (Multiset.map ((fun x => f x) ∘ ↑e) s.val) = ∏ x in s, f (↑e x) [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β h : s₁ = s₂ ⊢ (∀ (x : α), x ∈ s₂ → f x = g x) → Finset.prod s₁ f = Finset.prod s₂ g [PROOFSTEP] rw [h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β h : s₁ = s₂ ⊢ (∀ (x : α), x ∈ s₂ → f x = g x) → Finset.prod s₂ f = Finset.prod s₂ g [PROOFSTEP] exact fold_congr [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β h : Disjoint s₁ s₂ ⊢ ∏ x in disjUnion s₁ s₂ h, f x = (∏ x in s₁, f x) * ∏ x in s₂, f x [PROOFSTEP] refine' Eq.trans _ (fold_disjUnion h) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β h : Disjoint s₁ s₂ ⊢ ∏ x in disjUnion s₁ s₂ h, f x = fold (fun x x_1 => x * x_1) (1 * 1) (fun x => f x) (disjUnion s₁ s₂ h) [PROOFSTEP] rw [one_mul] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β h : Disjoint s₁ s₂ ⊢ ∏ x in disjUnion s₁ s₂ h, f x = fold (fun x x_1 => x * x_1) 1 (fun x => f x) (disjUnion s₁ s₂ h) [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β s : Finset ι t : ι → Finset α h : Set.PairwiseDisjoint (↑s) t ⊢ ∏ x in disjiUnion s t h, f x = ∏ i in s, ∏ x in t i, f x [PROOFSTEP] refine' Eq.trans _ (fold_disjiUnion h) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β s : Finset ι t : ι → Finset α h : Set.PairwiseDisjoint (↑s) t ⊢ ∏ x in disjiUnion s t h, f x = fold (fun x x_1 => x * x_1) (fold (fun x x_1 => x * x_1) 1 (fun i => 1) s) (fun x => f x) (disjiUnion s t h) [PROOFSTEP] dsimp [Finset.prod, Multiset.prod, Multiset.fold, Finset.disjUnion, Finset.fold] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β s : Finset ι t : ι → Finset α h : Set.PairwiseDisjoint (↑s) t ⊢ Multiset.foldr (fun x x_1 => x * x_1) (_ : ∀ (x y z : β), x * (y * z) = y * (x * z)) 1 (Multiset.map (fun x => f x) (Multiset.bind s.val fun a => (t a).val)) = Multiset.foldr (fun x x_1 => x * x_1) (_ : LeftCommutative fun x x_1 => x * x_1) (Multiset.foldr (fun x x_1 => x * x_1) (_ : LeftCommutative fun x x_1 => x * x_1) 1 (Multiset.map (fun i => 1) s.val)) (Multiset.map (fun x => f x) (Multiset.bind s.val fun a => (t a).val)) [PROOFSTEP] congr [GOAL] case e_b ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β s : Finset ι t : ι → Finset α h : Set.PairwiseDisjoint (↑s) t ⊢ 1 = Multiset.foldr (fun x x_1 => x * x_1) (_ : LeftCommutative fun x x_1 => x * x_1) 1 (Multiset.map (fun i => 1) s.val) [PROOFSTEP] exact prod_const_one.symm [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α h : Disjoint s₁ s₂ ⊢ ∏ x in s₁ ∪ s₂, f x = (∏ x in s₁, f x) * ∏ x in s₂, f x [PROOFSTEP] rw [← prod_union_inter, disjoint_iff_inter_eq_empty.mp h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α h : Disjoint s₁ s₂ ⊢ ∏ x in s₁ ∪ s₂, f x = (∏ x in s₁ ∪ s₂, f x) * ∏ x in ∅, f x [PROOFSTEP] exact (mul_one _).symm [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝² : CommMonoid β s : Finset α p : α → Prop inst✝¹ : DecidablePred p inst✝ : (x : α) → Decidable ¬p x f : α → β ⊢ (∏ x in filter p s, f x) * ∏ x in filter (fun x => ¬p x) s, f x = ∏ x in s, f x [PROOFSTEP] have := Classical.decEq α [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝² : CommMonoid β s : Finset α p : α → Prop inst✝¹ : DecidablePred p inst✝ : (x : α) → Decidable ¬p x f : α → β this : DecidableEq α ⊢ (∏ x in filter p s, f x) * ∏ x in filter (fun x => ¬p x) s, f x = ∏ x in s, f x [PROOFSTEP] rw [← prod_union (disjoint_filter_filter_neg s s p), filter_union_filter_neg_eq] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β ⊢ List.prod (List.map f (toList s)) = Finset.prod s f [PROOFSTEP] rw [Finset.prod, ← Multiset.coe_prod, ← Multiset.coe_map, Finset.coe_toList] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β σ : Equiv.Perm α s : Finset α f : α → β hs : {a | ↑σ a ≠ a} ⊆ ↑s ⊢ ∏ x in s, f (↑σ x) = ∏ x in s, f x [PROOFSTEP] convert (prod_map s σ.toEmbedding f).symm [GOAL] case h.e'_3.h ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β σ : Equiv.Perm α s : Finset α f : α → β hs : {a | ↑σ a ≠ a} ⊆ ↑s ⊢ s = map (Equiv.toEmbedding σ) s [PROOFSTEP] exact (map_perm hs).symm [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β σ : Equiv.Perm α s : Finset α f : α → α → β hs : {a | ↑σ a ≠ a} ⊆ ↑s ⊢ ∏ x in s, f (↑σ x) x = ∏ x in s, f x (↑σ.symm x) [PROOFSTEP] convert σ.prod_comp s (fun x => f x (σ.symm x)) hs [GOAL] case h.e'_2.a.h.e'_2 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β σ : Equiv.Perm α s : Finset α f : α → α → β hs : {a | ↑σ a ≠ a} ⊆ ↑s x✝ : α a✝ : x✝ ∈ s ⊢ x✝ = ↑σ.symm (↑σ x✝) [PROOFSTEP] rw [Equiv.symm_apply_apply] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : Fintype α inst✝ : CommMonoid β s t : Finset α h : IsCompl s t f : α → β ⊢ ∏ x in disjUnion s t (_ : Disjoint s t), f x = ∏ i : α, f i [PROOFSTEP] classical rw [Finset.disjUnion_eq_union, ← Finset.sup_eq_union, h.sup_eq_top]; rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : Fintype α inst✝ : CommMonoid β s t : Finset α h : IsCompl s t f : α → β ⊢ ∏ x in disjUnion s t (_ : Disjoint s t), f x = ∏ i : α, f i [PROOFSTEP] rw [Finset.disjUnion_eq_union, ← Finset.sup_eq_union, h.sup_eq_top] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : Fintype α inst✝ : CommMonoid β s t : Finset α h : IsCompl s t f : α → β ⊢ ∏ x in ⊤, f x = ∏ i : α, f i [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α h : s₁ ⊆ s₂ ⊢ (∏ x in s₂ \ s₁, f x) * ∏ x in s₁, f x = ∏ x in s₂, f x [PROOFSTEP] rw [← prod_union sdiff_disjoint, sdiff_union_of_subset h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α ⊕ γ → β ⊢ ∏ x in disjSum s t, f x = (∏ x in s, f (Sum.inl x)) * ∏ x in t, f (Sum.inr x) [PROOFSTEP] rw [← map_inl_disjUnion_map_inr, prod_disjUnion, prod_map, prod_map] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α ⊕ γ → β ⊢ (∏ x in s, f (↑Function.Embedding.inl x)) * ∏ x in t, f (↑Function.Embedding.inr x) = (∏ x in s, f (Sum.inl x)) * ∏ x in t, f (Sum.inr x) [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β ⊢ ∏ x in disjSum s t, Sum.elim f g x = (∏ x in s, f x) * ∏ x in t, g x [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset γ t : γ → Finset α hs : Set.PairwiseDisjoint (↑s) t ⊢ ∏ x in Finset.biUnion s t, f x = ∏ x in s, ∏ i in t x, f i [PROOFSTEP] rw [← disjiUnion_eq_biUnion _ _ hs, prod_disjiUnion] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β σ : α → Type u_2 s : Finset α t : (a : α) → Finset (σ a) f : Sigma σ → β ⊢ ∏ x in Finset.sigma s t, f x = ∏ a in s, ∏ s in t a, f { fst := a, snd := s } [PROOFSTEP] simp_rw [← disjiUnion_map_sigma_mk, prod_disjiUnion, prod_map, Function.Embedding.sigmaMk_apply] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → γ hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) j : (a : γ) → a ∈ t → α hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a ⊢ ∏ x in s, f x = ∏ x in t, g x [PROOFSTEP] refine' prod_bij i hi h _ _ [GOAL] case refine'_1 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → γ hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) j : (a : γ) → a ∈ t → α hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a ⊢ ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ s) (ha₂ : a₂ ∈ s), i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂ [PROOFSTEP] intro a1 a2 h1 h2 eq [GOAL] case refine'_1 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → γ hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) j : (a : γ) → a ∈ t → α hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a a1 a2 : α h1 : a1 ∈ s h2 : a2 ∈ s eq : i a1 h1 = i a2 h2 ⊢ a1 = a2 [PROOFSTEP] rw [← left_inv a1 h1, ← left_inv a2 h2] [GOAL] case refine'_1 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → γ hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) j : (a : γ) → a ∈ t → α hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a a1 a2 : α h1 : a1 ∈ s h2 : a2 ∈ s eq : i a1 h1 = i a2 h2 ⊢ j (i a1 h1) (_ : i a1 h1 ∈ t) = j (i a2 h2) (_ : i a2 h2 ∈ t) [PROOFSTEP] simp only [eq] [GOAL] case refine'_2 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → γ hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) j : (a : γ) → a ∈ t → α hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a ⊢ ∀ (b : γ), b ∈ t → ∃ a ha, b = i a ha [PROOFSTEP] intro b hb [GOAL] case refine'_2 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → γ hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) j : (a : γ) → a ∈ t → α hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a b : γ hb : b ∈ t ⊢ ∃ a ha, b = i a ha [PROOFSTEP] use j b hb [GOAL] case h ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → γ hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) j : (a : γ) → a ∈ t → α hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a b : γ hb : b ∈ t ⊢ ∃ ha, b = i (j b hb) ha [PROOFSTEP] use hj b hb [GOAL] case h ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → γ hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha) j : (a : γ) → a ∈ t → α hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a b : γ hb : b ∈ t ⊢ b = i (j b hb) (_ : j b hb ∈ s) [PROOFSTEP] exact (right_inv b hb).symm [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β ι' : Type u_2 inst✝ : DecidableEq ι e : ι ≃ ι' f : ι' → β s' : Finset ι' s : Finset ι h : s = image (↑e.symm) s' ⊢ ∏ i' in s', f i' = ∏ i in s, f (↑e i) [PROOFSTEP] rw [h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β ι' : Type u_2 inst✝ : DecidableEq ι e : ι ≃ ι' f : ι' → β s' : Finset ι' s : Finset ι h : s = image (↑e.symm) s' ⊢ ∏ i' in s', f i' = ∏ i in image (↑e.symm) s', f (↑e i) [PROOFSTEP] refine' Finset.prod_bij' (fun i' _hi' => e.symm i') (fun a ha => Finset.mem_image_of_mem _ ha) (fun a _ha => by simp_rw [e.apply_symm_apply]) (fun i _hi => e i) (fun a ha => _) (fun a _ha => e.apply_symm_apply a) fun a _ha => e.symm_apply_apply a [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β ι' : Type u_2 inst✝ : DecidableEq ι e : ι ≃ ι' f : ι' → β s' : Finset ι' s : Finset ι h : s = image (↑e.symm) s' a : ι' _ha : a ∈ s' ⊢ f a = f (↑e ((fun i' _hi' => ↑e.symm i') a _ha)) [PROOFSTEP] simp_rw [e.apply_symm_apply] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β ι' : Type u_2 inst✝ : DecidableEq ι e : ι ≃ ι' f : ι' → β s' : Finset ι' s : Finset ι h : s = image (↑e.symm) s' a : ι ha : a ∈ image (↑e.symm) s' ⊢ (fun i _hi => ↑e i) a ha ∈ s' [PROOFSTEP] rcases Finset.mem_image.mp ha with ⟨i', hi', rfl⟩ [GOAL] case intro.intro ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β ι' : Type u_2 inst✝ : DecidableEq ι e : ι ≃ ι' f : ι' → β s' : Finset ι' s : Finset ι h : s = image (↑e.symm) s' i' : ι' hi' : i' ∈ s' ha : ↑e.symm i' ∈ image (↑e.symm) s' ⊢ (fun i _hi => ↑e i) (↑e.symm i') ha ∈ s' [PROOFSTEP] dsimp only [GOAL] case intro.intro ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β ι' : Type u_2 inst✝ : DecidableEq ι e : ι ≃ ι' f : ι' → β s' : Finset ι' s : Finset ι h : s = image (↑e.symm) s' i' : ι' hi' : i' ∈ s' ha : ↑e.symm i' ∈ image (↑e.symm) s' ⊢ ↑e (↑e.symm i') ∈ s' [PROOFSTEP] rwa [e.apply_symm_apply] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β r : Finset (γ × α) s : Finset γ t : γ → Finset α h : ∀ (p : γ × α), p ∈ r ↔ p.fst ∈ s ∧ p.snd ∈ t p.fst f : γ × α → β ⊢ ∏ p in r, f p = ∏ c in s, ∏ a in t c, f (c, a) [PROOFSTEP] refine' Eq.trans _ (prod_sigma s t fun p => f (p.1, p.2)) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β r : Finset (γ × α) s : Finset γ t : γ → Finset α h : ∀ (p : γ × α), p ∈ r ↔ p.fst ∈ s ∧ p.snd ∈ t p.fst f : γ × α → β ⊢ ∏ p in r, f p = ∏ x in Finset.sigma s t, f (x.fst, x.snd) [PROOFSTEP] exact prod_bij' (fun p _hp => ⟨p.1, p.2⟩) (fun p => mem_sigma.mpr ∘ (h p).mp) (fun p hp => congr_arg f Prod.mk.eta.symm) (fun p _hp => (p.1, p.2)) (fun p => (h (p.1, p.2)).mpr ∘ mem_sigma.mp) (fun p _hp => Prod.mk.eta) fun p _hp => p.eta [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β r : Finset (α × γ) s : Finset γ t : γ → Finset α h : ∀ (p : α × γ), p ∈ r ↔ p.snd ∈ s ∧ p.fst ∈ t p.snd f : α × γ → β ⊢ ∏ p in r, f p = ∏ c in s, ∏ a in t c, f (a, c) [PROOFSTEP] refine' Eq.trans _ (prod_sigma s t fun p => f (p.2, p.1)) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β r : Finset (α × γ) s : Finset γ t : γ → Finset α h : ∀ (p : α × γ), p ∈ r ↔ p.snd ∈ s ∧ p.fst ∈ t p.snd f : α × γ → β ⊢ ∏ p in r, f p = ∏ x in Finset.sigma s t, f (x.snd, x.fst) [PROOFSTEP] exact prod_bij' (fun p _hp => ⟨p.2, p.1⟩) (fun p => mem_sigma.mpr ∘ (h p).mp) (fun p hp => congr_arg f Prod.mk.eta.symm) (fun p _hp => (p.2, p.1)) (fun p => (h (p.2, p.1)).mpr ∘ mem_sigma.mp) (fun p _hp => Prod.mk.eta) fun p _hp => p.eta [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq γ s : Finset α t : Finset γ g : α → γ h : ∀ (x : α), x ∈ s → g x ∈ t f : α → β ⊢ ∏ y in t, ∏ x in filter (fun x => g x = y) s, f x = ∏ x in s, f x [PROOFSTEP] rw [← prod_disjiUnion, disjiUnion_filter_eq_of_maps_to h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β ⊢ ∏ x in s, f x * g x = fold (fun x x_1 => x * x_1) (1 * 1) (fun x => f x * g x) s [PROOFSTEP] rw [one_mul] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β ⊢ ∏ x in s, f x * g x = fold (fun x x_1 => x * x_1) 1 (fun x => f x * g x) s [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset γ t : γ → Finset α t' : Finset α s' : α → Finset γ h : ∀ (x : γ) (y : α), x ∈ s ∧ y ∈ t x ↔ x ∈ s' y ∧ y ∈ t' f : γ → α → β ⊢ ∏ x in s, ∏ y in t x, f x y = ∏ y in t', ∏ x in s' y, f x y [PROOFSTEP] classical have : ∀ z : γ × α, (z ∈ s.biUnion fun x => (t x).map <| Function.Embedding.sectr x _) ↔ z.1 ∈ s ∧ z.2 ∈ t z.1 := by rintro ⟨x, y⟩ simp only [mem_biUnion, mem_map, Function.Embedding.sectr_apply, Prod.mk.injEq, exists_eq_right, ← and_assoc] exact (prod_finset_product' _ _ _ this).symm.trans ((prod_finset_product_right' _ _ _) fun ⟨x, y⟩ => (this _).trans ((h x y).trans and_comm)) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset γ t : γ → Finset α t' : Finset α s' : α → Finset γ h : ∀ (x : γ) (y : α), x ∈ s ∧ y ∈ t x ↔ x ∈ s' y ∧ y ∈ t' f : γ → α → β ⊢ ∏ x in s, ∏ y in t x, f x y = ∏ y in t', ∏ x in s' y, f x y [PROOFSTEP] have : ∀ z : γ × α, (z ∈ s.biUnion fun x => (t x).map <| Function.Embedding.sectr x _) ↔ z.1 ∈ s ∧ z.2 ∈ t z.1 := by rintro ⟨x, y⟩ simp only [mem_biUnion, mem_map, Function.Embedding.sectr_apply, Prod.mk.injEq, exists_eq_right, ← and_assoc] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset γ t : γ → Finset α t' : Finset α s' : α → Finset γ h : ∀ (x : γ) (y : α), x ∈ s ∧ y ∈ t x ↔ x ∈ s' y ∧ y ∈ t' f : γ → α → β ⊢ ∀ (z : γ × α), (z ∈ Finset.biUnion s fun x => map (Function.Embedding.sectr x α) (t x)) ↔ z.fst ∈ s ∧ z.snd ∈ t z.fst [PROOFSTEP] rintro ⟨x, y⟩ [GOAL] case mk ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset γ t : γ → Finset α t' : Finset α s' : α → Finset γ h : ∀ (x : γ) (y : α), x ∈ s ∧ y ∈ t x ↔ x ∈ s' y ∧ y ∈ t' f : γ → α → β x : γ y : α ⊢ ((x, y) ∈ Finset.biUnion s fun x => map (Function.Embedding.sectr x α) (t x)) ↔ (x, y).fst ∈ s ∧ (x, y).snd ∈ t (x, y).fst [PROOFSTEP] simp only [mem_biUnion, mem_map, Function.Embedding.sectr_apply, Prod.mk.injEq, exists_eq_right, ← and_assoc] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset γ t : γ → Finset α t' : Finset α s' : α → Finset γ h : ∀ (x : γ) (y : α), x ∈ s ∧ y ∈ t x ↔ x ∈ s' y ∧ y ∈ t' f : γ → α → β this : ∀ (z : γ × α), (z ∈ Finset.biUnion s fun x => map (Function.Embedding.sectr x α) (t x)) ↔ z.fst ∈ s ∧ z.snd ∈ t z.fst ⊢ ∏ x in s, ∏ y in t x, f x y = ∏ y in t', ∏ x in s' y, f x y [PROOFSTEP] exact (prod_finset_product' _ _ _ this).symm.trans ((prod_finset_product_right' _ _ _) fun ⟨x, y⟩ => (this _).trans ((h x y).trans and_comm)) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : CommMonoid γ r : β → γ → Prop f : α → β g : α → γ s : Finset α h₁ : r 1 1 h₂ : ∀ (a : α) (b : β) (c : γ), r b c → r (f a * b) (g a * c) ⊢ r (∏ x in s, f x) (∏ x in s, g x) [PROOFSTEP] delta Finset.prod [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : CommMonoid γ r : β → γ → Prop f : α → β g : α → γ s : Finset α h₁ : r 1 1 h₂ : ∀ (a : α) (b : β) (c : γ), r b c → r (f a * b) (g a * c) ⊢ r (Multiset.prod (Multiset.map (fun x => f x) s.val)) (Multiset.prod (Multiset.map (fun x => g x) s.val)) [PROOFSTEP] apply Multiset.prod_hom_rel [GOAL] case h₁ ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : CommMonoid γ r : β → γ → Prop f : α → β g : α → γ s : Finset α h₁ : r 1 1 h₂ : ∀ (a : α) (b : β) (c : γ), r b c → r (f a * b) (g a * c) ⊢ r 1 1 [PROOFSTEP] assumption [GOAL] case h₂ ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : CommMonoid γ r : β → γ → Prop f : α → β g : α → γ s : Finset α h₁ : r 1 1 h₂ : ∀ (a : α) (b : β) (c : γ), r b c → r (f a * b) (g a * c) ⊢ ∀ ⦃a : α⦄ ⦃b : β⦄ ⦃c : γ⦄, r b c → r (f a * b) (g a * c) [PROOFSTEP] assumption [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α h : s₁ ⊆ s₂ hg : ∀ (x : α), x ∈ s₂ \ s₁ → g x = 1 hfg : ∀ (x : α), x ∈ s₁ → f x = g x ⊢ ∏ i in s₁, f i = ∏ i in s₂, g i [PROOFSTEP] rw [← prod_sdiff h, prod_eq_one hg, one_mul] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α h : s₁ ⊆ s₂ hg : ∀ (x : α), x ∈ s₂ \ s₁ → g x = 1 hfg : ∀ (x : α), x ∈ s₁ → f x = g x ⊢ ∏ i in s₁, f i = ∏ x in s₁, g x [PROOFSTEP] exact prod_congr rfl hfg [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β h : s₁ ⊆ s₂ hf : ∀ (x : α), x ∈ s₂ → ¬x ∈ s₁ → f x = 1 this : DecidableEq α ⊢ ∀ (x : α), x ∈ s₂ \ s₁ → f x = 1 [PROOFSTEP] simpa [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β p : α → Prop inst✝ : DecidablePred p hp : ∀ (x : α), x ∈ s → f x ≠ 1 → p x x : α ⊢ x ∈ s → ¬x ∈ filter p s → f x = 1 [PROOFSTEP] classical rw [not_imp_comm, mem_filter] exact fun h₁ h₂ => ⟨h₁, by simpa using hp _ h₁ h₂⟩ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β p : α → Prop inst✝ : DecidablePred p hp : ∀ (x : α), x ∈ s → f x ≠ 1 → p x x : α ⊢ x ∈ s → ¬x ∈ filter p s → f x = 1 [PROOFSTEP] rw [not_imp_comm, mem_filter] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β p : α → Prop inst✝ : DecidablePred p hp : ∀ (x : α), x ∈ s → f x ≠ 1 → p x x : α ⊢ x ∈ s → ¬f x = 1 → x ∈ s ∧ p x [PROOFSTEP] exact fun h₁ h₂ => ⟨h₁, by simpa using hp _ h₁ h₂⟩ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β p : α → Prop inst✝ : DecidablePred p hp : ∀ (x : α), x ∈ s → f x ≠ 1 → p x x : α h₁ : x ∈ s h₂ : ¬f x = 1 ⊢ p x [PROOFSTEP] simpa using hp _ h₁ h₂ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β p : α → Prop inst✝ : DecidablePred p f : α → β a : α h : a ∈ filter p s ⊢ f a = if p a then f a else 1 [PROOFSTEP] rw [if_pos] [GOAL] case hc ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β p : α → Prop inst✝ : DecidablePred p f : α → β a : α h : a ∈ filter p s ⊢ p a [PROOFSTEP] simpa using (mem_filter.1 h).2 [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β p : α → Prop inst✝ : DecidablePred p f : α → β ⊢ (∏ a in filter p s, if p a then f a else 1) = ∏ a in s, if p a then f a else 1 [PROOFSTEP] { refine' prod_subset (filter_subset _ s) fun x hs h => _ rw [mem_filter, not_and] at h exact if_neg (by simpa using h hs) } [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β p : α → Prop inst✝ : DecidablePred p f : α → β ⊢ (∏ a in filter p s, if p a then f a else 1) = ∏ a in s, if p a then f a else 1 [PROOFSTEP] refine' prod_subset (filter_subset _ s) fun x hs h => _ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β p : α → Prop inst✝ : DecidablePred p f : α → β x : α hs : x ∈ s h : ¬x ∈ filter p s ⊢ (if p x then f x else 1) = 1 [PROOFSTEP] rw [mem_filter, not_and] at h [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β p : α → Prop inst✝ : DecidablePred p f : α → β x : α hs : x ∈ s h : x ∈ s → ¬p x ⊢ (if p x then f x else 1) = 1 [PROOFSTEP] exact if_neg (by simpa using h hs) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β p : α → Prop inst✝ : DecidablePred p f : α → β x : α hs : x ∈ s h : x ∈ s → ¬p x ⊢ ¬p x [PROOFSTEP] simpa using h hs [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α h : a ∈ s h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1 ⊢ ∏ x in s, f x = f a [PROOFSTEP] haveI := Classical.decEq α [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α h : a ∈ s h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1 this : DecidableEq α ⊢ ∏ x in s, f x = f a [PROOFSTEP] calc ∏ x in s, f x = ∏ x in { a }, f x := by { refine' (prod_subset _ _).symm · intro _ H rwa [mem_singleton.1 H] · simpa only [mem_singleton] } _ = f a := prod_singleton [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α h : a ∈ s h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1 this : DecidableEq α ⊢ ∏ x in s, f x = ∏ x in {a}, f x [PROOFSTEP] { refine' (prod_subset _ _).symm · intro _ H rwa [mem_singleton.1 H] · simpa only [mem_singleton] } [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α h : a ∈ s h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1 this : DecidableEq α ⊢ ∏ x in s, f x = ∏ x in {a}, f x [PROOFSTEP] refine' (prod_subset _ _).symm [GOAL] case refine'_1 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α h : a ∈ s h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1 this : DecidableEq α ⊢ {a} ⊆ s [PROOFSTEP] intro _ H [GOAL] case refine'_1 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α h : a ∈ s h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1 this : DecidableEq α a✝ : α H : a✝ ∈ {a} ⊢ a✝ ∈ s [PROOFSTEP] rwa [mem_singleton.1 H] [GOAL] case refine'_2 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α h : a ∈ s h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1 this : DecidableEq α ⊢ ∀ (x : α), x ∈ s → ¬x ∈ {a} → f x = 1 [PROOFSTEP] simpa only [mem_singleton] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1 h₁ : ¬a ∈ s → f a = 1 this✝ : DecidableEq α this : ¬a ∈ s b : α hb : b ∈ s ⊢ b ≠ a [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β this✝ : DecidableEq α b : α hb : b ∈ s h₀ : ∀ (b_1 : α), b_1 ∈ s → b_1 ≠ b → f b_1 = 1 h₁ : ¬b ∈ s → f b = 1 this : ¬b ∈ s ⊢ False [PROOFSTEP] exact this hb [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ⊢ ∏ x in s, f x = f a * f b [PROOFSTEP] haveI := Classical.decEq α [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α ⊢ ∏ x in s, f x = f a * f b [PROOFSTEP] let s' := ({ a, b } : Finset α) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} ⊢ ∏ x in s, f x = f a * f b [PROOFSTEP] have hu : s' ⊆ s := by refine' insert_subset_iff.mpr _ apply And.intro ha apply singleton_subset_iff.mpr hb [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} ⊢ s' ⊆ s [PROOFSTEP] refine' insert_subset_iff.mpr _ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} ⊢ a ∈ s ∧ {b} ⊆ s [PROOFSTEP] apply And.intro ha [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} ⊢ {b} ⊆ s [PROOFSTEP] apply singleton_subset_iff.mpr hb [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} hu : s' ⊆ s ⊢ ∏ x in s, f x = f a * f b [PROOFSTEP] have hf : ∀ c ∈ s, c ∉ s' → f c = 1 := by intro c hc hcs apply h₀ c hc apply not_or.mp intro hab apply hcs apply mem_insert.mpr rw [mem_singleton] exact hab [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} hu : s' ⊆ s ⊢ ∀ (c : α), c ∈ s → ¬c ∈ s' → f c = 1 [PROOFSTEP] intro c hc hcs [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} hu : s' ⊆ s c : α hc : c ∈ s hcs : ¬c ∈ s' ⊢ f c = 1 [PROOFSTEP] apply h₀ c hc [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} hu : s' ⊆ s c : α hc : c ∈ s hcs : ¬c ∈ s' ⊢ c ≠ a ∧ c ≠ b [PROOFSTEP] apply not_or.mp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} hu : s' ⊆ s c : α hc : c ∈ s hcs : ¬c ∈ s' ⊢ ¬(c = a ∨ c = b) [PROOFSTEP] intro hab [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} hu : s' ⊆ s c : α hc : c ∈ s hcs : ¬c ∈ s' hab : c = a ∨ c = b ⊢ False [PROOFSTEP] apply hcs [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} hu : s' ⊆ s c : α hc : c ∈ s hcs : ¬c ∈ s' hab : c = a ∨ c = b ⊢ c ∈ s' [PROOFSTEP] apply mem_insert.mpr [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} hu : s' ⊆ s c : α hc : c ∈ s hcs : ¬c ∈ s' hab : c = a ∨ c = b ⊢ c = a ∨ c ∈ {b} [PROOFSTEP] rw [mem_singleton] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} hu : s' ⊆ s c : α hc : c ∈ s hcs : ¬c ∈ s' hab : c = a ∨ c = b ⊢ c = a ∨ c = b [PROOFSTEP] exact hab [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} hu : s' ⊆ s hf : ∀ (c : α), c ∈ s → ¬c ∈ s' → f c = 1 ⊢ ∏ x in s, f x = f a * f b [PROOFSTEP] rw [← prod_subset hu hf] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α ha : a ∈ s hb : b ∈ s hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 this : DecidableEq α s' : Finset α := {a, b} hu : s' ⊆ s hf : ∀ (c : α), c ∈ s → ¬c ∈ s' → f c = 1 ⊢ ∏ x in s', f x = f a * f b [PROOFSTEP] exact Finset.prod_pair hn [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ha : ¬a ∈ s → f a = 1 hb : ¬b ∈ s → f b = 1 ⊢ ∏ x in s, f x = f a * f b [PROOFSTEP] haveI := Classical.decEq α [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ha : ¬a ∈ s → f a = 1 hb : ¬b ∈ s → f b = 1 this : DecidableEq α ⊢ ∏ x in s, f x = f a * f b [PROOFSTEP] by_cases h₁ : a ∈ s [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ha : ¬a ∈ s → f a = 1 hb : ¬b ∈ s → f b = 1 this : DecidableEq α h₁ : a ∈ s ⊢ ∏ x in s, f x = f a * f b [PROOFSTEP] by_cases h₂ : b ∈ s [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ha : ¬a ∈ s → f a = 1 hb : ¬b ∈ s → f b = 1 this : DecidableEq α h₁ : ¬a ∈ s ⊢ ∏ x in s, f x = f a * f b [PROOFSTEP] by_cases h₂ : b ∈ s [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ha : ¬a ∈ s → f a = 1 hb : ¬b ∈ s → f b = 1 this : DecidableEq α h₁ : a ∈ s h₂ : b ∈ s ⊢ ∏ x in s, f x = f a * f b [PROOFSTEP] exact prod_eq_mul_of_mem a b h₁ h₂ hn h₀ [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ha : ¬a ∈ s → f a = 1 hb : ¬b ∈ s → f b = 1 this : DecidableEq α h₁ : a ∈ s h₂ : ¬b ∈ s ⊢ ∏ x in s, f x = f a * f b [PROOFSTEP] rw [hb h₂, mul_one] [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ha : ¬a ∈ s → f a = 1 hb : ¬b ∈ s → f b = 1 this : DecidableEq α h₁ : a ∈ s h₂ : ¬b ∈ s ⊢ ∏ x in s, f x = f a [PROOFSTEP] apply prod_eq_single_of_mem a h₁ [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ha : ¬a ∈ s → f a = 1 hb : ¬b ∈ s → f b = 1 this : DecidableEq α h₁ : a ∈ s h₂ : ¬b ∈ s ⊢ ∀ (b : α), b ∈ s → b ≠ a → f b = 1 [PROOFSTEP] exact fun c hc hca => h₀ c hc ⟨hca, ne_of_mem_of_not_mem hc h₂⟩ [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ha : ¬a ∈ s → f a = 1 hb : ¬b ∈ s → f b = 1 this : DecidableEq α h₁ : ¬a ∈ s h₂ : b ∈ s ⊢ ∏ x in s, f x = f a * f b [PROOFSTEP] rw [ha h₁, one_mul] [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ha : ¬a ∈ s → f a = 1 hb : ¬b ∈ s → f b = 1 this : DecidableEq α h₁ : ¬a ∈ s h₂ : b ∈ s ⊢ ∏ x in s, f x = f b [PROOFSTEP] apply prod_eq_single_of_mem b h₂ [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ha : ¬a ∈ s → f a = 1 hb : ¬b ∈ s → f b = 1 this : DecidableEq α h₁ : ¬a ∈ s h₂ : b ∈ s ⊢ ∀ (b_1 : α), b_1 ∈ s → b_1 ≠ b → f b_1 = 1 [PROOFSTEP] exact fun c hc hcb => h₀ c hc ⟨ne_of_mem_of_not_mem hc h₁, hcb⟩ [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ha : ¬a ∈ s → f a = 1 hb : ¬b ∈ s → f b = 1 this : DecidableEq α h₁ : ¬a ∈ s h₂ : ¬b ∈ s ⊢ ∏ x in s, f x = f a * f b [PROOFSTEP] rw [ha h₁, hb h₂, mul_one] [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a b : α hn : a ≠ b h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1 ha : ¬a ∈ s → f a = 1 hb : ¬b ∈ s → f b = 1 this : DecidableEq α h₁ : ¬a ∈ s h₂ : ¬b ∈ s ⊢ ∏ x in s, f x = 1 [PROOFSTEP] exact _root_.trans (prod_congr rfl fun c hc => h₀ c hc ⟨ne_of_mem_of_not_mem hc h₁, ne_of_mem_of_not_mem hc h₂⟩) prod_const_one [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : α → β this : DecidableEq α ⊢ ∏ x in attach s, f ↑x = ∏ x in image Subtype.val (attach s), f x [PROOFSTEP] {rw [prod_image]; exact fun x _ y _ => Subtype.eq } [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : α → β this : DecidableEq α ⊢ ∏ x in attach s, f ↑x = ∏ x in image Subtype.val (attach s), f x [PROOFSTEP] rw [prod_image] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : α → β this : DecidableEq α ⊢ ∀ (x : { x // x ∈ s }), x ∈ attach s → ∀ (y : { x // x ∈ s }), y ∈ attach s → ↑x = ↑y → x = y [PROOFSTEP] exact fun x _ y _ => Subtype.eq [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : α → β this : DecidableEq α ⊢ ∏ x in image Subtype.val (attach s), f x = ∏ x in s, f x [PROOFSTEP] rw [attach_image_val] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → β p : α → Prop inst✝ : DecidablePred p ⊢ ∏ x in Finset.subtype p s, f ↑x = ∏ x in filter p s, f x [PROOFSTEP] conv_lhs => erw [← prod_map (s.subtype p) (Function.Embedding.subtype _) f] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → β p : α → Prop inst✝ : DecidablePred p | ∏ x in Finset.subtype p s, f ↑x [PROOFSTEP] erw [← prod_map (s.subtype p) (Function.Embedding.subtype _) f] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → β p : α → Prop inst✝ : DecidablePred p | ∏ x in Finset.subtype p s, f ↑x [PROOFSTEP] erw [← prod_map (s.subtype p) (Function.Embedding.subtype _) f] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → β p : α → Prop inst✝ : DecidablePred p | ∏ x in Finset.subtype p s, f ↑x [PROOFSTEP] erw [← prod_map (s.subtype p) (Function.Embedding.subtype _) f] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → β p : α → Prop inst✝ : DecidablePred p ⊢ ∏ x in map (Function.Embedding.subtype p) (Finset.subtype p s), f x = ∏ x in filter p s, f x [PROOFSTEP] exact prod_congr (subtype_map _) fun x _hx => rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → β p : α → Prop inst✝ : DecidablePred p h : ∀ (x : α), x ∈ s → p x ⊢ ∏ x in Finset.subtype p s, f ↑x = ∏ x in s, f x [PROOFSTEP] rw [prod_subtype_eq_prod_filter, filter_true_of_mem] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → β p : α → Prop inst✝ : DecidablePred p h : ∀ (x : α), x ∈ s → p x ⊢ ∀ (x : α), x ∈ s → p x [PROOFSTEP] simpa using h [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop s : Finset { x // p x } f : { x // p x } → β g : α → β h : ∀ (x : { x // p x }), x ∈ s → g ↑x = f x ⊢ ∏ x in map (Function.Embedding.subtype fun x => p x) s, g x = ∏ x in s, f x [PROOFSTEP] rw [Finset.prod_map] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop s : Finset { x // p x } f : { x // p x } → β g : α → β h : ∀ (x : { x // p x }), x ∈ s → g ↑x = f x ⊢ ∏ x in s, g (↑(Function.Embedding.subtype fun x => p x) x) = ∏ x in s, f x [PROOFSTEP] exact Finset.prod_congr rfl h [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β p : α → Prop F : Fintype (Subtype p) s : Finset α h : ∀ (x : α), x ∈ s ↔ p x f : α → β ⊢ ∏ a in s, f a = ∏ a : Subtype p, f ↑a [PROOFSTEP] have : (· ∈ s) = p := Set.ext h [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β p : α → Prop F : Fintype (Subtype p) s : Finset α h : ∀ (x : α), x ∈ s ↔ p x f : α → β this : (fun x => x ∈ s) = p ⊢ ∏ a in s, f a = ∏ a : Subtype p, f ↑a [PROOFSTEP] subst p [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β F : Fintype { x // x ∈ s } h : ∀ (x : α), x ∈ s ↔ (fun x => x ∈ s) x ⊢ ∏ a in s, f a = ∏ a : { x // x ∈ s }, f ↑a [PROOFSTEP] rw [← prod_coe_sort] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β F : Fintype { x // x ∈ s } h : ∀ (x : α), x ∈ s ↔ (fun x => x ∈ s) x ⊢ ∏ i : { x // x ∈ s }, f ↑i = ∏ a : { x // x ∈ s }, f ↑a [PROOFSTEP] congr! [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g✝ : α✝ → β✝ inst✝³ : CommMonoid β✝ α : Type u_2 inst✝² : CommMonoid α β : Type u_3 inst✝¹ : Fintype β s : Set β inst✝ : DecidablePred fun x => x ∈ s f : β → α g : ↑s → α w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h } w' : ∀ (x : β), ¬x ∈ s → f x = 1 ⊢ Finset.prod univ f = Finset.prod univ g [PROOFSTEP] rw [← @Finset.prod_subset _ _ s.toFinset Finset.univ f _ (by simp)] [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g✝ : α✝ → β✝ inst✝³ : CommMonoid β✝ α : Type u_2 inst✝² : CommMonoid α β : Type u_3 inst✝¹ : Fintype β s : Set β inst✝ : DecidablePred fun x => x ∈ s f : β → α g : ↑s → α w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h } w' : ∀ (x : β), ¬x ∈ s → f x = 1 ⊢ Set.toFinset s ⊆ univ [PROOFSTEP] simp [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g✝ : α✝ → β✝ inst✝³ : CommMonoid β✝ α : Type u_2 inst✝² : CommMonoid α β : Type u_3 inst✝¹ : Fintype β s : Set β inst✝ : DecidablePred fun x => x ∈ s f : β → α g : ↑s → α w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h } w' : ∀ (x : β), ¬x ∈ s → f x = 1 ⊢ ∏ x in Set.toFinset s, f x = Finset.prod univ g [PROOFSTEP] rw [Finset.prod_subtype] [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g✝ : α✝ → β✝ inst✝³ : CommMonoid β✝ α : Type u_2 inst✝² : CommMonoid α β : Type u_3 inst✝¹ : Fintype β s : Set β inst✝ : DecidablePred fun x => x ∈ s f : β → α g : ↑s → α w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h } w' : ∀ (x : β), ¬x ∈ s → f x = 1 ⊢ ∏ a : Subtype ?m.393471, f ↑a = Finset.prod univ g [PROOFSTEP] apply Finset.prod_congr rfl [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g✝ : α✝ → β✝ inst✝³ : CommMonoid β✝ α : Type u_2 inst✝² : CommMonoid α β : Type u_3 inst✝¹ : Fintype β s : Set β inst✝ : DecidablePred fun x => x ∈ s f : β → α g : ↑s → α w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h } w' : ∀ (x : β), ¬x ∈ s → f x = 1 ⊢ ∀ (x : { x // x ∈ s }), x ∈ univ → f ↑x = g x [PROOFSTEP] exact fun ⟨x, h⟩ _ => w x h [GOAL] case h ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g✝ : α✝ → β✝ inst✝³ : CommMonoid β✝ α : Type u_2 inst✝² : CommMonoid α β : Type u_3 inst✝¹ : Fintype β s : Set β inst✝ : DecidablePred fun x => x ∈ s f : β → α g : ↑s → α w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h } w' : ∀ (x : β), ¬x ∈ s → f x = 1 ⊢ ∀ (x : β), x ∈ Set.toFinset s ↔ x ∈ s [PROOFSTEP] simp [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g✝ : α✝ → β✝ inst✝³ : CommMonoid β✝ α : Type u_2 inst✝² : CommMonoid α β : Type u_3 inst✝¹ : Fintype β s : Set β inst✝ : DecidablePred fun x => x ∈ s f : β → α g : ↑s → α w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h } w' : ∀ (x : β), ¬x ∈ s → f x = 1 ⊢ ∀ (x : β), x ∈ univ → ¬x ∈ Set.toFinset s → f x = 1 [PROOFSTEP] rintro x _ h [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g✝ : α✝ → β✝ inst✝³ : CommMonoid β✝ α : Type u_2 inst✝² : CommMonoid α β : Type u_3 inst✝¹ : Fintype β s : Set β inst✝ : DecidablePred fun x => x ∈ s f : β → α g : ↑s → α w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h } w' : ∀ (x : β), ¬x ∈ s → f x = 1 x : β a✝ : x ∈ univ h : ¬x ∈ Set.toFinset s ⊢ f x = 1 [PROOFSTEP] exact w' x (by simpa using h) [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g✝ : α✝ → β✝ inst✝³ : CommMonoid β✝ α : Type u_2 inst✝² : CommMonoid α β : Type u_3 inst✝¹ : Fintype β s : Set β inst✝ : DecidablePred fun x => x ∈ s f : β → α g : ↑s → α w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h } w' : ∀ (x : β), ¬x ∈ s → f x = 1 x : β a✝ : x ∈ univ h : ¬x ∈ Set.toFinset s ⊢ ¬x ∈ s [PROOFSTEP] simpa using h [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β s : Finset α p : α → Prop hp : DecidablePred p inst✝ : DecidablePred fun x => ¬p x f : (x : α) → p x → γ g : (x : α) → ¬p x → γ h : γ → β x : { x // x ∈ filter p s } ⊢ p ↑x [PROOFSTEP] simpa using (mem_filter.mp x.2).2 [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β s : Finset α p : α → Prop hp : DecidablePred p inst✝ : DecidablePred fun x => ¬p x f : (x : α) → p x → γ g : (x : α) → ¬p x → γ h : γ → β x : { x // x ∈ filter (fun x => ¬p x) s } ⊢ ¬p ↑x [PROOFSTEP] simpa using (mem_filter.mp x.2).2 [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β s : Finset α p : α → Prop hp : DecidablePred p inst✝ : DecidablePred fun x => ¬p x f : (x : α) → p x → γ g : (x : α) → ¬p x → γ h : γ → β x : { x // x ∈ filter p s } ⊢ p ↑x [PROOFSTEP] simpa using (mem_filter.mp x.2).2 [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β s : Finset α p : α → Prop hp : DecidablePred p inst✝ : DecidablePred fun x => ¬p x f : (x : α) → p x → γ g : (x : α) → ¬p x → γ h : γ → β x : { x // x ∈ filter (fun x => ¬p x) s } ⊢ ¬p ↑x [PROOFSTEP] simpa using (mem_filter.mp x.2).2 [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β s : Finset α p : α → Prop hp : DecidablePred p inst✝ : DecidablePred fun x => ¬p x f : (x : α) → p x → γ g : (x : α) → ¬p x → γ h : γ → β x : { x // x ∈ filter p s } _hx : x ∈ attach (filter p s) ⊢ p ↑x [PROOFSTEP] simpa using (mem_filter.mp x.2).2 [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β s : Finset α p : α → Prop hp : DecidablePred p inst✝ : DecidablePred fun x => ¬p x f : (x : α) → p x → γ g : (x : α) → ¬p x → γ h : γ → β x : { x // x ∈ filter (fun x => ¬p x) s } _hx : x ∈ attach (filter (fun x => ¬p x) s) ⊢ ¬p ↑x [PROOFSTEP] simpa using (mem_filter.mp x.2).2 [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α p : α → Prop hp : DecidablePred p f : (x : α) → p x → β g : (x : α) → ¬p x → β x : { x // x ∈ filter p s } ⊢ p ↑x [PROOFSTEP] simpa using (mem_filter.mp x.2).2 [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α p : α → Prop hp : DecidablePred p f : (x : α) → p x → β g : (x : α) → ¬p x → β x : { x // x ∈ filter (fun x => ¬p x) s } ⊢ ¬p ↑x [PROOFSTEP] simpa using (mem_filter.mp x.2).2 [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α p : α → Prop hp : DecidablePred p f : (x : α) → p x → β g : (x : α) → ¬p x → β ⊢ (∏ x in s, if hx : p x then f x hx else g x hx) = (∏ x in attach (filter p s), f ↑x (_ : p ↑x)) * ∏ x in attach (filter (fun x => ¬p x) s), g ↑x (_ : ¬p ↑x) [PROOFSTEP] simp [prod_apply_dite _ _ fun x => x] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α p : α → Prop hp : DecidablePred p f g : α → β ⊢ (∏ x in s, if p x then f x else g x) = (∏ x in filter p s, f x) * ∏ x in filter (fun x => ¬p x) s, g x [PROOFSTEP] simp [prod_apply_ite _ _ fun x => x] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → β h : ∀ (x : α), x ∈ s → ¬p x ⊢ (∏ x in s, if p x then f x else g x) = ∏ x in s, g x [PROOFSTEP] rw [prod_ite, filter_false_of_mem, filter_true_of_mem] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → β h : ∀ (x : α), x ∈ s → ¬p x ⊢ (∏ x in ∅, f x) * ∏ x in s, g x = ∏ x in s, g x [PROOFSTEP] simp only [prod_empty, one_mul] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → β h : ∀ (x : α), x ∈ s → ¬p x ⊢ ∀ (x : α), x ∈ s → ¬p x ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → β h : ∀ (x : α), x ∈ s → ¬p x ⊢ ∀ (x : α), x ∈ s → ¬p x [PROOFSTEP] all_goals intros; apply h; assumption [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → β h : ∀ (x : α), x ∈ s → ¬p x ⊢ ∀ (x : α), x ∈ s → ¬p x [PROOFSTEP] intros [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → β h : ∀ (x : α), x ∈ s → ¬p x x✝ : α a✝ : x✝ ∈ s ⊢ ¬p x✝ [PROOFSTEP] apply h [GOAL] case a ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → β h : ∀ (x : α), x ∈ s → ¬p x x✝ : α a✝ : x✝ ∈ s ⊢ x✝ ∈ s [PROOFSTEP] assumption [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → β h : ∀ (x : α), x ∈ s → ¬p x ⊢ ∀ (x : α), x ∈ s → ¬p x [PROOFSTEP] intros [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → β h : ∀ (x : α), x ∈ s → ¬p x x✝ : α a✝ : x✝ ∈ s ⊢ ¬p x✝ [PROOFSTEP] apply h [GOAL] case a ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → β h : ∀ (x : α), x ∈ s → ¬p x x✝ : α a✝ : x✝ ∈ s ⊢ x✝ ∈ s [PROOFSTEP] assumption [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → β h : ∀ (x : α), x ∈ s → p x ⊢ (∏ x in s, if p x then f x else g x) = ∏ x in s, f x [PROOFSTEP] simp_rw [← ite_not (p _)] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → β h : ∀ (x : α), x ∈ s → p x ⊢ (∏ x in s, if ¬p x then g x else f x) = ∏ x in s, f x [PROOFSTEP] apply prod_ite_of_false [GOAL] case h ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → β h : ∀ (x : α), x ∈ s → p x ⊢ ∀ (x : α), x ∈ s → ¬¬p x [PROOFSTEP] simpa [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → γ k : γ → β h : ∀ (x : α), x ∈ s → ¬p x ⊢ ∏ x in s, k (if p x then f x else g x) = ∏ x in s, k (g x) [PROOFSTEP] simp_rw [apply_ite k] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → γ k : γ → β h : ∀ (x : α), x ∈ s → ¬p x ⊢ (∏ x in s, if p x then k (f x) else k (g x)) = ∏ x in s, k (g x) [PROOFSTEP] exact prod_ite_of_false _ _ h [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → γ k : γ → β h : ∀ (x : α), x ∈ s → p x ⊢ ∏ x in s, k (if p x then f x else g x) = ∏ x in s, k (f x) [PROOFSTEP] simp_rw [apply_ite k] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p f g : α → γ k : γ → β h : ∀ (x : α), x ∈ s → p x ⊢ (∏ x in s, if p x then k (f x) else k (g x)) = ∏ x in s, k (f x) [PROOFSTEP] exact prod_ite_of_true _ _ h [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s t : Finset α f : α → β ⊢ (∏ i in s, if i ∈ t then f i else 1) = ∏ i in s ∩ t, f i [PROOFSTEP] rw [← Finset.prod_filter, Finset.filter_mem_eq_inter] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → a = x → β ⊢ (∏ x in s, if h : a = x then b x h else 1) = if a ∈ s then b a (_ : a = a) else 1 [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → a = x → β h : a ∈ s ⊢ (∏ x in s, if h : a = x then b x h else 1) = b a (_ : a = a) [PROOFSTEP] rw [Finset.prod_eq_single a, dif_pos rfl] [GOAL] case pos.h₀ ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → a = x → β h : a ∈ s ⊢ ∀ (b_1 : α), b_1 ∈ s → b_1 ≠ a → (if h : a = b_1 then b b_1 h else 1) = 1 [PROOFSTEP] intros _ _ h [GOAL] case pos.h₀ ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → a = x → β h✝ : a ∈ s b✝ : α a✝ : b✝ ∈ s h : b✝ ≠ a ⊢ (if h : a = b✝ then b b✝ h else 1) = 1 [PROOFSTEP] rw [dif_neg] [GOAL] case pos.h₀.hnc ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → a = x → β h✝ : a ∈ s b✝ : α a✝ : b✝ ∈ s h : b✝ ≠ a ⊢ ¬a = b✝ [PROOFSTEP] exact h.symm [GOAL] case pos.h₁ ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → a = x → β h : a ∈ s ⊢ ¬a ∈ s → (if h : a = a then b a h else 1) = 1 [PROOFSTEP] simp [h] [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → a = x → β h : ¬a ∈ s ⊢ (∏ x in s, if h : a = x then b x h else 1) = 1 [PROOFSTEP] rw [Finset.prod_eq_one] [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → a = x → β h : ¬a ∈ s ⊢ ∀ (x : α), x ∈ s → (if h : a = x then b x h else 1) = 1 [PROOFSTEP] intros [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → a = x → β h : ¬a ∈ s x✝ : α a✝ : x✝ ∈ s ⊢ (if h : a = x✝ then b x✝ h else 1) = 1 [PROOFSTEP] rw [dif_neg] [GOAL] case neg.hnc ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → a = x → β h : ¬a ∈ s x✝ : α a✝ : x✝ ∈ s ⊢ ¬a = x✝ [PROOFSTEP] rintro rfl [GOAL] case neg.hnc ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → a = x → β h : ¬a ∈ s a✝ : a ∈ s ⊢ False [PROOFSTEP] contradiction [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → x = a → β ⊢ (∏ x in s, if h : x = a then b x h else 1) = if a ∈ s then b a (_ : a = a) else 1 [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → x = a → β h : a ∈ s ⊢ (∏ x in s, if h : x = a then b x h else 1) = b a (_ : a = a) [PROOFSTEP] rw [Finset.prod_eq_single a, dif_pos rfl] [GOAL] case pos.h₀ ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → x = a → β h : a ∈ s ⊢ ∀ (b_1 : α), b_1 ∈ s → b_1 ≠ a → (if h : b_1 = a then b b_1 h else 1) = 1 [PROOFSTEP] intros _ _ h [GOAL] case pos.h₀ ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → x = a → β h✝ : a ∈ s b✝ : α a✝ : b✝ ∈ s h : b✝ ≠ a ⊢ (if h : b✝ = a then b b✝ h else 1) = 1 [PROOFSTEP] rw [dif_neg] [GOAL] case pos.h₀.hnc ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → x = a → β h✝ : a ∈ s b✝ : α a✝ : b✝ ∈ s h : b✝ ≠ a ⊢ ¬b✝ = a [PROOFSTEP] exact h [GOAL] case pos.h₁ ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → x = a → β h : a ∈ s ⊢ ¬a ∈ s → (if h : a = a then b a h else 1) = 1 [PROOFSTEP] simp [h] [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → x = a → β h : ¬a ∈ s ⊢ (∏ x in s, if h : x = a then b x h else 1) = 1 [PROOFSTEP] rw [Finset.prod_eq_one] [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → x = a → β h : ¬a ∈ s ⊢ ∀ (x : α), x ∈ s → (if h : x = a then b x h else 1) = 1 [PROOFSTEP] intros [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → x = a → β h : ¬a ∈ s x✝ : α a✝ : x✝ ∈ s ⊢ (if h : x✝ = a then b x✝ h else 1) = 1 [PROOFSTEP] rw [dif_neg] [GOAL] case neg.hnc ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝¹ : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → x = a → β h : ¬a ∈ s x✝ : α a✝ : x✝ ∈ s ⊢ ¬x✝ = a [PROOFSTEP] rintro rfl [GOAL] case neg.hnc ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α x✝ : α a✝ : x✝ ∈ s b : (x : α) → x = x✝ → β h : ¬x✝ ∈ s ⊢ False [PROOFSTEP] contradiction [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β p : Prop inst✝ : Decidable p s : Finset α f g : α → β ⊢ (∏ x in s, if p then f x else g x) = if p then ∏ x in s, f x else ∏ x in s, g x [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β p : Prop inst✝ : Decidable p s : Finset α f g : α → β h : p ⊢ ∏ x in s, f x = ∏ x in s, f x [PROOFSTEP] rfl [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β p : Prop inst✝ : Decidable p s : Finset α f g : α → β h : ¬p ⊢ ∏ x in s, g x = ∏ x in s, g x [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β p : Prop inst✝ : Decidable p s : Finset α f : p → α → β g : ¬p → α → β ⊢ (∏ x in s, if h : p then f h x else g h x) = if h : p then ∏ x in s, f h x else ∏ x in s, g h x [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β p : Prop inst✝ : Decidable p s : Finset α f : p → α → β g : ¬p → α → β h : p ⊢ ∏ x in s, f h x = ∏ x in s, f h x [PROOFSTEP] rfl [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β p : Prop inst✝ : Decidable p s : Finset α f : p → α → β g : ¬p → α → β h : ¬p ⊢ ∏ x in s, g h x = ∏ x in s, g h x [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) ⊢ ∏ x in s, f x = ∏ x in t, g x [PROOFSTEP] classical calc ∏ x in s, f x = ∏ x in s.filter fun x => f x ≠ 1, f x := prod_filter_ne_one.symm _ = ∏ x in t.filter fun x => g x ≠ 1, g x := (prod_bij (fun a ha => i a (mem_filter.mp ha).1 $ by simpa using (mem_filter.mp ha).2) ?_ ?_ ?_ ?_) _ = ∏ x in t, g x := prod_filter_ne_one · intros a ha refine' (mem_filter.mp ha).elim _ intros h₁ h₂ refine (mem_filter.mpr ⟨hi a h₁ _, ?_⟩) specialize h a h₁ fun H ↦ by rw [H] at h₂ ; simp at h₂ rwa [← h] · refine' (fun a ha => (mem_filter.mp ha).elim fun h₁ h₂ ↦ _) exact h a h₁ fun H ↦ by rw [H] at h₂ ; simp at h₂ · intros a₁ a₂ ha₁ ha₂ refine' (mem_filter.mp ha₁).elim fun _ha₁₁ _ha₁₂ ↦ _ refine' (mem_filter.mp ha₂).elim fun _ha₂₁ _ha₂₂ ↦ _ apply i_inj · intros b hb refine' (mem_filter.mp hb).elim fun h₁ h₂ ↦ _ obtain ⟨a, ha₁, ha₂, eq⟩ := i_surj b h₁ fun H ↦ by rw [H] at h₂ ; simp at h₂ exact ⟨a, mem_filter.mpr ⟨ha₁, ha₂⟩, eq⟩ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) ⊢ ∏ x in s, f x = ∏ x in t, g x [PROOFSTEP] calc ∏ x in s, f x = ∏ x in s.filter fun x => f x ≠ 1, f x := prod_filter_ne_one.symm _ = ∏ x in t.filter fun x => g x ≠ 1, g x := (prod_bij (fun a ha => i a (mem_filter.mp ha).1 $ by simpa using (mem_filter.mp ha).2) ?_ ?_ ?_ ?_) _ = ∏ x in t, g x := prod_filter_ne_one [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) a : α ha : a ∈ filter (fun x => f x ≠ 1) s ⊢ f a ≠ 1 [PROOFSTEP] simpa using (mem_filter.mp ha).2 [GOAL] case calc_1 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) ⊢ ∀ (a : α) (ha : a ∈ filter (fun x => f x ≠ 1) s), (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha ∈ filter (fun x => g x ≠ 1) t [PROOFSTEP] intros a ha [GOAL] case calc_1 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) a : α ha : a ∈ filter (fun x => f x ≠ 1) s ⊢ (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha ∈ filter (fun x => g x ≠ 1) t [PROOFSTEP] refine' (mem_filter.mp ha).elim _ [GOAL] case calc_1 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) a : α ha : a ∈ filter (fun x => f x ≠ 1) s ⊢ a ∈ s → f a ≠ 1 → (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha ∈ filter (fun x => g x ≠ 1) t [PROOFSTEP] intros h₁ h₂ [GOAL] case calc_1 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) a : α ha : a ∈ filter (fun x => f x ≠ 1) s h₁ : a ∈ s h₂ : f a ≠ 1 ⊢ (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha ∈ filter (fun x => g x ≠ 1) t [PROOFSTEP] refine (mem_filter.mpr ⟨hi a h₁ _, ?_⟩) [GOAL] case calc_1 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) a : α ha : a ∈ filter (fun x => f x ≠ 1) s h₁ : a ∈ s h₂ : f a ≠ 1 ⊢ g ((fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha) ≠ 1 [PROOFSTEP] specialize h a h₁ fun H ↦ by rw [H] at h₂ ; simp at h₂ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) a : α ha : a ∈ filter (fun x => f x ≠ 1) s h₁ : a ∈ s h₂ : f a ≠ 1 H : f a = 1 ⊢ False [PROOFSTEP] rw [H] at h₂ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) a : α ha : a ∈ filter (fun x => f x ≠ 1) s h₁ : a ∈ s h₂ : 1 ≠ 1 H : f a = 1 ⊢ False [PROOFSTEP] simp at h₂ [GOAL] case calc_1 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ a : α ha : a ∈ filter (fun x => f x ≠ 1) s h₁ : a ∈ s h₂ : f a ≠ 1 h : f a = g (i a h₁ (_ : f a = 1 → False)) ⊢ g ((fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha) ≠ 1 [PROOFSTEP] rwa [← h] [GOAL] case calc_2 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) ⊢ ∀ (a : α) (ha : a ∈ filter (fun x => f x ≠ 1) s), f a = g ((fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha) [PROOFSTEP] refine' (fun a ha => (mem_filter.mp ha).elim fun h₁ h₂ ↦ _) [GOAL] case calc_2 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) a : α ha : a ∈ filter (fun x => f x ≠ 1) s h₁ : a ∈ s h₂ : f a ≠ 1 ⊢ f a = g ((fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha) [PROOFSTEP] exact h a h₁ fun H ↦ by rw [H] at h₂ ; simp at h₂ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) a : α ha : a ∈ filter (fun x => f x ≠ 1) s h₁ : a ∈ s h₂ : f a ≠ 1 H : f a = 1 ⊢ False [PROOFSTEP] rw [H] at h₂ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) a : α ha : a ∈ filter (fun x => f x ≠ 1) s h₁ : a ∈ s h₂ : 1 ≠ 1 H : f a = 1 ⊢ False [PROOFSTEP] simp at h₂ [GOAL] case calc_3 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) ⊢ ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ filter (fun x => f x ≠ 1) s) (ha₂ : a₂ ∈ filter (fun x => f x ≠ 1) s), (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₁ ha₁ = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₂ ha₂ → a₁ = a₂ [PROOFSTEP] intros a₁ a₂ ha₁ ha₂ [GOAL] case calc_3 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) a₁ a₂ : α ha₁ : a₁ ∈ filter (fun x => f x ≠ 1) s ha₂ : a₂ ∈ filter (fun x => f x ≠ 1) s ⊢ (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₁ ha₁ = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₂ ha₂ → a₁ = a₂ [PROOFSTEP] refine' (mem_filter.mp ha₁).elim fun _ha₁₁ _ha₁₂ ↦ _ [GOAL] case calc_3 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) a₁ a₂ : α ha₁ : a₁ ∈ filter (fun x => f x ≠ 1) s ha₂ : a₂ ∈ filter (fun x => f x ≠ 1) s _ha₁₁ : a₁ ∈ s _ha₁₂ : f a₁ ≠ 1 ⊢ (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₁ ha₁ = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₂ ha₂ → a₁ = a₂ [PROOFSTEP] refine' (mem_filter.mp ha₂).elim fun _ha₂₁ _ha₂₂ ↦ _ [GOAL] case calc_3 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) a₁ a₂ : α ha₁ : a₁ ∈ filter (fun x => f x ≠ 1) s ha₂ : a₂ ∈ filter (fun x => f x ≠ 1) s _ha₁₁ : a₁ ∈ s _ha₁₂ : f a₁ ≠ 1 _ha₂₁ : a₂ ∈ s _ha₂₂ : f a₂ ≠ 1 ⊢ (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₁ ha₁ = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₂ ha₂ → a₁ = a₂ [PROOFSTEP] apply i_inj [GOAL] case calc_4 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) ⊢ ∀ (b : γ), b ∈ filter (fun x => g x ≠ 1) t → ∃ a ha, b = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha [PROOFSTEP] intros b hb [GOAL] case calc_4 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) b : γ hb : b ∈ filter (fun x => g x ≠ 1) t ⊢ ∃ a ha, b = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha [PROOFSTEP] refine' (mem_filter.mp hb).elim fun h₁ h₂ ↦ _ [GOAL] case calc_4 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) b : γ hb : b ∈ filter (fun x => g x ≠ 1) t h₁ : b ∈ t h₂ : g b ≠ 1 ⊢ ∃ a ha, b = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha [PROOFSTEP] obtain ⟨a, ha₁, ha₂, eq⟩ := i_surj b h₁ fun H ↦ by rw [H] at h₂ ; simp at h₂ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) b : γ hb : b ∈ filter (fun x => g x ≠ 1) t h₁ : b ∈ t h₂ : g b ≠ 1 H : g b = 1 ⊢ False [PROOFSTEP] rw [H] at h₂ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) b : γ hb : b ∈ filter (fun x => g x ≠ 1) t h₁ : b ∈ t h₂ : 1 ≠ 1 H : g b = 1 ⊢ False [PROOFSTEP] simp at h₂ [GOAL] case calc_4.intro.intro.intro ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α t : Finset γ f : α → β g : γ → β i : (a : α) → a ∈ s → f a ≠ 1 → γ hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂ i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂ h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂) b : γ hb : b ∈ filter (fun x => g x ≠ 1) t h₁ : b ∈ t h₂ : g b ≠ 1 a : α ha₁ : a ∈ s ha₂ : f a ≠ 1 eq : b = i a ha₁ ha₂ ⊢ ∃ a ha, b = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha [PROOFSTEP] exact ⟨a, mem_filter.mpr ⟨ha₁, ha₂⟩, eq⟩ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p h : ∀ (x : α), x ∈ s → ¬p x f : (x : α) → p x → β g : (x : α) → ¬p x → β x : α hx : x ∈ s ⊢ (fun x hx => { val := x, property := hx }) x hx ∈ univ [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p h : ∀ (x : α), x ∈ s → ¬p x f : (x : α) → p x → β g : (x : α) → ¬p x → β a : α ha : a ∈ s ⊢ (if hx : p a then f a hx else g a hx) = g ↑((fun x hx => { val := x, property := hx }) a ha) (_ : ¬p ↑((fun x hx => { val := x, property := hx }) a ha)) [PROOFSTEP] dsimp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p h : ∀ (x : α), x ∈ s → ¬p x f : (x : α) → p x → β g : (x : α) → ¬p x → β a : α ha : a ∈ s ⊢ (if hx : p a then f a hx else g a hx) = g a (_ : ¬p a) [PROOFSTEP] rw [dif_neg] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p h : ∀ (x : α), x ∈ s → ¬p x f : (x : α) → p x → β g : (x : α) → ¬p x → β b : { x // x ∈ s } _hb : b ∈ univ ⊢ b = (fun x hx => { val := x, property := hx }) ↑b (_ : ↑b ∈ s) [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p h : ∀ (x : α), x ∈ s → p x f : (x : α) → p x → β g : (x : α) → ¬p x → β x : α hx : x ∈ s ⊢ (fun x hx => { val := x, property := hx }) x hx ∈ univ [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p h : ∀ (x : α), x ∈ s → p x f : (x : α) → p x → β g : (x : α) → ¬p x → β a : α ha : a ∈ s ⊢ (if hx : p a then f a hx else g a hx) = f ↑((fun x hx => { val := x, property := hx }) a ha) (_ : p ↑((fun x hx => { val := x, property := hx }) a ha)) [PROOFSTEP] dsimp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p h : ∀ (x : α), x ∈ s → p x f : (x : α) → p x → β g : (x : α) → ¬p x → β a : α ha : a ∈ s ⊢ (if hx : p a then f a hx else g a hx) = f a (_ : p a) [PROOFSTEP] rw [dif_pos] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β p : α → Prop hp : DecidablePred p h : ∀ (x : α), x ∈ s → p x f : (x : α) → p x → β g : (x : α) → ¬p x → β b : { x // x ∈ s } _hb : b ∈ univ ⊢ b = (fun x hx => { val := x, property := hx }) ↑b (_ : ↑b ∈ s) [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β h : ∏ x in s, f x ≠ 1 ⊢ ∃ a, a ∈ s ∧ f a ≠ 1 [PROOFSTEP] classical rw [← prod_filter_ne_one] at h rcases nonempty_of_prod_ne_one h with ⟨x, hx⟩ exact ⟨x, (mem_filter.1 hx).1, by simpa using (mem_filter.1 hx).2⟩ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β h : ∏ x in s, f x ≠ 1 ⊢ ∃ a, a ∈ s ∧ f a ≠ 1 [PROOFSTEP] rw [← prod_filter_ne_one] at h [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β h✝ : ∏ x in s, f x ≠ 1 h : ∏ x in filter (fun x => f x ≠ 1) s, f x ≠ 1 ⊢ ∃ a, a ∈ s ∧ f a ≠ 1 [PROOFSTEP] rcases nonempty_of_prod_ne_one h with ⟨x, hx⟩ [GOAL] case intro ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β h✝ : ∏ x in s, f x ≠ 1 h : ∏ x in filter (fun x => f x ≠ 1) s, f x ≠ 1 x : α hx : x ∈ filter (fun x => f x ≠ 1) s ⊢ ∃ a, a ∈ s ∧ f a ≠ 1 [PROOFSTEP] exact ⟨x, (mem_filter.1 hx).1, by simpa using (mem_filter.1 hx).2⟩ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β h✝ : ∏ x in s, f x ≠ 1 h : ∏ x in filter (fun x => f x ≠ 1) s, f x ≠ 1 x : α hx : x ∈ filter (fun x => f x ≠ 1) s ⊢ f x ≠ 1 [PROOFSTEP] simpa using (mem_filter.1 hx).2 [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : ℕ → β n : ℕ ⊢ ∏ x in range (n + 1), f x = f n * ∏ x in range n, f x [PROOFSTEP] rw [range_succ, prod_insert not_mem_range_self] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : ℕ → β n : ℕ ⊢ ∏ x in range (n + 1), f x = (∏ x in range n, f x) * f n [PROOFSTEP] simp only [mul_comm, prod_range_succ_comm] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : ℕ → β n : ℕ ⊢ ∏ k in range (n + 1 + 1), f k = (∏ k in range (n + 1), f (k + 1)) * f 0 [PROOFSTEP] rw [prod_range_succ _ n, mul_right_comm, ← prod_range_succ' _ n, prod_range_succ] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β u : ℕ → β N : ℕ hu : ∀ (n : ℕ), n ≥ N → u n = 1 n : ℕ hn : N ≤ n ⊢ ∏ k in range (n + 1), u k = ∏ k in range (N + 1), u k [PROOFSTEP] obtain ⟨m, rfl : n = N + m⟩ := le_iff_exists_add.mp hn [GOAL] case intro ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β u : ℕ → β N : ℕ hu : ∀ (n : ℕ), n ≥ N → u n = 1 m : ℕ hn : N ≤ N + m ⊢ ∏ k in range (N + m + 1), u k = ∏ k in range (N + 1), u k [PROOFSTEP] clear hn [GOAL] case intro ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β u : ℕ → β N : ℕ hu : ∀ (n : ℕ), n ≥ N → u n = 1 m : ℕ ⊢ ∏ k in range (N + m + 1), u k = ∏ k in range (N + 1), u k [PROOFSTEP] induction' m with m hm [GOAL] case intro.zero ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β u : ℕ → β N : ℕ hu : ∀ (n : ℕ), n ≥ N → u n = 1 ⊢ ∏ k in range (N + Nat.zero + 1), u k = ∏ k in range (N + 1), u k [PROOFSTEP] simp [GOAL] case intro.succ ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β u : ℕ → β N : ℕ hu : ∀ (n : ℕ), n ≥ N → u n = 1 m : ℕ hm : ∏ k in range (N + m + 1), u k = ∏ k in range (N + 1), u k ⊢ ∏ k in range (N + Nat.succ m + 1), u k = ∏ k in range (N + 1), u k [PROOFSTEP] erw [prod_range_succ, hm] [GOAL] case intro.succ ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β u : ℕ → β N : ℕ hu : ∀ (n : ℕ), n ≥ N → u n = 1 m : ℕ hm : ∏ k in range (N + m + 1), u k = ∏ k in range (N + 1), u k ⊢ (∏ k in range (N + 1), u k) * u (N + Nat.succ m) = ∏ k in range (N + 1), u k [PROOFSTEP] simp [hu, @zero_le' ℕ] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : ℕ → β n m : ℕ ⊢ ∏ x in range (n + m), f x = (∏ x in range n, f x) * ∏ x in range m, f (n + x) [PROOFSTEP] induction' m with m hm [GOAL] case zero ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : ℕ → β n : ℕ ⊢ ∏ x in range (n + Nat.zero), f x = (∏ x in range n, f x) * ∏ x in range Nat.zero, f (n + x) [PROOFSTEP] simp [GOAL] case succ ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : ℕ → β n m : ℕ hm : ∏ x in range (n + m), f x = (∏ x in range n, f x) * ∏ x in range m, f (n + x) ⊢ ∏ x in range (n + Nat.succ m), f x = (∏ x in range n, f x) * ∏ x in range (Nat.succ m), f (n + x) [PROOFSTEP] erw [Nat.add_succ, prod_range_succ, prod_range_succ, hm, mul_assoc] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : ℕ → β ⊢ ∏ k in range 0, f k = 1 [PROOFSTEP] rw [range_zero, prod_empty] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : ℕ → β ⊢ ∏ k in range 1, f k = f 0 [PROOFSTEP] rw [range_one] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : ℕ → β ⊢ ∏ k in {0}, f k = f 0 [PROOFSTEP] apply @prod_singleton β ℕ 0 f [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α l : List α M : Type u_2 inst✝ : CommMonoid M f : α → M ⊢ prod (List.map f l) = ∏ m in toFinset l, f m ^ count m l [PROOFSTEP] induction' l with a s IH [GOAL] case nil ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α M : Type u_2 inst✝ : CommMonoid M f : α → M ⊢ prod (List.map f []) = ∏ m in toFinset [], f m ^ count m [] [PROOFSTEP] simp only [map_nil, prod_nil, count_nil, pow_zero, prod_const_one] [GOAL] case cons ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α M : Type u_2 inst✝ : CommMonoid M f : α → M a : α s : List α IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s ⊢ prod (List.map f (a :: s)) = ∏ m in toFinset (a :: s), f m ^ count m (a :: s) [PROOFSTEP] simp only [List.map, List.prod_cons, toFinset_cons, IH] [GOAL] case cons ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α M : Type u_2 inst✝ : CommMonoid M f : α → M a : α s : List α IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s ⊢ f a * ∏ m in toFinset s, f m ^ count m s = ∏ x in insert a (toFinset s), f x ^ count x (a :: s) [PROOFSTEP] by_cases has : a ∈ s.toFinset [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α M : Type u_2 inst✝ : CommMonoid M f : α → M a : α s : List α IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s has : a ∈ toFinset s ⊢ f a * ∏ m in toFinset s, f m ^ count m s = ∏ x in insert a (toFinset s), f x ^ count x (a :: s) [PROOFSTEP] rw [insert_eq_of_mem has, ← insert_erase has, prod_insert (not_mem_erase _ _), prod_insert (not_mem_erase _ _), ← mul_assoc, count_cons_self, pow_succ] [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α M : Type u_2 inst✝ : CommMonoid M f : α → M a : α s : List α IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s has : a ∈ toFinset s ⊢ f a * f a ^ count a s * ∏ x in erase (toFinset s) a, f x ^ count x s = f a * f a ^ count a s * ∏ x in erase (toFinset s) a, f x ^ count x (a :: s) [PROOFSTEP] congr 1 [GOAL] case pos.e_a ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α M : Type u_2 inst✝ : CommMonoid M f : α → M a : α s : List α IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s has : a ∈ toFinset s ⊢ ∏ x in erase (toFinset s) a, f x ^ count x s = ∏ x in erase (toFinset s) a, f x ^ count x (a :: s) [PROOFSTEP] refine' prod_congr rfl fun x hx => _ [GOAL] case pos.e_a ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α M : Type u_2 inst✝ : CommMonoid M f : α → M a : α s : List α IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s has : a ∈ toFinset s x : α hx : x ∈ erase (toFinset s) a ⊢ f x ^ count x s = f x ^ count x (a :: s) [PROOFSTEP] rw [count_cons_of_ne (ne_of_mem_erase hx)] [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α M : Type u_2 inst✝ : CommMonoid M f : α → M a : α s : List α IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s has : ¬a ∈ toFinset s ⊢ f a * ∏ m in toFinset s, f m ^ count m s = ∏ x in insert a (toFinset s), f x ^ count x (a :: s) [PROOFSTEP] rw [prod_insert has, count_cons_self, count_eq_zero_of_not_mem (mt mem_toFinset.2 has), pow_one] [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α M : Type u_2 inst✝ : CommMonoid M f : α → M a : α s : List α IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s has : ¬a ∈ toFinset s ⊢ f a * ∏ m in toFinset s, f m ^ count m s = f a * ∏ x in toFinset s, f x ^ count x (a :: s) [PROOFSTEP] congr 1 [GOAL] case neg.e_a ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α M : Type u_2 inst✝ : CommMonoid M f : α → M a : α s : List α IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s has : ¬a ∈ toFinset s ⊢ ∏ m in toFinset s, f m ^ count m s = ∏ x in toFinset s, f x ^ count x (a :: s) [PROOFSTEP] refine' prod_congr rfl fun x hx => _ [GOAL] case neg.e_a ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α M : Type u_2 inst✝ : CommMonoid M f : α → M a : α s : List α IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s has : ¬a ∈ toFinset s x : α hx : x ∈ toFinset s ⊢ f x ^ count x s = f x ^ count x (a :: s) [PROOFSTEP] rw [count_cons_of_ne] [GOAL] case neg.e_a.h ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α M : Type u_2 inst✝ : CommMonoid M f : α → M a : α s : List α IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s has : ¬a ∈ toFinset s x : α hx : x ∈ toFinset s ⊢ x ≠ a [PROOFSTEP] rintro rfl [GOAL] case neg.e_a.h ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α M : Type u_2 inst✝ : CommMonoid M f : α → M s : List α IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s x : α hx : x ∈ toFinset s has : ¬x ∈ toFinset s ⊢ False [PROOFSTEP] exact has hx [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α inst✝ : CommMonoid α s : List α ⊢ prod s = ∏ m in toFinset s, m ^ count m s [PROOFSTEP] simpa using prod_list_map_count s id [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α inst✝ : CommMonoid α m : List α s : Finset α hs : toFinset m ⊆ s ⊢ prod m = ∏ i in s, i ^ count i m [PROOFSTEP] rw [prod_list_count] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α inst✝ : CommMonoid α m : List α s : Finset α hs : toFinset m ⊆ s ⊢ ∏ m_1 in toFinset m, m_1 ^ count m_1 m = ∏ i in s, i ^ count i m [PROOFSTEP] refine' prod_subset hs fun x _ hx => _ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α inst✝ : CommMonoid α m : List α s : Finset α hs : toFinset m ⊆ s x : α x✝ : x ∈ s hx : ¬x ∈ toFinset m ⊢ x ^ count x m = 1 [PROOFSTEP] rw [mem_toFinset] at hx [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α inst✝ : CommMonoid α m : List α s : Finset α hs : toFinset m ⊆ s x : α x✝ : x ∈ s hx : ¬x ∈ m ⊢ x ^ count x m = 1 [PROOFSTEP] rw [count_eq_zero_of_not_mem hx, pow_zero] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p l : List α ⊢ ∑ x in filter p (toFinset l), count x l = countp (fun b => decide (p b)) l [PROOFSTEP] simp [Finset.sum, sum_map_count_dedup_filter_eq_countp p l] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α s : Multiset α M : Type u_2 inst✝ : CommMonoid M f : α → M ⊢ Multiset.prod (Multiset.map f s) = ∏ m in Multiset.toFinset s, f m ^ Multiset.count m s [PROOFSTEP] refine' Quot.induction_on s fun l => _ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α s : Multiset α M : Type u_2 inst✝ : CommMonoid M f : α → M l : List α ⊢ Multiset.prod (Multiset.map f (Quot.mk Setoid.r l)) = ∏ m in Multiset.toFinset (Quot.mk Setoid.r l), f m ^ Multiset.count m (Quot.mk Setoid.r l) [PROOFSTEP] simp [prod_list_map_count l f] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α inst✝ : CommMonoid α s : Multiset α ⊢ Multiset.prod s = ∏ m in Multiset.toFinset s, m ^ Multiset.count m s [PROOFSTEP] convert prod_multiset_map_count s id [GOAL] case h.e'_2.h.e'_3 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α inst✝ : CommMonoid α s : Multiset α ⊢ s = Multiset.map id s [PROOFSTEP] rw [Multiset.map_id] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α inst✝ : CommMonoid α m : Multiset α s : Finset α hs : Multiset.toFinset m ⊆ s ⊢ Multiset.prod m = ∏ i in s, i ^ Multiset.count i m [PROOFSTEP] revert hs [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α inst✝ : CommMonoid α m : Multiset α s : Finset α ⊢ Multiset.toFinset m ⊆ s → Multiset.prod m = ∏ i in s, i ^ Multiset.count i m [PROOFSTEP] refine' Quot.induction_on m fun l => _ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α inst✝ : CommMonoid α m : Multiset α s : Finset α l : List α ⊢ Multiset.toFinset (Quot.mk Setoid.r l) ⊆ s → Multiset.prod (Quot.mk Setoid.r l) = ∏ i in s, i ^ Multiset.count i (Quot.mk Setoid.r l) [PROOFSTEP] simp only [quot_mk_to_coe'', coe_prod, coe_count] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoid β inst✝¹ : DecidableEq α inst✝ : CommMonoid α m : Multiset α s : Finset α l : List α ⊢ Multiset.toFinset ↑l ⊆ s → List.prod l = ∏ x in s, x ^ List.count x l [PROOFSTEP] apply prod_list_count_of_subset l s [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α m : Multiset α f : { x // x ∈ m } → β g : α → β hfg : ∀ (x : { x // x ∈ m }), f x = g ↑x x✝³ x✝² : { x // x ∈ m } x✝¹ : x✝³ ∈ univ x✝ : x✝² ∈ univ h : (fun x x_1 => ↑x) x✝³ x✝¹ = (fun x x_1 => ↑x) x✝² x✝ ⊢ x✝³ = x✝² [PROOFSTEP] ext [GOAL] case a ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α m : Multiset α f : { x // x ∈ m } → β g : α → β hfg : ∀ (x : { x // x ∈ m }), f x = g ↑x x✝³ x✝² : { x // x ∈ m } x✝¹ : x✝³ ∈ univ x✝ : x✝² ∈ univ h : (fun x x_1 => ↑x) x✝³ x✝¹ = (fun x x_1 => ↑x) x✝² x✝ ⊢ ↑x✝³ = ↑x✝² [PROOFSTEP] assumption [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β M : Type u_2 inst✝ : CommMonoid M f : α → M p : M → Prop hom : ∀ (a b : M), p a → p b → p (a * b) nonempty : Finset.Nonempty s base : ∀ (x : α), x ∈ s → p (f x) ⊢ Multiset.map (fun x => f x) s.val ≠ ∅ [PROOFSTEP] simp [nonempty_iff_ne_empty.mp nonempty] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f s : ℕ → β base : s 0 = 1 step : ∀ (n : ℕ), s (n + 1) = s n * f n n : ℕ ⊢ ∏ k in range n, f k = s n [PROOFSTEP] induction' n with k hk [GOAL] case zero ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f s : ℕ → β base : s 0 = 1 step : ∀ (n : ℕ), s (n + 1) = s n * f n ⊢ ∏ k in range Nat.zero, f k = s Nat.zero [PROOFSTEP] rw [Finset.prod_range_zero, base] [GOAL] case succ ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f s : ℕ → β base : s 0 = 1 step : ∀ (n : ℕ), s (n + 1) = s n * f n k : ℕ hk : ∏ k in range k, f k = s k ⊢ ∏ k in range (Nat.succ k), f k = s (Nat.succ k) [PROOFSTEP] simp only [hk, Finset.prod_range_succ, step, mul_comm] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β M : Type u_2 inst✝ : CommGroup M f : ℕ → M n : ℕ ⊢ ∏ i in range n, f (i + 1) / f i = f n / f 0 [PROOFSTEP] apply prod_range_induction [GOAL] case base ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β M : Type u_2 inst✝ : CommGroup M f : ℕ → M n : ℕ ⊢ f 0 / f 0 = 1 [PROOFSTEP] simp [GOAL] case step ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β M : Type u_2 inst✝ : CommGroup M f : ℕ → M n : ℕ ⊢ ∀ (n : ℕ), f (n + 1) / f 0 = f n / f 0 * (f (n + 1) / f n) [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β M : Type u_2 inst✝ : CommGroup M f : ℕ → M n : ℕ ⊢ ∏ i in range n, f i / f (i + 1) = f 0 / f n [PROOFSTEP] apply prod_range_induction [GOAL] case base ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β M : Type u_2 inst✝ : CommGroup M f : ℕ → M n : ℕ ⊢ f 0 / f 0 = 1 [PROOFSTEP] simp [GOAL] case step ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β M : Type u_2 inst✝ : CommGroup M f : ℕ → M n : ℕ ⊢ ∀ (n : ℕ), f 0 / f (n + 1) = f 0 / f n * (f n / f (n + 1)) [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β M : Type u_2 inst✝ : CommGroup M f : ℕ → M n : ℕ ⊢ f n = f 0 * ∏ i in range n, f (i + 1) / f i [PROOFSTEP] rw [prod_range_div, mul_div_cancel'_right] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β M : Type u_2 inst✝ : CommGroup M f : ℕ → M n : ℕ ⊢ f n = ∏ i in range (n + 1), if i = 0 then f 0 else f i / f (i - 1) [PROOFSTEP] conv_lhs => rw [Finset.eq_prod_range_div f] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β M : Type u_2 inst✝ : CommGroup M f : ℕ → M n : ℕ | f n [PROOFSTEP] rw [Finset.eq_prod_range_div f] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β M : Type u_2 inst✝ : CommGroup M f : ℕ → M n : ℕ | f n [PROOFSTEP] rw [Finset.eq_prod_range_div f] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β M : Type u_2 inst✝ : CommGroup M f : ℕ → M n : ℕ | f n [PROOFSTEP] rw [Finset.eq_prod_range_div f] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β M : Type u_2 inst✝ : CommGroup M f : ℕ → M n : ℕ ⊢ f 0 * ∏ i in range n, f (i + 1) / f i = ∏ i in range (n + 1), if i = 0 then f 0 else f i / f (i - 1) [PROOFSTEP] simp [Finset.prod_range_succ', mul_comm] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝⁴ : CommMonoid β inst✝³ : CanonicallyOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : ℕ → α h : Monotone f n : ℕ ⊢ ∑ i in range n, (f (i + 1) - f i) = f n - f 0 [PROOFSTEP] apply sum_range_induction [GOAL] case base ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝⁴ : CommMonoid β inst✝³ : CanonicallyOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : ℕ → α h : Monotone f n : ℕ ⊢ f 0 - f 0 = 0 case step ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝⁴ : CommMonoid β inst✝³ : CanonicallyOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : ℕ → α h : Monotone f n : ℕ ⊢ ∀ (n : ℕ), f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n) [PROOFSTEP] case base => apply tsub_self [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝⁴ : CommMonoid β inst✝³ : CanonicallyOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : ℕ → α h : Monotone f n : ℕ ⊢ f 0 - f 0 = 0 [PROOFSTEP] case base => apply tsub_self [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝⁴ : CommMonoid β inst✝³ : CanonicallyOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : ℕ → α h : Monotone f n : ℕ ⊢ f 0 - f 0 = 0 [PROOFSTEP] apply tsub_self [GOAL] case step ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝⁴ : CommMonoid β inst✝³ : CanonicallyOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : ℕ → α h : Monotone f n : ℕ ⊢ ∀ (n : ℕ), f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n) [PROOFSTEP] case step => intro n have h₁ : f n ≤ f (n + 1) := h (Nat.le_succ _) have h₂ : f 0 ≤ f n := h (Nat.zero_le _) rw [tsub_add_eq_add_tsub h₂, add_tsub_cancel_of_le h₁] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝⁴ : CommMonoid β inst✝³ : CanonicallyOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : ℕ → α h : Monotone f n : ℕ ⊢ ∀ (n : ℕ), f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n) [PROOFSTEP] case step => intro n have h₁ : f n ≤ f (n + 1) := h (Nat.le_succ _) have h₂ : f 0 ≤ f n := h (Nat.zero_le _) rw [tsub_add_eq_add_tsub h₂, add_tsub_cancel_of_le h₁] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝⁴ : CommMonoid β inst✝³ : CanonicallyOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : ℕ → α h : Monotone f n : ℕ ⊢ ∀ (n : ℕ), f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n) [PROOFSTEP] intro n [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝⁴ : CommMonoid β inst✝³ : CanonicallyOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : ℕ → α h : Monotone f n✝ n : ℕ ⊢ f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n) [PROOFSTEP] have h₁ : f n ≤ f (n + 1) := h (Nat.le_succ _) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝⁴ : CommMonoid β inst✝³ : CanonicallyOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : ℕ → α h : Monotone f n✝ n : ℕ h₁ : f n ≤ f (n + 1) ⊢ f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n) [PROOFSTEP] have h₂ : f 0 ≤ f n := h (Nat.zero_le _) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝⁴ : CommMonoid β inst✝³ : CanonicallyOrderedAddMonoid α inst✝² : Sub α inst✝¹ : OrderedSub α inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : ℕ → α h : Monotone f n✝ n : ℕ h₁ : f n ≤ f (n + 1) h₂ : f 0 ≤ f n ⊢ f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n) [PROOFSTEP] rw [tsub_add_eq_add_tsub h₂, add_tsub_cancel_of_le h₁] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β b : β ⊢ ∀ (n : ℕ), b ^ n = ∏ _k in range n, b [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β n : ℕ f : ℕ → β ⊢ ∏ r in range (n + 1), f (n - r) = ∏ k in range (n + 1), f k [PROOFSTEP] induction' n with n ih [GOAL] case zero ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : ℕ → β ⊢ ∏ r in range (Nat.zero + 1), f (Nat.zero - r) = ∏ k in range (Nat.zero + 1), f k [PROOFSTEP] rw [prod_range_one, prod_range_one] [GOAL] case succ ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : ℕ → β n : ℕ ih : ∏ r in range (n + 1), f (n - r) = ∏ k in range (n + 1), f k ⊢ ∏ r in range (Nat.succ n + 1), f (Nat.succ n - r) = ∏ k in range (Nat.succ n + 1), f k [PROOFSTEP] rw [prod_range_succ', prod_range_succ _ (Nat.succ n)] [GOAL] case succ ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β f : ℕ → β n : ℕ ih : ∏ r in range (n + 1), f (n - r) = ∏ k in range (n + 1), f k ⊢ (∏ k in range (n + 1), f (Nat.succ n - (k + 1))) * f (Nat.succ n - 0) = (∏ x in range (Nat.succ n), f x) * f (Nat.succ n) [PROOFSTEP] simp [← ih] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β ⊢ ∀ (g : (a : α) → a ∈ s → α), (∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1) → (∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a) → ∀ (g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s), (∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a) → ∏ x in s, f x = 1 [PROOFSTEP] haveI := Classical.decEq α [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β this : DecidableEq α ⊢ ∀ (g : (a : α) → a ∈ s → α), (∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1) → (∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a) → ∀ (g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s), (∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a) → ∏ x in s, f x = 1 [PROOFSTEP] haveI := Classical.decEq β [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β this✝ : DecidableEq α this : DecidableEq β ⊢ ∀ (g : (a : α) → a ∈ s → α), (∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1) → (∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a) → ∀ (g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s), (∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a) → ∏ x in s, f x = 1 [PROOFSTEP] exact Finset.strongInductionOn s fun s ih g h g_ne g_mem g_inv => s.eq_empty_or_nonempty.elim (fun hs => hs.symm ▸ rfl) fun ⟨x, hx⟩ => have hmem : ∀ y ∈ (s.erase x).erase (g x hx), y ∈ s := fun y hy => mem_of_mem_erase (mem_of_mem_erase hy) have g_inj : ∀ {x hx y hy}, g x hx = g y hy → x = y := fun {x hx y hy} h => by rw [← g_inv x hx, ← g_inv y hy]; simp [h] have ih' : (∏ y in erase (erase s x) (g x hx), f y) = (1 : β) := ih ((s.erase x).erase (g x hx)) ⟨Subset.trans (erase_subset _ _) (erase_subset _ _), fun h => not_mem_erase (g x hx) (s.erase x) (h (g_mem x hx))⟩ (fun y hy => g y (hmem y hy)) (fun y hy => h y (hmem y hy)) (fun y hy => g_ne y (hmem y hy)) (fun y hy => mem_erase.2 ⟨fun h : g y _ = g x hx => by simp [g_inj h] at hy , mem_erase.2 ⟨fun h : g y _ = x => by have : y = g x hx := g_inv y (hmem y hy) ▸ by simp [h] simp [this] at hy , g_mem y (hmem y hy)⟩⟩) fun y hy => g_inv y (hmem y hy) if hx1 : f x = 1 then ih' ▸ Eq.symm (prod_subset hmem fun y hy hy₁ => have : y = x ∨ y = g x hx := by simpa [hy, -not_and, mem_erase, not_and_or, or_comm] using hy₁ this.elim (fun hy => hy.symm ▸ hx1) fun hy => h x hx ▸ hy ▸ hx1.symm ▸ (one_mul _).symm) else by rw [← insert_erase hx, prod_insert (not_mem_erase _ _), ← insert_erase (mem_erase.2 ⟨g_ne x hx hx1, g_mem x hx⟩), prod_insert (not_mem_erase _ _), ih', mul_one, h x hx] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝¹ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s✝ : Finset α f : α → β this✝ : DecidableEq α this : DecidableEq β s : Finset α ih : ∀ (t : Finset α), t ⊂ s → ∀ (g : (a : α) → a ∈ t → α), (∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) → (∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) → ∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t), (∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1 g : (a : α) → a ∈ s → α h✝ : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1 g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a x✝¹ : Finset.Nonempty s x✝ : α hx✝ : x✝ ∈ s hmem : ∀ (y : α), y ∈ erase (erase s x✝) (g x✝ hx✝) → y ∈ s x : α hx : x ∈ s y : α hy : y ∈ s h : g x hx = g y hy ⊢ x = y [PROOFSTEP] rw [← g_inv x hx, ← g_inv y hy] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝¹ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s✝ : Finset α f : α → β this✝ : DecidableEq α this : DecidableEq β s : Finset α ih : ∀ (t : Finset α), t ⊂ s → ∀ (g : (a : α) → a ∈ t → α), (∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) → (∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) → ∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t), (∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1 g : (a : α) → a ∈ s → α h✝ : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1 g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a x✝¹ : Finset.Nonempty s x✝ : α hx✝ : x✝ ∈ s hmem : ∀ (y : α), y ∈ erase (erase s x✝) (g x✝ hx✝) → y ∈ s x : α hx : x ∈ s y : α hy : y ∈ s h : g x hx = g y hy ⊢ g (g x hx) (_ : g x hx ∈ s) = g (g y hy) (_ : g y hy ∈ s) [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝¹ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s✝ : Finset α f : α → β this✝ : DecidableEq α this : DecidableEq β s : Finset α ih : ∀ (t : Finset α), t ⊂ s → ∀ (g : (a : α) → a ∈ t → α), (∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) → (∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) → ∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t), (∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1 g : (a : α) → a ∈ s → α h✝ : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1 g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a x✝ : Finset.Nonempty s x : α hx : x ∈ s hmem : ∀ (y : α), y ∈ erase (erase s x) (g x hx) → y ∈ s g_inj : ∀ {x : α} {hx : x ∈ s} {y : α} {hy : y ∈ s}, g x hx = g y hy → x = y y : α hy : y ∈ erase (erase s x) (g x hx) h : g y (_ : y ∈ s) = g x hx ⊢ False [PROOFSTEP] simp [g_inj h] at hy [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝¹ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s✝ : Finset α f : α → β this✝ : DecidableEq α this : DecidableEq β s : Finset α ih : ∀ (t : Finset α), t ⊂ s → ∀ (g : (a : α) → a ∈ t → α), (∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) → (∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) → ∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t), (∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1 g : (a : α) → a ∈ s → α h✝ : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1 g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a x✝ : Finset.Nonempty s x : α hx : x ∈ s hmem : ∀ (y : α), y ∈ erase (erase s x) (g x hx) → y ∈ s g_inj : ∀ {x : α} {hx : x ∈ s} {y : α} {hy : y ∈ s}, g x hx = g y hy → x = y y : α hy : y ∈ erase (erase s x) (g x hx) h : g y (_ : y ∈ s) = x ⊢ False [PROOFSTEP] have : y = g x hx := g_inv y (hmem y hy) ▸ by simp [h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝¹ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s✝ : Finset α f : α → β this✝ : DecidableEq α this : DecidableEq β s : Finset α ih : ∀ (t : Finset α), t ⊂ s → ∀ (g : (a : α) → a ∈ t → α), (∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) → (∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) → ∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t), (∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1 g : (a : α) → a ∈ s → α h✝ : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1 g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a x✝ : Finset.Nonempty s x : α hx : x ∈ s hmem : ∀ (y : α), y ∈ erase (erase s x) (g x hx) → y ∈ s g_inj : ∀ {x : α} {hx : x ∈ s} {y : α} {hy : y ∈ s}, g x hx = g y hy → x = y y : α hy : y ∈ erase (erase s x) (g x hx) h : g y (_ : y ∈ s) = x ⊢ g (g y (_ : y ∈ s)) (_ : g y (_ : y ∈ s) ∈ s) = g x hx [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝¹ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s✝ : Finset α f : α → β this✝¹ : DecidableEq α this✝ : DecidableEq β s : Finset α ih : ∀ (t : Finset α), t ⊂ s → ∀ (g : (a : α) → a ∈ t → α), (∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) → (∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) → ∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t), (∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1 g : (a : α) → a ∈ s → α h✝ : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1 g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a x✝ : Finset.Nonempty s x : α hx : x ∈ s hmem : ∀ (y : α), y ∈ erase (erase s x) (g x hx) → y ∈ s g_inj : ∀ {x : α} {hx : x ∈ s} {y : α} {hy : y ∈ s}, g x hx = g y hy → x = y y : α hy : y ∈ erase (erase s x) (g x hx) h : g y (_ : y ∈ s) = x this : y = g x hx ⊢ False [PROOFSTEP] simp [this] at hy [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝¹ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s✝ : Finset α f : α → β this✝ : DecidableEq α this : DecidableEq β s : Finset α ih : ∀ (t : Finset α), t ⊂ s → ∀ (g : (a : α) → a ∈ t → α), (∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) → (∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) → ∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t), (∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1 g : (a : α) → a ∈ s → α h : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1 g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a x✝ : Finset.Nonempty s x : α hx : x ∈ s hmem : ∀ (y : α), y ∈ erase (erase s x) (g x hx) → y ∈ s g_inj : ∀ {x : α} {hx : x ∈ s} {y : α} {hy : y ∈ s}, g x hx = g y hy → x = y ih' : ∏ y in erase (erase s x) (g x hx), f y = 1 hx1 : f x = 1 y : α hy : y ∈ s hy₁ : ¬y ∈ erase (erase s x) (g x hx) ⊢ y = x ∨ y = g x hx [PROOFSTEP] simpa [hy, -not_and, mem_erase, not_and_or, or_comm] using hy₁ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝¹ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s✝ : Finset α f : α → β this✝ : DecidableEq α this : DecidableEq β s : Finset α ih : ∀ (t : Finset α), t ⊂ s → ∀ (g : (a : α) → a ∈ t → α), (∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) → (∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) → ∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t), (∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1 g : (a : α) → a ∈ s → α h : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1 g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a x✝ : Finset.Nonempty s x : α hx : x ∈ s hmem : ∀ (y : α), y ∈ erase (erase s x) (g x hx) → y ∈ s g_inj : ∀ {x : α} {hx : x ∈ s} {y : α} {hy : y ∈ s}, g x hx = g y hy → x = y ih' : ∏ y in erase (erase s x) (g x hx), f y = 1 hx1 : ¬f x = 1 ⊢ ∏ x in s, f x = 1 [PROOFSTEP] rw [← insert_erase hx, prod_insert (not_mem_erase _ _), ← insert_erase (mem_erase.2 ⟨g_ne x hx hx1, g_mem x hx⟩), prod_insert (not_mem_erase _ _), ih', mul_one, h x hx] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq γ f : γ → β g : α → γ ⊢ ∀ (a : α) (ha : a ∈ s), (fun a _ha => { fst := g a, snd := a }) a ha ∈ Finset.sigma (image g s) fun b => filter (fun a => g a = b) s [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq γ f : γ → β g : α → γ ⊢ ∀ (a : α), a ∈ s → (∃ a_1, a_1 ∈ s ∧ g a_1 = g a) ∧ a ∈ s [PROOFSTEP] tauto [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq γ f : γ → β g : α → γ ⊢ ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ s) (ha₂ : a₂ ∈ s), (fun a _ha => { fst := g a, snd := a }) a₁ ha₁ = (fun a _ha => { fst := g a, snd := a }) a₂ ha₂ → a₁ = a₂ [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq γ f : γ → β g : α → γ ⊢ ∀ (b : (_ : γ) × α), (b ∈ Finset.sigma (image g s) fun b => filter (fun a => g a = b) s) → ∃ a ha, b = (fun a _ha => { fst := g a, snd := a }) a ha [PROOFSTEP] rintro ⟨b_fst, b_snd⟩ H [GOAL] case mk ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq γ f : γ → β g : α → γ b_fst : γ b_snd : α H : { fst := b_fst, snd := b_snd } ∈ Finset.sigma (image g s) fun b => filter (fun a => g a = b) s ⊢ ∃ a ha, { fst := b_fst, snd := b_snd } = (fun a _ha => { fst := g a, snd := a }) a ha [PROOFSTEP] simp only [mem_image, exists_prop, mem_filter, mem_sigma, decide_eq_true_eq] at H [GOAL] case mk ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq γ f : γ → β g : α → γ b_fst : γ b_snd : α H : (∃ a, a ∈ s ∧ g a = b_fst) ∧ b_snd ∈ s ∧ g b_snd = b_fst ⊢ ∃ a ha, { fst := b_fst, snd := b_snd } = (fun a _ha => { fst := g a, snd := a }) a ha [PROOFSTEP] tauto [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq γ f : γ → β g : α → γ b : γ _hb : b ∈ image g s ⊢ ∀ (x : α), x ∈ filter (fun a => g a = b) s → f (g x) = f b [PROOFSTEP] simp (config := { contextual := true }) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s t : Finset α f g : α → β ⊢ ∏ x in s, piecewise t f g x = (∏ x in s ∩ t, f x) * ∏ x in s \ t, g x [PROOFSTEP] erw [prod_ite, filter_mem_eq_inter, ← sdiff_eq_filter] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s t : Finset α f : α → β ⊢ (∏ x in s ∩ t, f x) * ∏ x in s \ t, f x = ∏ x in s, f x [PROOFSTEP] convert (s.prod_piecewise t f f).symm [GOAL] case h.e'_3.a.h.e ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s t : Finset α f : α → β x✝ : α a✝ : x✝ ∈ s ⊢ f = piecewise t f f [PROOFSTEP] simp [Finset.piecewise] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α i : α h : i ∈ s f : α → β ⊢ ∏ x in s, f x = f i * ∏ x in s \ {i}, f x [PROOFSTEP] convert (s.prod_inter_mul_prod_diff { i } f).symm [GOAL] case h.e'_3.h.e'_5 ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α i : α h : i ∈ s f : α → β ⊢ f i = ∏ x in s ∩ {i}, f x [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α i : α h : i ∈ s f : α → β ⊢ ∏ x in s, f x = (∏ x in s \ {i}, f x) * f i [PROOFSTEP] rw [prod_eq_mul_prod_diff_singleton h, mul_comm] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β f : α → β a : α s : Finset α ha : a ∈ s ⊢ f a ∣ ∏ i in s, f i [PROOFSTEP] classical rw [Finset.prod_eq_mul_prod_diff_singleton ha] exact dvd_mul_right _ _ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β f : α → β a : α s : Finset α ha : a ∈ s ⊢ f a ∣ ∏ i in s, f i [PROOFSTEP] rw [Finset.prod_eq_mul_prod_diff_singleton ha] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β f : α → β a : α s : Finset α ha : a ∈ s ⊢ f a ∣ f a * ∏ x in s \ {a}, f x [PROOFSTEP] exact dvd_mul_right _ _ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β R : Setoid α inst✝ : DecidableRel Setoid.r ⊢ ∏ x in s, f x = ∏ xbar in image Quotient.mk'' s, ∏ y in filter (fun x => Quotient.mk R x = xbar) s, f y [PROOFSTEP] refine' (Finset.prod_image' f fun x _hx => _).symm [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β R : Setoid α inst✝ : DecidableRel Setoid.r x : α _hx : x ∈ s ⊢ ∏ y in filter (fun x_1 => Quotient.mk R x_1 = Quotient.mk'' x) s, f y = ∏ x in filter (fun c' => Quotient.mk'' c' = Quotient.mk'' x) s, f x [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β R : Setoid α inst✝ : DecidableRel Setoid.r h : ∀ (x : α), x ∈ s → ∏ a in filter (fun y => y ≈ x) s, f a = 1 ⊢ ∏ x in s, f x = 1 [PROOFSTEP] rw [prod_partition R, ← Finset.prod_eq_one] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β R : Setoid α inst✝ : DecidableRel Setoid.r h : ∀ (x : α), x ∈ s → ∏ a in filter (fun y => y ≈ x) s, f a = 1 ⊢ ∀ (x : Quotient R), x ∈ image Quotient.mk'' s → ∏ y in filter (fun x_1 => Quotient.mk R x_1 = x) s, f y = 1 [PROOFSTEP] intro xbar xbar_in_s [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β R : Setoid α inst✝ : DecidableRel Setoid.r h : ∀ (x : α), x ∈ s → ∏ a in filter (fun y => y ≈ x) s, f a = 1 xbar : Quotient R xbar_in_s : xbar ∈ image Quotient.mk'' s ⊢ ∏ y in filter (fun x => Quotient.mk R x = xbar) s, f y = 1 [PROOFSTEP] obtain ⟨x, x_in_s, rfl⟩ := mem_image.mp xbar_in_s [GOAL] case intro.intro ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β R : Setoid α inst✝ : DecidableRel Setoid.r h : ∀ (x : α), x ∈ s → ∏ a in filter (fun y => y ≈ x) s, f a = 1 x : α x_in_s : x ∈ s xbar_in_s : Quotient.mk'' x ∈ image Quotient.mk'' s ⊢ ∏ y in filter (fun x_1 => Quotient.mk R x_1 = Quotient.mk'' x) s, f y = 1 [PROOFSTEP] simp only [← Quotient.eq] at h [GOAL] case intro.intro ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoid β R : Setoid α inst✝ : DecidableRel Setoid.r x : α x_in_s : x ∈ s xbar_in_s : Quotient.mk'' x ∈ image Quotient.mk'' s h : ∀ (x : α), x ∈ s → ∏ x in filter (fun y => Quotient.mk R y = Quotient.mk R x) s, f x = 1 ⊢ ∏ y in filter (fun x_1 => Quotient.mk R x_1 = Quotient.mk'' x) s, f y = 1 [PROOFSTEP] exact h x x_in_s [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α i : α h : ¬i ∈ s f : α → β b : β ⊢ ∏ x in s, Function.update f i b x = ∏ x in s, f x [PROOFSTEP] apply prod_congr rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α i : α h : ¬i ∈ s f : α → β b : β ⊢ ∀ (x : α), x ∈ s → Function.update f i b x = f x [PROOFSTEP] intros j hj [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α i : α h : ¬i ∈ s f : α → β b : β j : α hj : j ∈ s ⊢ Function.update f i b j = f j [PROOFSTEP] have : j ≠ i := by rintro rfl exact h hj [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α i : α h : ¬i ∈ s f : α → β b : β j : α hj : j ∈ s ⊢ j ≠ i [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α f : α → β b : β j : α hj : j ∈ s h : ¬j ∈ s ⊢ False [PROOFSTEP] exact h hj [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α i : α h : ¬i ∈ s f : α → β b : β j : α hj : j ∈ s this : j ≠ i ⊢ Function.update f i b j = f j [PROOFSTEP] simp [this] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α i : α h : i ∈ s f : α → β b : β ⊢ ∏ x in s, Function.update f i b x = b * ∏ x in s \ {i}, f x [PROOFSTEP] rw [update_eq_piecewise, prod_piecewise] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α i : α h : i ∈ s f : α → β b : β ⊢ (∏ x in s ∩ {i}, b) * ∏ x in s \ {i}, f x = b * ∏ x in s \ {i}, f x [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α hc : card s ≤ 1 f : α → β b : β h : ∏ x in s, f x = b ⊢ ∀ (x : α), x ∈ s → f x = b [PROOFSTEP] intro x hx [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α hc : card s ≤ 1 f : α → β b : β h : ∏ x in s, f x = b x : α hx : x ∈ s ⊢ f x = b [PROOFSTEP] by_cases hc0 : s.card = 0 [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α hc : card s ≤ 1 f : α → β b : β h : ∏ x in s, f x = b x : α hx : x ∈ s hc0 : card s = 0 ⊢ f x = b [PROOFSTEP] exact False.elim (card_ne_zero_of_mem hx hc0) [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α hc : card s ≤ 1 f : α → β b : β h : ∏ x in s, f x = b x : α hx : x ∈ s hc0 : ¬card s = 0 ⊢ f x = b [PROOFSTEP] have h1 : s.card = 1 := le_antisymm hc (Nat.one_le_of_lt (Nat.pos_of_ne_zero hc0)) [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α hc : card s ≤ 1 f : α → β b : β h : ∏ x in s, f x = b x : α hx : x ∈ s hc0 : ¬card s = 0 h1 : card s = 1 ⊢ f x = b [PROOFSTEP] rw [card_eq_one] at h1 [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α hc : card s ≤ 1 f : α → β b : β h : ∏ x in s, f x = b x : α hx : x ∈ s hc0 : ¬card s = 0 h1 : ∃ a, s = {a} ⊢ f x = b [PROOFSTEP] cases' h1 with x2 hx2 [GOAL] case neg.intro ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α hc : card s ≤ 1 f : α → β b : β h : ∏ x in s, f x = b x : α hx : x ∈ s hc0 : ¬card s = 0 x2 : α hx2 : s = {x2} ⊢ f x = b [PROOFSTEP] rw [hx2, mem_singleton] at hx [GOAL] case neg.intro ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α hc : card s ≤ 1 f : α → β b : β h : ∏ x in s, f x = b x : α hc0 : ¬card s = 0 x2 : α hx : x = x2 hx2 : s = {x2} ⊢ f x = b [PROOFSTEP] simp_rw [hx2] at h [GOAL] case neg.intro ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α hc : card s ≤ 1 f : α → β b : β x : α hc0 : ¬card s = 0 x2 : α hx : x = x2 hx2 : s = {x2} h : ∏ x in {x2}, f x = b ⊢ f x = b [PROOFSTEP] rw [hx] [GOAL] case neg.intro ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α hc : card s ≤ 1 f : α → β b : β x : α hc0 : ¬card s = 0 x2 : α hx : x = x2 hx2 : s = {x2} h : ∏ x in {x2}, f x = b ⊢ f x2 = b [PROOFSTEP] rw [prod_singleton] at h [GOAL] case neg.intro ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α hc : card s ≤ 1 f : α → β b : β x : α hc0 : ¬card s = 0 x2 : α hx : x = x2 hx2 : s = {x2} h : f x2 = b ⊢ f x2 = b [PROOFSTEP] exact h [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α f : α → β a : α h : a ∈ s ⊢ f a * ∏ x in erase s a, f x = ∏ x in s, f x [PROOFSTEP] rw [← prod_insert (not_mem_erase a s), insert_erase h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α f : α → β a : α h : a ∈ s ⊢ (∏ x in erase s a, f x) * f a = ∏ x in s, f x [PROOFSTEP] rw [mul_comm, mul_prod_erase s f h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α f : α → β a : α h : f a = 1 ⊢ ∏ x in erase s a, f x = ∏ x in s, f x [PROOFSTEP] rw [← sdiff_singleton_eq_erase] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α f : α → β a : α h : f a = 1 ⊢ ∏ x in s \ {a}, f x = ∏ x in s, f x [PROOFSTEP] refine' prod_subset (sdiff_subset _ _) fun x hx hnx => _ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α f : α → β a : α h : f a = 1 x : α hx : x ∈ s hnx : ¬x ∈ s \ {a} ⊢ f x = 1 [PROOFSTEP] rw [sdiff_singleton_eq_erase] at hnx [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α f : α → β a : α h : f a = 1 x : α hx : x ∈ s hnx : ¬x ∈ erase s a ⊢ f x = 1 [PROOFSTEP] rwa [eq_of_mem_of_not_mem_erase hx hnx] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → Prop inst✝ : DecidablePred f hf : Set.PairwiseDisjoint (↑s) f a : β ⊢ (∏ i in s, if f i then a else 1) = if ∃ i, i ∈ s ∧ f i then a else 1 [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → Prop inst✝ : DecidablePred f hf : Set.PairwiseDisjoint (↑s) f a : β h : ∃ i, i ∈ s ∧ f i ⊢ (∏ i in s, if f i then a else 1) = a [PROOFSTEP] obtain ⟨i, hi, hfi⟩ := h [GOAL] case pos.intro.intro ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → Prop inst✝ : DecidablePred f hf : Set.PairwiseDisjoint (↑s) f a : β i : α hi : i ∈ s hfi : f i ⊢ (∏ i in s, if f i then a else 1) = a [PROOFSTEP] rw [prod_eq_single_of_mem _ hi, if_pos hfi] [GOAL] case pos.intro.intro ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → Prop inst✝ : DecidablePred f hf : Set.PairwiseDisjoint (↑s) f a : β i : α hi : i ∈ s hfi : f i ⊢ ∀ (b : α), b ∈ s → b ≠ i → (if f b then a else 1) = 1 [PROOFSTEP] exact fun j hj h => if_neg fun hfj => (hf hj hi h).le_bot ⟨hfj, hfi⟩ [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → Prop inst✝ : DecidablePred f hf : Set.PairwiseDisjoint (↑s) f a : β h : ¬∃ i, i ∈ s ∧ f i ⊢ (∏ i in s, if f i then a else 1) = 1 [PROOFSTEP] push_neg at h [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → Prop inst✝ : DecidablePred f hf : Set.PairwiseDisjoint (↑s) f a : β h : ∀ (i : α), i ∈ s → ¬f i ⊢ (∏ i in s, if f i then a else 1) = 1 [PROOFSTEP] rw [prod_eq_one] [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β f : α → Prop inst✝ : DecidablePred f hf : Set.PairwiseDisjoint (↑s) f a : β h : ∀ (i : α), i ∈ s → ¬f i ⊢ ∀ (x : α), x ∈ s → (if f x then a else 1) = 1 [PROOFSTEP] exact fun i hi => if_neg (h i hi) [GOAL] ι : Type u_1 β : Type u α : Type v γ✝ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝³ : CommMonoid β γ : Type u_2 inst✝² : DecidableEq α inst✝¹ : OrderedCommMonoid γ inst✝ : CovariantClass γ γ (fun x x_1 => x * x_1) fun x x_1 => x < x_1 s : Finset α d : α hd : d ∈ s f : α → γ hdf : 1 < f d ⊢ ∏ m in erase s d, f m < ∏ m in s, f m [PROOFSTEP] conv in ∏ m in s, f m => rw [← Finset.insert_erase hd] [GOAL] ι : Type u_1 β : Type u α : Type v γ✝ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝³ : CommMonoid β γ : Type u_2 inst✝² : DecidableEq α inst✝¹ : OrderedCommMonoid γ inst✝ : CovariantClass γ γ (fun x x_1 => x * x_1) fun x x_1 => x < x_1 s : Finset α d : α hd : d ∈ s f : α → γ hdf : 1 < f d | ∏ m in s, f m [PROOFSTEP] rw [← Finset.insert_erase hd] [GOAL] ι : Type u_1 β : Type u α : Type v γ✝ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝³ : CommMonoid β γ : Type u_2 inst✝² : DecidableEq α inst✝¹ : OrderedCommMonoid γ inst✝ : CovariantClass γ γ (fun x x_1 => x * x_1) fun x x_1 => x < x_1 s : Finset α d : α hd : d ∈ s f : α → γ hdf : 1 < f d | ∏ m in s, f m [PROOFSTEP] rw [← Finset.insert_erase hd] [GOAL] ι : Type u_1 β : Type u α : Type v γ✝ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝³ : CommMonoid β γ : Type u_2 inst✝² : DecidableEq α inst✝¹ : OrderedCommMonoid γ inst✝ : CovariantClass γ γ (fun x x_1 => x * x_1) fun x x_1 => x < x_1 s : Finset α d : α hd : d ∈ s f : α → γ hdf : 1 < f d | ∏ m in s, f m [PROOFSTEP] rw [← Finset.insert_erase hd] [GOAL] ι : Type u_1 β : Type u α : Type v γ✝ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝³ : CommMonoid β γ : Type u_2 inst✝² : DecidableEq α inst✝¹ : OrderedCommMonoid γ inst✝ : CovariantClass γ γ (fun x x_1 => x * x_1) fun x x_1 => x < x_1 s : Finset α d : α hd : d ∈ s f : α → γ hdf : 1 < f d ⊢ ∏ m in erase s d, f m < ∏ m in insert d (erase s d), f m [PROOFSTEP] rw [Finset.prod_insert (Finset.not_mem_erase d s)] [GOAL] ι : Type u_1 β : Type u α : Type v γ✝ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝³ : CommMonoid β γ : Type u_2 inst✝² : DecidableEq α inst✝¹ : OrderedCommMonoid γ inst✝ : CovariantClass γ γ (fun x x_1 => x * x_1) fun x x_1 => x < x_1 s : Finset α d : α hd : d ∈ s f : α → γ hdf : 1 < f d ⊢ ∏ m in erase s d, f m < f d * ∏ x in erase s d, f x [PROOFSTEP] exact lt_mul_of_one_lt_left' _ hdf [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α hp : ∏ x in s, f x = 1 h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1 ⊢ ∀ (x : α), x ∈ s → f x = 1 [PROOFSTEP] intro x hx [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α hp : ∏ x in s, f x = 1 h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1 x : α hx : x ∈ s ⊢ f x = 1 [PROOFSTEP] classical by_cases h : x = a · rw [h] rw [h] at hx rw [← prod_subset (singleton_subset_iff.2 hx) fun t ht ha => h1 t ht (not_mem_singleton.1 ha), prod_singleton] at hp exact hp · exact h1 x hx h [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α hp : ∏ x in s, f x = 1 h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1 x : α hx : x ∈ s ⊢ f x = 1 [PROOFSTEP] by_cases h : x = a [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α hp : ∏ x in s, f x = 1 h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1 x : α hx : x ∈ s h : x = a ⊢ f x = 1 [PROOFSTEP] rw [h] [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α hp : ∏ x in s, f x = 1 h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1 x : α hx : x ∈ s h : x = a ⊢ f a = 1 [PROOFSTEP] rw [h] at hx [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α hp : ∏ x in s, f x = 1 h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1 x : α hx : a ∈ s h : x = a ⊢ f a = 1 [PROOFSTEP] rw [← prod_subset (singleton_subset_iff.2 hx) fun t ht ha => h1 t ht (not_mem_singleton.1 ha), prod_singleton] at hp [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α hp : f a = 1 h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1 x : α hx : a ∈ s h : x = a ⊢ f a = 1 [PROOFSTEP] exact hp [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : CommMonoid β s : Finset α f : α → β a : α hp : ∏ x in s, f x = 1 h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1 x : α hx : x ∈ s h : ¬x = a ⊢ f x = 1 [PROOFSTEP] exact h1 x hx h [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α f : α → β a : α ⊢ (∏ x in s, f x ^ if a = x then 1 else 0) = if a ∈ s then f a else 1 [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β S : Finset α g1 g2 : α → β h : ∀ (a : α), a ∈ S → g1 a ∣ g2 a ⊢ Finset.prod S g1 ∣ Finset.prod S g2 [PROOFSTEP] classical induction' S using Finset.induction_on' with a T _haS _hTS haT IH · simp rw [Finset.prod_insert haT, Finset.prod_insert haT] exact mul_dvd_mul (h a $ T.mem_insert_self a) (IH fun b hb ↦ h b $ Finset.mem_insert_of_mem hb) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β S : Finset α g1 g2 : α → β h : ∀ (a : α), a ∈ S → g1 a ∣ g2 a ⊢ Finset.prod S g1 ∣ Finset.prod S g2 [PROOFSTEP] induction' S using Finset.induction_on' with a T _haS _hTS haT IH [GOAL] case h₁ ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid β S : Finset α g1 g2 : α → β h✝ : ∀ (a : α), a ∈ S → g1 a ∣ g2 a h : ∀ (a : α), a ∈ ∅ → g1 a ∣ g2 a ⊢ Finset.prod ∅ g1 ∣ Finset.prod ∅ g2 [PROOFSTEP] simp [GOAL] case h₂ ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f g : α → β inst✝ : CommMonoid β S : Finset α g1 g2 : α → β h✝ : ∀ (a : α), a ∈ S → g1 a ∣ g2 a a : α T : Finset α _haS : a ∈ S _hTS : T ⊆ S haT : ¬a ∈ T IH : (∀ (a : α), a ∈ T → g1 a ∣ g2 a) → Finset.prod T g1 ∣ Finset.prod T g2 h : ∀ (a_1 : α), a_1 ∈ insert a T → g1 a_1 ∣ g2 a_1 ⊢ Finset.prod (insert a T) g1 ∣ Finset.prod (insert a T) g2 [PROOFSTEP] rw [Finset.prod_insert haT, Finset.prod_insert haT] [GOAL] case h₂ ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f g : α → β inst✝ : CommMonoid β S : Finset α g1 g2 : α → β h✝ : ∀ (a : α), a ∈ S → g1 a ∣ g2 a a : α T : Finset α _haS : a ∈ S _hTS : T ⊆ S haT : ¬a ∈ T IH : (∀ (a : α), a ∈ T → g1 a ∣ g2 a) → Finset.prod T g1 ∣ Finset.prod T g2 h : ∀ (a_1 : α), a_1 ∈ insert a T → g1 a_1 ∣ g2 a_1 ⊢ g1 a * ∏ x in T, g1 x ∣ g2 a * ∏ x in T, g2 x [PROOFSTEP] exact mul_dvd_mul (h a $ T.mem_insert_self a) (IH fun b hb ↦ h b $ Finset.mem_insert_of_mem hb) [GOAL] ι✝ : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝¹ : CommMonoid β ι : Type u_2 M : Type u_3 inst✝ : CommMonoid M s t : Finset ι f : ι → M h : s ⊆ t ⊢ s.val ≤ t.val [PROOFSTEP] simpa [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommSemiring β s : Finset α i : α f g h : α → β hi : i ∈ s h1 : g i + h i = f i h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j ⊢ ∏ i in s, g i + ∏ i in s, h i = ∏ i in s, f i [PROOFSTEP] classical simp_rw [prod_eq_mul_prod_diff_singleton hi, ← h1, right_distrib] congr 2 <;> apply prod_congr rfl <;> simpa [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommSemiring β s : Finset α i : α f g h : α → β hi : i ∈ s h1 : g i + h i = f i h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j ⊢ ∏ i in s, g i + ∏ i in s, h i = ∏ i in s, f i [PROOFSTEP] simp_rw [prod_eq_mul_prod_diff_singleton hi, ← h1, right_distrib] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommSemiring β s : Finset α i : α f g h : α → β hi : i ∈ s h1 : g i + h i = f i h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j ⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i = g i * ∏ i in s \ {i}, f i + h i * ∏ i in s \ {i}, f i [PROOFSTEP] congr 2 [GOAL] case e_a.e_a ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommSemiring β s : Finset α i : α f g h : α → β hi : i ∈ s h1 : g i + h i = f i h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j ⊢ ∏ i in s \ {i}, g i = ∏ i in s \ {i}, f i [PROOFSTEP] apply prod_congr rfl [GOAL] case e_a.e_a ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommSemiring β s : Finset α i : α f g h : α → β hi : i ∈ s h1 : g i + h i = f i h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j ⊢ ∏ i in s \ {i}, h i = ∏ i in s \ {i}, f i [PROOFSTEP] apply prod_congr rfl [GOAL] case e_a.e_a ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommSemiring β s : Finset α i : α f g h : α → β hi : i ∈ s h1 : g i + h i = f i h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j ⊢ ∀ (x : α), x ∈ s \ {i} → g x = f x [PROOFSTEP] simpa [GOAL] case e_a.e_a ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommSemiring β s : Finset α i : α f g h : α → β hi : i ∈ s h1 : g i + h i = f i h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j ⊢ ∀ (x : α), x ∈ s \ {i} → h x = f x [PROOFSTEP] simpa [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β s : Finset α ⊢ card s = ∑ x in s, 1 [PROOFSTEP] rw [sum_const, smul_eq_mul, mul_one] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β m : ℕ f : α → ℕ h₁ : ∀ (x : α), x ∈ s → f x = m ⊢ ∑ x in s, f x = card s * m [PROOFSTEP] rw [← Nat.nsmul_eq_mul, ← sum_const] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β m : ℕ f : α → ℕ h₁ : ∀ (x : α), x ∈ s → f x = m ⊢ ∑ x in s, f x = ∑ _x in s, m [PROOFSTEP] apply sum_congr rfl h₁ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β s : Finset α p : α → Prop inst✝ : NonAssocSemiring β hp : DecidablePred p ⊢ (∑ x in s, if p x then 1 else 0) = ↑(card (filter p s)) [PROOFSTEP] simp only [add_zero, mul_one, Finset.sum_const, nsmul_eq_mul, eq_self_iff_true, Finset.sum_const_zero, Finset.sum_ite, mul_zero] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : NonUnitalNonAssocSemiring β s : Finset α f : α → β b✝ : β h : ∀ (i : α), i ∈ s → Commute b✝ (f i) b : β hb : b ∈ Multiset.map (fun i => f i) s.val ⊢ Commute b✝ b [PROOFSTEP] obtain ⟨i, hi, rfl⟩ := Multiset.mem_map.mp hb [GOAL] case intro.intro ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : NonUnitalNonAssocSemiring β s : Finset α f : α → β b : β h : ∀ (i : α), i ∈ s → Commute b (f i) i : α hi : i ∈ s.val hb : f i ∈ Multiset.map (fun i => f i) s.val ⊢ Commute b (f i) [PROOFSTEP] exact h _ hi [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommGroup β inst✝ : DecidableEq α h : s₁ ⊆ s₂ ⊢ ∏ x in s₂ \ s₁, f x = (∏ x in s₂, f x) / ∏ x in s₁, f x [PROOFSTEP] rw [eq_div_iff_mul_eq', prod_sdiff h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommGroup β inst✝ : DecidableEq α ⊢ (∏ x in s₂ \ s₁, f x) / ∏ x in s₁ \ s₂, f x = (∏ x in s₂, f x) / ∏ x in s₁, f x [PROOFSTEP] simp [← Finset.prod_sdiff (@inf_le_left _ _ s₁ s₂), ← Finset.prod_sdiff (@inf_le_right _ _ s₁ s₂)] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f g : α → β inst✝¹ : CommGroup β inst✝ : DecidableEq α a : α h : a ∈ s ⊢ ∏ x in erase s a, f x = (∏ x in s, f x) / f a [PROOFSTEP] rw [eq_div_iff_mul_eq', prod_erase_mul _ _ h] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq β s : Finset α t : α → Finset β h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → x ≠ y → Disjoint (t x) (t y) ⊢ ∑ a in s, ∑ _i in t a, 1 = ∑ u in s, card (t u) [PROOFSTEP] simp_rw [card_eq_sum_ones] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq β s : Finset α t : α → Finset β this : DecidableEq α ⊢ card (Finset.biUnion ∅ t) ≤ ∑ a in ∅, card (t a) [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝¹ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝ : DecidableEq β s✝ : Finset α t : α → Finset β this : DecidableEq α a : α s : Finset α has : ¬a ∈ s ih : card (Finset.biUnion s t) ≤ ∑ a in s, card (t a) ⊢ card (Finset.biUnion (insert a s) t) ≤ card (t a) + card (Finset.biUnion s t) [PROOFSTEP] {rw [biUnion_insert]; exact Finset.card_union_le _ _ } [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝¹ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝ : DecidableEq β s✝ : Finset α t : α → Finset β this : DecidableEq α a : α s : Finset α has : ¬a ∈ s ih : card (Finset.biUnion s t) ≤ ∑ a in s, card (t a) ⊢ card (Finset.biUnion (insert a s) t) ≤ card (t a) + card (Finset.biUnion s t) [PROOFSTEP] rw [biUnion_insert] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝¹ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝ : DecidableEq β s✝ : Finset α t : α → Finset β this : DecidableEq α a : α s : Finset α has : ¬a ∈ s ih : card (Finset.biUnion s t) ≤ ∑ a in s, card (t a) ⊢ card (t a ∪ Finset.biUnion s t) ≤ card (t a) + card (Finset.biUnion s t) [PROOFSTEP] exact Finset.card_union_le _ _ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝¹ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝ : DecidableEq β s✝ : Finset α t : α → Finset β this : DecidableEq α a : α s : Finset α has : ¬a ∈ s ih : card (Finset.biUnion s t) ≤ ∑ a in s, card (t a) ⊢ card (t a) + card (Finset.biUnion s t) ≤ ∑ a in insert a s, card (t a) [PROOFSTEP] rw [sum_insert has] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝¹ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝ : DecidableEq β s✝ : Finset α t : α → Finset β this : DecidableEq α a : α s : Finset α has : ¬a ∈ s ih : card (Finset.biUnion s t) ≤ ∑ a in s, card (t a) ⊢ card (t a) + card (Finset.biUnion s t) ≤ card (t a) + ∑ x in s, card (t x) [PROOFSTEP] exact add_le_add_left ih _ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : DecidableEq β f : α → β s : Finset α t : Finset β H : ∀ (x : α), x ∈ s → f x ∈ t ⊢ card s = ∑ a in t, card (filter (fun x => f x = a) s) [PROOFSTEP] simp only [card_eq_sum_ones, sum_fiberwise_of_maps_to H] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β f : α → Multiset β s : Finset α b : β ⊢ b ∈ ∑ x in s, f x ↔ ∃ a, a ∈ s ∧ b ∈ f a [PROOFSTEP] classical refine' s.induction_on (by simp) _ · intro a t hi ih simp [sum_insert hi, ih, or_and_right, exists_or] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β f : α → Multiset β s : Finset α b : β ⊢ b ∈ ∑ x in s, f x ↔ ∃ a, a ∈ s ∧ b ∈ f a [PROOFSTEP] refine' s.induction_on (by simp) _ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β f : α → Multiset β s : Finset α b : β ⊢ b ∈ ∑ x in ∅, f x ↔ ∃ a, a ∈ ∅ ∧ b ∈ f a [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β f : α → Multiset β s : Finset α b : β ⊢ ∀ ⦃a : α⦄ {s : Finset α}, ¬a ∈ s → (b ∈ ∑ x in s, f x ↔ ∃ a, a ∈ s ∧ b ∈ f a) → (b ∈ ∑ x in insert a s, f x ↔ ∃ a_3, a_3 ∈ insert a s ∧ b ∈ f a_3) [PROOFSTEP] intro a t hi ih [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β f : α → Multiset β s : Finset α b : β a : α t : Finset α hi : ¬a ∈ t ih : b ∈ ∑ x in t, f x ↔ ∃ a, a ∈ t ∧ b ∈ f a ⊢ b ∈ ∑ x in insert a t, f x ↔ ∃ a_1, a_1 ∈ insert a t ∧ b ∈ f a_1 [PROOFSTEP] simp [sum_insert hi, ih, or_and_right, exists_or] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoidWithZero β ha : a ∈ s h : f a = 0 ⊢ ∏ x in s, f x = 0 [PROOFSTEP] haveI := Classical.decEq α [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoidWithZero β ha : a ∈ s h : f a = 0 this : DecidableEq α ⊢ ∏ x in s, f x = 0 [PROOFSTEP] rw [← prod_erase_mul _ _ ha, h, mul_zero] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoidWithZero β s : Finset α p : α → Prop inst✝ : DecidablePred p ⊢ (∏ i in s, if p i then 1 else 0) = if ∀ (i : α), i ∈ s → p i then 1 else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoidWithZero β s : Finset α p : α → Prop inst✝ : DecidablePred p h : ∀ (i : α), i ∈ s → p i ⊢ (∏ i in s, if p i then 1 else 0) = 1 [PROOFSTEP] apply prod_eq_one [GOAL] case pos.h ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoidWithZero β s : Finset α p : α → Prop inst✝ : DecidablePred p h : ∀ (i : α), i ∈ s → p i ⊢ ∀ (x : α), x ∈ s → (if p x then 1 else 0) = 1 [PROOFSTEP] intro i hi [GOAL] case pos.h ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoidWithZero β s : Finset α p : α → Prop inst✝ : DecidablePred p h : ∀ (i : α), i ∈ s → p i i : α hi : i ∈ s ⊢ (if p i then 1 else 0) = 1 [PROOFSTEP] rw [if_pos (h i hi)] [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoidWithZero β s : Finset α p : α → Prop inst✝ : DecidablePred p h : ¬∀ (i : α), i ∈ s → p i ⊢ (∏ i in s, if p i then 1 else 0) = 0 [PROOFSTEP] push_neg at h [GOAL] case neg ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoidWithZero β s : Finset α p : α → Prop inst✝ : DecidablePred p h : ∃ i, i ∈ s ∧ ¬p i ⊢ (∏ i in s, if p i then 1 else 0) = 0 [PROOFSTEP] rcases h with ⟨i, hi, hq⟩ [GOAL] case neg.intro.intro ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoidWithZero β s : Finset α p : α → Prop inst✝ : DecidablePred p i : α hi : i ∈ s hq : ¬p i ⊢ (∏ i in s, if p i then 1 else 0) = 0 [PROOFSTEP] apply prod_eq_zero hi [GOAL] case neg.intro.intro ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : CommMonoidWithZero β s : Finset α p : α → Prop inst✝ : DecidablePred p i : α hi : i ∈ s hq : ¬p i ⊢ (if p i then 1 else 0) = 0 [PROOFSTEP] rw [if_neg hq] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoidWithZero β inst✝¹ : Nontrivial β inst✝ : NoZeroDivisors β ⊢ ∏ x in s, f x = 0 ↔ ∃ a, a ∈ s ∧ f a = 0 [PROOFSTEP] classical induction' s using Finset.induction_on with a s ha ih · exact ⟨Not.elim one_ne_zero, fun ⟨_, H, _⟩ => by simp at H ⟩ · rw [prod_insert ha, mul_eq_zero, exists_mem_insert, ih, ← bex_def] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoidWithZero β inst✝¹ : Nontrivial β inst✝ : NoZeroDivisors β ⊢ ∏ x in s, f x = 0 ↔ ∃ a, a ∈ s ∧ f a = 0 [PROOFSTEP] induction' s using Finset.induction_on with a s ha ih [GOAL] case empty ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoidWithZero β inst✝¹ : Nontrivial β inst✝ : NoZeroDivisors β ⊢ ∏ x in ∅, f x = 0 ↔ ∃ a, a ∈ ∅ ∧ f a = 0 [PROOFSTEP] exact ⟨Not.elim one_ne_zero, fun ⟨_, H, _⟩ => by simp at H ⟩ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoidWithZero β inst✝¹ : Nontrivial β inst✝ : NoZeroDivisors β x✝ : ∃ a, a ∈ ∅ ∧ f a = 0 w✝ : α H : w✝ ∈ ∅ right✝ : f w✝ = 0 ⊢ ∏ x in ∅, f x = 0 [PROOFSTEP] simp at H [GOAL] case insert ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f g : α → β inst✝² : CommMonoidWithZero β inst✝¹ : Nontrivial β inst✝ : NoZeroDivisors β a : α s : Finset α ha : ¬a ∈ s ih : ∏ x in s, f x = 0 ↔ ∃ a, a ∈ s ∧ f a = 0 ⊢ ∏ x in insert a s, f x = 0 ↔ ∃ a_1, a_1 ∈ insert a s ∧ f a_1 = 0 [PROOFSTEP] rw [prod_insert ha, mul_eq_zero, exists_mem_insert, ih, ← bex_def] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoidWithZero β inst✝¹ : Nontrivial β inst✝ : NoZeroDivisors β ⊢ ∏ x in s, f x ≠ 0 ↔ ∀ (a : α), a ∈ s → f a ≠ 0 [PROOFSTEP] rw [Ne, prod_eq_zero_iff] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoidWithZero β inst✝¹ : Nontrivial β inst✝ : NoZeroDivisors β ⊢ (¬∃ a, a ∈ s ∧ f a = 0) ↔ ∀ (a : α), a ∈ s → f a ≠ 0 [PROOFSTEP] push_neg [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝² : CommMonoidWithZero β inst✝¹ : Nontrivial β inst✝ : NoZeroDivisors β ⊢ (∀ (a : α), a ∈ s → f a ≠ 0) ↔ ∀ (a : α), a ∈ s → f a ≠ 0 [PROOFSTEP] rfl [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g : α✝ → β✝ α : Type u_2 β : Type u_3 inst✝¹ : CommMonoid β inst✝ : Unique α s : Finset α f : α → β h : Finset.Nonempty s ⊢ ∏ x in s, f x = f default [PROOFSTEP] rw [h.eq_singleton_default, Finset.prod_singleton] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β s : Finset α n : ℕ f : α → ℕ ⊢ Multiset.sum (Multiset.map (fun x => x % n) (Multiset.map (fun i => f i) s.val)) % n = (∑ i in s, f i % n) % n [PROOFSTEP] rw [Finset.sum, Multiset.map_map] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β s : Finset α n : ℕ f : α → ℕ ⊢ Multiset.sum (Multiset.map ((fun x => x % n) ∘ fun i => f i) s.val) % n = Multiset.sum (Multiset.map (fun i => f i % n) s.val) % n [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β s : Finset α n : ℕ f : α → ℕ ⊢ Multiset.prod (Multiset.map (fun x => x % n) (Multiset.map (fun i => f i) s.val)) % n = (∏ i in s, f i % n) % n [PROOFSTEP] rw [Finset.prod, Multiset.map_map] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β s : Finset α n : ℕ f : α → ℕ ⊢ Multiset.prod (Multiset.map ((fun x => x % n) ∘ fun i => f i) s.val) % n = Multiset.prod (Multiset.map (fun i => f i % n) s.val) % n [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β s : Finset α n : ℤ f : α → ℤ ⊢ Multiset.sum (Multiset.map (fun x => x % n) (Multiset.map (fun i => f i) s.val)) % n = (∑ i in s, f i % n) % n [PROOFSTEP] rw [Finset.sum, Multiset.map_map] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β s : Finset α n : ℤ f : α → ℤ ⊢ Multiset.sum (Multiset.map ((fun x => x % n) ∘ fun i => f i) s.val) % n = Multiset.sum (Multiset.map (fun i => f i % n) s.val) % n [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β s : Finset α n : ℤ f : α → ℤ ⊢ Multiset.prod (Multiset.map (fun x => x % n) (Multiset.map (fun i => f i) s.val)) % n = (∏ i in s, f i % n) % n [PROOFSTEP] rw [Finset.prod, Multiset.map_map] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β s : Finset α n : ℤ f : α → ℤ ⊢ Multiset.prod (Multiset.map ((fun x => x % n) ∘ fun i => f i) s.val) % n = Multiset.prod (Multiset.map (fun i => f i % n) s.val) % n [PROOFSTEP] rfl [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s s₁ s₂ : Finset α✝ a : α✝ f✝ g : α✝ → β✝ α : Type u_2 β : Type u_3 inst✝² : CommMonoid β inst✝¹ : Unique α inst✝ : Fintype α f : α → β ⊢ ∏ x : α, f x = f default [PROOFSTEP] rw [univ_unique, prod_singleton] [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s s₁ s₂ : Finset α✝ a✝ : α✝ f✝ g : α✝ → β✝ α : Type u_2 β : Type u_3 inst✝² : CommMonoid β inst✝¹ : Subsingleton α inst✝ : Fintype α f : α → β a : α ⊢ ∏ x : α, f x = f a [PROOFSTEP] haveI : Unique α := uniqueOfSubsingleton a [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s s₁ s₂ : Finset α✝ a✝ : α✝ f✝ g : α✝ → β✝ α : Type u_2 β : Type u_3 inst✝² : CommMonoid β inst✝¹ : Subsingleton α inst✝ : Fintype α f : α → β a : α this : Unique α ⊢ ∏ x : α, f x = f a [PROOFSTEP] rw [prod_unique f, Subsingleton.elim default a] [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s s₁ s₂ : Finset α✝ a : α✝ f✝ g : α✝ → β✝ α : Type u_2 β : Type u_3 inst✝² : Fintype α inst✝¹ : CommMonoid β p : α → Prop f : α → β inst✝ : DecidablePred p ⊢ (∏ i : { x // p x }, f ↑i) * ∏ i : { x // ¬p x }, f ↑i = ∏ i : α, f i [PROOFSTEP] classical let s := {x | p x}.toFinset rw [← Finset.prod_subtype s, ← Finset.prod_subtype sᶜ] · exact Finset.prod_mul_prod_compl _ _ · simp · simp [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s s₁ s₂ : Finset α✝ a : α✝ f✝ g : α✝ → β✝ α : Type u_2 β : Type u_3 inst✝² : Fintype α inst✝¹ : CommMonoid β p : α → Prop f : α → β inst✝ : DecidablePred p ⊢ (∏ i : { x // p x }, f ↑i) * ∏ i : { x // ¬p x }, f ↑i = ∏ i : α, f i [PROOFSTEP] let s := {x | p x}.toFinset [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g : α✝ → β✝ α : Type u_2 β : Type u_3 inst✝² : Fintype α inst✝¹ : CommMonoid β p : α → Prop f : α → β inst✝ : DecidablePred p s : Finset α := Set.toFinset {x | p x} ⊢ (∏ i : { x // p x }, f ↑i) * ∏ i : { x // ¬p x }, f ↑i = ∏ i : α, f i [PROOFSTEP] rw [← Finset.prod_subtype s, ← Finset.prod_subtype sᶜ] [GOAL] ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g : α✝ → β✝ α : Type u_2 β : Type u_3 inst✝² : Fintype α inst✝¹ : CommMonoid β p : α → Prop f : α → β inst✝ : DecidablePred p s : Finset α := Set.toFinset {x | p x} ⊢ (∏ a in s, f a) * ∏ a in sᶜ, f a = ∏ i : α, f i [PROOFSTEP] exact Finset.prod_mul_prod_compl _ _ [GOAL] case h ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g : α✝ → β✝ α : Type u_2 β : Type u_3 inst✝² : Fintype α inst✝¹ : CommMonoid β p : α → Prop f : α → β inst✝ : DecidablePred p s : Finset α := Set.toFinset {x | p x} ⊢ ∀ (x : α), x ∈ sᶜ ↔ ¬p x [PROOFSTEP] simp [GOAL] case h ι : Type u_1 β✝ : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g : α✝ → β✝ α : Type u_2 β : Type u_3 inst✝² : Fintype α inst✝¹ : CommMonoid β p : α → Prop f : α → β inst✝ : DecidablePred p s : Finset α := Set.toFinset {x | p x} ⊢ ∀ (x : α), x ∈ s ↔ p x [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β M : Type u_2 inst✝¹ : DecidableEq α inst✝ : CommMonoid M f : α → M x✝ : Nodup [] ⊢ Finset.prod (toFinset []) f = prod (map f []) [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β M : Type u_2 inst✝¹ : DecidableEq α inst✝ : CommMonoid M f : α → M a : α l : List α hl : Nodup (a :: l) ⊢ Finset.prod (toFinset (a :: l)) f = prod (map f (a :: l)) [PROOFSTEP] let ⟨not_mem, hl⟩ := List.nodup_cons.mp hl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β M : Type u_2 inst✝¹ : DecidableEq α inst✝ : CommMonoid M f : α → M a : α l : List α hl✝ : Nodup (a :: l) not_mem : ¬a ∈ l hl : Nodup l ⊢ Finset.prod (toFinset (a :: l)) f = prod (map f (a :: l)) [PROOFSTEP] simp [Finset.prod_insert (mt List.mem_toFinset.mp not_mem), prod_toFinset _ hl] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f g : α → β a : Multiset α l : List (Multiset α) ⊢ Disjoint (List.sum l) a ↔ ∀ (b : Multiset α), b ∈ l → Disjoint b a [PROOFSTEP] induction' l with b bs ih [GOAL] case nil ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f g : α → β a : Multiset α ⊢ Disjoint (List.sum []) a ↔ ∀ (b : Multiset α), b ∈ [] → Disjoint b a [PROOFSTEP] simp only [zero_disjoint, List.not_mem_nil, IsEmpty.forall_iff, forall_const, List.sum_nil] [GOAL] case cons ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f g : α → β a b : Multiset α bs : List (Multiset α) ih : Disjoint (List.sum bs) a ↔ ∀ (b : Multiset α), b ∈ bs → Disjoint b a ⊢ Disjoint (List.sum (b :: bs)) a ↔ ∀ (b_1 : Multiset α), b_1 ∈ b :: bs → Disjoint b_1 a [PROOFSTEP] simp_rw [List.sum_cons, disjoint_add_left, List.mem_cons, forall_eq_or_imp] [GOAL] case cons ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f g : α → β a b : Multiset α bs : List (Multiset α) ih : Disjoint (List.sum bs) a ↔ ∀ (b : Multiset α), b ∈ bs → Disjoint b a ⊢ Disjoint b a ∧ Disjoint (List.sum bs) a ↔ Disjoint b a ∧ ∀ (a_1 : Multiset α), a_1 ∈ bs → Disjoint a_1 a [PROOFSTEP] simp [and_congr_left_iff, iff_self_iff, ih] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f g : α → β a : Multiset α l : List (Multiset α) ⊢ Disjoint a (List.sum l) ↔ ∀ (b : Multiset α), b ∈ l → Disjoint a b [PROOFSTEP] simpa only [@disjoint_comm _ a] using disjoint_list_sum_left [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f g : α → β a : Multiset α i : Multiset (Multiset α) l : List (Multiset α) ⊢ Disjoint (sum (Quotient.mk (List.isSetoid (Multiset α)) l)) a ↔ ∀ (b : Multiset α), b ∈ Quotient.mk (List.isSetoid (Multiset α)) l → Disjoint b a [PROOFSTEP] rw [quot_mk_to_coe, Multiset.coe_sum] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f g : α → β a : Multiset α i : Multiset (Multiset α) l : List (Multiset α) ⊢ Disjoint (List.sum l) a ↔ ∀ (b : Multiset α), b ∈ ↑l → Disjoint b a [PROOFSTEP] exact disjoint_list_sum_left [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f g : α → β a : Multiset α i : Multiset (Multiset α) ⊢ Disjoint a (sum i) ↔ ∀ (b : Multiset α), b ∈ i → Disjoint a b [PROOFSTEP] simpa only [@disjoint_comm _ a] using disjoint_sum_left [GOAL] ι : Type u_1 β✝ : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β✝ β : Type u_2 i : Finset β f : β → Multiset α a : Multiset α ⊢ Disjoint (Finset.sum i f) a ↔ ∀ (b : β), b ∈ i → Disjoint (f b) a [PROOFSTEP] convert @disjoint_sum_left _ a (map f i.val) [GOAL] case h.e'_2.a ι : Type u_1 β✝ : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β✝ β : Type u_2 i : Finset β f : β → Multiset α a : Multiset α ⊢ (∀ (b : β), b ∈ i → Disjoint (f b) a) ↔ ∀ (b : Multiset α), b ∈ map f i.val → Disjoint b a [PROOFSTEP] simp [and_congr_left_iff, iff_self_iff] [GOAL] ι : Type u_1 β✝ : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a✝ : α f✝ g : α → β✝ β : Type u_2 i : Finset β f : β → Multiset α a : Multiset α ⊢ Disjoint a (Finset.sum i f) ↔ ∀ (b : β), b ∈ i → Disjoint a (f b) [PROOFSTEP] simpa only [disjoint_comm] using disjoint_finset_sum_left [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α x y z : Multiset α h : y ≤ x ⊢ z + x = z ∪ y ↔ Disjoint z x ∧ x = y [PROOFSTEP] rw [← add_eq_union_iff_disjoint] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α x y z : Multiset α h : y ≤ x ⊢ z + x = z ∪ y ↔ z + x = z ∪ x ∧ x = y [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α x y z : Multiset α h : y ≤ x ⊢ z + x = z ∪ y → z + x = z ∪ x ∧ x = y [PROOFSTEP] intro h0 [GOAL] case mp ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α x y z : Multiset α h : y ≤ x h0 : z + x = z ∪ y ⊢ z + x = z ∪ x ∧ x = y [PROOFSTEP] rw [and_iff_right_of_imp] [GOAL] case mp ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α x y z : Multiset α h : y ≤ x h0 : z + x = z ∪ y ⊢ x = y [PROOFSTEP] exact (le_of_add_le_add_left <| h0.trans_le <| union_le_add z y).antisymm h [GOAL] case mp ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α x y z : Multiset α h : y ≤ x h0 : z + x = z ∪ y ⊢ x = y → z + x = z ∪ x [PROOFSTEP] rintro rfl [GOAL] case mp ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α x z : Multiset α h : x ≤ x h0 : z + x = z ∪ x ⊢ z + x = z ∪ x [PROOFSTEP] exact h0 [GOAL] case mpr ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α x y z : Multiset α h : y ≤ x ⊢ z + x = z ∪ x ∧ x = y → z + x = z ∪ y [PROOFSTEP] rintro ⟨h0, rfl⟩ [GOAL] case mpr.intro ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α x z : Multiset α h0 : z + x = z ∪ x h : x ≤ x ⊢ z + x = z ∪ x [PROOFSTEP] exact h0 [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α x y z : Multiset α h : z ≤ y ⊢ x + y = x ∪ z ↔ y = z ∧ Disjoint x y [PROOFSTEP] simpa only [and_comm] using add_eq_union_left_of_le h [GOAL] ι : Type u_1 β✝ : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β✝ inst✝ : DecidableEq α β : Type u_2 i : Finset β f : β → Multiset α ⊢ Finset.sum i f = Finset.sup i f ↔ ∀ (x : β), x ∈ i → ∀ (y : β), y ∈ i → x ≠ y → Disjoint (f x) (f y) [PROOFSTEP] induction' i using Finset.cons_induction_on with z i hz hr [GOAL] case h₁ ι : Type u_1 β✝ : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β✝ inst✝ : DecidableEq α β : Type u_2 f : β → Multiset α ⊢ Finset.sum ∅ f = Finset.sup ∅ f ↔ ∀ (x : β), x ∈ ∅ → ∀ (y : β), y ∈ ∅ → x ≠ y → Disjoint (f x) (f y) [PROOFSTEP] simp only [Finset.not_mem_empty, IsEmpty.forall_iff, imp_true_iff, Finset.sum_empty, Finset.sup_empty, bot_eq_zero, eq_self_iff_true] [GOAL] case h₂ ι : Type u_1 β✝ : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β✝ inst✝ : DecidableEq α β : Type u_2 f : β → Multiset α z : β i : Finset β hz : ¬z ∈ i hr : Finset.sum i f = Finset.sup i f ↔ ∀ (x : β), x ∈ i → ∀ (y : β), y ∈ i → x ≠ y → Disjoint (f x) (f y) ⊢ Finset.sum (Finset.cons z i hz) f = Finset.sup (Finset.cons z i hz) f ↔ ∀ (x : β), x ∈ Finset.cons z i hz → ∀ (y : β), y ∈ Finset.cons z i hz → x ≠ y → Disjoint (f x) (f y) [PROOFSTEP] simp_rw [Finset.sum_cons hz, Finset.sup_cons, Finset.mem_cons, Multiset.sup_eq_union, forall_eq_or_imp, Ne.def, IsEmpty.forall_iff, true_and_iff, imp_and, forall_and, ← hr, @eq_comm _ z] [GOAL] case h₂ ι : Type u_1 β✝ : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β✝ inst✝ : DecidableEq α β : Type u_2 f : β → Multiset α z : β i : Finset β hz : ¬z ∈ i hr : Finset.sum i f = Finset.sup i f ↔ ∀ (x : β), x ∈ i → ∀ (y : β), y ∈ i → x ≠ y → Disjoint (f x) (f y) ⊢ f z + ∑ x in i, f x = f z ∪ Finset.sup i f ↔ (∀ (a : β), a ∈ i → ¬a = z → Disjoint (f z) (f a)) ∧ (∀ (x : β), x ∈ i → ¬x = z → Disjoint (f x) (f z)) ∧ Finset.sum i f = Finset.sup i f [PROOFSTEP] have := fun x (H : x ∈ i) => ne_of_mem_of_not_mem H hz [GOAL] case h₂ ι : Type u_1 β✝ : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β✝ inst✝ : DecidableEq α β : Type u_2 f : β → Multiset α z : β i : Finset β hz : ¬z ∈ i hr : Finset.sum i f = Finset.sup i f ↔ ∀ (x : β), x ∈ i → ∀ (y : β), y ∈ i → x ≠ y → Disjoint (f x) (f y) this : ∀ (x : β), x ∈ i → x ≠ z ⊢ f z + ∑ x in i, f x = f z ∪ Finset.sup i f ↔ (∀ (a : β), a ∈ i → ¬a = z → Disjoint (f z) (f a)) ∧ (∀ (x : β), x ∈ i → ¬x = z → Disjoint (f x) (f z)) ∧ Finset.sum i f = Finset.sup i f [PROOFSTEP] simp (config := { contextual := true }) only [this, not_false_iff, true_imp_iff] [GOAL] case h₂ ι : Type u_1 β✝ : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β✝ inst✝ : DecidableEq α β : Type u_2 f : β → Multiset α z : β i : Finset β hz : ¬z ∈ i hr : Finset.sum i f = Finset.sup i f ↔ ∀ (x : β), x ∈ i → ∀ (y : β), y ∈ i → x ≠ y → Disjoint (f x) (f y) this : ∀ (x : β), x ∈ i → x ≠ z ⊢ f z + ∑ x in i, f x = f z ∪ Finset.sup i f ↔ (∀ (a : β), a ∈ i → Disjoint (f z) (f a)) ∧ (∀ (x : β), x ∈ i → Disjoint (f x) (f z)) ∧ Finset.sum i f = Finset.sup i f [PROOFSTEP] simp_rw [← disjoint_finset_sum_left, ← disjoint_finset_sum_right, disjoint_comm, ← and_assoc, and_self_iff] [GOAL] case h₂ ι : Type u_1 β✝ : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β✝ inst✝ : DecidableEq α β : Type u_2 f : β → Multiset α z : β i : Finset β hz : ¬z ∈ i hr : Finset.sum i f = Finset.sup i f ↔ ∀ (x : β), x ∈ i → ∀ (y : β), y ∈ i → x ≠ y → Disjoint (f x) (f y) this : ∀ (x : β), x ∈ i → x ≠ z ⊢ f z + ∑ x in i, f x = f z ∪ Finset.sup i f ↔ Disjoint (f z) (∑ x in i, f x) ∧ Finset.sum i f = Finset.sup i f [PROOFSTEP] exact add_eq_union_left_of_le (Finset.sup_le fun x hx => le_sum_of_mem (mem_map_of_mem f hx)) [GOAL] ι : Type u_1 β : Type u α✝ : Type v γ : Type w s s₁ s₂ : Finset α✝ a : α✝ f g : α✝ → β inst✝¹ : DecidableEq α✝ α : Type u_2 inst✝ : DecidableEq α x : Multiset α ⊢ (Finset.sup (Finset.range (↑card x + 1)) fun k => powersetLen k x) = powerset x [PROOFSTEP] convert bind_powerset_len x using 1 [GOAL] case h.e'_2 ι : Type u_1 β : Type u α✝ : Type v γ : Type w s s₁ s₂ : Finset α✝ a : α✝ f g : α✝ → β inst✝¹ : DecidableEq α✝ α : Type u_2 inst✝ : DecidableEq α x : Multiset α ⊢ (Finset.sup (Finset.range (↑card x + 1)) fun k => powersetLen k x) = bind (range (↑card x + 1)) fun k => powersetLen k x [PROOFSTEP] rw [Multiset.bind, Multiset.join, ← Finset.range_val, ← Finset.sum_eq_multiset_sum] [GOAL] case h.e'_2 ι : Type u_1 β : Type u α✝ : Type v γ : Type w s s₁ s₂ : Finset α✝ a : α✝ f g : α✝ → β inst✝¹ : DecidableEq α✝ α : Type u_2 inst✝ : DecidableEq α x : Multiset α ⊢ (Finset.sup (Finset.range (↑card x + 1)) fun k => powersetLen k x) = ∑ x_1 in Finset.range (↑card x + 1), powersetLen x_1 x [PROOFSTEP] exact Eq.symm (finset_sum_eq_sup_iff_disjoint.mpr fun _ _ _ _ h => pairwise_disjoint_powersetLen x h) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α s : Multiset α ⊢ ∑ a in toFinset s, count a s = ∑ a in toFinset s, count a s • 1 [PROOFSTEP] {simp only [smul_eq_mul, mul_one] } [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α s : Multiset α ⊢ ∑ a in toFinset s, count a s = ∑ a in toFinset s, count a s • 1 [PROOFSTEP] simp only [smul_eq_mul, mul_one] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α s : Multiset α ⊢ sum (map (fun x => 1) s) = ↑card s [PROOFSTEP] simp [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : DecidableEq α s : Finset β a : α f : β → Multiset α ⊢ count a (∑ x in s, f x) = ∑ x in s, count a (f x) [PROOFSTEP] dsimp only [Finset.sum] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a✝ : α f✝ g : α → β inst✝ : DecidableEq α s : Finset β a : α f : β → Multiset α ⊢ count a (sum (map (fun x => f x) s.val)) = sum (map (fun x => count a (f x)) s.val) [PROOFSTEP] rw [count_sum] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α s : Multiset α ⊢ ∑ a in toFinset s, count a s • {a} = s [PROOFSTEP] rw [← Finset.sum_multiset_map_count, Multiset.sum_map_singleton] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α s : Multiset α k : ℕ h : ∀ (a : α), a ∈ s → k ∣ count a s ⊢ ∃ u, s = k • u [PROOFSTEP] use∑ a in s.toFinset, (s.count a / k) • { a } [GOAL] case h ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α s : Multiset α k : ℕ h : ∀ (a : α), a ∈ s → k ∣ count a s ⊢ s = k • ∑ a in toFinset s, (count a s / k) • {a} [PROOFSTEP] have h₂ : (∑ x : α in s.toFinset, k • (count x s / k) • ({ x } : Multiset α)) = ∑ x : α in s.toFinset, count x s • { x } := by apply Finset.sum_congr rfl intro x hx rw [← mul_nsmul', Nat.mul_div_cancel' (h x (mem_toFinset.mp hx))] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α s : Multiset α k : ℕ h : ∀ (a : α), a ∈ s → k ∣ count a s ⊢ ∑ x in toFinset s, k • (count x s / k) • {x} = ∑ x in toFinset s, count x s • {x} [PROOFSTEP] apply Finset.sum_congr rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α s : Multiset α k : ℕ h : ∀ (a : α), a ∈ s → k ∣ count a s ⊢ ∀ (x : α), x ∈ toFinset s → k • (count x s / k) • {x} = count x s • {x} [PROOFSTEP] intro x hx [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α s : Multiset α k : ℕ h : ∀ (a : α), a ∈ s → k ∣ count a s x : α hx : x ∈ toFinset s ⊢ k • (count x s / k) • {x} = count x s • {x} [PROOFSTEP] rw [← mul_nsmul', Nat.mul_div_cancel' (h x (mem_toFinset.mp hx))] [GOAL] case h ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : DecidableEq α s : Multiset α k : ℕ h : ∀ (a : α), a ∈ s → k ∣ count a s h₂ : ∑ x in toFinset s, k • (count x s / k) • {x} = ∑ x in toFinset s, count x s • {x} ⊢ s = k • ∑ a in toFinset s, (count a s / k) • {a} [PROOFSTEP] rw [← Finset.sum_nsmul, h₂, toFinset_sum_count_nsmul_eq] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : DecidableEq α inst✝ : CommMonoid α S : Multiset α ⊢ Finset.prod (toFinset S) id ∣ prod S [PROOFSTEP] rw [Finset.prod_eq_multiset_prod] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : DecidableEq α inst✝ : CommMonoid α S : Multiset α ⊢ prod (map (fun x => id x) (toFinset S).val) ∣ prod S [PROOFSTEP] refine' Multiset.prod_dvd_prod_of_le _ [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f g : α → β inst✝¹ : DecidableEq α inst✝ : CommMonoid α S : Multiset α ⊢ map (fun x => id x) (toFinset S).val ≤ S [PROOFSTEP] simp [Multiset.dedup_le S] [GOAL] ι✝ : Type u_1 β : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g : α✝ → β inst✝¹ : DecidableEq α✝ α : Type u_2 ι : Type u_3 inst✝ : CommMonoid α f : ι → Multiset α s : Finset ι ⊢ prod (∑ x in s, f x) = ∏ x in s, prod (f x) [PROOFSTEP] classical induction' s using Finset.induction_on with a t hat ih · rw [Finset.sum_empty, Finset.prod_empty, Multiset.prod_zero] · rw [Finset.sum_insert hat, Finset.prod_insert hat, Multiset.prod_add, ih] [GOAL] ι✝ : Type u_1 β : Type u α✝ : Type v γ : Type w s✝ s₁ s₂ : Finset α✝ a : α✝ f✝ g : α✝ → β inst✝¹ : DecidableEq α✝ α : Type u_2 ι : Type u_3 inst✝ : CommMonoid α f : ι → Multiset α s : Finset ι ⊢ prod (∑ x in s, f x) = ∏ x in s, prod (f x) [PROOFSTEP] induction' s using Finset.induction_on with a t hat ih [GOAL] case empty ι✝ : Type u_1 β : Type u α✝ : Type v γ : Type w s s₁ s₂ : Finset α✝ a : α✝ f✝ g : α✝ → β inst✝¹ : DecidableEq α✝ α : Type u_2 ι : Type u_3 inst✝ : CommMonoid α f : ι → Multiset α ⊢ prod (∑ x in ∅, f x) = ∏ x in ∅, prod (f x) [PROOFSTEP] rw [Finset.sum_empty, Finset.prod_empty, Multiset.prod_zero] [GOAL] case insert ι✝ : Type u_1 β : Type u α✝ : Type v γ : Type w s s₁ s₂ : Finset α✝ a✝ : α✝ f✝ g : α✝ → β inst✝¹ : DecidableEq α✝ α : Type u_2 ι : Type u_3 inst✝ : CommMonoid α f : ι → Multiset α a : ι t : Finset ι hat : ¬a ∈ t ih : prod (∑ x in t, f x) = ∏ x in t, prod (f x) ⊢ prod (∑ x in insert a t, f x) = ∏ x in insert a t, prod (f x) [PROOFSTEP] rw [Finset.sum_insert hat, Finset.prod_insert hat, Multiset.prod_add, ih] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommGroupWithZero β s : Finset α f : α → β h : ∏ b in s, f b ≠ 0 ⊢ mk0 (∏ b in s, f b) h = ∏ b in Finset.attach s, mk0 (f ↑b) (_ : f ↑b = 0 → False) [PROOFSTEP] classical induction s using Finset.induction_on <;> simp [*] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommGroupWithZero β s : Finset α f : α → β h : ∏ b in s, f b ≠ 0 ⊢ mk0 (∏ b in s, f b) h = ∏ b in Finset.attach s, mk0 (f ↑b) (_ : f ↑b = 0 → False) [PROOFSTEP] induction s using Finset.induction_on [GOAL] case empty ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommGroupWithZero β f : α → β h : ∏ b in ∅, f b ≠ 0 ⊢ mk0 (∏ b in ∅, f b) h = ∏ b in Finset.attach ∅, mk0 (f ↑b) (_ : f ↑b = 0 → False) [PROOFSTEP] simp [*] [GOAL] case insert ι : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommGroupWithZero β f : α → β a✝² : α s✝ : Finset α a✝¹ : ¬a✝² ∈ s✝ a✝ : ∀ (h : ∏ b in s✝, f b ≠ 0), mk0 (∏ b in s✝, f b) h = ∏ b in Finset.attach s✝, mk0 (f ↑b) (_ : f ↑b = 0 → False) h : ∏ b in insert a✝² s✝, f b ≠ 0 ⊢ mk0 (∏ b in insert a✝² s✝, f b) h = ∏ b in Finset.attach (insert a✝² s✝), mk0 (f ↑b) (_ : f ↑b = 0 → False) [PROOFSTEP] simp [*] [GOAL] ι✝ : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β ι : Type u_2 s : Finset ι f : ι → ℤ ⊢ Int.natAbs (∑ i in s, f i) ≤ ∑ i in s, Int.natAbs (f i) [PROOFSTEP] classical induction' s using Finset.induction_on with i s his IH · simp only [Finset.sum_empty, Int.natAbs_zero] · simp only [his, Finset.sum_insert, not_false_iff] exact (Int.natAbs_add_le _ _).trans (add_le_add le_rfl IH) [GOAL] ι✝ : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β ι : Type u_2 s : Finset ι f : ι → ℤ ⊢ Int.natAbs (∑ i in s, f i) ≤ ∑ i in s, Int.natAbs (f i) [PROOFSTEP] induction' s using Finset.induction_on with i s his IH [GOAL] case empty ι✝ : Type u_1 β : Type u α : Type v γ : Type w s s₁ s₂ : Finset α a : α f✝ g : α → β ι : Type u_2 f : ι → ℤ ⊢ Int.natAbs (∑ i in ∅, f i) ≤ ∑ i in ∅, Int.natAbs (f i) [PROOFSTEP] simp only [Finset.sum_empty, Int.natAbs_zero] [GOAL] case insert ι✝ : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β ι : Type u_2 f : ι → ℤ i : ι s : Finset ι his : ¬i ∈ s IH : Int.natAbs (∑ i in s, f i) ≤ ∑ i in s, Int.natAbs (f i) ⊢ Int.natAbs (∑ i in insert i s, f i) ≤ ∑ i in insert i s, Int.natAbs (f i) [PROOFSTEP] simp only [his, Finset.sum_insert, not_false_iff] [GOAL] case insert ι✝ : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f✝ g : α → β ι : Type u_2 f : ι → ℤ i : ι s : Finset ι his : ¬i ∈ s IH : Int.natAbs (∑ i in s, f i) ≤ ∑ i in s, Int.natAbs (f i) ⊢ Int.natAbs (f i + ∑ i in s, f i) ≤ Int.natAbs (f i) + ∑ i in s, Int.natAbs (f i) [PROOFSTEP] exact (Int.natAbs_add_le _ _).trans (add_le_add le_rfl IH) [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : Monoid α s : List α ⊢ ↑ofMul (List.prod s) = List.sum (List.map (↑ofMul) s) [PROOFSTEP] simp [ofMul] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : Monoid α s : List α ⊢ List.prod s = List.sum s [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : Monoid α s : List (Additive α) ⊢ ↑toMul (List.sum s) = List.prod (List.map (↑toMul) s) [PROOFSTEP] simp [toMul, ofMul] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : Monoid α s : List (Additive α) ⊢ List.sum s = List.prod s [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : AddMonoid α s : List α ⊢ ↑ofAdd (List.sum s) = List.prod (List.map (↑ofAdd) s) [PROOFSTEP] simp [ofAdd] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : AddMonoid α s : List α ⊢ List.sum s = List.prod s [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : AddMonoid α s : List (Multiplicative α) ⊢ ↑toAdd (List.prod s) = List.sum (List.map (↑toAdd) s) [PROOFSTEP] simp [toAdd, ofAdd] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : AddMonoid α s : List (Multiplicative α) ⊢ List.prod s = List.sum s [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid α s : Multiset α ⊢ ↑ofMul (Multiset.prod s) = Multiset.sum (Multiset.map (↑ofMul) s) [PROOFSTEP] simp [ofMul] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid α s : Multiset α ⊢ Multiset.prod s = Multiset.sum s [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid α s : Multiset (Additive α) ⊢ ↑toMul (Multiset.sum s) = Multiset.prod (Multiset.map (↑toMul) s) [PROOFSTEP] simp [toMul, ofMul] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : CommMonoid α s : Multiset (Additive α) ⊢ Multiset.sum s = Multiset.prod s [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : AddCommMonoid α s : Multiset α ⊢ ↑ofAdd (Multiset.sum s) = Multiset.prod (Multiset.map (↑ofAdd) s) [PROOFSTEP] simp [ofAdd] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : AddCommMonoid α s : Multiset α ⊢ Multiset.sum s = Multiset.prod s [PROOFSTEP] rfl [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : AddCommMonoid α s : Multiset (Multiplicative α) ⊢ ↑toAdd (Multiset.prod s) = Multiset.sum (Multiset.map (↑toAdd) s) [PROOFSTEP] simp [toAdd, ofAdd] [GOAL] ι : Type u_1 β : Type u α : Type v γ : Type w s✝ s₁ s₂ : Finset α a : α f g : α → β inst✝ : AddCommMonoid α s : Multiset (Multiplicative α) ⊢ Multiset.prod s = Multiset.sum s [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.BigOperators.Basic", "llama_tokens": 109875}